101
|
Different adaptive NO-dependent Mechanisms in Normal and Hypertensive Conditions. Molecules 2019; 24:molecules24091682. [PMID: 31052164 PMCID: PMC6539476 DOI: 10.3390/molecules24091682] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/23/2019] [Accepted: 04/26/2019] [Indexed: 02/06/2023] Open
Abstract
Myocardial infarction (MI) remains the leading cause of death worldwide. We aimed to investigate the effect of NO deficiency on selective biochemical parameters within discreet myocardial zones after experimentally induced MI. To induce MI, the left descending coronary artery was ligated in two groups of 16-week-old WKY rats. In one group, NO production was inhibited by L-NAME (20 mg/kg/day) administration four weeks prior to ligation. Sham operations were performed on both groups as a control. Seven days after MI, we evaluated levels of nitric oxide synthase (NOS) activity, eNOS, iNOS, NFҡB/p65 and Nrf2 in ischemic, injured and non-ischemic zones of the heart. Levels of circulating TNF-α and IL-6 were evaluated in the plasma. MI led to increased NOS activity in all investigated zones of myocardium as well as circulating levels of TNF-α and IL-6. L-NAME treatment decreased NOS activity in the heart of sham operated animals. eNOS expression was increased in the injured zone and this could be a compensatory mechanism that improves the perfusion of the myocardium and cardiac dysfunction. Conversely, iNOS expression increased in the infarcted zone and may contribute to the inflammatory process and irreversible necrotic changes.
Collapse
|
102
|
Tian D, Meng J. Exercise for Prevention and Relief of Cardiovascular Disease: Prognoses, Mechanisms, and Approaches. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3756750. [PMID: 31093312 PMCID: PMC6481017 DOI: 10.1155/2019/3756750] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/01/2019] [Accepted: 03/19/2019] [Indexed: 12/12/2022]
Abstract
This review is aimed at summarizing the new findings about the multiple benefits of exercise on cardiovascular disease (CVD). We pay attention to the prevalence and risk factors of CVD and mechanisms and recommendations of physical activity. Physical activity can improve insulin sensitivity, alleviate plasma dyslipidemia, normalize elevated blood pressure, decrease blood viscosity, promote endothelial nitric oxide production, and improve leptin sensitivity to protect the heart and vessels. Besides, the protective role of exercise on the body involves not only animal models in the laboratory but also clinical studies which is demonstrated by WHO recommendations. The general exercise intensity for humans recommended by the American Heart Association to prevent CVD is moderate exercise of 30 minutes, 5 times a week. However, even the easiest activity is better than nothing. What is more, owing to the different physical fitness of individuals, a standard exercise training cannot provide the exact treatment for everyone. So personalization of exercise will be an irresistible trend and bring more beneficial effects with less inefficient physical activities. This paper reviews the benefits of exercise contributing to the body especially in CVD through the recent mechanism studies.
Collapse
Affiliation(s)
- Danyang Tian
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Jinqi Meng
- Department of Sports, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
103
|
Yamada M, Iwata M, Warabi E, Oishi H, Lira VA, Okutsu M. p62/SQSTM1 and Nrf2 are essential for exercise‐mediated enhancement of antioxidant protein expression in oxidative muscle. FASEB J 2019; 33:8022-8032. [DOI: 10.1096/fj.201900133r] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mami Yamada
- Graduate School of Natural SciencesNagoya City University Nagoya Japan
| | - Masahiro Iwata
- Department of RehabilitationFaculty of Health SciencesNihon Fukushi University Handa Japan
| | - Eiji Warabi
- Faculty of MedicineUniversity of Tsukuba Tsukuba Japan
| | - Hisashi Oishi
- Department of Comparative and Experimental MedicineGraduate School of Medical SciencesNagoya City University Nagoya Japan
| | - Vitor A. Lira
- Department of Health and Human PhysiologyObesity Research and Education InitiativeFraternal Order of Eagles (F.O.E.) Diabetes Research CenterAbboud Cardiovascular Research CenterPappajohn Biomedical InstituteThe University of Iowa Iowa City Iowa USA
| | - Mitsuharu Okutsu
- Graduate School of Natural SciencesNagoya City University Nagoya Japan
| |
Collapse
|
104
|
Receno CN, Liang C, Korol DL, Atalay M, Heffernan KS, Brutsaert TD, DeRuisseau KC. Effects of Prolonged Dietary Curcumin Exposure on Skeletal Muscle Biochemical and Functional Responses of Aged Male Rats. Int J Mol Sci 2019; 20:E1178. [PMID: 30866573 PMCID: PMC6429120 DOI: 10.3390/ijms20051178] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/28/2019] [Accepted: 03/03/2019] [Indexed: 12/30/2022] Open
Abstract
Oxidative stress resulting from decreased antioxidant protection and increased reactive oxygen and nitrogen species (RONS) production may contribute to muscle mass loss and dysfunction during aging. Curcumin is a phenolic compound shown to upregulate antioxidant defenses and directly quench RONS in vivo. This study determined the impact of prolonged dietary curcumin exposure on muscle mass and function of aged rats. Thirty-two-month-old male F344xBN rats were provided a diet with or without 0.2% curcumin for 4 months. The groups included: ad libitum control (CON; n = 18); 0.2% curcumin (CUR; n = 18); and pair-fed (PAIR; n = 18) rats. CUR rats showed lower food intake compared to CON, making PAIR a suitable comparison group. CUR rats displayed larger plantaris mass and force production (vs. PAIR). Nuclear fraction levels of nuclear factor erythroid-2 related-factor-2 were greater, and oxidative macromolecule damage was lower in CUR (vs. PAIR). There were no significant differences in measures of antioxidant status between any of the groups. No difference in any measure was observed between CUR and CON rats. Thus, consumption of curcumin coupled with reduced food intake imparted beneficial effects on aged skeletal muscle. The benefit of curcumin on aging skeletal muscle should be explored further.
Collapse
Affiliation(s)
- Candace N Receno
- 201 Women's Building, Department of Exercise Science, Syracuse University, Syracuse, NY 13244, USA.
| | - Chen Liang
- 201 Women's Building, Department of Exercise Science, Syracuse University, Syracuse, NY 13244, USA.
| | - Donna L Korol
- 107 College Place, Department of Biology, Syracuse University, Syracuse, NY 13244, USA.
| | - Mustafa Atalay
- Yliopistonranta 1 E, Institute of Biomedicine, Physiology, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland.
| | - Kevin S Heffernan
- 201 Women's Building, Department of Exercise Science, Syracuse University, Syracuse, NY 13244, USA.
| | - Tom D Brutsaert
- 201 Women's Building, Department of Exercise Science, Syracuse University, Syracuse, NY 13244, USA.
| | - Keith C DeRuisseau
- 201 Women's Building, Department of Exercise Science, Syracuse University, Syracuse, NY 13244, USA.
| |
Collapse
|
105
|
Zhang H, Liu M, Zhang Y, Li X. Trimetazidine Attenuates Exhaustive Exercise-Induced Myocardial Injury in Rats via Regulation of the Nrf2/NF-κB Signaling Pathway. Front Pharmacol 2019; 10:175. [PMID: 30890937 PMCID: PMC6411712 DOI: 10.3389/fphar.2019.00175] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/11/2019] [Indexed: 12/26/2022] Open
Abstract
Exhausted exercise has been reported to cause the damage of myocardial structure and function in terms of cardiomyocyte apoptosis, oxidative stress, and energy metabolism disturbance. Trimetazidine (TMZ), as an anti-ischemic agent, has been approved to be effective in promoting myocardial energy metabolism, anti-inflammatory, and anti-oxidation. However, few studies examined the effects of TMZ on myocardial injury induced by exhausted exercise. To investigate whether TMZ could ameliorate the exhaustive exercise-induced myocardial injury and explore the underlying mechanisms, here the rat model of exhaustive exercise was induced by prolonged swimming exercise and TMZ was administrated to rats before exhaustive exercise. According to the results, we demonstrated that exhaustive exercise led to cardiomyocyte damage in rats as evidenced by elevations in cTnI and NT-proBNP levels, and decrease in CX43 expression, which was attenuated by TMZ treatment. Moreover, the administration of TMZ was found to restrain exhaustive exercise-induced oxidative stress damage by increasing GSH level, SOD and GSH-Px activities, and decreasing MDA level. Additionally, TMZ ameliorated myocardial injury by inhibiting apoptosis via reducing Bax/Bcl-2 ratio and down-regulating cleaved caspase-3, cleaved PARP, and cytochrome c levels in the myocardium of rats. Furthermore, we found that TMZ suppressed oxidative stress and cardiomyocyte apoptosis via activation of Nrf2/HO-1 and inactivation of NF-κB signaling pathways. Therefore, our study suggested that TMZ provided cardioprotection in rats after exhaustive exercise, indicating TMZ might served as a potential therapeutic drug for exhaustive exercise-induced myocardial injury.
Collapse
Affiliation(s)
- Hongming Zhang
- Department of Cardiology, The General Hospital of Jinan Military Area Command, Jinan, China
| | - Moyan Liu
- Department of Cardiology, The General Hospital of Jinan Military Area Command, Jinan, China
| | - Yuyan Zhang
- Department of Cardiology, The Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Xiaoyan Li
- Department of Cardiology, The General Hospital of Jinan Military Area Command, Jinan, China
| |
Collapse
|
106
|
Hancock M, Hafstad AD, Nabeebaccus AA, Catibog N, Logan A, Smyrnias I, Hansen SS, Lanner J, Schröder K, Murphy MP, Shah AM, Zhang M. Myocardial NADPH oxidase-4 regulates the physiological response to acute exercise. eLife 2018; 7:41044. [PMID: 30589411 PMCID: PMC6307857 DOI: 10.7554/elife.41044] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 12/18/2018] [Indexed: 12/14/2022] Open
Abstract
Regular exercise has widespread health benefits. Fundamental to these beneficial effects is the ability of the heart to intermittently and substantially increase its performance without incurring damage, but the underlying homeostatic mechanisms are unclear. We identify the ROS-generating NADPH oxidase-4 (Nox4) as an essential regulator of exercise performance in mice. Myocardial Nox4 levels increase during acute exercise and trigger activation of the transcription factor Nrf2, with the induction of multiple endogenous antioxidants. Cardiomyocyte-specific Nox4-deficient (csNox4KO) mice display a loss of exercise-induced Nrf2 activation, cardiac oxidative stress and reduced exercise performance. Cardiomyocyte-specific Nrf2-deficient (csNrf2KO) mice exhibit similar compromised exercise capacity, with mitochondrial and cardiac dysfunction. Supplementation with an Nrf2 activator or a mitochondria-targeted antioxidant effectively restores cardiac performance and exercise capacity in csNox4KO and csNrf2KO mice respectively. The Nox4/Nrf2 axis therefore drives a hormetic response that is required for optimal cardiac mitochondrial and contractile function during physiological exercise.
Collapse
Affiliation(s)
- Matthew Hancock
- School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Excellence, London, United Kingdom
| | - Anne D Hafstad
- Cardiovascular Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Adam A Nabeebaccus
- School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Excellence, London, United Kingdom
| | - Norman Catibog
- School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Excellence, London, United Kingdom
| | - Angela Logan
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Ioannis Smyrnias
- School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Excellence, London, United Kingdom
| | - Synne S Hansen
- Cardiovascular Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Johanna Lanner
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Katrin Schröder
- Institut für Kardiovaskuläre Physiologien, Goethe-Universität, Frankfurt, Germany
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Ajay M Shah
- School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Excellence, London, United Kingdom
| | - Min Zhang
- School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Excellence, London, United Kingdom
| |
Collapse
|
107
|
Hur J, Kim M, Choi SY, Jang Y, Ha TY. Isobavachalcone attenuates myotube atrophy induced by TNF-α through muscle atrophy F-box signaling and the nuclear factor erythroid 2-related factor 2 cascade. Phytother Res 2018; 33:403-411. [PMID: 30421466 DOI: 10.1002/ptr.6235] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 10/14/2018] [Accepted: 10/20/2018] [Indexed: 12/12/2022]
Abstract
Skeletal muscle atrophy is a condition characterized by damaged muscle fibers and reduced numbers of muscle cells due to various causes. Muscle atrophy is associated with chronic diseases, such as heart failure, diabetes, and aging-related diseases. Isobavachalcone (IBC) is a flavonoid found in various foods and natural products, and studies have investigated its diverse effects, including its neuroprotective and anticancer effects. However, no studies have evaluated the effects of IBC on muscle atrophy. Thus, in this study, we assessed the effects of IBC on prevention of muscle atrophy. To evaluate the preventive effects of IBC on muscle atrophy, we used C2C12 myoblasts and induced muscle atrophy by tumor necrosis factor (TNF)-α. IBC regulated the expression levels of muscle atrophy F-box and muscle RING finger-1 in response to damaged muscle cells, thereby restoring the expression of myosin heavy chain and myogenin. Moreover, IBC regulated the phosphorylation of the nuclear factor-κB and p38 and upregulated the expression of nuclear factor erythroid 2-related factor 2 and heme oxygenase-1, which are involved in regulating oxidative stress. Our results indicated that IBC acted to relieve TNF-α-induced skeletal muscle atrophy by regulating the factors related to inflammation and oxidative stress.
Collapse
Affiliation(s)
- Jinyoung Hur
- Nutrition and Metabolism Research Division, Korea Food Research Institute, Wanju, Republic of Korea.,Divisions of Food Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - Mina Kim
- Nutrition and Metabolism Research Division, Korea Food Research Institute, Wanju, Republic of Korea
| | - Sang Yoon Choi
- Nutrition and Metabolism Research Division, Korea Food Research Institute, Wanju, Republic of Korea.,Divisions of Food Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - YoungJin Jang
- Nutrition and Metabolism Research Division, Korea Food Research Institute, Wanju, Republic of Korea
| | - Tae Youl Ha
- Nutrition and Metabolism Research Division, Korea Food Research Institute, Wanju, Republic of Korea.,Divisions of Food Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
108
|
Redox Signaling of NADPH Oxidases Regulates Oxidative Stress Responses, Immunity and Aging. Antioxidants (Basel) 2018; 7:antiox7100130. [PMID: 30274229 PMCID: PMC6210377 DOI: 10.3390/antiox7100130] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 12/14/2022] Open
Abstract
An accumulating body of evidence suggests that transient or physiological reactive oxygen species (ROS) generated by nicotinamide adenine dinucleotide phosphate (NADPH) oxidases act as a redox signal to re-establish homeostasis. The capacity to re-establish homeostasis progressively declines during aging but is maintained in long-lived animals to promote healthy aging. In the model organism Caenorhabditis elegans, ROS generated by dual oxidases (Duox) are important for extracellular matrix integrity, pathogen defense, oxidative stress resistance, and longevity. The Duox enzymatic activity is tightly regulated and under cellular control. Developmental molting cycles, pathogen infections, toxins, mitochondrial-derived ROS, drugs, and small GTPases (e.g., RHO-1) can activate Duox (BLI-3) to generate ROS, whereas NADPH oxidase inhibitors and negative regulators, such as MEMO-1, can inhibit Duox from generating ROS. Three mechanisms-of-action have been discovered for the Duox/BLI-3-generated ROS: (1) enzymatic activity to catalyze crosslinking of free tyrosine ethyl ester in collagen bundles to stabilize extracellular matrices, (2) high ROS bursts/levels to kill pathogens, and (3) redox signaling activating downstream kinase cascades to transcription factors orchestrating oxidative stress and immunity responses to re-establish homeostasis. Although Duox function at the cell surface is well established, recent genetic and biochemical data also suggests a novel role for Duoxs at the endoplasmic reticulum membrane to control redox signaling. Evidence underlying these mechanisms initiated by ROS from NADPH oxidases, and their relevance for human aging, are discussed in this review. Appropriately controlling NADPH oxidase activity for local and physiological redox signaling to maintain cellular homeostasis might be a therapeutic strategy to promote healthy aging.
Collapse
|
109
|
Induction of brain Nrf2-HO-1 pathway and antinociception after different physical training paradigms in mice. Life Sci 2018; 209:149-156. [PMID: 30077767 DOI: 10.1016/j.lfs.2018.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/24/2018] [Accepted: 08/01/2018] [Indexed: 12/17/2022]
Abstract
AIM Activation of the Nrf2-antioxidant response element signaling pathway is a major mechanism in the cellular defense against oxidative or electrophilic stress through conjugative reactions and by enhancing cellular antioxidant capacity. Although exercise training up-regulates antioxidant defenses system, while information regarding the intensity levels of physical exercise that acts on the cellular protection systems is limited. MAIN METHODS The present study evaluated the effects of different durations and intensities of physical exercise on the hippocampus, cortex and hypothalamus Nrf2 and HO-1 gene expression and related protein content and the nociception thresholds in adult C57Bl male mice. Exercise training consisted of daily running on a 10-lane rodent motor-driven treadmill for either 3 or 7 weeks at three different intensities. Pain responses were evaluated after exercise and in untrained mice by Von Frey hair test and cold plate test. KEY FINDINGS This study confirmed that only vigorous and longer duration aerobic exercise increased Nrf2 protein level in the hippocampus and HO-1 protein level in the cortex and reduced pain perception. Mechanical and thermal hypoalgesia were only observed in exercise groups after 7 weeks of physical training. SIGNIFICANCE The overall findings in this study confirm that only the long duration intensive forced exercise reduced inflammatory pain by induction of Nrf2/HO-1 antioxidant signaling pathway.
Collapse
|
110
|
Xu X, Ding Y, Yang Y, Gao Y, Sun Q, Liu J, Yang X, Wang J, Zhang J. β-glucan Salecan Improves Exercise Performance and Displays Anti-Fatigue Effects through Regulating Energy Metabolism and Oxidative Stress in Mice. Nutrients 2018; 10:nu10070858. [PMID: 29970808 PMCID: PMC6073659 DOI: 10.3390/nu10070858] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/20/2018] [Accepted: 06/26/2018] [Indexed: 12/31/2022] Open
Abstract
Fatigue induced by prolonged exercise not only leads to the decrease of exercise capacity, but also might be the cause of many diseases. In consideration of the side effects of pharmacological drugs, dietary supplements seem to be a better choice to ameliorate exercise-induced fatigue. The present study aimed to investigate the anti-fatigue effect of Salecan, a novel water-soluble β-glucan, during exercise and explore the underlying mechanisms. Male Institute of Cancer Research (ICR) mice were divided into five groups, including the Rest group and the other four Swim-groups treated with Salecan at 0, 25, 50, and 100 mg/kg/day for four weeks. Salecan treatment markedly increased the exhaustive swimming time of mice in the forced swimming test. Exercise fatigue and injury-related biochemical biomarkers including lactate, blood urea nitrogen (BUN), creatinine kinase (CK), alanine transaminase (ALT), and aspartate transaminase (AST) were ameliorated by Salecan. Salecan reversed the decreased serum glucose levels and glycogen contents caused by exercise. In addition, Salecan improved oxidative stress induced by exercise through regulating Nrf2/HO–1/Trx signaling pathway. Thus, the beneficial effects of Salecan against fatigue may be due to its positive effects on energy metabolism and antioxidation defence. Our results suggest that Salecan could be a novel potential candidate for anti-fatigue dietary supplements.
Collapse
Affiliation(s)
- Xi Xu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China.
| | - Yijian Ding
- Department of Physical Education, Nanjing University of Science & Technology, Nanjing 210094, China.
| | - Yunxia Yang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China.
| | - Yan Gao
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China.
| | - Qi Sun
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China.
| | - Junhao Liu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China.
| | - Xiao Yang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China.
| | - Junsong Wang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China.
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China.
| |
Collapse
|
111
|
Mitochondrial Complex I activity signals antioxidant response through ERK5. Sci Rep 2018; 8:7420. [PMID: 29743487 PMCID: PMC5943249 DOI: 10.1038/s41598-018-23884-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/21/2018] [Indexed: 11/29/2022] Open
Abstract
Oxidative phosphorylation (OXPHOS) generates ROS as a byproduct of mitochondrial complex I activity. ROS-detoxifying enzymes are made available through the activation of their antioxidant response elements (ARE) in their gene promoters. NRF2 binds to AREs and induces this anti-oxidant response. We show that cells from multiple origins performing OXPHOS induced NRF2 expression and its transcriptional activity. The NRF2 promoter contains MEF2 binding sites and the MAPK ERK5 induced MEF2-dependent NRF2 expression. Blocking OXPHOS in a mouse model decreased Erk5 and Nrf2 expression. Furthermore, fibroblasts derived from patients with mitochondrial disorders also showed low expression of ERK5 and NRF2 mRNAs. Notably, in cells lacking functional mitochondrial complex I activity OXPHOS did not induce ERK5 expression and failed to generate this anti-oxidant response. Complex I activity induces ERK5 expression through fumarate accumulation. Eukaryotic cells have evolved a genetic program to prevent oxidative stress directly linked to OXPHOS and not requiring ROS.
Collapse
|
112
|
Bolus DJ, Shanmugam G, Narasimhan M, Rajasekaran NS. Recurrent heat shock impairs the proliferation and differentiation of C2C12 myoblasts. Cell Stress Chaperones 2018; 23:399-410. [PMID: 29063376 PMCID: PMC5904084 DOI: 10.1007/s12192-017-0851-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 10/05/2017] [Accepted: 10/07/2017] [Indexed: 12/21/2022] Open
Abstract
Heat-related illness and injury are becoming a growing safety concern for the farmers, construction workers, miners, firefighters, manufacturing workers, and other outdoor workforces who are exposed to heat stress in their routine lives. A primary response by a cell to an acute heat shock (HS) exposure is the induction of heat-shock proteins (HSPs), which chaperone and facilitate cellular protein folding and remodeling processes. While acute HS is well studied, the effect of repeated bouts of hyperthermia and the sustained production of HSPs in the myoblast-myotube model system of C2C12 cells are poorly characterized. In C2C12 myoblasts, we found that robust HS (43 °C, dose/time) significantly decreased the proliferation by 50% as early as on day 1 and maintained at the same level on days 2 and 3 of HS. This was accompanied by an accumulation of cells at G2 phase with reduced cell number in G1 phase indicating cell cycle arrest. FACS analysis indicates that there was no apparent change in apoptosis (markers) and cell death upon repeated HS. Immunoblot analysis and qPCR demonstrated a significant increase in the baseline expression of HSP25, 70, and 90 (among others) in cells after a single HS (43 °C) for 60 min as a typical HS response. Importantly, the repeated HS for 60 min each on days 2 and 3 maintained the elevated levels of HSPs compared to the control cells. Further, the continuous HS exposure resulted in significant inhibition of the differentiation of C2C12 myocytes to myotubes and only 1/10th of the cells underwent differentiation in HS relative to control. This was associated with significantly higher levels of HSPs and reduced expression of myogenin and Myh2 (P < 0.05), the genes involved in the differentiation process. Finally, the cell migration (scratch) assay indicated that the wound closure was significantly delayed in HS cells relative to the control cells. Overall, these results suggest that a repeated HS may perturb the active process of proliferation, motility, and differentiation processes in an in vitro murine myoblast-myotube model.
Collapse
Affiliation(s)
- Daniel J Bolus
- Cardiac Aging & Redox Signaling Laboratory, Division of Molecular & Cellular Pathology, Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, 35294-2180, USA
| | - Gobinath Shanmugam
- Cardiac Aging & Redox Signaling Laboratory, Division of Molecular & Cellular Pathology, Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, 35294-2180, USA
| | - Madhusudhanan Narasimhan
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| | - Namakkal S Rajasekaran
- Cardiac Aging & Redox Signaling Laboratory, Division of Molecular & Cellular Pathology, Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, 35294-2180, USA.
- Division of Cardiovascular Medicine, Department of Medicine, The University of Utah School of Medicine, Salt Lake City, UT, 84132, USA.
- Center for Free Radical Biology, The University of Alabama at Birmingham, Birmingham, AL, 35294-2180, USA.
| |
Collapse
|
113
|
Abstract
Adaptive Homeostasis has been defined as, "The transient expansion or contraction of the homeostatic range in response to exposure to sub-toxic, non-damaging, signaling molecules or events, or the removal or cessation of such molecules or events." (Davies, 2016). I propose that one of the most significant examples of adaptive homeostasis may be the adaptation of the cardiovascular system to exercise training. In particular, endurance type training involves the generation of increased levels of free radicals such as ubisemiquinone, superoxide, nitric oxide, and other (non-radical) reactive oxygen species such as hydrogen peroxide (H2O2), in a repetitive manner, typically several times per week. As long as the training intensity and duration are sub-maximal and not exhaustive these reactive species do not cause damage, but rather activate signal transduction pathways to induce mitochondrial biogenesis-the foundation of increased exercise endurance. Particularly important are the NFκB and Nrf2 signal transduction pathways which respond to reactive oxygen and nitrogen species generated during exercise. As with other examples of adaptive homeostasis the effects are transient, lasting only as long as the training is maintained. Unfortunately, the ability to adapt to exercise training declines with age, perhaps as a result of impaired Nrf2 and NFκB signaling, as does adaptive homeostasis capacity in general. Since this is an Hypothesis/Theory Paper and not a review, I have not tried to provide a comprehensive discussion of all the literature relating to exercise adaptation and the cardiovascular system. Rather, I have attempted to develop the Hypothesis or Theory that adaptive homeostasis is the foundation for adaptation of the cardiovascular system to exercise training, largely based on work from my own laboratory, that of close collaborators, and that of key contributors over a period of almost 40 years.
Collapse
Affiliation(s)
- Kelvin J. A. Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, United States
- Molecular and Computational Biology Program, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, United States
- Department of Biochemistry and Molecular Medicine, USC Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
114
|
Thirupathi A, Pinho RA. Effects of reactive oxygen species and interplay of antioxidants during physical exercise in skeletal muscles. J Physiol Biochem 2018; 74:359-367. [PMID: 29713940 DOI: 10.1007/s13105-018-0633-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 04/23/2018] [Indexed: 12/11/2022]
Abstract
A large number of researches have led to a substantial growth of knowledge about exercise and oxidative stress. Initial investigations reported that physical exercise generates free radical-mediated damages to cells; however, in recent years, studies have shown that regular exercise can upregulate endogenous antioxidants and reduce oxidative damage. Yet, strenuous exercise perturbs the antioxidant system by increasing the reactive oxygen species (ROS) content. These alterations in the cellular environment seem to occur in an exercise type-dependent manner. The source of ROS generation during exercise is debatable, but now it is well established that both contracting and relaxing skeletal muscles generate reactive oxygen species and reactive nitrogen species. In particular, exercises of higher intensity and longer duration can cause oxidative damage to lipids, proteins, and nucleotides in myocytes. In this review, we summarize the ROS effects and interplay of antioxidants in skeletal muscle during physical exercise. Additionally, we discuss how ROS-mediated signaling influences physical exercise in antioxidant system.
Collapse
Affiliation(s)
- Anand Thirupathi
- Laboratory of Exercise Biochemistry and Physiology, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105 Bairro Universitário, Criciúma, Santa Catarina, 88806-000, Brazil.
| | - Ricardo A Pinho
- Laboratory of Exercise Biochemistry and Physiology, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105 Bairro Universitário, Criciúma, Santa Catarina, 88806-000, Brazil
| |
Collapse
|
115
|
Done AJ, Newell MJ, Traustadóttir T. Effect of exercise intensity on Nrf2 signalling in young men. Free Radic Res 2018; 51:646-655. [PMID: 28693341 DOI: 10.1080/10715762.2017.1353689] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION The transcription factor Nrf2 is the master regulator of antioxidant defence. Recent data indicate a single bout of moderate-intensity stationary cycling at a constant workload upregulates Nrf2 signalling in young, but not older men; however, the role of exercise intensity on Nrf2 activation has not been tested. We hypothesised that a high-intensity interval session would elicit a greater Nrf2 response than moderate aerobic exercise. METHODS Nrf2 signalling in response to two 30-min cycling protocols (high-intensity interval and constant workload) was compared in young men (25 ± 1y, n = 16). Participants completed exercise trials in random order with blood collected pre-, immediately post-, and 30-mins post exercise. Five participants completed a control trial without any physical activity. Nrf2 signalling was determined by measuring protein expression of Nrf2 in whole cell and nuclear fractions. Plasma 8-isoprostanes as well as peripheral mononuclear cell glutathione reductase (GR) and superoxide dismutase activity were measured as markers of oxidative stress. RESULTS The exercise trials elicited significant increases in nuclear Nrf2 (p < .01), but increases in whole cell Nrf2 did not reach statistical significance. GR activity and plasma 8-isoprostanes increased significantly in response to exercise (p < .05), and GR response was higher in the high-intensity trial (p < .05). CONCLUSION Our findings indicate that acute aerobic exercise elicits activation of nuclear Nrf2, regardless of exercise intensity, but that higher-intensity exercise results in greater activity of GR. Future experiments should explore the effect of exercise mode and duration on Nrf2 signalling, and the role of intensity in compromised populations.
Collapse
Affiliation(s)
- Aaron J Done
- a Department of Biological Sciences , Northern Arizona University , Flagstaff , AZ , USA
| | - Michael J Newell
- a Department of Biological Sciences , Northern Arizona University , Flagstaff , AZ , USA
| | - Tinna Traustadóttir
- a Department of Biological Sciences , Northern Arizona University , Flagstaff , AZ , USA
| |
Collapse
|
116
|
Hanafi MY, Zaher ELM, El-Adely SEM, Sakr A, Ghobashi AHM, Hemly MH, Kazem AH, Kamel MA. The therapeutic effects of bee venom on some metabolic and antioxidant parameters associated with HFD-induced non-alcoholic fatty liver in rats. Exp Ther Med 2018; 15:5091-5099. [PMID: 29805535 DOI: 10.3892/etm.2018.6028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 03/15/2018] [Indexed: 02/07/2023] Open
Abstract
The present study was designed to investigate the therapeutic effects of bee venom (BV) on high-fat diet (HFD)-induced non-alcoholic fatty liver (NAFL) in rats at different levels. Histological manifestations, hepatic lipid content, liver function tests, glucose homeostasis, lipid abnormalities, adipocytokines, lipid peroxidation, disturbed glutathione and antioxidant enzymes systems and dysregulation of Nrf2 transcription factor were assessed. In the present study, the NAFL rats were subcutaneously treated with BV with different doses (0.01, 0.05, 0.1 mg/kg). The results indicated that BV treatment completely normalized the lipid profile values of NAFL rats. Fasting blood sugar, insulin level and homeostatic model assessment of insulin resistance significantly decreased. BV treated rats showed a significantly lower level of all liver enzymes and bilirubin. Moreover, BV treatment significantly increased the levels of active nuclear erythroid factor 2 like 2, glutathione (GSH) (total and reduced), GSH/glutathione disulphide ratio and activities of glutathione reductase, glutathione-S-transferase and glutathione peroxidase (total and Se-dependent). The level of tumor necrosis factor-α was reduced. Treatment showed correction of adiponectin level, and significant downregulation of hepatic triglycerides and cholesterol. At the histological level, BV improved the architecture of liver cells showing normal sinusoids. It may be concluded that BV may represent an interesting therapeutic alternative for the treatment of NAFL disease.
Collapse
Affiliation(s)
- Mervat Y Hanafi
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria 21561, Egypt
| | - Eman L M Zaher
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria 21561, Egypt
| | - Soha E M El-Adely
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria 21561, Egypt
| | - Ahmed Sakr
- Department of Pharmacology, Medical Research Institute, Alexandria University, Alexandria 21561, Egypt
| | - Ahmed H M Ghobashi
- Department of Genetics, Medical Research Institute, Alexandria University, Alexandria 21561, Egypt
| | - Madiha H Hemly
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria 21561, Egypt
| | - Amani H Kazem
- Department of Pathology, Medical Research Institute, Alexandria University, Alexandria 21561, Egypt
| | - Maher A Kamel
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria 21561, Egypt
| |
Collapse
|
117
|
Du X, Yu J, Sun X, Qu S, Zhang H, Hu M, Yang S, Zhou P. Impact of epigallocatechin‑3‑gallate on expression of nuclear factor erythroid 2‑related factor 2 and γ‑glutamyl cysteine synthetase genes in oxidative stress‑induced mouse renal tubular epithelial cells. Mol Med Rep 2018; 17:7952-7958. [PMID: 29620178 DOI: 10.3892/mmr.2018.8798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 03/23/2017] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the antioxidant response mechanism of epigallocatechin‑3‑gallate (EGCG) in H2O2‑induced mouse renal tubular epithelial cells (MRTECs). The cultured MRTECs were divided into normal, H2O2 (control) and EGCG treatment groups. The MTT assay was used to assess cell viability, and reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR), immunocytochemical and western blot analyses were performed to detect the expression of nuclear factor erythroid 2‑related factor 2 (Nrf2) and γ‑glutamyl cysteine synthetase (γ‑GCS). EGCG was able to mitigate H2O2‑mediated cell damage. The RT‑qPCR results demonstrated that EGCG was able to upregulate the gene expression of Nrf2 and γ‑GCS in MRTECs in a dose‑dependent manner. The immunocytochemistry and western blot analyses demonstrated that EGCG was able to increase the protein expression of Nrf2 and γ‑GCS in MRTECs in a dose‑dependent manner. Oxidative stress may lead to a decrease in the viability of MRTECs, while EGCG was able to promote the expression of Nrf2 and γ‑GCS in MRTECs, thereby improving the antioxidant capacity of the cells and promoting the repair of oxidative stress injury.
Collapse
Affiliation(s)
- Xuanyi Du
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Jinfeng Yu
- Department of Pediatrics, Hongqi Hospital of Mudanjiang Medical College, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Xiaohan Sun
- Department of Pediatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Shaochuan Qu
- Department of Pediatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Haitao Zhang
- Department of Pediatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Mengying Hu
- Department of Pediatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Shufen Yang
- Department of Pediatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Ping Zhou
- Department of Pediatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
118
|
Golbidi S, Li H, Laher I. Oxidative Stress: A Unifying Mechanism for Cell Damage Induced by Noise, (Water-Pipe) Smoking, and Emotional Stress-Therapeutic Strategies Targeting Redox Imbalance. Antioxid Redox Signal 2018; 28:741-759. [PMID: 29212347 DOI: 10.1089/ars.2017.7257] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE Modern technologies have eased our lives but these conveniences can impact our lifestyles in destructive ways. Noise pollution, mental stresses, and smoking (as a stress-relieving solution) are some environmental hazards that affect our well-being and healthcare budgets. Scrutinizing their pathophysiology could lead to solutions to reduce their harmful effects. Recent Advances: Oxidative stress plays an important role in initiating local and systemic inflammation after noise pollution, mental stress, and smoking. Lipid peroxidation and release of lysolipid by-products, disturbance in activation and function of nuclear factor erythroid 2-related factor 2 (Nrf2), induction of stress hormones and their secondary effects on intracellular kinases, and dysregulation of intracellular Ca2+ can all potentially trigger other vicious cycles. Recent clinical data suggest that boosting the antioxidant system through nonpharmacological measures, for example, lifestyle changes that include exercise have benefits that cannot easily be achieved with pharmacological interventions alone. CRITICAL ISSUES Indiscriminate manipulation of the cellular redox network could lead to a new series of ailments. An ideal approach requires meticulous scrutiny of redox balance mechanisms for individual pathologies so as to create new treatment strategies that target key pathways while minimizing side effects. FUTURE DIRECTIONS Extrapolating our understanding of redox balance to other debilitating conditions such as diabetes and the metabolic syndrome could potentially lead to devising a unifying therapeutic strategy. Antioxid. Redox Signal. 28, 741-759.
Collapse
Affiliation(s)
- Saeid Golbidi
- 1 Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia , Vancouver, Canada
| | - Huige Li
- 2 Department of Pharmacology, Johannes Gutenberg University Medical Center , Mainz, Germany
| | - Ismail Laher
- 1 Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia , Vancouver, Canada
| |
Collapse
|
119
|
Protection of Luteolin-7-O-glucoside against apoptosis induced by hypoxia/reoxygenation through the MAPK pathways in H9c2 cells. Mol Med Rep 2018; 17:7156-7162. [PMID: 29568918 PMCID: PMC5928668 DOI: 10.3892/mmr.2018.8774] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/27/2017] [Indexed: 01/09/2023] Open
Abstract
Myocardial hypertrophy is often associated with myocardial infarction. Luteolin-7-O-glucoside (LUTG) has the prosperity of preventing cardiomyocyte injury. The current study aimed to explore the potential protective effect of LUTG and its relevant mechanisms in the heart. To establish the cardiac hypertrophy model in vitro, Angiotensin II (Ang II) was used to stimuli H9c2 cells in this study. The CCK-8 assay showed that LUTG pretreatment improved cell viability of cardiomyocytes co-treated with Ang II and ischemia/reperfusion. LUTG decreased the reactive oxygen species levels. Furthermore, it was demonstrated LUTG could reduce the release amount of lactate dehydrogenase and recover the catalase activity according to the flow cytometry analysis, and activity detection, respectively in Ang II-H/R-treated H9c2 cells. In addition, the flow cytometry analysis showed that the pretreatment of LUTG mitigated cell apoptosis induced by hypoxia/reoxygenation in the cardiac hypertrophy model. Meanwhile, reverse transcription-quantitative polymerase chain reaction and western blot assays showed that the apoptosis-related genes, including poly (ADP-ribose) polymerase, Fas, Fasl and Caspase-3 were downregulated at the transcriptional and translational levels. Notably, the protien expression of phosphorylated (p)-extracellular signal-regulated kinas (ERK) 1/2, p-janus kinase and p-P38 were reduced, while the expression of p-ERK5 was elevated in the LUTG pretreatment groups compared with the hypoxia/reoxygenation treatment group. Based on these results, it was suggested that the anti-apoptosis effect of LUTG may be associated with regulating the activation of mitogen-activated protein kinases signaling pathways.
Collapse
|
120
|
Oh S, Han G, Kim B, Shoda J. Regular Exercise as a Secondary Practical Treatment for Nonalcoholic Fatty Liver Disease. EXERCISE MEDICINE 2018. [DOI: 10.26644/em.2018.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
121
|
Miller VJ, Villamena FA, Volek JS. Nutritional Ketosis and Mitohormesis: Potential Implications for Mitochondrial Function and Human Health. J Nutr Metab 2018; 2018:5157645. [PMID: 29607218 PMCID: PMC5828461 DOI: 10.1155/2018/5157645] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/27/2017] [Indexed: 02/07/2023] Open
Abstract
Impaired mitochondrial function often results in excessive production of reactive oxygen species (ROS) and is involved in the etiology of many chronic diseases, including cardiovascular disease, diabetes, neurodegenerative disorders, and cancer. Moderate levels of mitochondrial ROS, however, can protect against chronic disease by inducing upregulation of mitochondrial capacity and endogenous antioxidant defense. This phenomenon, referred to as mitohormesis, is induced through increased reliance on mitochondrial respiration, which can occur through diet or exercise. Nutritional ketosis is a safe and physiological metabolic state induced through a ketogenic diet low in carbohydrate and moderate in protein. Such a diet increases reliance on mitochondrial respiration and may, therefore, induce mitohormesis. Furthermore, the ketone β-hydroxybutyrate (BHB), which is elevated during nutritional ketosis to levels no greater than those resulting from fasting, acts as a signaling molecule in addition to its traditionally known role as an energy substrate. BHB signaling induces adaptations similar to mitohormesis, thereby expanding the potential benefit of nutritional ketosis beyond carbohydrate restriction. This review describes the evidence supporting enhancement of mitochondrial function and endogenous antioxidant defense in response to nutritional ketosis, as well as the potential mechanisms leading to these adaptations.
Collapse
Affiliation(s)
- Vincent J. Miller
- Department of Human Sciences, College of Education and Human Ecology, The Ohio State University, Columbus, OH, USA
| | - Frederick A. Villamena
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Jeff S. Volek
- Department of Human Sciences, College of Education and Human Ecology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
122
|
Schaalan MF, Ramadan BK, Abd Elwahab AH. Synergistic effect of carnosine on browning of adipose tissue in exercised obese rats; a focus on circulating irisin levels. J Cell Physiol 2018; 233:5044-5057. [PMID: 29236301 DOI: 10.1002/jcp.26370] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/03/2017] [Indexed: 12/20/2022]
Abstract
The recent appreciation of the energy burning capacity of brown adipose tissue turns it to an attractive target for anti-obesity therapy. We sought to evaluate the effect of L-carnosine on browning of white adipose tissue in exercised obese rats. Sixty adult male Wistar albino rats, 7-8 week-old weighing 130-150 g, were allocated into six groups; with 10 rats in each, for an experimentation period of 12 weeks: (i) normal control rats fed a standard fat diet (SFD/control), (ii) normal control rats fed a standard diet and injected with L-carnosine (250 mg/kg, i.p,) for 6 weeks (SFD/CAR), (iii) high-fat diet (HFD)-induced obese rats for 12 weeks, (iv) HFD rats subjected to exercise training (HFD/EXE) for 6 weeks, (v) HFD rats injected with L-carnosine (250 mg/kg,i.p.) for 6 weeks (HFD/CAR) and, (vi) HFD rats subjected to exercise training and L-carnosine (HFD/EXE/CAR). At the end of the 12-week-experiment, the body weights and the serum levels of lipid profile, oxidative stress, and inflammatory markers as well as circulating myokines were investigated. Gastrocnemius muscles and inguinal adipose tissues were excised for the measurement of gene expression of muscle irisin, adipose tissue uncoupling protein1 (UCP1), CD137 and the protein level of p38MAPK. In addition, histopathological examination for the studied groups was performed. Both exercise training for 6 weeks and carnosine treatment significantly decreased body weight gain, ameliorated obesity-induced dyslipidemia, reduced the thiobarbituric acid reactive species (TBARS) and TNF-α, while increased total antioxidant capacity and IL-10. Furthermore, increases in serum irisin levels and the expression of adipose uncoupling protein-1 (UCP-1), adipose CD137, p38 MAPK, and muscular fibronectin type III domain-containing protein 5(FNDC5), the precursor of irisin gene expression, were correlated with these carnosine- and exercise-induced physiological improvements. The highest improvement was evident in the combined exercise and carnosine group which indicates that their beneficial effects in obese animals were synergistic. These findings suggest that L-carnosine may induce browning of adipose tissue through irisin stimulation, a phenomenon that could be related to its antioxidant, anti-inflammatory, and anti-obesity effects.
Collapse
Affiliation(s)
- Mona F Schaalan
- Faculty of Pharmacy, Department of Biochemistry, Misr International University, Cairo, Egypt
| | - Basma K Ramadan
- Faculty of Medicine for Girls (Cairo), Department of Physiology, Al-Azhar University, Cairo, Egypt
| | - Azza H Abd Elwahab
- Faculty of Medicine for Girls (Cairo), Department of Physiology, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
123
|
Zheng J, Cheng J, Zheng S, Zhang L, Guo X, Zhang J, Xiao X. Physical Exercise and Its Protective Effects on Diabetic Cardiomyopathy: What Is the Evidence? Front Endocrinol (Lausanne) 2018; 9:729. [PMID: 30559720 PMCID: PMC6286969 DOI: 10.3389/fendo.2018.00729] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/16/2018] [Indexed: 12/25/2022] Open
Abstract
As one of the most serious complications of diabetes, diabetic cardiomyopathy (DCM) imposes a huge burden on individuals and society, and represents a major public health problem. It has long been recognized that physical exercise has important health benefits for patients with type 2 diabetes, and regular physical exercise can delay or prevent the complications of diabetes. Current studies show that physical exercise has been regarded as an importantly non-pharmacological treatment for diabetes and DCM, with high efficacy and low adverse events. It can inhibit the pathological processes of myocardial apoptosis, myocardial fibrosis, and myocardial microvascular diseases through improving myocardial metabolism, enhancing the regulation of Ca2+, and protecting the function of mitochondria. Eventually, it can alleviate the occurrence and development of diabetic complications. Describing the mechanisms of physical exercise on DCM may provide a new theory for alleviating, or even reversing the development of DCM, and prevent it from developing to heart failure.
Collapse
Affiliation(s)
- Jia Zheng
- Key Laboratory of Endocrinology, Department of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Jing Cheng
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health & The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Shandong University Qilu Hospital, Shandong, China
| | - Sheng Zheng
- Department of Orthopedics, XiangYang Hospital of Traditional Chinese Medicine, Hubei, China
| | - Ling Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Xiaohui Guo
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Junqing Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
- Junqing Zhang
| | - Xinhua Xiao
- Key Laboratory of Endocrinology, Department of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- *Correspondence: Xinhua Xiao
| |
Collapse
|
124
|
Abstract
It is now widely recognised that ageing and its associated functional decline are regulated by a wide range of molecules that fit into specific cellular pathways. Here, we describe several of the evolutionary conserved cellular signalling pathways that govern organismal ageing and discuss how their identification, and work on the individual molecules that contribute to them, has aided in the design of therapeutic strategies to alleviate the adverse effects of ageing and age-related disease.
Collapse
|
125
|
Bharat D, Cavalcanti RRM, Petersen C, Begaye N, Cutler BR, Costa MMA, Ramos RKLG, Ferreira MR, Li Y, Bharath LP, Toolson E, Sebahar P, Looper RE, Jalili T, Rajasekaran NS, Jia Z, Symons JD, Anandh Babu PV. Blueberry Metabolites Attenuate Lipotoxicity-Induced Endothelial Dysfunction. Mol Nutr Food Res 2017; 62. [PMID: 29024402 DOI: 10.1002/mnfr.201700601] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/18/2017] [Indexed: 01/13/2023]
Abstract
SCOPE Lipotoxicity-induced endothelial dysfunction is an important vascular complication associated with diabetes. Clinical studies support the vascular benefits of blueberry anthocyanins, but the underlying mechanism is unclear. The hypothesis that metabolites of blueberry anthocyanins attenuate lipotoxicity-induced endothelial dysfunction was tested. METHODS AND RESULTS Human aortic endothelial cells (HAECs) were treated for 6 h with either: (i) the parent anthocyanins (malvidin-3-glucoside and cyanidin-3-glucoside); or (ii) the blueberry metabolites (hydroxyhippuric acid, hippuric acid, benzoic acid-4-sulfate, isovanillic acid-3-sulfate, and vanillic acid-4-sulfate), at concentrations known to circulate in humans following blueberry consumption. For the last 5 h HAECs were treated with palmitate or vehicle. HAECs treated with palmitate displayed elevated reactive oxygen species generation, increased mRNA expression of NOX4, chemokines, adhesion molecules, and IκBα, exaggerated monocyte binding, and suppressed nitric oxide production. Of note, the damaging effects of palmitate were ameliorated in HAECs treated with blueberry metabolites but not parent anthocyanins. Further, important translational relevance of these results was provided by our observation that palmitate-induced endothelial dysfunction was lessened in arterial segments that incubated concurrently with blueberry metabolites. CONCLUSION The presented findings indicate that the vascular benefits of blueberry anthocyanins are mediated by their metabolites. Blueberries might complement existing therapies to lessen vascular complications.
Collapse
Affiliation(s)
- Divya Bharat
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, USA
| | | | - Chrissa Petersen
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, USA
| | - Nathan Begaye
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, USA
| | - Brett Ronald Cutler
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, USA
| | - Marcella Melo Assis Costa
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, USA
| | | | - Marina Ramos Ferreira
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, USA
| | - Youyou Li
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, USA
| | - Leena P Bharath
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, USA
| | - Emma Toolson
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, USA
| | - Paul Sebahar
- Synthetic and Medicinal Chemistry Core, University of Utah, Salt Lake City, USA
| | - Ryan E Looper
- Synthetic and Medicinal Chemistry Core, University of Utah, Salt Lake City, USA
| | - Thunder Jalili
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, USA
| | - Namakkal S Rajasekaran
- Cardiac Aging and Redox Signaling Laboratory, Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, USA
| | - Zhenquan Jia
- Department of Biology, University of North Carolina at Greensboro, Greensboro, USA
| | - J David Symons
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, USA.,Division of Endocrinology, Metabolism, Diabetes, and Molecular Medicine Program, University of Utah, Salt Lake City, USA
| | - Pon Velayutham Anandh Babu
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, USA
| |
Collapse
|
126
|
Kitaoka Y, Takeda K, Tamura Y, Fujimaki S, Takemasa T, Hatta H. Nrf2 deficiency does not affect denervation-induced alterations in mitochondrial fission and fusion proteins in skeletal muscle. Physiol Rep 2017; 4:4/24/e13064. [PMID: 28039408 PMCID: PMC5210374 DOI: 10.14814/phy2.13064] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress‐induced mitochondrial dysfunction is associated with age‐related and disuse‐induced skeletal muscle atrophy. However, the role of nuclear factor erythroid 2‐related factor 2 (Nrf2) during muscle fiber atrophy remains to be elucidated. In this study, we examined whether deficiency of Nrf2, a master regulator of antioxidant transcription, promotes denervation‐induced mitochondrial fragmentation and muscle atrophy. We found that the expression of Nrf2 and its target antioxidant genes was upregulated at 2 weeks after denervation in wild‐type (WT) mice. The response of these antioxidant genes was attenuated in Nrf2 knockout (KO) mice. Nrf2 KO mice exhibited elevated levels of 4‐hydroxynonenal in the skeletal muscle, whereas the protein levels of the mitochondrial oxidative phosphorylation complex IV was declined in the denervated muscle of these mice. Increased in mitochondrial fission regulatory proteins and decreased fusion proteins in response to denervation were observed in both WT and KO mice; however, no difference was observed between the two groups. These findings suggest that Nrf2 deficiency aggravates denervation‐induced oxidative stress, but does not affect the alterations in mitochondrial morphology proteins and the loss of skeletal muscle mass.
Collapse
Affiliation(s)
- Yu Kitaoka
- Department of Sports Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Kohei Takeda
- Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | - Yuki Tamura
- Department of Sports Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Shin Fujimaki
- Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | - Tohru Takemasa
- Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | - Hideo Hatta
- Department of Sports Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
127
|
Cardiac Aging – Benefits of Exercise, Nrf2 Activation and Antioxidant Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 999:231-255. [DOI: 10.1007/978-981-10-4307-9_13] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
128
|
Mahmoud AM. Exercise Amaliorates Metabolic Disturbances and Oxidative Stress in Diabetic Cardiomyopathy: Possible Underlying Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 999:207-230. [PMID: 29022265 DOI: 10.1007/978-981-10-4307-9_12] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
129
|
The Role of Nrf2 in Cardiovascular Function and Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9237263. [PMID: 29104732 PMCID: PMC5618775 DOI: 10.1155/2017/9237263] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/27/2017] [Indexed: 02/07/2023]
Abstract
Free radicals, reactive oxygen/nitrogen species (ROS/RNS), hydrogen sulphide, and hydrogen peroxide play an important role in both intracellular and intercellular signaling; however, their production and quenching need to be closely regulated to prevent cellular damage. An imbalance, due to exogenous sources of free radicals and chronic upregulation of endogenous production, contributes to many pathological conditions including cardiovascular disease and also more general processes involved in aging. Nuclear factor erythroid 2-like 2 (NFE2L2; commonly known as Nrf2) is a transcription factor that plays a major role in the dynamic regulation of a network of antioxidant and cytoprotective genes, through binding to and activating expression of promoters containing the antioxidant response element (ARE). Nrf2 activity is regulated by many mechanisms, suggesting that tight control is necessary for normal cell function and both hypoactivation and hyperactivation of Nrf2 are indicated in playing a role in different aspects of cardiovascular disease. Targeted activation of Nrf2 or downstream genes may prove to be a useful avenue in developing therapeutics to reduce the impact of cardiovascular disease. We will review the current status of Nrf2 and related signaling in cardiovascular disease and its relevance to current and potential treatment strategies.
Collapse
|
130
|
Abreu CC, Cardozo LFMF, Stockler-Pinto MB, Esgalhado M, Barboza JE, Frauches R, Mafra D. Does resistance exercise performed during dialysis modulate Nrf2 and NF-κB in patients with chronic kidney disease? Life Sci 2017; 188:192-197. [PMID: 28887058 DOI: 10.1016/j.lfs.2017.09.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/15/2017] [Accepted: 09/05/2017] [Indexed: 12/17/2022]
Abstract
Studies have shown that nuclear factor erythroid 2-related factor 2 (Nrf2) can be modulated by physical exercise. However, the impact of resistance exercise has never been investigated in patients with chronic kidney disease (CKD). The aim of this study was to evaluate the effects of resistance exercise programs on the expression of transcription factors Nrf2 and nuclear factor κB (NF-κB) in CKD patients on hemodialysis (HD). Patients on an HD program were randomly assigned to an exercise group of 25 patients (54.5% women, aged 45.7±15.2years and time on dialysis=71.2±45.5months) or a control group of 19 patients who had no exercise intervention (61.5% women, aged 42.5±13.5years and time on dialysis=70.1±49.9months). A strength exercise program was performed 3 times a week during the HD sessions. Peripheral blood mononuclear cells were isolated and processed for the expression of Nrf2 and NF-κB by quantitative real-time polymerase chain reaction 3months before and after the exercise program. Using an enzyme-linked immunosorbent assay, the activity of glutathione peroxidase (GPx) as well as the products of high-sensitivity C-reactive protein and nitric oxide (NO) were assessed. Nrf2 expression (ranging from 0.86±0.4 to 1.76±0.8) and GPx activity were significantly increased after exercise intervention. In the exercise group, no difference in the levels of NO was observed; however, there was a significant reduction in the control group. In conclusion, these data suggest that resistance exercises seem to be capable of inducing Nrf2 activation in CKD patients on HD.
Collapse
Affiliation(s)
- C C Abreu
- Cardiovascular Sciences Graduate Program, Federal University Fluminense (UFF), Niterói, Rio de Janeiro (RJ), Brazil.
| | - L F M F Cardozo
- Cardiovascular Sciences Graduate Program, Federal University Fluminense (UFF), Niterói, Rio de Janeiro (RJ), Brazil
| | - M B Stockler-Pinto
- Cardiovascular Sciences Graduate Program, Federal University Fluminense (UFF), Niterói, Rio de Janeiro (RJ), Brazil
| | - M Esgalhado
- Cardiovascular Sciences Graduate Program, Federal University Fluminense (UFF), Niterói, Rio de Janeiro (RJ), Brazil
| | - J E Barboza
- Medical Sciences Graduate Program, Federal Fluminense University (UFF), Niterói, Rio de Janeiro (RJ), Brazil
| | - R Frauches
- Cardiovascular Sciences Graduate Program, Federal University Fluminense (UFF), Niterói, Rio de Janeiro (RJ), Brazil
| | - D Mafra
- Cardiovascular Sciences Graduate Program, Federal University Fluminense (UFF), Niterói, Rio de Janeiro (RJ), Brazil; Medical Sciences Graduate Program, Federal Fluminense University (UFF), Niterói, Rio de Janeiro (RJ), Brazil
| |
Collapse
|
131
|
Brain-Derived Neurotrophic Factor Increases Synaptic Protein Levels via the MAPK/Erk Signaling Pathway and Nrf2/Trx Axis Following the Transplantation of Neural Stem Cells in a Rat Model of Traumatic Brain Injury. Neurochem Res 2017; 42:3073-3083. [PMID: 28780733 DOI: 10.1007/s11064-017-2340-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/05/2017] [Accepted: 06/20/2017] [Indexed: 01/28/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) plays an important role in promoting the growth, differentiation, survival and synaptic stability of neurons. Presently, the transplantation of neural stem cells (NSCs) is known to induce neural repair to some extent after injury or disease. In this study, to investigate whether NSCs genetically modified to encode the BDNF gene (BDNF/NSCs) would further enhance synaptogenesis, BDNF/NSCs or naive NSCs were directly engrafted into lesions in a rat model of traumatic brain injury (TBI). Immunohistochemistry, western blotting and RT-PCR were performed to detect synaptic proteins, BDNF-TrkB and its downstream signaling pathways, at 1, 2, 3 or 4 weeks after transplantation. Our results showed that BDNF significantly increased the expression levels of the TrkB receptor gene and the phosphorylation of the TrkB protein in the lesions. The expression levels of Ras, phosphorylated Erk1/2 and postsynaptic density protein-95 were elevated in the BDNF/NSCs-transplanted groups compared with those in the NSCs-transplanted groups throughout the experimental period. Moreover, the nuclear factor (erythroid-derived 2)-like 2/Thioredoxin (Nrf2/Trx) axis, which is a specific therapeutic target for the treatment of injury or cell death, was upregulated by BDNF overexpression. Therefore, we determined that the increased synaptic proteins level implicated in synaptogenesis might be associated with the activation of the MAPK/Erk1/2 signaling pathway and the upregulation of the antioxidant agent Trx modified by BDNF-TrkB following the BDNF/NSCs transplantation after TBI.
Collapse
|
132
|
Suidasari S, Uragami S, Yanaka N, Kato N. Dietary vitamin B6 modulates the gene expression of myokines, Nrf2-related factors, myogenin and HSP60 in the skeletal muscle of rats. Exp Ther Med 2017; 14:3239-3246. [PMID: 28912874 DOI: 10.3892/etm.2017.4879] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 02/24/2017] [Indexed: 12/27/2022] Open
Abstract
Previous studies have suggested that vitamin B6 is an ergogenic factor. However, the role of dietary vitamin B6 in skeletal muscle has not been widely researched. The aim of the present study was to investigate the effects of dietary vitamin B6 on the gene expression of 19 myokines, 14 nuclear factor erythroid 2-related factor 2 (Nrf2)-regulated factors, 8 myogenesis-related factors and 4 heat shock proteins (HSPs), which may serve important roles in skeletal muscles. Rats were fed a diet containing 1 (marginal vitamin B6 deficiency), 7 (recommended dietary level) or 35 mg/kg of pyridoxine (PN) HCl/ for 6 weeks. Gene expressions were subsequently analysed using reverse transcription-quantitative polymerase chain reaction. Food intake and growth were unaffected by this dietary treatment. The rats in the 7 and 35 mg/kg PN HCl groups exhibited a significant increase in the concentration of pyridoxal 5'-phosphate in the gastrocnemius muscle compared with the 1 mg/kg PN HCl diet (P<0.01). The expressions of myokines, such as IL-7, IL-8, secreted protein acidic and rich in cysteine, IL-6, growth differentiation factor 11, myonectin, leukaemia inhibitory factor, apelin and retinoic acid receptor responder (tazarotene induced) 1, the expression of Nrf2 and its regulated factors, such as heme oxygenase 1, superoxide dismutase 2, glutathione peroxidase 1 and glutathione S-transferase, and the expression of myogenin and HSP60 were significantly elevated in the 7 mg/kg PN HCl group compared with the 1 mg/kg PN HCl diet (P<0.05). No significant differences in levels of these genes were observed between the 35 and 1 mg/kg PN HCl, with the exception of GDF11 and myonectin, whose expressions were significantly increased in the 35 mg/kg PN HCl (P<0.05). Notably, the majority of gene expressions that were affected responded to dietary supplemental vitamin B6 in a similar manner. The results suggest that compared with the marginal vitamin B6 deficiency, the recommended dietary intake of vitamin B6 upregulates the gene expression of a number of factors that promote the growth and repair of skeletal muscle.
Collapse
Affiliation(s)
- Sofya Suidasari
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Shinji Uragami
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Noriyuki Yanaka
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Norihisa Kato
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| |
Collapse
|
133
|
Shanmugam G, Narasimhan M, Tamowski S, Darley-Usmar V, Rajasekaran NS. Constitutive activation of Nrf2 induces a stable reductive state in the mouse myocardium. Redox Biol 2017; 12:937-945. [PMID: 28482326 PMCID: PMC5423345 DOI: 10.1016/j.redox.2017.04.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 04/26/2017] [Accepted: 04/30/2017] [Indexed: 02/01/2023] Open
Abstract
Redox homeostasis regulates key cellular signaling pathways in both physiology and pathology. The cell's antioxidant response provides a defense against oxidative stress and establishes a redox tone permissive for cell signaling. The molecular regulation of the well-known Keap1/Nrf2 system acts as sensor responding to changes in redox homeostasis and is poorly studied in the heart. Importantly, it is not yet known whether Nrf2 alone can serve as a master regulator of cellular redox homeostasis without compensation of the transcriptional regulation of antioxidant response element (ARE) genes through alternate mechanisms. Here, we addressed this question using cardiac-specific transgenic expression at two different levels of constitutively active nuclear erythroid related factor 2 (caNrf2) functioning independently of Keap1. The caNrf2 mice showed augmentation of glutathione (GSH), the key regulator of the cellular thiol redox state. The Trans-AM assay for Nrf2-binding to the antioxidant response element (ARE) showed a dose-dependent increase associated with upregulation of several major antioxidant genes and proteins. This was accompanied by a significant decrease in dihydroethidium staining and malondialdehyde (MDA) in the caNrf2-TG mice myocardium. Interestingly, caNrf2 gene-dosage dependent redox changes were noted resulting in generation of a multi-stage model of pro-reductive and reductive conditions in the myocardium of TG-low and TG-high mice, respectively. These data clearly show that Nrf2 levels alone are capable of serving as the master regulator of the ARE. These models provide an important platform to investigate the impact of the Nrf2 system independent of the need to regulate the activity of Keap1 and the consequent exposure to pro-oxidants or electrophiles, which have numerous off-target effects.
Collapse
Affiliation(s)
- Gobinath Shanmugam
- Cardiac Aging & Redox Signaling Laboratory, Division of Molecular & Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Madhusudhanan Narasimhan
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States
| | - Susan Tamowski
- Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, United States
| | - Victor Darley-Usmar
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Namakkal S Rajasekaran
- Cardiac Aging & Redox Signaling Laboratory, Division of Molecular & Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, United States; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| |
Collapse
|
134
|
Quiles JM, Narasimhan M, Shanmugam G, Milash B, Hoidal JR, Rajasekaran NS. Differential regulation of miRNA and mRNA expression in the myocardium of Nrf2 knockout mice. BMC Genomics 2017; 18:509. [PMID: 28673258 PMCID: PMC5496330 DOI: 10.1186/s12864-017-3875-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/20/2017] [Indexed: 12/21/2022] Open
Affiliation(s)
- Justin M Quiles
- Cardiac Aging & Redox Signaling Laboratory, Division of Molecular & Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, BMR2 Room 533|901 19th Street South, Birmingham, AL, 35294-2180, USA
| | - Madhusudhanan Narasimhan
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Gobinath Shanmugam
- Cardiac Aging & Redox Signaling Laboratory, Division of Molecular & Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, BMR2 Room 533|901 19th Street South, Birmingham, AL, 35294-2180, USA
| | | | | | - Namakkal S Rajasekaran
- Cardiac Aging & Redox Signaling Laboratory, Division of Molecular & Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, BMR2 Room 533|901 19th Street South, Birmingham, AL, 35294-2180, USA.
- Cardiovascular Medicine, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA.
- Center for Free Radical Biology, University of Alabama at Birmingham, BMR2 Room 533|901 19th Street South, Birmingham, AL, 35294-2180, USA.
| |
Collapse
|
135
|
Zheng SX, Sun CH, Chen J. Cardioprotective effect of indirubin in experimentally induced myocardial infarction in wistar rats. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:8082-8090. [PMID: 31966661 PMCID: PMC6965302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 09/29/2016] [Indexed: 06/10/2023]
Abstract
Recently, there has been as enhanced interest on global level to recognize the potent antioxidant compounds which are pharmacologically active with less or no side effects. Thus, the current investigation was intended to scrutinize the protective effect of indirubin on the cardiac marker, such as, enzymes, LDH isoenzyme, cardiac troponin-T (cTnT), antioxidant enzymes marker and lipid peroxidation (LPO) in response of isoproterenol (ISO)-induced myocardial infarction (MI) in Wistar rats. The experimental animals were categorized into following groups: Group I received saline; Group II received Indirubin (10 mg/kg); Group III received ISO (100 mg/kg) and Group IV received ISO + indirubin (10 mg/kg) for continuous 10 days. The ISO induced MI injury was confirmed via enhanced level of enzymes markers viz., creatine kinase-MB, creatine kinase, lactate dehydrogensae, troponin-T, alanine transaminase (ALT) and aspartate transaminase (AST) in the rats serum. The enhanced expression of LDH (1 and 2) isoenzyme bands were also observed in the ISO induced MI rats. We have also estimated the level of LPO in the heart and plasma, which was found to be significantly (P<0.05) improved. Moreover, the marker of enzymatic antioxidant enzymes viz., glutathione reductase (GRx), catalase (CAT), glutathione-S-transferase (GST), glutathione peroxidase (GPx) and superoxide dismutase (SOD) in the heart, and the level of non-enzymatic antioxidant marker viz., vitamin (C, E) in heart and serum were found to be considerably (P<0.05) reduced in the ISO induced MI in Wistar rats. Whereas, the ISO control Wistar rats showed significant (P<0.05) increase in the uric acid level in the plasma. The Indirubin treated rats confirmed the significant protective effect via modulation of all biological and antioxidant parameters tested. The result of the investigation was further found in agreement of the histopathological studies of the indirubin treated rats which clearly showed recovery from the myocardial infarction. Thus, on the basis of that, it has been suggested that indirubin showed protection of myocardial tissues against the ISO persuaded oxidative stress.
Collapse
Affiliation(s)
- Su-Xia Zheng
- Department of Cardiology, Linyi People’s HospitalLinyi 276003, Shandong, China
| | - Chun-Hui Sun
- Department of Physical Examination Center, Affiliated Hospital of Shandong MedicalLinyi 276004, Shandong, China
| | - Jing Chen
- Department of Cardiology, Linyi People’s HospitalLinyi 276003, Shandong, China
| |
Collapse
|
136
|
Abstract
More and more people are living into the 90s or becoming centenarians. But, the gift of increased ‘age span’ seldom equates with an improved ‘health-span’. Governments across the world are expressing concern about the epidemic of chronic disease, and have responded by initiating policies that make prevention, reduction and treatment of chronic disease, a public health priority. But understanding, how to age long and well, with the avoidance of chronic disease and later life complex disease morbidity is challenging. While inherited genes have an undoubted role to play in the chance of maintaining good health or conversely a predilection to developing disease and chronic ill health, there is increasing evidence that behavioural and environmental life-style choices may contribute up to 50% of the variability of human lifespan. Physical exercise is readily available to everyone, and is a simple cheap and effective form of life-style intervention. Exercise appears to help maintain good health and to reduce the risk of developing chronic disease and ill health. Evidence suggests that physical activity improves well-being across many health domains through out life, continues to offer important health benefits in older age groups and tracks with a ‘healthy ageing’ profile. Although many of the molecular pathways remain to be fully identified, here we discuss how physical activity and exercise is understood to produce changes in the human epigenome, which have the potential to enhance cognitive and psychological health, improve muscular fitness, and lead to better ageing with improved quality of life in older age.
Collapse
|
137
|
Lopez JR, Kolster J, Zhang R, Adams J. Increased constitutive nitric oxide production by whole body periodic acceleration ameliorates alterations in cardiomyocytes associated with utrophin/dystrophin deficiency. J Mol Cell Cardiol 2017. [PMID: 28623080 DOI: 10.1016/j.yjmcc.2017.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Duchenne Muscular Dystrophy (DMD) cardiomyopathy is a progressive lethal disease caused by the lack of the dystrophin protein in the heart. The most widely used animal model of DMD is the dystrophin-deficient mdx mouse; however, these mice exhibit a mild dystrophic phenotype with heart failure only late in life. In contrast, mice deficient for both dystrophin and utrophin (mdx/utrn-/-, or dKO) can be used to model severe DMD cardiomyopathy where pathophysiological indicators of heart failure are detectable by 8-10weeks of age. Nitric oxide (NO) is an important signaling molecule involved in vital functions of regulating rhythm, contractility, and microcirculation of the heart, and constitutive NO production affects the function of proteins involved in excitation-contraction coupling. In this study, we explored the efficacy of enhancing NO production as a therapeutic strategy for treating DMD cardiomyopathy using the dKO mouse model of DMD. Specifically, NO production was induced via whole body periodic acceleration (pGz), a novel non-pharmacologic intervention which enhances NO synthase (NOS) activity through sinusoidal motion of the body in a headward-footward direction, introducing pulsatile shear stress to the vascular endothelium and cardiomyocyte plasma membrane. Male dKO mice were randomized at 8weeks of age to receive daily pGz (480cpm, Gz±3.0m/s2, 1h/d) for 4weeks or no treatment, and a separate age-matched group of WT animals (pGz-treated and untreated) served as non-diseased controls. At the conclusion of the protocol, cardiomyocytes from untreated dKO animals had, respectively, 4.3-fold and 3.5-fold higher diastolic resting concentration of Ca2+ ([Ca2+]d) and Na+ ([Na+]d) compared to WT, while pGz treatment significantly reduced these levels. For dKO cardiomyocytes, pGz treatment also improved the depressed contractile function, decreased oxidative stress, blunted the elevation in calpain activity, and mitigated the abnormal increase in [Ca2+]d upon mechanical stress. These improvements culminated in a significant reduction in circulating cardiac troponin T (cTnT) and an extension of the median lifespan of dKO mice from 16 to 31weeks. Treatment with L-NAME (NOS inhibitor) significantly decreased overall lifespan and abolished the cardioprotective properties elicited by pGz. Our results provide evidence that enhancement of NO synthesis by pGz can ameliorate cellular dysfunction in dKO cardiomyocytes and may represent a novel therapeutic intervention in DMD cardiomyopathy patients.
Collapse
Affiliation(s)
- Jose R Lopez
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California at Davis, Davis, CA 95616, United States; Division of Neonatology, Mount Sinai Medical Center, Miami, FL 33140, United States.
| | - Juan Kolster
- Centro de Investigaciones Biomédicas, México, D.F., Mexico
| | - Rui Zhang
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California at Davis, Davis, CA 95616, United States
| | - Jose Adams
- Division of Neonatology, Mount Sinai Medical Center, Miami, FL 33140, United States
| |
Collapse
|
138
|
Ruiz-Miyazawa KW, Staurengo-Ferrari L, Mizokami SS, Domiciano TP, Vicentini FTMC, Camilios-Neto D, Pavanelli WR, Pinge-Filho P, Amaral FA, Teixeira MM, Casagrande R, Verri WA. Quercetin inhibits gout arthritis in mice: induction of an opioid-dependent regulation of inflammasome. Inflammopharmacology 2017; 25:10.1007/s10787-017-0356-x. [PMID: 28508104 DOI: 10.1007/s10787-017-0356-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/26/2017] [Indexed: 02/07/2023]
Abstract
We investigated the anti-inflammatory and analgesic effects of quercetin in monosodium urate crystals (MSU)-induced gout arthritis, and the sensitivity of quercetin effects to naloxone, an opioid receptor antagonist. Mice were treated with quercetin, and mechanical hyperalgesia was assessed at 1-24 h after MSU injection. In vivo, leukocyte recruitment, cytokine levels, oxidative stress, NFκB activation, and gp91phox and inflammasome components (NLRP3, ASC, Pro-caspase-1, and Pro-IL-1β) mRNA expression by qPCR were determined in the knee joints at 24 h after MSU injection. Inflammasome activation was determined, in vitro, in lipopolysaccharide-primed macrophages challenged with MSU. Quercetin inhibited MSU-induced mechanical hyperalgesia, leukocyte recruitment, TNFα and IL-1β production, superoxide anion production, inflammasome activation, decrease of antioxidants levels, NFκB activation, and inflammasome components mRNA expression. Naloxone pre-treatment prevented all the inhibitory effects of quercetin over MSU-induced gout arthritis. These results demonstrate that quercetin exerts analgesic and anti-inflammatory effect in the MSU-induced arthritis in a naloxone-sensitive manner.
Collapse
Affiliation(s)
- Kenji W Ruiz-Miyazawa
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid KM480 PR445, Cx Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil
| | - Larissa Staurengo-Ferrari
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid KM480 PR445, Cx Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil
| | - Sandra S Mizokami
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid KM480 PR445, Cx Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil
| | - Talita P Domiciano
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid KM480 PR445, Cx Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil
| | - Fabiana T M C Vicentini
- Farmacore Biotecnologia LTDA, Rua Edson Souto, 728, Lagoinha, 14095-250, Ribeirão Preto, São Paulo, Brazil
| | - Doumit Camilios-Neto
- Departamento de Bioquímica e Biotecnologia, Centro de Ciências Exatas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, Londrina, Paraná, 86057-970, Brazil
| | - Wander R Pavanelli
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid KM480 PR445, Cx Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil
| | - Phileno Pinge-Filho
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid KM480 PR445, Cx Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil
| | - Flávio A Amaral
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Laboratório de Imunofarmacologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mauro M Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Laboratório de Imunofarmacologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Healthy Sciences Center, Londrina State University, Av. Robert Koch, 60, Londrina, Paraná, CEP 86038-350, Brazil
| | - Waldiceu A Verri
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid KM480 PR445, Cx Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil.
- Departamento de Patologia, Universidade Estadual de Londrina, Rod. Celso Garcia Cid KM480 PR445, Cx Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil.
| |
Collapse
|
139
|
Shanmugam G, Narasimhan M, Conley RL, Sairam T, Kumar A, Mason RP, Sankaran R, Hoidal JR, Rajasekaran NS. Chronic Endurance Exercise Impairs Cardiac Structure and Function in Middle-Aged Mice with Impaired Nrf2 Signaling. Front Physiol 2017; 8:268. [PMID: 28515695 PMCID: PMC5413495 DOI: 10.3389/fphys.2017.00268] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/11/2017] [Indexed: 12/18/2022] Open
Abstract
Nuclear factor erythroid 2 related factor 2 (Nrf2) signaling maintains the redox homeostasis and its activation is shown to suppress cardiac maladaptation. Earlier we reported that acute endurance exercise (2 days) evoked antioxidant cytoprotection in young WT animals but not in aged WT animals. However, the effect of repeated endurance exercise during biologic aging (WT) characterized by an inherent deterioration in Nrf2 signaling and pathological aging (pronounced oxidative susceptibility-Nrf2 absence) in the myocardium remains elusive. Thus, the purpose of our study was to determine the effect of chronic endurance exercise-induced cardiac adaptation in aged mice with and without Nrf2. Age-matched WT and Nrf2-null mice (Nrf2-/-) (>22 months) were subjected to 6 weeks chronic endurance exercise (25 meter/min, 12% grade). The myocardial redox status was assessed by expression of antioxidant defense genes and proteins along with immunochemical detection of DMPO-radical adduct, GSH-NEM, and total ubiquitination. Cardiac functions were assessed by echocardiography and electrocardiogram. At sedentary state, loss of Nrf2 resulted in significant downregulation of antioxidant gene expression (Nqo1, Ho1, Gclm, Cat, and Gst-α) with decreased GSH-NEM immuno-fluorescence signals. While Nrf2-/- mice subjected to CEE showed an either similar or more pronounced reduction in the transcript levels of Gclc, Nqo1, Gsr, and Gst-α in relation to WT littermates. In addition, the hearts of Nrf2-/- on CEE showed a substantial reduction in specific antioxidant proteins, G6PD and CAT along with decreased GSH, a pronounced increase in DMPO-adduct and the total ubiquitination levels. Further, CEE resulted in a significant upregulation of hypertrophy genes (Anf, Bnf, and β-Mhc) (p < 0.05) in the Nrf2-/- hearts in relation to WT mice. Moreover, the aged Nrf2-/- mice exhibited a higher degree of cardiac remodeling in association with a significant decrease in fractional shortening, pronounced ST segment, and J wave elevation upon CEE compared to age-matched WT littermates. In conclusion, our findings indicate that while the aged WT and Nrf2 knockout animals both exhibit hypertrophy after CEE, the older Nrf2 knockouts showed ventricular remodeling coupled with profound cardiac functional abnormalities and diastolic dysfunction.
Collapse
Affiliation(s)
- Gobinath Shanmugam
- Cardiac Aging and Redox Signaling Laboratory, Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at BirminghamBirmingham, AL, USA
| | - Madhusudhanan Narasimhan
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences CenterLubbock, TX, USA
| | - Robbie L. Conley
- Cardiac Aging and Redox Signaling Laboratory, Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at BirminghamBirmingham, AL, USA
| | - Thiagarajan Sairam
- PSG Center for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences and Research, PSG HospitalsCoimbatore, India
| | - Ashutosh Kumar
- Immunity, Inflammation, and Disease Laboratory, NIEHS/NIHRaleigh, NC, USA
| | - Ronald P. Mason
- Immunity, Inflammation, and Disease Laboratory, NIEHS/NIHRaleigh, NC, USA
| | - Ramalingam Sankaran
- PSG Center for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences and Research, PSG HospitalsCoimbatore, India
| | - John R. Hoidal
- Division of Pulmonary, Department of Medicine, University of Utah School of MedicineSalt Lake City, UT, USA
| | - Namakkal S. Rajasekaran
- Cardiac Aging and Redox Signaling Laboratory, Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at BirminghamBirmingham, AL, USA
- PSG Center for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences and Research, PSG HospitalsCoimbatore, India
- Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of MedicineSalt Lake City, UT, USA
- Center for Free Radical Biology, University of Alabama at BirminghamBirmingham, AL, USA
| |
Collapse
|
140
|
Vega RB, Konhilas JP, Kelly DP, Leinwand LA. Molecular Mechanisms Underlying Cardiac Adaptation to Exercise. Cell Metab 2017; 25:1012-1026. [PMID: 28467921 PMCID: PMC5512429 DOI: 10.1016/j.cmet.2017.04.025] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/13/2017] [Accepted: 04/18/2017] [Indexed: 02/06/2023]
Abstract
Exercise elicits coordinated multi-organ responses including skeletal muscle, vasculature, heart, and lung. In the short term, the output of the heart increases to meet the demand of strenuous exercise. Long-term exercise instigates remodeling of the heart including growth and adaptive molecular and cellular re-programming. Signaling pathways such as the insulin-like growth factor 1/PI3K/Akt pathway mediate many of these responses. Exercise-induced, or physiologic, cardiac growth contrasts with growth elicited by pathological stimuli such as hypertension. Comparing the molecular and cellular underpinnings of physiologic and pathologic cardiac growth has unveiled phenotype-specific signaling pathways and transcriptional regulatory programs. Studies suggest that exercise pathways likely antagonize pathological pathways, and exercise training is often recommended for patients with chronic stable heart failure or following myocardial infarction. Herein, we summarize the current understanding of the structural and functional cardiac responses to exercise as well as signaling pathways and downstream effector molecules responsible for these adaptations.
Collapse
Affiliation(s)
- Rick B Vega
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL 32827, USA
| | - John P Konhilas
- Department of Physiology, Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85724, USA
| | - Daniel P Kelly
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL 32827, USA
| | - Leslie A Leinwand
- Molecular, Cellular and Developmental Biology, BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA.
| |
Collapse
|
141
|
Khanra R, Dewanjee S, Dua TK, Bhattacharjee N. Taraxerol, a pentacyclic triterpene from Abroma augusta leaf, attenuates acute inflammation via inhibition of NF-κB signaling. Biomed Pharmacother 2017; 88:918-923. [PMID: 28178622 DOI: 10.1016/j.biopha.2017.01.132] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 11/27/2022] Open
Abstract
Abroma augusta L. (Malvaceae) leaf is traditionally used to treat inflammatory disorders. In our laboratory, we have scientifically validated the anti-inflammatory effect of A. augusta leaf extract. In this study, it has been aimed to evaluate in vivo anti-inflammatory effect of taraxerol isolated from the methanol extract of A. augusta leaf. It was further intended to find out the probable mechanism of anti-inflammatory effect of taraxerol. The anti-inflammatory effect of taraxerol (5 and 10mg/kg, i.p.) was measured employing carrageenan-induced paw edema model of acute inflammation. The carrageenan injection resulted significant edema formation in the right paw when compared with un-injected left paw. However, taraxerol (10mg/kg) treatment could significantly (p<0.05-0.01) attenuate carrageenan induced paw edema 2h onward. The effect of taraxerol at the dose of 5mg/kg was found to be significant (p<0.05) only after 4h of carrageenan treatment. Taraxerol (10mg/kg) treatment could significantly (p<0.01) attenuate carrageenan mediated up-regulation in the levels of IL 1β, IL 6, IL 12 and TNF α in the right paw tissues. In search of molecular mechanism, taraxerol (10mg/kg) could significantly (p<0.05-0.01) reinstate carrageenan provoked NF-κB signaling and thereby caused significant down-regulation in the expressions of COX-2 (p<0.01) and iNOS (p<0.05). In conclusion, taraxerol would attenuate acute inflammation via inhibition of NF-κB signaling.
Collapse
Affiliation(s)
- Ritu Khanra
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| | - Tarun K Dua
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Niloy Bhattacharjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
142
|
Lew JKS, Pearson JT, Schwenke DO, Katare R. Exercise mediated protection of diabetic heart through modulation of microRNA mediated molecular pathways. Cardiovasc Diabetol 2017; 16:10. [PMID: 28086863 PMCID: PMC5237289 DOI: 10.1186/s12933-016-0484-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 12/17/2016] [Indexed: 12/18/2022] Open
Abstract
Hyperglycaemia, hypertension, dyslipidemia and insulin resistance collectively impact on the myocardium of people with diabetes, triggering molecular, structural and myocardial abnormalities. These have been suggested to aggravate oxidative stress, systemic inflammation, myocardial lipotoxicity and impaired myocardial substrate utilization. As a consequence, this leads to the development of a spectrum of cardiovascular diseases, which may include but not limited to coronary endothelial dysfunction, and left ventricular remodelling and dysfunction. Diabetic heart disease (DHD) is the term used to describe the presence of heart disease specifically in diabetic patients. Despite significant advances in medical research and long clinical history of anti-diabetic medications, the risk of heart failure in people with diabetes never declines. Interestingly, sustainable and long-term exercise regimen has emerged as an effective synergistic therapy to combat the cardiovascular complications in people with diabetes, although the precise molecular mechanism(s) underlying this protection remain unclear. This review provides an overview of the underlying mechanisms of hyperglycaemia- and insulin resistance-mediated DHD with a detailed discussion on the role of different intensities of exercise in mitigating these molecular alterations in diabetic heart. In particular, we provide the possible role of exercise on microRNAs, the key molecular regulators of several pathophysiological processes.
Collapse
Affiliation(s)
- Jason Kar Sheng Lew
- Department of Physiology, HeartOtago, University of Otago, 270, Great King Street, Dunedin, 9010 New Zealand
| | - James T. Pearson
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka Japan
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Australia
| | - Daryl O. Schwenke
- Department of Physiology, HeartOtago, University of Otago, 270, Great King Street, Dunedin, 9010 New Zealand
| | - Rajesh Katare
- Department of Physiology, HeartOtago, University of Otago, 270, Great King Street, Dunedin, 9010 New Zealand
| |
Collapse
|
143
|
Park JW, Choi JY, Hong SA, Kim NY, Do KT, Song KD, Cho BW. Exercise induced upregulation of glutamate-cysteine ligase catalytic subunit and glutamate-cysteine ligase modifier subunit gene expression in Thoroughbred horses. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2017; 30:728-735. [PMID: 28111441 PMCID: PMC5411833 DOI: 10.5713/ajas.16.0776] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 11/06/2016] [Accepted: 12/29/2016] [Indexed: 01/17/2023]
Abstract
OBJECTIVE This study was performed to reveal the molecular structure and expression patterns of horse glutamate-cysteine ligase catalytic subunit (GCLC) and glutamate-cysteine ligase modifier subunit (GCLM) genes whose products form glutamate cysteine ligase, which were identified as differentially expressed genes in the previous study. METHODS We performed bioinformatics analyses, and gene expression assay with quantitative polymerase chain reaction (qPCR) for horse GCLC and GCLM genes in muscle and blood leukocytes of Thoroughbred horses. RESULTS Expression of GCLC showed the same pattern in both blood and muscle tissues after exercise. Expression of GCLC increased in the muscle and blood of Thoroughbreds, suggesting a tissue-specific regulatory mechanism for the expression of GCLC. In addition, expression of the GCLM gene increased after exercise in both the blood and muscle of Thoroughbreds. CONCLUSION We established the expression patterns of GCLC and GCLM in the skeletal muscle and blood of Thoroughbred horses in response to exercise. Further study is now warranted to uncover the functional importance of these genes in exercise and recovery in racehorses.
Collapse
Affiliation(s)
- Jeong-Woong Park
- Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University, Miryang 50463, Korea
| | - Jae-Young Choi
- Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University, Miryang 50463, Korea
| | - Seul A Hong
- Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University, Miryang 50463, Korea
| | - Nam Young Kim
- National Institute of Animal Science, Rural Development Administration, Jeju 63242, Korea
| | - Kyoung-Tag Do
- Department of Animal Biotehnology, Faculty of Biotechnology, Jeju National University, Jeju 63243, Korea
| | - Ki-Duk Song
- Department of Animal Biotechnology, Chonbuk National, University, Jeonju 54896, Korea
| | - Byung-Wook Cho
- Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University, Miryang 50463, Korea
| |
Collapse
|
144
|
Abstract
Numerous animal cardiac exercise models using animal subjects have been established to uncover the cardiovascular physiological mechanism of exercise or to determine the effects of exercise on cardiovascular health and disease. In most cases, animal-based cardiovascular exercise modalities include treadmill running, swimming, and voluntary wheel running with a series of intensities, times, and durations. Those used animals include small rodents (e.g., mice and rats) and large animals (e.g., rabbits, dogs, goats, sheep, pigs, and horses). Depending on the research goal, each experimental protocol should also describe whether its respective exercise treatment can produce the anticipated acute or chronic cardiovascular adaptive response. In this chapter, we will briefly describe the most common kinds of animal models of acute and chronic cardiovascular exercises that are currently being conducted and are likely to be chosen in the near future. Strengths and weakness of animal-based cardiac exercise modalities are also discussed.
Collapse
|
145
|
Done AJ, Traustadóttir T. Nrf2 mediates redox adaptations to exercise. Redox Biol 2016; 10:191-199. [PMID: 27770706 PMCID: PMC5078682 DOI: 10.1016/j.redox.2016.10.003] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 10/06/2016] [Accepted: 10/11/2016] [Indexed: 12/11/2022] Open
Abstract
The primary aim of this review is to summarize the current literature on the effects of acute exercise and regular exercise on nuclear factor erythroid 2-related factor 2 (Nrf2) activity and downstream targets of Nrf2 signaling. Nrf2 (encoded in humans by the NFE2L2 gene) is the master regulator of antioxidant defenses, a transcription factor that regulates expression of more than 200 cytoprotective genes. Increasing evidence indicates that Nrf2 signaling plays a key role in how oxidative stress mediates the beneficial effects of exercise. Episodic increases in oxidative stress induced through bouts of acute exercise stimulate Nrf2 activation and when applied repeatedly, as with regular exercise, leads to upregulation of endogenous antioxidant defenses and overall greater ability to counteract the damaging effects of oxidative stress. The evidence of Nrf2 activation in response to exercise across variety of tissues may be an important mechanism of how exercise exerts its well-known systemic effects that are not limited to skeletal muscle and myocardium. Additionally there are emerging data that results from animal studies translate to humans.
Collapse
Affiliation(s)
- Aaron J Done
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Tinna Traustadóttir
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA.
| |
Collapse
|
146
|
Mitochondrial ferritin protects the murine myocardium from acute exhaustive exercise injury. Cell Death Dis 2016; 7:e2475. [PMID: 27853170 PMCID: PMC5260894 DOI: 10.1038/cddis.2016.372] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/13/2016] [Accepted: 10/11/2016] [Indexed: 12/16/2022]
Abstract
Mitochondrial ferritin (FtMt) is a mitochondrially localized protein possessing ferroxidase activity and the ability to store iron. FtMt overexpression in cultured cells protects against oxidative damage by sequestering redox-active, intracellular iron. Here, we found that acute exhaustive exercise significantly increases FtMt expression in the murine heart. FtMt gene disruption decreased the exhaustion exercise time and altered heart morphology with severe cardiac mitochondrial injury and fibril disorganization. The number of apoptotic cells as well as the levels of apoptosis-related proteins was increased in the FtMt−/− mice, though the ATP levels did not change significantly. Concomitant to the above was a high ‘uncommitted' iron level found in the FtMt−/− group when exposed to acute exhaustion exercise. As a result of the increase in catalytic metal, reactive oxygen species were generated, leading to oxidative damage of cellular components. Taken together, our results show that the absence of FtMt, which is highly expressed in the heart, increases the sensitivity of mitochondria to cardiac injury via oxidative stress.
Collapse
|
147
|
He F, Li J, Liu Z, Chuang CC, Yang W, Zuo L. Redox Mechanism of Reactive Oxygen Species in Exercise. Front Physiol 2016; 7:486. [PMID: 27872595 PMCID: PMC5097959 DOI: 10.3389/fphys.2016.00486] [Citation(s) in RCA: 224] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 10/10/2016] [Indexed: 01/04/2023] Open
Abstract
It is well known that regular exercise can benefit health by enhancing antioxidant defenses in the body. However, unaccustomed and/or exhaustive exercise can generate excessive reactive oxygen species (ROS), leading to oxidative stress-related tissue damages and impaired muscle contractility. ROS are produced in both aerobic and anaerobic exercise. Mitochondria, NADPH oxidases and xanthine oxidases have all been identified as potential contributors to ROS production, yet the exact redox mechanisms underlying exercise-induced oxidative stress remain elusive. Interestingly, moderate exposure to ROS is necessary to induce body's adaptive responses such as the activation of antioxidant defense mechanisms. Dietary antioxidant manipulation can also reduce ROS levels and muscle fatigue, as well as enhance exercise recovery. To elucidate the complex role of ROS in exercise, this review updates on new findings of ROS origins within skeletal muscles associated with various types of exercises such as endurance, sprint and mountain climbing. In addition, we will examine the corresponding antioxidant defense systems as well as dietary manipulation against damages caused by ROS.
Collapse
Affiliation(s)
- Feng He
- Department of Kinesiology, California State University-Chico Chico, CA, USA
| | - Juan Li
- Department of Physical Education, Anhui University Anhui, China
| | - Zewen Liu
- Affiliated Ezhou Central Hospital at Medical School of Wuhan UniversityHubei, China; Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of MedicineColumbus, OH, USA
| | - Chia-Chen Chuang
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of MedicineColumbus, OH, USA; Interdisciplinary Biophysics Graduate Program, The Ohio State UniversityColumbus, OH, USA
| | - Wenge Yang
- Department of Physical Education, China University of Geosciences Beijing, China
| | - Li Zuo
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of MedicineColumbus, OH, USA; Interdisciplinary Biophysics Graduate Program, The Ohio State UniversityColumbus, OH, USA
| |
Collapse
|
148
|
Patent highlights June-July 2016. Pharm Pat Anal 2016; 5:377-383. [PMID: 27805846 DOI: 10.4155/ppa-2016-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
Collapse
|
149
|
Wende AR, Young ME, Chatham J, Zhang J, Rajasekaran NS, Darley-Usmar VM. Redox biology and the interface between bioenergetics, autophagy and circadian control of metabolism. Free Radic Biol Med 2016; 100:94-107. [PMID: 27242268 PMCID: PMC5124549 DOI: 10.1016/j.freeradbiomed.2016.05.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 12/01/2022]
Abstract
Understanding molecular mechanisms that underlie the recent emergence of metabolic diseases such as diabetes and heart failure has revealed the need for a multi-disciplinary research integrating the key metabolic pathways which change the susceptibility to environmental or pathologic stress. At the physiological level these include the circadian control of metabolism which aligns metabolism with temporal demand. The mitochondria play an important role in integrating the redox signals and metabolic flux in response to the changing activities associated with chronobiology, exercise and diet. At the molecular level this involves dynamic post-translational modifications regulating transcription, metabolism and autophagy. In this review we will discuss different examples of mechanisms which link these processes together. An important pathway capable of linking signaling to metabolism is the post-translational modification of proteins by O-linked N-acetylglucosamine (O-GlcNAc). This is a nutrient regulated protein modification that plays an important role in impaired cellular stress responses. Circadian clocks have also emerged as critical regulators of numerous cardiometabolic processes, including glucose/lipid homeostasis, hormone secretion, redox status and cardiovascular function. Central to these pathways are the response of autophagy, bioenergetics to oxidative stress, regulated by Keap1/Nrf2 and mechanisms of metabolic control. The extension of these ideas to the emerging concept of bioenergetic health will be discussed.
Collapse
Affiliation(s)
- Adam R Wende
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Martin E Young
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John Chatham
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Namakkal S Rajasekaran
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Victor M Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; UAB Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
150
|
Teixeira KR, Silva ME, de Lima WG, Pedrosa ML, Haraguchi FK. Whey protein increases muscle weight gain through inhibition of oxidative effects induced by resistance exercise in rats. Nutr Res 2016; 36:1081-1089. [DOI: 10.1016/j.nutres.2016.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 08/14/2016] [Accepted: 08/16/2016] [Indexed: 01/01/2023]
|