101
|
Abstract
Disturbances in the primary colonization of the infant gut can result in lifelong consequences and have been associated with a range of host conditions. Although early-life factors have been shown to affect infant gut microbiota development, our current understanding of human gut colonization in early life remains limited. To gain more insights into the unique dynamics of this rapidly evolving ecosystem, we investigated the microbiota over the first year of life in eight densely sampled infants (n = 303 total samples). To evaluate the gut microbiota maturation transition toward an adult configuration, we compared the microbiome composition of the infants to that of the Flemish Gut Flora Project (FGFP) population (n = 1,106). We observed the infant gut microbiota to mature through three distinct, conserved stages of ecosystem development. Across these successional gut microbiota maturation stages, the genus predominance was observed to shift from Escherichia over Bifidobacterium to Bacteroides. Both disease and antibiotic treatment were observed to be associated occasionally with gut microbiota maturation stage regression, a transient setback in microbiota maturation dynamics. Although the studied microbiota trajectories evolved to more adult-like constellations, microbiome community typing against the background of the FGFP cohort clustered all infant samples within the (in adults) potentially dysbiotic Bacteroides 2 (Bact2) enterotype. We confirmed the similarities between infant gut microbial colonization and adult dysbiosis. Profound knowledge about the primary gut colonization process in infants might provide crucial insights into how the secondary colonization of a dysbiotic adult gut can be redirected.
Collapse
|
102
|
Xu B, Qin W, Xu Y, Yang W, Chen Y, Huang J, Zhao J, Ma L. Dietary Quercetin Supplementation Attenuates Diarrhea and Intestinal Damage by Regulating Gut Microbiota in Weanling Piglets. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6221012. [PMID: 34950418 PMCID: PMC8689231 DOI: 10.1155/2021/6221012] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/26/2021] [Indexed: 01/02/2023]
Abstract
Antioxidant polyphenols from plants are potential dietary supplementation to alleviate early weaning-induced intestinal disorders in piglets. Recent evidences showed polyphenol quercetin could reshape gut microbiota when it functioned as anti-inflammation or antioxidation agents in rodent models. However, the effect of dietary quercetin supplementation on intestinal disorders and gut microbiota of weanling piglets, along with the role of gut microbiota in this effect, both remain unclear. Here, we determined the quercetin's effect on attenuating diarrhea, intestinal damage, and redox imbalance, as well as the role of gut microbiota by transferring the quercetin-treated fecal microbiota to the recipient piglets. The results showed that dietary quercetin supplementation decreased piglets' fecal scores improved intestinal damage by increasing tight junction protein occludin, villus height, and villus height/crypt depth ratio but decreased crypt depth and intestinal epithelial apoptosis (TUNEL staining). Quercetin also increased antioxidant capacity indices, including total antioxidant capacity, catalase, and glutathione/oxidized glutathione disulfide but decreased oxidative metabolite malondialdehyde in the jejunum tissue. Fecal microbiota transplantation (FMT) from quercetin-treated piglets had comparable effects on improving intestinal damage and antioxidative capacity than dietary quercetin supplementation. Further analysis of gut microbiota using 16S rDNA sequencing showed that dietary quercetin supplementation or FMT shifted the structure and increased the diversity of gut microbiota. Especially, anaerobic trait and carbohydrate metabolism functions of gut microbiota were enriched after dietary quercetin supplementation and FMT, which may owe to the increased antioxidative capacity of intestine. Quercetin increased the relative abundances of Fibrobacteres, Akkermansia muciniphila, Clostridium butyricum, Clostridium celatum, and Prevotella copri but decreased the relative abundances of Proteobacteria, Lactobacillus coleohominis, and Ruminococcus bromii. Besides, quercetin-shifted bacteria and carbohydrate metabolites short chain fatty acids were significantly related to the indices of antioxidant capacity and intestinal integrity. Overall, dietary quercetin supplementation attenuated diarrhea and intestinal damage by enhancing the antioxidant capacity and regulating gut microbial structure and metabolism in piglets.
Collapse
Affiliation(s)
- Baoyang Xu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, 430070 Hubei, China
| | - Wenxia Qin
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, 430070 Hubei, China
| | - Yunzheng Xu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, 430070 Hubei, China
| | - Wenbo Yang
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, 430070 Hubei, China
| | - Yuwen Chen
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, 430070 Hubei, China
| | - Juncheng Huang
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, 430070 Hubei, China
| | - Jianan Zhao
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, 430070 Hubei, China
| | - Libao Ma
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, 430070 Hubei, China
| |
Collapse
|
103
|
Kint N, Morvan C, Martin-Verstraete I. Oxygen response and tolerance mechanisms in Clostridioides difficile. Curr Opin Microbiol 2021; 65:175-182. [PMID: 34896836 DOI: 10.1016/j.mib.2021.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/08/2021] [Accepted: 11/17/2021] [Indexed: 01/11/2023]
Abstract
While the gut is typically thought of as anoxic, there are two intersecting and decreasing oxygen gradients that are observed in the gut: oxygen decreases from the small to the large intestine and from the intestinal epithelium toward the colon lumen. Gut oxygen levels also increase following antibiotic induced-dysbiosis. While dysbiosis favors growth of Clostridioides difficile, the oxygen increase also causes stress to this anaerobic enteropathogen. To circumvent oxygen threat, C. difficile has developed efficient strategies: sporulation, biofilm formation, the rerouting of central metabolism and the production of oxygen detoxification enzymes. Especially, reverse rubrerythrins and flavodiiron proteins involved in oxygen reduction are crucial in C. difficile ability to tolerate and survive the oxygen concentrations encountered in the gastrointestinal tract. Two regulators, σB and PerR, play pivotal role in the mastering of these adaptive responses by controlling the various systems that protect cells from oxidative damages.
Collapse
Affiliation(s)
- Nicolas Kint
- Institut Pasteur, Université de Paris, UMR CNRS 2001, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015 Paris, France
| | - Claire Morvan
- Institut Pasteur, Université de Paris, UMR CNRS 2001, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015 Paris, France
| | - Isabelle Martin-Verstraete
- Institut Pasteur, Université de Paris, UMR CNRS 2001, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015 Paris, France; Institut Universitaire de France, France.
| |
Collapse
|
104
|
Lee H, Shin W, Kim HJ, Kim J. Turn-On Fluorescence Sensing of Oxygen with Dendrimer-Encapsulated Platinum Nanoparticles as Tunable Oxidase Mimics for Spatially Resolved Measurement of Oxygen Gradient in a Human Gut-on-a-Chip. Anal Chem 2021; 93:16123-16132. [PMID: 34807579 DOI: 10.1021/acs.analchem.1c03891] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Turn-on type fluorescence sensing of O2 is considered a promising approach to developing ways to measure O2 in microenvironments with spatially distributed O2 levels. As a class of nanomaterials with a high degree of control over composition and structure, dendrimer-encapsulated nanoparticles (DENs) are promising candidates to mimic biological enzymes. Here, we report a strategy to monitor spatially distributed O2 across a three-dimensional (3D) human intestinal epithelial layer in a gut-on-a-chip in a turn-on fluorescence sensing manner. The strategy is based on the oxidase-mimetic activity of Pt DENs for catalytic oxidation of nonfluorescent Amplex Red to highly fluorescent resorufin in the presence of O2. We synthesized Pt DENs using two different types of dendrimers (i.e., amine-terminated or hydroxyl-terminated generation 6 polyamidoamine (PAMAM) dendrimers) with six different Pt2+/dendrimer ratios (i.e., 55, 200, 220, 550, 880, and 1320). After clarifying the intrinsic oxidase-mimetic activity of Pt DENs, we determined tunable oxidase-mimetic activity of Pt DENs, especially with fine-tuning the ratios of the Pt precursor ions and dendrimers. Particularly, the optimal Pt DENs having a Pt2+/dendrimer ratio of 1320 exhibited an ∼117-fold increase in the oxidase-mimetic activity for catalyzing the aerobic oxidation of Amplex Red to resorufin compared to one having a Pt2+/dendrimer ratio of 200. This study exemplified a simple yet effective approach for spatially resolved imaging of O2 using metal nanoparticle-based oxidase mimics in microphysiological environments like a human gut-on-a-chip.
Collapse
Affiliation(s)
- Hyein Lee
- Department of Chemistry, Research Institute for Basic Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Woojung Shin
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hyun Jung Kim
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Joohoon Kim
- Department of Chemistry, Research Institute for Basic Sciences, Kyung Hee University, Seoul 02447, Republic of Korea.,KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
105
|
When anaerobes encounter oxygen: mechanisms of oxygen toxicity, tolerance and defence. Nat Rev Microbiol 2021; 19:774-785. [PMID: 34183820 PMCID: PMC9191689 DOI: 10.1038/s41579-021-00583-y] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2021] [Indexed: 02/06/2023]
Abstract
The defining trait of obligate anaerobes is that oxygen blocks their growth, yet the underlying mechanisms are unclear. A popular hypothesis was that these microorganisms failed to evolve defences to protect themselves from reactive oxygen species (ROS) such as superoxide and hydrogen peroxide, and that this failure is what prevents their expansion to oxic habitats. However, studies reveal that anaerobes actually wield most of the same defences that aerobes possess, and many of them have the capacity to tolerate substantial levels of oxygen. Therefore, to understand the structures and real-world dynamics of microbial communities, investigators have examined how anaerobes such as Bacteroides, Desulfovibrio, Pyrococcus and Clostridium spp. struggle and cope with oxygen. The hypoxic environments in which these organisms dwell - including the mammalian gut, sulfur vents and deep sediments - experience episodic oxygenation. In this Review, we explore the molecular mechanisms by which oxygen impairs anaerobes and the degree to which bacteria protect their metabolic pathways from it. The emergent view of anaerobiosis is that optimal strategies of anaerobic metabolism depend upon radical chemistry and low-potential metal centres. Such catalytic sites are intrinsically vulnerable to direct poisoning by molecular oxygen and ROS. Observations suggest that anaerobes have evolved tactics that either minimize the extent to which oxygen disrupts their metabolism or restore function shortly after the stress has dissipated.
Collapse
|
106
|
Béchon N, Ghigo JM. Gut biofilms: Bacteroides as model symbionts to study biofilm formation by intestinal anaerobes. FEMS Microbiol Rev 2021; 46:6440158. [PMID: 34849798 DOI: 10.1093/femsre/fuab054] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/09/2021] [Indexed: 02/06/2023] Open
Abstract
Bacterial biofilms are communities of adhering bacteria that express distinct properties compared to their free-living counterparts, including increased antibiotic tolerance and original metabolic capabilities. Despite the potential impact of the biofilm lifestyle on the stability and function of the dense community of micro-organisms constituting the mammalian gut microbiota, the overwhelming majority of studies performed on biofilm formation by gut bacteria focused either on minor and often aerobic members of the community or on pathogenic bacteria. In this review, we discuss the reported evidence for biofilm-like structures formed by gut bacteria, the importance of considering the anaerobic nature of gut biofilms and we present the most recent advances on biofilm formation by Bacteroides, one of the most abundant genera of the human gut microbiota. Bacteroides species can be found attached to food particles and colonizing the mucus layer and we propose that Bacteroides symbionts are relevant models to probe the physiology of gut microbiota biofilms.
Collapse
Affiliation(s)
- Nathalie Béchon
- Institut Pasteur, Université de Paris, UMR CNRS2001, Genetics of Biofilms Laboratory 75015 Paris, France
| | - Jean-Marc Ghigo
- Institut Pasteur, Université de Paris, UMR CNRS2001, Genetics of Biofilms Laboratory 75015 Paris, France
| |
Collapse
|
107
|
Li Y, Tao Y, Xu J, He Y, Zhang W, Jiang Z, He Y, Liu H, Chen M, Zhang W, Xing Z. Hyperoxia Provokes Time- and Dose-Dependent Gut Injury and Endotoxemia and Alters Gut Microbiome and Transcriptome in Mice. Front Med (Lausanne) 2021; 8:732039. [PMID: 34869425 PMCID: PMC8635731 DOI: 10.3389/fmed.2021.732039] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/13/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Oxygen therapy usually exposes patients to hyperoxia, which induces injuries in the lung, the heart, and the brain. The gut and its microbiome play key roles in critical illnesses, but the impact of hyperoxia on the gut and its microbiome remains not very clear. We clarified the time- and dose-dependent effects of hyperoxia on the gut and investigated oxygen-induced gut dysbiosis and explored the underlying mechanism of gut injury by transcriptome analysis. Methods: The C57BL/6 mice were randomly divided into the control group and nine different oxygen groups exposed to hyperoxia with an inspired O2 fraction (FiO2) of 40, 60, and 80% for 24, 72, and 168 h (7 days), respectively. Intestinal histopathological and biochemical analyses were performed to explore the oxygen-induced gut injury and inflammatory response. Another experiment was performed to explore the impact of hyperoxia on the gut microbiome by exposing the mice to hyperoxia (FiO2 80%) for 7 days, with the 16S rRNA sequencing method. We prolonged the exposure (up to 14 days) of the mice to hyperoxia (FiO2 80%), and gut transcriptome analysis and western blotting were carried out to obtain differentially expressed genes (DEGs) and signaling pathways related to innate immunity and cell death. Results: Inhaled oxygen induced time- and dose-dependent gut histopathological impairment characterized by mucosal atrophy (e.g., villus shortening: 80% of FiO2 for 24 h: P = 0.008) and enterocyte death (e.g., apoptosis: 40% of FiO2 for 7 days: P = 0.01). Administered time- and dose-dependent oxygen led to intestinal barrier dysfunction (e.g., endotoxemia: 80% of FiO2 for 72 h: P = 0.002) and potentiated gut inflammation by increasing proinflammatory cytokines [e.g., tumor necrosis factor alpha (TNF-α): 40% of FiO2 for 24 h: P = 0.003)] and reducing anti-inflammatory cytokines [Interleukin 10 (IL-10): 80% of FiO2 for 72 h: P < 0.0001]. Hyperoxia induced gut dysbiosis with an expansion of oxygen-tolerant bacteria (e.g., Enterobacteriaceae). Gut transcriptome analysis identified 1,747 DEGs and 171 signaling pathways and immunoblotting verified TLR-4, NOD-like receptor, and apoptosis signaling pathways were activated in oxygen-induced gut injury. Conclusions: Acute hyperoxia rapidly provokes gut injury in a time- and dose-dependent manner and induces gut dysbiosis, and an innate immune response is involved in an oxygen-induced gut injury.
Collapse
Affiliation(s)
- Yunhang Li
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yuanfa Tao
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingyu Xu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yihuai He
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Wen Zhang
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhigang Jiang
- Department of Statistics, Zunyi Medical University, Zunyi, China
| | - Ying He
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Houmei Liu
- Department of Endodontics, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
| | - Miao Chen
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Wei Zhang
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhouxiong Xing
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
108
|
Chen Y, Cui W, Li X, Yang H. Interaction Between Commensal Bacteria, Immune Response and the Intestinal Barrier in Inflammatory Bowel Disease. Front Immunol 2021; 12:761981. [PMID: 34858414 PMCID: PMC8632219 DOI: 10.3389/fimmu.2021.761981] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
In inflammatory bowel disease (IBD), intestinal mucosa cell and intestinal epithelial cell are severely damaged, and then their susceptibility to bacteria increases, so many commensal bacteria become pathogenic. The pathogenic commensal bacteria can stimulate a series of compensatory immune responses in the intestine. However, the immune response prevents the intestinal tract from restoring homeostasis, which in turn produces an indispensable inflammatory response. On the contrary, in IBD, the fierce inflammatory response contributes to the development of IBD. However, the effect of commensal bacteria on inflammation in IBD has not been clearly studied. Therefore, we further summarize the changes brought about by the changes of commensal bacteria to the inflammation of the intestines and their mutual influence. This article reviews the protective mechanism of commensal bacteria in healthy people and the mechanism of commensal bacteria and immune response to the destruction of the intestinal barrier when IBD occurs. The treatment and prevention of IBD are also briefly summarized.
Collapse
Affiliation(s)
| | | | - Xiao Li
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Huan Yang
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
109
|
Monnoyer R, Eftedal I, Hjelde A, Deb S, Haugum K, Lautridou J. Functional Profiling Reveals Altered Metabolic Activity in Divers' Oral Microbiota During Commercial Heliox Saturation Diving. Front Physiol 2021; 12:702634. [PMID: 34721054 PMCID: PMC8548618 DOI: 10.3389/fphys.2021.702634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/22/2021] [Indexed: 11/24/2022] Open
Abstract
Background: The extreme environment in saturation diving affects all life forms, including the bacteria that reside on human skin and mucosa. The oral cavity alone is home to hundreds of different bacteria. In this study, we examined the metabolic activity of oral bacteria from healthy males during commercial heliox saturation diving. We focused on environmentally induced changes that might affect the divers’ health and fitness. Methods: We performed pathway abundance analysis using PICRUSt2, a bioinformatics software package that uses marker gene data to compute the metabolic activity of microbial communities. The analysis is based on 16S rRNA metagenomic data generated from the oral microbiota of 23 male divers before, during, and after 4weeks of commercial heliox saturation diving. Environmentally induced changes in bacterial metabolism were computed from differences in predicted pathway abundances at baseline before, versus during, and immediately after saturation diving. Results and Conclusion: The analysis predicted transient changes that were primarily associated with the survival and growth of bacteria in oxygenated environments. There was a relative increase in the abundance of aerobic metabolic pathways and a concomitant decrease in anaerobic metabolic pathways, primarily comprising of energy metabolism, oxidative stress responses, and adenosylcobalamin biosynthesis. Adenosylcobalamin is a bioactive form of vitamin B12 (vitB12), and a reduction in vitB12 biosynthesis may hypothetically affect the divers’ physiology. While host effects of oral bacterial vitamin metabolism are uncertain, this is a finding that concurs with the existing recommendations for vitB12 supplements as part of the divers’ diet, whether to boost antioxidant defenses in bacteria or their host or to improve oxygen transport during saturation diving.
Collapse
Affiliation(s)
- Roxane Monnoyer
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ingrid Eftedal
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway
| | - Astrid Hjelde
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sanjoy Deb
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Centre for Nutraceuticals, School of Life Sciences, University of Westminster, London, United Kingdom
| | - Kjersti Haugum
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Medical Microbiology, Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Jacky Lautridou
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
110
|
Analysis of six tonB gene homologs in Bacteroides fragilis revealed that tonB3 is essential for survival in experimental intestinal colonization and intra-abdominal infection. Infect Immun 2021; 90:e0046921. [PMID: 34662212 DOI: 10.1128/iai.00469-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The opportunistic, anaerobic pathogen and commensal of the human large intestinal tract, Bacteroides fragilis strain 638R, contains six predicted TonB proteins, termed TonB1-6, four ExbBs orthologs, ExbB1-4, and five ExbDs orthologs, ExbD1-5. The inner membrane TonB/ExbB/ExbD complex harvests energy from the proton motive force (Δp) and the TonB C-terminal domain interacts with and transduces energy to outer membrane TonB-dependent transporters (TBDTs). However, TonB's role in activating nearly one hundred TBDTs for nutrient acquisition in B. fragilis during intestinal colonization and extraintestinal infection has not been established. In this study, we show that growth was abolished in the ΔtonB3 mutant when heme, vitamin B12, Fe(III)-ferrichrome, starch, mucin-glycans, or N-linked glycans were used as a substrate for growth in vitro. Genetic complementation of the ΔtonB3 mutant with the tonB3 gene restored growth on these substrates. The ΔtonB1, ΔtonB2, ΔtonB4, ΔtonB5, and ΔtonB6 single mutants did not show a growth defect. This indicates that there was no functional compensation for the lack of TonB3, and it demonstrates that TonB3, alone, drives the TBDTs involved in the transport of essential nutrients. The ΔtonB3 mutant had a severe growth defect in a mouse model of intestinal colonization compared to the parent strain. This intestinal growth defect was enhanced in the ΔtonB3 ΔtonB6 double mutant strain which completely lost its ability to colonize the mouse intestinal tract compared to the parent strain. The ΔtonB1, ΔtonB2, ΔtonB4, and ΔtonB5 mutants did not significantly affect intestinal colonization. Moreover, the survival of the ΔtonB3 mutant strain was completely eradicated in a rat model of intra-abdominal infection. Taken together, these findings show that TonB3 was essential for survival in vivo. The genetic organization of tonB1, tonB2, tonB4, tonB5, and tonB6 gene orthologs indicates that they may interact with periplasmic and nonreceptor outer membrane proteins, but the physiological relevance of this has not been defined. Because anaerobic fermentation metabolism yields a lower Δp than aerobic respiration and B. fragilis has a reduced redox state in its periplasmic space - in contrast to an oxidative environment in aerobes - it remains to be determined if the diverse system of TonB/ExbB/ExbD orthologs encoded by B. fragilis have an increased sensitivity to PMF (relative to aerobic bacteria) to allow for the harvesting of energy under anaerobic conditions.
Collapse
|
111
|
Luo A, Li S, Wang X, Xie Z, Li S, Hua D. Cefazolin Improves Anesthesia and Surgery-Induced Cognitive Impairments by Modulating Blood-Brain Barrier Function, Gut Bacteria and Short Chain Fatty Acids. Front Aging Neurosci 2021; 13:748637. [PMID: 34720997 PMCID: PMC8548472 DOI: 10.3389/fnagi.2021.748637] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/23/2021] [Indexed: 12/22/2022] Open
Abstract
Emerging evidence suggests that anesthesia and surgery may induce gut dysbiosis. Gut dysbiosis leads to imbalance in circulating contents of microbiota-derived metabolites and disrupts the integrity of the blood-brain barrier (BBB), contributing to postoperative cognitive dysfunction (POCD). The composition of gut microbiota may be influenced by various antibiotics. However, how perioperative use of antibiotics affects POCD needs more explorations. In the present study, we explored the effect of cefazolin, a common antibiotic used in perioperative period, on cognitive function, BBB integrity, gut bacteria and short chain fatty acids (SCFAs), a group of widely studied metabolites in aged mice, using 18-month-old male mice. Significant BBB disruptions and decreased levels of tight junction proteins, zonula occludens-1 (ZO-1) and Occludin (OCLN) were seen in the mice of POCD model. Cefazolin treatment attenuated these changes induced by anesthesia and surgery. Furthermore, cefazolin reversed the changes in several fecal bacteria (β-, γ/δ-, ε-Proteobacteria, and Bacteroidetes) as determined by qPCR tests. Analysis of plasma SCFAs showed that almost all types of SCFAs were reduced in POCD and cefazolin administration reversed the changes in expression of the two most abundant SCFAs (acetic and propionic acids). In conclusion, this study demonstrated that cefazolin improved POCD. Mechanistically, cefazolin suppressed the disruption of BBB, gut microbiota or SCFAs, thereby ameliorating POCD.
Collapse
Affiliation(s)
| | | | | | | | | | - Dongyu Hua
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
112
|
Fujiwara H. Crosstalk Between Intestinal Microbiota Derived Metabolites and Tissues in Allogeneic Hematopoietic Cell Transplantation. Front Immunol 2021; 12:703298. [PMID: 34512627 PMCID: PMC8429959 DOI: 10.3389/fimmu.2021.703298] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an evidence based- cellular immunotherapy for hematological malignancies. Immune reactions not only promote graft-versus-tumor effects that kill hematological malignant cells but also graft-versus-host disease (GVHD) that is the primary complication characterized by systemic organ damages consisting of T-cells and antigen presenting cells (APCs) activation. GVHD has long been recognized as an immunological reaction that requires an immunosuppressive treatment targeting immune cells. However immune suppression cannot always prevent GVHD or effectively treat it once it has developed. Recent studies using high-throughput sequencing technology investigated the impact of microbial flora on GVHD and provided profound insights of the mechanism of GVHD other than immune cells. Allo-HSCT affects the intestinal microbiota and microbiome-metabolome axis that can alter intestinal homeostasis and the severity of experimental GVHD. This axis can potentially be manipulated via dietary intervention or metabolites produced by intestinal bacteria affected post-allo-HSCT. In this review, we discuss the mechanism of experimental GVHD regulation by the complex microbial community-metabolites-host tissue axis. Furthermore, we summarize the major findings of microbiome-based immunotherapeutic approaches that protect tissues from experimental GVHD. Understanding the complex relationships between gut microbiota-metabolites-host tissues axis provides crucial insight into the pathogenesis of GVHD and advances the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Hideaki Fujiwara
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
| |
Collapse
|
113
|
Jergens AE, Parvinroo S, Kopper J, Wannemuehler MJ. Rules of Engagement: Epithelial-Microbe Interactions and Inflammatory Bowel Disease. Front Med (Lausanne) 2021; 8:669913. [PMID: 34513862 PMCID: PMC8432614 DOI: 10.3389/fmed.2021.669913] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel diseases (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), are complex, multifactorial disorders that lead to chronic and relapsing intestinal inflammation. The exact etiology remains unknown, however multiple factors including the environment, genetic, dietary, mucosal immunity, and altered microbiome structure and function play important roles in disease onset and progression. Supporting this notion that the gut microbiota plays a pivotal role in IBD pathogenesis, studies in gnotobiotic mice have shown that mouse models of intestinal inflammation require a microbial community to develop colitis. Additionally, antimicrobial therapy in some IBD patients will temporarily induce remission further demonstrating an association between gut microbes and intestinal inflammation. Finally, a dysfunctional intestinal epithelial barrier is also recognized as a key pathogenic factor in IBD. The intestinal epithelium serves as a barrier between the luminal environment and the mucosal immune system and guards against harmful molecules and microorganisms while being permeable to essential nutrients and solutes. Beneficial (i.e., mutualists) bacteria promote mucosal health by strengthening barrier integrity, increasing local defenses (mucin and IgA production) and inhibiting pro-inflammatory immune responses and apoptosis to promote mucosal homeostasis. In contrast, pathogenic bacteria and pathobionts suppress expression and localization of tight junction proteins, cause dysregulation of apoptosis/proliferation and increase pro-inflammatory signaling that directly damages the intestinal mucosa. This review article will focus on the role of intestinal epithelial cells (IECs) and the luminal environment acting as mediators of barrier function in IBD. We will also share some of our translational observations of interactions between IECs, immune cells, and environmental factors contributing to maintenance of mucosal homeostasis, as it relates to GI inflammation and IBD in different animal models.
Collapse
Affiliation(s)
- Albert E. Jergens
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Shadi Parvinroo
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Jamie Kopper
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Michael J. Wannemuehler
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
114
|
The longitudinal and cross-sectional heterogeneity of the intestinal microbiota. Curr Opin Microbiol 2021; 63:221-230. [PMID: 34428628 DOI: 10.1016/j.mib.2021.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/04/2021] [Indexed: 02/07/2023]
Abstract
A central goal of microbiome research is to understand the factors that balance gut-associated microbial communities, thereby creating longitudinal and cross-sectional heterogeneity in their composition and density. Whereas the diet dictates taxa dominance, microbial communities are linked intimately to host physiology through digestive and absorptive functions that generate longitudinal heterogeneity in nutrient availability. Additionally, the host differentially controls the access to electron acceptors along the longitudinal axis of the intestine to drive the development of microbial communities that are dominated by facultatively anaerobic bacteria in the small intestine or obligately anaerobic bacteria in the large intestine. By secreting mucus and antimicrobials, the host further constructs microhabitats that generate cross-sectional heterogeneity in the colonic microbiota composition. Here we will review how understanding the host factors involved in generating longitudinal and cross-sectional microbiota heterogeneity helps define physiological states that are characteristic of or appropriate to a homeostatic microbiome.
Collapse
|
115
|
Long-Term Recovery of the Fecal Microbiome and Metabolome of Dogs with Steroid-Responsive Enteropathy. Animals (Basel) 2021; 11:ani11092498. [PMID: 34573464 PMCID: PMC8468387 DOI: 10.3390/ani11092498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/02/2021] [Accepted: 08/17/2021] [Indexed: 01/02/2023] Open
Abstract
The long-term impact of treatment of dogs with steroid-responsive enteropathy (SRE) on the fecal microbiome and metabolome has not been investigated. Therefore, this study aimed to evaluate the fecal microbiome and metabolome of dogs with SRE before, during, and following treatment with standard immunosuppressive therapy and an elimination diet. We retrospectively selected samples from 9 dogs with SRE enrolled in a previous clinical trial, which received treatment for 8 weeks, and had achieved remission as indicated by the post-treatment clinical scores. Long-term (1 year) samples were obtained from a subset (5/9) of dogs. Samples from 13 healthy dogs were included as controls (HC). We evaluated the microbiome using 16S rRNA sequencing and qPCR. To evaluate the recovery of gut function, we measured fecal metabolites using an untargeted approach. While improvement was observed for some bacterial taxa after 8 weeks of treatment, several bacterial taxa remained significantly different from HC. Seventy-five metabolites were altered in dogs with SRE, including increased fecal amino acids and vitamins, suggesting malabsorption as a component of SRE. One year after treatment, however, all bacterial species were evaluated by qPCR and 16S rRNA gene sequencing, and all but thirteen metabolites were no longer different from healthy controls.
Collapse
|
116
|
Konjar Š, Pavšič M, Veldhoen M. Regulation of Oxygen Homeostasis at the Intestinal Epithelial Barrier Site. Int J Mol Sci 2021; 22:ijms22179170. [PMID: 34502078 PMCID: PMC8431628 DOI: 10.3390/ijms22179170] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/28/2021] [Accepted: 08/19/2021] [Indexed: 12/25/2022] Open
Abstract
The unique biology of the intestinal epithelial barrier is linked to a low baseline oxygen pressure (pO2), characterised by a high rate of metabolites circulating through the intestinal blood and the presence of a steep oxygen gradient across the epithelial surface. These characteristics require tight regulation of oxygen homeostasis, achieved in part by hypoxia-inducible factor (HIF)-dependent signalling. Furthermore, intestinal epithelial cells (IEC) possess metabolic identities that are reflected in changes in mitochondrial function. In recent years, it has become widely accepted that oxygen metabolism is key to homeostasis at the mucosae. In addition, the gut has a vast and diverse microbial population, the microbiota. Microbiome–gut communication represents a dynamic exchange of mediators produced by bacterial and intestinal metabolism. The microbiome contributes to the maintenance of the hypoxic environment, which is critical for nutrient absorption, intestinal barrier function, and innate and/or adaptive immune responses in the gastrointestinal tract. In this review, we focus on oxygen homeostasis at the epithelial barrier site, how it is regulated by hypoxia and the microbiome, and how oxygen homeostasis at the epithelium is regulated in health and disease.
Collapse
Affiliation(s)
- Špela Konjar
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
- Instituto de Medicina Molecular, João Lobo Antunes, Faculdade de Medicina de Lisboa, 1649-028 Lisbon, Portugal;
- Correspondence:
| | - Miha Pavšič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| | - Marc Veldhoen
- Instituto de Medicina Molecular, João Lobo Antunes, Faculdade de Medicina de Lisboa, 1649-028 Lisbon, Portugal;
| |
Collapse
|
117
|
Tiffany CR, Lee JY, Rogers AWL, Olsan EE, Morales P, Faber F, Bäumler AJ. The metabolic footprint of Clostridia and Erysipelotrichia reveals their role in depleting sugar alcohols in the cecum. MICROBIOME 2021; 9:174. [PMID: 34412707 PMCID: PMC8375055 DOI: 10.1186/s40168-021-01123-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/25/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND The catabolic activity of the microbiota contributes to health by aiding in nutrition, immune education, and niche protection against pathogens. However, the nutrients consumed by common taxa within the gut microbiota remain incompletely understood. METHODS Here we combined microbiota profiling with an un-targeted metabolomics approach to determine whether depletion of small metabolites in the cecum of mice correlated with the presence of specific bacterial taxa. Causality was investigated by engrafting germ-free or antibiotic-treated mice with complex or defined microbial communities. RESULTS We noted that a depletion of Clostridia and Erysipelotrichia from the gut microbiota triggered by antibiotic treatment was associated with an increase in the cecal concentration of sugar acids and sugar alcohols (polyols). Notably, when we inoculated germ-free mice with a defined microbial community of 14 Clostridia and 3 Erysipelotrichia isolates, we observed the inverse, with a marked decrease in the concentrations of sugar acids and polyols in cecal contents. The carbohydrate footprint produced by the defined microbial community was similar to that observed in gnotobiotic mice receiving a cecal microbiota transplant from conventional mice. Supplementation with sorbitol, a polyol used as artificial sweetener, increased cecal sorbitol concentrations in antibiotic-treated mice, which was abrogated after inoculation with a Clostridia isolate able to grow on sorbitol in vitro. CONCLUSIONS We conclude that consumption of sugar alcohols by Clostridia and Erysipelotrichia species depletes these metabolites from the intestinal lumen during homeostasis. Video abstract.
Collapse
Affiliation(s)
- Connor R Tiffany
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Jee-Yon Lee
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Andrew W L Rogers
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Erin E Olsan
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
- Present Address: Department of Biological Sciences, California State University Sacramento, 6000 J Street, Sacramento, CA, 95819, USA
| | - Pavel Morales
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Franziska Faber
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
- Present Address: Institute for Molecular Infection Biology (IMIB), Faculty of Medicine, University of Würzburg, Josef-Schneider-Street 2/D15, 97080, Würzburg, Germany
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
118
|
Khan IA, Nayak B, Markandey M, Bajaj A, Verma M, Kumar S, Singh MK, Kedia S, Ahuja V. Differential prevalence of pathobionts and host gene polymorphisms in chronic inflammatory intestinal diseases: Crohn's disease and intestinal tuberculosis. PLoS One 2021; 16:e0256098. [PMID: 34407136 PMCID: PMC8372915 DOI: 10.1371/journal.pone.0256098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/31/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Crohn's disease (CD) and Intestinal tuberculosis (ITB) are chronic inflammatory ulcero-constrictive intestinal diseases with similar phenotype. Although both are disease models of chronic inflammation and their clinical presentations, imaging, histological and endoscopic findings are very similar, yet their etiologies are diverse. Hence, we aimed to look at differences in the prevalence of pathobionts like adherent-invasive Escherichia coli (AIEC), Listeria monocytogenes, Campylobacter jejuni and Yersinia enterocolitica in CD and ITB as well as their associations with host-associated genetic polymorphisms in genes majorly involved in pathways of microbial handling and immune responses. METHODS The study cohort included 142 subjects (69 patients with CD, 32 with ITB and 41 controls). RT- PCR amplification was used to detect the presence of AIEC, L. monocytogenes, C. jejuni, and Y. enterocolitica DNA in colonic mucosal biopsies. Additionally, we tested three SNPs in IRGM (rs13361189, rs10065172, and rs4958847), one SNP in ATG16L1 (rs2241880) and one SNP in TNFRSF1A (rs4149570) by real-time PCR with SYBR green from peripheral blood samples in this cohort. RESULTS In patients with CD, AIEC was most frequently present (16/ 69, 23.19%) followed by L. monocytogenes (14/69, 20.29%), C. jejuni (9/69, 13.04%), and Y. enterocolitica (7/69, 10.14%). Among them, L. monocytogenes and Y. enterocolitica were significantly associated with CD (p = 0.02). In addition, we identified all the three SNPs in IRGM (rs13361189, rs10065172, and rs4958847), one SNP in ATG16L1 (rs2241880) and TNFRSF1A (rs4149570) with a significant difference in frequency in patients with CD compared with ITB and controls (p<0.05). CONCLUSION Higher prevalence of host gene polymorphisms, as well as the presence of pathobionts, was seen in the colonic mucosa of patients with CD as compared to ITB, although both are disease models of chronic inflammation.
Collapse
Affiliation(s)
- Imteyaz Ahmad Khan
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, India
| | - Baibaswata Nayak
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, India
| | - Manasvini Markandey
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, India
| | - Aditya Bajaj
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, India
| | - Mahak Verma
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, India
| | - Sambudhha Kumar
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, India
| | - Mukesh Kumar Singh
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, India
| | - Saurabh Kedia
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, India
| | - Vineet Ahuja
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, India
- * E-mail:
| |
Collapse
|
119
|
Sánchez-Pellicer P, Navarro-López V, González-Tamayo R, Llopis-Ruiz C, Núñez-Delegido E, Ruzafa-Costas B, Navarro-Moratalla L, Agüera-Santos J. Descriptive Study of Gut Microbiota in Infected and Colonized Subjects by Clostridiodes difficile. Microorganisms 2021; 9:microorganisms9081727. [PMID: 34442805 PMCID: PMC8401824 DOI: 10.3390/microorganisms9081727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 11/17/2022] Open
Abstract
Clostridiodes difficile can lead to a range of situations from the absence of symptoms (colonization) to severe diarrhea (infection). Disruption of gut microbiota provides an ideal environment for infection to occur. Comparison of gut microbiota of infected and colonized subjects could provide relevant information on susceptible groups or protectors to the development of infection, since the presence of certain genera could be related to the inhibition of transition from a state of colonization to infection. Through high-throughput sequencing of 16S rDNA gene, we performed alpha and beta diversity and composition studies on 15 infected patients (Group CDI), 15 colonized subjects (Group P), and 15 healthy controls (Group CTLR). A loss of alpha diversity and richness and a different structure have been evidenced in the CDI and P groups with respect to the CTRL group, but without significant differences between the first two. In CDI and P groups, there was a strong decrease in phylum Firmicutes and an expansion of potential pathogens. Likewise, there was a loss of inhibitory genus of C. difficile germination in infected patients that were partially conserved in colonized subjects. Therefore, infected and colonized subjects presented a gut microbiota that was completely different from that of healthy controls, although similar to each other. It is in composition where we found that colonized subjects, especially in minority genera, presented differences with respect to those infected.
Collapse
Affiliation(s)
- Pedro Sánchez-Pellicer
- MiBioPath Group, Health and Science Faculty, Catholic University of Murcia, Campus de los Jerónimos, 135, 30107 Murcia, Spain; (E.N.-D.); (B.R.-C.); (L.N.-M.); (J.A.-S.)
- Correspondence: (P.S.-P.); (V.N.-L.)
| | - Vicente Navarro-López
- MiBioPath Group, Health and Science Faculty, Catholic University of Murcia, Campus de los Jerónimos, 135, 30107 Murcia, Spain; (E.N.-D.); (B.R.-C.); (L.N.-M.); (J.A.-S.)
- Infectious Diseases Unit, University Hospital of Vinalopó, Carrer Tonico Sansano Mora, 14, 03293 Elche, Spain
- Correspondence: (P.S.-P.); (V.N.-L.)
| | - Ruth González-Tamayo
- Biochemistry Laboratory, Vega Baja Hospital, Carretera Orihuela-Almoradí s/n, 03314 San Bartolomé, Spain;
| | - Coral Llopis-Ruiz
- Microbiology Laboratory, University Hospital of Vinalopó, Carrer Tonico Sansano Mora, 14, 03293 Elche, Spain;
| | - Eva Núñez-Delegido
- MiBioPath Group, Health and Science Faculty, Catholic University of Murcia, Campus de los Jerónimos, 135, 30107 Murcia, Spain; (E.N.-D.); (B.R.-C.); (L.N.-M.); (J.A.-S.)
| | - Beatriz Ruzafa-Costas
- MiBioPath Group, Health and Science Faculty, Catholic University of Murcia, Campus de los Jerónimos, 135, 30107 Murcia, Spain; (E.N.-D.); (B.R.-C.); (L.N.-M.); (J.A.-S.)
| | - Laura Navarro-Moratalla
- MiBioPath Group, Health and Science Faculty, Catholic University of Murcia, Campus de los Jerónimos, 135, 30107 Murcia, Spain; (E.N.-D.); (B.R.-C.); (L.N.-M.); (J.A.-S.)
| | - Juan Agüera-Santos
- MiBioPath Group, Health and Science Faculty, Catholic University of Murcia, Campus de los Jerónimos, 135, 30107 Murcia, Spain; (E.N.-D.); (B.R.-C.); (L.N.-M.); (J.A.-S.)
| |
Collapse
|
120
|
Malnutrition, poor post-natal growth, intestinal dysbiosis and the developing lung. J Perinatol 2021; 41:1797-1810. [PMID: 33057133 DOI: 10.1038/s41372-020-00858-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/07/2020] [Accepted: 09/26/2020] [Indexed: 01/31/2023]
Abstract
In extremely preterm infants, poor post-natal growth, intestinal dysbiosis and bronchopulmonary dysplasia are common, and each is associated with long-term complications. The central hypothesis that this review will address is that these three common conditions are interrelated. Challenges to studying this hypothesis include the understanding that malnutrition and poor post-natal growth are not synonymous and that there is not agreement on what constitutes a normal intestinal microbiota in this evolutionarily new population. If this hypothesis is supported, further study of whether "correcting" intestinal dysbiosis in extremely preterm infants reduces postnatal growth restriction and/or bronchopulmonary dysplasia is indicated.
Collapse
|
121
|
Miller BM, Liou MJ, Zhang LF, Nguyen H, Litvak Y, Schorr EM, Jang KK, Tiffany CR, Butler BP, Bäumler AJ. Anaerobic Respiration of NOX1-Derived Hydrogen Peroxide Licenses Bacterial Growth at the Colonic Surface. Cell Host Microbe 2021; 28:789-797.e5. [PMID: 33301718 DOI: 10.1016/j.chom.2020.10.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 09/14/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022]
Abstract
The colonic microbiota exhibits cross-sectional heterogeneity, but the mechanisms that govern its spatial organization remain incompletely understood. Here we used Citrobacter rodentium, a pathogen that colonizes the colonic surface, to identify microbial traits that license growth and survival in this spatial niche. Previous work showed that during colonic crypt hyperplasia, type III secretion system (T3SS)-mediated intimate epithelial attachment provides C. rodentium with oxygen for aerobic respiration. However, we find that prior to the development of colonic crypt hyperplasia, T3SS-mediated intimate attachment is not required for aerobic respiration but for hydrogen peroxide (H2O2) respiration using cytochrome c peroxidase (Ccp). The epithelial NADPH oxidase NOX1 is the primary source of luminal H2O2 early after C. rodentium infection and is required for Ccp-dependent growth. Our results suggest that NOX1-derived H2O2 is a resource that governs bacterial growth and survival in close proximity to the mucosal surface during gut homeostasis.
Collapse
Affiliation(s)
- Brittany M Miller
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Megan J Liou
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Lillian F Zhang
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Henry Nguyen
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Yael Litvak
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA; Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus Givat-Ram, Jerusalem 9190401, Israel
| | - Eva-Magdalena Schorr
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Kyung Ku Jang
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA; Present address: Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Connor R Tiffany
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Brian P Butler
- Department of Pathobiology, School of Veterinary Medicine, St. George's University, Grenada, West Indies
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA.
| |
Collapse
|
122
|
Ingham AC, Kielsen K, Mordhorst H, Ifversen M, Aarestrup FM, Müller KG, Pamp SJ. Microbiota long-term dynamics and prediction of acute graft-versus-host disease in pediatric allogeneic stem cell transplantation. MICROBIOME 2021; 9:148. [PMID: 34183060 PMCID: PMC8240369 DOI: 10.1186/s40168-021-01100-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/20/2021] [Indexed: 05/11/2023]
Abstract
BACKGROUND Patients undergoing allogeneic hematopoietic stem cell transplantation (HSCT) exhibit changes in their gut microbiota and are experiencing a range of complications, including acute graft-versus-host disease (aGvHD). It is unknown if, when, and under which conditions a re-establishment of microbial and immunological homeostasis occurs. It is also unclear whether microbiota long-term dynamics occur at other body sites than the gut such as the mouth or nose. Moreover, it is not known whether the patients' microbiota prior to HSCT holds clues to whether the patient would suffer from severe complications subsequent to HSCT. Here, we take a holobiont perspective and performed an integrated host-microbiota analysis of the gut, oral, and nasal microbiota in 29 children undergoing allo-HSCT. RESULTS The bacterial diversity decreased in the gut, nose, and mouth during the first month and reconstituted again 1-3 months after allo-HSCT. The microbial community composition traversed three phases over 1 year. Distinct taxa discriminated the microbiota temporally at all three body sides, including Enterococcus spp., Lactobacillus spp., and Blautia spp. in the gut. Of note, certain microbial taxa appeared already changed in the patients prior to allo-HSCT as compared with healthy children. Acute GvHD occurring after allo-HSCT could be predicted from the microbiota composition at all three body sites prior to HSCT. The reconstitution of CD4+ T cells, TH17, and B cells was associated with distinct taxa of the gut, oral, and nasal microbiota. CONCLUSIONS This study reveals for the first time bacteria in the mouth and nose that may predict aGvHD. Monitoring of the microbiota at different body sites in HSCT patients and particularly through involvement of samples prior to transplantation may be of prognostic value and could assist in guiding personalized treatment strategies. The identification of distinct bacteria that have a potential to predict post-transplant aGvHD might provide opportunities for an improved preventive clinical management, including a modulation of microbiomes. The host-microbiota associations shared between several body sites might also support an implementation of more feasible oral and nasal swab sampling-based analyses. Altogether, the findings suggest that the microbiota and host factors together could provide actionable information to guiding precision medicine. Video Abstract.
Collapse
Affiliation(s)
- Anna Cäcilia Ingham
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kongens Lyngby, Denmark
- Present address: Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Katrine Kielsen
- Institute for Inflammation Research, Department of Rheumatology and Spine Disease, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Hanne Mordhorst
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Marianne Ifversen
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Frank M Aarestrup
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Klaus Gottlob Müller
- Institute for Inflammation Research, Department of Rheumatology and Spine Disease, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Sünje Johanna Pamp
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kongens Lyngby, Denmark.
- Present address: Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
123
|
Abstract
Necrotizing enterocolitis (NEC) is an inflammatory disease affecting premature infants. Intestinal microbial composition may play a key role in determining which infants are predisposed to NEC and when infants are at highest risk of developing NEC. It is unclear how to optimize antibiotic therapy in preterm infants to prevent NEC and how to optimize antibiotic regimens to treat neonates with NEC. This article discusses risk factors for NEC, how dysbiosis in preterm infants plays a role in the pathogenesis of NEC, and how probiotic and antibiotic therapy may be used to prevent and/or treat NEC and its sequelae.
Collapse
Affiliation(s)
- Jennifer Duchon
- Division of Newborn Medicine, Jack and Lucy Department of Pediatrics, Icahn School of Medicine at Mount Sinai, 1000 10th Avenue, New York, NY 10019, USA
| | - Maria E Barbian
- Division of Neonatal-Perinatal Medicine, Emory University School of Medicine and Children's Healthcare of Atlanta, 2015 Uppergate Drive Northeast, 3rd Floor, Atlanta, GA 30322, USA
| | - Patricia W Denning
- Division of Neonatal-Perinatal Medicine, Emory University School of Medicine, Children's Healthcare of Atlanta, Emory University Hospital Midtown, 550 Peachtree Street, 3rd Floor MOT, Atlanta, GA 30308, USA.
| |
Collapse
|
124
|
Haque M, Koski KG, Scott ME. A gastrointestinal nematode in pregnant and lactating mice alters maternal and neonatal microbiomes. Int J Parasitol 2021; 51:945-957. [PMID: 34081970 DOI: 10.1016/j.ijpara.2021.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 11/29/2022]
Abstract
The maternal microbiome is understood to be the principal source of the neonatal microbiome but the consequences of intestinal nematodes on pregnant and lactating mothers and implications for the neonatal microbiome are unknown. Using pregnant CD1 mice infected with Heligmosomoides bakeri, we investigated the microbiomes in maternal tissues (intestine, vagina, and milk) and in the neonatal stomach using MiSeq sequencing of bacterial 16S rRNA genes. Our first hypothesis was that maternal nematode infection altered the maternal intestinal, vaginal, and milk microbiomes and associated metabolic pathways. Maternal nematode infection was associated with increased beta-diversity and abundance of fermenting bacteria as well as Lactobacillus in the maternal caecum 2 days after parturition, together with down-regulated carbohydrate, amino acid and vitamin biosynthesis pathways. Maternal nematode infection did not alter the vaginal or milk microbiomes. Our second hypothesis was that maternal infection would shape colonization of the neonatal microbiome. Although the pup stomach microbiome was similar to that of the maternal vaginal microbiome, pups of infected dams had higher beta-diversity at day 2, and a dramatic expansion in the abundance of Lactobacillus between days 2 and 7 compared with pups nursing uninfected dams. Our third hypothesis that maternal nematode infection altered the composition of neonatal microbiomes was confirmed as we observed up-regulation of several putatively beneficial microbial pathways associated with synthesis of essential and branched-chain amino acids, vitamins, and short-chain fatty acids. We believe this is the first study to show that a nematode living in the maternal intestine is associated with altered composition and function of the neonatal microbiome.
Collapse
Affiliation(s)
- Manjurul Haque
- Institute of Parasitology, McGill University (Macdonald Campus), 21 111 Lakeshore Road, Ste-Anne-de-Bellevue, Québec H9X 3V9, Canada
| | - Kristine G Koski
- School of Human Nutrition, McGill University (Macdonald Campus), 21 111 Lakeshore Road, Ste-Anne-de-Bellevue, Québec H9X 3V9, Canada
| | - Marilyn E Scott
- Institute of Parasitology, McGill University (Macdonald Campus), 21 111 Lakeshore Road, Ste-Anne-de-Bellevue, Québec H9X 3V9, Canada.
| |
Collapse
|
125
|
Deng L, Tay H, Peng G, Lee JWJ, Tan KSW. Prevalence and molecular subtyping of Blastocystis in patients with Clostridium difficile infection, Singapore. Parasit Vectors 2021; 14:277. [PMID: 34030712 PMCID: PMC8142501 DOI: 10.1186/s13071-021-04749-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/26/2021] [Indexed: 02/04/2023] Open
Abstract
Background Blastocystis is a common anaerobic colonic protist in humans with controversial pathogenicity. Clostridium difficile (C. difficile) is the commonest cause of infectious diarrhea in healthcare settings. The prevalence and subtype (ST) characteristics of Blastocystis in patients with C. difficile infection (CDI) are rarely documented. Therefore, the present study was conducted to investigate the prevalence and subtype characteristics of Blastocystis in patients with suspicion of CDI in Singapore. Methods Fecal samples were collected from 248 patients presenting with suspected CDI from a single tertiary hospital in Singapore. C. difficile was diagnosed through positive glutamate dehydrogenase (GDH) with or without toxin A/B using enzyme immunoassay methods. The prevalence and subtype genetic characteristics of Blastocystis were determined by polymerase chain reaction (PCR) amplification and analysis of the barcode region of the SSU rRNA gene. Results The proportion of C. difficile in patients with healthcare-associated diarrhea in this study was 44% (109/248). Among the 109 C. difficile-positive patients, 59 (54.1%, 59/109) tested positive for toxigenic C. difficile, which was considered CDI. Based on the sequence analyses of the barcode region of the SSU rRNA gene, 10.1% (25/248) of the patients were found to be Blastocystis-positive, and three subtypes were identified: ST7 (64%, 16/25), ST1 (20%, 5/25), and ST3 (16%, 4/25). Remarkably, we found five patients with Blastocystis and C. difficile coinfection, and further subtype analysis showed two with ST7, two with ST1, and one with ST3. Conclusions To the best of our knowledge, this is the first study to investigate the subtype distributions of Blastocystis in patients with CDI in Singapore. We found ST7 to be the predominant subtype in diarrheal patients. The pathogenicity of ST7 has been strongly suggested in previous in vitro and mouse model experiments, further confirming its potential pathogenicity to humans. ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04749-8.
Collapse
Affiliation(s)
- Lei Deng
- Laboratory of Molecular and Cellular Parasitology, Healthy Longevity Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore.,The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, 611130, Chengdu, Sichuan, People's Republic of China
| | - Huiyi Tay
- Laboratory of Molecular and Cellular Parasitology, Healthy Longevity Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
| | - Guangneng Peng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, 611130, Chengdu, Sichuan, People's Republic of China
| | - Jonathan W J Lee
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.,Department of Gastroenterology and Hepatology, National University Health System, Singapore, 119074, Singapore
| | - Kevin S W Tan
- Laboratory of Molecular and Cellular Parasitology, Healthy Longevity Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore.
| |
Collapse
|
126
|
Guittar J, Koffel T, Shade A, Klausmeier CA, Litchman E. Resource Competition and Host Feedbacks Underlie Regime Shifts in Gut Microbiota. Am Nat 2021; 198:1-12. [PMID: 34143726 DOI: 10.1086/714527] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractThe spread of an enteric pathogen in the human gut depends on many interacting factors, including pathogen exposure, diet, host gut environment, and host microbiota, but how these factors jointly influence infection outcomes remains poorly characterized. Here we develop a model of host-mediated resource competition between mutualistic and pathogenic taxa in the gut that aims to explain why similar hosts, exposed to the same pathogen, can have such different infection outcomes. Our model successfully reproduces several empirically observed phenomena related to transitions between healthy and infected states, including (1) the nonlinear relationship between pathogen inoculum size and infection persistence, (2) the elevated risk of chronic infection during or after treatment with broad-spectrum antibiotics, (3) the resolution of gut dysbiosis with fecal microbiota transplants, and (4) the potential protection from infection conferred by probiotics. We then use the model to explore how host-mediated interventions-namely, shifts in the supply rates of electron donors (e.g., dietary fiber) and respiratory electron acceptors (e.g., oxygen)-can potentially be used to direct gut community assembly. Our study demonstrates how resource competition and ecological feedbacks between the host and the gut microbiota can be critical determinants of human health outcomes. We identify several testable model predictions ready for experimental validation.
Collapse
|
127
|
Clearance of Clostridioides difficile Colonization Is Associated with Antibiotic-Specific Bacterial Changes. mSphere 2021; 6:6/3/e01238-20. [PMID: 33952668 PMCID: PMC8103992 DOI: 10.1128/msphere.01238-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The community of microorganisms, or microbiota, in our intestines prevents pathogens like C. difficile from colonizing and causing infection. However, antibiotics can disturb the gut microbiota, which allows C. difficile to colonize. C. difficile infections (CDI) are primarily treated with antibiotics, which frequently leads to recurrent infections because the microbiota has not yet returned to a resistant state. The gut bacterial community prevents many pathogens from colonizing the intestine. Previous studies have associated specific bacteria with clearing Clostridioides difficile colonization across different community perturbations. However, those bacteria alone have been unable to clear C. difficile colonization. To elucidate the changes necessary to clear colonization, we compared differences in bacterial abundance between communities able and unable to clear C. difficile colonization. We treated mice with titrated doses of antibiotics prior to C. difficile challenge, resulting in no colonization, colonization and clearance, or persistent colonization. Previously, we observed that clindamycin-treated mice were susceptible to colonization but spontaneously cleared C. difficile. Therefore, we investigated whether other antibiotics would show the same result. We found that reduced doses of cefoperazone and streptomycin permitted colonization and clearance of C. difficile. Mice that cleared colonization had antibiotic-specific community changes and predicted interactions with C. difficile. Clindamycin treatment led to a bloom in populations related to Enterobacteriaceae. Clearance of C. difficile was concurrent with the reduction of those blooming populations and the restoration of community members related to the Porphyromonadaceae and Bacteroides. Cefoperazone created a susceptible community characterized by drastic reductions in the community diversity and interactions and a sustained increase in the abundance of many facultative anaerobes. Lastly, clearance in streptomycin-treated mice was associated with the recovery of multiple members of the Porphyromonadaceae, with little overlap in the specific Porphyromonadaceae observed in the clindamycin treatment. Further elucidation of how C. difficile colonization is cleared from different gut bacterial communities will improve C. difficile infection treatments. IMPORTANCE The community of microorganisms, or microbiota, in our intestines prevents pathogens like C. difficile from colonizing and causing infection. However, antibiotics can disturb the gut microbiota, which allows C. difficile to colonize. C. difficile infections (CDI) are primarily treated with antibiotics, which frequently leads to recurrent infections because the microbiota has not yet returned to a resistant state. The recurrent infection cycle often ends when the fecal microbiota from a presumed resistant person is transplanted into the susceptible person. Although this treatment is highly effective, we do not understand the mechanism. We hope to improve the treatment of CDI through elucidating how the bacterial community eliminates CDI. We found that C. difficile colonized susceptible mice but was spontaneously eliminated in an antibiotic treatment-specific manner. These data indicate that each community had different requirements for clearing colonization. Understanding how different communities clear colonization will reveal targets to improve CDI treatments.
Collapse
|
128
|
Seghesio E, De Geyter C, Vandenplas Y. Probiotics in the Prevention and Treatment of Necrotizing Enterocolitis. Pediatr Gastroenterol Hepatol Nutr 2021; 24:245-255. [PMID: 34046327 PMCID: PMC8128781 DOI: 10.5223/pghn.2021.24.3.245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/13/2021] [Accepted: 03/24/2021] [Indexed: 12/29/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is a disease with high morbidity and mortality that occurs mainly in premature born infants. The pathophysiologic mechanisms indicate that gastrointestinal dysbiosis is a major risk factor. We searched for relevant articles published in PubMed and Google Scholar in the English language up to October 2020. Articles were extracted using subject headings and keywords of interest to the topic. Interesting references in included articles were also considered. Network meta-analysis suggests the preventive efficacy of Bifidobacterium and Lactobacillus spp., but even more for mixtures of Bifidobacterium, Streptococcus, and Bifidobacterium, and Streptococcus spp. However, studies comparing face-to-face different strains are lacking. Moreover, differences in inclusion criteria, dosage strains, and primary outcomes in most trials are major obstacles to providing evidence-based conclusions. Although adverse effects have not been reported in clinical trials, case series of adverse outcomes, mainly septicemia, have been published. Consequently, systematic administration of probiotic bacteria to prevent NEC is still debated in literature. The risk-benefit ratio depends on the incidence of NEC in a neonatal intensive care unit, and evidence has shown that preventive measures excluding probiotic administration can result in a decrease in NEC.
Collapse
Affiliation(s)
- Eleonora Seghesio
- KidZ Health Castle, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Charlotte De Geyter
- KidZ Health Castle, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yvan Vandenplas
- KidZ Health Castle, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
129
|
Monnoyer R, Haugum K, Lautridou J, Flatberg A, Hjelde A, Eftedal I. Shifts in the Oral Microbiota During a Four-Week Commercial Saturation Dive to 200 Meters. Front Physiol 2021; 12:669355. [PMID: 33986696 PMCID: PMC8110926 DOI: 10.3389/fphys.2021.669355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/06/2021] [Indexed: 01/04/2023] Open
Abstract
During commercial saturation diving, divers live and work under hyperbaric and hyperoxic conditions. The myriads of bacteria that live in and on the human body must adjust to the resultant hyperbaric stress. In this study, we examined the shifts in bacterial content in the oral cavity of saturation divers, using a metagenomic approach to determine the diversity in the composition of bacterial phyla and genera in saliva from 23 male divers before, during, and immediately after 4 weeks of commercial heliox saturation diving to a working depth of circa 200 m. We found that the bacterial diversity fell during saturation, and there was a change in bacterial composition; with a decrease at the phylum level of obligate anaerobe Fusobacteria, and an increase of the relative abundance of Actinobacteria and Proteobacteria. At the genus level, Fusobacterium, Leptotrichia, Oribacterium, and Veillonella decreased, whereas Neisseria and Rothia increased. However, at the end of the decompression, both the diversity and composition of the microbiota returned to pre-dive values. The results indicate that the hyperoxic conditions during saturation may suppress the activity of anaerobes, leaving a niche for other bacteria to fill. The transient nature of the change could imply that hyperbaric heliox saturation has no lasting effect on the oral microbiota, but it is unknown whether or how a shift in oral bacterial diversity and abundance during saturation might impact the divers’ health or well-being.
Collapse
Affiliation(s)
- Roxane Monnoyer
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Kjersti Haugum
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway.,Department of Medical Microbiology, Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Jacky Lautridou
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Arnar Flatberg
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Astrid Hjelde
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Ingrid Eftedal
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway.,Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway
| |
Collapse
|
130
|
Fang J, Wang H, Xue Z, Cheng Y, Zhang X. PPARγ: The Central Mucus Barrier Coordinator in Ulcerative Colitis. Inflamm Bowel Dis 2021; 27:732-741. [PMID: 33772551 DOI: 10.1093/ibd/izaa273] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Indexed: 12/16/2022]
Abstract
Ulcerative colitis (UC) is an idiopathic, long-term inflammatory disorder of the colon, characterized by a continuous remitting and relapsing course. The intestinal mucus barrier is the first line at the interface between the host and microbiota and acts to protect intestinal epithelial cells from invasion. Data from patients and animal studies have shown that an impaired mucus barrier is closely related to the severity of UC. Depletion of the mucus barrier is not just the strongest but is also the only independent risk factor predicting relapse in patients with UC. Peroxisome proliferator-activated receptor gamma (PPARγ), a nuclear transcription regulator, is involved in the regulation of inflammatory cytokine expression. It is also known to promote mucus secretion under pathological conditions to expel pathogenic bacteria or toxins. More important, PPARγ has been shown to affect host-microbiota interactions by modulating the energy metabolism of colonocytes and the oxygen availability of the intestinal microbiome. It is well known that gut microbiota homeostasis is essential for butyrate generation by the commensal bacteria to supply energy resources for colonocytes. Therefore, it can be speculated that PPARγ, as a central coordinator of the mucus barrier, may be a promising target for the development of effective agents to combat UC.
Collapse
Affiliation(s)
- Jian Fang
- Department of Preventive Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang Province, People's Republic of China.,College of Medicine, Shaoxing University, Shaoxing, Zhejiang Province, People's Republic of China
| | - Hui Wang
- Department of Colorectal Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang Province, People's Republic of China
| | - Zhe Xue
- Department of Preventive Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang Province, People's Republic of China
| | - Yinyin Cheng
- Department of Preventive Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang Province, People's Republic of China
| | - Xiaohong Zhang
- Department of Preventive Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang Province, People's Republic of China
| |
Collapse
|
131
|
Wang Z, Chen J, Chen Z, Xie L, Wang W. Clinical effects of ursodeoxycholic acid on patients with ulcerative colitis may improve via the regulation of IL-23-IL-17 axis and the changes of the proportion of intestinal microflora. Saudi J Gastroenterol 2021; 27:149-157. [PMID: 33835051 PMCID: PMC8265401 DOI: 10.4103/sjg.sjg_462_20] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND We aimed to evaluate the therapeutic effect of additional ursodeoxycholic acid (UDCA) with mesalazine, compared to mesalazine alone in patients with ulcerative colitis (UC). The mechanism was evaluated by monitoring the changes of IL-23-IL-17 axis and the intestinal microflora. METHODS In this prospective, single center study, patients with UC were randomly assigned to the Mesalazine group (n=20) or the UDCA + Mesalazine group (n=20). Mayo score and Inflammatory Bowel Disease Questionnaire (IBDQ), and fecal samples for 16S rRNA sequencing and blood samples for IL-23 and IL-17 ELISA were collected for analysis. RESULTS Mayo scores and IBDQ score of the UDCA + Mesalazine group were significantly better than those of the Mesalazine group (P = 0.015 and P < 0.001, respectively). At post-treatment week 4, IL-23 and IL-17 levels were significantly lower in the UDCA + Mesalazine group compared to those in the Mesalazine group (both P < 0.038). In patients with UC after treatment, Firmicutes in the UDCA + Mesalazine group was higher than those in the Mesalazine group (P < 0.001). The UDCA + Mesalazine group showed lower percentage of Proteobacteria compared to those in the Mesalazine group (P < 0.001). CONCLUSION Additional UDCA could provide better therapeutic effects than mesalazine alone, possibly due to the change of IL-23 and IL-17 and the proportional distribution of intestinal microflora.
Collapse
Affiliation(s)
- Zhengjun Wang
- Department of Gastroenterology, The 900th Hospital of Joint Logistic Support Force, PLA, Fujian Medical University Fuzong Clinical College, Fuzhou, China
| | - Jinhua Chen
- Department of Medical Care, Union Hospital of Fujian Medical University, Fuzhou, China
| | - Zhiping Chen
- Department of Gastroenterology, The 900th Hospital of Joint Logistic Support Force, PLA, Fujian Medical University Fuzong Clinical College, Fuzhou, China
| | - Longke Xie
- Department of Gastroenterology, The 900th Hospital of Joint Logistic Support Force, PLA, Fujian Medical University Fuzong Clinical College, Fuzhou, China
| | - Wen Wang
- Department of Gastroenterology, The 900th Hospital of Joint Logistic Support Force, PLA, Fujian Medical University Fuzong Clinical College, Fuzhou, China,Address for correspondence: Dr. Wen Wang, 156 West 2nd Ring Road North, Fuzhou 350 025, China. E-mail:
| |
Collapse
|
132
|
Xu B, Yan Y, Yin B, Zhang L, Qin W, Niu Y, Tang Y, Zhou S, Yan X, Ma L. Dietary glycyl-glutamine supplementation ameliorates intestinal integrity, inflammatory response, and oxidative status in association with the gut microbiota in LPS-challenged piglets. Food Funct 2021; 12:3539-3551. [PMID: 33900316 DOI: 10.1039/d0fo03080e] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During weaning transition, mammalian newborns suffer severe enteric infections and thus induced gut microbiota dysbiosis, which in turn aggravates enteric disorder. The synthetic dipeptide glycyl-glutamine (GlyGln) has been used as a diet supplement to improve the weaning transition of newborns. However, the effect of dietary GlyGln supplementation on the gut microbiota of piglets with enteric infection remains unclear. Here, weaned piglets received a basal diet or a basal diet supplemented with 0.25% GlyGln for 3 weeks. Five piglets in each group received an intraperitoneal injection of lipopolysaccharide (LPS) (100 μg per kg BW) (LPS and GlyGln + LPS groups) and meanwhile five piglets in a control group received an intraperitoneal injection of saline (Ctrl group). The results showed that dietary GlyGln supplementation improved the LPS induced inflammation response and damage to the ileum morphology by increasing interleukin 10, tight junction proteins, villus height, and the ratio villus height/crypt depth, but decreasing the crypt depth. For the oxidative status, dietary GlyGln supplementation increased the ileal superoxide dismutase and meanwhile reduced the malondialdehyde and nitric oxide synthase activity (NOS) (total NOS and inducible NOS), compared with that in the LPS group. LPS challenge reduced the diversity of gut microbiota and enriched the facultative anaerobic Escherichia coli. The GlyGln restored alpha diversity and the structure of the gut microbiota by enriching obligate anaerobes and short-chain fatty acid (SCFA)-producing bacteria, including Clostridium, Lachnospira, Phascolarctobacterium, Roseburia, Lachnospiraceae, and Synergistetes. GlyGln enriched the gut microbiota function of carbohydrate metabolism and elevated the ileal SCFA concentrations of propionic acid and butyric acid that had been decreased by the LPS challenge. The beneficial effects of dietary GlyGln supplementation are closely associated with its enriched bacteria and SCFAs. Taken together, dietary GlyGln supplementation improved the gut microbiota dysbiosis induced by LPS challenge and enriched obligate anaerobes and SCFA-producing bacteria, which contributed to the amelioration of intestinal integrity, inflammatory responses, and oxidative status.
Collapse
Affiliation(s)
- Baoyang Xu
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
The Role of Enterobacteriaceae in Gut Microbiota Dysbiosis in Inflammatory Bowel Diseases. Microorganisms 2021; 9:microorganisms9040697. [PMID: 33801755 PMCID: PMC8066304 DOI: 10.3390/microorganisms9040697] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel diseases (IBDs) are a group of chronic gastrointestinal inflammatory diseases with unknown etiology. There is a combination of well documented factors in their pathogenesis, including intestinal microbiota dysbiosis. The symbiotic microbiota plays important functions in the host, and the loss of beneficial microbes could favor the expansion of microbial pathobionts. In particular, the bloom of potentially harmful Proteobacteria, especially Enterobacteriaceae, has been described as enhancing the inflammatory response, as observed in IBDs. Herein, we seek to investigate the contribution of Enterobacteriaceae to IBD pathogenesis whilst considering the continuous expansion of the literature and data. Despite the mechanism of their expansion still remaining unclear, their expansion could be correlated with the increase in nitrate and oxygen levels in the inflamed gut and with the bile acid dysmetabolism described in IBD patients. Furthermore, in several Enterobacteriaceae studies conducted at a species level, it has been suggested that some adherent-invasive Escherichia coli (AIEC) play an important role in IBD pathogenesis. Overall, this review highlights the pivotal role played by Enterobacteriaceae in gut dysbiosis associated with IBD pathogenesis and progression.
Collapse
|
134
|
Abstract
The human microbiome encodes a second genome that dwarfs the genetic capacity of the host. Microbiota-derived small molecules can directly target human cells and their receptors or indirectly modulate host responses through functional interactions with other microbes in their ecological niche. Their biochemical complexity has profound implications for nutrition, immune system development, disease progression, and drug metabolism, as well as the variation in these processes that exists between individuals. While the species composition of the human microbiome has been deeply explored, detailed mechanistic studies linking specific microbial molecules to host phenotypes are still nascent. In this review, we discuss challenges in decoding these interaction networks, which require interdisciplinary approaches that combine chemical biology, microbiology, immunology, genetics, analytical chemistry, bioinformatics, and synthetic biology. We highlight important classes of microbiota-derived small molecules and notable examples. An understanding of these molecular mechanisms is central to realizing the potential of precision microbiome editing in health, disease, and therapeutic responses.
Collapse
Affiliation(s)
- Emilee E Shine
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06536, USA; .,Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, USA.,Current affiliation: Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Jason M Crawford
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06536, USA; .,Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, USA.,Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
135
|
Pilla R, Suchodolski JS. The Gut Microbiome of Dogs and Cats, and the Influence of Diet. Vet Clin North Am Small Anim Pract 2021; 51:605-621. [PMID: 33653538 DOI: 10.1016/j.cvsm.2021.01.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The gut microbiome is a functional organ, and responds metabolically to the nutrient composition within the diet. Fiber, starch, and protein content have strong effects on the microbiome composition, and changes in these nutrient profiles can induce rapid shifts. Due to functional redundancy of bacteria within microbial communities, important metabolites for health can be produced by different bacteria. Microbiome alterations associated with disease are of greater magnitude than those seen in healthy dogs on different diets. Dietary changes, addition of prebiotics, and probiotics, can be beneficial to improve microbial diversity and to normalize metabolite production in diseased dogs.
Collapse
Affiliation(s)
- Rachel Pilla
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, Texas A&M College of Veterinary Medicine & Biomedical Sciences, 4474 TAMU, College Station, TX 77843-4474, USA.
| | - Jan S Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, Texas A&M College of Veterinary Medicine & Biomedical Sciences, 4474 TAMU, College Station, TX 77843-4474, USA
| |
Collapse
|
136
|
Leeming ER, Louca P, Gibson R, Menni C, Spector TD, Le Roy CI. The complexities of the diet-microbiome relationship: advances and perspectives. Genome Med 2021; 13:10. [PMID: 33472701 PMCID: PMC7819159 DOI: 10.1186/s13073-020-00813-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
Personalised dietary modulation of the gut microbiota may be key to disease management. Current investigations provide a broad understanding of the impact of diet on the composition and activity of the gut microbiota, yet detailed knowledge in applying diet as an actionable tool remains limited. Further to the relative novelty of the field, approaches are yet to be standardised and extremely heterogeneous research outcomes have ensued. This may be related to confounders associated with complexities in capturing an accurate representation of both diet and the gut microbiota. This review discusses the intricacies and current methodologies of diet-microbial relations, the implications and limitations of these investigative approaches, and future considerations that may assist in accelerating applications. New investigations should consider improved collection of dietary data, further characterisation of mechanistic interactions, and an increased focus on -omic technologies such as metabolomics to describe the bacterial and metabolic activity of food degradation, together with its crosstalk with the host. Furthermore, clinical evidence with health outcomes is required before therapeutic dietary strategies for microbial amelioration can be made. The potential to reach detailed understanding of diet-microbiota relations may depend on re-evaluation, progression, and unification of research methodologies, which consider the complexities of these interactions.
Collapse
Affiliation(s)
- Emily R Leeming
- The Department of Twin Research, St Thomas' Hospital, King's College London, 3-4th Floor South Wing Block D, Westminster Bridge Road, London, SE1 7EH, UK
| | - Panayiotis Louca
- The Department of Twin Research, St Thomas' Hospital, King's College London, 3-4th Floor South Wing Block D, Westminster Bridge Road, London, SE1 7EH, UK
| | - Rachel Gibson
- Department of Nutritional Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Cristina Menni
- The Department of Twin Research, St Thomas' Hospital, King's College London, 3-4th Floor South Wing Block D, Westminster Bridge Road, London, SE1 7EH, UK
| | - Tim D Spector
- The Department of Twin Research, St Thomas' Hospital, King's College London, 3-4th Floor South Wing Block D, Westminster Bridge Road, London, SE1 7EH, UK.
| | - Caroline I Le Roy
- The Department of Twin Research, St Thomas' Hospital, King's College London, 3-4th Floor South Wing Block D, Westminster Bridge Road, London, SE1 7EH, UK.
| |
Collapse
|
137
|
Laursen MF, Bahl MI, Licht TR. Settlers of our inner surface - Factors shaping the gut microbiota from birth to toddlerhood. FEMS Microbiol Rev 2021; 45:6081092. [PMID: 33428723 PMCID: PMC8371275 DOI: 10.1093/femsre/fuab001] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/08/2021] [Indexed: 02/06/2023] Open
Abstract
During the first 3 years of life, the microbial ecosystem within the human gut undergoes a process that is unlike what happens in this ecosystem at any other time of our life. This period in time is considered a highly important developmental window, where the gut microbiota is much less resilient and much more responsive to external and environmental factors than seen in the adult gut. While advanced bioinformatics and clinical correlation studies have received extensive focus within studies of the human microbiome, basic microbial growth physiology has attracted much less attention, although it plays a pivotal role to understand the developing gut microbiota during early life. In this review, we will thus take a microbial ecology perspective on the analysis of factors that influence the temporal development of the infant gut microbiota. Such factors include sources of microbes that seed the intestinal environment, physico-chemical (abiotic) conditions influencing microbial growth and the availability of nutrients needed by the intestinal microbes.
Collapse
Affiliation(s)
| | - Martin Iain Bahl
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby
| | - Tine Rask Licht
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby
| |
Collapse
|
138
|
Design of Catalase Monolithic Tablets for Intestinal Targeted Delivery. Pharmaceutics 2021; 13:pharmaceutics13010069. [PMID: 33430270 PMCID: PMC7825700 DOI: 10.3390/pharmaceutics13010069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 01/29/2023] Open
Abstract
Several studies confirmed a correlation between elevated hydrogen peroxide (H2O2) levels in patients with intestinal bowel diseases (IBD) and the negative effects caused by its presence. The objective of this study was to explore the potential use of catalase (CAT) to diminish the level of H2O2 and its deleterious action on intestinal mucosa. Oral dosage forms of a CAT bioactive agent targeted to the intestines were designed and tested in various simulated gastric and intestinal media. Monolithic tablets (30% loading) were prepared using commercial CarboxyMethylCellulose (CMC) or synthesized CarboxyMethylStarch (CMS) and TriMethylAmineCarboxyMethylStarch (TMACMS) as matrix-forming excipients. For starch derivatives, the presence of the ionic groups (carboxymethyl and trimethylamine) was validated by spectral analysis. In vitro studies have shown that tablets formulated with TMACMS and 30% CAT resisted the acidity of the simulated gastric fluid and gradually released the enzyme into the simulated intestinal fluid. The investigation of the CAT release mechanism revealed the role of anionic and cationic groups of polymeric excipients and their involvement in the modulation of the CAT dissolution profile. The proposed drug delivery system can be considered an efficient solution to target CAT release in the intestine and contribute to the reduction of H2O2 associated with intestinal inflammation.
Collapse
|
139
|
Daniel N, Lécuyer E, Chassaing B. Host/microbiota interactions in health and diseases-Time for mucosal microbiology! Mucosal Immunol 2021; 14:1006-1016. [PMID: 33772148 PMCID: PMC8379076 DOI: 10.1038/s41385-021-00383-w] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 02/04/2023]
Abstract
During the last 20 years, a new field of research delineating the importance of the microbiota in health and diseases has emerged. Inappropriate host-microbiota interactions have been shown to trigger a wide range of chronic inflammatory diseases, and defining the exact mechanisms behind perturbations of such relationship, as well as ways by which these disturbances can lead to disease states, both remain to be fully elucidated. The mucosa-associated microbiota constitutes a recently studied microbial population closely linked with the promotion of chronic intestinal inflammation and associated disease states. This review will highlight seminal works that have brought into light the importance of the mucosa-associated microbiota in health and diseases, emphasizing the challenges and promises of expending the mucosal microbiology field of research.
Collapse
Affiliation(s)
- Noëmie Daniel
- grid.508487.60000 0004 7885 7602INSERM U1016, team “Mucosal microbiota in chronic inflammatory diseases”, CNRS UMR 8104, Université de Paris, Paris, France
| | - Emelyne Lécuyer
- grid.428999.70000 0001 2353 6535Microenvironment & Immunity Unit, Pasteur Institute, INSERM U1224, Paris, France
| | - Benoit Chassaing
- grid.508487.60000 0004 7885 7602INSERM U1016, team “Mucosal microbiota in chronic inflammatory diseases”, CNRS UMR 8104, Université de Paris, Paris, France
| |
Collapse
|
140
|
The lung-gut axis during viral respiratory infections: the impact of gut dysbiosis on secondary disease outcomes. Mucosal Immunol 2021; 14:296-304. [PMID: 33500564 PMCID: PMC7835650 DOI: 10.1038/s41385-020-00361-8] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 02/08/2023]
Abstract
Bacteria that colonize the human gastrointestinal tract are essential for good health. The gut microbiota has a critical role in pulmonary immunity and host's defense against viral respiratory infections. The gut microbiota's composition and function can be profoundly affected in many disease settings, including acute infections, and these changes can aggravate the severity of the disease. Here, we discuss mechanisms by which the gut microbiota arms the lung to control viral respiratory infections. We summarize the impact of viral respiratory infections on the gut microbiota and discuss the potential mechanisms leading to alterations of gut microbiota's composition and functions. We also discuss the effects of gut microbial imbalance on disease outcomes, including gastrointestinal disorders and secondary bacterial infections. Lastly, we discuss the potential role of the lung-gut axis in coronavirus disease 2019.
Collapse
|
141
|
Abstract
A balanced gut microbiota contributes to health, but the mechanisms maintaining homeostasis remain elusive. Microbiota assembly during infancy is governed by competition between species and by environmental factors, termed habitat filters, that determine the range of successful traits within the microbial community. These habitat filters include the diet, host-derived resources, and microbiota-derived metabolites, such as short-chain fatty acids. Once the microbiota has matured, competition and habitat filtering prevent engraftment of new microbes, thereby providing protection against opportunistic infections. Competition with endogenous Enterobacterales, habitat filtering by short-chain fatty acids, and a host-derived habitat filter, epithelial hypoxia, also contribute to colonization resistance against Salmonella serovars. However, at a high challenge dose, these frank pathogens can overcome colonization resistance by using their virulence factors to trigger intestinal inflammation. In turn, inflammation increases the luminal availability of host-derived resources, such as oxygen, nitrate, tetrathionate, and lactate, thereby creating a state of abnormal habitat filtering that enables the pathogen to overcome growth inhibition by short-chain fatty acids. Thus, studying the process of ecosystem invasion by Salmonella serovars clarifies that colonization resistance can become weakened by disrupting host-mediated habitat filtering. This insight is relevant for understanding how inflammation triggers dysbiosis linked to noncommunicable diseases, conditions in which endogenous Enterobacterales expand in the fecal microbiota using some of the same growth-limiting resources required by Salmonella serovars for ecosystem invasion. In essence, ecosystem invasion by Salmonella serovars suggests that homeostasis and dysbiosis simply represent states where competition and habitat filtering are normal or abnormal, respectively.
Collapse
|
142
|
Hamilton AL, Kamm MA, De Cruz P, Wright EK, Feng H, Wagner J, Sung JJY, Kirkwood CD, Inouye M, Teo SM. Luminal microbiota related to Crohn's disease recurrence after surgery. Gut Microbes 2020; 11:1713-1728. [PMID: 32564657 PMCID: PMC7524166 DOI: 10.1080/19490976.2020.1778262] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Microbial factors are likely to be involved in the recurrence of Crohn's disease (CD) after bowel resection. We investigated the luminal microbiota before and longitudinally after surgery, in relation to disease recurrence, using 16S metagenomic techniques. METHODS In the prospective Post-Operative Crohn's Endoscopic Recurrence (POCER) study, fecal samples were obtained before surgery and 6, 12, and 18 months after surgery from 130 CD patients. Endoscopy was undertaken to detect disease recurrence, defined as Rutgeerts score ≥i2, at 6 months in two-thirds of patients and all patients at 18 months after surgery. The V2 region of the 16S rRNA gene was sequenced using Illumina MiSeq. Cluster analysis was performed at family level, assessing microbiome community differences between patients with and without recurrence. RESULTS Six microbial cluster groups were identified. The cluster associated with maintenance of remission was enriched for the Lachnospiraceae family [adjusted OR 0.47 (0.27-0.82), P = .007]. The OTU diversity of Lachnospiraceae within this cluster was significantly greater than in all other clusters. The cluster enriched for Enterobacteriaceae was associated with an increased risk of disease recurrence [adjusted OR 6.35 (1.24-32.44), P = .026]. OTU diversity of Enterobacteriaceae within this cluster was significantly greater than in other clusters. CONCLUSIONS Luminal bacterial communities are associated with protection from, and the occurrence of, Crohn's disease recurrence after surgery. Recurrence may relate to a higher abundance of facultatively anaerobic pathobionts from the Enterobacteriaceae family. The ecologic change of depleted Lachnospiraceae, a genus of butyrate-producing bacteria, may permit expansion of Enterobacteriaceae through luminal environmental perturbation.
Collapse
Affiliation(s)
- Amy L. Hamilton
- Department of Gastroenterology, St Vincent’s Hospital and Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Michael A. Kamm
- Department of Gastroenterology, St Vincent’s Hospital and Department of Medicine, University of Melbourne, Melbourne, Australia,CONTACT Michael A. Kamm St Vincent’s Hospital, Melbourne, Australia
| | - Peter De Cruz
- Department of Gastroenterology, St Vincent’s Hospital and Department of Medicine, University of Melbourne, Melbourne, Australia,Department of Gastroenterology, Austin Health, Melbourne, Australia
| | - Emily K. Wright
- Department of Gastroenterology, St Vincent’s Hospital and Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Hai Feng
- The Chinese University of Hong Kong, Hong Kong, China,Enteric Virus Group, Murdoch Children’s Research Institute, Melbourne, Australia,School of Pharmacy, Harbin Medical University, Harbin, China
| | - Josef Wagner
- Enteric Virus Group, Murdoch Children’s Research Institute, Melbourne, Australia,Peter Doherty Institute for Infection and Immunity, Royal Melbourne Hospital, Melbourne, Australia
| | | | - Carl D. Kirkwood
- Enteric Virus Group, Murdoch Children’s Research Institute, Melbourne, Australia,Enteric and Diarrheal Diseases Global Health, Bill and Melinda Gates Foundation, SeattleUSA, WA, USA
| | - Michael Inouye
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Australia and Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Shu-Mei Teo
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Australia and Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| |
Collapse
|
143
|
Hartl K, Sigal M. Microbe-Driven Genotoxicity in Gastrointestinal Carcinogenesis. Int J Mol Sci 2020; 21:E7439. [PMID: 33050171 PMCID: PMC7587957 DOI: 10.3390/ijms21207439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/30/2020] [Accepted: 10/03/2020] [Indexed: 12/12/2022] Open
Abstract
The intestinal epithelium serves as a barrier to discriminate the outside from the inside and is in constant exchange with the luminal contents, including nutrients and the microbiota. Pathogens have evolved mechanisms to overcome the multiple ways of defense in the mucosa, while several members of the microbiota can exhibit pathogenic features once the healthy barrier integrity of the epithelium is disrupted. This not only leads to symptoms accompanying the acute infection but may also contribute to long-term injuries such as genomic instability, which is linked to mutations and cancer. While for Helicobacter pylori a link between infection and cancer is well established, many other bacteria and their virulence factors have only recently been linked to gastrointestinal malignancies through epidemiological as well as mechanistic studies. This review will focus on those pathogens and members of the microbiota that have been linked to genotoxicity in the context of gastric or colorectal cancer. We will address the mechanisms by which such bacteria establish contact with the gastrointestinal epithelium-either via an existing breach in the barrier or via their own virulence factors as well as the mechanisms by which they interfere with host genomic integrity.
Collapse
Affiliation(s)
- Kimberly Hartl
- Medical Department, Division of Gastroenterology and Hepatology, Charité-Universtitätsmedizin Berlin, 10117 Berlin, Germany;
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| | - Michael Sigal
- Medical Department, Division of Gastroenterology and Hepatology, Charité-Universtitätsmedizin Berlin, 10117 Berlin, Germany;
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| |
Collapse
|
144
|
Endres K. Retinoic Acid and the Gut Microbiota in Alzheimer's Disease: Fighting Back-to-Back? Curr Alzheimer Res 2020; 16:405-417. [PMID: 30907321 DOI: 10.2174/1567205016666190321163705] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND There is growing evidence that the gut microbiota may play an important role in neurodegenerative diseases such as Alzheimer's disease. However, how these commensals influence disease risk and progression still has to be deciphered. OBJECTIVE The objective of this review was to summarize current knowledge on the interplay between gut microbiota and retinoic acid. The latter one represents one of the important micronutrients, which have been correlated to Alzheimer's disease and are used in initial therapeutic intervention studies. METHODS A selective overview of the literature is given with the focus on the function of retinoic acid in the healthy and diseased brain, its metabolism in the gut, and the potential influence that the bioactive ligand may have on microbiota, gut physiology and, Alzheimer's disease. RESULTS Retinoic acid can influence neuronal functionality by means of plasticity but also by neurogenesis and modulating proteostasis. Impaired retinoid-signaling, therefore, might contribute to the development of diseases in the brain. Despite its rather direct impact, retinoic acid also influences other organ systems such as gut by regulating the residing immune cells but also factors such as permeability or commensal microbiota. These in turn can also interfere with retinoid-metabolism and via the gutbrain- axis furthermore with Alzheimer's disease pathology within the brain. CONCLUSION Potentially, it is yet too early to conclude from the few reports on changed microbiota in Alzheimer's disease to a dysfunctional role in retinoid-signaling. However, there are several routes how microbial commensals might affect and might be affected by vitamin A and its derivatives.
Collapse
Affiliation(s)
- Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
145
|
Ashley SL, Sjoding MW, Popova AP, Cui TX, Hoostal MJ, Schmidt TM, Branton WR, Dieterle MG, Falkowski NR, Baker JM, Hinkle KJ, Konopka KE, Erb-Downward JR, Huffnagle GB, Dickson RP. Lung and gut microbiota are altered by hyperoxia and contribute to oxygen-induced lung injury in mice. Sci Transl Med 2020; 12:eaau9959. [PMID: 32801143 PMCID: PMC7732030 DOI: 10.1126/scitranslmed.aau9959] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 06/14/2019] [Accepted: 01/21/2020] [Indexed: 12/27/2022]
Abstract
Inhaled oxygen, although commonly administered to patients with respiratory disease, causes severe lung injury in animals and is associated with poor clinical outcomes in humans. The relationship between hyperoxia, lung and gut microbiota, and lung injury is unknown. Here, we show that hyperoxia conferred a selective relative growth advantage on oxygen-tolerant respiratory microbial species (e.g., Staphylococcus aureus) as demonstrated by an observational study of critically ill patients receiving mechanical ventilation and experiments using neonatal and adult mouse models. During exposure of mice to hyperoxia, both lung and gut bacterial communities were altered, and these communities contributed to oxygen-induced lung injury. Disruption of lung and gut microbiota preceded lung injury, and variation in microbial communities correlated with variation in lung inflammation. Germ-free mice were protected from oxygen-induced lung injury, and systemic antibiotic treatment selectively modulated the severity of oxygen-induced lung injury in conventionally housed animals. These results suggest that inhaled oxygen may alter lung and gut microbial communities and that these communities could contribute to lung injury.
Collapse
Affiliation(s)
- Shanna L Ashley
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Michael W Sjoding
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Center for Integrative Research in Critical Care, Ann Arbor, MI, USA
| | - Antonia P Popova
- Division of Pediatric Pulmonology, Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Tracy X Cui
- Division of Pediatric Pulmonology, Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Matthew J Hoostal
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Thomas M Schmidt
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - William R Branton
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Michael G Dieterle
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Nicole R Falkowski
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jennifer M Baker
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kevin J Hinkle
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kristine E Konopka
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - John R Erb-Downward
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gary B Huffnagle
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, USA
| | - Robert P Dickson
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
- Michigan Center for Integrative Research in Critical Care, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
146
|
Kim JY, Whon TW, Lim MY, Kim YB, Kim N, Kwon MS, Kim J, Lee SH, Choi HJ, Nam IH, Chung WH, Kim JH, Bae JW, Roh SW, Nam YD. The human gut archaeome: identification of diverse haloarchaea in Korean subjects. MICROBIOME 2020; 8:114. [PMID: 32753050 PMCID: PMC7409454 DOI: 10.1186/s40168-020-00894-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/17/2020] [Indexed: 05/11/2023]
Abstract
BACKGROUND Archaea are one of the least-studied members of the gut-dwelling autochthonous microbiota. Few studies have reported the dominance of methanogens in the archaeal microbiome (archaeome) of the human gut, although limited information regarding the diversity and abundance of other archaeal phylotypes is available. RESULTS We surveyed the archaeome of faecal samples collected from 897 East Asian subjects living in South Korea. In total, 42.47% faecal samples were positive for archaeal colonisation; these were subsequently subjected to archaeal 16S rRNA gene deep sequencing and real-time quantitative polymerase chain reaction-based abundance estimation. The mean archaeal relative abundance was 10.24 ± 4.58% of the total bacterial and archaeal abundance. We observed extensive colonisation of haloarchaea (95.54%) in the archaea-positive faecal samples, with 9.63% mean relative abundance in archaeal communities. Haloarchaea were relatively more abundant than methanogens in some samples. The presence of haloarchaea was also verified by fluorescence in situ hybridisation analysis. Owing to large inter-individual variations, we categorised the human gut archaeome into four archaeal enterotypes. CONCLUSIONS The study demonstrated that the human gut archaeome is indigenous, responsive, and functional, expanding our understanding of the archaeal signature in the gut of human individuals. Video Abstract.
Collapse
Affiliation(s)
- Joon Yong Kim
- Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju, 61755 Republic of Korea
| | - Tae Woong Whon
- Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju, 61755 Republic of Korea
| | - Mi Young Lim
- Research Group of Healthcare, Research Division of Food Functionality, Korea Food Research Institute, Jeollabuk-do, 55365 Republic of Korea
| | - Yeon Bee Kim
- Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju, 61755 Republic of Korea
| | - Namhee Kim
- Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju, 61755 Republic of Korea
| | - Min-Sung Kwon
- Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju, 61755 Republic of Korea
| | - Juseok Kim
- Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju, 61755 Republic of Korea
| | - Se Hee Lee
- Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju, 61755 Republic of Korea
| | - Hak-Jong Choi
- Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju, 61755 Republic of Korea
| | - In-Hyun Nam
- Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources, Daejeon, 34132 Republic of Korea
| | - Won-Hyong Chung
- Research Group of Healthcare, Research Division of Food Functionality, Korea Food Research Institute, Jeollabuk-do, 55365 Republic of Korea
| | - Jung-Ha Kim
- Department of Family Medicine, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, 06973 Republic of Korea
| | - Jin-Woo Bae
- Department of Biology, Kyung Hee University, Seoul, 02447 Republic of Korea
| | - Seong Woon Roh
- Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju, 61755 Republic of Korea
| | - Young-Do Nam
- Research Group of Healthcare, Research Division of Food Functionality, Korea Food Research Institute, Jeollabuk-do, 55365 Republic of Korea
| |
Collapse
|
147
|
Bleau N, Bouslama S, Giovenazzo P, Derome N. Dynamics of the Honeybee ( Apis mellifera) Gut Microbiota Throughout the Overwintering Period in Canada. Microorganisms 2020; 8:microorganisms8081146. [PMID: 32751209 PMCID: PMC7464175 DOI: 10.3390/microorganisms8081146] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 12/21/2022] Open
Abstract
Microbial symbionts inhabiting the honeybee gut (i.e., gut microbiota) are essential for food digestion, immunity, and gut protection of their host. The taxonomic composition of the gut microbiota is dynamic throughout the honeybee life cycle and the foraging season. However, it remains unclear how drastic changes occurring in winter, such as food shortage and cold weather, impact gut microbiota dynamics. The objective of this study was to characterize the gut microbiota of the honeybee during the overwintering period in a northern temperate climate in Canada. The microbiota of nine honeybee colonies was characterized by metataxonomy of 16S rDNA between September 2017 and June 2018. Overall, the results showed that microbiota taxonomic composition experienced major compositional shifts in fall and spring. From September to November, Enterobacteriaceae decreased, while Neisseriaceae increased. From April to June, Orbaceae increased, whereas Rhizobiaceae nearly disappeared. Bacterial diversity of the gut microbiota decreased drastically before and after overwintering, but it remained stable during winter. We conclude that the honeybee gut microbiota is likely to be impacted by the important meteorological and dietary changes that take place before and after the overwintering period. Laboratory trials are needed to determine how the observed variations affect the honeybee health.
Collapse
Affiliation(s)
- Naomie Bleau
- Biology Departement, Laval University, 1045 Avenue de la Médecine, Quebec City, QC G1V 0A6, Canada; (S.B.); (P.G.); (N.D.)
- Centre de Recherche en Sciences Animales de Deschambault (CRSAD), 120a Chemin du Roy, Deschambault, QC G0A 1S0, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Laval University, 1030 Avenue de la Médecine, Quebec City, QC G1V 0A6, Canada
- Correspondence:
| | - Sidki Bouslama
- Biology Departement, Laval University, 1045 Avenue de la Médecine, Quebec City, QC G1V 0A6, Canada; (S.B.); (P.G.); (N.D.)
- Centre de Recherche en Sciences Animales de Deschambault (CRSAD), 120a Chemin du Roy, Deschambault, QC G0A 1S0, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Laval University, 1030 Avenue de la Médecine, Quebec City, QC G1V 0A6, Canada
| | - Pierre Giovenazzo
- Biology Departement, Laval University, 1045 Avenue de la Médecine, Quebec City, QC G1V 0A6, Canada; (S.B.); (P.G.); (N.D.)
- Centre de Recherche en Sciences Animales de Deschambault (CRSAD), 120a Chemin du Roy, Deschambault, QC G0A 1S0, Canada
| | - Nicolas Derome
- Biology Departement, Laval University, 1045 Avenue de la Médecine, Quebec City, QC G1V 0A6, Canada; (S.B.); (P.G.); (N.D.)
- Institut de Biologie Intégrative et des Systèmes (IBIS), Laval University, 1030 Avenue de la Médecine, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
148
|
Zhang T, Wang Y, Yan W, Lu L, Tao Y, Jia J, Cai W. Microbial alteration of small bowel stoma effluents and colonic feces in infants with short bowel syndrome. J Pediatr Surg 2020; 55:1366-1372. [PMID: 31493882 DOI: 10.1016/j.jpedsurg.2019.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/22/2019] [Accepted: 08/09/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIM Studies about differences in microbial communities between the small intestine and colon in infants with short bowel syndrome (SBS) are rare. We aimed to characterize the bacterial diversity of small bowel stoma effluents and feces of SBS infants. METHODS Seven SBS infants were enrolled in this study and provided two samples (one from the stoma and the other from the anus) each. Eleven age-matched healthy controls were recruited to provide one fecal sample each. 16S rRNA gene MiSeq sequencing was conducted to characterize the microbiota diversity and composition. RESULTS The bacterial diversity of the stoma effluents was significantly higher than that in the feces of SBS infants. Proteobacteria dominated in both the stoma effluents and colonic. Acinetobacter (P = 0.004), Klebsiella (P = 0.015), Citrobacter (P = 0.019), and Lactobacillus (P = 0.030) were more abundant in stoma effluents compared to feces of SBS patients, while Bacteroidetes, Bifidobacterium and Veillonella were less abundant in stoma effluents. Significantly higher levels of Proteobacteria, Enterococcus and lower levels of Blautia, Collinsella, Faecalibacterium, Veillonella were present in the fecal samples of SBS patients than those in the healthy controls. Kyoto Encyclopedia of Genes and Genomes pathways related to metabolism and membrane function were depleted in SBS patients. CONCLUSIONS The predominant intestinal bacterial groups were different in SBS children before and after the fistula closure. Fecal samples of SBS patients featured overabundant Proteobacteria and less SCFA producing bacteria. Depleted functional profiles of the microbiome were found in fecal samples of SBS patients. LEVEL OF EVIDENCE III.
Collapse
Affiliation(s)
- Tian Zhang
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute for Pediatric Research, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Ying Wang
- Division of Pediatric GI and Nutrition, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute for Pediatric Research, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Weihui Yan
- Division of Pediatric GI and Nutrition, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute for Pediatric Research, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Lina Lu
- Division of Pediatric GI and Nutrition, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute for Pediatric Research, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Yijing Tao
- Division of Pediatric GI and Nutrition, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute for Pediatric Research, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Jie Jia
- Department of Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute for Pediatric Research, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.
| | - Wei Cai
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute for Pediatric Research, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.
| |
Collapse
|
149
|
The development of intestinal dysbiosis in anemic preterm infants. J Perinatol 2020; 40:1066-1074. [PMID: 31992818 PMCID: PMC7319903 DOI: 10.1038/s41372-020-0599-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Anemia and Proteobacteria-dominant intestinal dysbiosis in very low birth weight (VLBW) infants have been linked to necrotizing enterocolitis, a severe gut inflammatory disease. We hypothesize that anemia of prematurity is related to the development of intestinal dysbiosis. STUDY DESIGN Three hundred and forty-two weekly stool samples collected prospectively from 80 VLBW infants were analyzed for bacterial microbiomes (with 16S rRNA). Linear mixed-effects model was used to determine the relationships between the onsets of anemia and intestinal dysbiosis. RESULTS Hematocrit was associated with intestinal microbiomes, with lower Hct occurring with increased Proteobacteria and decreased Firmicutes. Infants with a hematocrit <30% had intestinal microbiomes that diverged toward Proteobacteria dominance and low diversity after the first postnatal month. The microbiome changes were also related to the severity of anemia. CONCLUSIONS This finding supports a potential microbiological explanation for anemia as a risk factor for intestinal dysbiosis in preterm infants.
Collapse
|
150
|
Baltsavias S, Van Treuren W, Weber MJ, Charthad J, Baker S, Sonnenburg JL, Arbabian A. In Vivo Wireless Sensors for Gut Microbiome Redox Monitoring. IEEE Trans Biomed Eng 2020; 67:1821-1830. [PMID: 31634824 PMCID: PMC7170758 DOI: 10.1109/tbme.2019.2948575] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A perturbed gut microbiome has recently been linked with multiple disease processes, yet researchers currently lack tools that can provide in vivo, quantitative, and real-time insight into these processes and associated host-microbe interactions. We propose an in vivo wireless implant for monitoring gastrointestinal tract redox states using oxidation-reduction potentials (ORP). The implant is powered and conveniently interrogated via ultrasonic waves. We engineer the sensor electronics, electrodes, and encapsulation materials for robustness in vivo, and integrate them into an implant that endures autoclave sterilization and measures ORP for 12 days implanted in the cecum of a live rat. The presented implant platform paves the way for long-term experimental testing of biological hypotheses, offering new opportunities for understanding gut redox pathophysiology mechanisms, and facilitating translation to disease diagnosis and treatment applications.
Collapse
|