101
|
Kamaral C, Neate SM, Gunasinghe N, Milham PJ, Paterson DJ, Kopittke PM, Seneweera S. Genetic biofortification of wheat with zinc: Opportunities to fine-tune zinc uptake, transport and grain loading. PHYSIOLOGIA PLANTARUM 2022; 174:e13612. [PMID: 34970752 DOI: 10.1111/ppl.13612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/15/2021] [Accepted: 12/02/2021] [Indexed: 05/27/2023]
Abstract
Zinc (Zn) is an important micronutrient in the human body, and health complications associated with insufficient dietary intake of Zn can be overcome by increasing the bioavailable concentrations in edible parts of crops (biofortification). Wheat (Triticum aestivum L) is the most consumed cereal crop in the world; therefore, it is an excellent target for Zn biofortification programs. Knowledge of the physiological and molecular processes that regulate Zn concentration in the wheat grain is restricted, inhibiting the success of genetic Zn biofortification programs. This review helps break this nexus by advancing understanding of those processes, including speciation regulated uptake, root to shoot transport, remobilisation, grain loading and distribution of Zn in wheat grain. Furthermore, new insights to genetic Zn biofortification of wheat are discussed, and where data are limited, we draw upon information for other cereals and Fe distribution. We identify the loading and distribution of Zn in grain as major bottlenecks for biofortification, recognising anatomical barriers in the vascular region at the base of the grain, and physiological and molecular restrictions localised in the crease region as major limitations. Movement of Zn from the endosperm cavity into the modified aleurone, aleurone and then to the endosperm is mainly regulated by ZIP and YSL transporters. Zn complexation with phytic acid in the aleurone limits Zn mobility into the endosperm. These insights, together with synchrotron-X-ray-fluorescence microscopy, support the hypothesis that a focus on the mechanisms of Zn loading into the grain will provide new opportunities for Zn biofortification of wheat.
Collapse
Affiliation(s)
- Chandima Kamaral
- Centre for Crop Health, University of Southern Queensland, Toowoomba, Queensland, Australia
| | - Stephen M Neate
- School of Agriculture, Food and Wine, Faculty of Sciences, University of Adelaide, Urrbrae, South Australia, Australia
| | - Niroshini Gunasinghe
- Centre for Crop Health, University of Southern Queensland, Toowoomba, Queensland, Australia
| | - Paul J Milham
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - David J Paterson
- Australian Synchrotron, Australian Nuclear Science and Technology Organisation, Clayton, Victoria, Australia
| | - Peter M Kopittke
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Saman Seneweera
- Centre for Crop Health, University of Southern Queensland, Toowoomba, Queensland, Australia
- Department of Agriculture and Food Systems, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
102
|
Seregin IV, Kozhevnikova AD. Low-molecular-weight ligands in plants: role in metal homeostasis and hyperaccumulation. PHOTOSYNTHESIS RESEARCH 2021; 150:51-96. [PMID: 32653983 DOI: 10.1007/s11120-020-00768-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Mineral nutrition is one of the key factors determining plant productivity. In plants, metal homeostasis is achieved through the functioning of a complex system governing metal uptake, translocation, distribution, and sequestration, leading to the maintenance of a regulated delivery of micronutrients to metal-requiring processes as well as detoxification of excess or non-essential metals. Low-molecular-weight ligands, such as nicotianamine, histidine, phytochelatins, phytosiderophores, and organic acids, play an important role in metal transport and detoxification in plants. Nicotianamine and histidine are also involved in metal hyperaccumulation, which determines the ability of some plant species to accumulate a large amount of metals in their shoots. In this review we extensively summarize and discuss the current knowledge of the main pathways for the biosynthesis of these ligands, their involvement in metal uptake, radial and long-distance transport, as well as metal influx, isolation and sequestration in plant tissues and cell compartments. It is analyzed how diverse endogenous ligand levels in plants can determine their different tolerance to metal toxic effects. This review focuses on recent advances in understanding the physiological role of these compounds in metal homeostasis, which is an essential task of modern ionomics and plant physiology. It is of key importance in studying the influence of metal deficiency or excess on various physiological processes, which is a prerequisite to the improvement of micronutrient uptake efficiency and crop productivity and to the development of a variety of applications in phytoremediation, phytomining, biofortification, and nutritional crop safety.
Collapse
Affiliation(s)
- I V Seregin
- K.A. Timiryazev Institute of Plant Physiology RAS, IPPRAS, Botanicheskaya st., 35, Moscow, Russian Federation, 127276.
| | - A D Kozhevnikova
- K.A. Timiryazev Institute of Plant Physiology RAS, IPPRAS, Botanicheskaya st., 35, Moscow, Russian Federation, 127276
| |
Collapse
|
103
|
Research and Progress on the Mechanism of Iron Transfer and Accumulation in Rice Grains. PLANTS 2021; 10:plants10122610. [PMID: 34961081 PMCID: PMC8708893 DOI: 10.3390/plants10122610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022]
Abstract
Iron (Fe) is one of the most important micronutrients for organisms. Currently, Fe deficiency is a growing nutritional problem and is becoming a serious threat to human health worldwide. A method that could help alleviate this “hidden hunger” is increasing the bioavailable Fe concentrations in edible tissues of major food crops. Therefore, understanding the molecular mechanisms of Fe accumulation in different crop tissues will help to develop crops with higher Fe nutritional values. Biofortification significantly increases the concentration of Fe in crops. This paper considers the important food crop of rice (Oryza sativa L.) as an example and highlights recent research advances on the molecular mechanisms of Fe uptake and allogeneic uptake in different tissues of rice. In addition, different approaches to the biofortification of Fe nutrition in rice and their outcomes are described and discussed. To address the problems that occur during the development and application of improving nutritional Fe in rice, technical strategies and long-term solutions are also proposed as a reference for the future improvement of staple food nutrition with micronutrients.
Collapse
|
104
|
Liu H, Wang R, Lü XT, Cai J, Feng X, Yang G, Li H, Zhang Y, Han X, Jiang Y. Effects of nitrogen addition on plant-soil micronutrients vary with nitrogen form and mowing management in a meadow steppe. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117969. [PMID: 34426201 DOI: 10.1016/j.envpol.2021.117969] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/05/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Nitrogen (N) addition and mowing can significantly influence micronutrient cycling in grassland ecosystems. It remains largely unknown about how different forms of added N affect micronutrient status in plant-soil systems. We examined the effects of different N compounds of (NH4)2SO4, NH4NO3, and urea with and without mowing on micronutrient Fe, Mn, Cu, and Zn in soil-plant systems in a meadow steppe. The results showed that (NH4)2SO4 addition had a stronger negative effect on soil pH compared with NH4NO3 and urea, resulting in higher increases in soil available Fe and Mn herein. Nitrogen addition decreased plant community-level biomass weighted (hereafter referred to as community-level) Fe concentration but increased Mn concentration, with a greater effect under (NH4)2SO4 addition. Community-level Cu concentration increased with (NH4)2SO4 and NH4NO3 addition only under mowing treatment. Mowing synergistically interacted with urea addition to increase community-level Mn and Zn concentrations even with decreased soil organic matter, possibly because of compensatory plant growth and thus higher plant nutrient uptake intensity under mowing treatment. Overall, responses of plant-soil micronutrients to N addition varied with mowing and different N compounds, which were mainly regulated by soil physicochemical properties and plant growth. Different magnitude of micronutrient responses in plants and soils shed light on the necessity to consider the role of various N compounds in biogeochemical models when projecting the effects of N enrichment on grassland ecosystems.
Collapse
Affiliation(s)
- Heyong Liu
- Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Ruzhen Wang
- Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Xiao-Tao Lü
- Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Jiangping Cai
- Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Xue Feng
- Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Guojiao Yang
- Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Hui Li
- Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Yuge Zhang
- College of Environment, Shenyang University, Shenyang, 110044, China
| | - Xingguo Han
- Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yong Jiang
- Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| |
Collapse
|
105
|
Sharif R, Raza A, Chen P, Li Y, El-Ballat EM, Rauf A, Hano C, El-Esawi MA. HD-ZIP Gene Family: Potential Roles in Improving Plant Growth and Regulating Stress-Responsive Mechanisms in Plants. Genes (Basel) 2021; 12:1256. [PMID: 34440430 PMCID: PMC8394574 DOI: 10.3390/genes12081256] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/06/2021] [Accepted: 08/12/2021] [Indexed: 12/11/2022] Open
Abstract
Exploring the molecular foundation of the gene-regulatory systems underlying agronomic parameters or/and plant responses to both abiotic and biotic stresses is crucial for crop improvement. Thus, transcription factors, which alone or in combination directly regulated the targeted gene expression levels, are appropriate players for enlightening agronomic parameters through genetic engineering. In this regard, homeodomain leucine zipper (HD-ZIP) genes family concerned with enlightening plant growth and tolerance to environmental stresses are considered key players for crop improvement. This gene family containing HD and LZ domain belongs to the homeobox superfamily. It is further classified into four subfamilies, namely HD-ZIP I, HD-ZIP II, HD-ZIP III, and HD-ZIP IV. The first HD domain-containing gene was discovered in maize cells almost three decades ago. Since then, with advanced technologies, these genes were functionally characterized for their distinct roles in overall plant growth and development under adverse environmental conditions. This review summarized the different functions of HD-ZIP genes in plant growth and physiological-related activities from germination to fruit development. Additionally, the HD-ZIP genes also respond to various abiotic and biotic environmental stimuli by regulating defense response of plants. This review, therefore, highlighted the various significant aspects of this important gene family based on the recent findings. The practical application of HD-ZIP biomolecules in developing bioengineered plants will not only mitigate the negative effects of environmental stresses but also increase the overall production of crop plants.
Collapse
Affiliation(s)
- Rahat Sharif
- Department of Horticulture, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China;
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Ali Raza
- Fujian Provincial Key Laboratory of Crop Molecular and Cell Biology, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agriculture Science (CAAS), Wuhan 430062, China
| | - Peng Chen
- College of Life Science, Northwest A&F University, Yangling 712100, China;
| | - Yuhong Li
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Enas M. El-Ballat
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23430, Pakistan;
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRAE USC1328, Université d’Orléans, 28000 Chartres, France;
| | - Mohamed A. El-Esawi
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| |
Collapse
|
106
|
Zhang T, Xiao Z, Liu C, Yang C, Li J, Li H, Gao C, Shen W. Autophagy Mediates the Degradation of Plant ESCRT Component FREE1 in Response to Iron Deficiency. Int J Mol Sci 2021; 22:ijms22168779. [PMID: 34445480 PMCID: PMC8396019 DOI: 10.3390/ijms22168779] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/10/2021] [Accepted: 08/14/2021] [Indexed: 01/06/2023] Open
Abstract
Multivesicular body (MVB)-mediated endosomal sorting and macroautophagy are the main pathways mediating the transport of cellular components to the vacuole and are essential for maintaining cellular homeostasis. The interplay of these two pathways remains poorly understood in plants. In this study, we show that FYVE DOMAIN PROTEIN REQUIRED FOR ENDOSOMAL SORTING 1 (FREE1), which was previously identified as a plant-specific component of the endosomal sorting complex required for transport (ESCRT), essential for MVB biogenesis and plant growth, can be transported to the vacuole for degradation in response to iron deficiency. The vacuolar transport of ubiquitinated FREE1 protein is mediated by the autophagy pathway. As a consequence, the autophagy deficient mutants, atg5-1 and atg7-2, accumulate more endogenous FREE1 protein and display hypersensitivity to iron deficiency. Furthermore, under iron-deficient growth condition autophagy related genes are upregulated to promote the autophagic degradation of FREE1, thereby possibly relieving the repressive effect of FREE1 on iron absorption. Collectively, our findings demonstrate a unique regulatory mode of protein turnover of the ESCRT machinery through the autophagy pathway to respond to iron deficiency in plants.
Collapse
Affiliation(s)
- Tianrui Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (T.Z.); (C.L.); (C.Y.); (J.L.); (H.L.); (C.G.)
| | - Zhidan Xiao
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Chuanliang Liu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (T.Z.); (C.L.); (C.Y.); (J.L.); (H.L.); (C.G.)
| | - Chao Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (T.Z.); (C.L.); (C.Y.); (J.L.); (H.L.); (C.G.)
| | - Jiayi Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (T.Z.); (C.L.); (C.Y.); (J.L.); (H.L.); (C.G.)
| | - Hongbo Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (T.Z.); (C.L.); (C.Y.); (J.L.); (H.L.); (C.G.)
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (T.Z.); (C.L.); (C.Y.); (J.L.); (H.L.); (C.G.)
| | - Wenjin Shen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (T.Z.); (C.L.); (C.Y.); (J.L.); (H.L.); (C.G.)
- Correspondence:
| |
Collapse
|
107
|
Sun S, Zhu J, Guo R, Whelan J, Shou H. DNA methylation is involved in acclimation to iron-deficiency in rice (Oryza sativa). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:727-739. [PMID: 33977637 DOI: 10.1111/tpj.15318] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/27/2021] [Accepted: 05/03/2021] [Indexed: 05/24/2023]
Abstract
Iron (Fe) is an essential micronutrient in plants, and Fe limitation significantly affects plant growth, yield and food quality. While many studies have reported the transcriptomic profile and pursue molecular mechanism in response to Fe limitation, little is known if epigenetic factors play a role in response to Fe-deficiency. In this study, whole-genome bisulfite sequencing analysis, high-throughput RNA-Seq of mRNA, small RNA and transposable element (TE) expression with root and shoot organs of rice seedlings under Fe-sufficient and Fe-deficient conditions were performed. The results showed that widespread hypermethylation, especially for the CHH context, occurred after Fe-deficiency. Integrative analysis of methylation and transcriptome revealed that the transcript abundance of Fe-deficiency-induced genes was negatively correlated with nearby TEs and positively with the 24-nucleotide siRNAs. The ability of methylation to affect the physiology and molecular response to Fe-deficiency was tested using an exogenous DNA methyltransferase inhibitor (5-azacytidine), and genetically using a mutant for domains rearranged methyltransferase 2 (DRM2), that lacks CHH methylation. Both approaches resulted in decreased growth and Fe content in rice plants. Thus, alterations in specific methylation patterns, directed by siRNAs, play an important role in acclimation of rice to Fe-deficient conditions. Furthermore, comparison with other reports suggests this may be a universal mechanism to acclimate to limited nutrient availability.
Collapse
Affiliation(s)
- Shuo Sun
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, P.R. China
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang, 314400, P.R. China
| | - Jiamei Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, P.R. China
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang, 314400, P.R. China
| | - Runze Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, P.R. China
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang, 314400, P.R. China
| | - James Whelan
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang, 314400, P.R. China
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, La Trobe University, Victoria, 3086, Australia
| | - Huixia Shou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, P.R. China
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang, 314400, P.R. China
- Hainan Institute, Zhejiang University, Sanya, 572025, China
| |
Collapse
|
108
|
Shinozaki D, Tanoi K, Yoshimoto K. Optimal Distribution of Iron to Sink Organs via Autophagy Is Important for Tolerance to Excess Zinc in Arabidopsis. PLANT & CELL PHYSIOLOGY 2021; 62:515-527. [PMID: 33528512 DOI: 10.1093/pcp/pcab017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
Zinc (Zn) is nutritionally an essential metal element, but excess Zn in the environment is toxic to plants. Autophagy is a major pathway responsible for intracellular degradation. Here, we demonstrate the important role of autophagy in adaptation to excess Zn stress. We found that autophagy-defective Arabidopsis thaliana (atg2 and atg5) exhibited marked excess Zn-induced chlorosis and growth defects relative to wild-type (WT). Imaging and biochemical analyses revealed that autophagic activity was elevated under excess Zn. Interestingly, the excess Zn symptoms of atg5 were alleviated by supplementation of high levels of iron (Fe) to the media. Under excess Zn, in atg5, Fe starvation was especially severe in juvenile true leaves. Consistent with this, accumulation levels of Fe3+ near the shoot apical meristem remarkably reduced in atg5. Furthermore, excision of cotyledons induced severe excess Zn symptoms in WT, similar to those observed in atg5.Our data suggest that Fe3+ supplied from source leaves (cotyledons) via autophagy is distributed to sink leaves (true leaves) to promote healthy growth under excess Zn, revealing a new dimension, the importance of heavy-metal stress responses by the intracellular recycling.
Collapse
Affiliation(s)
- Daiki Shinozaki
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571 Japan
- Life Sciences Program, Graduate School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571 Japan
| | - Keitaro Tanoi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Kohki Yoshimoto
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571 Japan
- Life Sciences Program, Graduate School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571 Japan
| |
Collapse
|
109
|
Kim LJ, Tsuyuki KM, Hu F, Park EY, Zhang J, Iraheta JG, Chia JC, Huang R, Tucker AE, Clyne M, Castellano C, Kim A, Chung DD, DaVeiga CT, Parsons EM, Vatamaniuk OK, Jeong J. Ferroportin 3 is a dual-targeted mitochondrial/chloroplast iron exporter necessary for iron homeostasis in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:215-236. [PMID: 33884692 PMCID: PMC8316378 DOI: 10.1111/tpj.15286] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/10/2021] [Indexed: 05/26/2023]
Abstract
Mitochondria and chloroplasts are organelles with high iron demand that are particularly susceptible to iron-induced oxidative stress. Despite the necessity of strict iron regulation in these organelles, much remains unknown about mitochondrial and chloroplast iron transport in plants. Here, we propose that Arabidopsis ferroportin 3 (FPN3) is an iron exporter that is dual-targeted to mitochondria and chloroplasts. FPN3 is expressed in shoots, regardless of iron conditions, but its transcripts accumulate under iron deficiency in roots. fpn3 mutants cannot grow as well as the wild type under iron-deficient conditions and their shoot iron levels are lower compared with the wild type. Analyses of iron homeostasis gene expression in fpn3 mutants and inductively coupled plasma mass spectrometry (ICP-MS) measurements show that iron levels in the mitochondria and chloroplasts are increased relative to the wild type, consistent with the proposed role of FPN3 as a mitochondrial/plastid iron exporter. In iron-deficient fpn3 mutants, abnormal mitochondrial ultrastructure was observed, whereas chloroplast ultrastructure was not affected, implying that FPN3 plays a critical role in the mitochondria. Overall, our study suggests that FPN3 is essential for optimal iron homeostasis.
Collapse
Affiliation(s)
- Leah J. Kim
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | | | - Fengling Hu
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Emily Y. Park
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Jingwen Zhang
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | | | - Ju-Chen Chia
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| | - Rong Huang
- Cornell High Energy Synchrotron Source, Ithaca, New York 14853
| | - Avery E. Tucker
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Madeline Clyne
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Claire Castellano
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Angie Kim
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Daniel D. Chung
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | | | | | - Olena K. Vatamaniuk
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| | - Jeeyon Jeong
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| |
Collapse
|
110
|
Lian J, Liu W, Meng L, Wu J, Chao L, Zeb A, Sun Y. Foliar-applied polystyrene nanoplastics (PSNPs) reduce the growth and nutritional quality of lettuce (Lactuca sativa L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 280:116978. [PMID: 33780844 DOI: 10.1016/j.envpol.2021.116978] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/01/2021] [Accepted: 03/17/2021] [Indexed: 05/23/2023]
Abstract
Currently, there is a lack of information about the influence of foliar-applied nanoplastics on crop growth and nutritional quality. To fill the knowledge gap, soil-grown lettuces (Lactuca sativa L.) were foliar-exposed to polystyrene nanoplastics (PSNPs) at 0, 0.1 and 1 mg/L for one month. Foliar exposure to PSNPs significantly decreased the dry weight, height, and leaf area of lettuce by 14.3%-27.3%, 24.2%-27.3%, and 12.7%-19.2%, respectively, compared with the control. Similarly, plant pigment content (chlorophyll a, b and carotenoid) was considerably reduced (9.1%, 8.7%, 12.5%) at 1 mg/L PSNPs. However, the significant increase in electrolyte leakage rate (18.6%-25.5%) and the decrease in total antioxidant capacity (12.4%-26%) were the key indicators of oxidative stress in lettuce leaves, demonstrating the phytotoxicity of PSNPs by foliar exposure. In addition, the remarkable reduction in micronutrients and essential amino acids demonstrated a decrease in nutritional quality of lettuce caused by PSNPs. Besides, SEM and TEM analysis indicated the possible absorption of PSNPs through leaves stoma and the translocation downwards to plant roots. This study provides new information about the interaction of airborne NPs with plants. It also warns against atmospheric NPs pollution that the adverse effects of airborne NPs on crop production and food quality should be assessed as a matter of urgency.
Collapse
Affiliation(s)
- Jiapan Lian
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE)/Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Key Laboratory of Environmental Remediation and Ecosystem Health, Ministry of Education (MOE), College of Environmental and Resources Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Weitao Liu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE)/Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Lingzuo Meng
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE)/Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; College of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang, 110168, China
| | - Jiani Wu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE)/Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Lei Chao
- College of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang, 110168, China
| | - Aurang Zeb
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE)/Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yuebing Sun
- Key Laboratory of Original Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| |
Collapse
|
111
|
Dey S, Paul S, Nag A, Banerjee R, Gopal G, Mukherjee A, Kundu R. Iron-pulsing, a novel seed invigoration technique to enhance crop yield in rice: A journey from lab to field aiming towards sustainable agriculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144671. [PMID: 33482554 DOI: 10.1016/j.scitotenv.2020.144671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Bulk fertilizer application is one of the easiest means of improving yield of crops however it comes with several environmental impediments and consumer health menace. In the wake of this situation, sustainable agricultural practices stand as pertinent agronomic tool to increase yield and ensure sufficient food supply from farm to fork. In the present study, efficacy of iron-pulsing in improving the rice yield has been elucidated. This technique involves seed treatment with different concentrations (2.5, 5 and 10 mM) of iron salts (FeCl3 and FeSO4) during germination. FeCl3 or FeSO4 was used to treat the sets and depending on the concentration of the salts, the sets were named as C2.5, C5, C10 and S2.5, S5, S10 (where C and S stands for FeCl3 and FeSO4 respectively and the numbers succeeding them denotes the concentration of salt in mM). Our investigation identified 72 h of treatment as ideal duration for iron-pulsing. At this time point, the seedling emergence attributes and activities of α-amylase and protease increased. The relative water uptake of the seeds also increased through upregulation of aquaporin expression. The treatment efficiently maintained the ROS balance with the aid of antioxidant enzymes and increased the iron content within the treated seeds. After transplantation in field, photosynthetic rate and chlorophyll content enhanced in the treated plants. Finally, the post-harvest agro-morphological traits (represented through panicle morphology, 1000 seed weight, harvest index) and yield showed significant improvement with treatment. Sets C5 and S5 showed optimum efficiency in terms of yield improvement. To our best knowledge, this study is the first report deciphering the efficacy of iron-pulsing as a safe, cost effective and promising technique to escalate the yield of rice crops without incurring an environmental cost. Thus, iron-pulsing is expected to serve as a potential tool to address global food security in years to come.
Collapse
Affiliation(s)
- Swarnali Dey
- Centre of Advance Study, Department of Botany, University of Calcutta, Kolkata 700019, India
| | - Subhabrata Paul
- School of Biotechnology, Presidency University (2nd Campus), Kolkata 700156, India
| | - Anish Nag
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560029, India
| | - Ritesh Banerjee
- Centre of Advance Study, Department of Botany, University of Calcutta, Kolkata 700019, India
| | - Geetha Gopal
- Centre for Nano Biotechnology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Amitava Mukherjee
- Centre for Nano Biotechnology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Rita Kundu
- Centre of Advance Study, Department of Botany, University of Calcutta, Kolkata 700019, India.
| |
Collapse
|
112
|
Bacterial Endophytes of Spring Wheat Grains and the Potential to Acquire Fe, Cu, and Zn under Their Low Soil Bioavailability. BIOLOGY 2021; 10:biology10050409. [PMID: 34063099 PMCID: PMC8148187 DOI: 10.3390/biology10050409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/27/2021] [Accepted: 05/01/2021] [Indexed: 11/30/2022]
Abstract
Simple Summary Unmasking the overall endophytic bacteria communities from wheat grains may help to identify and describe the microbial colonization of bread and emmer varieties, their link to the bioactive compounds produced, and their possible role in mineral nutrition. The possibility of using microorganisms to improve the microelemental composition of grain is an important food security concern, as approximately one-third of the human population experiences latent starvation caused by Fe (anemia), Zn, or Cu deficiency. Four wheat varieties from T. aestivum L. and T. turgidum subsp. dicoccum were grown in field conditions with low bioavailability of microelements in the soil. Varietal differences in the yield, yield characteristics, and the grain micronutrient concentrations were compared with the endophytic bacteria isolated from the grains. Twelve different bacterial isolates were obtained that represented the genera Staphylococcus, Pantoea, Sphingobium, Bacillus, Kosakonia, and Micrococcus. All studied strains were able to synthesize indole-related compounds (IRCs) with phytohormonal activity. IRCs produced by the bacterial genera Pantoea spp. and Bacillus spp. isolated from high-yielding Oksamyt myronivs’kyi and Holikovs’ka grains may be considered as one of the determinants of the yield of wheat and its nutritional characteristics. Abstract Wheat grains are usually low in essential micronutrients. In resolving the problem of grain micronutritional quality, microbe-based technologies, including bacterial endophytes, seem to be promising. Thus, we aimed to (1) isolate and identify grain endophytic bacteria from selected spring wheat varieties (bread Oksamyt myronivs’kyi, Struna myronivs’ka, Dubravka, and emmer Holikovs’ka), which were all grown in field conditions with low bioavailability of microelements, and (2) evaluate the relationship between endophytes’ abilities to synthesize auxins and the concentration of Fe, Zn, and Cu in grains. The calculated biological accumulation factor (BAF) allowed for comparing the varietal ability to uptake and transport micronutrients to the grains. For the first time, bacterial endophytes were isolated from grains of emmer wheat T. turgidum subsp. dicoccum. Generally, the 12 different isolates identified in the four varieties belonged to the genera Staphylococcus, Pantoea, Sphingobium, Bacillus, Kosakonia, and Micrococcus (NCBI accession numbers: MT302194—MT302204, MT312840). All the studied strains were able to synthesize the indole-related compounds (IRCs; max: 16.57 µg∙mL−1) detected using the Salkowski reagent. The IRCs produced by the bacterial genera Pantoea spp. and Bacillus spp. isolated from high-yielding Oksamyt myronivs’kyi and Holikovs’ka grains may be considered as one of the determinants of the yield of wheat and its nutritional characteristics.
Collapse
|
113
|
Annotation and Molecular Characterisation of the TaIRO3 and TaHRZ Iron Homeostasis Genes in Bread Wheat ( Triticum aestivum L.). Genes (Basel) 2021; 12:genes12050653. [PMID: 33925484 PMCID: PMC8146704 DOI: 10.3390/genes12050653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 01/30/2023] Open
Abstract
Effective maintenance of plant iron (Fe) homoeostasis relies on a network of transcription factors (TFs) that respond to environmental conditions and regulate Fe uptake, translocation, and storage. The iron-related transcription factor 3 (IRO3), as well as haemerythrin motif-containing really interesting new gene (RING) protein and zinc finger protein (HRZ), are major regulators of Fe homeostasis in diploid species like Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa L.), but remain uncharacterised in hexaploid bread wheat (Triticum aestivum L.). In this study, we have identified, annotated, and characterised three TaIRO3 homoeologs and six TaHRZ1 and TaHRZ2 homoeologs in the bread wheat genome. Protein analysis revealed that TaIRO3 and TaHRZ proteins contain functionally conserved domains for DNA-binding, dimerisation, Fe binding, or polyubiquitination, and phylogenetic analysis revealed clustering of TaIRO3 and TaHRZ proteins with other monocot IRO3 and HRZ proteins, respectively. Quantitative reverse-transcription PCR analysis revealed that all TaIRO3 and TaHRZ homoeologs have unique tissue expression profiles and are upregulated in shoot tissues in response to Fe deficiency. After 24 h of Fe deficiency, the expression of TaHRZ homoeologs was upregulated, while the expression of TaIRO3 homoeologs was unchanged, suggesting that TaHRZ functions upstream of TaIRO3 in the wheat Fe homeostasis TF network.
Collapse
|
114
|
Trapet PL, Verbon EH, Bosma RR, Voordendag K, Van Pelt JA, Pieterse CMJ. Mechanisms underlying iron deficiency-induced resistance against pathogens with different lifestyles. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2231-2241. [PMID: 33188427 DOI: 10.1093/jxb/eraa535] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/10/2020] [Indexed: 05/10/2023]
Abstract
Iron (Fe) is a poorly available mineral nutrient which affects the outcome of many cross-kingdom interactions. In Arabidopsis thaliana, Fe starvation limits infection by necrotrophic pathogens. Here, we report that Fe deficiency also reduces disease caused by the hemi-biotrophic bacterium Pseudomonas syringae and the biotrophic oomycete Hyaloperonospora arabidopsidis, indicating that Fe deficiency-induced resistance is effective against pathogens with different lifestyles. Furthermore, we show that Fe deficiency-induced resistance is not caused by withholding Fe from the pathogen but is a plant-mediated defense response that requires activity of ethylene and salicylic acid. Because rhizobacteria-induced systemic resistance (ISR) is associated with a transient up-regulation of the Fe deficiency response, we tested whether Fe deficiency-induced resistance and ISR are similarly regulated. However, Fe deficiency-induced resistance functions independently of the ISR regulators MYB72 and BGLU42, indicating that both types of induced resistance are regulated in a different manner. Mutants opt3 and frd1, which display misregulated Fe homeostasis under Fe-sufficient conditions, show disease resistance levels comparable with those of Fe-starved wild-type plants. Our results suggest that disturbance of Fe homeostasis, through Fe starvation stress or other non-homeostatic conditions, is sufficient to prime the plant immune system for enhanced defense.
Collapse
Affiliation(s)
- Pauline L Trapet
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan, CH Utrecht, The Netherlands
| | - Eline H Verbon
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan, CH Utrecht, The Netherlands
| | - Renda R Bosma
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan, CH Utrecht, The Netherlands
| | - Kirsten Voordendag
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan, CH Utrecht, The Netherlands
| | - Johan A Van Pelt
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan, CH Utrecht, The Netherlands
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan, CH Utrecht, The Netherlands
| |
Collapse
|
115
|
Kobayashi T, Nagano AJ, Nishizawa NK. Iron deficiency-inducible peptide-coding genes OsIMA1 and OsIMA2 positively regulate a major pathway of iron uptake and translocation in rice. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2196-2211. [PMID: 33206982 DOI: 10.1093/jxb/eraa546] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/12/2020] [Indexed: 05/16/2023]
Abstract
Under low iron (Fe) availability, plants transcriptionally induce various genes responsible for Fe uptake and translocation to obtain adequate amounts of Fe. Although transcription factors and ubiquitin ligases involved in these Fe deficiency responses have been identified, the mechanisms coordinating these pathways have not been clarified in rice. Recently identified Fe-deficiency-inducible IRON MAN (IMA)/FE UPTAKE-INDUCING PEPTIDE (FEP) positively regulates many Fe-deficiency-inducible genes for Fe uptake in Arabidopsis. Here, we report that the expression of two IMA/FEP genes in rice, OsIMA1 and OsIMA2, is strongly induced under Fe deficiency, positively regulated by the transcription factors IDEF1, OsbHLH058, and OsbHLH059, as well as OsIMA1 and OsIMA2 themselves, and negatively regulated by HRZ ubiquitin ligases. Overexpression of OsIMA1 or OsIMA2 in rice conferred tolerance to Fe deficiency and accumulation of Fe in leaves and seeds. These OsIMA-overexpressing rice exhibited enhanced expression of all of the known Fe-deficiency-inducible genes involved in Fe uptake and translocation, except for OsYSL2, a Fe-nicotianamine transporter gene, in roots but not in leaves. Knockdown of OsIMA1 or OsIMA2 caused minor effects, including repression of some Fe uptake- and translocation-related genes in OsIMA1 knockdown roots. These results indicate that OsIMA1 and OsIMA2 play key roles in enhancing the major pathway of the Fe deficiency response in rice.
Collapse
Affiliation(s)
- Takanori Kobayashi
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Suematsu, Nonoichi, Ishikawa, Japan
| | | | - Naoko K Nishizawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Suematsu, Nonoichi, Ishikawa, Japan
| |
Collapse
|
116
|
Hanikenne M, Esteves SM, Fanara S, Rouached H. Coordinated homeostasis of essential mineral nutrients: a focus on iron. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2136-2153. [PMID: 33175167 DOI: 10.1093/jxb/eraa483] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/13/2020] [Indexed: 05/22/2023]
Abstract
In plants, iron (Fe) transport and homeostasis are highly regulated processes. Fe deficiency or excess dramatically limits plant and algal productivity. Interestingly, complex and unexpected interconnections between Fe and various macro- and micronutrient homeostatic networks, supposedly maintaining general ionic equilibrium and balanced nutrition, are currently being uncovered. Although these interactions have profound consequences for our understanding of Fe homeostasis and its regulation, their molecular bases and biological significance remain poorly understood. Here, we review recent knowledge gained on how Fe interacts with micronutrient (e.g. zinc, manganese) and macronutrient (e.g. sulfur, phosphate) homeostasis, and on how these interactions affect Fe uptake and trafficking. Finally, we highlight the importance of developing an improved model of how Fe signaling pathways are integrated into functional networks to control plant growth and development in response to fluctuating environments.
Collapse
Affiliation(s)
- Marc Hanikenne
- InBioS - PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, 4000 Liège, Belgium
| | - Sara M Esteves
- InBioS - PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, 4000 Liège, Belgium
| | - Steven Fanara
- InBioS - PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, 4000 Liège, Belgium
| | - Hatem Rouached
- BPMP, Univ. Montpellier, CNRS, INRA, Montpellier SupAgro, Montpellier, France
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
117
|
Gao F, Dubos C. Transcriptional integration of plant responses to iron availability. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2056-2070. [PMID: 33246334 DOI: 10.1093/jxb/eraa556] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 05/16/2023]
Abstract
Iron is one of the most important micronutrients for plant growth and development. It functions as the enzyme cofactor or component of electron transport chains in various vital metabolic processes, including photosynthesis, respiration, and amino acid biosynthesis. To maintain iron homeostasis, and therefore prevent any deficiency or excess that could be detrimental, plants have evolved complex transcriptional regulatory networks to tightly control iron uptake, translocation, assimilation, and storage. These regulatory networks are composed of various transcription factors; among them, members of the basic helix-loop-helix (bHLH) family play an essential role. Here, we first review recent advances in understanding the roles of bHLH transcription factors involved in the regulatory cascade controlling iron homeostasis in the model plant Arabidopsis, and extend this understanding to rice and other plant species. The importance of other classes of transcription factors will also be discussed. Second, we elaborate on the post-translational mechanisms involved in the regulation of these regulatory networks. Finally, we provide some perspectives on future research that should be conducted in order to precisely understand how plants control the homeostasis of this micronutrient.
Collapse
Affiliation(s)
- Fei Gao
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Christian Dubos
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
118
|
Downregulation of Zn-transporters along with Fe and redox imbalance causes growth and photosynthetic disturbance in Zn-deficient tomato. Sci Rep 2021; 11:6040. [PMID: 33727682 PMCID: PMC7966403 DOI: 10.1038/s41598-021-85649-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/04/2021] [Indexed: 01/07/2023] Open
Abstract
Zinc (Zn) deficiency hinders growth and development in tomato. This study unveils the responses of how Zn starvation affects physiological and molecular processes in tomato. Zn deficiency negatively affected the biomass, cellular integrity, and chlorophyll synthesis in tomato. Also, Zn deficiency decreased the maximum yield of PSII, photosynthesis performance index and dissipation energy per active reaction center, although the antenna size, trapping energy efficiency and electron transport flux were stable in Zn-starved leaves. Further, Zn shortage caused a substantial reduction in Zn and Fe concentrations in both roots and shoots along with decreased root Fe-reductase activity accompanied by the downregulation of Fe-regulated transporter 1, Zn transporter-like (LOC100037509), and Zn transporter (LOC101255999) genes predicted to be localized in the root plasma membrane. The interactome partners of these Zn transporters are predominantly associated with root-specific metal transporter, ferric-chelate reductase, BHLH transcriptional regulator, and Zn metal ion transporters, suggesting that Zn homeostasis may be tightly linked to the Fe status along with BHLH transcription factor in Zn-deficient tomato. We also noticed elevated O2.− and H2O2 due to Zn deficiency which was consistent with the inefficient antioxidant properties. These findings will be useful in the downstream approach to improve vegetable crops sensitive to Zn-deficiency.
Collapse
|
119
|
Glutacetine ® Biostimulant Applied on Wheat under Contrasting Field Conditions Improves Grain Number Leading to Better Yield, Upgrades N-Related Traits and Changes Grain Ionome. PLANTS 2021; 10:plants10030456. [PMID: 33670931 PMCID: PMC7997451 DOI: 10.3390/plants10030456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 11/16/2022]
Abstract
Wheat is one of the most important cereals for human nutrition, but nitrogen (N) losses during its cultivation cause economic problems and environmental risks. In order to improve N use efficiency (NUE), biostimulants are increasingly used. The present study aimed to evaluate the effects of Glutacetine®, a biostimulant sprayed at 5 L ha−1 in combination with fertilizers (urea or urea ammonium nitrate (UAN)), on N-related traits, grain yield components, and the grain quality of winter bread wheat grown at three field sites in Normandy (France). Glutacetine® improved grain yield via a significant increase in the grain number per spike and per m2, which also enhanced the thousand grain weight, especially with urea. The total N in grains and the NUE tended to increase in response to Glutacetine®, irrespective of the site or the form of N fertilizer. Depending on the site, spraying Glutacetine® can also induce changes in the grain ionome (analyzed by X-ray fluorescence), with a reduction in P content observed (site 2 under urea nutrition) or an increase in Mn content (site 3 under UAN nutrition). These results provide a roadmap for utilizing Glutacetine® biostimulant to enhance wheat production and flour quality in a temperate climate.
Collapse
|
120
|
Tran D, Camps C. Early Diagnosis of Iron Deficiency in Commercial Tomato Crop Using Electrical Signals. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.631529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Adequate plant nutrition is essential for commercial crop production. There are 18 nutrients that are essential for proper crop development. Each is equally important to the plant, although they are required in vastly different amounts. The absence of any one of these nutrients has the potential to decrease crop yields and quality by negatively affecting associated growth factors. Hence, early diagnosis of nutrient imbalances or deficiencies is of crucial importance for farmers. In this work, we provide compelling evidence that electrical potential variation in a commercial tomato crop contains information, which can be modeled to detect iron (Fe) deficiency before visual symptoms appear. The proposed supervised machine learning model showed accurate prediction on test data of above 75%. A model built to classify normal conditions (full nutrients) vs. strong Fe deficiency conditions (visible symptoms), enables early detection of slight Fe deprivation i.e., 6 days prior to the appearance of the earliest visual symptoms. Continuous real-time monitoring of crop electrical signals and deployment of predictive algorithms could constitute a great practical tool to help and assist farmers in iron deficiency detection.
Collapse
|
121
|
Guo Z, Zhuang M, Yang L, Li Y, Wu S, Chen S. Differentiated mineral nutrient management in two bamboo species under elevated CO 2 environment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 279:111600. [PMID: 33160742 DOI: 10.1016/j.jenvman.2020.111600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/04/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Mineral nutrients play a critical role in maintaining plant growth, but are vulnerable to climate change, such as elevated atmospheric carbon dioxide (CO2) concentrations. Previous studies reported that impact of elevated CO2 concentrations on plant growth vary among plant species, which may affect differential mineral nutrient cycling among plant species. However, little is known about how increasing CO2 concentrations affect mineral nutrient uptake and allocation in bamboo species. Using open top chambers (OTCs), we investigated the effects of elevated CO2 concentrations on three key mineral nutrients (iron (Fe), calcium (Ca), and magnesium (Mg)) in two mature bamboo species (Phyllostachys edulis and Oligostachyum lubricum). Results showed increased leaf and root biomass under elevated CO2 concentrations (P. edulis: 30.24% and 10.94%; O. lubricum: 24.47% and 13.84%, respectively). Conversely, elevated CO2 concentrations had negligible effects on the biomass of other bamboo organs (e.g., branches and culms). To a certain extent, elevated CO2 concentrations also caused nutrient variation among the various organs of these two species. For Ph. edulis, elevated CO2 concentrations increased mineral content (Fe, Ca, and Mg) in and allocation to leaves while it decreased Fe and Mg allocation to roots. By contrast, elevated CO2 concentrations only increased mineral content in and allocation to O. lubricum leaves and decreased Mg to its roots. Results confirmed that elevated CO2 concentrations resulted in differential mineral nutrient uptake and allocation response between these two species. Understanding such differences is critical to the sustainable nutrient management of bamboo ecosystems under increasing CO2 concentrations.
Collapse
Affiliation(s)
- Ziwu Guo
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang, China
| | - Minghao Zhuang
- College of Resource and Environment Science, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agriculture University, Beijing, 10094, China.
| | - Liting Yang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang, China
| | - Yingchun Li
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang, China
| | - Shuo Wu
- Shijiazhuang Pomology Institute, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, 050061, China
| | - Shuanglin Chen
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang, China.
| |
Collapse
|
122
|
Yadav B, Jogawat A, Lal SK, Lakra N, Mehta S, Shabek N, Narayan OP. Plant mineral transport systems and the potential for crop improvement. PLANTA 2021; 253:45. [PMID: 33483879 DOI: 10.1007/s00425-020-03551-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/22/2020] [Indexed: 05/09/2023]
Abstract
Nutrient transporter genes could be a potential candidate for improving crop plants, with enhanced nutrient uptake leading to increased crop yield by providing tolerance against different biotic and abiotic stresses. The world's food supply is nearing a crisis in meeting the demands of an ever-growing global population, and an increase in both yield and nutrient value of major crops is vitally necessary to meet the increased population demand. Nutrients play an important role in plant metabolism as well as growth and development, and nutrient deficiency results in retarded plant growth and leads to reduced crop yield. A variety of cellular processes govern crop plant nutrient absorption from the soil. Among these, nutrient membrane transporters play an important role in the acquisition of nutrients from soil and transport of these nutrients to their target sites. In addition, as excess nutrient delivery has toxic effects on plant growth, these membrane transporters also play a significant role in the removal of excess nutrients in the crop plant. The key function provided by membrane transporters is the ability to supply the crop plant with an adequate level of tolerance against environmental stresses, such as soil acidity, alkalinity, salinity, drought, and pathogen attack. Membrane transporter genes have been utilized for the improvement of crop plants, with enhanced nutrient uptake leading to increased crop yield by providing tolerance against different biotic and abiotic stresses. Further understanding of the basic mechanisms of nutrient transport in crop plants could facilitate the advanced design of engineered plant crops to achieve increased yield and improve nutrient quality through the use of genetic technologies as well as molecular breeding. This review is focused on nutrient toxicity and tolerance mechanisms in crop plants to aid in understanding and addressing the anticipated global food demand.
Collapse
Affiliation(s)
- Bindu Yadav
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Abhimanyu Jogawat
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Shambhu Krishan Lal
- ICAR- Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, India
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Nita Lakra
- Department of Biotechnology, CCS HAU, Hisar, India
| | - Sahil Mehta
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Nitzan Shabek
- Department of Plant Biology, University of California, Davis, CA, USA
| | | |
Collapse
|
123
|
Lurthy T, Pivato B, Lemanceau P, Mazurier S. Importance of the Rhizosphere Microbiota in Iron Biofortification of Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:744445. [PMID: 34925398 PMCID: PMC8679237 DOI: 10.3389/fpls.2021.744445] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/29/2021] [Indexed: 05/13/2023]
Abstract
Increasing the iron content of plant products and iron assimilability represents a major issue for human nutrition and health. This is also a major challenge because iron is not readily available for plants in most cultivated soils despite its abundance in the Earth's crust. Iron biofortification is defined as the enhancement of the iron content in edible parts of plants. This biofortification aims to reach the objectives defined by world organizations for human nutrition and health while being environment friendly. A series of options has been proposed to enhance plant iron uptake and fight against hidden hunger, but they all show limitations. The present review addresses the potential of soil microorganisms to promote plant iron nutrition. Increasing knowledge on the plant microbiota and plant-microbe interactions related to the iron dynamics has highlighted a considerable contribution of microorganisms to plant iron uptake and homeostasis. The present overview of the state of the art sheds light on plant iron uptake and homeostasis, and on the contribution of plant-microorganism (plant-microbe and plant-plant-microbe) interactions to plant nutritition. It highlights the effects of microorganisms on the plant iron status and on the co-occurring mechanisms, and shows how this knowledge may be valued through genetic and agronomic approaches. We propose a change of paradigm based on a more holistic approach gathering plant and microbial traits mediating iron uptake. Then, we present the possible applications in plant breeding, based on plant traits mediating plant-microbe interactions involved in plant iron uptake and physiology.
Collapse
|
124
|
Coleto I, Bejarano I, Marín-Peña AJ, Medina J, Rioja C, Burow M, Marino D. Arabidopsis thaliana transcription factors MYB28 and MYB29 shape ammonium stress responses by regulating Fe homeostasis. THE NEW PHYTOLOGIST 2021; 229:1021-1035. [PMID: 32901916 DOI: 10.1111/nph.16918] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/12/2020] [Indexed: 05/22/2023]
Abstract
Although ammonium (NH4+ ) is a key intermediate of plant nitrogen metabolism, high concentrations of NH4+ in the soil provoke physiological disorders that lead to the development of stress symptoms. Ammonium nutrition was shown to induce the accumulation of glucosinolates (GSLs) in leaves of different Brassicaceae species. To further understand the link between ammonium nutrition and GSLs, we analysed the ammonium stress response of Arabidopsis mutants impaired in GSL metabolic pathway. We showed that the MYB28 and MYB29 double mutant (myb28myb29), which is almost deprived of aliphatic GSLs, is highly hypersensitive to ammonium nutrition. Moreover, we evidenced that the stress symptoms developed were not a consequence of the lack of aliphatic GSLs. Transcriptomic analysis highlighted the induction of an iron (Fe) deficiency response in myb28myb29 under ammonium nutrition. Consistently, ammonium-grown myb28myb29 plants showed altered Fe accumulation and homeostasis. Interestingly, we showed overall that growing Arabidopsis with increased Fe availability relieved ammonium stress symptoms and that this was associated with MYB28 and MYB29 expression. Taken together, our data indicated that the control of Fe homeostasis was crucial for the Arabidopsis response to ammonium nutrition and evidenced that MYB28 and MYB29 play a role in this control.
Collapse
Affiliation(s)
- Inmaculada Coleto
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, Bilbao, E-48080, Spain
| | - Iraide Bejarano
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, Bilbao, E-48080, Spain
| | - Agustín Javier Marín-Peña
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, Bilbao, E-48080, Spain
| | - Joaquín Medina
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, Autopista M40 (km 38), Madrid, 28223, Spain
| | - Cristina Rioja
- Department of Plant and Environmental Sciences, DynaMo Center, University of Copenhagen, Frederiksberg, Denmark
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Meike Burow
- Department of Plant and Environmental Sciences, DynaMo Center, University of Copenhagen, Frederiksberg, Denmark
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Daniel Marino
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, Bilbao, E-48080, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, E-48011, Spain
| |
Collapse
|
125
|
Zhu C, Qi Q, Niu H, Wu J, Yang N, Gan L. γ-Aminobutyric Acid Suppresses Iron Transportation from Roots to Shoots in Rice Seedlings by Inducing Aerenchyma Formation. Int J Mol Sci 2020; 22:ijms22010220. [PMID: 33379335 PMCID: PMC7795648 DOI: 10.3390/ijms22010220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/11/2020] [Accepted: 12/24/2020] [Indexed: 11/16/2022] Open
Abstract
γ-Aminobutyric acid (GABA) is a widely distributed non-protein amino acid mediated the regulation of nitrate uptake and Al3+ tolerance in plants. However, there are few reports about the involvement of GABA in the regulation of iron (Fe) acquisition and translocation. Here, we show that GABA regulates Fe homeostasis in rice seedlings. Exogenous GABA decreased the chlorophyll concentration in leaves, with or without Fe supply. Over-expression of glutamate decarboxylase (GAD) gene, coding a crucial enzyme of GABA production, elevated endogenous GABA content and caused more leaf chlorosis than wild type (Nipponbare). GABA inhibited Fe transportation from roots to shoots and GABA application elevated the expression levels of Fe deficiency (FD)-related genes under conditions of Fe-sufficiency (FS), suggesting that GABA is a regulator of Fe translocation. Using Perls’ blue staining, we found that more ferric iron (Fe3+) was deposited in the epidermal cells of roots treated with GABA compared with control roots. Anatomic section analysis showed that GABA treatment induced more aerenchyma formation compared with the control. Aerenchyma facilitated the oxidization of soluble ferrous iron (Fe2+) into insoluble Fe3+, resulted in Fe precipitation in the epidermis, and inhibited the transportation of Fe from roots to shoots.
Collapse
|
126
|
Comparative Transcriptome Analysis of Iron and Zinc Deficiency in Maize ( Zea mays L.). PLANTS 2020; 9:plants9121812. [PMID: 33371388 PMCID: PMC7767415 DOI: 10.3390/plants9121812] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 11/17/2022]
Abstract
Globally, one-third of the population is affected by iron (Fe) and zinc (Zn) deficiency, which is severe in developing and underdeveloped countries where cereal-based diets predominate. The genetic biofortification approach is the most sustainable and one of the cost-effective ways to address Fe and Zn malnutrition. Maize is a major source of nutrition in sub-Saharan Africa, South Asia and Latin America. Understanding systems’ biology and the identification of genes involved in Fe and Zn homeostasis facilitate the development of Fe- and Zn-enriched maize. We conducted a genome-wide transcriptome assay in maize inbred SKV616, under –Zn, –Fe and –Fe–Zn stresses. The results revealed the differential expression of several genes related to the mugineic acid pathway, metal transporters, photosynthesis, phytohormone and carbohydrate metabolism. We report here Fe and Zn deficiency-mediated changes in the transcriptome, root length, stomatal conductance, transpiration rate and reduced rate of photosynthesis. Furthermore, the presence of multiple regulatory elements and/or the co-factor nature of Fe and Zn in enzymes indicate their association with the differential expression and opposite regulation of several key gene(s). The differentially expressed candidate genes in the present investigation would help in breeding for Fe and Zn efficient and kernel Fe- and Zn-rich maize cultivars through gene editing, transgenics and molecular breeding.
Collapse
|
127
|
Afzal J, Saleem MH, Batool F, Elyamine AM, Rana MS, Shaheen A, El-Esawi MA, Tariq Javed M, Ali Q, Arslan Ashraf M, Hussain GS, Hu C. Role of Ferrous Sulfate (FeSO 4) in Resistance to Cadmium Stress in Two Rice ( Oryza sativa L.) Genotypes. Biomolecules 2020; 10:E1693. [PMID: 33353010 PMCID: PMC7766819 DOI: 10.3390/biom10121693] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022] Open
Abstract
The impact of heavy metal, i.e., cadmium (Cd), on the growth, photosynthetic pigments, gas exchange characteristics, oxidative stress biomarkers, and antioxidants machinery (enzymatic and non-enzymatic antioxidants), ions uptake, organic acids exudation, and ultra-structure of membranous bounded organelles of two rice (Oryza sativa L.) genotypes (Shan 63 and Lu 9803) were investigated with and without the exogenous application of ferrous sulfate (FeSO4). Two O. sativa genotypes were grown under different levels of CdCl2 [0 (no Cd), 50 and 100 µM] and then treated with exogenously supplemented ferrous sulfate (FeSO4) [0 (no Fe), 50 and 100 µM] for 21 days. The results revealed that Cd stress significantly (p < 0.05) affected plant growth and biomass, photosynthetic pigments, gas exchange characteristics, affected antioxidant machinery, sugar contents, and ions uptake/accumulation, and destroy the ultra-structure of many membranous bounded organelles. The findings also showed that Cd toxicity induces oxidative stress biomarkers, i.e., malondialdehyde (MDA) contents, hydrogen peroxide (H2O2) initiation, and electrolyte leakage (%), which was also manifested by increasing the enzymatic antioxidants, i.e., superoxidase dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) and non-enzymatic antioxidant compounds (phenolics, flavonoids, ascorbic acid, and anthocyanin) and organic acids exudation pattern in both O. sativa genotypes. At the same time, the results also elucidated that the O. sativa genotypes Lu 9803 are more tolerant to Cd stress than Shan 63. Although, results also illustrated that the exogenous application of ferrous sulfate (FeSO4) also decreased Cd toxicity in both O. sativa genotypes by increasing antioxidant capacity and thus improved the plant growth and biomass, photosynthetic pigments, gas exchange characteristics, and decrease oxidative stress in the roots and shoots of O. sativa genotypes. Here, we conclude that the exogenous supplementation of FeSO4 under short-term exposure of Cd stress significantly improved plant growth and biomass, photosynthetic pigments, gas exchange characteristics, regulate antioxidant defense system, and essential nutrients uptake and maintained the ultra-structure of membranous bounded organelles in O. sativa genotypes.
Collapse
Affiliation(s)
- Javaria Afzal
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China; (J.A.); (M.S.R.)
- Department of Soil Science, Sindh Agriculture University, Tandojam 70060, Pakistan
| | - Muhammad Hamzah Saleem
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Fatima Batool
- Department of Botany, Division of Science and Technology, University of Education Lahore, Punjab 54770, Pakistan;
| | | | - Muhammad Shoaib Rana
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China; (J.A.); (M.S.R.)
| | - Asma Shaheen
- Department of Earth Sciences, University of Sargodha, Sargodha 40100, Pakistan;
| | - Mohamed A. El-Esawi
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| | - Muhammad Tariq Javed
- Department of Botany, Government College University, Faisalabad 38000, Pakistan; (M.T.J.); (Q.A.); (M.A.A.)
| | - Qasim Ali
- Department of Botany, Government College University, Faisalabad 38000, Pakistan; (M.T.J.); (Q.A.); (M.A.A.)
| | - Muhammad Arslan Ashraf
- Department of Botany, Government College University, Faisalabad 38000, Pakistan; (M.T.J.); (Q.A.); (M.A.A.)
| | - Ghulam Sabir Hussain
- Department of Agronomy, Bahauddin Zakariya University, Multan 60800, Pakistan;
- Department of Technical Services, Fatima Agri Sales and Services, Multan 60800, Pakistan
| | - Chengxiao Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China; (J.A.); (M.S.R.)
| |
Collapse
|
128
|
Senoura T, Kobayashi T, An G, Nakanishi H, Nishizawa NK. Defects in the rice aconitase-encoding OsACO1 gene alter iron homeostasis. PLANT MOLECULAR BIOLOGY 2020; 104:629-645. [PMID: 32909184 DOI: 10.1007/s11103-020-01065-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/30/2020] [Indexed: 05/16/2023]
Abstract
Rice aconitase gene OsACO1 is involved in the iron deficiency-signaling pathway for the expression of iron deficiency-inducible genes, either thorough enzyme activity or possible specific RNA binding for post-transcriptional regulation. Iron (Fe) is an essential element for virtually all living organisms. When plants are deficient in Fe, Fe acquisition systems are activated to maintain Fe homeostasis, and this regulation is mainly executed at the gene transcription level. Many molecules responsible for Fe uptake, translocation, and storage in plants have been identified and characterized. However, how plants sense Fe status within cells and then induce a transcriptional response is still unclear. In the present study, we found that knockdown of the OsACO1 gene, which encodes an aconitase in rice, leads to the down-regulation of selected Fe deficiency-inducible genes involved in Fe uptake and translocation in roots, and a decrease in Fe concentration in leaves, even when grown under Fe-sufficient conditions. OsACO1 knockdown plants showed a delayed transcriptional response to Fe deficiency compared to wild-type plants. In contrast, overexpression of OsACO1 resulted in the opposite effects. These results suggest that OsACO1 is situated upstream of the Fe deficiency-signaling pathway. Furthermore, we found that the OsACO1 protein potentially has RNA-binding activity. In vitro screening of RNA interactions with OsACO1 revealed that RNA potentially forms a unique stem-loop structure that interacts with OsACO1 via a conserved GGUGG motif within the loop structure. These results suggest that OsACO1 regulate Fe deficiency response either thorough enzyme activity catalyzing isomerization of citrate, or specific RNA binding for post-transcriptional regulation.
Collapse
Affiliation(s)
- Takeshi Senoura
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| | - Takanori Kobayashi
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan.
| | - Gynheung An
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, Korea
| | - Hiromi Nakanishi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Naoko K Nishizawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan.
| |
Collapse
|
129
|
Chandra AK, Pandey D, Tiwari A, Sharma D, Agarwal A, Sood S, Kumar A. An Omics Study of Iron and Zinc Homeostasis in Finger Millet: Biofortified Foods for Micronutrient Deficiency in an Era of Climate Change? ACTA ACUST UNITED AC 2020; 24:688-705. [DOI: 10.1089/omi.2020.0095] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ajay Kumar Chandra
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar, India
| | - Dinesh Pandey
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar, India
| | - Apoorv Tiwari
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar, India
- Department of Computational Biology and Bioinformatics, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Allahabad, India
| | - Divya Sharma
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar, India
- Department of Botany, Delhi University, Delhi, India
| | - Aparna Agarwal
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar, India
- Department of Microbiology, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar, India
| | - Salej Sood
- Department of Crop Improvement, Central Potato Research Institute, Shimla, India
| | - Anil Kumar
- Director of Education, Rani Lakshmi Bai Central Agricultural University, Jhansi, India
| |
Collapse
|
130
|
He Y, Ma J, Joseph V, Wei Y, Liu M, Zhang Z, Li G, He Q, Li H. Potassium regulates the growth and toxin biosynthesis of Microcystis aeruginosa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115576. [PMID: 32898730 DOI: 10.1016/j.envpol.2020.115576] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 06/24/2020] [Accepted: 08/28/2020] [Indexed: 06/11/2023]
Abstract
Potassium (K+) is the most abundant cation in phytoplankton cells, but its impact on Microcystis aeruginosa (M. aeruginosa) has not been fully documented. This study presents evidence of how K+ availability affects the growth, oxidative stress and microcystin (MC) production of M. aeruginosa. The iTRAQ-based proteomic analysis revealed that during K+ deficiency, serious oxidative damage occurred and the photosynthesis-associated and ABC transporter-related proteins in M. aeruginosa were substantially downregulated. In the absence of K+, a 69.26% reduction in cell density was shown, and both the photosynthesis and iron uptake were depressed, which triggered a declined production of ATP and expression of MC synthetases genes (mcyA, B and D), and MC exporters (mcyH). Through the impairment of both the MC biosynthesis and MC transportation out of cells, K+ depletion caused an 85.89% reduction of extracellular MC content at the end of the study. However, with increasing in the available K+ concentrations, photosynthesis efficiency, the expression of ABC-transporter proteins, and the transcription of mcy genes displayed slight differences compared with those in the control group. This work represents evidence that K+ availability can regulate the physiological metabolic activity of M. aeruginosa and K+ deficiency leads to depressed growth and MC production in M. aeruginosa.
Collapse
Affiliation(s)
- Yixin He
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Jianrong Ma
- CAS Key Laboratory of Reservoir Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Vanderwall Joseph
- Flathead Lake Biological Station, University of Montana, Polson, MT, 59860, USA
| | - Yanyan Wei
- Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Mengzi Liu
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Zhaoxue Zhang
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Guo Li
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Qiang He
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Hong Li
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
131
|
Plasmopara viticola infection affects mineral elements allocation and distribution in Vitis vinifera leaves. Sci Rep 2020; 10:18759. [PMID: 33127977 PMCID: PMC7603344 DOI: 10.1038/s41598-020-75990-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/05/2020] [Indexed: 12/21/2022] Open
Abstract
Plasmopara viticola is one of the most important pathogens infecting Vitis vinifera plants. The interactions among P. viticola and both susceptible and resistant grapevine plants have been extensively characterised, at transcriptomic, proteomic and metabolomic levels. However, the involvement of plants ionome in the response against the pathogen has been completely neglected so far. Therefore, this study was aimed at investigating the possible role of leaf ionomic modulation during compatible and incompatible interactions between P. viticola and grapevine plants. In susceptible cultivars, a dramatic redistribution of mineral elements has been observed, thus uncovering a possible role for mineral nutrients in the response against pathogens. On the contrary, the resistant cultivars did not present substantial rearrangement of mineral elements at leaf level, except for manganese (Mn) and iron (Fe). This might demonstrate that, resistant cultivars, albeit expressing the resistance gene, still exploit a pathogen response mechanism based on the local increase in the concentration of microelements, which are involved in the synthesis of secondary metabolites and reactive oxygen species. Moreover, these data also highlight the link between the mineral nutrition and plants' response to pathogens, further stressing that appropriate fertilization strategies can be fundamental for the expression of response mechanisms against pathogens.
Collapse
|
132
|
Misslinger M, Hortschansky P, Brakhage AA, Haas H. Fungal iron homeostasis with a focus on Aspergillus fumigatus. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118885. [PMID: 33045305 DOI: 10.1016/j.bbamcr.2020.118885] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/15/2020] [Accepted: 10/01/2020] [Indexed: 02/08/2023]
Abstract
To maintain iron homeostasis, fungi have to balance iron acquisition, storage, and utilization to ensure sufficient supply and to avoid toxic excess of this essential trace element. As pathogens usually encounter iron limitation in the host niche, this metal plays a particular role during virulence. Siderophores are iron-chelators synthesized by most, but not all fungal species to sequester iron extra- and intracellularly. In recent years, the facultative human pathogen Aspergillus fumigatus has become a model for fungal iron homeostasis of siderophore-producing fungal species. This article summarizes the knowledge on fungal iron homeostasis and its links to virulence with a focus on A. fumigatus. It covers mechanisms for iron acquisition, storage, and detoxification, as well as the modes of transcriptional iron regulation and iron sensing in A. fumigatus in comparison to other fungal species. Moreover, potential translational applications of the peculiarities of fungal iron metabolism for treatment and diagnosis of fungal infections is addressed.
Collapse
Affiliation(s)
- Matthias Misslinger
- Institute of Molecular Biology - Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Peter Hortschansky
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany; Department Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Hubertus Haas
- Institute of Molecular Biology - Biocenter, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
133
|
Ma M, Wendehenne D, Philippot L, Hänsch R, Flemetakis E, Hu B, Rennenberg H. Physiological significance of pedospheric nitric oxide for root growth, development and organismic interactions. PLANT, CELL & ENVIRONMENT 2020; 43:2336-2354. [PMID: 32681574 DOI: 10.1111/pce.13850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Nitric oxide (NO) is essential for plant growth and development, as well as interactions with abiotic and biotic environments. Its importance for multiple functions in plants means that tight regulation of NO concentrations is required. This is of particular significance in roots, where NO signalling is involved in processes, such as root growth, lateral root formation, nutrient acquisition, heavy metal homeostasis, symbiotic nitrogen fixation and root-mycorrhizal fungi interactions. The NO signal can also be produced in high levels by microbial processes in the rhizosphere, further impacting root processes. To explore these interesting interactions, in the present review, we firstly summarize current knowledge of physiological processes of NO production and consumption in roots and, thereafter, of processes involved in NO homeostasis in root cells with particular emphasis on root growth, development, nutrient acquisition, environmental stresses and organismic interactions.
Collapse
Affiliation(s)
- Ming Ma
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China
| | - David Wendehenne
- Université Bourgogne Franche-Comté, INRA, AgroSup Dijon, Dijon, France
| | - Laurent Philippot
- Université Bourgogne Franche-Comté, INRA, AgroSup Dijon, Dijon, France
| | - Robert Hänsch
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China
- Institute for Plant Biology, Technische Universität, Braunschweig, Germany
| | - Emmanouil Flemetakis
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Bin Hu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China
| |
Collapse
|
134
|
Zaheer IE, Ali S, Saleem MH, Imran M, Alnusairi GSH, Alharbi BM, Riaz M, Abbas Z, Rizwan M, Soliman MH. Role of iron-lysine on morpho-physiological traits and combating chromium toxicity in rapeseed (Brassica napus L.) plants irrigated with different levels of tannery wastewater. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:70-84. [PMID: 32745932 DOI: 10.1016/j.plaphy.2020.07.034] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/17/2020] [Accepted: 07/17/2020] [Indexed: 05/03/2023]
Abstract
Chromium (Cr) is among the most widespread toxic trace elements found in agricultural soils resulting from various anthropogenic activities. However, the role of micronutrient-amino acid chelates in reducing Cr toxicity in crop plants has recently been suggested. The present study was conducted to explore the effect of iron (Fe) chelated with lysine (lys) on plant growth, biomass, gaseous exchange attributes, oxidative stress indicators, antioxidant response, and Cr uptake in rapeseed (Brassica napus L.) plants irrigated with different levels of tannery wastewater in soil collected from District Kasur of Pakistan. B. napus seedlings (thirty-day-old) were shifted to pots irrigated with different levels of tannery wastewater. After two weeks, foliar application of Fe-lys (5 mM) was carried out for four successive weeks, and plants were harvested carefully post ten weeks of cultivation in tannery wastewater, under controlled conditions. Toxic levels of Cr in the soil significantly decreased plant height, fresh biomass of roots and leaves, dry biomass of roots and leaves, root length, number of leaves, leaf area, total chlorophyll contents, carotenoid contents, transpiration rate (E), stomatal conductance (gs), net photosynthesis (PN), and water use efficiency (WUE). Toxic Cr levels in the soil also increased oxidative stress in the roots and leaves of B. napus plants, which were overcome by the activities of various antioxidant enzymes, such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX). Moreover, increasing levels of Cr in the soil caused a significant increase in the Cr content of the roots and shoots of B. napus plants. The negative effects of Cr toxicity could be overturned by Fe-lys application, significantly increasing plant growth, biomass, chlorophyll content, and gaseous exchange attributes by reducing oxidative stress (H2O2, MDA, EL) and enhancing antioxidant enzyme activities. Furthermore, foliar application of Fe-lys reduced the Cr concentration and increased essential micronutrients (Fe contents) in the roots and shoots of B. napus plants. These results shed light on the effectiveness of Fe-lys in improving the growth and up-regulation of antioxidant enzyme activities of B. napus in response to Cr stress. However, further studies at field levels are required to explore the mechanisms of Fe-lys-mediated reduction of the toxicity of not only Cr, but possibly also other heavy metals in plants.
Collapse
Affiliation(s)
- Ihsan Elahi Zaheer
- Department of Environmental Sciences and Engineering, Government College University Allama Iqbal Road, 38000, Faisalabad, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Allama Iqbal Road, 38000, Faisalabad, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan.
| | - Muhammad Hamzah Saleem
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Muhammad Imran
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University Guangzhou, 510642, Guangdong, China.
| | - Ghalia S H Alnusairi
- Department of Biology, College of Science, Jouf University, Sakaka, 2014, Saudi Arabia; Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia.
| | - Basmah M Alharbi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia.
| | - Muhammad Riaz
- Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| | - Zohaib Abbas
- Department of Environmental Sciences and Engineering, Government College University Allama Iqbal Road, 38000, Faisalabad, Pakistan.
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University Allama Iqbal Road, 38000, Faisalabad, Pakistan.
| | - Mona H Soliman
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
135
|
Aung MS, Masuda H. How Does Rice Defend Against Excess Iron?: Physiological and Molecular Mechanisms. FRONTIERS IN PLANT SCIENCE 2020; 11:1102. [PMID: 32849682 PMCID: PMC7426474 DOI: 10.3389/fpls.2020.01102,] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/03/2020] [Indexed: 05/29/2023]
Abstract
Iron (Fe) is an essential nutrient for all living organisms but can lead to cytotoxicity when present in excess. Fe toxicity often occurs in rice grown in submerged paddy fields with low pH, leading dramatical increases in ferrous ion concentration, disrupting cell homeostasis and impairing growth and yield. However, the underlying molecular mechanisms of Fe toxicity response and tolerance in plants are not well characterized yet. Microarray and genome-wide association analyses have shown that rice employs four defense systems to regulate Fe homeostasis under Fe excess. In defense 1, Fe excess tolerance is implemented by Fe exclusion as a result of suppression of genes involved in Fe uptake and translocation such as OsIRT1, OsYSL2, OsTOM1, OsYSL15, OsNRAMP1, OsNAS1, OsNAS2, OsNAAT1, OsDMAS1, and OsIRO2. The Fe-binding ubiquitin ligase, HRZ, is a key regulator that represses Fe uptake genes in response to Fe excess in rice. In defense 2, rice retains Fe in the root system rather than transporting it to shoots. In defense 3, rice compartmentalizes Fe in the shoot. In defense 2 and 3, the vacuolar Fe transporter OsVIT2, Fe storage protein ferritin, and the nicotinamine synthase OsNAS3 mediate the isolation or detoxification of excess Fe. In defense 4, rice detoxifies the ROS produced within the plant body in response to excess Fe. Some OsWRKY transcription factors, S-nitrosoglutathione-reductase variants, p450-family proteins, and OsNAC4, 5, and 6 are implicated in defense 4. These knowledge will facilitate the breeding of tolerant crops with increased productivity in low-pH, Fe-excess soils.
Collapse
|
136
|
Aung MS, Masuda H. How Does Rice Defend Against Excess Iron?: Physiological and Molecular Mechanisms. FRONTIERS IN PLANT SCIENCE 2020; 11:1102. [PMID: 32849682 PMCID: PMC7426474 DOI: 10.3389/fpls.2020.01102] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/03/2020] [Indexed: 05/25/2023]
Abstract
Iron (Fe) is an essential nutrient for all living organisms but can lead to cytotoxicity when present in excess. Fe toxicity often occurs in rice grown in submerged paddy fields with low pH, leading dramatical increases in ferrous ion concentration, disrupting cell homeostasis and impairing growth and yield. However, the underlying molecular mechanisms of Fe toxicity response and tolerance in plants are not well characterized yet. Microarray and genome-wide association analyses have shown that rice employs four defense systems to regulate Fe homeostasis under Fe excess. In defense 1, Fe excess tolerance is implemented by Fe exclusion as a result of suppression of genes involved in Fe uptake and translocation such as OsIRT1, OsYSL2, OsTOM1, OsYSL15, OsNRAMP1, OsNAS1, OsNAS2, OsNAAT1, OsDMAS1, and OsIRO2. The Fe-binding ubiquitin ligase, HRZ, is a key regulator that represses Fe uptake genes in response to Fe excess in rice. In defense 2, rice retains Fe in the root system rather than transporting it to shoots. In defense 3, rice compartmentalizes Fe in the shoot. In defense 2 and 3, the vacuolar Fe transporter OsVIT2, Fe storage protein ferritin, and the nicotinamine synthase OsNAS3 mediate the isolation or detoxification of excess Fe. In defense 4, rice detoxifies the ROS produced within the plant body in response to excess Fe. Some OsWRKY transcription factors, S-nitrosoglutathione-reductase variants, p450-family proteins, and OsNAC4, 5, and 6 are implicated in defense 4. These knowledge will facilitate the breeding of tolerant crops with increased productivity in low-pH, Fe-excess soils.
Collapse
|
137
|
Nanoscale Zero-Valent Iron Has Minimum Toxicological Risk on the Germination and Early Growth of Two Grass Species with Potential for Phytostabilization. NANOMATERIALS 2020; 10:nano10081537. [PMID: 32764467 PMCID: PMC7466458 DOI: 10.3390/nano10081537] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/29/2020] [Accepted: 08/02/2020] [Indexed: 02/03/2023]
Abstract
Two Poaceae species, Agrostis capillaris and Festuca rubra, were selected for their potential as phytostabilizing plants in multicontaminated soils. These species are resistant to contamination and maintain high concentrations of contaminants at the root level. Nanoscale zero-valent iron (nZVI) is an engineered nanomaterial with the ability to stabilize metal(loid)s in soils; its potential toxicological effects in the selected species were studied in a germination test using: (i) control variant without soil; (ii) soil contaminated with Pb and Zn; and (iii) contaminated soil amended with 1% nZVI, as well as in an hydroponic experiment with the addition of nZVI 0, 25, 50 and 100 mg L−1. nZVI had no negative effects on seed germination or seedling growth, but was associated with an increase in shoot growth and reduction of the elongation inhibition rate (root-dependent) of F. rubra seedlings. However, applications of nZVI in the hydroponic solution had no effects on F. rubra but A. capillaris developed longer roots and more biomass. Increasing nZVI concentrations in the growing solution increased Mg and Fe uptake and reduced the Fe translocation factor. Our results indicate that nZVI has few toxic effects on the studied species.
Collapse
|
138
|
Dey S, Regon P, Kar S, Panda SK. Chelators of iron and their role in plant's iron management. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:1541-1549. [PMID: 32801485 PMCID: PMC7415063 DOI: 10.1007/s12298-020-00841-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 05/27/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
Proper transport of metal and their homeostasis is very crucial for the growth and development of plants. Plants root are the primary organs which comes in contact with the stress and thus few modifications occurs, often determining the nutrient efficiency or sometimes as a stress tolerance mechanism. Plant utilizes two strategies for the uptake of iron viz, strategy I-reduction based and strategy II-chelation based. In this review we attempted for a better understanding of how the chelators acts in the mechanism of iron uptake from soils to plants and how iron is distributed in the plants.
Collapse
Affiliation(s)
- Sangita Dey
- Department of Life Science and Bioinformatics, Assam University, Silchar, 788011 India
| | - Preetom Regon
- Department of Life Science and Bioinformatics, Assam University, Silchar, 788011 India
| | - Saradia Kar
- Department of Life Science and Bioinformatics, Assam University, Silchar, 788011 India
| | - Sanjib Kumar Panda
- Department of Life Science and Bioinformatics, Assam University, Silchar, 788011 India
- Department of Biochemistry, Central University of Rajasthan, Ajmer, Rajasthan 305817 India
| |
Collapse
|
139
|
Herlihy JH, Long TA, McDowell JM. Iron homeostasis and plant immune responses: Recent insights and translational implications. J Biol Chem 2020; 295:13444-13457. [PMID: 32732287 DOI: 10.1074/jbc.rev120.010856] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/29/2020] [Indexed: 12/16/2022] Open
Abstract
Iron metabolism and the plant immune system are both critical for plant vigor in natural ecosystems and for reliable agricultural productivity. Mechanistic studies of plant iron home-ostasis and plant immunity have traditionally been carried out in isolation from each other; however, our growing understanding of both processes has uncovered significant connections. For example, iron plays a critical role in the generation of reactive oxygen intermediates during immunity and has been recently implicated as a critical factor for immune-initiated cell death via ferroptosis. Moreover, plant iron stress triggers immune activation, suggesting that sensing of iron depletion is a mechanism by which plants recognize a pathogen threat. The iron deficiency response engages hormone signaling sectors that are also utilized for plant immune signaling, providing a probable explanation for iron-immunity cross-talk. Finally, interference with iron acquisition by pathogens might be a critical component of the immune response. Efforts to address the global burden of iron deficiency-related anemia have focused on classical breeding and transgenic approaches to develop crops biofortified for iron content. However, our improved mechanistic understanding of plant iron metabolism suggests that such alterations could promote or impede plant immunity, depending on the nature of the alteration and the virulence strategy of the pathogen. Effects of iron biofortification on disease resistance should be evaluated while developing plants for iron biofortification.
Collapse
Affiliation(s)
- John H Herlihy
- School of Plant and Environmental Sciences, Virginia Tech, Latham Hall, Blacksburg, Virginia, USA
| | - Terri A Long
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA.
| | - John M McDowell
- School of Plant and Environmental Sciences, Virginia Tech, Latham Hall, Blacksburg, Virginia, USA.
| |
Collapse
|
140
|
Buffalo dung-inhabiting bacteria enhance the nutrient enrichment of soil and proximate contents of Foeniculum vulgare Mill. Arch Microbiol 2020; 202:2461-2470. [PMID: 32607724 DOI: 10.1007/s00203-020-01969-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/31/2020] [Accepted: 06/24/2020] [Indexed: 10/24/2022]
Abstract
The present study was aimed to study the effect of bacteria inhabiting in buffalo dung on nutritional properties of soil and plant. Three beneficial bacteria Proteus mirabilis, Pseudomonas aeruginosa, and Enterobacter xiangfangensis were isolated from buffalo dung to evaluate for their effects individually as well as in consortium. The combined effect of P. mirabilis and P. aeruginosa showed a significant enhancement in different biological parameters of Foeniculum vulgare such as primary branch (99.32%), secondary branch (98.32%), number of umbels (87.62%), number of umbellets (99.85%), number of seeds (104.94%), grain yield (62.38%), biological yield (35.99%), and harvest index (19.48%). Consortium of these potent bacteria also enhanced proximate constituents such as total ash (49.79%), ether extract (63.06%), crude fibre (48.91%), moisture content (33.40%), dry matter (31.45%), acid insoluble ash (33.20%), and crude protein (40.73%). A highly significant correlation (p ≤ 0.01) was found between nitrogen (r = 0.97), phosphorous (r = 0.95), and potassium (r = 0.97) contents of soil. This research enhances the knowledge of the effect of plant growth-promoting bacteria on nutrient properties of soil and fennel which deliver a new index for healthier use in organic agricultural practices.
Collapse
|
141
|
Astolfi S, Pii Y, Mimmo T, Lucini L, Miras-Moreno MB, Coppa E, Violino S, Celletti S, Cesco S. Single and Combined Fe and S Deficiency Differentially Modulate Root Exudate Composition in Tomato: A Double Strategy for Fe Acquisition? Int J Mol Sci 2020; 21:ijms21114038. [PMID: 32516916 PMCID: PMC7312093 DOI: 10.3390/ijms21114038] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/02/2020] [Accepted: 06/02/2020] [Indexed: 11/16/2022] Open
Abstract
Fe chlorosis is considered as one of the major constraints on crop growth and yield worldwide, being particularly worse when associated with S shortage, due to the tight link between Fe and S. Plant adaptation to inadequate nutrient availabilities often relies on the release of root exudates that enhance nutrients, mobilization from soil colloids and favour their uptake by roots. This work aims at characterizing the exudomic profile of hydroponically grown tomato plants subjected to either single or combined Fe and S deficiency, as well as at shedding light on the regulation mechanisms underlying Fe and S acquisition processes by plants. Root exudates have been analysed by untargeted metabolomics, through liquid chromatography-mass spectrometry as well as gas chromatography-mass spectrometry following derivatization. More than 200 metabolites could be putatively annotated. Venn diagrams show that 23%, 10% and 21% of differential metabolites are distinctively modulated by single Fe deficiency, single S deficiency or combined Fe-S deficiency, respectively. Interestingly, for the first time, a mugineic acid derivative is detected in dicot plants root exudates. The results seem to support the hypothesis of the co-existence of the two Fe acquisition strategies in tomato plants.
Collapse
Affiliation(s)
- Stefania Astolfi
- Department of Agricultural and Forestry Sciences, University of Tuscia, 01100 Viterbo, Italy; (E.C.); (S.V.); (S.C.)
- Correspondence:
| | - Youry Pii
- Faculty of Science and Technology, Free University of Bozen-Bolzano, 39100 Bolzano, Italy; (Y.P.); (T.M.); (S.C.)
| | - Tanja Mimmo
- Faculty of Science and Technology, Free University of Bozen-Bolzano, 39100 Bolzano, Italy; (Y.P.); (T.M.); (S.C.)
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (L.L.); (M.B.M.-M.)
| | - Maria B. Miras-Moreno
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (L.L.); (M.B.M.-M.)
| | - Eleonora Coppa
- Department of Agricultural and Forestry Sciences, University of Tuscia, 01100 Viterbo, Italy; (E.C.); (S.V.); (S.C.)
| | - Simona Violino
- Department of Agricultural and Forestry Sciences, University of Tuscia, 01100 Viterbo, Italy; (E.C.); (S.V.); (S.C.)
| | - Silvia Celletti
- Department of Agricultural and Forestry Sciences, University of Tuscia, 01100 Viterbo, Italy; (E.C.); (S.V.); (S.C.)
| | - Stefano Cesco
- Faculty of Science and Technology, Free University of Bozen-Bolzano, 39100 Bolzano, Italy; (Y.P.); (T.M.); (S.C.)
| |
Collapse
|
142
|
Zhang Y, Wu X, Yuan L. Distinct non-coding RNAs confer root-dependent sense transgene-induced post-transcriptional gene silencing and nitrogen-dependent post-transcriptional regulation to AtAMT1;1 transcripts in Arabidopsis roots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:823-837. [PMID: 31901180 DOI: 10.1111/tpj.14667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
High-affinity ammonium uptake in roots mediate by AMT1-type ammonium transporters, which are tightly controlled at multiple regulatory levels for adapting various nitrogen availability. For Arabidopsis AtAMT1;1 gene, in addition to the transcriptional and post-translational controls, an organ-dependent and N-dependent post-transcriptional regulation was suggested as an additional regulatory step for fine tuning ammonium uptake, but the underlying mechanisms remain to be elucidated. Here, we showed that degradation of AtAMT1;1 transcript in roots of Pro35s:AtAMT1;1-transformed atamt1;1-1 Arabidopsis plants resulted from RDR6-dependent sense transgene-induced post-transcriptional gene silencing (S-PTGS). The siRNAs for S-PTGS may derive from the aberrant RNA, of which the production was co-determined by sequence feature and excessive expression of AtAMT1;1. Switching to the expression of AtAMT1;1 driven by ProAtUBQ10 or of AtAMT1;1 mutated at two siRNA-targeted hotspots reduced AtAMT1;1-specific siRNAs and overcame S-PTGS in roots. In roots of these lines, however, the steady-state transcript levels of AtAMT1;1 still significantly decreased under conditions of N-sufficiency compared with N-deficiency, confirming a N-dependent post-transcriptional regulatory manner. A crucial role of the 207-bp 3'-end sequence of AtAMT1;1 was further demonstrated by N-dependent accumulation of chimeric-AtAMT1;1 transcript in T-DNA insertion lines and of GFP-tagged chimeric-AtAMT1;1 transcript in transgenic lines. A novel non-coding RNA (ncRNA), which was highly abundant in N-sufficient roots, may target the above-identified 3'-end region for the degrading AtAMT1;1 transcript. This degradation could be prevented by a mutation on the AtAMT1;1 transcript at a potential cleavage site (+1458). These results suggested two distinct mechanisms of regulating AtAMT1;1 mRNA turnover by ncRNA for strictly control of ammonium uptake in roots.
Collapse
Affiliation(s)
- Yongjian Zhang
- Key Laboratory of Plant-Soil Interaction, MOE, College of Resources and Environmental Sciences, China Agricultural University, 100193, Beijing, China
| | - Xiangyu Wu
- Key Laboratory of Plant-Soil Interaction, MOE, College of Resources and Environmental Sciences, China Agricultural University, 100193, Beijing, China
| | - Lixing Yuan
- Key Laboratory of Plant-Soil Interaction, MOE, College of Resources and Environmental Sciences, China Agricultural University, 100193, Beijing, China
| |
Collapse
|
143
|
Shubham K, Anukiruthika T, Dutta S, Kashyap A, Moses JA, Anandharamakrishnan C. Iron deficiency anemia: A comprehensive review on iron absorption, bioavailability and emerging food fortification approaches. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.02.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
144
|
Mikula K, Izydorczyk G, Skrzypczak D, Mironiuk M, Moustakas K, Witek-Krowiak A, Chojnacka K. Controlled release micronutrient fertilizers for precision agriculture - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 712:136365. [PMID: 31935544 DOI: 10.1016/j.scitotenv.2019.136365] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/06/2019] [Accepted: 12/25/2019] [Indexed: 05/12/2023]
Abstract
The rapid growth of the global population and the resulting need to ensure sufficient food safety in highly productive agricultural practices. Intensive cultivation of plants contributes to the impoverishment of soils and thus forces farmers to apply intensive fertilization with microelements. Precise fertilization techniques are the future of agriculture, in which nutrients are supplied in controlled way with minimized losses to the environment, caused by leaching to groundwater. Kinetics of nutrients release should be thus adjusted to plant requirements and kinetics of uptake by the plant. The paper presents current achievements in the field of fertilizers with controlled release of microelements, which, apart from the main fertilizer components, are also very significant for proper plant growth. Fertilizers are divided into four basic groups, which include low-solubility fertilizers, fertilizers with external coating, bio-based and nano-fertilizers. Despite structural differences, all groups show properties of controlled microelement release. The paper presents new fertilization technologies with consideration of their influence on the environment.
Collapse
Affiliation(s)
- Katarzyna Mikula
- Department of Advanced Material Technology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Lower Silesia 50-370, Poland
| | - Grzegorz Izydorczyk
- Department of Advanced Material Technology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Lower Silesia 50-370, Poland
| | - Dawid Skrzypczak
- Department of Advanced Material Technology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Lower Silesia 50-370, Poland
| | - Małgorzata Mironiuk
- Department of Advanced Material Technology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Lower Silesia 50-370, Poland
| | - Konstantinos Moustakas
- School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zographou Campus, GR-15780 Athens, Greece
| | - Anna Witek-Krowiak
- Department of Chemical Engineering, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Lower Silesia 73, Poland
| | - Katarzyna Chojnacka
- Department of Advanced Material Technology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Lower Silesia 50-370, Poland.
| |
Collapse
|
145
|
Valentinuzzi F, Pii Y, Carlo P, Roberto T, Fontanella MC, Beone GM, Astolfi S, Mimmo T, Cesco S. Root-shoot-root Fe translocation in cucumber plants grown in a heterogeneous Fe provision. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 293:110431. [PMID: 32081271 DOI: 10.1016/j.plantsci.2020.110431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/17/2020] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
Iron (Fe) is an essential micronutrient for plant life and development. However, in soil, Fe bioavailability is often limited and variable in space and time, thus different regions of the same root system might be exposed to different nutrient provisions. Few studies showed that the response to variable Fe provision is controlled at local and systemic levels, albeit the identity of the signals involved is still elusive. Iron itself was suggested as local mediator, whilst hormones were proposed for the long-distance signalling pathway. Therefore, the aim of this work was to assess whether Fe, when localized in a restricted area of the root system, might be involved in both local and systemic signaling. The combination of resupply experiments in a split-root system, the use of 57Fe isotope and chemical imaging techniques allowed tracing Fe movement within cucumber plants. Soon after the resupply, Fe is distributed to the whole plant, likely to overcome a minimum Fe concentration threshold aimed at repressing the deficiency response. Iron was then preferentially translocated to leaves and, only afterwards, the root system was completely resupplied. Collectively, these observations might thus highlight a root-to-shoot-to-root Fe translocation route in cucumber plants grown on a patchy nutrient substrate.
Collapse
Affiliation(s)
- Fabio Valentinuzzi
- Faculty of Science and Technology, Free University of Bozen-Bolzano, I-39100, Bolzano, Italy
| | - Youry Pii
- Faculty of Science and Technology, Free University of Bozen-Bolzano, I-39100, Bolzano, Italy.
| | - Porfido Carlo
- Department of Soil, Plant and Food Sciences, University of Bari "Aldo Moro'', I-70126, Bari, Italy
| | - Terzano Roberto
- Department of Soil, Plant and Food Sciences, University of Bari "Aldo Moro'', I-70126, Bari, Italy
| | - Maria Chiara Fontanella
- Department for Sustainable Food Process, Faculty of Agriculture, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, I-29122, Piacenza, Italy
| | - Gian Maria Beone
- Department for Sustainable Food Process, Faculty of Agriculture, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, I-29122, Piacenza, Italy
| | - Stefania Astolfi
- Department of Agricultural and Forestry Sciences, University of Tuscia, I-01100, Viterbo, Italy
| | - Tanja Mimmo
- Faculty of Science and Technology, Free University of Bozen-Bolzano, I-39100, Bolzano, Italy
| | - Stefano Cesco
- Faculty of Science and Technology, Free University of Bozen-Bolzano, I-39100, Bolzano, Italy
| |
Collapse
|
146
|
Zandalinas SI, Song L, Sengupta S, McInturf SA, Grant DG, Marjault HB, Castro-Guerrero NA, Burks D, Azad RK, Mendoza-Cozatl DG, Nechushtai R, Mittler R. Expression of a dominant-negative AtNEET-H89C protein disrupts iron-sulfur metabolism and iron homeostasis in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:1152-1169. [PMID: 31642128 DOI: 10.1111/tpj.14581] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 10/04/2019] [Accepted: 10/16/2019] [Indexed: 05/17/2023]
Abstract
Iron-sulfur (Fe-S) clusters play an essential role in plants as protein cofactors mediating diverse electron transfer reactions. Because they can react with oxygen to form reactive oxygen species (ROS) and inflict cellular damage, the biogenesis of Fe-S clusters is highly regulated. A recently discovered group of 2Fe-2S proteins, termed NEET proteins, was proposed to coordinate Fe-S, Fe and ROS homeostasis in mammalian cells. Here we report that disrupting the function of AtNEET, the sole member of the NEET protein family in Arabidopsis thaliana, triggers leaf-associated Fe-S- and Fe-deficiency responses, elevated Fe content in chloroplasts (1.2-1.5-fold), chlorosis, structural damage to chloroplasts and a high seedling mortality rate. Our findings suggest that disrupting AtNEET function disrupts the transfer of 2Fe-2S clusters from the chloroplastic 2Fe-2S biogenesis pathway to different cytosolic and chloroplastic Fe-S proteins, as well as to the cytosolic Fe-S biogenesis system, and that uncoupling this process triggers leaf-associated Fe-S- and Fe-deficiency responses that result in Fe over-accumulation in chloroplasts and enhanced ROS accumulation. We further show that AtNEET transfers its 2Fe-2S clusters to DRE2, a key protein of the cytosolic Fe-S biogenesis system, and propose that the availability of 2Fe-2S clusters in the chloroplast and cytosol is linked to Fe homeostasis in plants.
Collapse
Affiliation(s)
- Sara I Zandalinas
- Division of Plant Sciences, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins St, Columbia, MO, 65211, USA
| | - Luhua Song
- Department of Biological Sciences, College of Science, University of North Texas, 1155 Union Circle #305220, Denton, TX, 76203-5017, USA
| | - Soham Sengupta
- Department of Biological Sciences, College of Science, University of North Texas, 1155 Union Circle #305220, Denton, TX, 76203-5017, USA
| | - Samuel A McInturf
- Division of Plant Sciences, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins St, Columbia, MO, 65211, USA
| | - DeAna G Grant
- Electron Microscopy Core Facility, University of Missouri, W136 Veterinary Medicine Building 1600 East Rollins Street, Columbia, MO, 65211, USA
| | - Henri-Baptiste Marjault
- The Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, Jerusalem, 91904, Israel
| | - Norma A Castro-Guerrero
- Division of Plant Sciences, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins St, Columbia, MO, 65211, USA
| | - David Burks
- Department of Biological Sciences, College of Science, University of North Texas, 1155 Union Circle #305220, Denton, TX, 76203-5017, USA
| | - Rajeev K Azad
- Department of Biological Sciences, College of Science, University of North Texas, 1155 Union Circle #305220, Denton, TX, 76203-5017, USA
| | - David G Mendoza-Cozatl
- Division of Plant Sciences, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins St, Columbia, MO, 65211, USA
| | - Rachel Nechushtai
- The Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, Jerusalem, 91904, Israel
| | - Ron Mittler
- Division of Plant Sciences, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins St, Columbia, MO, 65211, USA
- Department of Surgery, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center University of Missouri, 1201 Rollins St, Columbia, MO, 65211, USA
| |
Collapse
|
147
|
Beasley JT, Johnson AAT, Kolba N, Bonneau JP, Glahn RP, Ozeri L, Koren O, Tako E. Nicotianamine-chelated iron positively affects iron status, intestinal morphology and microbial populations in vivo (Gallus gallus). Sci Rep 2020; 10:2297. [PMID: 32041969 PMCID: PMC7010747 DOI: 10.1038/s41598-020-57598-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/21/2019] [Indexed: 01/21/2023] Open
Abstract
Wheat flour iron (Fe) fortification is mandatory in 75 countries worldwide yet many Fe fortificants, such as Fe-ethylenediaminetetraacetate (EDTA), result in unwanted sensory properties and/or gastrointestinal dysfunction and dysbiosis. Nicotianamine (NA) is a natural chelator of Fe, zinc (Zn) and other metals in higher plants and NA-chelated Fe is highly bioavailable in vitro. In graminaceous plants NA serves as the biosynthetic precursor to 2' -deoxymugineic acid (DMA), a related Fe chelator and enhancer of Fe bioavailability, and increased NA/DMA biosynthesis has proved an effective Fe biofortification strategy in several cereal crops. Here we utilized the chicken (Gallus gallus) model to investigate impacts of NA-chelated Fe on Fe status and gastrointestinal health when delivered to chickens through intraamniotic administration (short-term exposure) or over a period of six weeks as part of a biofortified wheat diet containing increased NA, Fe, Zn and DMA (long-term exposure). Striking similarities in host Fe status, intestinal functionality and gut microbiome were observed between the short-term and long-term treatments, suggesting that the effects were largely if not entirely due to consumption of NA-chelated Fe. These results provide strong support for wheat with increased NA-chelated Fe as an effective biofortification strategy and uncover novel impacts of NA-chelated Fe on gastrointestinal health and functionality.
Collapse
Affiliation(s)
- Jesse T Beasley
- School of BioSciences, The University of Melbourne, Victoria, 3010, Australia
| | | | - Nikolai Kolba
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Ithaca, New York, 14853, USA
| | - Julien P Bonneau
- School of BioSciences, The University of Melbourne, Victoria, 3010, Australia
| | - Raymond P Glahn
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Ithaca, New York, 14853, USA
| | - Lital Ozeri
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel
| | - Elad Tako
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Ithaca, New York, 14853, USA.
| |
Collapse
|
148
|
Holzheu P, Kummer U. Computational systems biology of cellular processes in Arabidopsis thaliana: an overview. Cell Mol Life Sci 2020; 77:433-440. [PMID: 31768604 PMCID: PMC11105087 DOI: 10.1007/s00018-019-03379-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 02/06/2023]
Abstract
Systems biology strives for gaining an understanding of biological phenomena by studying the interactions of different parts of a system and integrating the knowledge obtained into the current view of the underlying processes. This is achieved by a tight combination of quantitative experimentation and computational modeling. While there is already a large quantity of systems biology studies describing human, animal and especially microbial cell biological systems, plant biology has been lagging behind for many years. However, in the case of the model plant Arabidopsis thaliana, the steadily increasing amount of information on the levels of its genome, proteome and on a variety of its metabolic and signalling pathways is progressively enabling more researchers to construct models for cellular processes for the plant, which in turn encourages more experimental data to be generated, showing also for plant sciences how fruitful systems biology research can be. In this review, we provide an overview over some of these recent studies which use different systems biological approaches to get a better understanding of the cell biology of A. thaliana. The approaches used in these are genome-scale metabolic modeling, as well as kinetic modeling of metabolic and signalling pathways. Furthermore, we selected several cases to exemplify how the modeling approaches have led to significant advances or new perspectives in the field.
Collapse
Affiliation(s)
- Pascal Holzheu
- INF 267 (Bioquant), Heidelberg University, 69120, Heidelberg, Germany
| | - Ursula Kummer
- INF 267 (Bioquant), Heidelberg University, 69120, Heidelberg, Germany.
| |
Collapse
|
149
|
Handing off iron to the next generation: how does it get into seeds and what for? Biochem J 2020; 477:259-274. [DOI: 10.1042/bcj20190188] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/18/2019] [Accepted: 12/23/2019] [Indexed: 01/24/2023]
Abstract
To ensure the success of the new generation in annual species, the mother plant transfers a large proportion of the nutrients it has accumulated during its vegetative life to the next generation through its seeds. Iron (Fe) is required in large amounts to provide the energy and redox power to sustain seedling growth. However, free Fe is highly toxic as it leads to the generation of reactive oxygen species. Fe must, therefore, be tightly bound to chelating molecules to allow seed survival for long periods of time without oxidative damage. Nevertheless, when conditions are favorable, the seed's Fe stores have to be readily remobilized to achieve the transition toward active photosynthesis before the seedling becomes able to take up Fe from the environment. This is likely critical for the vigor of the young plant. Seeds constitute an important dietary source of Fe, which is essential for human health. Understanding the mechanisms of Fe storage in seeds is a key to improve their Fe content and availability in order to fight Fe deficiency. Seed longevity, germination efficiency and seedling vigor are also important traits that may be affected by the chemical form under which Fe is stored. In this review, we summarize the current knowledge on seed Fe loading during development, long-term storage and remobilization upon germination. We highlight how this knowledge may help seed Fe biofortification and discuss how Fe storage may affect the seed quality and germination efficiency.
Collapse
|
150
|
Lian J, Zhao L, Wu J, Xiong H, Bao Y, Zeb A, Tang J, Liu W. Foliar spray of TiO 2 nanoparticles prevails over root application in reducing Cd accumulation and mitigating Cd-induced phytotoxicity in maize (Zea mays L.). CHEMOSPHERE 2020; 239:124794. [PMID: 31521929 DOI: 10.1016/j.chemosphere.2019.124794] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 05/27/2023]
Abstract
Cadmium (Cd) pollution is considered one of the global environmental issues due to its adverse effects on plant and human health. With the rapid development of nanotechnology and the practical application of engineered nanoparticles (ENPs) in agriculture, the mechanisms underlying the interactions between NPs and heavy metal on their uptake, accumulation, and phytotoxicity in crops are still not fully understood. Therefore, the impact of TiO2 NPs (0, 100, 250 mg/L) and Cd (0, 50 μM) co-exposure on hydroponic maize (Zea mays L.) was determined under two exposure modes. Results showed that root co-exposure to TiO2 NPs and 100 mg/L Cd significantly enhanced Cd uptake and produced greater phytotoxicity in maize than foliar exposure to TiO2 NPs. Meanwhile, plant dry weight and chlorophyll content showed a reduction of 45.3% and 50.5%, respectively, when compared with single Cd treatment. In addition, the accumulation of Ti in shoots and roots increased by 1.61 and 4.29 times, respectively when root exposure to 250 mg/L TiO2 NPs. By contrast, foliar exposure of TiO2 NPs could markedly decrease shoot Cd contents from 15.2% to 17.8% and had a stronger influence on alleviating Cd-induced toxicity via increasing superoxide dismutase (SOD) and glutathione S-transferase (GST) activities and upregulating several metabolic pathways, including galactose metabolism and citrate cycle, alanine, aspartate and glutamate metabolism, as well as glycine, serine and threonine metabolism. This study provides a new strategy for the application of TiO2 NPs in crop safety production in Cd contaminated soils.
Collapse
Affiliation(s)
- Jiapan Lian
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Longfei Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Jiani Wu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Hongxia Xiong
- Tianjin Research Institute for Water Transport Engineering, Laboratory of Environmental Protection in Water Transport Engineering, Tianjin, 300456, PR China
| | - Yanyu Bao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China.
| |
Collapse
|