101
|
|
102
|
Alspach E, Lussier DM, Miceli AP, Kizhvatov I, DuPage M, Luoma AM, Meng W, Lichti CF, Esaulova E, Vomund AN, Runci D, Ward JP, Gubin MM, Medrano RFV, Arthur CD, White JM, Sheehan KCF, Chen A, Wucherpfennig KW, Jacks T, Unanue ER, Artyomov MN, Schreiber RD. MHC-II neoantigens shape tumour immunity and response to immunotherapy. Nature 2019; 574:696-701. [PMID: 31645760 PMCID: PMC6858572 DOI: 10.1038/s41586-019-1671-8] [Citation(s) in RCA: 597] [Impact Index Per Article: 99.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 09/12/2019] [Indexed: 12/11/2022]
Abstract
The ability of the immune system to eliminate and shape the immunogenicity of tumours defines the process of cancer immunoediting1. Immunotherapies such as those that target immune checkpoint molecules can be used to augment immune-mediated elimination of tumours and have resulted in durable responses in patients with cancer that did not respond to previous treatments. However, only a subset of patients benefit from immunotherapy and more knowledge about what is required for successful treatment is needed2-4. Although the role of tumour neoantigen-specific CD8+ T cells in tumour rejection is well established5-9, the roles of other subsets of T cells have received less attention. Here we show that spontaneous and immunotherapy-induced anti-tumour responses require the activity of both tumour-antigen-specific CD8+ and CD4+ T cells, even in tumours that do not express major histocompatibility complex (MHC) class II molecules. In addition, the expression of MHC class II-restricted antigens by tumour cells is required at the site of successful rejection, indicating that activation of CD4+ T cells must also occur in the tumour microenvironment. These findings suggest that MHC class II-restricted neoantigens have a key function in the anti-tumour response that is nonoverlapping with that of MHC class I-restricted neoantigens and therefore needs to be considered when identifying patients who will most benefit from immunotherapy.
Collapse
Affiliation(s)
- Elise Alspach
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.,The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA
| | - Danielle M Lussier
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.,The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA
| | - Alexander P Miceli
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.,The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA
| | - Ilya Kizhvatov
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Michel DuPage
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Adrienne M Luoma
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Wei Meng
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.,The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA
| | - Cheryl F Lichti
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.,The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA
| | - Ekaterina Esaulova
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Anthony N Vomund
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Daniele Runci
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.,The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA
| | - Jeffrey P Ward
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.,The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA.,Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Matthew M Gubin
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.,The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA
| | - Ruan F V Medrano
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.,The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA
| | - Cora D Arthur
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.,The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA
| | - J Michael White
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Kathleen C F Sheehan
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.,The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA
| | - Alex Chen
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Kai W Wucherpfennig
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Tyler Jacks
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emil R Unanue
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Robert D Schreiber
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA. .,The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA. .,The Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
| |
Collapse
|
103
|
Bogen B, Fauskanger M, Haabeth OA, Tveita A. CD4 + T cells indirectly kill tumor cells via induction of cytotoxic macrophages in mouse models. Cancer Immunol Immunother 2019; 68:1865-1873. [PMID: 31448380 DOI: 10.1007/s00262-019-02374-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 08/01/2019] [Indexed: 02/04/2023]
Abstract
It is well recognized that CD4+ T cells may play an important role in immunosurveillance and immunotherapy against cancer. However, the details of how these cells recognize and eliminate the tumor cells remain incompletely understood. For the past 25 years, we have focused on how CD4+ T cells reject multiple myeloma cells in a murine model (MOPC315). In our experimental system, the secreted tumor-specific antigen is taken up by tumor-infiltrating macrophages that process it and present a neoepitope [a V region-derived idiotypic (Id) peptide] on MHC class II molecules to Th1 cells. Stimulated Th1 cells produce IFNγ, which activates macrophages in a manner that elicits an M1-like, tumoricidal phenotype. Through an inducible nitric oxide synthetase (iNOS)-dependent mechanism, the M1 macrophages secrete nitric oxide (NO) that diffuses into neighboring tumor cells. Inside the tumor cells, NO-derived reactive nitrogen species, including peroxynitrite, causes nitrosylation of proteins and triggers apoptosis by the intrinsic apoptotic pathway. This mode of indirect tumor recognition by CD4+ T cells operates independently of MHC class II expression on cancer cells. However, secretion of the tumor-specific antigen, and uptake and MHCII presentation on macrophages, is required for rejection. Similar mechanisms can also be observed in a B-lymphoma model and in the unrelated B16 melanoma model. Our findings reveal a novel mechanism by which CD4+ T cells kill tumor cells indirectly via induction of intratumoral cytotoxic macrophages. The data suggest that induction of M1 polarization of tumor-infiltrating macrophages, by CD4+ T cells or through other means, could serve as an immunotherapeutic strategy.
Collapse
Affiliation(s)
- Bjarne Bogen
- Department of Immunology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
- Department of Immunology, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424, Oslo, Norway.
- KG Jebsen Centre for Influenza Vaccine Research, Oslo, Norway.
| | - Marte Fauskanger
- Department of Immunology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole Audun Haabeth
- Department of Immunology, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424, Oslo, Norway
| | - Anders Tveita
- Department of Immunology, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424, Oslo, Norway
| |
Collapse
|
104
|
Riera-Domingo C, Audigé A, Granja S, Cheng WC, Ho PC, Baltazar F, Stockmann C, Mazzone M. Immunity, Hypoxia, and Metabolism-the Ménage à Trois of Cancer: Implications for Immunotherapy. Physiol Rev 2019; 100:1-102. [PMID: 31414610 DOI: 10.1152/physrev.00018.2019] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
It is generally accepted that metabolism is able to shape the immune response. Only recently we are gaining awareness that the metabolic crosstalk between different tumor compartments strongly contributes to the harsh tumor microenvironment (TME) and ultimately impairs immune cell fitness and effector functions. The major aims of this review are to provide an overview on the immune system in cancer; to position oxygen shortage and metabolic competition as the ground of a restrictive TME and as important players in the anti-tumor immune response; to define how immunotherapies affect hypoxia/oxygen delivery and the metabolic landscape of the tumor; and vice versa, how oxygen and metabolites within the TME impinge on the success of immunotherapies. By analyzing preclinical and clinical endeavors, we will discuss how a metabolic characterization of the TME can identify novel targets and signatures that could be exploited in combination with standard immunotherapies and can help to predict the benefit of new and traditional immunotherapeutic drugs.
Collapse
Affiliation(s)
- Carla Riera-Domingo
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Annette Audigé
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Sara Granja
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Wan-Chen Cheng
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Ping-Chih Ho
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Fátima Baltazar
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Christian Stockmann
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| |
Collapse
|
105
|
Sorrentino C, Yin Z, Ciummo S, Lanuti P, Lu LF, Marchisio M, Bellone M, Di Carlo E. Targeting Interleukin(IL)-30/IL-27p28 signaling in cancer stem-like cells and host environment synergistically inhibits prostate cancer growth and improves survival. J Immunother Cancer 2019; 7:201. [PMID: 31366386 PMCID: PMC6670138 DOI: 10.1186/s40425-019-0668-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 07/08/2019] [Indexed: 01/11/2023] Open
Abstract
Background Interleukin(IL)-30/IL-27p28 production by Prostate Cancer (PC) Stem-Like Cells (SLCs) has proven, in murine models, to be critical to tumor onset and progression. In PC patients, IL-30 expression by leukocytes infiltrating PC and draining lymph nodes correlates with advanced disease grade and stage. Here, we set out to dissect the role of host immune cell-derived IL-30 in PC growth and patient outcome. Methods PC-SLCs were implanted in wild type (WT) and IL-30 conditional knockout (IL-30KO) mice. Histopathological and cytofluorimetric analyses of murine tumors and lymphoid tissues prompted analyses of patients’ PC samples and follow-ups. Results Implantation of PC-SLCs in IL-30KO mice, gave rise to slow growing tumors characterized by apoptotic events associated with CD4+T lymphocyte infiltrates and lack of CD4+Foxp3+ T regulatory cells (Tregs). IL-30 knockdown in PC-SLCs reduced cancer cell proliferation, vascularization and intra-tumoral Indoleamine 2,3-Dioxygenase (IDO)+CD11b+Gr-1+ myeloid-derived cells (MDCs) and led to a significant delay in tumor growth and increase in survival. IL-30-silenced tumors developed in IL-30KO mice, IL-30−/−tumors, lacked vascular supply and displayed frequent apoptotic cancer cells entrapped by perforin+TRAIL+CD3+Tlymphocytes, most of which had a CD4+T phenotype, whereas IL-10+TGFβ+Foxp3+Tregs were lacking. IL-30 silencing in PC-SLCs prevented lung metastasis in 73% of tumor-bearing WT mice and up to 80% in tumor-bearing IL-30KO mice. In patients with high-grade and locally advanced PC, those with IL-30−/−tumors, showed distinct intra-tumoral cytotoxic granule-associated RNA binding protein (TIA-1)+CD4+Tlymphocyte infiltrate, rare Foxp3+Tregs and a lower biochemical recurrence rate compared to patients with IL-30+/+tumors in which IL-30 is expressed in both tumor cells and infiltrating leukocytes. Conclusion The lack of host leukocyte-derived IL-30 inhibits Tregs expansion, promotes intra-tumoral infiltration of CD4+T lymphocytes and cancer cell apoptosis. Concomitant lack of MDC influx, obtained by IL-30 silencing in PC-SLCs, boosts cytotoxic T lymphocyte activation and cancer cell apoptosis resulting in a synergistic tumor suppression with the prospective benefit of better survival for patients with advanced disease. Electronic supplementary material The online version of this article (10.1186/s40425-019-0668-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carlo Sorrentino
- Department of Medicine and Sciences of Aging, G. d'Annunzio University of Chieti-Pescara, Via L. Polacchi 11, 66100, Chieti, Italy.,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Zhinan Yin
- The First Affiliated Hospital, Biomedical Translational Research Institute, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou, China
| | - Stefania Ciummo
- Department of Medicine and Sciences of Aging, G. d'Annunzio University of Chieti-Pescara, Via L. Polacchi 11, 66100, Chieti, Italy.,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Paola Lanuti
- Department of Medicine and Sciences of Aging, G. d'Annunzio University of Chieti-Pescara, Via L. Polacchi 11, 66100, Chieti, Italy
| | - Li-Fan Lu
- Division of Biological Sciences, Center for Microbiome Innovation and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Marco Marchisio
- Department of Medicine and Sciences of Aging, G. d'Annunzio University of Chieti-Pescara, Via L. Polacchi 11, 66100, Chieti, Italy
| | - Matteo Bellone
- Cellular Immunology Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Emma Di Carlo
- Department of Medicine and Sciences of Aging, G. d'Annunzio University of Chieti-Pescara, Via L. Polacchi 11, 66100, Chieti, Italy. .,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), G. d'Annunzio University of Chieti-Pescara, Chieti, Italy.
| |
Collapse
|
106
|
Kretschmann S, Herda S, Bruns H, Russ J, van der Meijden ED, Schlötzer-Schrehardt U, Griffioen M, Na IK, Mackensen A, Kremer AN. Chaperone protein HSC70 regulates intercellular transfer of Y chromosome antigen DBY. J Clin Invest 2019; 129:2952-2963. [PMID: 31205025 DOI: 10.1172/jci123105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 05/02/2019] [Indexed: 11/17/2022] Open
Abstract
Recent studies have demonstrated that CD4+ T cells can efficiently reject MHC-II-negative tumors. This requires indirect presentation of tumor-associated antigens on surrounding antigen-presenting cells. We hypothesized that intercellular transfer of proteins is not the sole consequence of cell death-mediated protein release, but depends on heat-shock cognate protein 70 (HSC70) and its KFERQ-like binding motif on substrate proteins. Using human Y chromosome antigen DBY, we showed that mutation of one of its 2 putative binding motifs markedly diminished T cell activation after indirect presentation and reduced protein-protein interaction with HSC70. Intercellular antigen transfer was shown to be independent of cell-cell contact, but relied on engulfment within secreted microvesicles. In vivo, alterations of the homologous KFERQ-like motif in murine DBY hampered tumor rejection, T cell activation, and migration into the tumor and substantially impaired survival. Collectively, we show that intercellular antigen transfer of DBY is tightly regulated via binding to HSC70 and that this mechanism influences recognition and rejection of MHC-II-negative tumors in vivo.
Collapse
Affiliation(s)
- Sascha Kretschmann
- Department of Internal Medicine 5, Hematology/Oncology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Stefanie Herda
- Experimental and Clinical Research Center, Berlin, Germany
| | - Heiko Bruns
- Department of Internal Medicine 5, Hematology/Oncology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Josefine Russ
- Experimental and Clinical Research Center, Berlin, Germany
| | - Edith D van der Meijden
- Department of Internal Medicine 5, Hematology/Oncology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany.,Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Marieke Griffioen
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Il-Kang Na
- Experimental and Clinical Research Center, Berlin, Germany.,Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin-Brandenburg Center of Regenerative Therapies, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Andreas Mackensen
- Department of Internal Medicine 5, Hematology/Oncology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Anita N Kremer
- Department of Internal Medicine 5, Hematology/Oncology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
107
|
Binnewies M, Mujal AM, Pollack JL, Combes AJ, Hardison EA, Barry KC, Tsui J, Ruhland MK, Kersten K, Abushawish MA, Spasic M, Giurintano JP, Chan V, Daud AI, Ha P, Ye CJ, Roberts EW, Krummel MF. Unleashing Type-2 Dendritic Cells to Drive Protective Antitumor CD4 + T Cell Immunity. Cell 2019; 177:556-571.e16. [PMID: 30955881 DOI: 10.1016/j.cell.2019.02.005] [Citation(s) in RCA: 440] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/08/2018] [Accepted: 02/06/2019] [Indexed: 01/09/2023]
Abstract
Differentiation of proinflammatory CD4+ conventional T cells (Tconv) is critical for productive antitumor responses yet their elicitation remains poorly understood. We comprehensively characterized myeloid cells in tumor draining lymph nodes (tdLN) of mice and identified two subsets of conventional type-2 dendritic cells (cDC2) that traffic from tumor to tdLN and present tumor-derived antigens to CD4+ Tconv, but then fail to support antitumor CD4+ Tconv differentiation. Regulatory T cell (Treg) depletion enhanced their capacity to elicit strong CD4+ Tconv responses and ensuing antitumor protection. Analogous cDC2 populations were identified in patients, and as in mice, their abundance relative to Treg predicts protective ICOS+ PD-1lo CD4+ Tconv phenotypes and survival. Further, in melanoma patients with low Treg abundance, intratumoral cDC2 density alone correlates with abundant CD4+ Tconv and with responsiveness to anti-PD-1 therapy. Together, this highlights a pathway that restrains cDC2 and whose reversal enhances CD4+ Tconv abundance and controls tumor growth.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/immunology
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cell Differentiation
- Cell Line, Tumor
- Cytokines/metabolism
- Dendritic Cells/cytology
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Diphtheria Toxin/immunology
- Forkhead Transcription Factors/metabolism
- Humans
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Lymph Nodes/immunology
- Lymph Nodes/metabolism
- Lymphocyte Activation
- Melanoma, Experimental/immunology
- Melanoma, Experimental/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, Chemokine/metabolism
- T-Lymphocytes, Regulatory/immunology
- Tumor Microenvironment
Collapse
Affiliation(s)
- Mikhail Binnewies
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Adriana M Mujal
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Alexis J Combes
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA; UCSF Immunoprofiler Initiative, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Emily A Hardison
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kevin C Barry
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA; UCSF Immunoprofiler Initiative, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jessica Tsui
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA; UCSF Immunoprofiler Initiative, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Megan K Ruhland
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kelly Kersten
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Marko Spasic
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jonathan P Giurintano
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Vincent Chan
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA; UCSF Immunoprofiler Initiative, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Adil I Daud
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Patrick Ha
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Chun J Ye
- Institute of Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Edward W Roberts
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Matthew F Krummel
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA; UCSF Immunoprofiler Initiative, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
108
|
Eisel D, Das K, Dickes E, König R, Osen W, Eichmüller SB. Cognate Interaction With CD4 + T Cells Instructs Tumor-Associated Macrophages to Acquire M1-Like Phenotype. Front Immunol 2019; 10:219. [PMID: 30853959 PMCID: PMC6395406 DOI: 10.3389/fimmu.2019.00219] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/25/2019] [Indexed: 12/14/2022] Open
Abstract
The immunosuppressive tumor microenvironment (TME) established by tumor cells, stromal cells and inhibitory immune cells counteracts the function of tumor reactive T cells. Tumor associated macrophages (TAMs) showing functional plasticity contribute to this process as so called M2-like macrophages can suppress the function of effector T cells and promote their differentiation into regulatory T cells (Tregs). Furthermore, tumor antigen specific CD4+ T effector cells can essentially sustain anti-tumoral immune responses as shown for various tumor entities, thus suggesting that cognate interaction between tumor antigen-specific CD4+ Th1 cells and TAMs might shift the intra-tumoral M1/M2 ratio toward M1. This study demonstrates repolarization of M2-like PECs upon MHC II-restricted interaction with tumor specific CD4+ Th1 cells in vitro as shown by extensive gene and protein expression analyses. Moreover, adoptive transfer of OVA-specific OT-II cells into C57BL/6 mice bearing OVA expressing IAb−/− tumors resulted in increased accumulation of M1-like TAMs with enhanced M1 associated gene and protein expression profiles. Thus, this paper highlights a so far underestimated function of the CD4+ Th1/TAM axis in re-conditioning the immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- David Eisel
- GMP & T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Biosciences Faculty, University of Heidelberg, Heidelberg, Germany.,Biopharmaceutical New Technologies (BioNTech) Corporation, Mainz, Germany
| | - Krishna Das
- GMP & T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Biosciences Faculty, University of Heidelberg, Heidelberg, Germany.,Division of Virology, Innsbruck Medical University, Innsbruck, Austria
| | - Elke Dickes
- GMP & T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rainer König
- Integrated Research and Treatment Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Wolfram Osen
- GMP & T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan B Eichmüller
- GMP & T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
109
|
Takeuchi Y, Tanemura A, Tada Y, Katayama I, Kumanogoh A, Nishikawa H. Clinical response to PD-1 blockade correlates with a sub-fraction of peripheral central memory CD4+ T cells in patients with malignant melanoma. Int Immunol 2019; 30:13-22. [PMID: 29294043 DOI: 10.1093/intimm/dxx073] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cancer immunotherapy that blocks immune checkpoint molecules, such as PD-1/PD-L1, unleashes dysfunctional antitumor T-cell responses and has durable clinical benefits in various types of cancers. Yet its clinical efficacy is limited to a small proportion of patients, highlighting the need for identifying biomarkers that can predict the clinical response by exploring antitumor responses crucial for tumor regression. Here, we explored comprehensive immune-cell responses associated with clinical benefits using PBMCs from patients with malignant melanoma treated with anti-PD-1 monoclonal antibody. Pre- and post-treatment samples were collected from two different cohorts (discovery set and validation set) and subjected to mass cytometry assays that measured the expression levels of 35 proteins. Screening by high dimensional clustering in the discovery set identified increases in three micro-clusters of CD4+ T cells, a subset of central memory CD4+ T cells harboring the CD27+FAS-CD45RA-CCR7+ phenotype, after treatment in long-term survivors, but not in non-responders. The same increase was also observed in clinical responders in the validation set. We propose that increases in this subset of central memory CD4+ T cells in peripheral blood can be potentially used as a predictor of clinical response to PD-1 blockade therapy in patients with malignant melanoma.
Collapse
Affiliation(s)
- Yoshiko Takeuchi
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo, Japan.,Department of Respiratory Medicine and Clinical Immunology
| | - Atsushi Tanemura
- Department of Dermatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yasuko Tada
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo, Japan
| | - Ichiro Katayama
- Department of Dermatology, Osaka University Graduate School of Medicine, Suita, Japan
| | | | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo, Japan.,Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
110
|
Escribà-Garcia L, Alvarez-Fernández C, Caballero AC, Schaub R, Sierra J, Briones J. The novel agonistic iNKT-cell antibody NKT14m induces a therapeutic antitumor response against B-cell lymphoma. Oncoimmunology 2019; 8:e1546543. [PMID: 30713807 DOI: 10.1080/2162402x.2018.1546543] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/24/2018] [Accepted: 11/02/2018] [Indexed: 02/02/2023] Open
Abstract
Invariant natural killer T (iNKT) cells are a small population of T lymphocytes that expresses an invariant T cell receptor with a unique specificity for glycolipid antigens. Their activation using the glycolipid α-galactosylceramide (α-GalCer) triggers innate and adaptive immune responses. The use of α-GalCer in preclinical models as a single antitumor treatment showed moderate effect, but its efficacy in cancer patients was less effective. In addition, this glycolipid induces long-term iNKT-cell anergy precluding the possibility of retreatment. Recently, the first murine iNKT-cell agonistic antibody, NKT14m, has been developed. Here, we analyzed, for the first time, the antitumor efficacy of NKT14m in a B-cell lymphoma model. In a therapeutic setting, a single dose of NKT14m had a moderate antitumor efficacy that was associated with an increase of IFN-γ producing iNKT cells even after a second dose of the NKT14m antibody. Importantly, the combination of a single dose of NKT14m with cyclophosphamide had a potent antitumor efficacy and long-lasting immunity in vivo. Our findings provide the first evidence of the in vivo antitumor efficacy of NKT14m antibody, showing that, either alone or in combination with chemotherapy, induces an effective antitumor response. These results open new opportunities for iNKT-cell mediated immunotherapy to treat B-cell lymphoma.
Collapse
Affiliation(s)
- Laura Escribà-Garcia
- Hematology Service, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Laboratory of Experimental Hematology-IIB, Institut Recerca Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Carmen Alvarez-Fernández
- Hematology Service, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Laboratory of Experimental Hematology-IIB, Institut Recerca Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Ana Carolina Caballero
- Hematology Service, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Laboratory of Experimental Hematology-IIB, Institut Recerca Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | | | - Jorge Sierra
- Hematology Service, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Josep Carreras Leukaemia Research Institute, Barcelona, Spain.,Autonomous University, Barcelona, Spain
| | - Javier Briones
- Hematology Service, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Laboratory of Experimental Hematology-IIB, Institut Recerca Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Josep Carreras Leukaemia Research Institute, Barcelona, Spain.,Autonomous University, Barcelona, Spain
| |
Collapse
|
111
|
van der Lee DI, Reijmers RM, Honders MW, Hagedoorn RS, de Jong RC, Kester MG, van der Steen DM, de Ru AH, Kweekel C, Bijen HM, Jedema I, Veelken H, van Veelen PA, Heemskerk MH, Falkenburg JF, Griffioen M. Mutated nucleophosmin 1 as immunotherapy target in acute myeloid leukemia. J Clin Invest 2019; 129:774-785. [PMID: 30640174 PMCID: PMC6355238 DOI: 10.1172/jci97482] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/06/2018] [Indexed: 12/15/2022] Open
Abstract
The most frequent subtype of acute myeloid leukemia (AML) is defined by mutations in the nucleophosmin 1 (NPM1) gene. Mutated NPM1 (ΔNPM1) is an attractive target for immunotherapy, since it is an essential driver gene and 4 bp frameshift insertions occur in the same hotspot in 30%-35% of AMLs, resulting in a C-terminal alternative reading frame of 11 aa. By searching the HLA class I ligandome of primary AMLs, we identified multiple ΔNPM1-derived peptides. For one of these peptides, HLA-A*02:01-binding CLAVEEVSL, we searched for specific T cells in healthy individuals using peptide-HLA tetramers. Tetramer-positive CD8+ T cells were isolated and analyzed for reactivity against primary AMLs. From one clone with superior antitumor reactivity, we isolated the T cell receptor (TCR) and demonstrated specific recognition and lysis of HLA-A*02:01-positive ΔNPM1 AML after retroviral transfer to CD8+ and CD4+ T cells. Antitumor efficacy of TCR-transduced T cells was confirmed in immunodeficient mice engrafted with a human AML cell line expressing ΔNPM1. In conclusion, the data show that ΔNPM1-derived peptides are presented on AML and that CLAVEEVSL is a neoantigen that can be efficiently targeted on AML by ΔNPM1 TCR gene transfer. Immunotherapy targeting ΔNPM1 may therefore contribute to treatment of AML.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/pathology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/pathology
- Female
- HLA-A2 Antigen/genetics
- HLA-A2 Antigen/immunology
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- Male
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Mutation
- Neoplasm Proteins/genetics
- Neoplasm Proteins/immunology
- Nuclear Proteins/genetics
- Nuclear Proteins/immunology
- Nucleophosmin
- Peptides/genetics
- Peptides/immunology
- Transduction, Genetic
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Arnoud H. de Ru
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | | | | | | | | | - Peter A. van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | | | | | | |
Collapse
|
112
|
Stankovic B, Bjørhovde HAK, Skarshaug R, Aamodt H, Frafjord A, Müller E, Hammarström C, Beraki K, Bækkevold ES, Woldbæk PR, Helland Å, Brustugun OT, Øynebråten I, Corthay A. Immune Cell Composition in Human Non-small Cell Lung Cancer. Front Immunol 2019; 9:3101. [PMID: 30774636 PMCID: PMC6367276 DOI: 10.3389/fimmu.2018.03101] [Citation(s) in RCA: 226] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 12/14/2018] [Indexed: 12/11/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related death in the world. Immunological analysis of the tumor microenvironment (immunoscore) shows great promise for improved prognosis and prediction of response to immunotherapy. However, the exact immune cell composition in NSCLC remains unclear. Here, we used flow cytometry to characterize the immune infiltrate in NSCLC tumors, non-cancerous lung tissue, regional lymph node, and blood. The cellular identity of >95% of all CD45+ immune cells was determined. Thirteen distinct immune cell types were identified in NSCLC tumors. T cells dominated the lung cancer landscape (on average 47% of all CD45+ immune cells). CD4+ T cells were the most abundant T cell population (26%), closely followed by CD8+ T cells (22%). Double negative CD4−CD8− T cells represented a small fraction (1.4%). CD19+ B cells were the second most common immune cell type in NSCLC tumors (16%), and four different B cell sub-populations were identified. Macrophages and natural killer (NK) cells composed 4.7 and 4.5% of the immune cell infiltrate, respectively. Three types of dendritic cells (DCs) were identified (plasmacytoid DCs, CD1c+ DCs, and CD141+ DCs) which together represented 2.1% of all immune cells. Among granulocytes, neutrophils were frequent (8.6%) with a high patient-to-patient variability, while mast cells (1.4%), basophils (0.4%), and eosinophils (0.3%) were less common. Across the cohort of patients, only B cells showed a significantly higher representation in NSCLC tumors compared to the distal lung. In contrast, the percentages of macrophages and NK cells were lower in tumors than in non-cancerous lung tissue. Furthermore, the fraction of macrophages with high HLA-DR expression levels was higher in NSCLC tumors relative to distal lung tissue. To make the method readily accessible, antibody panels and flow cytometry gating strategy used to identify the various immune cells are described in detail. This work should represent a useful resource for the immunomonitoring of patients with NSCLC.
Collapse
Affiliation(s)
- Branislava Stankovic
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Heidi Anine Korsmo Bjørhovde
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Renate Skarshaug
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Henrik Aamodt
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital and University of Oslo, Oslo, Norway.,Department of Cardiothoracic Surgery, Ullevål Hospital, Oslo University Hospital, Oslo, Norway
| | - Astri Frafjord
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Elisabeth Müller
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Clara Hammarström
- Department of Pathology, Rikshospitalet, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Kahsai Beraki
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Espen S Bækkevold
- Department of Pathology, Rikshospitalet, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Per Reidar Woldbæk
- Department of Cardiothoracic Surgery, Ullevål Hospital, Oslo University Hospital, Oslo, Norway
| | - Åslaug Helland
- Department of Oncology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Department of Genetics, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Odd Terje Brustugun
- Section of Oncology, Drammen Hospital, Vestre Viken Hospital Trust, Drammen, Norway
| | - Inger Øynebråten
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Alexandre Corthay
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital and University of Oslo, Oslo, Norway
| |
Collapse
|
113
|
Müller E, Speth M, Christopoulos PF, Lunde A, Avdagic A, Øynebråten I, Corthay A. Both Type I and Type II Interferons Can Activate Antitumor M1 Macrophages When Combined With TLR Stimulation. Front Immunol 2018; 9:2520. [PMID: 30450098 PMCID: PMC6224375 DOI: 10.3389/fimmu.2018.02520] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/12/2018] [Indexed: 12/18/2022] Open
Abstract
Triggering or enhancing antitumor activity of tumor-associated macrophages is an attractive strategy for cancer treatment. We have previously shown that the cytokine interferon-γ (IFN-γ), a type II IFN, could synergize with toll-like receptor (TLR) agonists for induction of antitumor M1 macrophages. However, the toxicity of IFN-γ limits its clinical use. Here, we investigated whether the less toxic type I IFNs, IFN-α, and IFN-β, could potentially replace IFN-γ for induction of antitumor M1 macrophages. We measured in vitro the ability of type I and II IFNs to synergize with TLR agonists for transcription of inducible nitric oxide synthase (iNOS) mRNA and secretion of nitric oxide (NO) by mouse bone marrow-derived macrophages (BMDMs). An in vitro growth inhibition assay was used to measure both cytotoxic and cytostatic activity of activated macrophages against Lewis lung carcinoma (LLC) cancer cells. We found that both type I and II IFNs could synergize with TLR agonists in inducing macrophage-mediated inhibition of cancer cell growth, which was dependent on NO. The ability of high dose lipopolysaccharide (LPS) to induce tumoricidal activity in macrophages in the absence of IFN-γ was shown to depend on induction of autocrine type I IFNs. Antitumor M1 macrophages could also be generated in the absence of IFN-γ by a combination of two TLR ligands when using the TLR3 agonist poly(I:C) which induces autocrine type I IFNs. Finally, we show that encapsulation of poly(I:C) into nanoparticles improved its potency to induce M1 macrophages up to 100-fold. This study reveals the potential of type I IFNs for activation of antitumor macrophages and indicates new avenues for cancer immunotherapy based on type I IFN signaling, including combination of TLR agonists.
Collapse
Affiliation(s)
- Elisabeth Müller
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital, University of Oslo, Oslo, Norway.,Department of Biosciences, University of Oslo, Oslo, Norway
| | - Martin Speth
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Panagiotis F Christopoulos
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Anna Lunde
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Ajna Avdagic
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Inger Øynebråten
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Alexandre Corthay
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital, University of Oslo, Oslo, Norway
| |
Collapse
|
114
|
Tomasicchio M, Semple L, Esmail A, Meldau R, Randall P, Pooran A, Davids M, Cairncross L, Anderson D, Downs J, Malherbe F, Novitzky N, Panieri E, Oelofse S, Londt R, Naiker T, Dheda K. An autologous dendritic cell vaccine polarizes a Th-1 response which is tumoricidal to patient-derived breast cancer cells. Cancer Immunol Immunother 2018; 68:71-83. [PMID: 30283982 PMCID: PMC6326986 DOI: 10.1007/s00262-018-2238-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/23/2018] [Indexed: 12/17/2022]
Abstract
Breast cancer remains one of the leading causes of cancer-associated death worldwide. Conventional treatment is associated with substantial toxicity and suboptimal efficacy. We, therefore, developed and evaluated the in vitro efficacy of an autologous dendritic cell (DC) vaccine to treat breast cancer. We recruited 12 female patients with stage 1, 2, or 3 breast cancer and matured their DCs with autologous tumour-specific lysate, a toll-like receptor (TLR)-3 and 7/8 agonist, and an interferon-containing cocktail. The efficacy of the vaccine was evaluated by its ability to elicit a cytotoxic T-lymphocyte response to autologous breast cancer cells in vitro. Matured DCs (≥ 60% upregulation of CD80, CD86, CD83, and CCR7) produced high levels of the Th1 effector cytokine, IL12-p70 (1.2 ng/ml; p < 0.0001), compared to DCs pulsed with tumour lysate, or matured with an interferon-containing cocktail alone. We further showed that matured DCs enhance antigen-specific CD8 + T-cell responses to HER-2 (4.5%; p < 0.005) and MUC-1 (19%; p < 0.05) tetramers. The mature DCs could elicit a robust and dose-dependent antigen-specific cytotoxic T-lymphocyte response (65%) which was tumoricidal to autologous breast cancer cells in vitro compared to T-lymphocytes that were primed with autologous lysate loaded-DCs (p < 0.005). Lastly, we showed that the mature DCs post-cryopreservation maintained high viability, maintained their mature phenotype, and remained free of endotoxins or mycoplasma. We have developed a DC vaccine that is cytotoxic to autologous breast cancer cells in vitro. The tools and technology generated here will now be applied to a phase I/IIa clinical trial.
Collapse
Affiliation(s)
- Michele Tomasicchio
- Division of Pulmonology and UCT Lung Institute, Department of Medicine, Centre for Lung Infection and Immunity, Groote Schuur Hospital, University of Cape Town, Old Main Building, H46.41, Groote Schuur Drive, Observatory, Cape Town, 7925, South Africa
| | - Lynn Semple
- Division of Pulmonology and UCT Lung Institute, Department of Medicine, Centre for Lung Infection and Immunity, Groote Schuur Hospital, University of Cape Town, Old Main Building, H46.41, Groote Schuur Drive, Observatory, Cape Town, 7925, South Africa
| | - Aliasgar Esmail
- Division of Pulmonology and UCT Lung Institute, Department of Medicine, Centre for Lung Infection and Immunity, Groote Schuur Hospital, University of Cape Town, Old Main Building, H46.41, Groote Schuur Drive, Observatory, Cape Town, 7925, South Africa
| | - Richard Meldau
- Division of Pulmonology and UCT Lung Institute, Department of Medicine, Centre for Lung Infection and Immunity, Groote Schuur Hospital, University of Cape Town, Old Main Building, H46.41, Groote Schuur Drive, Observatory, Cape Town, 7925, South Africa
| | - Philippa Randall
- Division of Pulmonology and UCT Lung Institute, Department of Medicine, Centre for Lung Infection and Immunity, Groote Schuur Hospital, University of Cape Town, Old Main Building, H46.41, Groote Schuur Drive, Observatory, Cape Town, 7925, South Africa
| | - Anil Pooran
- Division of Pulmonology and UCT Lung Institute, Department of Medicine, Centre for Lung Infection and Immunity, Groote Schuur Hospital, University of Cape Town, Old Main Building, H46.41, Groote Schuur Drive, Observatory, Cape Town, 7925, South Africa
| | - Malika Davids
- Division of Pulmonology and UCT Lung Institute, Department of Medicine, Centre for Lung Infection and Immunity, Groote Schuur Hospital, University of Cape Town, Old Main Building, H46.41, Groote Schuur Drive, Observatory, Cape Town, 7925, South Africa
| | - Lydia Cairncross
- Department of General Surgery, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
| | - David Anderson
- Division of Radiation Oncology, Department of Radiation Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
| | - Jennifer Downs
- Department of General Surgery, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
| | - Francois Malherbe
- Department of General Surgery, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
| | - Nicolas Novitzky
- National Health Laboratory Services (NHLS), Groote Schuur Hospital, Haematology, Cape Town, South Africa.,Division of Haematology, University of Cape Town, Cape Town, South Africa
| | - Eugenio Panieri
- Department of General Surgery, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
| | - Suzette Oelofse
- Division of Pulmonology and UCT Lung Institute, Department of Medicine, Centre for Lung Infection and Immunity, Groote Schuur Hospital, University of Cape Town, Old Main Building, H46.41, Groote Schuur Drive, Observatory, Cape Town, 7925, South Africa
| | - Rolanda Londt
- Division of Pulmonology and UCT Lung Institute, Department of Medicine, Centre for Lung Infection and Immunity, Groote Schuur Hospital, University of Cape Town, Old Main Building, H46.41, Groote Schuur Drive, Observatory, Cape Town, 7925, South Africa
| | - Thurandrie Naiker
- Department of General Surgery, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
| | - Keertan Dheda
- Division of Pulmonology and UCT Lung Institute, Department of Medicine, Centre for Lung Infection and Immunity, Groote Schuur Hospital, University of Cape Town, Old Main Building, H46.41, Groote Schuur Drive, Observatory, Cape Town, 7925, South Africa. .,Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
115
|
Polarity of CD4+ T cells towards the antigen presenting cell is regulated by the Lck adapter TSAd. Sci Rep 2018; 8:13319. [PMID: 30190583 PMCID: PMC6127336 DOI: 10.1038/s41598-018-31510-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/08/2018] [Indexed: 01/02/2023] Open
Abstract
Polarization of T cells towards the antigen presenting cell (APC) is critically important for appropriate activation and differentiation of the naïve T cell. Here we used imaging flow cytometry (IFC) and show that the activation induced Lck and Itk adapter T cell specific adapter protein (TSAd), encoded by SH2D2A, modulates polarization of T cells towards the APC. Upon exposure to APC presenting the cognate antigen Id, Sh2d2a−/− CD4+ T cells expressing Id-specific transgenic T cell receptor (TCR), displayed impaired polarization of F-actin and TCR to the immunological synapse (IS). Sh2d2a−/− T-cells that did polarize F-actin and TCR still displayed impaired polarization of PKCξ, PAR3 and the microtubule-organizing center (MTOC). In vitro differentiation of activated Sh2d2a−/− T cells was skewed towards an effector memory (Tem) rather than a central memory (Tcm) phenotype. A similar trend was observed for Id-specific TCR Sh2d2a−/− T cells stimulated with APC and cognate antigen. Taken together our data suggest that TSAd modulates differentiation of experienced T cells possibly through polarization of CD4+ T cells towards the APC.
Collapse
|
116
|
Awad RM, De Vlaeminck Y, Maebe J, Goyvaerts C, Breckpot K. Turn Back the TIMe: Targeting Tumor Infiltrating Myeloid Cells to Revert Cancer Progression. Front Immunol 2018; 9:1977. [PMID: 30233579 PMCID: PMC6127274 DOI: 10.3389/fimmu.2018.01977] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/13/2018] [Indexed: 12/19/2022] Open
Abstract
Tumor cells frequently produce soluble factors that favor myelopoiesis and recruitment of myeloid cells to the tumor microenvironment (TME). Consequently, the TME of many cancer types is characterized by high infiltration of monocytes, macrophages, dendritic cells and granulocytes. Experimental and clinical studies show that most myeloid cells are kept in an immature state in the TME. These studies further show that tumor-derived factors mold these myeloid cells into cells that support cancer initiation and progression, amongst others by enabling immune evasion, tumor cell survival, proliferation, migration and metastasis. The key role of myeloid cells in cancer is further evidenced by the fact that they negatively impact on virtually all types of cancer therapy. Therefore, tumor-associated myeloid cells have been designated as the culprits in cancer. We review myeloid cells in the TME with a focus on the mechanisms they exploit to support cancer cells. In addition, we provide an overview of approaches that are under investigation to deplete myeloid cells or redirect their function, as these hold promise to overcome resistance to current cancer therapies.
Collapse
|
117
|
Kremer AN, Zonneveld MI, Kremer AE, van der Meijden ED, Falkenburg JHF, Wauben MHM, Nolte-'t Hoen ENM, Griffioen M. Natural T-cell ligands that are created by genetic variants can be transferred between cells by extracellular vesicles. Eur J Immunol 2018; 48:1621-1631. [PMID: 30011060 PMCID: PMC6220790 DOI: 10.1002/eji.201747152] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 06/17/2018] [Accepted: 07/12/2018] [Indexed: 12/21/2022]
Abstract
CD4 T cells play a central role as helper cells in adaptive immunity. Presentation of exogenous antigens in MHC class II by professional antigen-presenting cells is a crucial step in induction of specific CD4 T cells in adaptive immune responses. For efficient induction of immunity against intracellular threats such as viruses or malignant transformations, antigens from HLA class II-negative infected or transformed cells need to be transferred to surrounding antigen-presenting cells to allow efficient priming of naive CD4 T cells. Here we show indirect antigen presentation for a subset of natural HLA class II ligands that are created by genetic variants and demonstrated that (neo)antigens can be transferred between cells by extracellular vesicles. Intercellular transfer by extracellular vesicles was not dependent on the T-cell epitope, but rather on characteristics of the full-length protein. This mechanism of (neo)antigen transfer from HLA class II-negative cells to surrounding antigen-presenting cells may play a crucial role in induction of anti-tumor immunity.
Collapse
Affiliation(s)
- Anita N Kremer
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Internal Medicine 5, Hematology and Internal Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Marijke I Zonneveld
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands.,Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Andreas E Kremer
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Internal Medicine 1, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Edith D van der Meijden
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Internal Medicine 5, Hematology and Internal Oncology, University Hospital Erlangen, Erlangen, Germany
| | | | - Marca H M Wauben
- Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Esther N M Nolte-'t Hoen
- Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Marieke Griffioen
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
118
|
Manukyan G, Turcsanyi P, Mikulkova Z, Gabcova G, Urbanova R, Gajdos P, Smotkova Kraiczova V, Zehnalova S, Papajik T, Kriegova E. Dynamic changes in HLA-DR expression during short-term and long-term ibrutinib treatment in patients with chronic lymphocytic leukemia. Leuk Res 2018; 72:113-119. [PMID: 30149317 DOI: 10.1016/j.leukres.2018.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 07/11/2018] [Accepted: 08/08/2018] [Indexed: 01/01/2023]
Abstract
There is the first evidence of changes in the kinetics of B cell antigen receptor (BCR) internalisation of neoplastic cells in chronic lymphocytic leukemia (CLL) after the short-term and long-term administration of ibrutinib. We aimed to assess the influence of short-term and long-term ibrutinib treatment on the HLA-DR expression on CLL cells, T cells and monocytes. The immunophenotyping of CLL and immune cells in peripheral blood was performed on 16 high-risk CLL patients treated with ibrutinib. After early ibrutinib administration, the HLA-DR expression on CLL cells reduced (P = 0.032), accompanied by an increase in CLL cell counts in peripheral blood (P = 0.001). In vitro culturing of CLL cells with ibrutinib also revealed the reduction in the HLA-DR expression at protein and mRNA levels (P < 0.01). The decrease in HLA-DR on CLL cells after the first month was followed by the gradual increase of its expression by the 12th month (P = 0.001). A one-month follow-up resulted in elevated absolute counts of CD4+ (P = 0.002) and CD8+ (P < 0.001) T cells as well as CD4+ and CD8+ cells bearing HLA-DR (P < 0.01). The long-term administration of ibrutinib was associated with the increased numbers of CD4+ bearing HLA-DR (P = 0.006) and elevation of HLA-DR expression on all monocyte subsets (P ≤ 0.004). Our results provide the first evidence of the time-dependent immunomodulatory effect of ibrutinib on CLL and T cells and monocytes. The clinical consequences of time-dependent changes in HLA-DR expression in ibrutinib treated patients deserve further investigation.
Collapse
Affiliation(s)
- Gayane Manukyan
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, Olomouc, Czech Republic; Laboratory of Molecular and Cellular Immunology, Institute of Molecular Biology NAS RA, Yerevan, Armenia
| | - Peter Turcsanyi
- Department of Hemato-Oncology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, Olomouc, Czech Republic
| | - Zuzana Mikulkova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, Olomouc, Czech Republic
| | - Gabriela Gabcova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, Olomouc, Czech Republic
| | - Renata Urbanova
- Department of Hemato-Oncology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, Olomouc, Czech Republic
| | - Petr Gajdos
- Department of Computer Science, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, Czech Republic
| | - Veronika Smotkova Kraiczova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, Olomouc, Czech Republic
| | - Sarka Zehnalova
- Department of Computer Science, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, Czech Republic
| | - Tomas Papajik
- Department of Hemato-Oncology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, Olomouc, Czech Republic
| | - Eva Kriegova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, Olomouc, Czech Republic.
| |
Collapse
|
119
|
Habtetsion T, Ding ZC, Pi W, Li T, Lu C, Chen T, Xi C, Spartz H, Liu K, Hao Z, Mivechi N, Huo Y, Blazar BR, Munn DH, Zhou G. Alteration of Tumor Metabolism by CD4+ T Cells Leads to TNF-α-Dependent Intensification of Oxidative Stress and Tumor Cell Death. Cell Metab 2018; 28:228-242.e6. [PMID: 29887396 PMCID: PMC6082691 DOI: 10.1016/j.cmet.2018.05.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 03/05/2018] [Accepted: 05/14/2018] [Indexed: 12/17/2022]
Abstract
The inhibitory effects of cancer on T cell metabolism have been well established, but the metabolic impact of immunotherapy on tumor cells is poorly understood. Here, we developed a CD4+ T cell-based adoptive immunotherapy protocol that was curative for mice with implanted colorectal tumors. By conducting metabolic profiling on tumors, we show that adoptive immunotherapy profoundly altered tumor metabolism, resulting in glutathione depletion and accumulation of reactive oxygen species (ROS) in tumor cells. We further demonstrate that T cell-derived tumor necrosis factor alpha (TNF-α) can synergize with chemotherapy to intensify oxidative stress and tumor cell death in an NADPH (nicotinamide adenine dinucleotide phosphate hydrogen) oxidase-dependent manner. Reduction of oxidative stress, by preventing TNF-α-signaling in tumor cells or scavenging ROS, antagonized the therapeutic effects of adoptive immunotherapy. Conversely, provision of pro-oxidants after chemotherapy can partially recapitulate the antitumor effects of T cell transfer. These findings imply that reinforcing tumor oxidative stress represents an important mechanism underlying the efficacy of adoptive immunotherapy.
Collapse
Affiliation(s)
- Tsadik Habtetsion
- Georgia Cancer Center, Medical College of Georgia, Augusta University, 1120 15(th) Street, CN-4140, Augusta, GA 30912, USA
| | - Zhi-Chun Ding
- Georgia Cancer Center, Medical College of Georgia, Augusta University, 1120 15(th) Street, CN-4140, Augusta, GA 30912, USA
| | - Wenhu Pi
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Tao Li
- Department of Oncology and Surgery, General Hospital of Ningxia Medical University, 804 Shengli Road, Yinchuan, Ningxia Province 750004, PR China
| | - Chunwan Lu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Tingting Chen
- Georgia Cancer Center, Medical College of Georgia, Augusta University, 1120 15(th) Street, CN-4140, Augusta, GA 30912, USA
| | - Caixia Xi
- Georgia Cancer Center, Medical College of Georgia, Augusta University, 1120 15(th) Street, CN-4140, Augusta, GA 30912, USA; Molecular Chaperone Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Helena Spartz
- Department of Pathology, Section of Anatomic Pathology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Zhonglin Hao
- Georgia Cancer Center, Medical College of Georgia, Augusta University, 1120 15(th) Street, CN-4140, Augusta, GA 30912, USA; Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Nahid Mivechi
- Georgia Cancer Center, Medical College of Georgia, Augusta University, 1120 15(th) Street, CN-4140, Augusta, GA 30912, USA; Molecular Chaperone Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Yuqing Huo
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, USA
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - David H Munn
- Georgia Cancer Center, Medical College of Georgia, Augusta University, 1120 15(th) Street, CN-4140, Augusta, GA 30912, USA
| | - Gang Zhou
- Georgia Cancer Center, Medical College of Georgia, Augusta University, 1120 15(th) Street, CN-4140, Augusta, GA 30912, USA; Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
120
|
Fauskanger M, Haabeth OAW, Skjeldal FM, Bogen B, Tveita AA. Tumor Killing by CD4 + T Cells Is Mediated via Induction of Inducible Nitric Oxide Synthase-Dependent Macrophage Cytotoxicity. Front Immunol 2018; 9:1684. [PMID: 30083157 PMCID: PMC6064871 DOI: 10.3389/fimmu.2018.01684] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/09/2018] [Indexed: 01/09/2023] Open
Abstract
CD4+ T cells can induce potent anti-tumor immune responses. Due to the lack of MHC class II expression in most cancer cells, antigen recognition occurs indirectly via uptake and presentation on tumor-infiltrating antigen-presenting cells (APCs). Activation of the APCs can induce tumor rejection, but the mechanisms underlying tumor killing by such cells have not been established. To elucidate the molecular basis of CD4+ T-cell-mediated tumor rejection, we utilized a murine model of multiple myeloma, in which the T cells recognize a secreted tumor neoantigen. Our findings demonstrate that T cell recognition triggers inducible nitric oxide synthase activity within tumor-infiltrating macrophages. Diffusion of nitric oxide into surrounding tumor cells results in intracellular accumulation of toxic secondary oxidants, notably peroxynitrite. This results in tumor cell apoptosis through activation of the mitochondrial pathway. We find that this mode of cytotoxicity has strict spatial limitations, and is restricted to the immediate surroundings of the activated macrophage, thus limiting bystander killing. These findings provide a molecular basis for macrophage-mediated anti-tumor immune responses orchestrated by CD4+ T cells. Since macrophages are abundant in most solid tumors, evoking the secretion of nitric oxide by such cells may represent a potent therapeutic strategy.
Collapse
Affiliation(s)
- Marte Fauskanger
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway
| | | | - Frode Miltzow Skjeldal
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway.,Department of Biosciences, University of Oslo, Oslo, Norway
| | - Bjarne Bogen
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway.,KG Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Anders Aune Tveita
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
121
|
Targeting Wnt/β-Catenin Signaling for Cancer Immunotherapy. Trends Pharmacol Sci 2018; 39:648-658. [DOI: 10.1016/j.tips.2018.03.008] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/19/2018] [Accepted: 03/23/2018] [Indexed: 02/07/2023]
|
122
|
Kalyanasundram J, Hamid A, Yusoff K, Chia SL. Newcastle disease virus strain AF2240 as an oncolytic virus: A review. Acta Trop 2018; 183:126-133. [PMID: 29626432 DOI: 10.1016/j.actatropica.2018.04.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/13/2018] [Accepted: 04/01/2018] [Indexed: 01/25/2023]
Abstract
The discovery of tumour selective virus-mediated apoptosis marked the birth of an alternative cancer treatment in the form of oncolytic viruses. Even though, its oncolytic efficiency was demonstrated more than 50 years ago, safety concerns which resulted from mild to lethal side effects hampered the progress of oncolytic virus research. Since the classical oncolytic virus studies rely heavily on its natural oncolytic ability, virus manipulation was limited, thereby, restricted efforts to improve its safety. In order to circumvent such restriction, experiments involving non-human viruses such as the avian Newcastle disease virus (NDV) was conducted using cultured cells, animal models and human subjects. The corresponding reports on its significant tumour cytotoxicity along with impressive safety profile initiated immense research interest in the field of oncolytic NDV. The varying degree of oncolytic efficiency and virulency among NDV strains encouraged researchers from all around the world to experiment with their respective local NDV isolates in order to develop an oncolytic virus with desirable characteristics. Such desirable features include high tumour-killing ability, selectivity and low systemic cytotoxicity. The Malaysian field outbreak isolate, NDV strain AF2240, also currently, receives significant research attention. Apart from its high cytotoxicity against tumour cells, this strain also provided fundamental insight into NDV-mediated apoptosis mechanism which involves Bax protein recruitment as well as death receptor engagement. Studies on its ability to selectively induce apoptosis in tumour cells also resulted in a proposed p38 MAPK/NF-κB/IκBα pathway. The immunogenicity of AF2240 was also investigated through PBMC stimulation and macrophage infection. In addition, the enhanced oncolytic ability of this strain under hypoxic condition signifies its dynamic tumour tropism. This review is aimed to introduce and discuss the aforementioned details of the oncolytic AF2240 strain along with its current challenges which outlines the future research direction of this virus.
Collapse
Affiliation(s)
- Jeevanathan Kalyanasundram
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor D.E., Malaysia; Malaysian Genome Institute, Jalan Bangi, 43000 Kajang, Selangor D.E., Malaysia
| | - Aini Hamid
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor D.E., Malaysia
| | - Khatijah Yusoff
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor D.E., Malaysia; Malaysian Genome Institute, Jalan Bangi, 43000 Kajang, Selangor D.E., Malaysia; Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor D.E., Malaysia
| | - Suet Lin Chia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor D.E., Malaysia; Malaysian Genome Institute, Jalan Bangi, 43000 Kajang, Selangor D.E., Malaysia; Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor D.E., Malaysia.
| |
Collapse
|
123
|
Annels NE, Arif M, Simpson GR, Denyer M, Moller-Levet C, Mansfield D, Butler R, Shafren D, Au G, Knowles M, Harrington K, Vile R, Melcher A, Pandha H. Oncolytic Immunotherapy for Bladder Cancer Using Coxsackie A21 Virus. Mol Ther Oncolytics 2018; 9:1-12. [PMID: 29989024 PMCID: PMC6035483 DOI: 10.1016/j.omto.2018.02.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 02/06/2023] Open
Abstract
As a clinical setting in which local live biological therapy is already well established, non-muscle invasive bladder cancer (NMIBC) presents intriguing opportunities for oncolytic virotherapy. Coxsackievirus A21 (CVA21) is a novel intercellular adhesion molecule-1 (ICAM-1)-targeted immunotherapeutic virus. This study investigated CVA21-induced cytotoxicity in a panel of human bladder cancer cell lines, revealing a range of sensitivities largely correlating with expression of the viral receptor ICAM-1. CVA21 in combination with low doses of mitomycin-C enhanced CVA21 viral replication and oncolysis by increasing surface expression levels of ICAM-1. This was further confirmed using 300-μm precision slices of NMIBC where levels of virus protein expression and induction of apoptosis were enhanced with prior exposure to mitomycin-C. Given the importance of the immunogenicity of dying cancer cells for triggering tumor-specific responses and long-term therapeutic success, the ability of CVA21 to induce immunogenic cell death was investigated. CVA21 induced immunogenic apoptosis in bladder cancer cell lines, as evidenced by expression of the immunogenic cell death (ICD) determinant calreticulin, and HMGB-1 release and the ability to reject MB49 tumors in syngeneic mice after vaccination with MB49 cells undergoing CVA21 induced ICD. Such CVA21 immunotherapy could offer a potentially less toxic, more effective option for the treatment of bladder cancer.
Collapse
Affiliation(s)
- Nicola E. Annels
- Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, Leggett Building, Daphne Jackson Road, University of Surrey, Guildford GU2 7WG, UK
| | - Mehreen Arif
- Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, Leggett Building, Daphne Jackson Road, University of Surrey, Guildford GU2 7WG, UK
| | - Guy R. Simpson
- Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, Leggett Building, Daphne Jackson Road, University of Surrey, Guildford GU2 7WG, UK
| | - Mick Denyer
- Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, Leggett Building, Daphne Jackson Road, University of Surrey, Guildford GU2 7WG, UK
| | - Carla Moller-Levet
- Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, Leggett Building, Daphne Jackson Road, University of Surrey, Guildford GU2 7WG, UK
| | | | - Rachel Butler
- Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, Leggett Building, Daphne Jackson Road, University of Surrey, Guildford GU2 7WG, UK
| | - Darren Shafren
- Viralytics Limited, Suite 305, Level 3, 66 Hunter Street, Sydney, NSW 2000, Australia
| | - Gough Au
- Viralytics Limited, Suite 305, Level 3, 66 Hunter Street, Sydney, NSW 2000, Australia
| | - Margaret Knowles
- Section of Experimental Oncology, Leeds Institute of Cancer and Pathology, St. James’s University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | | | - Richard Vile
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55902, USA
| | - Alan Melcher
- The Institute of Cancer Research, London SM2 5PT, UK
| | - Hardev Pandha
- Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, Leggett Building, Daphne Jackson Road, University of Surrey, Guildford GU2 7WG, UK
| |
Collapse
|
124
|
Wang D, Aguilar B, Starr R, Alizadeh D, Brito A, Sarkissian A, Ostberg JR, Forman SJ, Brown CE. Glioblastoma-targeted CD4+ CAR T cells mediate superior antitumor activity. JCI Insight 2018; 3:99048. [PMID: 29769444 PMCID: PMC6012522 DOI: 10.1172/jci.insight.99048] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/12/2018] [Indexed: 12/28/2022] Open
Abstract
Chimeric antigen receptor-modified (CAR-modified) T cells have shown promising therapeutic effects for hematological malignancies, yet limited and inconsistent efficacy against solid tumors. The refinement of CAR therapy requires an understanding of the optimal characteristics of the cellular products, including the appropriate composition of CD4+ and CD8+ subsets. Here, we investigated the differential antitumor effect of CD4+ and CD8+ CAR T cells targeting glioblastoma-associated (GBM-associated) antigen IL-13 receptor α2 (IL13Rα2). Upon stimulation with IL13Rα2+ GBM cells, the CD8+ CAR T cells exhibited robust short-term effector function but became rapidly exhausted. By comparison, the CD4+ CAR T cells persisted after tumor challenge and sustained their effector potency. Mixing with CD4+ CAR T cells failed to ameliorate the effector dysfunction of CD8+ CAR T cells, while surprisingly, CD4+ CAR T cell effector potency was impaired when coapplied with CD8+ T cells. In orthotopic GBM models, CD4+ outperformed CD8+ CAR T cells, especially for long-term antitumor response. Further, maintenance of the CD4+ subset was positively correlated with the recursive killing ability of CAR T cell products derived from GBM patients. These findings identify CD4+ CAR T cells as a highly potent and clinically important T cell subset for effective CAR therapy.
Collapse
Affiliation(s)
- Dongrui Wang
- Department of Hematology and Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, and
- Irell and Manella Graduate School of Biological Sciences, City of Hope (COH) Beckman Research Institute and Medical Center, Duarte, California, USA
| | - Brenda Aguilar
- Department of Hematology and Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, and
| | - Renate Starr
- Department of Hematology and Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, and
| | - Darya Alizadeh
- Department of Hematology and Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, and
| | - Alfonso Brito
- Department of Hematology and Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, and
| | - Aniee Sarkissian
- Department of Hematology and Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, and
| | - Julie R. Ostberg
- Department of Hematology and Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, and
| | - Stephen J. Forman
- Department of Hematology and Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, and
| | - Christine E. Brown
- Department of Hematology and Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, and
| |
Collapse
|
125
|
Haabeth OAW, Fauskanger M, Manzke M, Lundin KU, Corthay A, Bogen B, Tveita AA. CD4+ T-cell–Mediated Rejection of MHC Class II–Positive Tumor Cells Is Dependent on Antigen Secretion and Indirect Presentation on Host APCs. Cancer Res 2018; 78:4573-4585. [DOI: 10.1158/0008-5472.can-17-2426] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 03/16/2018] [Accepted: 05/08/2018] [Indexed: 11/16/2022]
|
126
|
Castro F, Cardoso AP, Gonçalves RM, Serre K, Oliveira MJ. Interferon-Gamma at the Crossroads of Tumor Immune Surveillance or Evasion. Front Immunol 2018; 9:847. [PMID: 29780381 PMCID: PMC5945880 DOI: 10.3389/fimmu.2018.00847] [Citation(s) in RCA: 855] [Impact Index Per Article: 122.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/05/2018] [Indexed: 12/15/2022] Open
Abstract
Interferon-gamma (IFN-γ) is a pleiotropic molecule with associated antiproliferative, pro-apoptotic and antitumor mechanisms. This effector cytokine, often considered as a major effector of immunity, has been used in the treatment of several diseases, despite its adverse effects. Although broad evidence implicating IFN-γ in tumor immune surveillance, IFN-γ-based therapies undergoing clinical trials have been of limited success. In fact, recent reports suggested that it may also play a protumorigenic role, namely, through IFN-γ signaling insensitivity, downregulation of major histocompatibility complexes, and upregulation of indoleamine 2,3-dioxygenase and of checkpoint inhibitors, as programmed cell-death ligand 1. However, the IFN-γ-mediated responses are still positively associated with patient's survival in several cancers. Consequently, major research efforts are required to understand the immune contexture in which IFN-γ induces its intricate and highly regulated effects in the tumor microenvironment. This review discusses the current knowledge on the pro- and antitumorigenic effects of IFN-γ as part of the complex immune response to cancer, highlighting the relevance to identify IFN-γ responsive patients for the improvement of therapies that exploit associated signaling pathways.
Collapse
Affiliation(s)
- Flávia Castro
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS – Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Ana Patrícia Cardoso
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Raquel Madeira Gonçalves
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS – Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Karine Serre
- IMM – Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Maria José Oliveira
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Departamento de Patologia e Oncologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| |
Collapse
|
127
|
Ahrends T, Borst J. The opposing roles of CD4 + T cells in anti-tumour immunity. Immunology 2018; 154:582-592. [PMID: 29700809 PMCID: PMC6050207 DOI: 10.1111/imm.12941] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 02/06/2023] Open
Abstract
Cancer immunotherapy focuses mainly on anti-tumour activity of CD8+ cytotoxic T lymphocytes (CTLs). CTLs can directly kill all tumour cell types, provided they carry recognizable antigens. However, CD4+ T cells also play important roles in anti-tumour immunity. CD4+ T cells can either suppress or promote the anti-tumour CTL response, either in secondary lymphoid organs or in the tumour. In this review, we highlight opposing mechanisms of conventional and regulatory T cells at both sites. We outline how current cancer immunotherapy strategies affect both subsets and how selective modulation of each subset is important to maximize the clinical response of cancer patients.
Collapse
Affiliation(s)
- Tomasz Ahrends
- Division of Tumour Biology and ImmunologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Jannie Borst
- Division of Tumour Biology and ImmunologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| |
Collapse
|
128
|
Luo CT, Li MO. Foxo transcription factors in T cell biology and tumor immunity. Semin Cancer Biol 2018; 50:13-20. [PMID: 29684436 DOI: 10.1016/j.semcancer.2018.04.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 01/05/2023]
Abstract
The evolutionally conserved forkhead box O (Foxo) family of transcription factors is pivotal in the control of nutrient sensing and stress responses. Recent studies have revealed that the Foxo proteins have been rewired to regulate highly specialized T cell activities. Here, we review the latest advances in the understanding of how Foxo transcription factors control T cell biology, including T cell trafficking, naive T cell homeostasis, effector and memory responses, as well as the differentiation and function of regulatory T cells. We also discuss the emerging evidence on Foxo-mediated regulation in antitumor immunity. Future work will further explore how the Foxo-dependent programs in T cells can be exploited for cancer immunotherapy.
Collapse
Affiliation(s)
- Chong T Luo
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ming O Li
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
129
|
Erin N, Tanrıöver G, Curry A, Akman M, Duymuş Ö, Gorczynski R. CD200fc enhances anti-tumoral immune response and inhibits visceral metastasis of breast carcinoma. Oncotarget 2018; 9:19147-19158. [PMID: 29721190 PMCID: PMC5922384 DOI: 10.18632/oncotarget.24931] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 02/28/2018] [Indexed: 01/11/2023] Open
Abstract
CD200 is a widely expressed cell surface glycoprotein that inhibits excessive inflammation in autoimmunity, transplantation, and viral infections. We previously observed that visceral metastasis of highly aggressive and inflammatory 4THM breast carcinoma cells was markedly decreased in CD200 transgenic mice. The goal of this study was to determine whether exogenous exposure to CD200fc mimics the effects of endogenously over expressed CD200. Female BALB/c mice were injected with CD200fc two times a week for five times. Injection was started two days after orthotopic injection of 4THM cells. Tumor infiltrating Gr1+Cd11b+ cells were decreased while CD8+ cells were increased in CD200fc-treated animals. CD200fc injection significantly decreased lung and liver metastasis and the growth of primary tumors. CD200fc injection enhanced the tumor-induced IFN-g response while suppressing the IL-10 response. We observed excessive basal IL-6 secretion in MLC which was significantly decreased in CD200fc treated mice 12 days after injection of 4TM cells. These results are in accord with previous data from CD200 transgenic mice, and demonstrate for the first time that CD200 analogues might have therapeutic potential in the treatment of aggressive breast carcinoma which induces excessive systemic inflammation.
Collapse
Affiliation(s)
- Nuray Erin
- Department of Medical Pharmacology, Akdeniz University, School of Medicine, Antalya, Turkey
| | - Gamze Tanrıöver
- Histology and Embryology, Akdeniz University, School of Medicine, Antalya, Turkey
| | - Anna Curry
- University Health Network, Toronto General Hospital, Toronto, Canada
| | - Muhlis Akman
- Department of Medical Pharmacology, Akdeniz University, School of Medicine, Antalya, Turkey
| | - Özlem Duymuş
- Department of Medical Pharmacology, Akdeniz University, School of Medicine, Antalya, Turkey
| | - Reg Gorczynski
- University Health Network, Toronto General Hospital, Toronto, Canada
| |
Collapse
|
130
|
Tveita A, Fauskanger M, Bogen B, Haabeth OAW. Tumor-specific CD4+ T cells eradicate myeloma cells genetically deficient in MHC class II display. Oncotarget 2018; 7:67175-67182. [PMID: 27626487 PMCID: PMC5341866 DOI: 10.18632/oncotarget.11946] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 09/02/2016] [Indexed: 11/25/2022] Open
Abstract
CD4+ T cells have been shown to reject tumor cells with no detectable expression of major histocompatibility complex class II (MHC II). However, under certain circumstances, induction of ectopic MHC II expression on tumor cells has been reported. To confirm that CD4+ T cell-mediated anti-tumor immunity can be successful in the complete absence of antigen display on the tumor cells themselves, we eliminated MHC II on tumor cells using CRISPR/Cas9. Our results demonstrate that ablation of the relevant MHC II (I-Ed) in multiple myeloma cells (MOPC315) does not hinder rejection by tumor-specific CD4+ T cells. These findings provide conclusive evidence that CD4+ T cells specific for tumor antigens can eliminate malignant cells in the absence of endogenous MHC class II expression on the tumor cells. This occurs through antigen uptake and indirect presentation on tumor-infiltrating macrophages.
Collapse
Affiliation(s)
- Anders Tveita
- Centre for Immune Regulation, Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Marte Fauskanger
- Centre for Immune Regulation, Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Bjarne Bogen
- Centre for Immune Regulation, Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway.,KG Jebsen Centre for Research on Influenza Vaccines, Institute of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Ole Audun Werner Haabeth
- Centre for Immune Regulation, Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
131
|
Braham MVJ, Minnema MC, Aarts T, Sebestyen Z, Straetemans T, Vyborova A, Kuball J, Öner FC, Robin C, Alblas J. Cellular immunotherapy on primary multiple myeloma expanded in a 3D bone marrow niche model. Oncoimmunology 2018; 7:e1434465. [PMID: 29872571 PMCID: PMC5980416 DOI: 10.1080/2162402x.2018.1434465] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/25/2018] [Accepted: 01/25/2018] [Indexed: 12/01/2022] Open
Abstract
Bone marrow niches support multiple myeloma, providing signals and cell-cell interactions essential for disease progression. A 3D bone marrow niche model was developed, in which supportive multipotent mesenchymal stromal cells and their osteogenic derivatives were co-cultured with endothelial progenitor cells. These co-cultured cells formed networks within the 3D culture, facilitating the survival and proliferation of primary CD138+ myeloma cells for up to 28 days. During this culture, no genetic drift was observed within the genomic profile of the primary myeloma cells, indicating a stable outgrowth of the cultured CD138+ population. The 3D bone marrow niche model enabled testing of a novel class of engineered immune cells, so called TEGs (αβT cells engineered to express a defined γδTCR) on primary myeloma cells. TEGs were engineered and tested from both healthy donors and myeloma patients. The added TEGs were capable of migrating through the 3D culture, exerting a killing response towards the primary myeloma cells in 6 out of 8 donor samples after both 24 and 48 hours. Such a killing response was not observed when adding mock transduced T cells. No differences were observed comparing allogeneic and autologous therapy. The supporting stromal microenvironment was unaffected in all conditions after 48 hours. When adding TEG therapy, the 3D model surpassed 2D models in many aspects by enabling analyses of specific homing, and both on- and off-target effects, preparing the ground for the clinical testing of TEGs. The model allows studying novel immunotherapies, therapy resistance mechanisms and possible side-effects for this incurable disease.
Collapse
Affiliation(s)
- Maaike V. J. Braham
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Monique C. Minnema
- Department of Hematology, University Medical Center Utrecht Cancer Center, Utrecht, The Netherlands
| | - Tineke Aarts
- Department of Hematology, University Medical Center Utrecht Cancer Center, Utrecht, The Netherlands
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Zsolt Sebestyen
- Department of Hematology, University Medical Center Utrecht Cancer Center, Utrecht, The Netherlands
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Trudy Straetemans
- Department of Hematology, University Medical Center Utrecht Cancer Center, Utrecht, The Netherlands
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Anna Vyborova
- Department of Hematology, University Medical Center Utrecht Cancer Center, Utrecht, The Netherlands
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jurgen Kuball
- Department of Hematology, University Medical Center Utrecht Cancer Center, Utrecht, The Netherlands
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - F. Cumhur Öner
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Catherine Robin
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Cell Biology, University Medical Center, Utrecht, The Netherlands
| | - Jacqueline Alblas
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
132
|
Stelloo E, Versluis MA, Nijman HW, de Bruyn M, Plat A, Osse EM, van Dijk RH, Nout RA, Creutzberg CL, de Bock GH, Smit VT, Bosse T, Hollema H. Microsatellite instability derived JAK1 frameshift mutations are associated with tumor immune evasion in endometrioid endometrial cancer. Oncotarget 2018; 7:39885-39893. [PMID: 27213585 PMCID: PMC5129978 DOI: 10.18632/oncotarget.9414] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/26/2016] [Indexed: 12/26/2022] Open
Abstract
JAK1 frameshift mutations may promote cancer cell immune evasion by impeding upregulation of the antigen presentation pathway in microsatellite unstable endometrial cancers (ECs). This study investigated the JAK1 mutation frequency, its functional implication in immune evasion and its prognostic significance in microsatellite unstable EC. Microsatellite instability and three microsatellite repeats within JAK1 were analyzed in 181 ECs. Sixty-two (34%) ECs showed microsatellite instability, of which 22 (35%) had a JAK1 mutation. LMP7, TAP1 and HLA class I protein expression and the presence of CD8-positive T-cells were analyzed in the microsatellite unstable ECs. JAK1 mutant microsatellite unstable ECs showed impaired upregulation of LMP7 (P=0.074) and HLA class I (P<0.001), validated using RNAseq data of the TCGA. TAP1 expression and presence of CD8-positive T-cells were not related to JAK1 mutations. In 198 additional microsatellite unstable ECs, the JAK1 mutation frequency was confirmed but no prognostic significance was found. For, JAK1 wildtype (n=135, 72%) and mutant (n=52, 28%) ECs, 10-year recurrence free rates were 84% and 77% (P=0.301). These observations show that JAK1 mutations are highly frequent in microsatellite unstable EC, not associated with survival, but are associated with impaired upregulation of LMP7 and HLA class I and may therefore facilitate immune escape.
Collapse
Affiliation(s)
- Ellen Stelloo
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marco A Versluis
- Department of Gynecologic Oncology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Hans W Nijman
- Department of Gynecologic Oncology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Marco de Bruyn
- Department of Gynecologic Oncology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Annechien Plat
- Department of Gynecologic Oncology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Elisabeth M Osse
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Reinhardt H van Dijk
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Remi A Nout
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Carien L Creutzberg
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Geertruida H de Bock
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Vincent T Smit
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tjalling Bosse
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Harry Hollema
- Department of Pathology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
133
|
Kuczma M, Ding ZC, Zhou G. Immunostimulatory Effects of Melphalan and Usefulness in Adoptive Cell Therapy with Antitumor CD4+ T Cells. Crit Rev Immunol 2017; 36:179-191. [PMID: 27910767 DOI: 10.1615/critrevimmunol.2016017507] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The alkylating agent melphalan is used in the treatment of hematological malignancies, especially multiple myeloma. In the past, the usefulness of melphalan has been solely attributed to its cytotoxicity on fastgrowing cancerous cells. Although the immunomodulatory effects of melphalan were suggested many years ago, only recently has this aspect of melphalan's activity begun to be elucidated at the molecular level. Emerging evidence indicates that melphalan can foster an immunogenic microenvironment by inducing immunogenic cell death (ICD) as characterized by membrane translocation of endoplasmic reticulum protein calreticulin (CRT) and by release of chromatin-binding protein high-mobility group box 1 (HMGB1). In addition, the lympho-depletive effect of melphalan can induce the release of pro-inflammatory cytokines and growth factors, deplete regulatory T cells, and create space to facilitate the expansion of infused tumor-reactive T cells. These features suggest that melphalan can be used as a preparative chemotherapy for adoptive T-cell therapy. This notion is supported by our recent work demonstrating that the combination of melphalan and adoptive transfer of tumor-reactive CD4+ T cells can mediate potent antitumor effects in animal models. This review summarizes the recent advances in understanding and utilizing the immunomodulatory effects of melphalan.
Collapse
Affiliation(s)
- Michal Kuczma
- Cancer Immunology, Inflammation and Tolerance Program, Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Zhi-Chun Ding
- Cancer Immunology, Inflammation and Tolerance Program, Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Gang Zhou
- Cancer Immunology, Inflammation and Tolerance Program, Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
134
|
Kurena B, Müller E, Christopoulos PF, Johnsen IB, Stankovic B, Øynebråten I, Corthay A, Zajakina A. Generation and Functional In Vitro Analysis of Semliki Forest Virus Vectors Encoding TNF-α and IFN-γ. Front Immunol 2017; 8:1667. [PMID: 29276511 PMCID: PMC5727424 DOI: 10.3389/fimmu.2017.01667] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/14/2017] [Indexed: 12/25/2022] Open
Abstract
Cytokine gene delivery by viral vectors is a promising novel strategy for cancer immunotherapy. Semliki Forest virus (SFV) has many advantages as a delivery vector, including the ability to (i) induce p53-independent killing of tumor cells via apoptosis, (ii) elicit a type-I interferon (IFN) response, and (iii) express high levels of the transgene. SFV vectors encoding cytokines such as interleukin (IL)-12 have shown promising therapeutic responses in experimental tumor models. Here, we developed two new recombinant SFV vectors encoding either murine tumor necrosis factor-α (TNF-α) or murine interferon-γ (IFN-γ), two cytokines with documented immunostimulatory and antitumor activity. The SFV vector showed high infection rate and cytotoxicity in mouse and human lung carcinoma cells in vitro. By contrast, mouse and human macrophages were resistant to infection with SFV. The recombinant SFV vectors directly inhibited mouse lung carcinoma cell growth in vitro, while exploiting the cancer cells for production of SFV vector-encoded cytokines. The functionality of SFV vector-derived TNF-α was confirmed through successful induction of cell death in TNF-α-sensitive fibroblasts in a concentration-dependent manner. SFV vector-derived IFN-γ activated macrophages toward a tumoricidal phenotype leading to suppressed Lewis lung carcinoma cell growth in vitro in a concentration-dependent manner. The ability of SFV to provide functional cytokines and infect tumor cells but not macrophages suggests that SFV may be very useful for cancer immunotherapy employing tumor-infiltrating macrophages.
Collapse
Affiliation(s)
- Baiba Kurena
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital, University of Oslo, Oslo, Norway.,Cancer Gene Therapy Group, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Elisabeth Müller
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital, University of Oslo, Oslo, Norway.,Department of Biosciences, University of Oslo, Oslo, Norway
| | - Panagiotis F Christopoulos
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Ingvild Bjellmo Johnsen
- Department of Laboratory Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Branislava Stankovic
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Inger Øynebråten
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Alexandre Corthay
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Anna Zajakina
- Cancer Gene Therapy Group, Latvian Biomedical Research and Study Centre, Riga, Latvia
| |
Collapse
|
135
|
Müller E, Christopoulos PF, Halder S, Lunde A, Beraki K, Speth M, Øynebråten I, Corthay A. Toll-Like Receptor Ligands and Interferon-γ Synergize for Induction of Antitumor M1 Macrophages. Front Immunol 2017; 8:1383. [PMID: 29123526 PMCID: PMC5662546 DOI: 10.3389/fimmu.2017.01383] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/06/2017] [Indexed: 01/01/2023] Open
Abstract
Tumor-associated macrophages may either promote or suppress tumor growth depending on their activation status. Interferon-γ (IFN-γ) has been identified as a key factor for inducing tumoricidal M1 phenotype in macrophages. However, it remains unclear whether IFN-γ is sufficient or if additional stimuli are required. Here, we tested IFN-γ and a panel of toll-like receptor (TLR) agonists for the ability to activate murine macrophages toward a tumoricidal M1 phenotype. The following TLR ligands were used: TLR1/TLR2 agonist Pam3CSK4, TLR2/TLR6 agonist lipotechoic acid, TLR3 agonist poly(I:C), TLR4 agonist lipopolysaccharide (LPS), TLR5 agonist flagellin, TLR7 agonist CL264, and TLR9 agonist CpG. We used an in vitro growth inhibition assay to measure both cytotoxic and cytostatic activity of mouse macrophages against Lewis lung carcinoma (LLC) and MOPC315 plasmacytoma tumor cells. Production of nitric oxide (NO) and cytokines by activated macrophages was quantified. We found that IFN-γ alone was not able to render macrophages tumoricidal. Similarly, macrophage activation with single TLR agonists was inefficient. In sharp contrast, IFN-γ was shown to synergize with TLR agonists for induction of macrophage tumoricidal activity and production of both NO and pro-inflammatory cytokines (TNF-α, IL-12p40, and IL-12p70). Furthermore, IFN-γ was shown to suppress macrophage IL-10 secretion induced by TLR agonists. NO production was necessary for macrophage tumoricidal activity. We conclude that two signals from the microenvironment are required for optimal induction of antitumor M1 macrophage phenotype. Combination treatment with IFN-γ and TLR agonists may offer new avenues for macrophage-based cancer immunotherapy.
Collapse
Affiliation(s)
- Elisabeth Müller
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital, University of Oslo, Oslo, Norway.,Department of Biosciences, University of Oslo, Oslo, Norway
| | - Panagiotis F Christopoulos
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Sanjib Halder
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Anna Lunde
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Kahsai Beraki
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Martin Speth
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Inger Øynebråten
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Alexandre Corthay
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital, University of Oslo, Oslo, Norway
| |
Collapse
|
136
|
Ostroumov D, Fekete-Drimusz N, Saborowski M, Kühnel F, Woller N. CD4 and CD8 T lymphocyte interplay in controlling tumor growth. Cell Mol Life Sci 2017; 75:689-713. [PMID: 29032503 PMCID: PMC5769828 DOI: 10.1007/s00018-017-2686-7] [Citation(s) in RCA: 364] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/11/2017] [Accepted: 10/11/2017] [Indexed: 02/08/2023]
Abstract
The outstanding clinical success of immune checkpoint blockade has revived the interest in underlying mechanisms of the immune system that are capable of eliminating tumors even in advanced stages. In this scenario, CD4 and CD8 T cell responses are part of the cancer immune cycle and both populations significantly influence the clinical outcome. In general, the immune system has evolved several mechanisms to protect the host against cancer. Each of them has to be undermined or evaded during cancer development to enable tumor outgrowth. In this review, we give an overview of T lymphocyte-driven control of tumor growth and discuss the involved tumor-suppressive mechanisms of the immune system, such as senescence surveillance, cancer immunosurveillance, and cancer immunoediting with respect to recent clinical developments of immunotherapies. The main focus is on the currently existing knowledge about the CD4 and CD8 T lymphocyte interplay that mediates the control of tumor growth.
Collapse
Affiliation(s)
- Dmitrij Ostroumov
- Clinic for Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Carl Neuberg Str. 1, 30625, Hannover, Germany
| | - Nora Fekete-Drimusz
- Clinic for Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Carl Neuberg Str. 1, 30625, Hannover, Germany
| | - Michael Saborowski
- Clinic for Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Carl Neuberg Str. 1, 30625, Hannover, Germany
| | - Florian Kühnel
- Clinic for Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Carl Neuberg Str. 1, 30625, Hannover, Germany
| | - Norman Woller
- Clinic for Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Carl Neuberg Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
137
|
Kranz LM, Beck JD, Grunwitz C, Hotz C, Vormehr M, Diken M. CIMT 2017: Anniversary symposium - Report on the 15th CIMT Annual Meeting of the Association for Cancer Immunotherapy. Hum Vaccin Immunother 2017; 13:2272-2279. [PMID: 28846471 PMCID: PMC5647989 DOI: 10.1080/21645515.2017.1358327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- Lena M Kranz
- a BioNTech RNA Pharmaceuticals GmbH , Mainz , Germany
| | - Jan D Beck
- b TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH , Mainz , Germany
| | | | | | - Mathias Vormehr
- c BioNTech AG , Mainz , Germany.,d Research Center for Immunotherapy (FZI), University Medical Center at the Johannes Gutenberg University Mainz , Mainz , Germany
| | - Mustafa Diken
- b TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH , Mainz , Germany
| |
Collapse
|
138
|
Ding ZC, Habtetsion T, Cao Y, Li T, Liu C, Kuczma M, Chen T, Hao Z, Bryan L, Munn DH, Zhou G. Adjuvant IL-7 potentiates adoptive T cell therapy by amplifying and sustaining polyfunctional antitumor CD4+ T cells. Sci Rep 2017; 7:12168. [PMID: 28939858 PMCID: PMC5610351 DOI: 10.1038/s41598-017-12488-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 09/08/2017] [Indexed: 12/19/2022] Open
Abstract
Increased availability of homeostatic cytokines is considered a major mechanism by which lymphodepletion enhances the efficacy of adoptive T cell therapy (ACT). IL-7 is one such cytokine capable of augmenting the function of tumor-reactive CD8+ T cells. However, whether host-derived IL-7 plays a role in driving the proper function of CD4+ T cells in an ACT setting remains unclear. Here we report that lymphodepleting chemotherapy by cyclophosphamide (CTX) does not lead to increased availability of the endogenous IL-7 in mice. Despite of a paucity of IL-7 in the immune milieu, CTX preconditioning allowed adoptively transferred naïve tumor-specific CD4+ T cells to undergo effector differentiation and regain IL-7Rα expression, giving rise to IL-7-responsive polyfunctional CD4+ effector cells. Correspondingly, supplementation of exogenous recombinant IL-7 markedly amplified and sustained polyfunctional CD4+ effector cells, resulting in improved therapeutic outcome in a mouse lymphoma model. We further demonstrated that the immune-enhancing effects of IL-7 were also applicable to donor CD4+ T cells pre-activated under Th1 polarizing condition. These findings suggest caution in relying on the endogenous IL-7 to enhance donor T cell expansion and persistence after lymphodepleting chemotherapy, and highlight the usefulness of recombinant IL-7 as an adjuvant for adoptive immunotherapy.
Collapse
Affiliation(s)
- Zhi-Chun Ding
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Tsadik Habtetsion
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Yang Cao
- Department of Orthodontics, Guangdong Provincial Key Laboratory of Stomatology, Hospital of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, PR China
| | - Tao Li
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Department of Oncology Surgery, General Hospital of Ningxia Medical University, 804 Shengli Road, Yinchuan, PR China
| | - Chufeng Liu
- Department of Orthodontics, Guangdong Provincial Stomatological Hospital, Southern Medical University, S366 Jiangnan Boulevard, Guangzhou, PR China
| | - Michal Kuczma
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Tingting Chen
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Zhonglin Hao
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Locke Bryan
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - David H Munn
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Gang Zhou
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.
| |
Collapse
|
139
|
Park IA, Hwang SH, Song IH, Heo SH, Kim YA, Bang WS, Park HS, Lee M, Gong G, Lee HJ. Expression of the MHC class II in triple-negative breast cancer is associated with tumor-infiltrating lymphocytes and interferon signaling. PLoS One 2017; 12:e0182786. [PMID: 28817603 PMCID: PMC5560630 DOI: 10.1371/journal.pone.0182786] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/24/2017] [Indexed: 12/30/2022] Open
Abstract
Tumor-infiltrating lymphocytes (TILs) have been known for their strong prognostic and predictive significance in triple-negative breast cancer (TNBC). Several mechanisms for TIL influx in TNBC have been elucidated. Major histocompatibility complex class II (MHC-II) is an essential component of the adaptive immune system and is generally restricted to the surface of antigen-presenting cells. However, it has been reported that interferon-gamma signaling may induce MHC-II in almost all cell types, including those derived from cancer. We aimed to examine the relationship between MHC-II expression in tumor cells and the amount of TILs in 681 patients with TNBC. Further, the prognostic significance of MHC-II and the association of MHC-II with a couple of molecules involved in the interferon signaling pathway were investigated using immunohistochemical staining. Higher MHC-II expression in tumor cells was associated with the absence of lymphovascular invasion (p = 0.042); larger amounts of TILs (p < 0.001); frequent formations of tertiary lymphoid structures (p < 0.001); higher expression of myxovirus resistance gene A, one of the main mediators of the interferon signaling pathway (p < 0.001); and higher expression of double-stranded RNA-activated protein kinase, which can be induced by interferons (p = 0.008). Moreover, tumors that showed high MHC class I expression and any positivity for MHC-II had larger amounts of CD4- and CD8-positive T lymphocytes (p < 0.001). Positive MHC-II expression in tumor cells was associated with better disease-free survival in patients who had lymph node metastasis (p = 0.009). In conclusion, MHC-II expression in tumor cells was closely associated with an increase in TIL number and interferon signaling in TNBC. Further studies are warranted to improve our understanding regarding TIL influx, as well as patients’ responses to immunotherapy.
Collapse
Affiliation(s)
- In Ah Park
- Departments of Pathology, Asan Medical Center, Seoul, Korea
| | - Seong-Hye Hwang
- Departments of Pathology, Asan Medical Center, Seoul, Korea
- Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - In Hye Song
- Departments of Pathology, Asan Medical Center, Seoul, Korea
| | - Sun-Hee Heo
- Departments of Pathology, Asan Medical Center, Seoul, Korea
- Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Young-Ae Kim
- Departments of Pathology, Asan Medical Center, Seoul, Korea
- Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Won Seon Bang
- Departments of Pathology, Asan Medical Center, Seoul, Korea
- Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Hye Seon Park
- Departments of Pathology, Asan Medical Center, Seoul, Korea
- Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Miseon Lee
- Departments of Pathology, Asan Medical Center, Seoul, Korea
| | - Gyungyub Gong
- Departments of Pathology, Asan Medical Center, Seoul, Korea
| | - Hee Jin Lee
- Departments of Pathology, Asan Medical Center, Seoul, Korea
- * E-mail:
| |
Collapse
|
140
|
Li HY, McSharry M, Bullock B, Nguyen TT, Kwak J, Poczobutt JM, Sippel TR, Heasley LE, Weiser-Evans MC, Clambey ET, Nemenoff RA. The Tumor Microenvironment Regulates Sensitivity of Murine Lung Tumors to PD-1/PD-L1 Antibody Blockade. Cancer Immunol Res 2017; 5:767-777. [PMID: 28819064 DOI: 10.1158/2326-6066.cir-16-0365] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 04/21/2017] [Accepted: 07/28/2017] [Indexed: 01/12/2023]
Abstract
Immune checkpoint inhibitors targeting the interaction between programmed cell death-1 (PD-1) and its ligand PD-L1 induce tumor regression in a subset of non-small cell lung cancer patients. However, clinical response rates are less than 25%. Evaluation of combinations of immunotherapy with existing therapies requires appropriate preclinical animal models. In this study, murine lung cancer cells (CMT167 and LLC) were implanted either orthotopically in the lung or subcutaneously in syngeneic mice, and response to anti-PD-1/PD-L1 therapy was determined. Anti-PD-1/PD-L1 therapy inhibited CMT167 orthotopic lung tumors by 95%. The same treatments inhibited CMT167 subcutaneous tumors by only 30% and LLC orthotopic lung tumors by 35%. CMT167 subcutaneous tumors had more Foxp3+ CD4+ T cells and fewer PD-1+ CD4+ T cells compared with CMT167 orthotopic tumors. Flow cytometric analysis also demonstrated increased abundance of PD-L1high cells in the tumor microenvironment in CMT167 tumor-bearing lungs compared with CMT167 subcutaneous tumors or LLC tumor-bearing lungs. Silencing PD-L1 expression in CMT167 cells resulted in smaller orthotopic tumors that remained sensitive to anti-PD-L1 therapy, whereas implantation of CMT167 cells into PD-L1- mice blocked orthotopic tumor growth, indicating a role for PD-L1 in both the cancer cell and the microenvironment. These findings indicate that the response of cancer cells to immunotherapy will be determined by both intrinsic properties of the cancer cells and specific interactions with the microenvironment. Experimental models that accurately recapitulate the lung tumor microenvironment are useful for evaluation of immunotherapeutic agents. Cancer Immunol Res; 5(9); 767-77. ©2017 AACR.
Collapse
Affiliation(s)
- Howard Y Li
- Department of Medicine, Veterans Affairs Medical Center, Denver, Colorado. .,Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Maria McSharry
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Bonnie Bullock
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Teresa T Nguyen
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jeff Kwak
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Joanna M Poczobutt
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Trisha R Sippel
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Lynn E Heasley
- Department of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Mary C Weiser-Evans
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Eric T Clambey
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Raphael A Nemenoff
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
141
|
Saha D, Martuza RL, Rabkin SD. Macrophage Polarization Contributes to Glioblastoma Eradication by Combination Immunovirotherapy and Immune Checkpoint Blockade. Cancer Cell 2017; 32:253-267.e5. [PMID: 28810147 PMCID: PMC5568814 DOI: 10.1016/j.ccell.2017.07.006] [Citation(s) in RCA: 429] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 04/07/2017] [Accepted: 07/17/2017] [Indexed: 02/07/2023]
Abstract
Glioblastoma is an immunosuppressive, fatal brain cancer that contains glioblastoma stem-like cells (GSCs). Oncolytic herpes simplex virus (oHSV) selectively replicates in cancer cells while inducing anti-tumor immunity. oHSV G47Δ expressing murine IL-12 (G47Δ-mIL12), antibodies to immune checkpoints (CTLA-4, PD-1, PD-L1), or dual combinations modestly extended survival of a mouse glioma model. However, the triple combination of anti-CTLA-4, anti-PD-1, and G47Δ-mIL12 cured most mice in two glioma models. This treatment was associated with macrophage influx and M1-like polarization, along with increased T effector to T regulatory cell ratios. Immune cell depletion studies demonstrated that CD4+ and CD8+ T cells as well as macrophages are required for synergistic curative activity. This combination should be translatable to the clinic and other immunosuppressive cancers.
Collapse
Affiliation(s)
- Dipongkor Saha
- Molecular Neurosurgery Laboratory and the Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA; Department of Neurosurgery, Harvard Medical School, Boston, MA, USA
| | - Robert L Martuza
- Molecular Neurosurgery Laboratory and the Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA; Department of Neurosurgery, Harvard Medical School, Boston, MA, USA
| | - Samuel D Rabkin
- Molecular Neurosurgery Laboratory and the Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA; Department of Neurosurgery, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
142
|
Kammertoens T, Friese C, Arina A, Idel C, Briesemeister D, Rothe M, Ivanov A, Szymborska A, Patone G, Kunz S, Sommermeyer D, Engels B, Leisegang M, Textor A, Fehling HJ, Fruttiger M, Lohoff M, Herrmann A, Yu H, Weichselbaum R, Uckert W, Hübner N, Gerhardt H, Beule D, Schreiber H, Blankenstein T. Tumour ischaemia by interferon-γ resembles physiological blood vessel regression. Nature 2017; 545:98-102. [PMID: 28445461 PMCID: PMC5567674 DOI: 10.1038/nature22311] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/30/2017] [Indexed: 12/11/2022]
Abstract
The relative contribution of the effector molecules produced by T cells to tumour rejection is unclear, but interferon-γ (IFNγ) is critical in most of the analysed models. Although IFNγ can impede tumour growth by acting directly on cancer cells, it must also act on the tumour stroma for effective rejection of large, established tumours. However, which stroma cells respond to IFNγ and by which mechanism IFNγ contributes to tumour rejection through stromal targeting have remained unknown. Here we use a model of IFNγ induction and an IFNγ-GFP fusion protein in large, vascularized tumours growing in mice that express the IFNγ receptor exclusively in defined cell types. Responsiveness to IFNγ by myeloid cells and other haematopoietic cells, including T cells or fibroblasts, was not sufficient for IFNγ-induced tumour regression, whereas responsiveness of endothelial cells to IFNγ was necessary and sufficient. Intravital microscopy revealed IFNγ-induced regression of the tumour vasculature, resulting in arrest of blood flow and subsequent collapse of tumours, similar to non-haemorrhagic necrosis in ischaemia and unlike haemorrhagic necrosis induced by tumour necrosis factor. The early events of IFNγ-induced tumour ischaemia resemble non-apoptotic blood vessel regression during development, wound healing or IFNγ-mediated, pregnancy-induced remodelling of uterine arteries. A better mechanistic understanding of how solid tumours are rejected may aid the design of more effective protocols for adoptive T-cell therapy.
Collapse
Affiliation(s)
- Thomas Kammertoens
- Institute of Immunology, Charité Campus Buch, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Christian Friese
- Institute of Immunology, Charité Campus Buch, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Ainhoa Arina
- Department of Radiation and Cellular Oncology, Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois 60637, USA
| | - Christian Idel
- Department of Pathology, The University of Chicago, Chicago, Illinois 60637, USA
| | - Dana Briesemeister
- Institute of Immunology, Charité Campus Buch, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Michael Rothe
- Institute of Immunology, Charité Campus Buch, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Andranik Ivanov
- Berlin Institute of Health, 10117 Berlin, Germany
- Charité - Universitätsmedizin, 10117 Berlin, Germany
| | - Anna Szymborska
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Giannino Patone
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Severine Kunz
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | | | - Boris Engels
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Matthias Leisegang
- Institute of Immunology, Charité Campus Buch, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
- Berlin Institute of Health, 10117 Berlin, Germany
| | - Ana Textor
- Institute of Immunology, Charité Campus Buch, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | | | - Marcus Fruttiger
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Michael Lohoff
- Institute for Medical Microbiology, University of Marburg, 35032 Marburg, Germany
| | - Andreas Herrmann
- Beckman Research Institute at the Comprehensive Cancer Center City of Hope, Los Angeles, California 91010-3000, USA
| | - Hua Yu
- Beckman Research Institute at the Comprehensive Cancer Center City of Hope, Los Angeles, California 91010-3000, USA
| | - Ralph Weichselbaum
- Department of Radiation and Cellular Oncology, Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois 60637, USA
| | - Wolfgang Uckert
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
- Berlin Institute of Health, 10117 Berlin, Germany
| | - Norbert Hübner
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
- Charité - Universitätsmedizin, 10117 Berlin, Germany
- DZHK (German Center for Cardiovascular Research), partner site Berlin, 13347 Berlin, Germany
| | - Holger Gerhardt
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
- Berlin Institute of Health, 10117 Berlin, Germany
- DZHK (German Center for Cardiovascular Research), partner site Berlin, 13347 Berlin, Germany
| | - Dieter Beule
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
- Berlin Institute of Health, 10117 Berlin, Germany
| | - Hans Schreiber
- Institute of Immunology, Charité Campus Buch, 13125 Berlin, Germany
- Department of Pathology, The University of Chicago, Chicago, Illinois 60637, USA
- Berlin Institute of Health, 10117 Berlin, Germany
| | - Thomas Blankenstein
- Institute of Immunology, Charité Campus Buch, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
- Berlin Institute of Health, 10117 Berlin, Germany
| |
Collapse
|
143
|
Kusano Y, Yokoyama M, Terui Y, Nishimura N, Mishima Y, Ueda K, Tsuyama N, Hirofumi Y, Takahashi A, Inoue N, Takeuchi K, Hatake K. Low absolute peripheral blood CD4+ T-cell count predicts poor prognosis in R-CHOP-treated patients with diffuse large B-cell lymphoma. Blood Cancer J 2017; 7:e558. [PMID: 28430176 PMCID: PMC5436080 DOI: 10.1038/bcj.2017.37] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/25/2017] [Accepted: 03/29/2017] [Indexed: 12/20/2022] Open
Abstract
The absolute peripheral blood lymphocyte count at diagnosis is known to be a strong prognostic factor in patients with diffuse large B-cell lymphoma (DLBCL) treated with rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone (R-CHOP), but it remains unclear as to which peripheral blood lymphocyte population is reflective of DLBCL prognosis. In this cohort, 355 patients with DLBCL treated with R-CHOP from 2006 to 2013 were analyzed. The low absolute CD4+ T-cell count (ACD4C) at diagnosis negatively correlated with the overall response rate and the complete response rate significantly (P<0.00001). An ACD4C<343 × 106/l had a significant negative impact on the 5-year progression-free survival and the overall survival as compared with an ACD4C⩾343 × 106/l (73.7% (95% confidence interval (CI)=66.7-79.5) versus 50.3% (95% CI=39.0-60.6), P<0.00001 and 83.3% (95% CI=77.1-88.0) versus 59.0% (95% CI=47.9-68.5), P<0.00000001, respectively). Multivariate analysis revealed that the ACD4C was an independent prognostic marker (hazard ratio=2.2 (95% CI=1.3-3.7), P<0.01). In conclusion, a low ACD4C at diagnosis served as an independent poor prognostic marker in patients with DLBCL.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antibodies, Monoclonal, Murine-Derived/administration & dosage
- Antibodies, Monoclonal, Murine-Derived/adverse effects
- Antineoplastic Combined Chemotherapy Protocols/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- CD4 Lymphocyte Count
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/pathology
- Cyclophosphamide/administration & dosage
- Cyclophosphamide/adverse effects
- Disease-Free Survival
- Doxorubicin/administration & dosage
- Doxorubicin/adverse effects
- Female
- Humans
- Lymphoma, Large B-Cell, Diffuse/blood
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/pathology
- Male
- Middle Aged
- Prednisone/administration & dosage
- Prednisone/adverse effects
- Prognosis
- Rituximab
- Treatment Outcome
- Vincristine/administration & dosage
- Vincristine/adverse effects
Collapse
Affiliation(s)
- Y Kusano
- Department of Hematology Oncology, Hematology Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - M Yokoyama
- Department of Hematology Oncology, Hematology Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Y Terui
- Department of Hematology Oncology, Hematology Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - N Nishimura
- Department of Hematology Oncology, Hematology Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Y Mishima
- Department of Hematology Oncology, Hematology Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - K Ueda
- Department of Hematology Oncology, Hematology Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - N Tsuyama
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Y Hirofumi
- Department of Hematology Oncology, Hematology Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - A Takahashi
- Department of Hematology Oncology, Hematology Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - N Inoue
- Department of Hematology Oncology, Hematology Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - K Takeuchi
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Pathology Project for Molecular Targets, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - K Hatake
- Department of Hematology Oncology, Hematology Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
144
|
Hu X, Wu T, Bao Y, Zhang Z. Nanotechnology based therapeutic modality to boost anti-tumor immunity and collapse tumor defense. J Control Release 2017; 256:26-45. [PMID: 28434891 DOI: 10.1016/j.jconrel.2017.04.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/15/2017] [Accepted: 04/18/2017] [Indexed: 12/19/2022]
Abstract
Cancer is still the leading cause of death. While traditional treatments such as surgery, chemotherapy and radiotherapy play dominating roles, recent breakthroughs in cancer immunotherapy indicate that the influence of immune system on cancer development is virtually beyond our expectation. Manipulating the immune system to fight against cancer has been thriving in recent years. Further understanding of tumor anatomy provides opportunities to put a brake on immunosuppression by overcoming tumor intrinsic resistance or modulating tumor microenvironment. Nanotechnology which provides versatile engineered approaches to enhance therapeutic effects may potentially contribute to the development of future cancer treatment modality. In this review, we will focus on the application of nanotechnology both in boosting anti-tumor immunity and collapsing tumor defense.
Collapse
Affiliation(s)
| | | | - Yuling Bao
- Tongji School of Pharmacy, PR China; Department of Pharmacy, Tongji Hospital, PR China
| | - Zhiping Zhang
- Tongji School of Pharmacy, PR China; National Engineering Research Center for Nanomedicine, PR China; Hubei Engineering Research Center for Novel Drug Delivery System, HuaZhong University of Science and Technology, Wuhan 430030, PR China.
| |
Collapse
|
145
|
|
146
|
Lopes AMM, Michelin MA, Murta EFC. Monocyte-derived dendritic cells from patients with cervical intraepithelial lesions. Oncol Lett 2017; 13:1456-1462. [PMID: 28454277 DOI: 10.3892/ol.2017.5595] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 11/17/2016] [Indexed: 01/23/2023] Open
Abstract
Immunotherapy with dendritic cells (DCs) is a great promise for the treatment of neoplasms. However, the obtainment and protocol of differentiation of these cells may depend on extrinsic factors such as the tumor itself. The aim of the present study was to verify the influence of cervical neoplasia on different protocols of differentiation of monocyte-derived DCs resulting in an increased maturation phenotype. A total of 83 women were included in the study. The patients were grouped in low-grade squamous intraepithelial lesion (LSIL) (n=30), high-grade squamous intraepithelial lesion (HSIL) (n=22), cervical cancer (n=10) and healthy patients (n=21) groups. The mononuclear cells of patients were subjected to three differentiation protocols. In protocol I (pI), granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin (IL)-4 and tumor necrosis factor (TNF)-α were used for the differentiation of mature DCs (pIDCs). In protocol II (pII), monocytes were stimulated with GM-CSF, IL-4, TNF-α and activated lymphocytes in the absence of non-adherent cells (pIIDCs). In protocol III (pIII), monocytes were stimulated with GM-CSF, IL-4, TNF-α and activated lymphocytes in the presence of non-adherent cells (pIIIDCs). These cells were evaluated by flow cytometry for the expression of maturation markers such as cluster of differentiation (CD)11c, CD86 and human leukocyte antigen-antigen D related (HLA-DR). The main cytokines secreted (IL-4, IL-12 and transforming growth factor-β) were measured by ELISA. Our results indicate a significantly lower mature profile of pIIDCs and a significant increase in CD11c+ pIIIDCs able to produce IL-12 (P=0.0007). Furthermore, a significant reduction in cervical cancer HLA-DR+ pIDCs (P=0.0113) was also observed. HSIL patients exhibited a higher percentage of HLA-DR+ pIIDCs (P=0.0113), while LSIL patients had a lower percentage of CD11c+ pIIIDCs (P=0.0411). These findings suggest that the extent of cervical lesions affects the process of differentiation of DCs. Furthermore, activated lymphocytes may induce a better maturation of monocyte-derived DCs, and the presence of mononuclear cells appears to contribute to the DC differentiation process.
Collapse
Affiliation(s)
- Angela Maria Moed Lopes
- Oncology Research Institute, Federal University of The Triângulo Mineiro, Uberaba, MG 38025-440, Brazil
| | - Márcia Antoniazi Michelin
- Oncology Research Institute, Federal University of The Triângulo Mineiro, Uberaba, MG 38025-440, Brazil.,Discipline of Immunology, Clinical Hospital of Federal University of The Triângulo Mineiro, Uberaba, MG 38025-440, Brazil
| | - Eddie Fernando Cândido Murta
- Oncology Research Institute, Federal University of The Triângulo Mineiro, Uberaba, MG 38025-440, Brazil.,Discipline of Gynecology and Obstetrics, Clinical Hospital of Federal University of The Triângulo Mineiro, Uberaba, MG 38025-440, Brazil
| |
Collapse
|
147
|
Perdicchio M, Cornelissen LAM, Streng-Ouwehand I, Engels S, Verstege MI, Boon L, Geerts D, van Kooyk Y, Unger WWJ. Tumor sialylation impedes T cell mediated anti-tumor responses while promoting tumor associated-regulatory T cells. Oncotarget 2017; 7:8771-82. [PMID: 26741508 PMCID: PMC4891003 DOI: 10.18632/oncotarget.6822] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/25/2015] [Indexed: 12/13/2022] Open
Abstract
The increased presence of sialylated glycans on the tumor surface has been linked to poor prognosis, yet the effects on tumor-specific T cell immunity are hardly studied. We here show that hypersialylation of B16 melanoma substantially influences tumor growth by preventing the formation of effector T cells and facilitating the presence of high regulatory T cell (Treg) frequencies. Knock-down of the sialic acid transporter created "sialic acid low" tumors, that grew slower in-vivo than hypersialylated tumors, altered the Treg/Teffector balance, favoring immunological tumor control. The enhanced effector T cell response in developing "sialic acid low" tumors was preceded by and dependent on an increased influx and activity of Natural Killer (NK) cells. Thus, tumor hypersialylation orchestrates immune escape at the level of NK and Teff/Treg balance within the tumor microenvironment, herewith dampening tumor-specific T cell control. Reducing sialylation provides a therapeutic option to render tumors permissive to immune attack.
Collapse
Affiliation(s)
- Maurizio Perdicchio
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Lenneke A M Cornelissen
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Ingeborg Streng-Ouwehand
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Steef Engels
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Marleen I Verstege
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Louis Boon
- EPIRUS Biopharmaceuticals, Leiden, The Netherlands
| | - Dirk Geerts
- Department of Pediatric Oncology/Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Wendy W J Unger
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Pediatrics, Division of Infectious Diseases, ErasmusMC-Sophia Children's Hospital, Rotterdam, The Netherlands
| |
Collapse
|
148
|
Lorvik KB, Hammarström C, Fauskanger M, Haabeth OAW, Zangani M, Haraldsen G, Bogen B, Corthay A. Adoptive Transfer of Tumor-Specific Th2 Cells Eradicates Tumors by Triggering an In Situ Inflammatory Immune Response. Cancer Res 2016; 76:6864-6876. [PMID: 27634753 DOI: 10.1158/0008-5472.can-16-1219] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/30/2016] [Accepted: 08/31/2016] [Indexed: 11/16/2022]
Abstract
Adoptive cell therapy (ACT) trials to date have focused on transfer of autologous tumor-specific cytotoxic CD8+ T cells; however, the potential of CD4+ T helper (Th) cells for ACT is gaining interest. While encouraging results have been reported with IFNγ-producing Th1 cells, tumor-specific Th2 cells have been largely neglected for ACT due to their reported tumor-promoting properties. In this study, we tested the efficacy of idiotype-specific Th2 cells for the treatment of mice with MHC class II-negative myeloma. Th2 ACT efficiently eradicated subcutaneous myeloma in an antigen-specific fashion. Transferred Th2 cells persisted in vivo and conferred long-lasting immunity. Cancer eradication mediated by tumor-specific Th2 cells did not require B cells, natural killer T cells, CD8+ T cells, or IFNγ. Th2 ACT was also curative against B-cell lymphoma. Upon transfer, Th2 cells induced a type II inflammation at the tumor site with massive infiltration of M2-type macrophages producing arginase. In vivo blockade of arginase strongly inhibited Th2 ACT, consistent with a key role of arginase and M2 macrophages in myeloma elimination by Th2 cells. These results illustrate that cancer eradication may be achieved by induction of a tumor-specific Th2 inflammatory immune response at the tumor site. Thus, ACT with tumor-specific Th2 cells may represent a highly efficient immunotherapy protocol against cancer. Cancer Res; 76(23); 6864-76. ©2016 AACR.
Collapse
Affiliation(s)
- Kristina Berg Lorvik
- Centre for Immune Regulation, University of Oslo and Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Clara Hammarström
- K.G. Jebsen Inflammation Research Centre, University of Oslo and Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Marte Fauskanger
- Centre for Immune Regulation, University of Oslo and Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Ole Audun Werner Haabeth
- Centre for Immune Regulation, University of Oslo and Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Michael Zangani
- Centre for Immune Regulation, University of Oslo and Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Guttorm Haraldsen
- K.G. Jebsen Inflammation Research Centre, University of Oslo and Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Bjarne Bogen
- Centre for Immune Regulation, University of Oslo and Oslo University Hospital, Rikshospitalet, Oslo, Norway.,K.G. Jebsen Centre for Influenza Vaccine Research, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Alexandre Corthay
- Centre for Immune Regulation, University of Oslo and Oslo University Hospital, Rikshospitalet, Oslo, Norway.
| |
Collapse
|
149
|
Belgiovine C, D'Incalci M, Allavena P, Frapolli R. Tumor-associated macrophages and anti-tumor therapies: complex links. Cell Mol Life Sci 2016; 73:2411-24. [PMID: 26956893 PMCID: PMC11108407 DOI: 10.1007/s00018-016-2166-5] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 01/26/2016] [Accepted: 02/18/2016] [Indexed: 12/19/2022]
Abstract
Myeloid cells infiltrating the tumor microenvironment, especially tumor-associated macrophages (TAMs), are essential providers of cancer-related inflammation, a condition known to accelerate tumor progression and limit the response to anti-tumor therapies. As a matter of fact, TAMs may have a dual role while interfering with cancer treatments, as they can either promote or impair their functionality. Here we review the connection between macrophages and anticancer therapies; moreover, we provide an overview of the different strategies to target or re-program TAMs for therapeutic purposes.
Collapse
Affiliation(s)
- Cristina Belgiovine
- Department Immunology and Inflammation, IRCCS Clinical and Research Institute Humanitas, Via Manzoni 56, 20089, Rozzano, Milan, Italy.
| | - Maurizio D'Incalci
- Department of Oncology, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, via La Masa 19, 20156, Milan, Italy
| | - Paola Allavena
- Department Immunology and Inflammation, IRCCS Clinical and Research Institute Humanitas, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Roberta Frapolli
- Department of Oncology, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, via La Masa 19, 20156, Milan, Italy
| |
Collapse
|
150
|
Shklovskaya E, Terry AM, Guy TV, Buckley A, Bolton HA, Zhu E, Holst J, Fazekas de St. Groth B. Tumour-specific CD4 T cells eradicate melanoma via indirect recognition of tumour-derived antigen. Immunol Cell Biol 2016; 94:593-603. [PMID: 26837456 DOI: 10.1038/icb.2016.14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 01/27/2016] [Accepted: 01/27/2016] [Indexed: 12/14/2022]
Abstract
The importance of CD4 T cells in tumour immunity has been increasingly recognised, with recent reports describing robust CD4 T cell-dependent tumour control in mice whose immune-regulatory mechanisms have been disturbed by irradiation, chemotherapy, immunomodulatory therapy and/or constitutive immunodeficiency. Tumour control in such models has been attributed in large part to direct Major Histocompatibility Complex (MHC) class II-dependent CD4 T cell killing of tumour cells. To test whether CD4 T cells can eradicate tumours without directly killing tumour cells, we developed an animal model in which tumour-derived antigen could be presented to T-cell receptor (TCR)-transgenic CD4 T cells by host but not tumour MHC class II molecules. In I-E(+) mice bearing I-E(null) tumours, naive I-E-restricted CD4 T cells proliferated locally in tumour-draining lymph nodes after recognising tumour-derived antigen on migratory dendritic cells. In lymphopaenic but not immunosufficient hosts, CD4 T cells differentiated into polarised T helper type 1 (Th1) cells expressing interferon gamma (IFNγ), tumor necrosis factor alpha (TNFα) and interleukin (IL)-2 but little IL-17, and cleared established tumours. Tumour clearance was enhanced by higher TCR affinity for tumour antigen-MHC class II and was critically dependent on IFNγ, as demonstrated by early tumour escape in animals treated with an IFNγ blocking antibody. Thus, CD4 T cells and IFNγ can control tumour growth without direct T-cell killing of tumour cells, and without requiring additional adaptive immune cells such as CD8 T cells and B cells. Our results support a role for effective CD4 T cell-dependent tumour immunity against MHC class II-negative tumours.
Collapse
Affiliation(s)
- Elena Shklovskaya
- T Cell Biology Research Program, Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, Australia
- Discipline of Dermatology, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Alexandra M Terry
- T Cell Biology Research Program, Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, Australia
- Discipline of Dermatology, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Thomas V Guy
- T Cell Biology Research Program, Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, Australia
- Discipline of Dermatology, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Adrian Buckley
- T Cell Biology Research Program, Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, Australia
- Discipline of Dermatology, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Holly A Bolton
- T Cell Biology Research Program, Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, Australia
- Discipline of Dermatology, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Erhua Zhu
- T Cell Biology Research Program, Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, Australia
- Discipline of Dermatology, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Jeff Holst
- Origins of Cancer Program, Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Barbara Fazekas de St. Groth
- T Cell Biology Research Program, Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, Australia
- Discipline of Dermatology, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|