101
|
Ahmadzadeh M, Pasetto A, Jia L, Deniger DC, Stevanović S, Robbins PF, Rosenberg SA. Tumor-infiltrating human CD4 + regulatory T cells display a distinct TCR repertoire and exhibit tumor and neoantigen reactivity. Sci Immunol 2020; 4:4/31/eaao4310. [PMID: 30635355 DOI: 10.1126/sciimmunol.aao4310] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 07/24/2018] [Accepted: 11/21/2018] [Indexed: 12/19/2022]
Abstract
CD4+ regulatory T (Treg) cells have an essential function in maintaining self-tolerance; however, they may also play a detrimental role in antitumor immune responses. The presence of elevated frequencies of Treg cells in tumors correlates with disease progression and poor survival in patients with cancer. The antigen specificity of Treg cells that have expanded in the tumor microenvironment is poorly understood; answering this question may provide important insights for immunotherapeutic approaches. To address this, we used a novel combinatorial approach to characterizing the T cell receptor (TCR) profiles of intratumoral Treg cells from patients with metastatic melanoma, gastrointestinal, and ovarian cancers and elucidated their antigen specificities. The TCR repertoires of tumor-resident Treg cells were diverse yet displayed significant overlap with circulating Treg cells but not with conventional T cells in tumor or blood. TCRs isolated from Treg cells displayed specific reactivity against autologous tumors and mutated neoantigens, suggesting that intratumoral Treg cells act in a tumor antigen-selective manner leading to their activation and clonal expansion in the tumor microenvironment. Tumor antigen-specific Treg-derived TCRs resided in the tumor and in the circulation, suggesting that both Treg cell compartments may serve as a source for tumor-specific TCRs. These findings provide insights into the TCR specificity of tumor-infiltrating human Treg cells that may have potential implications for cancer immunotherapy.
Collapse
Affiliation(s)
- Mojgan Ahmadzadeh
- Surgery Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Anna Pasetto
- Surgery Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Li Jia
- Surgery Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Drew C Deniger
- Surgery Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Sanja Stevanović
- Experimental Transplantation and Immunology Branch, NCI, NIH, Bethesda, MD 20892, USA
| | - Paul F Robbins
- Surgery Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Steven A Rosenberg
- Surgery Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| |
Collapse
|
102
|
Ono M. Control of regulatory T-cell differentiation and function by T-cell receptor signalling and Foxp3 transcription factor complexes. Immunology 2020; 160:24-37. [PMID: 32022254 DOI: 10.1111/imm.13178] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/18/2019] [Accepted: 01/11/2020] [Indexed: 12/11/2022] Open
Abstract
The transcription factor Foxp3 controls the differentiation and function of regulatory T-cells (Treg). Studies in the past decades identified numerous Foxp3-interacting protein partners. However, it is still not clear how Foxp3 produces the Treg-type transcriptomic landscape through cooperating with its partners. Here I show the current understanding of how Foxp3 transcription factor complexes regulate the differentiation, maintenance and functional maturation of Treg. Importantly, T-cell receptor (TCR) signalling plays central roles in Treg differentiation and Foxp3-mediated gene regulation. Differentiating Treg will have recognized their cognate antigens and received TCR signals before initiating Foxp3 transcription, which is triggered by TCR-induced transcription factors including NFAT, AP-1 and NF-κB. Once expressed, Foxp3 seizes TCR signal-induced transcriptional and epigenetic mechanisms through interacting with AML1/Runx1 and NFAT. Thus, Foxp3 modifies gene expression dynamics of TCR-induced genes, which constitute cardinal mechanisms for Treg-mediated immune suppression. Next, I discuss the following key topics, proposing new mechanistic models for Foxp3-mediated gene regulation: (i) how Foxp3 transcription is induced and maintained by the Foxp3-inducing enhanceosome and the Foxp3 autoregulatory transcription factor complex; (ii) molecular mechanisms for effector Treg differentiation (i.e. Treg maturation); (iii) how Foxp3 activates or represses its target genes through recruiting coactivators and corepressors; (iv) the 'decision-making' Foxp3-containing transcription factor complex for Th17 and Treg differentiation; and (v) the roles of post-translational modification in Foxp3 regulation. Thus, this article provides cutting-edge understanding of molecular biology of Foxp3 and Treg, integrating findings by biochemical and genomic studies.
Collapse
Affiliation(s)
- Masahiro Ono
- Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
103
|
Rakebrandt N, Joller N. Infection History Determines Susceptibility to Unrelated Diseases. Bioessays 2020; 41:e1800191. [PMID: 31132173 DOI: 10.1002/bies.201800191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 04/04/2019] [Indexed: 12/11/2022]
Abstract
Epidemiological data suggest that previous infections can alter an individual's susceptibility to unrelated diseases. Nevertheless, the underlying mechanisms are not completely understood. Substantial research efforts have expanded the classical concept of immune memory to also include long-lasting changes in innate immunity and antigen-independent reactivation of adaptive immunity. Collectively, these processes provide possible explanations on how acute infections might induce long-term changes that also affect immunity to unrelated diseases. Here, we review lasting changes the immune compartment undergoes upon infection and how infection experience alters the responsiveness of immune cells towards universal signals. This heightened state of alert enhances the ability of the immune system to combat even unrelated infections but may also increase susceptibility to autoimmunity. At the same time, infection-induced changes in the regulatory compartment may dampen subsequent immune responses and promote pathogen persistence. The concepts presented here outline how infection-induced changes in the immune system may affect human health.
Collapse
Affiliation(s)
- Nikolas Rakebrandt
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Nicole Joller
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| |
Collapse
|
104
|
Kim JH, Kim BS, Lee SK. Regulatory T Cells in Tumor Microenvironment and Approach for Anticancer Immunotherapy. Immune Netw 2020; 20:e4. [PMID: 32158592 PMCID: PMC7049587 DOI: 10.4110/in.2020.20.e4] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 01/30/2020] [Accepted: 02/02/2020] [Indexed: 12/21/2022] Open
Abstract
Tregs have a role in immunological tolerance and immune homeostasis by suppressing immune reactions, and its therapeutic potential is critical in autoimmune diseases and cancers. There have been multiple studies conducted on Tregs because of their roles in immune suppression and therapeutic potential. In tumor immunity, Tregs can promote the development and progression of tumors by preventing effective anti-tumor immune responses in tumor-bearing hosts. High infiltration of Tregs into tumor tissue results in poor survival in various types of cancer patients. Identifying factors specifically expressed in Tregs that affect the maintenance of stability and function of Tregs is important for understanding cancer pathogenesis and identifying therapeutic targets. Thus, manipulation of Tregs is a promising anticancer strategy, but finding markers for Treg-specific depletion and controlling these cells require fine-tuning and further research. Here, we discuss the role of Tregs in cancer and the development of Treg-targeted therapies to promote cancer immunotherapy.
Collapse
Affiliation(s)
- Jung-Ho Kim
- Research Institute for Precision Immune-Medicine, Good T Cells, Inc., Seoul 03722, Korea
| | - Beom Seok Kim
- Research Institute for Precision Immune-Medicine, Good T Cells, Inc., Seoul 03722, Korea
| | - Sang-Kyou Lee
- Research Institute for Precision Immune-Medicine, Good T Cells, Inc., Seoul 03722, Korea
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
105
|
Abstract
Foxp3-expressing CD4+ regulatory T (Treg) cells play key roles in the prevention of autoimmunity and the maintenance of immune homeostasis and represent a major barrier to the induction of robust antitumor immune responses. Thus, a clear understanding of the mechanisms coordinating Treg cell differentiation is crucial for understanding numerous facets of health and disease and for developing approaches to modulate Treg cells for clinical benefit. Here, we discuss current knowledge of the signals that coordinate Treg cell development, the antigen-presenting cell types that direct Treg cell selection, and the nature of endogenous Treg cell ligands, focusing on evidence from studies in mice. We also highlight recent advances in this area and identify key unanswered questions.
Collapse
Affiliation(s)
- Peter A Savage
- Department of Pathology, University of Chicago, Chicago, Illinois 60637, USA; , ,
| | - David E J Klawon
- Department of Pathology, University of Chicago, Chicago, Illinois 60637, USA; , ,
| | - Christine H Miller
- Department of Pathology, University of Chicago, Chicago, Illinois 60637, USA; , ,
| |
Collapse
|
106
|
Shevyrev D, Tereshchenko V. Treg Heterogeneity, Function, and Homeostasis. Front Immunol 2020; 10:3100. [PMID: 31993063 PMCID: PMC6971100 DOI: 10.3389/fimmu.2019.03100] [Citation(s) in RCA: 263] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/18/2019] [Indexed: 12/13/2022] Open
Abstract
T-regulatory cells (Tregs) represent a unique subpopulation of helper T-cells by maintaining immune equilibrium using various mechanisms. The role of T-cell receptors (TCR) in providing homeostasis and activation of conventional T-cells is well-known; however, for Tregs, this area is understudied. In the last two decades, evidence has accumulated to confirm the importance of the TCR in Treg homeostasis and antigen-specific immune response regulation. In this review, we describe the current view of Treg subset heterogeneity, homeostasis and function in the context of TCR involvement. Recent studies of the TCR repertoire of Tregs, combined with single-cell gene expression analysis, revealed the importance of TCR specificity in shaping Treg phenotype diversity, their functions and homeostatic maintenance in various tissues. We propose that Tregs, like conventional T-helper cells, act to a great extent in an antigen-specific manner, which is provided by a specific distribution of Tregs in niches.
Collapse
Affiliation(s)
- Daniil Shevyrev
- Research Institute for Fundamental and Clinical Immunology (RIFCI), Novosibirsk, Russia
| | - Valeriy Tereshchenko
- Research Institute for Fundamental and Clinical Immunology (RIFCI), Novosibirsk, Russia
| |
Collapse
|
107
|
Sidwell T, Liao Y, Garnham AL, Vasanthakumar A, Gloury R, Blume J, Teh PP, Chisanga D, Thelemann C, de Labastida Rivera F, Engwerda CR, Corcoran L, Kometani K, Kurosaki T, Smyth GK, Shi W, Kallies A. Attenuation of TCR-induced transcription by Bach2 controls regulatory T cell differentiation and homeostasis. Nat Commun 2020; 11:252. [PMID: 31937752 PMCID: PMC6959360 DOI: 10.1038/s41467-019-14112-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/11/2019] [Indexed: 01/06/2023] Open
Abstract
Differentiation and homeostasis of Foxp3+ regulatory T (Treg) cells are strictly controlled by T-cell receptor (TCR) signals; however, molecular mechanisms that govern these processes are incompletely understood. Here we show that Bach2 is an important regulator of Treg cell differentiation and homeostasis downstream of TCR signaling. Bach2 prevents premature differentiation of fully suppressive effector Treg (eTreg) cells, limits IL-10 production and is required for the development of peripherally induced Treg (pTreg) cells in the gastrointestinal tract. Bach2 attenuates TCR signaling-induced IRF4-dependent Treg cell differentiation. Deletion of IRF4 promotes inducible Treg cell differentiation and rescues pTreg cell differentiation in the absence of Bach2. In turn, loss of Bach2 normalizes eTreg cell differentiation of IRF4-deficient Treg cells. Mechanistically, Bach2 counteracts the DNA-binding activity of IRF4 and limits chromatin accessibility, thereby attenuating IRF4-dependent transcription. Thus, Bach2 balances TCR signaling induced transcriptional activity of IRF4 to maintain homeostasis of thymically-derived and peripherally-derived Treg cells.
Collapse
Affiliation(s)
- Tom Sidwell
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
| | - Yang Liao
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Alexandra L Garnham
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Ajithkumar Vasanthakumar
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
| | - Renee Gloury
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
| | - Jonas Blume
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
| | - Peggy P Teh
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Renal Medicine, Alfred Health, Melbourne, VIC, 3004, Australia
- Department of Nephrology, Western Health, St Albans, VIC, 3021, Australia
| | - David Chisanga
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Christoph Thelemann
- Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
| | | | | | - Lynn Corcoran
- Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Kohei Kometani
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Japan
| | - Tomohiro Kurosaki
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Japan
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Gordon K Smyth
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- School of Mathematics and Statistics, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Wei Shi
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- School of Computing and Information Systems, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Axel Kallies
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3010, Australia.
- Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia.
| |
Collapse
|
108
|
Abstract
The transcription factor FOXP3 controls the immunosuppressive program in CD4+ T cells that is crucial for systemic immune regulation. Mutations of the single X-chromosomal FOXP3 gene in male individuals cause the inherited autoimmune disease immune dysregulation, polyendocrinopathy, enteropathy, and X-linked (IPEX) syndrome. Insufficient gene expression and impaired function of mutant FOXP3 protein prevent the generation of anti-inflammatory regulatory T (Treg) cells and fail to inhibit autoreactive T cell responses. Diversification of FOXP3 functional properties is achieved through alternative splicing that leads to isoforms lacking exon 2 (FOXP3Δ2), exon 7 (FOXP3Δ7), or both (FOXP3Δ2Δ7) specifically in human CD4+ T cells. Several IPEX mutations targeting these exons or promoting their alternative splicing revealed that those truncated isoforms cannot compensate for the loss of the full-length isoform (FOXP3fl). In this review, IPEX mutations that change the FOXP3 isoform profile and the resulting consequences for the CD4+ T-cell phenotype are discussed.
Collapse
Affiliation(s)
- Reiner K Mailer
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
109
|
Saravia J, Zeng H, Dhungana Y, Bastardo Blanco D, Nguyen TLM, Chapman NM, Wang Y, Kanneganti A, Liu S, Raynor JL, Vogel P, Neale G, Carmeliet P, Chi H. Homeostasis and transitional activation of regulatory T cells require c-Myc. SCIENCE ADVANCES 2020; 6:eaaw6443. [PMID: 31911938 PMCID: PMC6938709 DOI: 10.1126/sciadv.aaw6443] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 11/01/2019] [Indexed: 05/13/2023]
Abstract
Regulatory T cell (Treg) activation and expansion occur during neonatal life and inflammation to establish immunosuppression, yet the mechanisms governing these events are incompletely understood. We report that the transcriptional regulator c-Myc (Myc) controls immune homeostasis through regulation of Treg accumulation and functional activation. Myc activity is enriched in Tregs generated during neonatal life and responding to inflammation. Myc-deficient Tregs show defects in accumulation and ability to transition to an activated state. Consequently, loss of Myc in Tregs results in an early-onset autoimmune disorder accompanied by uncontrolled effector CD4+ and CD8+ T cell responses. Mechanistically, Myc regulates mitochondrial oxidative metabolism but is dispensable for fatty acid oxidation (FAO). Indeed, Treg-specific deletion of Cox10, which promotes oxidative phosphorylation, but not Cpt1a, the rate-limiting enzyme for FAO, results in impaired Treg function and maturation. Thus, Myc coordinates Treg accumulation, transitional activation, and metabolic programming to orchestrate immune homeostasis.
Collapse
Affiliation(s)
- Jordy Saravia
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Hu Zeng
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Yogesh Dhungana
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Daniel Bastardo Blanco
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Thanh-Long M. Nguyen
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Nicole M. Chapman
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Yanyan Wang
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Apurva Kanneganti
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Shaofeng Liu
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jana L. Raynor
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Peter Vogel
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Geoffrey Neale
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, Department of Oncology, University of Leuven, Leuven, Belgium
| | - Hongbo Chi
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Corresponding author.
| |
Collapse
|
110
|
Fan MY, Low JS, Tanimine N, Finn KK, Priyadharshini B, Germana SK, Kaech SM, Turka LA. Differential Roles of IL-2 Signaling in Developing versus Mature Tregs. Cell Rep 2019; 25:1204-1213.e4. [PMID: 30380412 DOI: 10.1016/j.celrep.2018.10.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/11/2018] [Accepted: 09/28/2018] [Indexed: 01/06/2023] Open
Abstract
Although Foxp3+ regulatory T cells (Tregs) require interleukin-2 (IL-2) for their development, it has been unclear whether continuing IL-2 signals are needed to maintain lineage stability, survival, and suppressor function in mature Tregs. We generated mice in which CD25, the main ligand-binding subunit of the IL-2 receptor, can be inducibly deleted from Tregs after thymic development. In contrast to Treg development, we find that IL-2 is dispensable for maintaining lineage stability in mature Tregs. Although continuous IL-2 signaling is needed for long-term Treg survival, CD25-deleted Tregs may persist for several weeks in vivo using IL-7. We also observe defects in glycolytic metabolism and suppressor function following CD25 deletion. Thus, unlike developing Tregs in which the primary role of IL-2 is to initiate Foxp3 expression, mature Tregs require continuous IL-2 signaling to maintain survival and suppressor function, but not to maintain lineage stability.
Collapse
Affiliation(s)
- Martin Y Fan
- Department of Surgery and Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA; Program in Immunology, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Jun Siong Low
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Naoki Tanimine
- Department of Surgery and Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Kelsey K Finn
- Department of Surgery and Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA; Program in Immunology, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Bhavana Priyadharshini
- Department of Surgery and Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Sharon K Germana
- Department of Surgery and Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Susan M Kaech
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; The Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Laurence A Turka
- Department of Surgery and Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA; Program in Immunology, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
111
|
Kim JH, Hwang J, Jung JH, Lee HJ, Lee DY, Kim SH. Molecular networks of FOXP family: dual biologic functions, interplay with other molecules and clinical implications in cancer progression. Mol Cancer 2019; 18:180. [PMID: 31815635 PMCID: PMC6900861 DOI: 10.1186/s12943-019-1110-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023] Open
Abstract
Though Forkhead box P (FOXP) transcription factors comprising of FOXP1, FOXP2, FOXP3 and FOXP4 are involved in the embryonic development, immune disorders and cancer progression, the underlying function of FOXP3 targeting CD4 + CD25+ regulatory T (Treg) cells and the dual roles of FOXP proteins as an oncogene or a tumor suppressor are unclear and controversial in cancers to date. Thus, the present review highlighted research history, dual roles of FOXP proteins as a tumor suppressor or an oncogene, their molecular networks with other proteins and noncoding RNAs, cellular immunotherapy targeting FOXP3, and clinical implications in cancer progression.
Collapse
Affiliation(s)
- Ju-Ha Kim
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee university, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Jisung Hwang
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee university, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Ji Hoon Jung
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee university, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Hyo-Jung Lee
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee university, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Dae Young Lee
- Department of Herbal Crop Research, Rural Development Administration, National Institute of Horticultural and Herbal Science, Eumseong, 27709, Republic of Korea
| | - Sung-Hoon Kim
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee university, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
112
|
Amino Acids License Kinase mTORC1 Activity and Treg Cell Function via Small G Proteins Rag and Rheb. Immunity 2019; 51:1012-1027.e7. [PMID: 31668641 DOI: 10.1016/j.immuni.2019.10.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 09/17/2019] [Accepted: 09/27/2019] [Indexed: 12/17/2022]
Abstract
Regulatory T (Treg) cells are critical mediators of immune tolerance whose activity depends upon T cell receptor (TCR) and mTORC1 kinase signaling, but the mechanisms that dictate functional activation of these pathways are incompletely understood. Here, we showed that amino acids license Treg cell function by priming and sustaining TCR-induced mTORC1 activity. mTORC1 activation was induced by amino acids, especially arginine and leucine, accompanied by the dynamic lysosomal localization of the mTOR and Tsc complexes. Rag and Rheb GTPases were central regulators of amino acid-dependent mTORC1 activation in effector Treg (eTreg) cells. Mice bearing RagA-RagB- or Rheb1-Rheb2-deficient Treg cells developed a fatal autoimmune disease and had reduced eTreg cell accumulation and function. RagA-RagB regulated mitochondrial and lysosomal fitness, while Rheb1-Rheb2 enforced eTreg cell suppressive gene signature. Together, these findings reveal a crucial requirement of amino acid signaling for licensing and sustaining mTORC1 activation and functional programming of Treg cells.
Collapse
|
113
|
Andreas N, Potthast M, Geiselhöringer AL, Garg G, de Jong R, Riewaldt J, Russkamp D, Riemann M, Girard JP, Blank S, Kretschmer K, Schmidt-Weber C, Korn T, Weih F, Ohnmacht C. RelB Deficiency in Dendritic Cells Protects from Autoimmune Inflammation Due to Spontaneous Accumulation of Tissue T Regulatory Cells. THE JOURNAL OF IMMUNOLOGY 2019; 203:2602-2613. [PMID: 31578269 DOI: 10.4049/jimmunol.1801530] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 09/09/2019] [Indexed: 02/06/2023]
Abstract
Foxp3+ regulatory T cells are well-known immune suppressor cells in various settings. In this study, we provide evidence that knockout of the relB gene in dendritic cells (DCs) of C57BL/6 mice results in a spontaneous and systemic accumulation of Foxp3+ T regulatory T cells (Tregs) partially at the expense of microbiota-reactive Tregs. Deletion of nfkb2 does not fully recapitulate this phenotype, indicating that alternative NF-κB activation via the RelB/p52 complex is not solely responsible for Treg accumulation. Deletion of RelB in DCs further results in an impaired oral tolerance induction and a marked type 2 immune bias among accumulated Foxp3+ Tregs reminiscent of a tissue Treg signature. Tissue Tregs were fully functional, expanded independently of IL-33, and led to an almost complete Treg-dependent protection from experimental autoimmune encephalomyelitis. Thus, we provide clear evidence that RelB-dependent pathways regulate the capacity of DCs to quantitatively and qualitatively impact on Treg biology and constitute an attractive target for treatment of autoimmune diseases but may come at risk for reduced immune tolerance in the intestinal tract.
Collapse
Affiliation(s)
- Nico Andreas
- Research Group Immunology, Leibniz Institute on Aging - Fritz Lipmann Institute, 07745 Jena, Germany.,Institute of Immunology, Jena University Hospital, 07743 Jena, Germany
| | - Maria Potthast
- Zentrum Allergie und Umwelt, Technische Universität und Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Anna-Lena Geiselhöringer
- Zentrum Allergie und Umwelt, Technische Universität und Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Garima Garg
- Klinikum Rechts der Isar, Neurologische Klinik, Technische Universität München, 81675 Munich, Germany
| | - Renske de Jong
- Zentrum Allergie und Umwelt, Technische Universität und Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Julia Riewaldt
- Molecular and Cellular Immunology/Immune Regulation, German Research Foundation - Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengeneering, Technical University Dresden, 01307 Dresden, Germany
| | - Dennis Russkamp
- Zentrum Allergie und Umwelt, Technische Universität und Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Marc Riemann
- Research Group Immunology, Leibniz Institute on Aging - Fritz Lipmann Institute, 07745 Jena, Germany
| | - Jean-Philippe Girard
- Institut de Pharmacologie et de Biologie Structural, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Simon Blank
- Zentrum Allergie und Umwelt, Technische Universität und Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Karsten Kretschmer
- Molecular and Cellular Immunology/Immune Regulation, German Research Foundation - Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengeneering, Technical University Dresden, 01307 Dresden, Germany
| | - Carsten Schmidt-Weber
- Zentrum Allergie und Umwelt, Technische Universität und Helmholtz Zentrum München, 85764 Neuherberg, Germany.,German Center for Lung Disease, 35392 Giessen, Germany; and
| | - Thomas Korn
- Klinikum Rechts der Isar, Neurologische Klinik, Technische Universität München, 81675 Munich, Germany.,Munich Cluster for Systems Neurology, 81377 Munich, Germany
| | - Falk Weih
- Research Group Immunology, Leibniz Institute on Aging - Fritz Lipmann Institute, 07745 Jena, Germany
| | - Caspar Ohnmacht
- Zentrum Allergie und Umwelt, Technische Universität und Helmholtz Zentrum München, 85764 Neuherberg, Germany;
| |
Collapse
|
114
|
Dhar A, Chawla M, Chattopadhyay S, Oswal N, Umar D, Gupta S, Bal V, Rath S, George A, Arimbasseri GA, Basak S. Role of NF-kappaB2-p100 in regulatory T cell homeostasis and activation. Sci Rep 2019; 9:13867. [PMID: 31554891 PMCID: PMC6761191 DOI: 10.1038/s41598-019-50454-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022] Open
Abstract
The immunological roles of the nuclear factor-kappaB (NF-κB) pathway are mediated via the canonical components in immune responses and via non-canonical components in immune organogenesis and homeostasis, although the two components are capable of crosstalk. Regulatory CD4 T cells (Tregs) are homeostatically functional and represent an interesting potential meeting point of these two NF-κB components. We show that mice deficient in the non-canonical NF-κB component gene Nfkb2 (p100) had normal thymic development and suppressive function of Tregs. However, they had enhanced frequencies of peripheral 'effector-phenotype' Tregs (eTregs). In bi-parental chimeras of wild-type (WT) and Nfkb2-/- mice, the Nfkb2-/- genotype was over-represented in Tregs, with a further increase in the relative prominence of eTregs. Consistent with distinct properties of eTregs, the Nfkb2-/- genotype was more prominent in Tregs in extra-lymphoid tissues such as liver in the bi-parental chimeras. The Nfkb2-/- Tregs also displayed greater survival, activation and proliferation in vivo. These Nfkb2-/- Tregs showed higher nuclear NF-κB activity mainly comprising of RelB-containing dimers, in contrast to the prominence of cRel- and RelA-containing dimers in WT Tregs. Since p100 is an inhibitor of RelB activation as well as a participant as cleaved p52 in RelB nuclear activity, we tested bi-parental chimeras of WT and Relb-/- mice, and found normal frequencies of Relb-/- Tregs and eTregs in these chimeric mice. Our findings confirm and extend recent data, and indicate that p100 normally restrains RelB-mediated Treg activation, and in the absence of p100, p50-RelB dimers can contribute to Treg activation.
Collapse
Affiliation(s)
- Atika Dhar
- National Institute of Immunology, New Delhi, India
| | | | | | - Neelam Oswal
- National Institute of Immunology, New Delhi, India
| | - Danish Umar
- National Institute of Immunology, New Delhi, India
| | - Suman Gupta
- National Institute of Immunology, New Delhi, India
| | - Vineeta Bal
- National Institute of Immunology, New Delhi, India
| | | | - Anna George
- National Institute of Immunology, New Delhi, India
| | | | - Soumen Basak
- National Institute of Immunology, New Delhi, India
| |
Collapse
|
115
|
Zhang Z, Zhou X. Foxp3 Instability Helps tTregs Distinguish Self and Non-self. Front Immunol 2019; 10:2226. [PMID: 31608056 PMCID: PMC6769115 DOI: 10.3389/fimmu.2019.02226] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/03/2019] [Indexed: 12/02/2022] Open
Abstract
Regulatory T cells (Tregs) are small subsets of CD4 T cells that play a central role in the controlling of immune tolerance. Tregs are either generated in the thymus (tTregs) or the periphery (pTregs), and both express the master transcription factor Foxp3. Stable expression of Foxp3 is important for the maintenance of Tregs identity and their suppressive function. Similar to conventional T cells, Tregs can recognize both self- and non-self-antigens, and TCR engagement leads to Treg activation and the generation of effector Tregs. Emerging shreds of evidence suggest Tregs are not always stable, even fully committed mature tTregs, and can lose foxp3 expression and programming to effector-like T cells. In this review, we summarize recent findings in Treg instability and the intrinsic and extrinsic mechanisms in controlling the Foxp3 expression. Finally, we propose a new hypothesis that Foxp3 instability might help tTregs distinguish between self and non-self-antigens.
Collapse
Affiliation(s)
- Zhongmei Zhang
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Xuyu Zhou
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
116
|
Inventories of naive and tolerant mouse CD4 T cell repertoires reveal a hierarchy of deleted and diverted T cell receptors. Proc Natl Acad Sci U S A 2019; 116:18537-18543. [PMID: 31451631 PMCID: PMC6744931 DOI: 10.1073/pnas.1907615116] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Deletion or Treg cell differentiation are alternative fates of autoreactive MHCII-restricted thymocytes. How these different modes of tolerance determine the size and composition of polyclonal cohorts of autoreactive T cells with shared specificity is poorly understood. We addressed how tolerance to a naturally expressed autoantigen of the central nervous system shapes the CD4 T cell repertoire. Specific cells in the tolerant peripheral repertoire either were Foxp3+ or displayed anergy hallmarks and, surprisingly, were at least as frequent as in the nontolerant repertoire. Despite this apparent lack of deletional tolerance, repertoire inventories uncovered that some T cell receptors (TCRs) were lost from the CD4 T cell pool, whereas others mediated Treg cell differentiation. The antigen responsiveness of these TCRs supported an affinity model of central tolerance. Importantly, the contribution of different diverter TCRs to the nascent thymic Treg cell population reflected their antigen reactivity rather than their frequency among precursors. This reveals a multilayered TCR hierarchy in CD4 T cell tolerance that separates deleted and diverted TCRs and assures that the Treg cell compartment is filled with cells of maximal permissive antigen reactivity.
Collapse
|
117
|
Koizumi SI, Ishikawa H. Transcriptional Regulation of Differentiation and Functions of Effector T Regulatory Cells. Cells 2019; 8:E939. [PMID: 31434282 PMCID: PMC6721668 DOI: 10.3390/cells8080939] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/10/2019] [Accepted: 08/15/2019] [Indexed: 12/12/2022] Open
Abstract
Foxp3-expressing regulatory T (Treg) cells can suppress the activity of various types of immune cells and play key roles in the maintenance of self-tolerance and in the regulation of immune responses against pathogens and tumor cells. Treg cells consist of heterogeneous subsets that have distinct phenotypes and functions. Upon antigen stimulation, naïve-like thymus-derived Treg cells, which circulate in secondary lymphoid organs, can differentiate into effector Treg (eTreg) cells and migrate to and control immune homeostasis of peripheral tissues. eTreg cells are heterogeneous in terms of their ability to localize to specific tissues and suppress particular types of immune responses. Differentiation and function of diverse eTreg subsets are regulated by a variety of transcription factors that are activated by antigens and cytokines. In this article, we review the current understanding of the transcriptional regulation of differentiation and function of eTreg cells.
Collapse
Affiliation(s)
- Shin-Ichi Koizumi
- Immune Signal Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Hiroki Ishikawa
- Immune Signal Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan.
| |
Collapse
|
118
|
Abstract
The discovery of interleukin-2 (IL-2) changed the molecular understanding of how the immune system is controlled. IL-2 is a pleiotropic cytokine, and dissecting the signaling pathways that allow IL-2 to control the differentiation and homeostasis of both pro- and anti-inflammatory T cells is fundamental to determining the molecular details of immune regulation. The IL-2 receptor couples to JAK tyrosine kinases and activates the STAT5 transcription factors. However, IL-2 does much more than control transcriptional programs; it is a key regulator of T cell metabolic programs. The development of global phosphoproteomic approaches has expanded the understanding of IL-2 signaling further, revealing the diversity of phosphoproteins that may be influenced by IL-2 in T cells. However, it is increasingly clear that within each T cell subset, IL-2 will signal within a framework of other signal transduction networks that together will shape the transcriptional and metabolic programs that determine T cell fate.
Collapse
Affiliation(s)
- Sarah H Ross
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom;
| | - Doreen A Cantrell
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom;
| |
Collapse
|
119
|
Regulatory T cells in cancer immunosuppression - implications for anticancer therapy. Nat Rev Clin Oncol 2019; 16:356-371. [PMID: 30705439 DOI: 10.1038/s41571-019-0175-7] [Citation(s) in RCA: 1007] [Impact Index Per Article: 167.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Regulatory T (Treg) cells, an immunosuppressive subset of CD4+ T cells characterized by the expression of the master transcription factor forkhead box protein P3 (FOXP3), are a component of the immune system with essential roles in maintaining self-tolerance. In addition, Treg cells can suppress anticancer immunity, thereby hindering protective immunosurveillance of neoplasia and hampering effective antitumour immune responses in tumour-bearing hosts, thus promoting tumour development and progression. Identification of the factors that are specifically expressed in Treg cells and/or that influence Treg cell homeostasis and function is important to understanding cancer pathogenesis and to identifying therapeutic targets. Immune-checkpoint inhibitors (ICIs) have provided a paradigm shift in the treatment of cancer. Most immune-checkpoint molecules are expressed in Treg cells, but the effects of ICIs on Treg cells, and thus the contributions of these cells to treatment responses, remain unclear. Notably, evidence indicates that ICIs targeting programmed cell death 1 (PD-1) might enhance the immunosuppressive function of Treg cells, whereas cytotoxic T lymphocyte antigen 4 (CTLA-4) inhibitors might deplete these cells. Thus, although manipulation of Treg cells is a promising anticancer therapeutic strategy, approaches to controlling these cells require further research. Herein, we discuss novel insights into the roles of Treg cells in cancer, which can hopefully be used to develop Treg cell-targeted therapies and facilitate immune precision medicine.
Collapse
|
120
|
Policheni A, Horikawa K, Milla L, Kofler J, Bouillet P, Belz GT, O'Reilly LA, Goodnow CC, Strasser A, Gray DHD. CARD11 is dispensable for homeostatic responses and suppressive activity of peripherally induced FOXP3
+
regulatory T cells. Immunol Cell Biol 2019; 97:740-752. [DOI: 10.1111/imcb.12268] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 05/12/2019] [Accepted: 05/13/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Antonia Policheni
- The Walter and Eliza Hall Institute of Medical Research Melbourne VIC Australia
- Department of Medical Biology The University of Melbourne Melbourne VIC Australia
| | - Keisuke Horikawa
- Australian Cancer Research Foundation Department of Cancer Biology and Therapeutics The John Curtin School of Medical Research The Australian National University Canberra ACT Australia
| | - Liz Milla
- The Walter and Eliza Hall Institute of Medical Research Melbourne VIC Australia
- Department of Medical Biology The University of Melbourne Melbourne VIC Australia
| | - Jennifer Kofler
- Australian Cancer Research Foundation Department of Cancer Biology and Therapeutics The John Curtin School of Medical Research The Australian National University Canberra ACT Australia
| | - Philippe Bouillet
- The Walter and Eliza Hall Institute of Medical Research Melbourne VIC Australia
- Department of Medical Biology The University of Melbourne Melbourne VIC Australia
| | - Gabrielle T Belz
- The Walter and Eliza Hall Institute of Medical Research Melbourne VIC Australia
- Department of Medical Biology The University of Melbourne Melbourne VIC Australia
| | - Lorraine A O'Reilly
- The Walter and Eliza Hall Institute of Medical Research Melbourne VIC Australia
- Department of Medical Biology The University of Melbourne Melbourne VIC Australia
| | | | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research Melbourne VIC Australia
- Department of Medical Biology The University of Melbourne Melbourne VIC Australia
| | - Daniel HD Gray
- The Walter and Eliza Hall Institute of Medical Research Melbourne VIC Australia
- Department of Medical Biology The University of Melbourne Melbourne VIC Australia
| |
Collapse
|
121
|
Tong AA, Forestell B, Murphy DV, Nair A, Allen F, Myers J, Klauschen F, Shen C, Gopal AA, Huang AY, Mandl JN. Regulatory T cells differ from conventional
CD
4
+
T cells in their recirculatory behavior and lymph node transit times. Immunol Cell Biol 2019; 97:787-798. [DOI: 10.1111/imcb.12276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Alexander A Tong
- Department of Pathology Case Western Reserve University School of Medicine Cleveland OH USA
| | - Benjamin Forestell
- Department of Physiology Department of Microbiology and Immunology McGill Research Centre for Complex Traits McGill University Montreal QC Canada
| | - Daniel V Murphy
- Department of Pediatrics Case Western Reserve University School of Medicine Cleveland OH USA
- The Angie Fowler AYA Cancer Institute UH Rainbow Babies & Children's Hospital Cleveland OH USA
| | - Aditya Nair
- Department of Pediatrics Case Western Reserve University School of Medicine Cleveland OH USA
- The Angie Fowler AYA Cancer Institute UH Rainbow Babies & Children's Hospital Cleveland OH USA
| | - Frederick Allen
- Department of Pathology Case Western Reserve University School of Medicine Cleveland OH USA
| | - Jay Myers
- Department of Pediatrics Case Western Reserve University School of Medicine Cleveland OH USA
- The Angie Fowler AYA Cancer Institute UH Rainbow Babies & Children's Hospital Cleveland OH USA
| | | | - Connie Shen
- Department of Physiology Department of Microbiology and Immunology McGill Research Centre for Complex Traits McGill University Montreal QC Canada
| | - Angelica A Gopal
- Department of Physiology Department of Microbiology and Immunology McGill Research Centre for Complex Traits McGill University Montreal QC Canada
| | - Alex Y Huang
- Department of Pathology Case Western Reserve University School of Medicine Cleveland OH USA
- Department of Pediatrics Case Western Reserve University School of Medicine Cleveland OH USA
- The Angie Fowler AYA Cancer Institute UH Rainbow Babies & Children's Hospital Cleveland OH USA
| | - Judith N Mandl
- Department of Physiology Department of Microbiology and Immunology McGill Research Centre for Complex Traits McGill University Montreal QC Canada
| |
Collapse
|
122
|
A wave of Foxp3 + regulatory T cell accumulation in the neonatal liver plays unique roles in maintaining self-tolerance. Cell Mol Immunol 2019; 17:507-518. [PMID: 31171863 DOI: 10.1038/s41423-019-0246-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/15/2019] [Indexed: 12/24/2022] Open
Abstract
Newborn animals require tightly regulated local and systemic immune environments to govern the development and maturation of multiple organs/tissues even though the immune system itself is far from mature during the neonatal period. Regulatory T cells (Tregs) are essential for maintaining immune tolerance/homeostasis and modulating inflammatory responses. The features of Tregs in the neonatal liver under steady-state conditions are not well understood. The present study aimed to investigate the phenotype, functions, and significance of neonatal Tregs in the liver. We found a wave of thymus-derived Treg influx into the liver during 1-2 weeks of age. Depletion of these Tregs between days 7 and 11 after birth rapidly resulted in Th1-type liver inflammation and metabolic disorder. More Tregs in the neonatal liver than in the spleen underwent MHC II-dependent activation and proliferation, and the liver Tregs acquired stronger suppressive functions. The transcriptomic profile of these neonatal liver Tregs showed elevated expression of PPARγ and T-bet and features of Tregs that utilize lipid metabolic machinery and are capable of regulating Th1 responses. The accumulation of Tregs with unique features in the neonatal liver is critical to ensure self-tolerance and liver maturation.
Collapse
|
123
|
Chatila TA, De Palma R. A simple twist of phosphate: Immunological synapse formation and T cell receptor signaling outcome in regulatory T cells. Eur J Immunol 2019; 47:2039-2042. [PMID: 29211935 DOI: 10.1002/eji.201747359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 11/02/2017] [Accepted: 11/13/2017] [Indexed: 01/07/2023]
Abstract
Signaling through the T cell receptor (TCR) regulates T cell homeostasis and effector functions. However, a full accounting of the TCR-coupled signaling networks and how their interplay determines specific functional outcomes remains elusive. Of particular interest are efforts over the last years to elucidate distinctive features of TCR signaling in regulatory T cells (Treg) that may account for some of their unique functional attributes as compared to conventional T (Tconv) cells. In this issue of the European Journal of Immunology, van Ham et al. [Eur. J. Immunol. 2017. 47: 2043-2058] employed differential phosphoproteomics to identify a set of 11 proteins mainly linked to cytoskeletal organization and molecular transport that discriminate between TCR signaling in the respective cell subset. They further linked these differences to cell subset-specific alterations in the spatio-temporal organization of signaling pathways at immune synapse (IS) in Treg versus T conv. These data support the idea that these proteins may act as a molecular "twist" element driving Treg cell-specific responses by affecting cytoskeletal dynamics and IS formation. Taken together, these findings may facilitate the development of novel immunomodulatory agents that exploit differences in TCR signaling between Treg and Tconv cells.
Collapse
Affiliation(s)
- Talal A Chatila
- Department of Pediatrics, Division of Immunology, Boston Children's Hospital, Harvard School of Medicine, Boston, MA, USA
| | - Raffaele De Palma
- Department of Clinical & Experimental Medicine, Università della Campania "L. Vanvitelli", CNR, Napoli-Italy and Institute for Protein Biochemistry, Napoli, Italy
| |
Collapse
|
124
|
Ovcinnikovs V, Ross EM, Petersone L, Edner NM, Heuts F, Ntavli E, Kogimtzis A, Kennedy A, Wang CJ, Bennett CL, Sansom DM, Walker LSK. CTLA-4-mediated transendocytosis of costimulatory molecules primarily targets migratory dendritic cells. Sci Immunol 2019; 4:eaaw0902. [PMID: 31152091 PMCID: PMC6570622 DOI: 10.1126/sciimmunol.aaw0902] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 04/02/2019] [Indexed: 12/12/2022]
Abstract
CTLA-4 is a critical negative regulator of the immune system and a major target for immunotherapy. However, precisely how it functions in vivo to maintain immune homeostasis is not clear. As a highly endocytic molecule, CTLA-4 can capture costimulatory ligands from opposing cells by a process of transendocytosis (TE). By restricting costimulatory ligand expression in this manner, CTLA-4 controls the CD28-dependent activation of T cells. Regulatory T cells (Tregs) constitutively express CTLA-4 at high levels and, in its absence, show defects in TE and suppressive function. Activated conventional T cells (Tconv) are also capable of CTLA-4-dependent TE; however, the relative use of this mechanism by Tregs and Tconv in vivo remains unclear. Here, we set out to characterize both the perpetrators and cellular targets of CTLA-4 TE in vivo. We found that Tregs showed constitutive cell surface recruitment of CTLA-4 ex vivo and performed TE rapidly after TCR stimulation. Tregs outperformed activated Tconv at TE in vivo, and expression of ICOS marked Tregs with this capability. Using TCR transgenic Tregs that recognize a protein expressed in the pancreas, we showed that the presentation of tissue-derived self-antigen could trigger Tregs to capture costimulatory ligands in vivo. Last, we identified migratory dendritic cells (DCs) as the major target for Treg-based CTLA-4-dependent regulation in the steady state. These data support a model in which CTLA-4 expressed on Tregs dynamically regulates the phenotype of DCs trafficking to lymph nodes from peripheral tissues in an antigen-dependent manner.
Collapse
Affiliation(s)
- Vitalijs Ovcinnikovs
- Institute of Immunity and Transplantation, University College London Division of Infection and Immunity, Royal Free Campus, NW3 2PF London , UK
| | - Ellen M Ross
- Institute of Immunity and Transplantation, University College London Division of Infection and Immunity, Royal Free Campus, NW3 2PF London , UK
| | - Lina Petersone
- Institute of Immunity and Transplantation, University College London Division of Infection and Immunity, Royal Free Campus, NW3 2PF London , UK
| | - Natalie M Edner
- Institute of Immunity and Transplantation, University College London Division of Infection and Immunity, Royal Free Campus, NW3 2PF London , UK
| | - Frank Heuts
- Institute of Immunity and Transplantation, University College London Division of Infection and Immunity, Royal Free Campus, NW3 2PF London , UK
| | - Elisavet Ntavli
- Institute of Immunity and Transplantation, University College London Division of Infection and Immunity, Royal Free Campus, NW3 2PF London , UK
| | - Alexandros Kogimtzis
- Institute of Immunity and Transplantation, University College London Division of Infection and Immunity, Royal Free Campus, NW3 2PF London , UK
| | - Alan Kennedy
- Institute of Immunity and Transplantation, University College London Division of Infection and Immunity, Royal Free Campus, NW3 2PF London , UK
| | - Chun Jing Wang
- Institute of Immunity and Transplantation, University College London Division of Infection and Immunity, Royal Free Campus, NW3 2PF London , UK
| | - Clare L Bennett
- Institute of Immunity and Transplantation, University College London Division of Infection and Immunity, Royal Free Campus, NW3 2PF London , UK
- Department of Haematology, University College London Cancer Institute, Royal Free Campus, NW3 2PF London, UK
| | - David M Sansom
- Institute of Immunity and Transplantation, University College London Division of Infection and Immunity, Royal Free Campus, NW3 2PF London , UK
| | - Lucy S K Walker
- Institute of Immunity and Transplantation, University College London Division of Infection and Immunity, Royal Free Campus, NW3 2PF London , UK.
| |
Collapse
|
125
|
Wakamatsu E, Omori H, Tabata Y, Akieda Y, Watanabe S, Ogawa S, Abe R. CD28 co-stimulation is dispensable for the steady state homeostasis of intestinal regulatory T cells. Int Immunol 2019; 30:171-180. [PMID: 29425339 DOI: 10.1093/intimm/dxy013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/02/2018] [Indexed: 12/13/2022] Open
Abstract
It is well-established that CD28 co-stimulation is required for the development and the proliferation of thymus-derived regulatory T cells (tTregs). Meanwhile, the role of CD28 co-stimulation in the homeostasis of peripherally derived Tregs (pTregs) remains unclear. To clarify this issue, we analyzed Tregs in small and large intestines (SI and LI), the principle sites of pTreg development. Interestingly, and different from in the thymus, Tregs were abundant in the intestines of CD28-/- mice, and most of them were phenotypically pTregs. We showed that CD28-/- naive T cells differentiated into pTregs in the LI after oral exposure to antigens and that CD28-/- pTregs in the LI had the same highly proliferative activity as CD28+/- cells. CD28-/- pTregs acquired these Treg-specific features at transcriptional and epigenetics levels. On the other hand, some immune suppressive molecules were down-regulated in CD28-/- pTregs. Correspondingly, the suppressive activity of CD28-/- pTregs was weaker than CD28+/+ cells. These results indicate that the homeostasis of pTregs in the intestines is maintained even in the absence of CD28, whereas CD28 is required for the maximal suppressive activity of intestinal pTregs.
Collapse
Affiliation(s)
- Ei Wakamatsu
- Division of Immunobiology, Tokyo University of Science, Yamazaki, Noda City, Chiba, Japan.,Department of Immunology, Tokyo Medical University, Shinjuku, Shinjuku-ku, Tokyo, Japan
| | - Hiroki Omori
- Division of Immunobiology, Tokyo University of Science, Yamazaki, Noda City, Chiba, Japan
| | - Yuki Tabata
- Division of Immunobiology, Tokyo University of Science, Yamazaki, Noda City, Chiba, Japan
| | - Yuki Akieda
- Division of Immunobiology, Tokyo University of Science, Yamazaki, Noda City, Chiba, Japan
| | - Shiho Watanabe
- Division of Immunobiology, Tokyo University of Science, Yamazaki, Noda City, Chiba, Japan
| | - Shuhei Ogawa
- Division of Experimental Animal Immunology, Research Institute for Biomedical Sciences, Tokyo University of Science, Yamazaki, Noda City, Chiba, Japan
| | - Ryo Abe
- Division of Immunobiology, Tokyo University of Science, Yamazaki, Noda City, Chiba, Japan
| |
Collapse
|
126
|
Rosenbaum M, Gewies A, Pechloff K, Heuser C, Engleitner T, Gehring T, Hartjes L, Krebs S, Krappmann D, Kriegsmann M, Weichert W, Rad R, Kurts C, Ruland J. Bcl10-controlled Malt1 paracaspase activity is key for the immune suppressive function of regulatory T cells. Nat Commun 2019; 10:2352. [PMID: 31138793 PMCID: PMC6538646 DOI: 10.1038/s41467-019-10203-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 04/27/2019] [Indexed: 01/16/2023] Open
Abstract
Regulatory T cells (Tregs) have crucial functions in the inhibition of immune responses. Their development and suppressive functions are controlled by the T cell receptor (TCR), but the TCR signaling mechanisms that mediate these effects remain ill-defined. Here we show that CARD11-BCL10-MALT1 (CBM) signaling mediates TCR-induced NF-κB activation in Tregs and controls the conversion of resting Tregs to effector Tregs under homeostatic conditions. However, in inflammatory milieus, cytokines can bypass the CBM requirement for this differentiation step. By contrast, CBM signaling, in a MALT1 protease-dependent manner, is essential for mediating the suppressive function of Tregs. In malignant melanoma models, acute genetic blockade of BCL10 signaling selectively in Tregs or pharmacological MALT1 inhibition enhances anti-tumor immune responses. Together, our data uncover a segregation of Treg differentiation and suppressive function at the CBM complex level, and provide a rationale to explore MALT1 inhibitors for cancer immunotherapy.
Collapse
Affiliation(s)
- Marc Rosenbaum
- Institute of Clinical Chemistry and Pathobiochemistry, TUM School of Medicine, Technical University of Munich, 81675, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, 81675, Munich, Germany
| | - Andreas Gewies
- Institute of Clinical Chemistry and Pathobiochemistry, TUM School of Medicine, Technical University of Munich, 81675, Munich, Germany.,German Cancer Consortium (DKTK), 69120, Heidelberg, Germany.,Research Unit Cellular Signal Integration, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Konstanze Pechloff
- Institute of Clinical Chemistry and Pathobiochemistry, TUM School of Medicine, Technical University of Munich, 81675, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, 81675, Munich, Germany.,German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
| | - Christoph Heuser
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, 81675, Munich, Germany.,Institute of Experimental Immunology, Rheinische-Friedrichs-Wilhelms University of Bonn, 53127, Bonn, Germany.,School of Medicine, Institute of Virology, Technical University of Munich, 81675, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, 81675, Munich, Germany
| | - Thomas Engleitner
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, 81675, Munich, Germany.,Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technical University of Munich, 81675, Munich, Germany
| | - Torben Gehring
- Research Unit Cellular Signal Integration, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Lara Hartjes
- Institute of Clinical Chemistry and Pathobiochemistry, TUM School of Medicine, Technical University of Munich, 81675, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, 81675, Munich, Germany
| | - Sabrina Krebs
- Institute of Clinical Chemistry and Pathobiochemistry, TUM School of Medicine, Technical University of Munich, 81675, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, 81675, Munich, Germany
| | - Daniel Krappmann
- Research Unit Cellular Signal Integration, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Mark Kriegsmann
- Institute of Pathology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Wilko Weichert
- Institute of Pathology, Technical University of Munich, 81675, Munich, Germany
| | - Roland Rad
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, 81675, Munich, Germany.,German Cancer Consortium (DKTK), 69120, Heidelberg, Germany.,Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technical University of Munich, 81675, Munich, Germany
| | - Christian Kurts
- Institute of Experimental Immunology, Rheinische-Friedrichs-Wilhelms University of Bonn, 53127, Bonn, Germany
| | - Jürgen Ruland
- Institute of Clinical Chemistry and Pathobiochemistry, TUM School of Medicine, Technical University of Munich, 81675, Munich, Germany. .,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, 81675, Munich, Germany. .,German Cancer Consortium (DKTK), 69120, Heidelberg, Germany. .,German Center for Infection Research (DZIF), Partner Site Munich, 81675, Munich, Germany.
| |
Collapse
|
127
|
PD-1 + regulatory T cells amplified by PD-1 blockade promote hyperprogression of cancer. Proc Natl Acad Sci U S A 2019. [PMID: 31028147 DOI: 10.1073/pnas.1822001116.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PD-1 blockade is a cancer immunotherapy effective in various types of cancer. In a fraction of treated patients, however, it causes rapid cancer progression called hyperprogressive disease (HPD). With our observation of HPD in ∼10% of anti-PD-1 monoclonal antibody (mAb)-treated advanced gastric cancer (GC) patients, we explored how anti-PD-1 mAb caused HPD in these patients and how HPD could be treated and prevented. In the majority of GC patients, tumor-infiltrating FoxP3highCD45RA-CD4+ T cells [effector Treg (eTreg) cells], which were abundant and highly suppressive in tumors, expressed PD-1 at equivalent levels as tumor-infiltrating CD4+ or CD8+ effector/memory T cells and at much higher levels than circulating eTreg cells. Comparison of GC tissue samples before and after anti-PD-1 mAb therapy revealed that the treatment markedly increased tumor-infiltrating proliferative (Ki67+) eTreg cells in HPD patients, contrasting with their reduction in non-HPD patients. Functionally, circulating and tumor-infiltrating PD-1+ eTreg cells were highly activated, showing higher expression of CTLA-4 than PD-1- eTreg cells. PD-1 blockade significantly enhanced in vitro Treg cell suppressive activity. Similarly, in mice, genetic ablation or antibody-mediated blockade of PD-1 in Treg cells increased their proliferation and suppression of antitumor immune responses. Taken together, PD-1 blockade may facilitate the proliferation of highly suppressive PD-1+ eTreg cells in HPDs, resulting in inhibition of antitumor immunity. The presence of actively proliferating PD-1+ eTreg cells in tumors is therefore a reliable marker for HPD. Depletion of eTreg cells in tumor tissues would be effective in treating and preventing HPD in PD-1 blockade cancer immunotherapy.
Collapse
|
128
|
Abstract
PD-1 blockade is a cancer immunotherapy effective in various types of cancer. However, we observed rapid cancer progression, called hyperprogressive disease (HPD), in ∼10% of advanced gastric cancer patients treated with anti–PD-1 monoclonal antibody. Tumors of HPD patients possessed highly proliferating FoxP3+ Treg cells after treatment, contrasting with their reduction in non-HPD tumors. In vitro PD-1 blockade augmented proliferation and suppressive activity of human Treg cells. Likewise, murine Treg cells that were deficient in PD-1 signaling were more proliferative and immunosuppressive. Thus, HPD may occur when PD-1 blockade activates and expands tumor-infiltrating PD-1+ Treg cells to overwhelm tumor-reactive PD-1+ effector T cells. Depletion of the former may therefore help treat and prevent HPD. PD-1 blockade is a cancer immunotherapy effective in various types of cancer. In a fraction of treated patients, however, it causes rapid cancer progression called hyperprogressive disease (HPD). With our observation of HPD in ∼10% of anti–PD-1 monoclonal antibody (mAb)-treated advanced gastric cancer (GC) patients, we explored how anti–PD-1 mAb caused HPD in these patients and how HPD could be treated and prevented. In the majority of GC patients, tumor-infiltrating FoxP3highCD45RA−CD4+ T cells [effector Treg (eTreg) cells], which were abundant and highly suppressive in tumors, expressed PD-1 at equivalent levels as tumor-infiltrating CD4+ or CD8+ effector/memory T cells and at much higher levels than circulating eTreg cells. Comparison of GC tissue samples before and after anti–PD-1 mAb therapy revealed that the treatment markedly increased tumor-infiltrating proliferative (Ki67+) eTreg cells in HPD patients, contrasting with their reduction in non-HPD patients. Functionally, circulating and tumor-infiltrating PD-1+ eTreg cells were highly activated, showing higher expression of CTLA-4 than PD-1− eTreg cells. PD-1 blockade significantly enhanced in vitro Treg cell suppressive activity. Similarly, in mice, genetic ablation or antibody-mediated blockade of PD-1 in Treg cells increased their proliferation and suppression of antitumor immune responses. Taken together, PD-1 blockade may facilitate the proliferation of highly suppressive PD-1+ eTreg cells in HPDs, resulting in inhibition of antitumor immunity. The presence of actively proliferating PD-1+ eTreg cells in tumors is therefore a reliable marker for HPD. Depletion of eTreg cells in tumor tissues would be effective in treating and preventing HPD in PD-1 blockade cancer immunotherapy.
Collapse
|
129
|
Chapman NM, Shrestha S, Chi H. Metabolism in Immune Cell Differentiation and Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1011:1-85. [PMID: 28875486 DOI: 10.1007/978-94-024-1170-6_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The immune system is a central determinant of organismal health. Functional immune responses require quiescent immune cells to rapidly grow, proliferate, and acquire effector functions when they sense infectious agents or other insults. Specialized metabolic programs are critical regulators of immune responses, and alterations in immune metabolism can cause immunological disorders. There has thus been growing interest in understanding how metabolic processes control immune cell functions under normal and pathophysiological conditions. In this chapter, we summarize how metabolic programs are tuned and what the physiological consequences of metabolic reprogramming are as they relate to immune cell homeostasis, differentiation, and function.
Collapse
Affiliation(s)
- Nicole M Chapman
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Sharad Shrestha
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| |
Collapse
|
130
|
Cheng L, Deng N, Yang N, Zhao X, Lin X. Malt1 Protease Is Critical in Maintaining Function of Regulatory T Cells and May Be a Therapeutic Target for Antitumor Immunity. THE JOURNAL OF IMMUNOLOGY 2019; 202:3008-3019. [DOI: 10.4049/jimmunol.1801614] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/14/2019] [Indexed: 01/17/2023]
|
131
|
Ugur M, Mueller SN. T cell and dendritic cell interactions in lymphoid organs: More than just being in the right place at the right time. Immunol Rev 2019; 289:115-128. [DOI: 10.1111/imr.12753] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 01/31/2019] [Accepted: 02/03/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Milas Ugur
- Department of Microbiology and Immunology The University of Melbourne, The Peter Doherty Institute for Infection and Immunity Melbourne Victoria Australia
| | - Scott N. Mueller
- Department of Microbiology and Immunology The University of Melbourne, The Peter Doherty Institute for Infection and Immunity Melbourne Victoria Australia
- The Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne Melbourne Victoria Australia
| |
Collapse
|
132
|
Fleskens V, Minutti CM, Wu X, Wei P, Pals CEGM, McCrae J, Hemmers S, Groenewold V, Vos HJ, Rudensky A, Pan F, Li H, Zaiss DM, Coffer PJ. Nemo-like Kinase Drives Foxp3 Stability and Is Critical for Maintenance of Immune Tolerance by Regulatory T Cells. Cell Rep 2019; 26:3600-3612.e6. [PMID: 30917315 PMCID: PMC6444001 DOI: 10.1016/j.celrep.2019.02.087] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 12/06/2018] [Accepted: 02/21/2019] [Indexed: 12/22/2022] Open
Abstract
The Foxp3 transcription factor is a crucial determinant of both regulatory T (TREG) cell development and their functional maintenance. Appropriate modulation of tolerogenic immune responses therefore requires the tight regulation of Foxp3 transcriptional output, and this involves both transcriptional and post-translational regulation. Here, we show that during T cell activation, phosphorylation of Foxp3 in TREG cells can be regulated by a TGF-β activated kinase 1 (TAK1)-Nemo-like kinase (NLK) signaling pathway. NLK interacts and phosphorylates Foxp3 in TREG cells, resulting in the stabilization of protein levels by preventing association with the STUB1 E3-ubiquitin protein ligase. Conditional TREG cell NLK-knockout (NLKΔTREG) results in decreased TREG cell-mediated immunosuppression in vivo, and NLK-deficient TREG cell animals develop more severe experimental autoimmune encephalomyelitis. Our data suggest a molecular mechanism, in which stimulation of TCR-mediated signaling can induce a TAK1-NLK pathway to sustain Foxp3 transcriptional activity through the stabilization of protein levels, thereby maintaining TREG cell suppressive function.
Collapse
Affiliation(s)
- Veerle Fleskens
- Center for Molecular Medicine, Division of Pediatrics, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Carlos M Minutti
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, Edinburgh, UK
| | - Xingmei Wu
- ENT Department, Affiliated Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Ping Wei
- Department of Otolaryngology, The Children's Hospital of Chongqing Medical University, 136 Zhongshaner Road, Chongqing 400014, China
| | - Cornelieke E G M Pals
- Center for Molecular Medicine, Division of Pediatrics, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands; Regenerative Medicine Center, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands
| | - James McCrae
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, Edinburgh, UK
| | - Saskia Hemmers
- Immunology Program, Howard Hughes Medical Institute, and Ludwig Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vincent Groenewold
- Hubrecht Institute, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Harm-Jan Vos
- Proteins at Work, UMC Utrecht, Utrecht, the Netherlands
| | - Alexander Rudensky
- Immunology Program, Howard Hughes Medical Institute, and Ludwig Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fan Pan
- Immunology and Hematopoiesis Division, Department of Oncology, Bloomberg-Kimmel Institute, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Huabin Li
- ENT Department, Affiliated Eye and ENT Hospital, Fudan University, Shanghai, China.
| | - Dietmar M Zaiss
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, Edinburgh, UK.
| | - Paul J Coffer
- Center for Molecular Medicine, Division of Pediatrics, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands; Regenerative Medicine Center, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
133
|
Lalfer M, Chappert P, Carpentier M, Urbain D, Davoust JM, Gross DA. Foxp3 + Regulatory and Conventional CD4 + T Cells Display Similarly High Frequencies of Alloantigen-Reactive Cells. Front Immunol 2019; 10:521. [PMID: 30941146 PMCID: PMC6434998 DOI: 10.3389/fimmu.2019.00521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/26/2019] [Indexed: 01/22/2023] Open
Abstract
Foxp3+ regulatory T cells (Tregs) play a major role in acquired immune tolerance to allogenic transplants. Their suppressive activity is thought to require T cell receptor (TCR)-driven antigen recognition; little, however, is known about the fraction of Tregs able to recognize alloantigens within this T cell subset primarily educated against self-antigens. Performing transfer experiments of Tregs or conventional T cells (Tconv) into both lymphoreplete and lymphopenic mice, we observed a similarly high proportion of cells signaling through their TCR and proliferating in allogenic hosts. Furthermore, using an in vivo proliferation assay with limited T cell numbers infused into lymphopenic mice, we found that the overall frequency of alloreactive Tregs was similar if not higher to that of alloreactive Tconv. Overall our study highlights a noticeably high level of alloreactive Foxp3+ regulatory T cells accounting for their predominant role in transplantation tolerance.
Collapse
Affiliation(s)
- Mélanie Lalfer
- Institut National de la Santé et de la Recherche Médicale U1151 - Centre National de la Recherche Scientifique UMR 8253, Institut Necker-Enfants Malades, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Pascal Chappert
- Institut National de la Santé et de la Recherche Médicale U1151 - Centre National de la Recherche Scientifique UMR 8253, Institut Necker-Enfants Malades, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Maxime Carpentier
- Institut National de la Santé et de la Recherche Médicale U1151 - Centre National de la Recherche Scientifique UMR 8253, Institut Necker-Enfants Malades, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Dominique Urbain
- Institut National de la Santé et de la Recherche Médicale U1151 - Centre National de la Recherche Scientifique UMR 8253, Institut Necker-Enfants Malades, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jean M Davoust
- Institut National de la Santé et de la Recherche Médicale U1151 - Centre National de la Recherche Scientifique UMR 8253, Institut Necker-Enfants Malades, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - David-Alexandre Gross
- Institut National de la Santé et de la Recherche Médicale U1151 - Centre National de la Recherche Scientifique UMR 8253, Institut Necker-Enfants Malades, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
134
|
Vaeth M, Wang YH, Eckstein M, Yang J, Silverman GJ, Lacruz RS, Kannan K, Feske S. Tissue resident and follicular Treg cell differentiation is regulated by CRAC channels. Nat Commun 2019; 10:1183. [PMID: 30862784 PMCID: PMC6414608 DOI: 10.1038/s41467-019-08959-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 02/11/2019] [Indexed: 12/30/2022] Open
Abstract
T regulatory (Treg) cells maintain immunological tolerance and organ homeostasis. Activated Treg cells differentiate into effector Treg subsets that acquire tissue-specific functions. Ca2+ influx via Ca2+ release-activated Ca2+ (CRAC) channels formed by STIM and ORAI proteins is required for the thymic development of Treg cells, but its function in mature Treg cells remains unclear. Here we show that deletion of Stim1 and Stim2 genes in mature Treg cells abolishes Ca2+ signaling and prevents their differentiation into follicular Treg and tissue-resident Treg cells. Transcriptional profiling of STIM1/STIM2-deficient Treg cells reveals that Ca2+ signaling regulates transcription factors and signaling pathways that control the identity and effector differentiation of Treg cells. In the absence of STIM1/STIM2 in Treg cells, mice develop a broad spectrum of autoantibodies and fatal multiorgan inflammation. Our findings establish a critical role of CRAC channels in controlling lineage identity and effector functions of Treg cells. Regulatory T (Treg) cells are important for maintaining immune homeostasis. Here the authors show that STIM1 and STIM2, which activate the Ca2+ channel ORAI1, are essential for the differentiation of peripheral Treg cells into tissue-resident and follicular Treg cells and their ability to limit autoimmunity in mice.
Collapse
Affiliation(s)
- Martin Vaeth
- Department of Pathology, New York University School of Medicine, New York, NY, 10016, USA.,Institute for Systems Immunology, Julius-Maximilians University of Würzburg, 97078, Würzburg, Germany
| | - Yin-Hu Wang
- Department of Pathology, New York University School of Medicine, New York, NY, 10016, USA
| | - Miriam Eckstein
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA.,Institute for Systems Immunology, Julius-Maximilians University of Würzburg, 97078, Würzburg, Germany
| | - Jun Yang
- Department of Pathology, New York University School of Medicine, New York, NY, 10016, USA
| | - Gregg J Silverman
- Department of Medicine, New York University School of Medicine, New York, NY, 10016, USA
| | - Rodrigo S Lacruz
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Kasthuri Kannan
- Department of Pathology, New York University School of Medicine, New York, NY, 10016, USA.,Genome Technology Center, New York University School of Medicine, New York, NY, 10016, USA
| | - Stefan Feske
- Department of Pathology, New York University School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
135
|
Toomer KH, Lui JB, Altman NH, Ban Y, Chen X, Malek TR. Essential and non-overlapping IL-2Rα-dependent processes for thymic development and peripheral homeostasis of regulatory T cells. Nat Commun 2019; 10:1037. [PMID: 30833563 PMCID: PMC6399264 DOI: 10.1038/s41467-019-08960-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/11/2019] [Indexed: 01/06/2023] Open
Abstract
IL-2R signaling is essential for regulatory T cell (Treg) function. However, the precise contribution of IL-2 during Treg thymic development, peripheral homeostasis and lineage stability remains unclear. Here we show that IL-2R signaling is required by thymic Tregs at an early step for expansion and survival, and a later step for functional maturation. Using inducible, conditional deletion of CD25 in peripheral Tregs, we also find that IL-2R signaling is indispensable for Treg homeostasis, whereas Treg lineage stability is largely IL-2-independent. CD25 knockout peripheral Tregs have increased apoptosis, oxidative stress, signs of mitochondrial dysfunction, and reduced transcription of key enzymes of lipid and cholesterol biosynthetic pathways. A divergent IL-2R transcriptional signature is noted for thymic Tregs versus peripheral Tregs. These data indicate that IL-2R signaling in the thymus and the periphery leads to distinctive effects on Treg function, while peripheral Treg survival depends on a non-conventional mechanism of metabolic regulation. Interleukin-2 (IL-2) signaling is required for regulatory T (Treg) cell differentiation in the thymus, but its function in peripheral Tregs is still unclear. Here the authors show, using inducible deletion of IL-2 receptor subunit CD25, that IL-2 signaling is essential for maintaining peripheral Treg homeostasis, but dispensable for lineage stability.
Collapse
Affiliation(s)
- Kevin H Toomer
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Jen Bon Lui
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Norman H Altman
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Yuguang Ban
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Xi Chen
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.,Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Thomas R Malek
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA. .,Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.
| |
Collapse
|
136
|
Łyszkiewicz M, Winter SJ, Witzlau K, Föhse L, Brownlie R, Puchałka J, Verheyden NA, Kunze-Schumacher H, Imelmann E, Blume J, Raha S, Sekiya T, Yoshimura A, Frueh JT, Ullrich E, Huehn J, Weiss S, Gutierrez MG, Prinz I, Zamoyska R, Ziętara N, Krueger A. miR-181a/b-1 controls thymic selection of Treg cells and tunes their suppressive capacity. PLoS Biol 2019; 17:e2006716. [PMID: 30856173 PMCID: PMC6428341 DOI: 10.1371/journal.pbio.2006716] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 03/21/2019] [Accepted: 02/27/2019] [Indexed: 12/13/2022] Open
Abstract
The interdependence of selective cues during development of regulatory T cells (Treg cells) in the thymus and their suppressive function remains incompletely understood. Here, we analyzed this interdependence by taking advantage of highly dynamic changes in expression of microRNA 181 family members miR-181a-1 and miR-181b-1 (miR-181a/b-1) during late T-cell development with very high levels of expression during thymocyte selection, followed by massive down-regulation in the periphery. Loss of miR-181a/b-1 resulted in inefficient de novo generation of Treg cells in the thymus but simultaneously permitted homeostatic expansion in the periphery in the absence of competition. Modulation of T-cell receptor (TCR) signal strength in vivo indicated that miR-181a/b-1 controlled Treg-cell formation via establishing adequate signaling thresholds. Unexpectedly, miR-181a/b-1-deficient Treg cells displayed elevated suppressive capacity in vivo, in line with elevated levels of cytotoxic T-lymphocyte-associated 4 (CTLA-4) protein, but not mRNA, in thymic and peripheral Treg cells. Therefore, we propose that intrathymic miR-181a/b-1 controls development of Treg cells and imposes a developmental legacy on their peripheral function.
Collapse
MESH Headings
- Animals
- Flow Cytometry
- Mice
- Mice, Knockout
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Microscopy, Confocal
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 2/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism
- T-Lymphocytes, Regulatory/metabolism
- Thymocytes/metabolism
Collapse
Affiliation(s)
- Marcin Łyszkiewicz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Institute for Immunology, Ludwig-Maximilians University, Planegg-Martiensried, Germany
| | - Samantha J. Winter
- Institute for Molecular Medicine, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Katrin Witzlau
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Lisa Föhse
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Rebecca Brownlie
- Institute for Immunology and Infection Research, The University of Edinburgh, Edinburgh, United Kingdom
| | - Jacek Puchałka
- Department of Pediatrics, Dr. von Hauner Kinderspital, Ludwig-Maximilians University, Munich, Germany
| | - Nikita A. Verheyden
- Institute for Molecular Medicine, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Heike Kunze-Schumacher
- Institute for Molecular Medicine, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Esther Imelmann
- Institute for Molecular Medicine, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Jonas Blume
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Solaiman Raha
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Takashi Sekiya
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Jochen T. Frueh
- Experimental Immunology, Department for Children and Adolescents Medicine, Hospital of the Goethe University Frankfurt, Frankfurt, Germany
- LOEWE Center for Cell and Gene Therapy, Goethe University, Frankfurt, Germany
| | - Evelyn Ullrich
- Experimental Immunology, Department for Children and Adolescents Medicine, Hospital of the Goethe University Frankfurt, Frankfurt, Germany
- LOEWE Center for Cell and Gene Therapy, Goethe University, Frankfurt, Germany
| | - Jochen Huehn
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Siegfried Weiss
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Rose Zamoyska
- Institute for Immunology and Infection Research, The University of Edinburgh, Edinburgh, United Kingdom
| | - Natalia Ziętara
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Institute for Immunology, Ludwig-Maximilians University, Planegg-Martiensried, Germany
| | - Andreas Krueger
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Institute for Molecular Medicine, Goethe University Frankfurt am Main, Frankfurt, Germany
| |
Collapse
|
137
|
E-protein regulatory network links TCR signaling to effector Treg cell differentiation. Proc Natl Acad Sci U S A 2019; 116:4471-4480. [PMID: 30770454 DOI: 10.1073/pnas.1800494116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
T cell antigen receptor (TCR) signaling is essential for the differentiation and maintenance of effector regulatory T (Treg) cells. However, the contribution of individual TCR-dependent genes in Treg cells to the maintenance of immunotolerance remains largely unknown. Here we demonstrate that Treg cells lacking E protein undergo further differentiation into effector cells that exhibit high expression of effector Treg signature genes, including IRF4, ICOS, CD103, KLRG-1, and RORγt. E protein-deficient Treg cells displayed increased stability and enhanced suppressive capacity. Transcriptome and ChIP-seq analyses revealed that E protein directly regulates a large proportion of the genes that are specific to effector Treg cell activation, and importantly, most of the up-regulated genes in E protein-deficient Treg cells are also TCR dependent; this indicates that E proteins comprise a critical gene regulatory network that links TCR signaling to the control of effector Treg cell differentiation and function.
Collapse
|
138
|
Chellappa S, Kushekhar K, Munthe LA, Tjønnfjord GE, Aandahl EM, Okkenhaug K, Taskén K. The PI3K p110δ Isoform Inhibitor Idelalisib Preferentially Inhibits Human Regulatory T Cell Function. THE JOURNAL OF IMMUNOLOGY 2019; 202:1397-1405. [PMID: 30692213 DOI: 10.4049/jimmunol.1701703] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 12/19/2018] [Indexed: 01/01/2023]
Abstract
In chronic lymphocytic leukemia (CLL), signaling through several prosurvival B cell surface receptors activates the PI3K signaling pathway. Idelalisib is a highly selective PI3K (PI3Kδ) isoform-specific inhibitor effective in relapsed/refractory CLL and follicular lymphoma. However, severe autoimmune adverse effects in association with the use of idelalisib in the treatment of CLL, particularly as a first-line therapy, gave indications that idelalisib may preferentially target the suppressive function of regulatory T cells (Tregs). On this background, we examined the effect of idelalisib on the function of human Tregs ex vivo with respect to proliferation, TCR signaling, phenotype, and suppressive function. Our results show that human Tregs are highly susceptible to PI3Kδ inactivation using idelalisib compared with CD4+ and CD8+ effector T cells (Teffs) as evident from effects on anti-CD3/CD28/CD2-induced proliferation (order of susceptibility [IC50]: Treg [.5 μM] > CD4+ Teff [2.0 μM] > CD8+ Teff [6.5 μM]) and acting at the level of AKT and NF-κB phosphorylation. Moreover, idelalisib treatment of Tregs altered their phenotype and reduced their suppressive function against CD4+ and CD8+ Teffs. Phenotyping Tregs from CLL patients treated with idelalisib supported our in vitro findings. Collectively, our data show that human Tregs are more dependent on PI3Kδ-mediated signaling compared with CD4+ and CD8+ Teffs. This Treg-preferential effect could explain why idelalisib produces adverse autoimmune effects by breaking Treg-mediated tolerance. However, balancing effects on Treg sensitivity versus CD8+ Teff insensitivity to idelalisib could still potentially be exploited to enhance inherent antitumor immune responses in patients.
Collapse
Affiliation(s)
- Stalin Chellappa
- Department for Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, N-0424 Oslo, Norway.,K.G. Jebsen Centre for B Cell Malignancies, Institute for Clinical Medicine, University of Oslo, N-0424 Oslo, Norway.,K.G. Jebsen Centre for Cancer Immunotherapy, Institute for Clinical Medicine, University of Oslo, N-0424 Oslo, Norway.,Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, N-0318 Oslo, Norway
| | - Kushi Kushekhar
- Department for Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, N-0424 Oslo, Norway.,K.G. Jebsen Centre for B Cell Malignancies, Institute for Clinical Medicine, University of Oslo, N-0424 Oslo, Norway.,K.G. Jebsen Centre for Cancer Immunotherapy, Institute for Clinical Medicine, University of Oslo, N-0424 Oslo, Norway.,Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, N-0318 Oslo, Norway
| | - Ludvig A Munthe
- K.G. Jebsen Centre for B Cell Malignancies, Institute for Clinical Medicine, University of Oslo, N-0424 Oslo, Norway.,Department of Immunology and Transfusion Medicine, Oslo University Hospital, N-0424 Oslo, Norway
| | - Geir E Tjønnfjord
- K.G. Jebsen Centre for B Cell Malignancies, Institute for Clinical Medicine, University of Oslo, N-0424 Oslo, Norway.,Department of Haematology, Oslo University Hospital, N-0424 Oslo, Norway
| | - Einar M Aandahl
- Department for Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, N-0424 Oslo, Norway.,K.G. Jebsen Centre for B Cell Malignancies, Institute for Clinical Medicine, University of Oslo, N-0424 Oslo, Norway.,K.G. Jebsen Centre for Cancer Immunotherapy, Institute for Clinical Medicine, University of Oslo, N-0424 Oslo, Norway.,Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, N-0318 Oslo, Norway.,Section for Transplantation Surgery, Oslo University Hospital, N-0424 Oslo, Norway; and
| | - Klaus Okkenhaug
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Kjetil Taskén
- Department for Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, N-0424 Oslo, Norway; .,K.G. Jebsen Centre for B Cell Malignancies, Institute for Clinical Medicine, University of Oslo, N-0424 Oslo, Norway.,K.G. Jebsen Centre for Cancer Immunotherapy, Institute for Clinical Medicine, University of Oslo, N-0424 Oslo, Norway.,Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, N-0318 Oslo, Norway
| |
Collapse
|
139
|
Reprogramming responsiveness to checkpoint blockade in dysfunctional CD8 T cells. Proc Natl Acad Sci U S A 2019; 116:2640-2645. [PMID: 30679280 DOI: 10.1073/pnas.1810326116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Established T cell dysfunction is a barrier to antitumor responses, and checkpoint blockade presumably reverses this. Many patients fail to respond to treatment and/or develop autoimmune adverse events. The underlying reason for T cell responsiveness remains elusive. Here, we show that susceptibility to checkpoint blockade is dependent on the activation status of T cells. Newly activated self-specific CD8 T cells respond to checkpoint blockade and cause autoimmunity, which is mitigated by inhibiting the mechanistic target of rapamycin. However, once tolerance is established, self-specific CD8 T cells display a gene signature comparable to tumor-specific CD8 T cells in a fixed state of dysfunction. Tolerant self-specific CD8 T cells do not respond to single or combinatorial dosing of anti-CTLA4, anti-PD-L1, anti-PD-1, anti-LAG-3, and/or anti-TIM-3. Despite this, T cell responsiveness can be induced by vaccination with cognate antigen, which alters the previously fixed transcriptional signature and increases antigen-sensing machinery. Antigenic reeducation of tolerant T cells synergizes with checkpoint blockade to generate functional CD8 T cells, which eliminate tumors without concomitant autoimmunity and are transcriptionally distinct from classic effector T cells. These data demonstrate that responses to checkpoint blockade are dependent on the activation state of a T cell and show that checkpoint blockade-insensitive CD8 T cells can be induced to respond to checkpoint blockade with robust antigenic stimulation to participate in tumor control.
Collapse
|
140
|
The lineage stability and suppressive program of regulatory T cells require protein O-GlcNAcylation. Nat Commun 2019; 10:354. [PMID: 30664665 PMCID: PMC6341091 DOI: 10.1038/s41467-019-08300-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/29/2018] [Indexed: 12/11/2022] Open
Abstract
Regulatory T (Treg) cells control self-tolerance, inflammatory responses and tissue homeostasis. In mature Treg cells, continued expression of FOXP3 maintains lineage identity, while T cell receptor (TCR) signaling and interleukin-2 (IL-2)/STAT5 activation support the suppressive effector function of Treg cells, but how these regulators synergize to control Treg cell homeostasis and function remains unclear. Here we show that TCR-activated posttranslational modification by O-linked N-Acetylglucosamine (O-GlcNAc) stabilizes FOXP3 and activates STAT5, thus integrating these critical signaling pathways. O-GlcNAc-deficient Treg cells develop normally but display modestly reduced FOXP3 expression, strongly impaired lineage stability and effector function, and ultimately fatal autoimmunity in mice. Moreover, deficiency in protein O-GlcNAcylation attenuates IL-2/STAT5 signaling, while overexpression of a constitutively active form of STAT5 partially ameliorates Treg cell dysfunction and systemic inflammation in O-GlcNAc deficient mice. Collectively, our data demonstrate that protein O-GlcNAcylation is essential for lineage stability and effector function in Treg cells. The transcription factor Foxp3 and Stat5 modulate lineage stability and function of regulatory T (Treg) cells to promote immune homeostasis. Here the authors show that O-GlcNAcylation of Foxp3 and Stat5, mediated by O-GlcNAc transferase (OGT), is essential for Treg-mediate immune balance, with Treg-specific deficiency of OGT leading to severe autoimmunity.
Collapse
|
141
|
Akkaya B, Oya Y, Akkaya M, Al Souz J, Holstein AH, Kamenyeva O, Kabat J, Matsumura R, Dorward DW, Glass DD, Shevach EM. Regulatory T cells mediate specific suppression by depleting peptide-MHC class II from dendritic cells. Nat Immunol 2019; 20:218-231. [PMID: 30643268 PMCID: PMC6402611 DOI: 10.1038/s41590-018-0280-2] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 11/08/2018] [Indexed: 01/22/2023]
Abstract
T regulatory cells (Tregs) can activate multiple suppressive mechanisms in vitro upon activation via the T cell receptor resulting in antigen-independent suppression. However, it remains unclear whether similar pathways operate in vivo. Here, we found that antigen-specific Tregs activated by dendritic cells (DCs) pulsed with two antigens suppressed Tnaive specific for both cognate and non-cognate antigens in vitro, but only suppressed Tnaive specific for cognate antigen in vivo. Antigen-specific Tregs formed strong interactions with DC resulting in selective inhibition of the binding of Tnaive to cognate antigen, yet allowing bystander Tnaive access. Strong binding resulted in removal of the cognate peptide-MHCII (pMHCII) from the DC surface reducing the capacity of the DC to present antigen. The enhanced binding of Tregs to DC coupled with their capacity to deplete pMHCII represents a novel pathway for Treg-mediated suppression and may be a mechanism by which Tregs maintain immune homeostasis.
Collapse
Affiliation(s)
- Billur Akkaya
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Yoshihiro Oya
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.,Department of Rheumatology, Allergy & Clinical Immunology, National Hospital Organization Chiba-East National Hospital, Chiba, Japan
| | - Munir Akkaya
- Laboratory of Immunogenetics National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Jafar Al Souz
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Amanda H Holstein
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.,University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Olena Kamenyeva
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Juraj Kabat
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ryutaro Matsumura
- Department of Rheumatology, Allergy & Clinical Immunology, National Hospital Organization Chiba-East National Hospital, Chiba, Japan
| | - David W Dorward
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Labs, Hamilton, MT, USA
| | - Deborah D Glass
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.,Rapa Therapeutics, Rockville, MD, USA
| | - Ethan M Shevach
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
142
|
Silva Morales M, Mueller D. Anergy into T regulatory cells: an integration of metabolic cues and epigenetic changes at the Foxp3 conserved non-coding sequence 2. F1000Res 2018; 7. [PMID: 30613389 PMCID: PMC6305231 DOI: 10.12688/f1000research.16551.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2018] [Indexed: 01/12/2023] Open
Abstract
Peripheral immune self-tolerance relies on protective mechanisms to control autoreactive T cells that escape deletion in the thymus. Suppression of autoreactive lymphocytes is necessary to avoid autoimmunity and immune cell–mediated damage of healthy tissues. An intriguing relationship has emerged between two mechanisms of peripheral tolerance—induction of anergy and Foxp3
+ regulatory T (Treg) cells—and is not yet well understood. A subpopulation of autoreactive anergic CD4 T cells is a precursor of Treg cells. We now hypothesize that phenotypic and mechanistic features of Treg cells can provide insights to understand the mechanisms behind anergy-derived Treg cell differentiation. In this short review, we will highlight several inherent similarities between the anergic state in conventional CD4 T cells as compared with fully differentiated natural Foxp3
+ Treg cells and then propose a model whereby modulations in metabolic programming lead to changes in DNA methylation at the Foxp3 locus to allow
Foxp3 expression following the reversal of anergy.
Collapse
Affiliation(s)
- Milagros Silva Morales
- Division of Rheumatic and Autoimmune Diseases, Center for Immunology, and the University of Minnesota Medical School, Minneapolis, USA
| | - Daniel Mueller
- Division of Rheumatic and Autoimmune Diseases, Center for Immunology, and the University of Minnesota Medical School, Minneapolis, USA
| |
Collapse
|
143
|
Niedzielska M, Israelsson E, Angermann B, Sidders BS, Clausen M, Catley M, Malhotra R, Dumont C. Differential gene expression in human tissue resident regulatory T cells from lung, colon, and blood. Oncotarget 2018; 9:36166-36184. [PMID: 30546835 PMCID: PMC6281418 DOI: 10.18632/oncotarget.26322] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 10/24/2018] [Indexed: 12/22/2022] Open
Abstract
As we learn more about how immune responses occur in situ, it is becoming clear that each organ/tissue is characterized with its own anatomy and microenvironment which may affect and even determine the outcome of the immune responses. With emerging data from animal studies showing that regulatory T cells infiltrating non-lymphoid tissues exhibit unique phenotypes and transcriptional signatures and display functions beyond their well-established suppressive roles, there is an urgent need to explore the function of tissue Treg cells in humans. Here we characterized the transcriptome of Treg residing at the human mucosal tissue obtained from the normal area of cancer resections and their peripheral blood counterparts, identifying human lung and colon tissue Treg signature genes and their upstream regulators. Pathway analysis highlighted potential differences in the cross-talk between tissue Treg cells and other non-immune tissue-specific cell types. For example, genes associated with wnt pathway were differentially regulated in lung Treg cells compared to blood or colon indicating a potential role for lung Treg cells in epithelium repair and regeneration. Moreover, we identified several non-coding RNAs specifically expressed by tissue-resident Tregs. These results provide a comprehensive view of lung and colon tissue Treg transcriptional landscape.
Collapse
Affiliation(s)
- Magdalena Niedzielska
- Bioscience, Respiratory, Inflammation and Autoimmunity, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Elisabeth Israelsson
- Bioscience, Respiratory, Inflammation and Autoimmunity, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Bastian Angermann
- Bioscience, Respiratory, Inflammation and Autoimmunity, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Benjamin S Sidders
- Bioscience, Oncology, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Cambridge, UK
| | - Maryam Clausen
- Translational Genomics, Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Matthew Catley
- Bioscience, Respiratory, Inflammation and Autoimmunity, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Rajneesh Malhotra
- Bioscience, Respiratory, Inflammation and Autoimmunity, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Céline Dumont
- Bioscience, Respiratory, Inflammation and Autoimmunity, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
144
|
Usharauli D, Kamala T. Concurrent cross-reactivity of microbiota-derived epitopes to both self and pathogens may underlie the “Hygiene hypothesis”. Scand J Immunol 2018; 88:e12708. [DOI: 10.1111/sji.12708] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 07/17/2018] [Accepted: 08/15/2018] [Indexed: 02/07/2023]
|
145
|
Bending D, Ono M. From stability to dynamics: understanding molecular mechanisms of regulatory T cells through Foxp3 transcriptional dynamics. Clin Exp Immunol 2018; 197:14-23. [PMID: 30076771 PMCID: PMC6591142 DOI: 10.1111/cei.13194] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2018] [Indexed: 12/30/2022] Open
Abstract
Studies on regulatory T cells (Treg) have focused on thymic Treg as a stable lineage of immunosuppressive T cells, the differentiation of which is controlled by the transcription factor forkhead box protein 3 (Foxp3). This lineage perspective, however, may constrain hypotheses regarding the role of Foxp3 and Tregin vivo, particularly in clinical settings and immunotherapy development. In this review, we synthesize a new perspective on the role of Foxp3 as a dynamically expressed gene, and thereby revisit the molecular mechanisms for the transcriptional regulation of Foxp3. In particular, we introduce a recent advancement in the study of Foxp3‐mediated T cell regulation through the development of the Timer of cell kinetics and activity (Tocky) system, and show that the investigation of Foxp3 transcriptional dynamics can reveal temporal changes in the differentiation and function of Tregin vivo. We highlight the role of Foxp3 as a gene downstream of T cell receptor (TCR) signalling and show that temporally persistent TCR signals initiate Foxp3 transcription in self‐reactive thymocytes. In addition, we feature the autoregulatory transcriptional circuit for the Foxp3 gene as a mechanism for consolidating Treg differentiation and activating their suppressive functions. Furthermore, we explore the potential mechanisms behind the dynamic regulation of epigenetic modifications and chromatin architecture for Foxp3 transcription. Lastly, we discuss the clinical relevance of temporal changes in the differentiation and activation of Treg.
Collapse
Affiliation(s)
- D Bending
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, UK.,Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - M Ono
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| |
Collapse
|
146
|
Pohar J, Simon Q, Fillatreau S. Antigen-Specificity in the Thymic Development and Peripheral Activity of CD4 +FOXP3 + T Regulatory Cells. Front Immunol 2018; 9:1701. [PMID: 30083162 PMCID: PMC6064734 DOI: 10.3389/fimmu.2018.01701] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/10/2018] [Indexed: 01/12/2023] Open
Abstract
CD4+Foxp3+ T regulatory cells (Treg) are essential for the life of the organism, in particular because they protect the host against its own autoaggressive CD4+Foxp3- T lymphocytes (Tconv). Treg distinctively suppress autoaggressive immunity while permitting efficient defense against infectious diseases. This split effect indicates that Treg activity is controlled in an antigen-specific manner. This specificity is achieved first by the formation of the Treg repertoire during their development, and second by their activation in the periphery. This review presents novel information on the antigen-specificity of Treg development in the thymus, and Treg function in the periphery. These aspects have so far remained imprecisely understood due to the lack of knowledge of the actual antigens recognized by Treg during the different steps of their life, so that most previous studies have been performed using artificial antigens. However, recent studies identified some antigens mediating the positive selection of autoreactive Treg in the thymus, and the function of Treg in the periphery in autoimmune and allergic disorders. These investigations emphasized the remarkable specificity of Treg development and function. Indeed, the development of autoreactive Treg in the thymus was found to be mediated by single autoantigens, so that the absence of one antigen led to a dramatic loss of Treg reacting toward that antigen. The specificity of Treg development is important because the constitution of the Treg repertoire, and especially the presence of holes in this repertoire, was found to crucially influence human immunopathology. Indeed, it was found that the development of human immunopathology was permitted by the lack of Treg against the antigens driving the autoimmune or allergic T cell responses rather than by the impairment of Treg activation or function. The specificity of Treg suppression in the periphery is therefore intimately associated with the mechanisms shaping the formation of the Treg repertoire during their development. This novel information refines significantly our understanding of the antigen-specificity of Treg protective function, which is required to envision how these cells distinctively regulate unwanted immune responses as well as for the development of appropriate approaches to optimally harness them therapeutically in autoimmune, malignant, and infectious diseases.
Collapse
Affiliation(s)
- Jelka Pohar
- Institut Necker-Enfants Malades, INSERM U1151-CNRS UMR 8253, Paris, France
| | - Quentin Simon
- Institut Necker-Enfants Malades, INSERM U1151-CNRS UMR 8253, Paris, France
| | - Simon Fillatreau
- Institut Necker-Enfants Malades, INSERM U1151-CNRS UMR 8253, Paris, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,AP-HP, Hôpital Necker Enfants Malades, Paris, France
| |
Collapse
|
147
|
Bradley A, Hashimoto T, Ono M. Elucidating T Cell Activation-Dependent Mechanisms for Bifurcation of Regulatory and Effector T Cell Differentiation by Multidimensional and Single-Cell Analysis. Front Immunol 2018; 9:1444. [PMID: 30061879 PMCID: PMC6048294 DOI: 10.3389/fimmu.2018.01444] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 06/11/2018] [Indexed: 11/13/2022] Open
Abstract
In T cells, T cell receptor (TCR) signaling initiates downstream transcriptional mechanisms for T cell activation and differentiation. Foxp3-expressing regulatory T cells (Treg) require TCR signals for their suppressive function and maintenance in the periphery. It is, however, unclear how TCR signaling controls the transcriptional program of Treg. Since most of studies identified the transcriptional features of Treg in comparison to naïve T cells, the relationship between Treg and non-naïve T cells including memory-phenotype T cells (Tmem) and effector T cells (Teff) is not well understood. Here, we dissect the transcriptomes of various T cell subsets from independent datasets using the multidimensional analysis method canonical correspondence analysis (CCA). We show that at the cell population level, resting Treg share gene modules for activation with Tmem and Teff. Importantly, Tmem activate the distinct transcriptional modules for T cell activation, which are uniquely repressed in Treg. The activation signature of Treg is dependent on TCR signals and is more actively operating in activated Treg. Furthermore, by using a new CCA-based method, single-cell combinatorial CCA, we analyzed unannotated single-cell RNA-seq data from tumor-infiltrating T cells, and revealed that FOXP3 expression occurs predominantly in activated T cells. Moreover, we identified FOXP3-driven and T follicular helper-like differentiation pathways in tumor microenvironments, and their bifurcation point, which is enriched with recently activated T cells. Collectively, our study reveals the activation mechanisms downstream of TCR signals for the bifurcation of Treg and Teff differentiation and their maturation processes.
Collapse
Affiliation(s)
- Alla Bradley
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tetsuo Hashimoto
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Masahiro Ono
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
148
|
Bending D, Paduraru A, Ducker CB, Prieto Martín P, Crompton T, Ono M. A temporally dynamic Foxp3 autoregulatory transcriptional circuit controls the effector Treg programme. EMBO J 2018; 37:embj.201899013. [PMID: 29991564 PMCID: PMC6092677 DOI: 10.15252/embj.201899013] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 05/15/2018] [Accepted: 06/12/2018] [Indexed: 11/24/2022] Open
Abstract
Regulatory T cells (Treg) are negative regulators of the immune response; however, it is poorly understood whether and how Foxp3 transcription is induced and regulated in the periphery during T‐cell responses. Using Foxp3‐Timer of cell kinetics and activity (Tocky) mice, which report real‐time Foxp3 expression, we show that the flux of new Foxp3 expressors and the rate of Foxp3 transcription are increased during inflammation. These persistent dynamics of Foxp3 transcription determine the effector Treg programme and are dependent on a Foxp3 autoregulatory transcriptional circuit. Persistent Foxp3 transcriptional activity controls the expression of coinhibitory molecules, including CTLA‐4 and effector Treg signature genes. Using RNA‐seq, we identify two groups of surface proteins based on their relationship to the temporal dynamics of Foxp3 transcription, and we show proof of principle for the manipulation of Foxp3 dynamics by immunotherapy: new Foxp3 flux is promoted by anti‐TNFRII antibody, and high‐frequency Foxp3 expressors are targeted by anti‐OX40 antibody. Collectively, our study dissects time‐dependent mechanisms behind Foxp3‐driven T‐cell regulation and establishes the Foxp3‐Tocky system as a tool to investigate the mechanisms behind T‐cell immunotherapies.
Collapse
Affiliation(s)
- David Bending
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Alina Paduraru
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Catherine B Ducker
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Paz Prieto Martín
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Tessa Crompton
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Masahiro Ono
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| |
Collapse
|
149
|
Young JS, Yin D, Vannier AGL, Alegre ML, Chong AS. Equal Expansion of Endogenous Transplant-Specific Regulatory T Cell and Recruitment Into the Allograft During Rejection and Tolerance. Front Immunol 2018; 9:1385. [PMID: 29973932 PMCID: PMC6020780 DOI: 10.3389/fimmu.2018.01385] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/04/2018] [Indexed: 01/07/2023] Open
Abstract
Despite numerous advances in the definition of a role for regulatory T cells (Tregs) in facilitating experimental transplantation tolerance, and ongoing clinical trials for Treg-based therapies, critical issues related to the optimum dosage, antigen-specificity, and Treg-friendly adjunct immunosuppressants remain incompletely resolved. In this study, we used a tractable approach of MHC tetramers and flow cytometry to define the fate of conventional (Tconvs) and Tregs CD4+ T cells that recognize donor 2W antigens presented by I-Ab on donor and recipient antigen-presenting cells (APCs) in a mouse cardiac allograft transplant model. Our study shows that these endogenous, donor-reactive Tregs comparably accumulate in the spleens of recipients undergoing acute rejection or exhibiting costimulation blockade-induced tolerance. Importantly, this expansion was not detected when analyzing bulk splenic Tregs. Systemically, the distinguishing feature between tolerance and rejection was the inhibition of donor-reactive conventional T cell (Tconv) expansion in tolerance, translating into increased percentages of splenic FoxP3+ Tregs within the 2W:I-Ab CD4+ T cell subset compared to rejection (~35 vs. <5% in tolerance vs. rejection). We further observed that continuous administration of rapamycin, cyclosporine A, or CTLA4-Ig did not facilitate donor-specific Treg expansion, while all three drugs inhibited Tconv expansion. Finally, donor-specific Tregs accumulated comparably in rejecting tolerant allografts, whereas tolerant grafts harbored <10% of the donor-specific Tconv numbers observed in rejecting allografts. Thus, ~80% of 2W:I-Ab CD4+ T cells in tolerant allografts expressed FoxP3+ compared to ≤10% in rejecting allografts. A similar, albeit lesser, enrichment was observed with bulk graft-infiltrating CD4+ cells, where ~30% were FoxP3+ in tolerant allografts, compared to ≤10% in rejecting allografts. Finally, we assessed that the phenotype of 2W:I-Ab Tregs and observed that the percentages of cells expressing neuropilin-1 and CD73 were significantly higher in tolerance compared to rejection, suggesting that these Tregs may be functionally distinct. Collectively, the analysis of donor-reactive, but not of bulk, Tconvs and Tregs reveal a systemic signature of tolerance that is stable and congruent with the signature within tolerant allografts. Our data also underscore the importance of limiting Tconv expansion for high donor-specific Tregs:Tconv ratios to be successfully attained in transplantation tolerance.
Collapse
Affiliation(s)
- James S Young
- Department of Surgery, The University of Chicago, Chicago, IL, United States
| | - Dengping Yin
- Department of Surgery, The University of Chicago, Chicago, IL, United States
| | | | - Maria-Luisa Alegre
- Department of Medicine, The University of Chicago, Chicago, IL, United States
| | - Anita S Chong
- Department of Surgery, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
150
|
Wakamatsu E, Omori H, Ohtsuka S, Ogawa S, Green JM, Abe R. Regulatory T cell subsets are differentially dependent on CD28 for their proliferation. Mol Immunol 2018; 101:92-101. [PMID: 29909367 DOI: 10.1016/j.molimm.2018.05.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/21/2018] [Accepted: 05/24/2018] [Indexed: 01/08/2023]
Abstract
It is thought that CD28 plays a crucial role in the maintenance of regulatory T cell (Treg) pool size through promoting the development and proliferation of these cells. However, recently we found that the dependency on CD28 co-stimulation for their development is different between Treg subsets, thymus-derived Tregs (tTregs, CD28-dependent) and peripherally-derived Tregs (pTregs, CD28-independent), suggesting that CD28 may also have differential influences on the homeostasis of each Treg subset. Here, we demonstrated that both Treg subsets were reduced in secondary lymphoid organs of CD28 deficient mice, and that this reduction was due to impaired proliferation in both Treg subsets by the intrinsic CD28 defect. However, we found that the massive proliferation of both Treg subsets under lymphopenic condition was regulated by CD28, whereas the proliferative activity of tTregs but not pTregs in the steady state was dependent on CD28. Also, experiments using mutant CD28 knock-in mice revealed that proliferation of pTregs under lymphopenic condition required only the Lck-NFκB pathway of CD28, whereas tTregs required an additional unknown pathway. These findings indicate that the dependency on CD28 for proliferation in each Treg subset differs depending on the environment.
Collapse
Affiliation(s)
- Ei Wakamatsu
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda City, Chiba, 278-0022, Japan; Department of Immunology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Hiroki Omori
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda City, Chiba, 278-0022, Japan
| | - Shizuka Ohtsuka
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda City, Chiba, 278-0022, Japan
| | - Shuhei Ogawa
- Division of Experimental Animal Immunology, Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda City, Chiba, 278-0022, Japan
| | - Jonathan M Green
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63110, United States
| | - Ryo Abe
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda City, Chiba, 278-0022, Japan.
| |
Collapse
|