101
|
Tsimberidou AM, Van Morris K, Vo HH, Eck S, Lin YF, Rivas JM, Andersson BS. T-cell receptor-based therapy: an innovative therapeutic approach for solid tumors. J Hematol Oncol 2021; 14:102. [PMID: 34193217 PMCID: PMC8243554 DOI: 10.1186/s13045-021-01115-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
T-cell receptor (TCR)-based adoptive therapy employs genetically modified lymphocytes that are directed against specific tumor markers. This therapeutic modality requires a structured and integrated process that involves patient screening (e.g., for HLA-A*02:01 and specific tumor targets), leukapheresis, generation of transduced TCR product, lymphodepletion, and infusion of the TCR-based adoptive therapy. In this review, we summarize the current technology and early clinical development of TCR-based therapy in patients with solid tumors. The challenges of TCR-based therapy include those associated with TCR product manufacturing, patient selection, and preparation with lymphodepletion. Overcoming these challenges, and those posed by the immunosuppressive microenvironment, as well as developing next-generation strategies is essential to improving the efficacy and safety of TCR-based therapies. Optimization of technology to generate TCR product, treatment administration, and patient monitoring for adverse events is needed. The implementation of novel TCR strategies will require expansion of the TCR approach to patients with HLA haplotypes beyond HLA-A*02:01 and the discovery of novel tumor markers that are expressed in more patients and tumor types. Ongoing clinical trials will determine the ultimate role of TCR-based therapy in patients with solid tumors.
Collapse
Affiliation(s)
- Apostolia-Maria Tsimberidou
- Department of Investigational Cancer Therapeutics, Unit 455, Phase I Clinical Trials Program, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| | - Karlyle Van Morris
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Henry Hiep Vo
- Department of Investigational Cancer Therapeutics, Unit 455, Phase I Clinical Trials Program, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Stephen Eck
- MacroGenics, Inc., 9704 Medical Center Drive, Rockville, MD, 20850, USA
| | - Yu-Feng Lin
- Immatics US, Inc., 2201 Holcombe Blvd., Suite 205, Houston, TX, 77030, USA
| | | | - Borje S Andersson
- Department of Stem Cell Transplantation, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| |
Collapse
|
102
|
Vanhaver C, van der Bruggen P, Bruger AM. MDSC in Mice and Men: Mechanisms of Immunosuppression in Cancer. J Clin Med 2021; 10:jcm10132872. [PMID: 34203451 PMCID: PMC8268873 DOI: 10.3390/jcm10132872] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) expand during pathological conditions in both humans and mice and their presence is linked to poor clinical outcomes for cancer patients. Studying MDSC immunosuppression is restricted by MDSCs’ rarity, short lifespan, heterogeneity, poor viability after freezing and the lack of MDSC-specific markers. In this review, we will compare identification and isolation strategies for human and murine MDSCs. We will also assess what direct and indirect immunosuppressive mechanisms have been attributed to MDSCs. While some immunosuppressive mechanisms are well-documented in mice, e.g., generation of ROS, direct evidence is still lacking in humans. In future, bulk or single-cell genomics could elucidate which phenotypic and functional phenotypes MDSCs adopt in particular microenvironments and help to identify potential targets for therapy.
Collapse
Affiliation(s)
- Christophe Vanhaver
- De Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 74, 1200 Brussels, Belgium;
- Correspondence: (C.V.); (A.M.B.)
| | - Pierre van der Bruggen
- De Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 74, 1200 Brussels, Belgium;
- WELBIO, Avenue Hippocrate 74, 1200 Brussels, Belgium
| | - Annika M. Bruger
- De Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 74, 1200 Brussels, Belgium;
- Correspondence: (C.V.); (A.M.B.)
| |
Collapse
|
103
|
Mohan AA, Tomaszewski WH, Haskell-Mendoza AP, Hotchkiss KM, Singh K, Reedy JL, Fecci PE, Sampson JH, Khasraw M. Targeting Immunometabolism in Glioblastoma. Front Oncol 2021; 11:696402. [PMID: 34222022 PMCID: PMC8242259 DOI: 10.3389/fonc.2021.696402] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022] Open
Abstract
We have only recently begun to understand how cancer metabolism affects antitumor responses and immunotherapy outcomes. Certain immunometabolic targets have been actively pursued in other tumor types, however, glioblastoma research has been slow to exploit the therapeutic vulnerabilities of immunometabolism. In this review, we highlight the pathways that are most relevant to glioblastoma and focus on how these immunometabolic pathways influence tumor growth and immune suppression. We discuss hypoxia, glycolysis, tryptophan metabolism, arginine metabolism, 2-Hydroxyglutarate (2HG) metabolism, adenosine metabolism, and altered phospholipid metabolism, in order to provide an analysis and overview of the field of glioblastoma immunometabolism.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Mustafa Khasraw
- Preston Robert Tisch Brain Tumor Center at Duke, Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
104
|
Lee HW. Multidiscipline Immunotherapy-Based Rational Combinations for Robust and Durable Efficacy in Brain Metastases from Renal Cell Carcinoma. Int J Mol Sci 2021; 22:ijms22126290. [PMID: 34208157 PMCID: PMC8230742 DOI: 10.3390/ijms22126290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
Advanced imaging techniques for diagnosis have increased awareness on the benefits of brain screening, facilitated effective control of extracranial disease, and prolonged life expectancy of metastatic renal cell carcinoma (mRCC) patients. Brain metastasis (BM) in patients with mRCC (RCC-BM) is associated with grave prognoses, a high degree of morbidity, dedicated assessment, and unresponsiveness to conventional systemic therapeutics. The therapeutic landscape of RCC-BM is rapidly changing; however, survival outcomes remain poor despite standard surgery and radiation, highlighting the unmet medical needs and the requisite for advancement in systemic therapies. Immune checkpoint inhibitors (ICIs) are one of the most promising strategies to treat RCC-BM. Understanding the role of brain-specific tumor immune microenvironment (TIME) is important for developing rationale-driven ICI-based combination strategies that circumvent tumor intrinsic and extrinsic factors and complex positive feedback loops associated with resistance to ICIs in RCC-BM via combination with ICIs involving other immunological pathways, anti-antiangiogenic multiple tyrosine kinase inhibitors, and radiotherapy; therefore, novel combination approaches are being developed for synergistic potential against RCC-BM; however, further prospective investigations with longer follow-up periods are required to improve the efficacy and safety of combination treatments and to elucidate dynamic predictive biomarkers depending on the interactions in the brain TIME.
Collapse
Affiliation(s)
- Hye-Won Lee
- Center for Urologic Cancer, National Cancer Center, Department of Urology, Goyang 10408, Korea
| |
Collapse
|
105
|
Zhang Y, Zhang T, Yang W, Chen H, Geng X, Li G, Chen H, Wang Y, Li L, Sun B. Beneficial Diets and Pancreatic Cancer: Molecular Mechanisms and Clinical Practice. Front Oncol 2021; 11:630972. [PMID: 34123787 PMCID: PMC8193730 DOI: 10.3389/fonc.2021.630972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/19/2021] [Indexed: 01/02/2023] Open
Abstract
Pancreatic cancer (PC) is a malignant tumor with high invasiveness, easy metastatic ability, and chemoresistance. Patients with PC have an extremely low survival rate due to the difficulty in early diagnosis. It is estimated that nearly 90% of PC cases are caused by environmental risk factors. Approximately 50% of PC cases are induced by an unhealthy diet, which can be avoided. Given this large attribution to diet, numerous studies have assessed the relationship between various dietary factors and PC. This article reviews three beneficial diets: a ketogenic diet (KD), a Mediterranean diet (MD), and a low-sugar diet. Their composition and impact mechanism are summarized and discussed. The associations between these three diets and PC were analyzed, and we aimed to provide more help and new insights for the prevention and treatment of PC.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tao Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenbo Yang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongze Chen
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinglong Geng
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guanqun Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hua Chen
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongwei Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Le Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| |
Collapse
|
106
|
Cancer Cell Metabolism in Hypoxia: Role of HIF-1 as Key Regulator and Therapeutic Target. Int J Mol Sci 2021; 22:ijms22115703. [PMID: 34071836 PMCID: PMC8199012 DOI: 10.3390/ijms22115703] [Citation(s) in RCA: 263] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022] Open
Abstract
In order to meet the high energy demand, a metabolic reprogramming occurs in cancer cells. Its role is crucial in promoting tumor survival. Among the substrates in demand, oxygen is fundamental for bioenergetics. Nevertheless, tumor microenvironment is frequently characterized by low-oxygen conditions. Hypoxia-inducible factor 1 (HIF-1) is a pivotal modulator of the metabolic reprogramming which takes place in hypoxic cancer cells. In the hub of cellular bioenergetics, mitochondria are key players in regulating cellular energy. Therefore, a close crosstalk between mitochondria and HIF-1 underlies the metabolic and functional changes of cancer cells. Noteworthy, HIF-1 represents a promising target for novel cancer therapeutics. In this review, we summarize the molecular mechanisms underlying the interplay between HIF-1 and energetic metabolism, with a focus on mitochondria, of hypoxic cancer cells.
Collapse
|
107
|
Metabolic Interplay between the Immune System and Melanoma Cells: Therapeutic Implications. Biomedicines 2021; 9:biomedicines9060607. [PMID: 34073463 PMCID: PMC8227307 DOI: 10.3390/biomedicines9060607] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
Malignant melanoma represents the most fatal skin cancer due to its aggressive biological behavior and high metastatic potential. Treatment strategies for advanced disease have dramatically changed over the last years due to the introduction of BRAF/MEK inhibitors and immunotherapy. However, many patients either display primary (i.e., innate) or eventually develop secondary (i.e., acquired) resistance to systemic treatments. Treatment resistance depends on multiple mechanisms driven by a set of rewiring processes, which involve cancer metabolism, epigenetic, gene expression, and interactions within the tumor microenvironment. Prognostic and predictive biomarkers are needed to guide patients’ selection and treatment decisions. Indeed, there are no recognized clinical or biological characteristics that identify which patients will benefit more from available treatments, but several biomarkers have been studied with promising preliminary results. In this review, we will summarize novel tumor metabolic pathways and tumor-host metabolic crosstalk mechanisms leading to melanoma progression and drug resistance, with an overview on their translational potential as novel therapeutic targets.
Collapse
|
108
|
Wang G, Wang YZ, Yu Y, Yin PH, Xu K, Zhang H. The Anti-Tumor Effect and Mechanism of Triterpenoids in Rhus chinensis Mill. on Reversing Effector CD8+ T-cells Dysfunction by Targeting Glycolysis Pathways in Colorectal Cancer. Integr Cancer Ther 2021; 20:15347354211017219. [PMID: 34014135 PMCID: PMC8145606 DOI: 10.1177/15347354211017219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rhus chinensis Mill. is a traditional Chinese medicine (TCM)
which is commonly used for cancer treatments. Our previous work had proven that
triterpenoids of Rhus chinensis (TER) could effectively
regulate glycolysis involved in colorectal cancer (CRC) and play an important
role in the prevention of T-cells dysfunction. This study aimed to
systematically investigate the effects and mechanisms of TER on glucose
metabolism in CRC, while the regulatory mechanisms of TER on restoring T-cells
function and activity in CRC were explored as well. The extract of triterpenoids
from Rhus chinensis was obtained, and production of lactic acid
and glucose uptake were assayed. Also, the expression of CD8+ T-cells surface
markers, cytokines secreted by CD8+ T cells, and the expression of key
glycolytic enzymes and glucose deprivation induced by tumor cells were further
examined. Notably, results showed that TER prevented the dysfunction in CD8+ T
cells by enhancing mTOR activity and subsequent cellular metabolism.
Furthermore, our findings also demonstrated that TER promoted glycolytic gene
expression in CD8+ T cells in vivo, and significantly inhibited tumor growth.
Altogether, our studies suggested that TER not only reversed effector CD8+
T-cells dysfunction and enhanced T-cells recognition, but also improved tumor
microenvironment, thereby providing new insight into the prevention and
treatment of CRC with TCM.
Collapse
Affiliation(s)
| | - Yu-Zhu Wang
- Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yang Yu
- Jiangsu University, Zhenjiang, Jiangsu, China
| | - Pei-Hao Yin
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ke Xu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Heng Zhang
- Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
109
|
Li B, Yang L. Creatine in T Cell Antitumor Immunity and Cancer Immunotherapy. Nutrients 2021; 13:nu13051633. [PMID: 34067957 PMCID: PMC8152274 DOI: 10.3390/nu13051633] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/03/2021] [Accepted: 05/11/2021] [Indexed: 12/25/2022] Open
Abstract
Creatine is a broadly used dietary supplement that has been extensively studied for its benefit on the musculoskeletal system. Yet, there is limited knowledge regarding the metabolic regulation of creatine in cells beyond the muscle. New insights concerning various regulatory functions for creatine in other physiological systems are developing. Here, we highlight the latest advances in understanding creatine regulation of T cell antitumor immunity, a topic that has previously gained little attention in the creatine research field. Creatine has been identified as an important metabolic regulator conserving bioenergy to power CD8 T cell antitumor reactivity in a tumor microenvironment; creatine supplementation has been shown to enhance antitumor T cell immunity in multiple preclinical mouse tumor models and, importantly, to synergize with other cancer immunotherapy modalities, such as the PD-1/PD-L1 blockade therapy, to improve antitumor efficacy. The potential application of creatine supplementation for cancer immunotherapy and the relevant considerations are discussed.
Collapse
Affiliation(s)
- Bo Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Correspondence: (B.L.); (L.Y.)
| | - Lili Yang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, The David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Correspondence: (B.L.); (L.Y.)
| |
Collapse
|
110
|
Gui CP, Wei JH, Chen YH, Fu LM, Tang YM, Cao JZ, Chen W, Luo JH. A new thinking: extended application of genomic selection to screen multiomics data for development of novel hypoxia-immune biomarkers and target therapy of clear cell renal cell carcinoma. Brief Bioinform 2021; 22:6273240. [PMID: 34237133 DOI: 10.1093/bib/bbab173] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/30/2021] [Accepted: 04/11/2021] [Indexed: 12/12/2022] Open
Abstract
Increasing evidences show the clinical significance of the interaction between hypoxia and immune in clear cell renal cell carcinoma (ccRCC) microenvironment. However, reliable prognostic signatures based on a combination of hypoxia and immune have not been well established. Moreover, many studies have only used RNA-seq profiles to screen the prognosis feature of ccRCC. Presently, there is no comprehensive analysis of multiomics data to mine a better one. Thus, we try and get it. First, t-SNE and ssGSEA analysis were used to establish tumor subtypes related to hypoxia-immune, and we investigated the hypoxia-immune-related differences in three types of genetic or epigenetic characteristics (gene expression profiles, somatic mutation, and DNA methylation) by analyzing the multiomics data from The Cancer Genome Atlas (TCGA) portal. Additionally, a four-step strategy based on lasso regression and Cox regression was used to construct a satisfying prognostic model, with average 1-year, 3-year and 5-year areas under the curve (AUCs) equal to 0.806, 0.776 and 0.837. Comparing it with other nine known prognostic biomarkers and clinical prognostic scoring algorithms, the multiomics-based signature performs better. Then, we verified the gene expression differences in two external databases (ICGC and SYSU cohorts). Next, eight hub genes were singled out and seven hub genes were validated as prognostic genes in SYSU cohort. Furthermore, it was indicated high-risk patients have a better response for immunotherapy in immunophenoscore (IPS) analysis and TIDE algorithm. Meanwhile, estimated by GDSC and cMAP database, the high-risk patients showed sensitive responses to six chemotherapy drugs and six candidate small-molecule drugs. In summary, the signature can accurately predict the prognosis of ccRCC and may shed light on the development of novel hypoxia-immune biomarkers and target therapy of ccRCC.
Collapse
Affiliation(s)
- Cheng-Peng Gui
- First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jin-Huan Wei
- First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yu-Hang Chen
- First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liang-Min Fu
- First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yi-Ming Tang
- First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jia-Zheng Cao
- Affiliated Jiangmen Hospital, Sun Yat-sen University, Jiangmen, Guangdong, China
| | - Wei Chen
- First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jun-Hang Luo
- First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
111
|
Singh AK, Chatterjee U, MacDonald CR, Repasky EA, Halbreich U. Psychosocial stress and immunosuppression in cancer: what can we learn from new research? BJPSYCH ADVANCES 2021; 27:187-197. [PMID: 34295535 PMCID: PMC8294471 DOI: 10.1192/bja.2021.9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
It is generally believed that the physiological consequences of stress could contribute to poor outcomes for patients being treated for cancer. However, despite preclinical and clinical evidence suggesting that stress promotes increased cancer-related mortality, a comprehensive understanding of the mechanisms involved in mediating these effects does not yet exist. We reviewed 47 clinical studies published between 2007 and 2020 to determine whether psychosocial stress affects clinical outcomes in cancer: 6.4% of studies showed a protective effect; 44.6% showed a harmful effect; 48.9% showed no association. These data suggest that psychosocial stress could affect cancer incidence and/or mortality, but the association is unclear. To shed light on this potentially important relationship, objective biomarkers of stress are needed to more accurately evaluate levels of stress and its downstream effects. As a potential candidate, the neuroendocrine signalling pathways initiated by stress are known to affect anti-tumour immune cells, and here we summarise how this may promote an immunosuppressive, pro-tumour microenvironment. Further research must be done to understand the relationships between stress and immunity to more accurately measure how stress affects cancer progression and outcome.
Collapse
Affiliation(s)
- Anurag K Singh
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Udit Chatterjee
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Cameron R MacDonald
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | | | - Uriel Halbreich
- Department of Psychiatry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, NY, USA
| |
Collapse
|
112
|
Peters FS, Strefford JC, Eldering E, Kater AP. T-cell dysfunction in chronic lymphocytic leukemia from an epigenetic perspective. Haematologica 2021; 106:1234-1243. [PMID: 33691381 PMCID: PMC8586819 DOI: 10.3324/haematol.2020.267914] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/18/2021] [Indexed: 11/09/2022] Open
Abstract
Cellular immunotherapeutic approaches such as chimeric antigen receptor (CAR) T-cell therapy in chronic lymphocytic leukemia (CLL) thus far have not met the high expectations. Therefore it is essential to better understand the molecular mechanisms of CLLinduced T-cell dysfunction. Even though a significant number of studies are available on T-cell function and dysfunction in CLL patients, none examine dysfunction at the epigenomic level. In non-malignant T-cell research, epigenomics is widely employed to define the differentiation pathway into T-cell exhaustion. Additionally, metabolic restrictions in the tumor microenvironment that cause T-cell dysfunction are often mediated by epigenetic changes. With this review paper we argue that understanding the epigenetic (dys)regulation in T cells of CLL patients should be leveled to the knowledge we currently have of the neoplastic B cells themselves. This will permit a complete understanding of how these immune cell interactions regulate T- and B-cell function. Here we relate the cellular and phenotypic characteristics of CLL-induced T-cell dysfunction to epigenetic studies of T-cell regulation emerging from chronic viral infection and tumor models. This paper proposes a framework for future studies into the epigenetic regulation of CLL-induced Tcell dysfunction, knowledge that will help to guide improvements in the utility of autologous T-cell based therapies in CLL.
Collapse
Affiliation(s)
- Fleur S Peters
- Experimental Immunology; Departments of Hematology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Departments of Cancer Center Amsterdam, Amsterdam, the Netherlands; Departments of Amsterdam Institute of Infection and Immunity, Amsterdam, the Netherlands; Departments of Lymphoma and Myeloma Center Amsterdam, LYMMCARE, Amsterdam, the Netherlands and.
| | - Jonathan C Strefford
- Departments of Academic Unit of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Eric Eldering
- Experimental Immunology; Departments of Cancer Center Amsterdam, Amsterdam, the Netherlands; Departments of Amsterdam Institute of Infection and Immunity, Amsterdam, the Netherlands; Departments of Lymphoma and Myeloma Center Amsterdam, LYMMCARE, Amsterdam, the Netherlands
| | - Arnon P Kater
- Departments of Hematology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Departments of Cancer Center Amsterdam, Amsterdam, the Netherlands; Departments of Amsterdam Institute of Infection and Immunity, Amsterdam, the Netherlands; Departments of Lymphoma and Myeloma Center Amsterdam, LYMMCARE, Amsterdam, the Netherlands and
| |
Collapse
|
113
|
Dana H, Chalbatani GM, Jalali SA, Mirzaei HR, Grupp SA, Suarez ER, Rapôso C, Webster TJ. CAR-T cells: Early successes in blood cancer and challenges in solid tumors. Acta Pharm Sin B 2021; 11:1129-1147. [PMID: 34094824 PMCID: PMC8144892 DOI: 10.1016/j.apsb.2020.10.020] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/20/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
New approaches to cancer immunotherapy have been developed, showing the ability to harness the immune system to treat and eliminate cancer. For many solid tumors, therapy with checkpoint inhibitors has shown promise. For hematologic malignancies, adoptive and engineered cell therapies are being widely developed, using cells such as T lymphocytes, as well as natural killer (NK) cells, dendritic cells, and potentially others. Among these adoptive cell therapies, the most active and advanced therapy involves chimeric antigen receptor (CAR)-T cells, which are T cells in which a chimeric antigen receptor is used to redirect specificity and allow T cell recognition, activation and killing of cancers, such as leukemia and lymphoma. Two autologous CAR-T products have been approved by several health authorities, starting with the U.S. Food and Drug Administration (FDA) in 2017. These products have shown powerful, inducing, long-lasting effects against B cell cancers in many cases. In distinction to the results seen in hematologic malignancies, the field of using CAR-T products against solid tumors is in its infancy. Targeting solid tumors and trafficking CAR-T cells into an immunosuppressive microenvironment are both significant challenges. The goal of this review is to summarize some of the most recent aspects of CAR-T cell design and manufacturing that have led to successes in hematological malignancies, allowing the reader to appreciate the barriers that must be overcome to extend CAR-T therapies to solid tumors successfully.
Collapse
Affiliation(s)
- Hassan Dana
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran 13145-158, Iran
| | - Ghanbar Mahmoodi Chalbatani
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717434, Iran
| | - Seyed Amir Jalali
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717434, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Stephan A. Grupp
- Division of Oncology, Department of Pediatrics, the Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Eloah Rabello Suarez
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, SP 09210-580, Brazil
| | - Catarina Rapôso
- Faculty of Pharmaceutical Sciences, State University of Campinas (UNICAMP), Campinas, SP 13083-871, Brazil
| | - Thomas J. Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
114
|
Saida Y, Brender JR, Yamamoto K, Mitchell JB, Krishna MC, Kishimoto S. Multimodal Molecular Imaging Detects Early Responses to Immune Checkpoint Blockade. Cancer Res 2021; 81:3693-3705. [PMID: 33837042 DOI: 10.1158/0008-5472.can-20-3182] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/17/2021] [Accepted: 04/08/2021] [Indexed: 01/02/2023]
Abstract
Immune checkpoint blockade (ICB) has become a standard therapy for several cancers, however, the response to ICB is inconsistent and a method for noninvasive assessment has not been established to date. To investigate the capability of multimodal imaging to evaluate treatment response to ICB therapy, hyperpolarized 13C MRI using [1-13C] pyruvate and [1,4-13C2] fumarate and dynamic contrast enhanced (DCE) MRI was evaluated to detect early changes in tumor glycolysis, necrosis, and intratumor perfusion/permeability, respectively. Mouse tumor models served as platforms for high (MC38 colon adenocarcinoma) and low (B16-F10 melanoma) sensitivity to dual ICB of PD-L1 and CTLA4. Glycolytic flux significantly decreased following treatment only in the less sensitive B16-F10 tumors. Imaging [1,4-13C2] fumarate conversion to [1,4-13C2] malate showed a significant increase in necrotic cell death following treatment in the ICB-sensitive MC38 tumors, with essentially no change in B16-F10 tumors. DCE-MRI showed significantly increased perfusion/permeability in MC38-treated tumors, whereas a similar, but statistically nonsignificant, trend was observed in B16-F10 tumors. When tumor volume was also taken into consideration, each imaging biomarker was linearly correlated with future survival in both models. These results suggest that hyperpolarized 13C MRI and DCE MRI may serve as useful noninvasive imaging markers to detect early response to ICB therapy. SIGNIFICANCE: Hyperpolarized 13C MRI and dynamic contrast enhanced MRI in murine tumor models provide useful insight into evaluating early response to immune checkpoint blockade therapy.See related commentary by Cullen and Keshari, p. 3444.
Collapse
Affiliation(s)
- Yu Saida
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Jeffrey R Brender
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Kazutoshi Yamamoto
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - James B Mitchell
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Murali C Krishna
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Shun Kishimoto
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland.
| |
Collapse
|
115
|
Wu D, Zhu Y. Role of kynurenine in promoting the generation of exhausted CD8 + T cells in colorectal cancer. Am J Transl Res 2021; 13:1535-1547. [PMID: 33841677 PMCID: PMC8014392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Although blocking programmed cell death protein 1 (PD-1) has emerged as a standard treatment for metastatic colorectal cancer (CRC), a vast majority of CRC patients still respond poorly to anti-PD-1 immunotherapy. In this study, we showed that the levels of indoleamine 2,3-dioxygenase 1 (IDO1) and its catabolite kynurenine (Kyn) were higher in late stages (stages III and IV) than in early stages (stages I and II) of CRC patients. We found that Kyn could induce the expression of immune checkpoints and exhaustion markers in CD8+ tumor-infiltrating T cells. Knockdown of IDO1 expression using small hairpin RNAs (shRNAs) in the MC38 and CT26 colorectal cell lines led downregulation of Kyn expression and activation of CD8+ T cells in MC38- or CT26-bearing mice. Subsequent mechanistic study revealed significantly reduced thymocyte selection-associated HMG box (TOX) mRNA levels in CD8+ tumor-infiltrating T cells isolated from IDO1 knockdown MC38-Scr- and CT26-bearing mice. Kyn-induced CD8+ T cell exhaustion was reversed by knockdown of TOX expression. Finally, the application of the well-known IDO1 inhibitors 1MT or NLG919 substantially improved the therapeutic effect of CRC in vivo and restored CD8+ tumor-infiltrating T cells anti-tumor activity. This improvement was further enhanced by an anti-PD-1 combined therapy. In conclusion, our study revealed a novel mechanism underlying the metabolic factors found in tumor microenvironment which could induce CD8+ T cells exhaustion. Our findings provided a new strategy of restoring the antitumor activity of CD8+ T cells through combined targeting of the IDO1/Kyn and PD-1/PD-L1 pathways in patients with CRC.
Collapse
Affiliation(s)
- Dandan Wu
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical UniversityJinzhou 121000, China
| | - Yufeng Zhu
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical UniversityJinzhou 121000, China
| |
Collapse
|
116
|
Manzo T, Prentice BM, Anderson KG, Raman A, Schalck A, Codreanu GS, Nava Lauson CB, Tiberti S, Raimondi A, Jones MA, Reyzer M, Bates BM, Spraggins JM, Patterson NH, McLean JA, Rai K, Tacchetti C, Tucci S, Wargo JA, Rodighiero S, Clise-Dwyer K, Sherrod SD, Kim M, Navin NE, Caprioli RM, Greenberg PD, Draetta G, Nezi L. Accumulation of long-chain fatty acids in the tumor microenvironment drives dysfunction in intrapancreatic CD8+ T cells. J Exp Med 2021; 217:151833. [PMID: 32491160 PMCID: PMC7398173 DOI: 10.1084/jem.20191920] [Citation(s) in RCA: 203] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/14/2020] [Accepted: 03/19/2020] [Indexed: 12/13/2022] Open
Abstract
CD8+ T cells are master effectors of antitumor immunity, and their presence at tumor sites correlates with favorable outcomes. However, metabolic constraints imposed by the tumor microenvironment (TME) can dampen their ability to control tumor progression. We describe lipid accumulation in the TME areas of pancreatic ductal adenocarcinoma (PDA) populated by CD8+ T cells infiltrating both murine and human tumors. In this lipid-rich but otherwise nutrient-poor TME, access to using lipid metabolism becomes particularly valuable for sustaining cell functions. Here, we found that intrapancreatic CD8+ T cells progressively accumulate specific long-chain fatty acids (LCFAs), which, rather than provide a fuel source, impair their mitochondrial function and trigger major transcriptional reprogramming of pathways involved in lipid metabolism, with the subsequent reduction of fatty acid catabolism. In particular, intrapancreatic CD8+ T cells specifically exhibit down-regulation of the very-long-chain acyl-CoA dehydrogenase (VLCAD) enzyme, which exacerbates accumulation of LCFAs and very-long-chain fatty acids (VLCFAs) that mediate lipotoxicity. Metabolic reprogramming of tumor-specific T cells through enforced expression of ACADVL enabled enhanced intratumoral T cell survival and persistence in an engineered mouse model of PDA, overcoming one of the major hurdles to immunotherapy for PDA.
Collapse
Affiliation(s)
- Teresa Manzo
- Department of Experimental Oncology, IRCCS European Institute of Oncology, Milano, Italy.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Boone M Prentice
- Department of Biochemistry, Mass Spectrometry Research Center, Department of Chemistry, Department of Pharmacology and Medicine, Vanderbilt University, Nashville, TN
| | - Kristin G Anderson
- Clinical Research Division and Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA.,Departments of Medicine/Oncology and Immunology, University of Washington School of Medicine, Seattle, WA
| | - Ayush Raman
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Aislyn Schalck
- Department of Genetics and Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Carina B Nava Lauson
- Department of Experimental Oncology, IRCCS European Institute of Oncology, Milano, Italy
| | - Silvia Tiberti
- Department of Experimental Oncology, IRCCS European Institute of Oncology, Milano, Italy
| | - Andrea Raimondi
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, San Raffaele Vita-Salute University, Milano, Italy
| | - Marissa A Jones
- Department of Biochemistry, Mass Spectrometry Research Center, Department of Chemistry, Department of Pharmacology and Medicine, Vanderbilt University, Nashville, TN
| | - Michelle Reyzer
- Department of Biochemistry, Mass Spectrometry Research Center, Department of Chemistry, Department of Pharmacology and Medicine, Vanderbilt University, Nashville, TN
| | - Breanna M Bates
- Clinical Research Division and Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA.,Departments of Medicine/Oncology and Immunology, University of Washington School of Medicine, Seattle, WA
| | - Jeffrey M Spraggins
- Department of Biochemistry, Mass Spectrometry Research Center, Department of Chemistry, Department of Pharmacology and Medicine, Vanderbilt University, Nashville, TN
| | - Nathan H Patterson
- Department of Biochemistry, Mass Spectrometry Research Center, Department of Chemistry, Department of Pharmacology and Medicine, Vanderbilt University, Nashville, TN
| | - John A McLean
- Center for Innovative Technology, Vanderbilt University, Nashville, TN
| | - Kunal Rai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Carlo Tacchetti
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, San Raffaele Vita-Salute University, Milano, Italy
| | - Sara Tucci
- Laboratory of Clinical Biochemistry and Metabolism Center for Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
| | - Jennifer A Wargo
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX.,Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Simona Rodighiero
- Department of Experimental Oncology, IRCCS European Institute of Oncology, Milano, Italy
| | - Karen Clise-Dwyer
- Department of Stem Cell Transplantation, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Stacy D Sherrod
- Center for Innovative Technology, Vanderbilt University, Nashville, TN
| | - Michael Kim
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Nicholas E Navin
- Department of Genetics and Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Richard M Caprioli
- Department of Biochemistry, Mass Spectrometry Research Center, Department of Chemistry, Department of Pharmacology and Medicine, Vanderbilt University, Nashville, TN
| | - Philip D Greenberg
- Clinical Research Division and Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA.,Departments of Medicine/Oncology and Immunology, University of Washington School of Medicine, Seattle, WA
| | - Giulio Draetta
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Luigi Nezi
- Department of Experimental Oncology, IRCCS European Institute of Oncology, Milano, Italy.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
117
|
Edwards DN, Ngwa VM, Raybuck AL, Wang S, Hwang Y, Kim LC, Cho SH, Paik Y, Wang Q, Zhang S, Manning HC, Rathmell JC, Cook RS, Boothby MR, Chen J. Selective glutamine metabolism inhibition in tumor cells improves antitumor T lymphocyte activity in triple-negative breast cancer. J Clin Invest 2021; 131:140100. [PMID: 33320840 PMCID: PMC7880417 DOI: 10.1172/jci140100] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 12/10/2020] [Indexed: 12/27/2022] Open
Abstract
Rapidly proliferating tumor and immune cells need metabolic programs that support energy and biomass production. The amino acid glutamine is consumed by effector T cells and glutamine-addicted triple-negative breast cancer (TNBC) cells, suggesting that a metabolic competition for glutamine may exist within the tumor microenvironment, potentially serving as a therapeutic intervention strategy. Here, we report that there is an inverse correlation between glutamine metabolic genes and markers of T cell-mediated cytotoxicity in human basal-like breast cancer (BLBC) patient data sets, with increased glutamine metabolism and decreased T cell cytotoxicity associated with poor survival. We found that tumor cell-specific loss of glutaminase (GLS), a key enzyme for glutamine metabolism, improved antitumor T cell activation in both a spontaneous mouse TNBC model and orthotopic grafts. The glutamine transporter inhibitor V-9302 selectively blocked glutamine uptake by TNBC cells but not CD8+ T cells, driving synthesis of glutathione, a major cellular antioxidant, to improve CD8+ T cell effector function. We propose a "glutamine steal" scenario, in which cancer cells deprive tumor-infiltrating lymphocytes of needed glutamine, thus impairing antitumor immune responses. Therefore, tumor-selective targeting of glutamine metabolism may be a promising therapeutic strategy in TNBC.
Collapse
Affiliation(s)
- Deanna N. Edwards
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Verra M. Ngwa
- Program in Cancer Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Ariel L. Raybuck
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Shan Wang
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yoonha Hwang
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Laura C. Kim
- Program in Cancer Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Sung Hoon Cho
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yeeun Paik
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Qingfei Wang
- Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, Indiana, USA
- Mike and Josie Harper Cancer Research Institute, University of Notre Dame, South Bend, Indiana, USA
| | - Siyuan Zhang
- Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, Indiana, USA
- Mike and Josie Harper Cancer Research Institute, University of Notre Dame, South Bend, Indiana, USA
| | - H. Charles Manning
- Department of Chemistry
- Center for Molecular Probes
- Vanderbilt Institute for Imaging Sciences
- Department of Radiology and Radiological Sciences
- Vanderbilt-Ingram Cancer Center
| | - Jeffrey C. Rathmell
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt-Ingram Cancer Center
- Vanderbilt Institute for Infection, Immunology and Inflammation, and
| | - Rebecca S. Cook
- Program in Cancer Biology, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt-Ingram Cancer Center
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mark R. Boothby
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Program in Cancer Biology, Vanderbilt University, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, and
| | - Jin Chen
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Program in Cancer Biology, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt-Ingram Cancer Center
- Vanderbilt Institute for Infection, Immunology and Inflammation, and
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
118
|
Chen H, Sun Y, Yang Z, Yin S, Li Y, Tang M, Zhu J, Zhang F. Metabolic heterogeneity and immunocompetence of infiltrating immune cells in the breast cancer microenvironment (Review). Oncol Rep 2021; 45:846-856. [PMID: 33650671 PMCID: PMC7859921 DOI: 10.3892/or.2021.7946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is one of the most common malignancies in women and is characterized by active immunogenicity. Immune cell infiltration plays an important role in the development of breast cancer. The degree of infiltration influences both the response to and effect of treatment. However, immune infiltration is a complex process. Differences in oxygen partial pressure, blood perfusion and nutrients in the tumor microenvironment (TME) suggest that infiltrating immune cells in different sites experience different microenvironments with corresponding changes in the metabolic mode, that is, immune cell metabolism is heterogenous in the TME. Furthermore, the present review found that lipid metabolism can support the immunosuppressive microenvironment in breast cancer based on a review of published literature. Research in this field is still ongoing; however, it is vital to understand the metabolic patterns and effects of different microenvironments for antitumor therapy. Therefore, this review discusses the metabolic responses of various immune cells to different microenvironments in breast cancer and provides potentially meaningful insights for tumor immunotherapy.
Collapse
Affiliation(s)
- Hongdan Chen
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401147, P.R. China
| | - Yizeng Sun
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401147, P.R. China
| | - Zeyu Yang
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401147, P.R. China
| | - Supeng Yin
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401147, P.R. China
| | - Yao Li
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401147, P.R. China
| | - Mi Tang
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401147, P.R. China
| | - Junping Zhu
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401147, P.R. China
| | - Fan Zhang
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401147, P.R. China
| |
Collapse
|
119
|
TGF-β in Cancer: Metabolic Driver of the Tolerogenic Crosstalk in the Tumor Microenvironment. Cancers (Basel) 2021; 13:cancers13030401. [PMID: 33499083 PMCID: PMC7865468 DOI: 10.3390/cancers13030401] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
Overcoming tumor immunosuppression still represents one ambitious achievement for cancer immunotherapy. Of note, the cytokine TGF-β contributes to immune evasion in multiple cancer types, by feeding the establishment of a tolerogenic environment in the host. Indeed, it fosters the expansion and accumulation of immunosuppressive regulatory cell populations within the tumor microenvironment (TME), where it also activates resident stromal cells and enhances angiogenesis programs. More recently, TGF-β has also turned out as a key metabolic adjuster in tumors orchestrating metabolic pathways in the TME. In this review, we will scrutinize TGF-β-mediated immune and stromal cell crosstalk within the TME, with a primary focus on metabolic programs.
Collapse
|
120
|
Wu S, Kuang H, Ke J, Pi M, Yang DH. Metabolic Reprogramming Induces Immune Cell Dysfunction in the Tumor Microenvironment of Multiple Myeloma. Front Oncol 2021; 10:591342. [PMID: 33520703 PMCID: PMC7845572 DOI: 10.3389/fonc.2020.591342] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022] Open
Abstract
Tumor cells rewire metabolism to meet their increased nutritional demands, allowing the maintenance of tumor survival, proliferation, and expansion. Enhancement of glycolysis and glutaminolysis is identified in most, if not all cancers, including multiple myeloma (MM), which interacts with a hypoxic, acidic, and nutritionally deficient tumor microenvironment (TME). In this review, we discuss the metabolic changes including generation, depletion or accumulation of metabolites and signaling pathways, as well as their relationship with the TME in MM cells. Moreover, we describe the crosstalk among metabolism, TME, and changing function of immune cells during cancer progression. The overlapping metabolic phenotype between MM and immune cells is discussed. In this sense, targeting metabolism of MM cells is a promising therapeutic approach. We propose that it is important to define the metabolic signatures that may regulate the function of immune cells in TME in order to improve the response to immunotherapy.
Collapse
Affiliation(s)
- Shaojie Wu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Huixian Kuang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jin Ke
- Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Medical Center of Assessment of Bone & Joint Diseases, Orthopaedic Hospital, General Hospital of Southern Theater Command, Guangzhou, China
| | - Manfei Pi
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Dong-Hua Yang
- College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| |
Collapse
|
121
|
Kumar A, Chamoto K. Immune metabolism in PD-1 blockade-based cancer immunotherapy. Int Immunol 2021; 33:17-26. [PMID: 32622347 PMCID: PMC7771015 DOI: 10.1093/intimm/dxaa046] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023] Open
Abstract
Energy metabolism plays an important role in proliferating cells. Recent reports indicate that metabolic regulation or metabolic products can control immune cell differentiation, fate and reactions. Cancer immunotherapy based on blockade of programmed cell death protein 1 (PD-1) has been used worldwide, but a significant fraction of patients remain unresponsive. Therefore, clarifying the mechanisms and overcoming the unresponsiveness are urgent issues. Because cancer immunity consists of interactions between the cancer and host immune cells, there has recently been a focus on the metabolic interactions and/or competition between the tumor and the immune system to address these issues. Cancer cells render their microenvironment immunosuppressive, driving T-cell dysfunction or exhaustion, which is advantageous for cancer cell survival. However, accumulating mechanistic evidence of T-cell and cancer cell metabolism has gradually revealed that controlling the metabolic pathways of either type of cell can overcome T-cell dysfunction and reprogram the metabolic balance in the tumor microenvironment. Here, we summarize the role of immune metabolism in T-cell-based immune surveillance and cancer immune escape. This new concept has boosted the development of combination therapy and predictive biomarkers in cancer immunotherapy with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Alok Kumar
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Yoshida, Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Kenji Chamoto
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Yoshida, Konoe-cho, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
122
|
Wei F, Wang D, Wei J, Tang N, Tang L, Xiong F, Guo C, Zhou M, Li X, Li G, Xiong W, Zhang S, Zeng Z. Metabolic crosstalk in the tumor microenvironment regulates antitumor immunosuppression and immunotherapy resisitance. Cell Mol Life Sci 2021; 78:173-193. [PMID: 32654036 PMCID: PMC11072448 DOI: 10.1007/s00018-020-03581-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/23/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022]
Abstract
The successful treatment of human cancers by immunotherapy has been made possible by breakthroughs in the discovery of immune checkpoint regulators, including CTLA-4 and PD-1/PD-L1. However, the immunosuppressive effect of the tumor microenvironment still represents an important bottleneck that limits the success of immunotherapeutic approaches. The tumor microenvironment influences the metabolic crosstalk between tumor cells and tumor-infiltrating immune cells, creating competition for the utilization of nutrients and promoting immunosuppression. In addition, tumor-derived metabolites regulate the activation and effector function of immune cells through a variety of mechanisms; in turn, the metabolites and other factors secreted by immune cells can also become accomplices to cancer development. Immune-metabolic checkpoint regulation is an emerging concept that is being studied with the aim of restoring the immune response in the tumor microenvironment. In this review, we summarize the metabolic reprogramming of various cell types present in the tumor microenvironment, with a focus on the interaction between the metabolic pathways of these cells and antitumor immunosuppression. We also discuss the main metabolic checkpoints that could provide new means of enhancing antitumor immunotherapy.
Collapse
Affiliation(s)
- Fang Wei
- Center for Aging Biomedicine, Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Department of Stomatology, NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, 410078, China
| | - Dan Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, 410078, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Junyuan Wei
- School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650031, China
| | - Niwen Tang
- Center for Aging Biomedicine, Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Le Tang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, 410078, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Fang Xiong
- Department of Stomatology, NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Can Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, 410078, China
| | - Ming Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, 410078, China
| | - Xiaoling Li
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, 410078, China
| | - Guiyuan Li
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, 410078, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Wei Xiong
- Department of Stomatology, NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, 410078, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Shanshan Zhang
- Department of Stomatology, NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, 410078, China.
| | - Zhaoyang Zeng
- Department of Stomatology, NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, 410078, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, 410078, China.
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| |
Collapse
|
123
|
Chaudhary A, Bag S, Arora N, Radhakrishnan VS, Mishra D, Mukherjee G. Hypoxic Transformation of Immune Cell Metabolism Within the Microenvironment of Oral Cancers. FRONTIERS IN ORAL HEALTH 2020; 1:585710. [PMID: 35047983 PMCID: PMC8757756 DOI: 10.3389/froh.2020.585710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/13/2020] [Indexed: 01/01/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) includes tumors of the lips, tongue, gingivobuccal complex, and floor of the mouth. Prognosis for OSCC is highly heterogeneous, with overall 5-year survival of ~50%, but median survival of just 8-10 months for patients with locoregional recurrence or metastatic disease. A key feature of OSCC is microenvironmental oxygen depletion due to rapid growth of constituent tumor cells, which triggers hypoxia-associated signaling events and metabolic adaptations that influence subsequent tumor progression. Better understanding of leukocyte responses to tissue hypoxia and onco-metabolite expression under low-oxygen conditions will therefore be essential to develop more effective methods of diagnosing and treating patients with OSCC. This review assesses recent literature on metabolic reprogramming, redox homeostasis, and associated signaling pathways that mediate crosstalk of OSCC with immune cells in the hypoxic tumor microenvironment. The likely functional consequences of this metabolic interface between oxygen-starved OSCC and infiltrating leukocytes are also discussed. The hypoxic microenvironment of OSCC modifies redox signaling and alters the metabolic profile of tumor-infiltrating immune cells. Improved understanding of heterotypic interactions between host leukocytes, tumor cells, and hypoxia-induced onco-metabolites will inform the development of novel theranostic strategies for OSCC.
Collapse
Affiliation(s)
- Amrita Chaudhary
- Department of Histopathology, Tata Medical Center, Kolkata, India
| | - Swarnendu Bag
- Department of Histopathology, Tata Medical Center, Kolkata, India
| | - Neeraj Arora
- Department of Laboratory Hematology and Molecular Genetics, Tata Medical Center, Kolkata, India
| | | | - Deepak Mishra
- Department of Laboratory Hematology and Molecular Genetics, Tata Medical Center, Kolkata, India
| | | |
Collapse
|
124
|
Xu B, Hu R, Liang Z, Chen T, Chen J, Hu Y, Jiang Y, Li Y. Metabolic regulation of the bone marrow microenvironment in leukemia. Blood Rev 2020; 48:100786. [PMID: 33353770 DOI: 10.1016/j.blre.2020.100786] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/24/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022]
Abstract
Most leukemia patients experience little benefit from immunotherapy, in part due to the immunosuppressive bone marrow microenvironment. Various metabolic mechanisms orchestrate the behaviors of immune cells and leukemia cells in the bone marrow microenvironment. Furthermore, leukemia cells regulate the bone marrow microenvironment through metabolism to generate an adequate supply of energy and to escape antitumor immune surveillance. Thus, the targeting of the interaction between leukemia cells and the bone marrow microenvironment provides a new therapeutic avenue. In this review, we describe the concept of the bone marrow microenvironment and several important metabolic processes of leukemia cells within the bone marrow microenvironment, including carbohydrate, lipid, and amino acid metabolism. In addition, we discuss how these metabolic pathways regulate antitumor immunity and reveal potential therapeutic targets.
Collapse
Affiliation(s)
- Binyan Xu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, PR China
| | - Rong Hu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, PR China
| | - Zhao Liang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, PR China
| | - Tong Chen
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, PR China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Jianyu Chen
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, PR China
| | - Yuxing Hu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, PR China
| | - Yirong Jiang
- Department of Hematology, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, Guangdong 523059, PR China.
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, PR China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005 Guangzhou, PR China.
| |
Collapse
|
125
|
Badr CE, Silver DJ, Siebzehnrubl FA, Deleyrolle LP. Metabolic heterogeneity and adaptability in brain tumors. Cell Mol Life Sci 2020; 77:5101-5119. [PMID: 32506168 PMCID: PMC8272080 DOI: 10.1007/s00018-020-03569-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/18/2020] [Accepted: 05/28/2020] [Indexed: 12/19/2022]
Abstract
The metabolic complexity and flexibility commonly observed in brain tumors, especially glioblastoma, is fundamental for their development and progression. The ability of tumor cells to modify their genetic landscape and adapt metabolically, subverts therapeutic efficacy, and inevitably instigates therapeutic resistance. To overcome these challenges and develop effective therapeutic strategies targeting essential metabolic processes, it is necessary to identify the mechanisms underlying heterogeneity and define metabolic preferences and liabilities of malignant cells. In this review, we will discuss metabolic diversity in brain cancer and highlight the role of cancer stem cells in regulating metabolic heterogeneity. We will also highlight potential therapeutic modalities targeting metabolic vulnerabilities and examine how intercellular metabolic signaling can shape the tumor microenvironment.
Collapse
Affiliation(s)
- Christian E Badr
- Neuro-Oncology Division, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Neuroscience Program, Harvard Medical School, Boston, MA, USA
| | - Daniel J Silver
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Florian A Siebzehnrubl
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Cardiff, CF24 4HQ, UK
| | - Loic P Deleyrolle
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
126
|
Barba D, León-Sosa A, Lugo P, Suquillo D, Torres F, Surre F, Trojman L, Caicedo A. Breast cancer, screening and diagnostic tools: All you need to know. Crit Rev Oncol Hematol 2020; 157:103174. [PMID: 33249359 DOI: 10.1016/j.critrevonc.2020.103174] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/18/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is one of the most frequent malignancies among women worldwide. Methods for screening and diagnosis allow health care professionals to provide personalized treatments that improve the outcome and survival. Scientists and physicians are working side-by-side to develop evidence-based guidelines and equipment to detect cancer earlier. However, the lack of comprehensive interdisciplinary information and understanding between biomedical, medical, and technology professionals makes innovation of new screening and diagnosis tools difficult. This critical review gathers, for the first time, information concerning normal breast and cancer biology, established and emerging methods for screening and diagnosis, staging and grading, molecular and genetic biomarkers. Our purpose is to address key interdisciplinary information about these methods for physicians and scientists. Only the multidisciplinary interaction and communication between scientists, health care professionals, technical experts and patients will lead to the development of better detection tools and methods for an improved screening and early diagnosis.
Collapse
Affiliation(s)
- Diego Barba
- Escuela de Medicina, Universidad San Francisco de Quito USFQ, Quito, Ecuador; Instituto de Investigaciones en Biomedicina, Universidad San Francisco de Quito USFQ, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador
| | - Ariana León-Sosa
- Escuela de Medicina, Universidad San Francisco de Quito USFQ, Quito, Ecuador; Instituto de Investigaciones en Biomedicina, Universidad San Francisco de Quito USFQ, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador
| | - Paulina Lugo
- Hospital de los Valles HDLV, Quito, Ecuador; Fundación Ayuda Familiar y Comunitaria AFAC, Quito, Ecuador
| | - Daniela Suquillo
- Instituto de Investigaciones en Biomedicina, Universidad San Francisco de Quito USFQ, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador; Ingeniería en Procesos Biotecnológicos, Colegio de Ciencias Biológicas y Ambientales COCIBA, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Fernando Torres
- Escuela de Medicina, Universidad San Francisco de Quito USFQ, Quito, Ecuador; Hospital de los Valles HDLV, Quito, Ecuador
| | - Frederic Surre
- University of Glasgow, James Watt School of Engineering, Glasgow, G12 8QQ, United Kingdom
| | - Lionel Trojman
- LISITE, Isep, 75006, Paris, France; Universidad San Francisco de Quito USFQ, Colegio de Ciencias e Ingenierías Politécnico - USFQ, Instituto de Micro y Nanoelectrónica, IMNE, USFQ, Quito, Ecuador
| | - Andrés Caicedo
- Escuela de Medicina, Universidad San Francisco de Quito USFQ, Quito, Ecuador; Instituto de Investigaciones en Biomedicina, Universidad San Francisco de Quito USFQ, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador; Sistemas Médicos SIME, Universidad San Francisco de Quito USFQ, Quito, Ecuador.
| |
Collapse
|
127
|
Wang W, Zou W. Amino Acids and Their Transporters in T Cell Immunity and Cancer Therapy. Mol Cell 2020; 80:384-395. [PMID: 32997964 PMCID: PMC7655528 DOI: 10.1016/j.molcel.2020.09.006] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/01/2020] [Accepted: 09/07/2020] [Indexed: 12/25/2022]
Abstract
Metabolism reprogramming is critical for both cancer progression and effective immune responses in the tumor microenvironment. Amino acid metabolism in different cells and their cross-talk shape tumor immunity and therapy efficacy in patients with cancer. In this review, we focus on multiple amino acids and their transporters, solute carrier (SLC) members. We discuss their involvement in regulation of immune responses in the tumor microenvironment and assess their associations with cancer immunotherapy, chemotherapy, and radiation therapy, and we review their potential as targets for cancer therapy. We stress the necessity to understand individual amino acids and their transporters in different cell subsets, the molecular intersection between amino acid metabolism, and effective T cell immunity and its relevance in cancer therapies.
Collapse
Affiliation(s)
- Weimin Wang
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA.
| | - Weiping Zou
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Graduate Program in Immunology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; Graduate Program in Cancer Biology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA.
| |
Collapse
|
128
|
Iranparast S, Tayebi S, Ahmadpour F, Yousefi B. Tumor-Induced Metabolism and T Cells Located in Tumor Environment. Curr Cancer Drug Targets 2020; 20:741-756. [PMID: 32691710 DOI: 10.2174/1568009620666200720010647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/14/2022]
Abstract
Several subtypes of T cells are located in a tumor environment, each of which supplies their energy using different metabolic mechanisms. Since the cancer cells require high levels of glucose, the conditions of food poverty in the tumor environment can cause inactivation of immune cells, especially the T-effector cells, due to the need for glucose in the early stages of these cells activity. Different signaling pathways, such as PI3K-AKt-mTOR, MAPK, HIF-1α, etc., are activated or inactivated by the amount and type of energy source or oxygen levels that determine the fate of T cells in a cancerous environment. This review describes the metabolites in the tumor environment and their effects on the function of T cells. It also explains the signaling pathway of T cells in the tumor and normal conditions, due to the level of access to available metabolites and subtypes of T cells in the tumor environment.
Collapse
Affiliation(s)
- Sara Iranparast
- Department of Immunology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sanaz Tayebi
- Department of Immunology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Ahmadpour
- Department of Biochemistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
129
|
de Jonge AV, Mutis T, Roemer MGM, Scheijen B, Chamuleau MED. Impact of MYC on Anti-Tumor Immune Responses in Aggressive B Cell Non-Hodgkin Lymphomas: Consequences for Cancer Immunotherapy. Cancers (Basel) 2020; 12:cancers12103052. [PMID: 33092116 PMCID: PMC7589056 DOI: 10.3390/cancers12103052] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 02/08/2023] Open
Abstract
Simple Summary The human immune system has several mechanisms to attack and eliminate lymphomas. However, the MYC oncogene is thought to facilitate escape from this anti-tumor immune response. Since patients with MYC overexpressing lymphomas face a significant dismal prognosis after treatment with standard immunochemotherapy, understanding the role of MYC in regulating the anti-tumor immune response is highly relevant. In this review, we describe the mechanisms by which MYC attenuates the anti-tumor immune responses in B cell non-Hodgkin lymphomas. We aim to implement this knowledge in the deployment of novel immunotherapeutic approaches. Therefore, we also provide a comprehensive overview of current immunotherapeutic options and we discuss potential future treatment strategies for MYC overexpressing lymphomas. Abstract Patients with MYC overexpressing high grade B cell lymphoma (HGBL) face significant dismal prognosis after treatment with standard immunochemotherapy regimens. Recent preclinical studies indicate that MYC not only contributes to tumorigenesis by its effects on cell proliferation and differentiation, but also plays an important role in promoting escape from anti-tumor immune responses. This is of specific interest, since reversing tumor immune inhibition with immunotherapy has shown promising results in the treatment of both solid tumors and hematological malignancies. In this review, we outline the current understanding of impaired immune responses in B cell lymphoid malignancies with MYC overexpression, with a particular emphasis on diffuse large B cell lymphoma. We also discuss clinical consequences of MYC overexpression in the treatment of HGBL with novel immunotherapeutic agents and potential future treatment strategies.
Collapse
Affiliation(s)
- A. Vera de Jonge
- Department of Hematology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, 1081HV Amsterdam, The Netherlands; (T.M.); (M.E.D.C.)
- Correspondence:
| | - Tuna Mutis
- Department of Hematology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, 1081HV Amsterdam, The Netherlands; (T.M.); (M.E.D.C.)
| | - Margaretha G. M. Roemer
- Department of Pathology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, 1081HV Amsterdam, The Netherlands;
| | - Blanca Scheijen
- Department of Pathology, Radboud UMC, Radboud Institute for Molecular Life Sciences, 6525GA Nijmegen, The Netherlands;
| | - Martine E. D. Chamuleau
- Department of Hematology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, 1081HV Amsterdam, The Netherlands; (T.M.); (M.E.D.C.)
| |
Collapse
|
130
|
Zeng H, Luo M, Chen L, Ma X, Ma X. Machine learning analysis of DNA methylation in a hypoxia-immune model of oral squamous cell carcinoma. Int Immunopharmacol 2020; 89:107098. [PMID: 33091815 DOI: 10.1016/j.intimp.2020.107098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/15/2020] [Accepted: 10/10/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Hypoxia status and immunity are related with the development and prognosis of oral squamous cell carcinoma (OSCC). Here, we constructed a hypoxia-immune model to explore its upstream mechanism and identify potential CpG sites. METHODS The hypoxia-immune model was developed and validated by the iCluster algorithm. The LASSO, SVM-RFE and GA-ANN were performed to screen CpG sites correlated to the hypoxia-immune microenvironment. RESULTS We found seven hypoxia-immune related CpG sites. Lasso had the best classification performance among three machine learning algorithms. CONCLUSION We explored the clinical significance of the hypoxia-immune model and found seven hypoxia-immune related CpG sites by multiple machine learning algorithms. This model and candidate CpG sites may have clinical applications to predict the hypoxia-immune microenvironment.
Collapse
Affiliation(s)
- Hao Zeng
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Meng Luo
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Linyan Chen
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Xinyu Ma
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Xuelei Ma
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| |
Collapse
|
131
|
Zhang D, Xu X, Ye Q. Metabolism and immunity in breast cancer. Front Med 2020; 15:178-207. [PMID: 33074528 DOI: 10.1007/s11684-020-0793-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 04/17/2020] [Indexed: 12/12/2022]
Abstract
Breast cancer is one of the most common malignancies that seriously threaten women's health. In the process of the malignant transformation of breast cancer, metabolic reprogramming and immune evasion represent the two main fascinating characteristics of cancer and facilitate cancer cell proliferation. Breast cancer cells generate energy through increased glucose metabolism. Lipid metabolism contributes to biological signal pathways and forms cell membranes except energy generation. Amino acids act as basic protein units and metabolic regulators in supporting cell growth. For tumor-associated immunity, poor immunogenicity and heightened immunosuppression cause breast cancer cells to evade the host's immune system. For the past few years, the complex mechanisms of metabolic reprogramming and immune evasion are deeply investigated, and the genes involved in these processes are used as clinical therapeutic targets for breast cancer. Here, we review the recent findings related to abnormal metabolism and immune characteristics, regulatory mechanisms, their links, and relevant therapeutic strategies.
Collapse
Affiliation(s)
- Deyu Zhang
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Xiaojie Xu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, 100850, China.
| | - Qinong Ye
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, 100850, China.
| |
Collapse
|
132
|
Wu F, Cheng Y, Wu L, Zhang W, Zheng W, Wang Q, Cao H, Pan X, Tang W. Emerging Landscapes of Tumor Immunity and Metabolism. Front Oncol 2020; 10:575037. [PMID: 33117713 PMCID: PMC7575711 DOI: 10.3389/fonc.2020.575037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022] Open
Abstract
The metabolic reprogramming of cancer tissue has higher metabolic activity than surrounding tissues. At the same time, the local infiltration of immunosuppressive cells is also significantly increased, resulting in a significant decrease in tumor immunity. During the progression of cancer cells, immunosuppressive tumor microenvironment is formed around the tumor due to their metabolic reprogramming. In addition, it is the changes in metabolic patterns that make tumor cells resistant to certain drugs, impeding cancer treatment. This article reviews the mechanisms of immune escape caused by metabolic reprogramming, and aims to provide new ideas for clinical tumor immunotherapy combined with metabolic intervention for tumor treatment.
Collapse
Affiliation(s)
- Fan Wu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ye Cheng
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Liangliang Wu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wenling Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wubing Zheng
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qian Wang
- Research Unit Analytical Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Hongyong Cao
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiongxiong Pan
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weiwei Tang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
133
|
Zhong A, Cheng CS, Kai J, Lu R, Guo L. Clinical Significance of Glucose to Lymphocyte Ratio (GLR) as a Prognostic Marker for Patients With Pancreatic Cancer. Front Oncol 2020; 10:520330. [PMID: 33117673 PMCID: PMC7561421 DOI: 10.3389/fonc.2020.520330] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 09/03/2020] [Indexed: 12/25/2022] Open
Abstract
Glucose metabolism and systemic inflammation have been associated with cancer aggressiveness and patient prognosis in various malignancies. This study aimed to evaluate the prognostic significance of pretreatment GLR(glucose to lymphocyte ratio) and systemic immune inflammation in patients with pancreatic cancer. We studied 360 patients with pathologically diagnosed pancreatic adenocarcinoma that was clinically unresectable. Baseline clinicopathological characteristics and laboratory investigations including fasting blood glucose, platelet count, lymphocyte count, neutrophil count, carcinoembryonic antigen (CEA), carbohydrate antigen 19-9 (CA199), and follow-up data were collected for further analysis. The patients were randomly divided into a training cohort (n = 238) and a validation cohort (n = 122). Univariate and multivariate Cox proportional hazard regression analyses were performed to identify the prognostic value of GLR, systemic immune-inflammation markers, and tumor biomarkers. A nomogram model was developed based on the identified prognostic factors, and we used the C-index to evaluate the accuracy of the Cox regression model prediction. Multivariate analysis revealed that GLR [hazard ratio (HR): 2.597; 95% confidence interval (CI): 1.728-3.904)] and CA199 (HR: 2.484; 95% CI: 1.295-4.765) are independent predictors of poor overall survival in the training cohort and were incorporated into the nomogram for OS as independent factors. Moreover, the C-index analyses demonstrated that the C-indexes in the training cohort and the validation cohort were 0.674 and 0.671, respectively. The nomogram model predicts overall survival relatively accurately. We found that the baseline GLR is an independent prognostic factor for patients with pancreatic cancer, and the proposed nomogram can be used as an effective tool for predicting the outcomes of prognosis of patients with pancreatic cancer.
Collapse
Affiliation(s)
- Ailing Zhong
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Chien-Shan Cheng
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Integrative Oncology, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Jinyan Kai
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Renquan Lu
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lin Guo
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
134
|
Cumming BM, Pacl HT, Steyn AJC. Relevance of the Warburg Effect in Tuberculosis for Host-Directed Therapy. Front Cell Infect Microbiol 2020; 10:576596. [PMID: 33072629 PMCID: PMC7531540 DOI: 10.3389/fcimb.2020.576596] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB) was responsible for more deaths in 2019 than any other infectious agent. This epidemic is exacerbated by the ongoing development of multi-drug resistance and HIV co-infection. Recent studies have therefore focused on identifying host-directed therapies (HDTs) that can be used in combination with anti-mycobacterial drugs to shorten the duration of TB treatment and improve TB outcomes. In searching for effective HDTs for TB, studies have looked toward immunometabolism, the study of the role of metabolism in host immunity and, in particular, the Warburg effect. Across a variety of experimental paradigms ranging from in vitro systems to the clinic, studies on the role of the Warburg effect in TB have produced seemingly conflicting results and contradictory conclusions. To reconcile this literature, we take a historical approach to revisit the definition of the Warburg effect, re-examine the foundational papers on the Warburg effect in the cancer field and explore its application to immunometabolism. With a firm context established, we assess the literature investigating metabolism and immunometabolism in TB for sufficient evidence to support the role of the Warburg effect in TB immunity. The effects of the differences between animal models, species of origin of the macrophages, duration of infection and Mycobacterium tuberculosis strains used for these studies are highlighted. In addition, the shortcomings of using 2-deoxyglucose as an inhibitor of glycolysis are discussed. We conclude by proposing experimental criteria that are essential for future studies on the Warburg effect in TB to assist with the research for HDTs to combat TB.
Collapse
Affiliation(s)
| | - Hayden T Pacl
- Department of Microbiology, University of Alabama, Birmingham, AL, United States
| | - Adrie J C Steyn
- Africa Health Research Institute, Durban, South Africa.,Department of Microbiology, University of Alabama, Birmingham, AL, United States.,Centers for Free Radical Biology (CFRB) and AIDS Research (CFAR), University of Alabama, Birmingham, AL, United States
| |
Collapse
|
135
|
Hossain MA, Liu G, Dai B, Si Y, Yang Q, Wazir J, Birnbaumer L, Yang Y. Reinvigorating exhausted CD8 + cytotoxic T lymphocytes in the tumor microenvironment and current strategies in cancer immunotherapy. Med Res Rev 2020; 41:156-201. [PMID: 32844499 DOI: 10.1002/med.21727] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 06/26/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023]
Abstract
Immunotherapy has revolutionized the treatment of cancer in recent years and achieved overall success and long-term clinical benefit in patients with a wide variety of cancer types. However, there is still a large proportion of patients exhibiting limited or no responses to immunotherapeutic strategy, some of which were even observed with hyperprogressive disease. One major obstacle restricting the efficacy is that tumor-reactive CD8+ T cells, which are central for tumor control, undergo exhaustion, and lose their ability to eliminate cancer cells after infiltrating into the strongly immunosuppressive tumor microenvironment. Thus, as a potential therapeutic rationale in the development of cancer immunotherapy, targeting or reinvigorating exhausted CD8+ T cells has been attracting much interest. Hitherto, both intrinsic and extrinsic mechanisms that govern CD8+ T-cell exhaustion have been explored. Specifically, the transcriptional and epigenetic landscapes have been depicted utilizing single-cell RNA sequencing or mass cytometry (CyTOF). In addition, cellular metabolism dictating the tumor-infiltrating CD8+ T-cell fate is currently under investigation. A series of clinical trials are being carried out to further establish the current strategies targeting CD8+ T-cell exhaustion. Taken together, despite the proven benefit of immunotherapy in cancer patients, additional efforts are still needed to fully circumvent limitations of exhausted T cells in the treatment. In this review, we will focus on the current cellular and molecular understanding of metabolic changes, epigenetic remodeling, and transcriptional regulation in CD8+ T-cell exhaustion and describe hypothetical treatment approaches based on immunotherapy aiming at reinvigorating exhausted CD8+ T cells.
Collapse
Affiliation(s)
- Md Amir Hossain
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Guilai Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Beiying Dai
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yaxuan Si
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Qitao Yang
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Junaid Wazir
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Lutz Birnbaumer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, Durham, North Carolina, USA.,Institute of Biomedical Research (BIOMED), Catholic University of Argentina, Buenos Aires, Argentina
| | - Yong Yang
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China.,Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
136
|
Beckermann KE, Hongo R, Ye X, Young K, Carbonell K, Healey DCC, Siska PJ, Barone S, Roe CE, Smith CC, Vincent BG, Mason FM, Irish JM, Rathmell WK, Rathmell JC. CD28 costimulation drives tumor-infiltrating T cell glycolysis to promote inflammation. JCI Insight 2020; 5:138729. [PMID: 32814710 PMCID: PMC7455120 DOI: 10.1172/jci.insight.138729] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023] Open
Abstract
Metabolic reprogramming dictates the fate and function of stimulated T cells, yet these pathways can be suppressed in T cells in tumor microenvironments. We previously showed that glycolytic and mitochondrial adaptations directly contribute to reducing the effector function of renal cell carcinoma (RCC) CD8+ tumor-infiltrating lymphocytes (TILs). Here we define the role of these metabolic pathways in the activation and effector functions of CD8+ RCC TILs. CD28 costimulation plays a key role in augmenting T cell activation and metabolism, and is antagonized by the inhibitory and checkpoint immunotherapy receptors CTLA4 and PD-1. While RCC CD8+ TILs were activated at a low level when stimulated through the T cell receptor alone, addition of CD28 costimulation greatly enhanced activation, function, and proliferation. CD28 costimulation reprogrammed RCC CD8+ TIL metabolism with increased glycolysis and mitochondrial oxidative metabolism, possibly through upregulation of GLUT3. Mitochondria also fused to a greater degree, with higher membrane potential and overall mass. These phenotypes were dependent on glucose metabolism, as the glycolytic inhibitor 2-deoxyglucose both prevented changes to mitochondria and suppressed RCC CD8+ TIL activation and function. These data show that CD28 costimulation can restore RCC CD8+ TIL metabolism and function through rescue of T cell glycolysis that supports mitochondrial mass and activity.
Collapse
Affiliation(s)
| | - Rachel Hongo
- Department of Medicine, Division of Hematology and Oncology, and
| | - Xiang Ye
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kirsten Young
- Department of Medicine, Division of Hematology and Oncology, and
| | - Katie Carbonell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Diana C. Contreras Healey
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Peter J. Siska
- Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Sierra Barone
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Caroline E. Roe
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Christof C. Smith
- Lineberger Comprehensive Cancer Center; Department of Medicine Division of Hematology and Oncology, Department of Microbiology and Immunology, Curriculum in Bioinformatics and Computational Biology, Computational Medicine Program, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
| | - Benjamin G. Vincent
- Lineberger Comprehensive Cancer Center; Department of Medicine Division of Hematology and Oncology, Department of Microbiology and Immunology, Curriculum in Bioinformatics and Computational Biology, Computational Medicine Program, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
| | - Frank M. Mason
- Department of Medicine, Division of Hematology and Oncology, and
| | - Jonathan M. Irish
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Center for Immunobiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - W. Kimryn Rathmell
- Department of Medicine, Division of Hematology and Oncology, and
- Center for Immunobiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jeffrey C. Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Center for Immunobiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
137
|
Na KJ, Choi H, Oh HR, Kim YH, Lee SB, Jung YJ, Koh J, Park S, Lee HJ, Jeon YK, Chung DH, Paeng JC, Park IK, Kang CH, Cheon GJ, Kang KW, Lee DS, Kim YT. Reciprocal change in Glucose metabolism of Cancer and Immune Cells mediated by different Glucose Transporters predicts Immunotherapy response. Theranostics 2020; 10:9579-9590. [PMID: 32863946 PMCID: PMC7449929 DOI: 10.7150/thno.48954] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/16/2020] [Indexed: 01/05/2023] Open
Abstract
The metabolic properties of tumor microenvironment (TME) are dynamically dysregulated to achieve immune escape and promote cancer cell survival. However, in vivo properties of glucose metabolism in cancer and immune cells are poorly understood and their clinical application to development of a biomarker reflecting immune functionality is still lacking. Methods: We analyzed RNA-seq and fluorodeoxyglucose (FDG) positron emission tomography profiles of 63 lung squamous cell carcinoma (LUSC) specimens to correlate FDG uptake, expression of glucose transporters (GLUT) by RNA-seq and immune cell enrichment score (ImmuneScore). Single cell RNA-seq analysis in five lung cancer specimens was performed. We tested the GLUT3/GLUT1 ratio, the GLUT-ratio, as a surrogate representing immune metabolic functionality by investigating the association with immunotherapy response in two melanoma cohorts. Results: ImmuneScore showed a negative correlation with GLUT1 (r = -0.70, p < 0.01) and a positive correlation with GLUT3 (r = 0.39, p < 0.01) in LUSC. Single-cell RNA-seq showed GLUT1 and GLUT3 were mostly expressed in cancer and immune cells, respectively. In immune-poor LUSC, FDG uptake was positively correlated with GLUT1 (r = 0.27, p = 0.04) and negatively correlated with ImmuneScore (r = -0.28, p = 0.04). In immune-rich LUSC, FDG uptake was positively correlated with both GLUT3 (r = 0.78, p = 0.01) and ImmuneScore (r = 0.58, p = 0.10). The GLUT-ratio was higher in anti-PD1 responders than nonresponders (p = 0.08 for baseline; p = 0.02 for on-treatment) and associated with a progression-free survival in melanoma patients who treated with anti-CTLA4 (p = 0.04). Conclusions: Competitive uptake of glucose by cancer and immune cells in TME could be mediated by differential GLUT expression in these cells.
Collapse
|
138
|
Lau SP, van Montfoort N, Kinderman P, Lukkes M, Klaase L, van Nimwegen M, van Gulijk M, Dumas J, Mustafa DAM, Lievense SLA, Groeneveldt C, Stadhouders R, Li Y, Stubbs A, Marijt KA, Vroman H, van der Burg SH, Aerts J, van Hall T, Dammeijer F, van Eijck CHJ. Dendritic cell vaccination and CD40-agonist combination therapy licenses T cell-dependent antitumor immunity in a pancreatic carcinoma murine model. J Immunother Cancer 2020; 8:e000772. [PMID: 32690771 PMCID: PMC7373331 DOI: 10.1136/jitc-2020-000772] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is notoriously resistant to treatment including checkpoint-blockade immunotherapy. We hypothesized that a bimodal treatment approach consisting of dendritic cell (DC) vaccination to prime tumor-specific T cells, and a strategy to reprogram the desmoplastic tumor microenvironment (TME) would be needed to break tolerance to these pancreatic cancers. As a proof-of-concept, we investigated the efficacy of combined DC vaccination with CD40-agonistic antibodies in a poorly immunogenic murine model of PDAC. Based on the rationale that mesothelioma and pancreatic cancer share a number of tumor associated antigens, the DCs were loaded with either pancreatic or mesothelioma tumor lysates. METHODS Immune-competent mice with subcutaneously or orthotopically growing KrasG12D/+;Trp53R172H/+;Pdx-1-Cre (KPC) PDAC tumors were vaccinated with syngeneic bone marrow-derived DCs loaded with either pancreatic cancer (KPC) or mesothelioma (AE17) lysate and consequently treated with FGK45 (CD40 agonist). Tumor progression was monitored and immune responses in TME and lymphoid organs were analyzed using multicolor flow cytometry and NanoString analyzes. RESULTS Mesothelioma-lysate loaded DCs generated cross-reactive tumor-antigen-specific T-cell responses to pancreatic cancer and induced delayed tumor outgrowth when provided as prophylactic vaccine. In established disease, combination with stimulating CD40 antibody was necessary to improve survival, while anti-CD40 alone was ineffective. Extensive analysis of the TME showed that anti-CD40 monotherapy did improve CD8 +T cell infiltration, but these essential effector cells displayed hallmarks of exhaustion, including PD-1, TIM-3 and NKG2A. Combination therapy induced a strong change in tumor transcriptome and mitigated the expression of inhibitory markers on CD8 +T cells. CONCLUSION These results demonstrate the potency of DC therapy in combination with CD40-stimulation for the treatment of pancreatic cancer and provide directions for near future clinical trials.
Collapse
Affiliation(s)
- Sai Ping Lau
- Department of Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Nadine van Montfoort
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Priscilla Kinderman
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Melanie Lukkes
- Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Larissa Klaase
- Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Menno van Nimwegen
- Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Mandy van Gulijk
- Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jasper Dumas
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Dana A M Mustafa
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sanne L A Lievense
- Department of Pulmonary Medicine, Amphia Hospital, Breda, The Netherlands
| | - Christianne Groeneveldt
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Ralph Stadhouders
- Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Cell Biology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Yunlei Li
- Clinical Bioinformatics Unit, Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Andrew Stubbs
- Clinical Bioinformatics Unit, Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Koen A Marijt
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Heleen Vroman
- Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Joachim Aerts
- Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Thorbald van Hall
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Floris Dammeijer
- Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | | |
Collapse
|
139
|
Scherwitzl I, Opp S, Hurtado AM, Pampeno C, Loomis C, Kannan K, Yu M, Meruelo D. Sindbis Virus with Anti-OX40 Overcomes the Immunosuppressive Tumor Microenvironment of Low-Immunogenic Tumors. Mol Ther Oncolytics 2020; 17:431-447. [PMID: 32478167 PMCID: PMC7251545 DOI: 10.1016/j.omto.2020.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 04/29/2020] [Indexed: 01/03/2023] Open
Abstract
Despite remarkable responses to cancer immunotherapy in a subset of patients, many patients remain resistant to therapies. It is now clear that elevated levels of tumor-infiltrating T cells as well as a systemic anti-tumor immune response are requirements for successful immunotherapies. However, the tumor microenvironment imposes an additional resistance mechanism to immunotherapy. We have developed a practical and improved strategy for cancer immunotherapy using an oncolytic virus and anti-OX40. This strategy takes advantage of a preexisting T cell immune repertoire in vivo, removing the need to know about present tumor antigens. We have shown in this study that the replication-deficient oncolytic Sindbis virus vector expressing interleukin-12 (IL-12) (SV.IL12) activates immune-mediated tumor killing by inducing OX40 expression on CD4 T cells, allowing the full potential of the agonistic anti-OX40 antibody. The combination of SV.IL12 with anti-OX40 markedly changes the transcriptome signature and metabolic program of T cells, driving the development of highly activated terminally differentiated effector T cells. These metabolically reprogrammed T cells demonstrate enhanced tumor infiltration capacity as well as anti-tumor activity capable of overcoming the repressive tumor microenvironment. Our findings identify SV.IL12 in combination with anti-OX40 to be a novel and potent therapeutic strategy that can cure multiple types of low-immunogenic solid tumors.
Collapse
Affiliation(s)
- Iris Scherwitzl
- Department of Pathology, NYU School of Medicine, New York, NY, USA
| | - Silvana Opp
- Department of Pathology, NYU School of Medicine, New York, NY, USA
| | | | | | - Cynthia Loomis
- Department of Pathology, NYU School of Medicine, New York, NY, USA
| | - Kasthuri Kannan
- Department of Pathology, NYU School of Medicine, New York, NY, USA
| | - Minjun Yu
- Department of Pathology, NYU School of Medicine, New York, NY, USA
| | - Daniel Meruelo
- Department of Pathology, NYU School of Medicine, New York, NY, USA
| |
Collapse
|
140
|
Bader JE, Voss K, Rathmell JC. Targeting Metabolism to Improve the Tumor Microenvironment for Cancer Immunotherapy. Mol Cell 2020; 78:1019-1033. [PMID: 32559423 PMCID: PMC7339967 DOI: 10.1016/j.molcel.2020.05.034] [Citation(s) in RCA: 609] [Impact Index Per Article: 121.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022]
Abstract
The growing field of immune metabolism has revealed promising indications for metabolic targets to modulate anti-cancer immunity. Combination therapies involving metabolic inhibitors with immune checkpoint blockade (ICB), chemotherapy, radiation, and/or diet now offer new approaches for cancer therapy. However, it remains uncertain how to best utilize these strategies in the context of the complex tumor microenvironment (TME). Oncogene-driven changes in tumor cell metabolism can impact the TME to limit immune responses and present barriers to cancer therapy. These changes also reveal opportunities to reshape the TME by targeting metabolic pathways to favor immunity. Here we explore current strategies that shift immune cell metabolism to pro-inflammatory states in the TME and highlight a need to better replicate physiologic conditions to select targets, clarify mechanisms, and optimize metabolic inhibitors. Unifying our understanding of these pathways and interactions within the heterogenous TME will be instrumental to advance this promising field and enhance immunotherapy.
Collapse
Affiliation(s)
- Jackie E Bader
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kelsey Voss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeffrey C Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
141
|
Shomali N, Mahmoudi J, Mahmoodpoor A, Zamiri RE, Akbari M, Xu H, Shotorbani SS. Harmful effects of high amounts of glucose on the immune system: An updated review. Biotechnol Appl Biochem 2020; 68:404-410. [PMID: 32395846 DOI: 10.1002/bab.1938] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/07/2020] [Indexed: 12/14/2022]
Abstract
Release and storage of energy can be regulated by the metabolic parameter dependent on the central nervous system. Macrophages are one of the most professional antigen-presenting cells that are formed by the accumulation of dead or damaged cells or in response to the infection, which has the main function of phagocytosis, secretion of cytokines, and presenting antigen to T cells. A proper immune response is needed for the production of effector cytokines along with comprehensive and rapid cell proliferation and growth. Activation of the immune system and immune cells is needed to increase glucose metabolism. When the immune system responds to pathogens, chemokines inform immune cells such as macrophages and T cells to travel to the infected area. Although glucose is vital for the proper function of immune cells and their proliferation, a high amount of glucose may lead to impaired function of the immune system and pathological conditions. However, a suitable amount of glucose is indispensable for the immune system, but its elevated amount leads to excessive proinflammatory cytokines production. In this study, we focused on the master regulatory role of glucose on the immune system.
Collapse
Affiliation(s)
- Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ata Mahmoodpoor
- Department of Anesthesiology and Critical Care Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Eghdam Zamiri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Huaxi Xu
- Department of Immunology, Jiangsu University, Zhenjiang, People's Republic of China
| | - Siamak Sandoghchian Shotorbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Jiangsu University, Zhenjiang, People's Republic of China
| |
Collapse
|
142
|
Nath N, Kashfi K. Tumor associated macrophages and 'NO'. Biochem Pharmacol 2020; 176:113899. [PMID: 32145264 DOI: 10.1016/j.bcp.2020.113899] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/02/2020] [Indexed: 12/14/2022]
Abstract
Nitric oxide (NO) and its pro and anti-tumor activities are dual roles that continue to be debated in cancer biology. The cell situations in the tumor and within the tumor microenvironment also have roles involving NO. In early tumorigenic events, macrophages in the tumor microenvironment promote tumor cell death, and later are reprogramed to support the growth of tumor, through regulatory events involving NO and several stimulatory signals. These two opposing and active phenotypes of tumor associated macrophages known as the M1 or anti-tumorigenic state and M2 or pro-tumorigenic state show differences in metabolic pathways such as glycolysis and arginine utilization, signaling pathways and cytokine induction including iNOS expression, therefore contributing to their function. Polarization of M2 to M1 macrophages, inhibition of M2 state, or reprogramming via NO in combination with other signals may determine or alter tumor kinetics. These strategies and an overview are presented.
Collapse
Affiliation(s)
- Niharika Nath
- Department of Biological and Chemical Sciences, New York Institute of Technology, New York, NY, United States.
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, United States; Graduate Program in Biology, City University of New York Graduate Center, New York, NY, United States.
| |
Collapse
|
143
|
Liu Y, Wu J, Huang W, Weng S, Wang B, Chen Y, Wang H. Development and validation of a hypoxia-immune-based microenvironment gene signature for risk stratification in gastric cancer. J Transl Med 2020; 18:201. [PMID: 32410620 PMCID: PMC7226948 DOI: 10.1186/s12967-020-02366-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/07/2020] [Indexed: 12/23/2022] Open
Abstract
Background Increasing evidences have found that the clinical importance of the interaction between hypoxia and immune status in gastric cancer microenvironment. However, reliable prognostic signatures based on combination of hypoxia and immune status have not been well-established. This study aimed to develop a hypoxia-immune-based gene signature for risk stratification in gastric cancer. Methods Hypoxia and immune status was estimated with transcriptomic profiles for a discovery cohort from GEO database using the t-SNE and ESTIMATE algorithms, respectively. The Cox regression model with the LASSO method was applied to identify prognostic genes and to develop a hypoxia-immune-based gene signature. The TCGA cohort and two independent cohorts from GEO database were used for external validation. Results Low hypoxia status (p < 0.001) and high immune status (p = 0.005) were identified as favorable factors for patients’ overall survival. By using the LASSO model, four genes, including CXCR6, PPP1R14A and TAGLN, were identified to construct a gene signature for risk stratification. In the discovery cohort (n = 357), patients with low risk yielded better outcomes than those with high risk regarding overall survival across and within TNM stage subgroups. Multivariate analysis identified the hypoxia-immune-based gene signature as an independent prognostic factor (p < 0.001). A nomogram integrating the gene signature and known risk factors yielded better performance and net benefits in calibration and decision curve analyses. Similar results were validated in the TCGA (n = 321) and two independent GEO (n = 300 and n = 136, respectively) cohorts. Conclusions The hypoxia-immune-based gene signature represents a promising tool for risk stratification tool in gastric cancer. It might serve as a prognostic classifier for clinical decision-making regarding individualized prognostication and treatment, and follow-up scheduling.
Collapse
Affiliation(s)
- Yifan Liu
- The First Department of Gastrointestinal Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China.,Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianhua Wu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weiwei Huang
- The First Department of Gastrointestinal Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Shaowen Weng
- The First Department of Gastrointestinal Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Baochun Wang
- The First Department of Gastrointestinal Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yiming Chen
- The First Department of Gastrointestinal Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Hao Wang
- The First Department of Gastrointestinal Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China.
| |
Collapse
|
144
|
Yu J, Ji HY, Liu C, Liu AJ. The structural characteristics of an acid-soluble polysaccharide from Grifola frondosa and its antitumor effects on H22-bearing mice. Int J Biol Macromol 2020; 158:S0141-8130(20)33200-1. [PMID: 32437807 DOI: 10.1016/j.ijbiomac.2020.05.054] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022]
Abstract
The edible mushroom G. frondosa has been used as a kind of functional food for the prevention and therapy of various diseases in Asian countries. In the present work, a novel acid-soluble polysaccharide (GFAP) was successfully isolated from G. frondosa under room temperature and hydrochloric acid solution treatment. Results of chemical composition analysis, UV and HPGPC spectra showed that GFAP mainly contained 94.28% of carbohydrate with the average molecular weight of about 644.9 kDa. GC, FT-IR, NMR and methylation analysis further indicated that GFAP was a neutral sugar mainly composed of (1 → 3)-β-D-Glcp and (1 → 3)-α-D-Manp. The in vivo antitumor experiments demonstrated that GFAP could effectively protect thymuses and spleens of tumor-bearing mice and inhibit the growth of H22 solid tumors with the inhibitory rate of 36.72%. Besides, GFAP could significantly improve the activities of NK cells, macrophages, CD19+ B cells and CD4+ T cells, leading to the apoptosis of H22 cells via G0/G1 phase arrested. Our data demonstrated that GFAP holds great application prospect to be a safe and effective antitumor adjuvant in the future.
Collapse
Affiliation(s)
- Juan Yu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Hai-Yu Ji
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; QingYunTang Biotech (Beijing) Co., Ltd., Beijing 100176, China
| | - Chao Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; QingYunTang Biotech (Beijing) Co., Ltd., Beijing 100176, China
| | - An-Jun Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
145
|
Lim AR, Rathmell WK, Rathmell JC. The tumor microenvironment as a metabolic barrier to effector T cells and immunotherapy. eLife 2020; 9:e55185. [PMID: 32367803 PMCID: PMC7200151 DOI: 10.7554/elife.55185] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/22/2020] [Indexed: 01/05/2023] Open
Abstract
Breakthroughs in anti-tumor immunity have led to unprecedented advances in immunotherapy, yet it is now clear that the tumor microenvironment (TME) restrains immunity. T cells must substantially increase nutrient uptake to mount a proper immune response and failure to obtain sufficient nutrients or engage the appropriate metabolic pathways can alter or prevent effector T cell differentiation and function. The TME, however, can be metabolically hostile due to insufficient vascular exchange and cancer cell metabolism that leads to hypoxia, depletion of nutrients, and accumulation of waste products. Further, inhibitory receptors present in the TME can inhibit T cell metabolism and alter T cell signaling both directly and through release of extracellular vesicles such as exosomes. This review will discuss the metabolic changes that drive T cells into different stages of their development and how the TME imposes barriers to the metabolism and activity of tumor infiltrating lymphocytes.
Collapse
Affiliation(s)
- Aaron R Lim
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical CenterNashvilleUnited States
| | - W Kimryn Rathmell
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical CenterNashvilleUnited States
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical CenterNashvilleUnited States
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical CenterNashvilleUnited States
| | - Jeffrey C Rathmell
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical CenterNashvilleUnited States
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical CenterNashvilleUnited States
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical CenterNashvilleUnited States
| |
Collapse
|
146
|
Mirabile A, Rivoltini L, Daveri E, Vernieri C, Mele R, Porcu L, Lazzari C, Bulotta A, Viganò MG, Cascinu S, Gregorc V. Metabolism and Immune Modulation in Patients with Solid Tumors: Systematic Review of Preclinical and Clinical Evidence. Cancers (Basel) 2020; 12:E1153. [PMID: 32375310 PMCID: PMC7281426 DOI: 10.3390/cancers12051153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
Several immunotherapy agents are the standard of care of many solid malignancies. Nevertheless, the majority of patients do not benefit from the currently available immunotherapies. It is therefore of paramount importance to identify the prognostic and predictive factors of tumor response/resistance and to design effective therapeutic strategies to overcome primary resistance and improve the efficacy of immunotherapy. The aim of this review is to underline the influence of the tumor and host metabolism on the antitumor immune response and to discuss possible strategies to improve the efficacy of available treatments by targeting the specific metabolic pathways in tumors or immune cells and by modifying patients' nutritional statuses. A systematic search of the Medline and EMBASE databases was carried out to identify scientific papers published until February 2020, which reported original research articles on the influence of tumor or host metabolism on antitumor immune response. The literature data showed the key role of glycolysis and mitochondrial oxidative phosphorylation, arginine, tryptophan, glutamine, lipid metabolism and microbiome on immune cell function. Moreover, specific nutritional behaviors, such as a low dietary intake of vitamin C, low glycemic index and alpha-linolenic acid, eicosapentenoic acid, docosahexaenoic acid, ornithine ketoglutarate, tryptophan and probiotic supplementation were associated with the potential clinical benefits from the currently available immunotherapies.
Collapse
Affiliation(s)
- Aurora Mirabile
- Department of Medical Oncology, Scientific Institute San Raffaele Hospital, Via Olgettina, 60, 20132 Milan, Italy; (C.L.); (A.B.); (M.G.V.); (S.C.); (V.G.)
| | - Licia Rivoltini
- Immunotherapy of Human Tumors, IRCCS National Cancer Institute (INT) and University of Milan, Via Venezian 1, 20133 Milan, Italy; (L.R.); (E.D.)
| | - Elena Daveri
- Immunotherapy of Human Tumors, IRCCS National Cancer Institute (INT) and University of Milan, Via Venezian 1, 20133 Milan, Italy; (L.R.); (E.D.)
| | - Claudio Vernieri
- Medical Oncology Department, IRCCS IRCCS National Cancer Institute (INT) and University of Milan, Via Venezian 1, 20133 Milan, Italy;
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Roberto Mele
- Nutritionist biologist, Hospital Health Direction, Scientific Institute San Raffaele Hospital, Via Olgettina 60, 20132 Milan, Italy;
| | - Luca Porcu
- Methodological Research Unit, Institute of Pharmacological Research Mario Negri, Via Mario Negri 2, 20156 Milan, Italy;
| | - Chiara Lazzari
- Department of Medical Oncology, Scientific Institute San Raffaele Hospital, Via Olgettina, 60, 20132 Milan, Italy; (C.L.); (A.B.); (M.G.V.); (S.C.); (V.G.)
| | - Alessandra Bulotta
- Department of Medical Oncology, Scientific Institute San Raffaele Hospital, Via Olgettina, 60, 20132 Milan, Italy; (C.L.); (A.B.); (M.G.V.); (S.C.); (V.G.)
| | - Maria Grazia Viganò
- Department of Medical Oncology, Scientific Institute San Raffaele Hospital, Via Olgettina, 60, 20132 Milan, Italy; (C.L.); (A.B.); (M.G.V.); (S.C.); (V.G.)
| | - Stefano Cascinu
- Department of Medical Oncology, Scientific Institute San Raffaele Hospital, Via Olgettina, 60, 20132 Milan, Italy; (C.L.); (A.B.); (M.G.V.); (S.C.); (V.G.)
| | - Vanesa Gregorc
- Department of Medical Oncology, Scientific Institute San Raffaele Hospital, Via Olgettina, 60, 20132 Milan, Italy; (C.L.); (A.B.); (M.G.V.); (S.C.); (V.G.)
| |
Collapse
|
147
|
Hurst KE, Lawrence KA, Robino RA, Ball LE, Chung D, Thaxton JE. Remodeling Translation Primes CD8 + T-cell Antitumor Immunity. Cancer Immunol Res 2020; 8:587-595. [PMID: 32075802 PMCID: PMC11809263 DOI: 10.1158/2326-6066.cir-19-0516] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/27/2019] [Accepted: 02/14/2020] [Indexed: 11/16/2022]
Abstract
The requisites for protein translation in T cells are poorly understood and how translation shapes the antitumor efficacy of T cells is unknown. Here we demonstrated that IL15-conditioned T cells were primed by the metabolic energy sensor AMP-activated protein kinase to undergo diminished translation relative to effector T cells. However, we showed that IL15-conditioned T cells exhibited a remarkable capacity to enhance their protein translation in tumors, which effector T cells were unable to duplicate. Studying the modulation of translation for applications in cancer immunotherapy revealed that direct ex vivo pharmacologic inhibition of translation elongation primed robust T-cell antitumor immunity. Our work elucidates that altering protein translation in CD8+ T cells can shape their antitumor capability.
Collapse
Affiliation(s)
- Katie E Hurst
- Department of Orthopedics and Physical Medicine, Medical University of South Carolina, Charleston, South Carolina
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Kiley A Lawrence
- Department of Orthopedics and Physical Medicine, Medical University of South Carolina, Charleston, South Carolina
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Rob A Robino
- Department of Orthopedics and Physical Medicine, Medical University of South Carolina, Charleston, South Carolina
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Lauren E Ball
- Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina
| | - Dongjun Chung
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina
- Hollings Cancer Center, Charleston, South Carolina
| | - Jessica E Thaxton
- Department of Orthopedics and Physical Medicine, Medical University of South Carolina, Charleston, South Carolina.
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, South Carolina
- Hollings Cancer Center, Charleston, South Carolina
| |
Collapse
|
148
|
He X, Wang Z, Xiao Y, Zhou L, Ruan Z, Chen X, Hu M, Ma F, Zheng M, Su X, Deng X. Gynostemma pentaphyllum polysaccharide prevents the growth of h22 ascites tumour by enhancing immunity rather than cytotoxicity in mice. FOOD AGR IMMUNOL 2020. [DOI: 10.1080/09540105.2020.1730770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Xinyue He
- School of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Zhuo Wang
- School of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Yi Xiao
- School of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Lian Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Zhiyan Ruan
- School of Pharmacy, Guangdong Food & Drug Vocational College, Guangzhou, People’s Republic of China
| | - Xu Chen
- Affiliated Hospital 1, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Minghua Hu
- Infinitus Chinese Herbal Immunity Research Centre, Guangzhou, People’s Republic of China
| | - Fangli Ma
- Infinitus Chinese Herbal Immunity Research Centre, Guangzhou, People’s Republic of China
| | - Manqing Zheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Xinguo Su
- School of Pharmacy, Guangdong Food & Drug Vocational College, Guangzhou, People’s Republic of China
| | - Xiangliang Deng
- School of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| |
Collapse
|
149
|
Taddei ML, Pietrovito L, Leo A, Chiarugi P. Lactate in Sarcoma Microenvironment: Much More than just a Waste Product. Cells 2020; 9:E510. [PMID: 32102348 PMCID: PMC7072766 DOI: 10.3390/cells9020510] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/20/2020] [Accepted: 02/23/2020] [Indexed: 12/14/2022] Open
Abstract
Sarcomas are rare and heterogeneous malignant tumors relatively resistant to radio- and chemotherapy. Sarcoma progression is deeply dependent on environmental conditions that sustain both cancer growth and invasive abilities. Sarcoma microenvironment is composed of different stromal cell types and extracellular proteins. In this context, cancer cells may cooperate or compete with stromal cells for metabolic nutrients to sustain their survival and to adapt to environmental changes. The strict interplay between stromal and sarcoma cells deeply affects the extracellular metabolic milieu, thus altering the behavior of both cancer cells and other non-tumor cells, including immune cells. Cancer cells are typically dependent on glucose fermentation for growth and lactate is one of the most heavily increased metabolites in the tumor bulk. Currently, lactate is no longer considered a waste product of the Warburg metabolism, but novel signaling molecules able to regulate the behavior of tumor cells, tumor-stroma interactions and the immune response. In this review, we illustrate the role of lactate in the strong acidity microenvironment of sarcoma. Really, in the biological context of sarcoma, where novel targeted therapies are needed to improve patient outcomes in combination with current therapies or as an alternative treatment, lactate targeting could be a promising approach to future clinical trials.
Collapse
Affiliation(s)
- Maria Letizia Taddei
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi di Firenze, Viale Morgagni 50, 50142 Firenze, Italy
| | - Laura Pietrovito
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Università degli Studi di Firenze, Viale Morgagni 50, 50142 Firenze, Italy; (L.P.); (A.L.)
| | - Angela Leo
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Università degli Studi di Firenze, Viale Morgagni 50, 50142 Firenze, Italy; (L.P.); (A.L.)
| | - Paola Chiarugi
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Università degli Studi di Firenze, Viale Morgagni 50, 50142 Firenze, Italy; (L.P.); (A.L.)
- Tuscany Tumor Institute and “Center for Research, Transfer and High Education DenoTHE”, 50134 Florence, Italy
| |
Collapse
|
150
|
CD36-mediated metabolic adaptation supports regulatory T cell survival and function in tumors. Nat Immunol 2020; 21:298-308. [PMID: 32066953 PMCID: PMC7043937 DOI: 10.1038/s41590-019-0589-5] [Citation(s) in RCA: 446] [Impact Index Per Article: 89.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/19/2019] [Indexed: 01/08/2023]
Abstract
Depleting regulatory T cells (Treg cells) to counteract immunosuppressive features of the tumor microenvironment (TME) is an attractive strategy for cancer treatment; however, autoimmunity due to systemic impairment of their suppressive function limits its therapeutic potential. Elucidating approaches that specifically disrupt intratumoral Treg cells is direly needed for cancer immunotherapy. We found that CD36 was selectively upregulated in intrautumoral Treg cells as a central metabolic modulator. CD36 fine-tuned mitochondrial fitness via peroxisome proliferator-activated receptor-β signaling, programming Treg cells to adapt to a lactic acid-enriched TME. Genetic ablation of Cd36 in Treg cells suppressed tumor growth accompanied by a decrease in intratumoral Treg cells and enhancement of antitumor activity in tumor-infiltrating lymphocytes without disrupting immune homeostasis. Furthermore, CD36 targeting elicited additive antitumor responses with anti-programmed cell death protein 1 therapy. Our findings uncover the unexplored metabolic adaptation that orchestrates the survival and functions of intratumoral Treg cells, and the therapeutic potential of targeting this pathway for reprogramming the TME.
Collapse
|