101
|
Ding HM, Chen XJ, Chen HM, Wang CS, Qian GY. Effect of Sargassum fusiforme polysaccharide on apoptosis and its possible mechanism in human erythroleukemia cells. Chin J Nat Med 2020; 18:749-759. [PMID: 33039054 DOI: 10.1016/s1875-5364(20)60015-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Indexed: 12/17/2022]
Abstract
This study aimed to investigate the effects of Sargassum fusiforme polysaccharide (SFPS I, II, and III) on the apoptosis and regulation of human erythroleukemia (HEL) cells. The effect of different doses of SFPS on HEL cell growth was detected using the Cell Counting Kit-8 method, and apoptosis was detected by Hoechst staining. Cell cycle distribution and apoptosis were detected using flow cytometry. Expression of the cell cycle gene, p53, antiapoptotic genes, Bcl-xL and Bcl-2, and pro-apoptotic genes, Bax, Bad, and Caspase-3, as well as the expression of the corresponding proteins, were detected using real-time quantitative polymerase chain reaction (qPCR) and Western blot. The results showed that SFPS II and III decreased HEL cell viability and induced HEL cell apoptosis. Different concentrations of SFPS (I, II, and III) were detected that induced much less toxic effect in normal human embryonic lung (MRC-5) cells, and SFPS I increased cell proliferation, indicating its favorable selectivity towards cancer cells. The mechanism by which SFPS induced apoptosis was also found to be related to the induction of cell cycle arrest in the G0/G1 phase and the increased expression of apoptosis-related genes and proteins. We concluded that SFPS induces HEL cell apoptosis, possibly via activation of the Caspase pathway, providing the theoretical basis for the development of SFPS-based anti-tumor drug products.
Collapse
Affiliation(s)
- Hao-Miao Ding
- School of Marine Sciences, Ningbo University, Ningbo 315211, China; College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Xue-Jia Chen
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Hai-Min Chen
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Cai-Sheng Wang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China.
| | - Guo-Ying Qian
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China.
| |
Collapse
|
102
|
Fan GJ, Shih BL, Lin HC, Lee TT, Lee CF, Lin YF. Effect of dietary supplementation of Sargassum meal on laying performance and egg quality of Leghorn layers. Anim Biosci 2020; 34:449-456. [PMID: 32882775 PMCID: PMC7961194 DOI: 10.5713/ajas.20.0256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/13/2020] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Seaweeds could be an alternative and functional feed resource. The purpose of this experiment is to investigate the effect of dietary supplementation of Sargassum meal on laying performance and egg quality of layers. METHODS Two hundred 36-wk-old layers were divided into five treatment groups. Each treatment had four replicates with 10 hens per experimental unit. The corn-soybean meal basal diet was formulated as control group. Sargassum meals were included 0%, 1%, 2%, 3%, or 5% to diets for five treatment groups, respectively. Treatment groups were isocaloric-isonitrogenous diets. Laying performance and egg quality were measured for eight weeks. RESULTS Sargassum meal supplementation did not affect daily feed intake. Supplementation 1% to 3% of Sargassum meal in diets increased daily laying rate and egg mass compared with those from control group (p<0.05). Egg qualities among five groups were all similar. Supplementation of 3% Sargassum meal increased the lightness of egg yolk (p<0.05). Eggs produced from layers fed 1% and 2% Sargassum meal had a higher consumer's acceptability than the control group (p<0.05). In blood characteristics, contents of glucose, nitrogen, triiodothyronine (T3) and thyroxine (T4) increased as the increase of supplementation ratio of Sargassum meal (p<0.05). In serum antibody titers, supplementation of 2% Sargassum meal stimulated a higher immunoglobulin M (IgM) level than that from control group (p<0.05). However, IgM content of layers fed diets with Sargassum meal ≥3% were decreased (p<0.05). There was no difference in IgA and IgG titers among groups. CONCLUSION Supplementation of 1% to 3% Sargassum meal has shown to increase egg laying rate and egg mass of Leghorn layers. However, high supplementation (5%) would negatively affect laying performance. In consideration of laying performance, egg quality, consumer responses, and blood antibody, supplementation of Sargassum meal was suggested 2% in the diet for layers.
Collapse
Affiliation(s)
- Geng-Jen Fan
- Nutrition Division, Livestock Research Institute, Council of Agriculture (COA), Hsinhua, Tainan, 712009, Taiwan.,Department of Animal Science, National Chung Hsing University, Taichung 402204, Taiwan
| | - Bor-Ling Shih
- Nutrition Division, Livestock Research Institute, Council of Agriculture (COA), Hsinhua, Tainan, 712009, Taiwan
| | - Hui-Chiu Lin
- Penghu Marine Biology Research Center, Fisheries Research Institute, Council of Agriculture, Executive Yuan, Makung, Penghu 880010, Taiwan
| | - Tzu Tai Lee
- Department of Animal Science, National Chung Hsing University, Taichung 402204, Taiwan
| | - Churng-Faung Lee
- Nutrition Division, Livestock Research Institute, Council of Agriculture (COA), Hsinhua, Tainan, 712009, Taiwan
| | - Yih-Fwu Lin
- Nutrition Division, Livestock Research Institute, Council of Agriculture (COA), Hsinhua, Tainan, 712009, Taiwan
| |
Collapse
|
103
|
Antidiabetic potential of methanolic extracts of Sargassum wightii in streptozotocin induced diabetic mice. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
104
|
Yim MJ, Lee JM, Kim HS, Choi G, Kim YM, Lee DS, Choi IW. Inhibitory Effects of a Sargassum miyabei Yendo on Cutibacterium acnes-Induced Skin Inflammation. Nutrients 2020; 12:E2620. [PMID: 32867396 PMCID: PMC7551756 DOI: 10.3390/nu12092620] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/17/2020] [Accepted: 08/24/2020] [Indexed: 11/17/2022] Open
Abstract
Acne vulgaris is a chronic inflammatory condition of skin sebaceous follicles. To explore its effects on acne vulgaris, we investigated the antibacterial and anti-inflammatory activities of Sargassum miyabei Yendo (a brown alga) ethanolic extract (SMYEE) on Cutibacterium acnes (C. acnes)-stimulated inflammatory responses, both in vivo and in vitro. To induce inflammation in vivo, C. acnes was intradermally injected into the dorsal skin of mice, to which SMYEE was applied. The antimicrobial activity of SMYEE was evaluated by the determination of minimum inhibitory concentrations (MICs). To explore in vitro anti-inflammatory effects, HaCaT cells were stimulated with C. acnes after treatment with SMYEE. The levels of IL-8 and the underlying molecular effects in C. acnes-stimulated HaCaT cells were assessed by enzyme-linked immunosorbent assay, Western blotting, and an electrophoretic mobility shift assay. Mouse skin lesions improved after treatment with SMYEE (50 μg/mouse). Neutrophil infiltration was significantly reduced in SMYEE-treated compared to SMYEE-untreated skin lesions. SMYEE reversed the C. acnes-induced increase in IL-8 levels in HaCaT cells and suppressed dHL-60 cell migration. SMYEE also inhibited C. acnes-induced phosphorylation of the extracellular signal-regulated kinase and inhibited activator protein-1 signaling. SMYEE may be a useful treatment for C. acnes-induced acne vulgaris.
Collapse
Affiliation(s)
- Mi-Jin Yim
- Department of Genetic Resources, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea; (M.-J.Y.); (J.M.L.); (H.-S.K.); (G.C.)
| | - Jeong Min Lee
- Department of Genetic Resources, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea; (M.-J.Y.); (J.M.L.); (H.-S.K.); (G.C.)
| | - Hyun-Soo Kim
- Department of Genetic Resources, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea; (M.-J.Y.); (J.M.L.); (H.-S.K.); (G.C.)
| | - Grace Choi
- Department of Genetic Resources, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea; (M.-J.Y.); (J.M.L.); (H.-S.K.); (G.C.)
| | - Young-Mog Kim
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, Korea;
| | - Dae-Sung Lee
- Department of Genetic Resources, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea; (M.-J.Y.); (J.M.L.); (H.-S.K.); (G.C.)
| | - Il-Whan Choi
- Department of Microbiology and Immunology, College of Medicine Inje University, Busan 47392, Korea
| |
Collapse
|
105
|
Farrokhnia M. Density Functional Theory Studies on the Antioxidant Mechanism and Electronic Properties of Some Bioactive Marine Meroterpenoids: Sargahydroquionic Acid and Sargachromanol. ACS OMEGA 2020; 5:20382-20390. [PMID: 32832791 PMCID: PMC7439385 DOI: 10.1021/acsomega.0c02354] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/22/2020] [Indexed: 05/09/2023]
Abstract
Certain meroterpenoids isolated from brown alga of the genus Sargassum are known to be antioxidant agents. Herein, density functional theory has been performed to analyze the preferred antioxidant mechanism of the two reactive antioxidant compounds derived from the Sargassum genus, that is, Sargahydroquinoic acid and Sargachromanol and some of their derivatives. Their global reactivity descriptors have been calculated to reveal their reactivity as an antioxidant. Molecule 1 is the most reactive antioxidant according to calculated descriptors. The results of molecule 1 are comparable to that of Trolox, suggesting their similar activity. The calculated descriptors are closely matched with experimental pieces of evidence. It has been found that hydrogen atom transfer (HAT) is more favored in gas media. Also, the effect of solvent polarity on the antioxidant activity has been explored for molecule 1. The results disclose that the polarity of the solvent increases the contribution of two other mechanisms, that is, single-electron transfer, followed by proton transfer and sequential proton loss electron transfer.
Collapse
Affiliation(s)
- Maryam Farrokhnia
- The Persian Gulf Marine Biotechnology
Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 0098, Iran
| |
Collapse
|
106
|
Fucoidan Inhibits NLRP3 Inflammasome Activation by Enhancing p62/SQSTM1-Dependent Selective Autophagy to Alleviate Atherosclerosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3186306. [PMID: 33505579 PMCID: PMC7812546 DOI: 10.1155/2020/3186306] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/21/2020] [Accepted: 07/10/2020] [Indexed: 11/17/2022]
Abstract
NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activation contributes to the progression of atherosclerosis, and autophagy inhibits inflammasome activation by targeting macrophages. We investigated whether fucoidan, a marine sulfated polysaccharide derived from brown seaweeds, could reduce NLRP3 inflammasome activation by enhancing sequestosome 1 (p62/SQSTM1)-dependent selective autophagy to alleviate atherosclerosis in high-fat-fed ApoE-/- mice with partial carotid ligation and differentiated THP-1 cells incubated with oxidized low-density lipoprotein (oxLDL). Fucoidan significantly ameliorated lipid accumulation, attenuated progression of carotid atherosclerotic plaques, deregulated the expression of NLRP3 inflammasome, autophagy receptor p62, and upregulated microtubule-associated protein light chain 3 (LC3)-II/I levels. Transmission electron microscopy and GFP-RFP-LC3 lentivirus transfection further demonstrated that fucoidan could activate autophagy. Mechanistically, fucoidan remarkably inhibited NLRP3 inflammasome activation, which was mostly dependent on autophagy. The inhibitory effects of fucoidan on NLRP3 inflammasome were enhanced by autophagy activator rapamycin (Rapa) and alleviated by autophagy inhibitor 3-methyladenine (3-MA). Fucoidan promoted the colocalization of NLRP3 and p62. Knockdown of p62 and ATG5 by small interfering RNA significantly reduced the inhibitory effects of fucoidan treatment on NLRP3 inflammasome. The data suggest that fucoidan can inhibit NLRP3 inflammasome activation by enhancing p62/SQSTM1-dependent selective autophagy to alleviate atherosclerosis.
Collapse
|
107
|
Cotas J, Leandro A, Monteiro P, Pacheco D, Figueirinha A, Gonçalves AMM, da Silva GJ, Pereira L. Seaweed Phenolics: From Extraction to Applications. Mar Drugs 2020; 18:E384. [PMID: 32722220 PMCID: PMC7460554 DOI: 10.3390/md18080384] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
Seaweeds have attracted high interest in recent years due to their chemical and bioactive properties to find new molecules with valuable applications for humankind. Phenolic compounds are the group of metabolites with the most structural variation and the highest content in seaweeds. The most researched seaweed polyphenol class is the phlorotannins, which are specifically synthesized by brown seaweeds, but there are other polyphenolic compounds, such as bromophenols, flavonoids, phenolic terpenoids, and mycosporine-like amino acids. The compounds already discovered and characterized demonstrate a full range of bioactivities and potential future applications in various industrial sectors. This review focuses on the extraction, purification, and future applications of seaweed phenolic compounds based on the bioactive properties described in the literature. It also intends to provide a comprehensive insight into the phenolic compounds in seaweed.
Collapse
Affiliation(s)
- João Cotas
- MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (A.L.); (D.P.); (A.M.M.G.)
| | - Adriana Leandro
- MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (A.L.); (D.P.); (A.M.M.G.)
| | - Pedro Monteiro
- Faculty of Pharmacy and Center for Neurosciences and Cell Biology, Health Sciences Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (P.M.); (G.J.d.S.)
| | - Diana Pacheco
- MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (A.L.); (D.P.); (A.M.M.G.)
| | - Artur Figueirinha
- LAQV, REQUIMTE, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- Faculty of Pharmacy of University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana M. M. Gonçalves
- MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (A.L.); (D.P.); (A.M.M.G.)
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Gabriela Jorge da Silva
- Faculty of Pharmacy and Center for Neurosciences and Cell Biology, Health Sciences Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (P.M.); (G.J.d.S.)
| | - Leonel Pereira
- MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (A.L.); (D.P.); (A.M.M.G.)
| |
Collapse
|
108
|
Toxicological evaluation of Sargassum Wightii greville derived fucoidan in wistar rats: Haematological, biochemical and histopathological evidences. Toxicol Rep 2020; 7:874-882. [PMID: 32760655 PMCID: PMC7390788 DOI: 10.1016/j.toxrep.2020.07.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 12/24/2022] Open
Abstract
Objective The present study aimed to investigate the acute and subacute toxicity profile of fucoidan obtained from Sargassum wightii Greville, a brown marine algae in order to assess its safety. Methods Fucoidan was isolated from Sargassum wightii Greviile and subjected to FTIR analysis to confirm the functional groups. In acute toxicity study, a single dose of fucoidan (2000 mg/kg) was orally administered to three female rats as per OECD guideline 423. OECD guidelines 407 was adopted for subacute toxicity study. Fucoidan was orally administered to male and female rats at doses of 100, 200 and 400 mg/kg. Hematological, biochemical and histopathological analyses were carried out. Results FTIR analysis confirmed the presence of major functional groups. The animals did not show any remarkable toxic signs or mortality in acute toxicity study at single oral administration of fucoidan at the dose of 2000 mg/kg bodyweight. In subacute toxicity, no statistically significant difference in body weight, relative weight of vital organs, food and water intake compared to the control group was observed. Serum glucose and cholesterol showed a statistically significant reduction at all the doses when compared to normal control and the reduction was in a dose dependent manner. There were no other changes observed in biochemical or haematological parameters. Histopathological analysis showed no significant toxic signs at organ levels in treated groups when compared to normal control. Conclusions Based on the results obtained from acute and subacute toxicity study, fucoidan is considered to be safe in the models tested, which encourages its long term administration for medicinal uses. This study supports the application of fucoidan as a traditional medicine.
Collapse
|
109
|
Herath KHINM, Kim HJ, Jang JH, Kim HS, Kim HJ, Jeon YJ, Jee Y. Mojabanchromanol Isolated from Sargassum horneri Attenuates Particulate Matter Induced Inflammatory Responses via Suppressing TLR2/4/7-MAPK Signaling in MLE-12 Cells. Mar Drugs 2020; 18:E355. [PMID: 32650472 PMCID: PMC7401275 DOI: 10.3390/md18070355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 12/15/2022] Open
Abstract
Chromanols from marine algae are studied for drug development due to its prominent bioactive properties, and mojabanchromanol (MC), a chromanol isolated from a brown algae Sargassum horneri, is found to possess anti-oxidant potential. In this study, we hypothesized MC may attenuate particulate matter (PM)-induced and reactive oxygen species (ROS)-mediated inflammatory responses in airways and tried to identify its potential and underlying mechanism against PM (majority <2.5 µm in diameter)-induced inflammatory responses in a lung type II alveolar epithelial cell line, MLE-12. MC attenuated PM-induced malondialdehyde (MDA), a lipid peroxidation end product, and 8-hydroxydeoxyguanosine (8-OHdG), the most representative DNA oxidative damage product, further validating MC's potential in attenuating PM-induced oxidative stress. MC also suppressed PM-triggered TLR2/4/7 activation in MLE-12 cells. Moreover, MC reduced ROS-mediated phosphorylation of mitogen-activated protein kinase (MAPK) extracellular signal-regulated kinase 1/2 (Erk1/2) and c-Jun NH (2)-terminal kinase (JNK) that were also activated in PM exposed cells. MC further inhibited the secretion of pro-inflammatory cytokines (IL-6, IL-1β and IL-33) in MLE-12 cells exposed to PM. These results provide a clear evidence for MC's potential in attenuating PM-triggered inflammatory responses in MLE-12 cells via repressing TLR2/4/7 and MAPK signaling. Therefore, MC can be developed as a therapeutic agent against PM induced airway inflammatory responses.
Collapse
Affiliation(s)
| | - Hyo Jin Kim
- Department of Food Bioengineering, Jeju National University, 102 JeJudaehakno, Jeju 63243, Korea; (H.J.K.); (H.J.K.)
| | - Jae-Hyuk Jang
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do 28116, Korea;
| | - Hyun-Soo Kim
- National Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101-gil, Janghang-eup, Seocheon, Chungcheongnam-do 325-902, Korea;
| | - Hyun Jung Kim
- Department of Food Bioengineering, Jeju National University, 102 JeJudaehakno, Jeju 63243, Korea; (H.J.K.); (H.J.K.)
| | - You-Jin Jeon
- Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University, Jeju 690-756, Korea;
| | - Youngheun Jee
- Department of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Korea;
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Korea
| |
Collapse
|
110
|
Peñalver R, Lorenzo JM, Ros G, Amarowicz R, Pateiro M, Nieto G. Seaweeds as a Functional Ingredient for a Healthy Diet. Mar Drugs 2020; 18:E301. [PMID: 32517092 PMCID: PMC7345263 DOI: 10.3390/md18060301] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/02/2020] [Accepted: 06/02/2020] [Indexed: 12/22/2022] Open
Abstract
Seaweeds have been used since ancient times as food, mainly by Asian countries, while in Western countries, their main application has been as gelling agents and colloids for the food, pharmaceuticals, and the cosmetic industry. Seaweeds are a good source of nutrients such as proteins, vitamins, minerals, and dietary fiber. Polyphenols, polysaccharides, and sterols, as well as other bioactive molecules, are mainly responsible for the healthy properties associated with seaweed. Antioxidant, anti-inflammatory, anti-cancer, and anti-diabetic properties are attributed to these compounds. If seaweeds are compared to terrestrial plants, they have a higher proportion of essential fatty acids as eicosapentaenoic (EPA) and docosahexaenoic (DHA) fatty acids. In addition, there are several secondary metabolites that are synthesized by algae such as terpenoids, oxylipins, phlorotannins, volatile hydrocarbons, and products of mixed biogenetic origin. Therefore, algae can be considered as a natural source of great interest, since they contain compounds with numerous biological activities and can be used as a functional ingredient in many technological applications to obtain functional foods.
Collapse
Affiliation(s)
- Rocío Peñalver
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty University of Murcia, Campus Mare Nostrum, 30100 Espinardo, Spain; (R.P.); (G.R.); (G.N.)
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Spain;
| | - Gaspar Ros
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty University of Murcia, Campus Mare Nostrum, 30100 Espinardo, Spain; (R.P.); (G.R.); (G.N.)
| | - Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland;
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Spain;
| | - Gema Nieto
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty University of Murcia, Campus Mare Nostrum, 30100 Espinardo, Spain; (R.P.); (G.R.); (G.N.)
| |
Collapse
|
111
|
Chen P, Zhang Y, Xu M, Chen H, Zou H, Zhang X, Tong H, You C, Wu M. Proteomic landscape of liver tissue in old male mice that are long-term treated with polysaccharides from Sargassum fusiforme. Food Funct 2020; 11:3632-3644. [PMID: 32292988 DOI: 10.1039/d0fo00187b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Sargassum fusiforme is a type of brown algae and well known as a longevity promoting vegetable in Northeastern Asia. The polysaccharides derived from Sargassum fusiforme (SFPs) have been suggested as an antioxidant component for anti-aging function. However, global molecular changes in vivo by SFPs have not been fully elucidated. Here, we present a proteomics study using liver tissues of aged male mice that were fed with SFPs. Of forty-nine protein spots, thirty-eight were up-regulated and eleven were down-regulated, showing significant changes in abundance by two-dimensional gel electrophoresis. These differentially expressed proteins were mainly involved in oxidation-reduction, amino acid metabolism, and energy metabolism. Forty-six proteins were integrated into a unified network, with catalase (Cat) at the center. Intriguingly, most of the proteins were speculated as mitochondrial-located proteins. Our findings suggested that SFPs modulated antioxidant enzymes to scavenge redundant free radicals, thus preventing oxidative damage. In conclusion, our study provides a proteomic view on how SFPs have beneficial effects on the aspects of antioxidant and energy metabolism during the aging process. This study facilitates the understanding of anti-aging molecular mechanisms in polysaccharides derived from Sargassum fusiforme.
Collapse
Affiliation(s)
- Peichao Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Ya Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China. and Department of Natural Resources and Environmental Studies, University of Northern British Columbia, Prince George, BC, Canada
| | - Man Xu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Hongjun Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Huixi Zou
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Xu Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Haibin Tong
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Cuiping You
- Department of Central Laboratory, Linyi People's Hospital, Shandong University, Linyi 276000, China.
| | - Mingjiang Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
112
|
Gentile D, Patamia V, Scala A, Sciortino MT, Piperno A, Rescifina A. Putative Inhibitors of SARS-CoV-2 Main Protease from A Library of Marine Natural Products: A Virtual Screening and Molecular Modeling Study. Mar Drugs 2020; 18:E225. [PMID: 32340389 PMCID: PMC7231030 DOI: 10.3390/md18040225] [Citation(s) in RCA: 209] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/10/2020] [Accepted: 04/20/2020] [Indexed: 12/14/2022] Open
Abstract
The current emergency due to the worldwide spread of the COVID-19 caused by the new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a great concern for global public health. Already in the past, the outbreak of severe acute respiratory syndrome (SARS) in 2003 and Middle Eastern respiratory syndrome (MERS) in 2012 demonstrates the potential of coronaviruses to cross-species borders and further underlines the importance of identifying new-targeted drugs. An ideal antiviral agent should target essential proteins involved in the lifecycle of SARS-CoV. Currently, some HIV protease inhibitors (i.e., Lopinavir) are proposed for the treatment of COVID-19, although their effectiveness has not yet been assessed. The main protease (Mpr) provides a highly validated pharmacological target for the discovery and design of inhibitors. We identified potent Mpr inhibitors employing computational techniques that entail the screening of a Marine Natural Product (MNP) library. MNP library was screened by a hyphenated pharmacophore model, and molecular docking approaches. Molecular dynamics and re-docking further confirmed the results obtained by structure-based techniques and allowed this study to highlight some crucial aspects. Seventeen potential SARS-CoV-2 Mpr inhibitors have been identified among the natural substances of marine origin. As these compounds were extensively validated by a consensus approach and by molecular dynamics, the likelihood that at least one of these compounds could be bioactive is excellent.
Collapse
Affiliation(s)
- Davide Gentile
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy;
| | - Vincenzo Patamia
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy;
| | - Angela Scala
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.S.); (M.T.S.); (A.P.)
| | - Maria Teresa Sciortino
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.S.); (M.T.S.); (A.P.)
| | - Anna Piperno
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.S.); (M.T.S.); (A.P.)
| | - Antonio Rescifina
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy;
- Consorzio Interuniversitario Nazionale di ricerca in Metodologie e Processi Innovativi di Sintesi (CINMPS), Via E. Orabona, 4, 70125 Bari, Italy
| |
Collapse
|
113
|
Kumar A, Buia MC, Palumbo A, Mohany M, Wadaan MAM, Hozzein WN, Beemster GTS, AbdElgawad H. Ocean acidification affects biological activities of seaweeds: A case study of Sargassum vulgare from Ischia volcanic CO 2 vents. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113765. [PMID: 31884208 DOI: 10.1016/j.envpol.2019.113765] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 12/06/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
We utilized volcanic CO2 vents at Castello Aragonese off Ischia Island as a natural laboratory to investigate the effect of lowered pH/elevated CO2 on the bioactivities of extracts from fleshy brown algae Sargassum vulgare C. Agardh. We analysed the carbohydrate levels, antioxidant capacity, antibacterial, antifungal, antiprotozoal, anticancer properties and antimutagenic potential of the algae growing at the acidified site (pH ∼ 6.7) and those of algae growing at the nearby control site Lacco Ameno (pH∼8.1). The results of the present study show that the levels of polysaccharides fucoidan and alginate were higher in the algal population at acidified site. In general, extracts for the algal population from the acidified site showed a higher antioxidant capacity, antilipidperoxidation, antibacterial, antifungal, antiprotozoal, anticancer activities and antimutagenic potential compared to the control population. The increased bioactivity in acidified population could be due to elevated levels of bioactive compounds of algae and/or associated microbial communities. In this snapshot study, we performed bioactivity assays but did not characterize the chemistry and source of presumptive bioactive compounds. Nevertheless, the observed improvement in the medicinal properties of S. vulgare in the acidified oceans provides a promising basis for future marine drug discovery.
Collapse
Affiliation(s)
- Amit Kumar
- Centre for Climate Change Studies, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, India; Sathyabama Marine Research Station, 123 Sallimalai Street, Rameswaram, India.
| | - Maria Cristina Buia
- Center of Villa Dohrn Ischia - Benthic Ecology, Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, P.ta S. Pietro, Ischia, Naples, Italy
| | - Anna Palumbo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammed A M Wadaan
- Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Wael N Hozzein
- Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia; Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Gerrit T S Beemster
- Integrated Molecular Plant Physiology Research Group (IMPRES) Department of Biology, Groenenborgerlaan 171, University of Antwerp, Antwerp, Belgium
| | - Hamada AbdElgawad
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt; Integrated Molecular Plant Physiology Research Group (IMPRES) Department of Biology, Groenenborgerlaan 171, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
114
|
Sanjeewa KKA, Jayawardena TU, Kim SY, Lee HG, Je JG, Jee Y, Jeon YJ. Sargassum horneri (Turner) inhibit urban particulate matter-induced inflammation in MH-S lung macrophages via blocking TLRs mediated NF-κB and MAPK activation. JOURNAL OF ETHNOPHARMACOLOGY 2020; 249:112363. [PMID: 31678416 DOI: 10.1016/j.jep.2019.112363] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/15/2019] [Accepted: 10/26/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sargassum horneri is a nutrient rich edible brown seaweed with numerous biological properties found in shallow coastal areas of Korean peninsula. S. horneri traditionally used as a medicinal ingredient to treat several disease conditions such as hyperlipidemia, hypertension, heart disease, and inflammatory diseases (furuncle). However, to utilize S. horneri as an active ingredient for functional foods and human health applications requires to conform the bioactive properties and underlying mechanisms of those activities. AIM OF THE STUDY Here, we investigated anti-inflammatory mechanisms of commercial grade 70% ethanol extract separated from S. horneri (SHE) on inflammatory response in particulate matter (PM)-induced MH-S lung macrophages; where PM in breathable air one of the major health concern in Korea. MATERIALS AND METHODS We compared the anti-inflammatory effects of SHE on the activity of toll-like receptors (TLR) activation, NF-κB, MAPKs, and pro-inflammatory cytokine secretion in MH-S lung macrophages exposed to PM as a lung inflammation model. RESULTS According to the results, PM-stimulation, induced the levels of NO, PGE2, TNF-α, IL-1β, IL-6, iNOS, and COX2 (P < 0.05) in MH-S macrophages. In addition, phosphorylation levels of NF-κB and MAPKs were also increased with the PM stimulation through the upregulated expression of TLR. However, SHE treatment significantly repressed the secretions of inflammatory cytokines and reduced protein expression such as PGE2, TNF-α, IL-6, IL-1β, NF-κB, and MAPKs from PM-activated macrophages. Specifically, SHE inhibited the upregulated mRNA expression levels of TLR2, TLR3, TLR4, and TLR7 in PM-induced MH-S cells; known biomarkers of downstream activation of NF-κB and MAPKs. CONCLUSION These results suggested that SHE is a potential inhibitor of PM-induced inflammatory responses in lung macrophages. Thus, SHE could inhibit PM-induced chronic inflammation in lungs via blocking TLR/NF-κB/MAPKs signal transduction. Therefore, it was concluded that SHE may be a useful substance to develop as functional product to reduce inflammation against PM-induced inflammation.
Collapse
Affiliation(s)
- K K Asanka Sanjeewa
- Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University, Jeju, 63243, South Korea.
| | - Thilina U Jayawardena
- Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University, Jeju, 63243, South Korea.
| | - Seo-Young Kim
- Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University, Jeju, 63243, South Korea; Korea Basic Science Institute, Gib-Hyun-Kwan, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea.
| | - Hyo Geun Lee
- Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University, Jeju, 63243, South Korea.
| | - Jun-Geon Je
- Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University, Jeju, 63243, South Korea.
| | - Youngheun Jee
- Department of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, 63243, South Korea.
| | - You-Jin Jeon
- Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University, Jeju, 63243, South Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, South Korea.
| |
Collapse
|
115
|
Zheng Y, Zhang Y, San S. Efficacy of a Novel ACE-Inhibitory Peptide from Sargassum Maclurei in Hypertension and Reduction of Intracellular Endothelin-1. Nutrients 2020; 12:E653. [PMID: 32121212 PMCID: PMC7146574 DOI: 10.3390/nu12030653] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 12/21/2022] Open
Abstract
Sargassum maclurei is a potential protein resource because of its high protein content and relatively balanced amino acid composition. To promote its usage in food, medical, or other industries, S. maclurei protein was hydrolyzed by pepsin and papain to obtain bioactive peptides. The S. maclurei protein hydrolysates (SMPHs) were purified using gel chromatography and reversed-phase high performance liquid chromatography (RP-HPLC), and 12 major fractions were obtained. The fraction D11 with the highest angiotensin I-converting enzyme (ACE) inhibition (61.59%, at 1 mg/ mL) was subjected to liquid chromatography-mass spectrometry (LC-MS/MS) analysis, and about 17 peptides were identified, of which the RWDISQPY (1063.5 Da) was chosen to be synthesized based on in silico analysis. The RWDISQPY demonstrated high ACE inhibition ability (IC50: 72.24 μM) with competitive inhibition mode, and could effectively (p < 0.05) lower the systolic blood pressure and diastolic pressure of spontaneously hypertensive rats at the concentration of 150 mg/kg body weight. The results of the molecular docking simulation demonstrated that RWDISQPY could bind with the active sites S1 and S2 of ACE via short hydrogen bonds. Moreover, RWDISQPY showed acceptable endothelin-1 suppressing capacity (26.21% at 1.5 mg/mL). These results indicate that S. maclurei could be developed into functional foods such as antihypertensive products.
Collapse
Affiliation(s)
- Yajun Zheng
- Food Science Institute of Shanxi Normal University, Linfen 041004, China
| | - Yufeng Zhang
- Coconut Research Institute of Chinese Tropical Agriculture Academic, Haikou 570100, China;
- Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming 650093, China;
| | - Sang San
- Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming 650093, China;
| |
Collapse
|
116
|
Almeida TP, Ramos AA, Ferreira J, Azqueta A, Rocha E. Bioactive Compounds from Seaweed with Anti-Leukemic Activity: A Mini-Review on Carotenoids and Phlorotannins. Mini Rev Med Chem 2020; 20:39-53. [PMID: 30854962 DOI: 10.2174/1389557519666190311095655] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 04/08/2018] [Accepted: 07/23/2018] [Indexed: 12/11/2022]
Abstract
Chronic Myeloid Leukemia (CML) represents 15-20% of all new cases of leukemia and is characterized by an uncontrolled proliferation of abnormal myeloid cells. Currently, the first-line of treatment involves Tyrosine Kinase Inhibitors (TKIs), which specifically inhibits the activity of the fusion protein BCR-ABL. However, resistance, mainly due to mutations, can occur. In the attempt to find more effective and less toxic therapies, several approaches are taken into consideration such as research of new anti-leukemic drugs and "combination chemotherapy" where different drugs that act by different mechanisms are used. Here, we reviewed the molecular mechanisms of CML, the main mechanisms of drug resistance and current strategies to enhance the therapeutic effect of TKIs in CML. Despite major advances in CML treatment, new, more potent anticancer drugs and with fewer side effects are needed. Marine organisms, and particularly seaweed, have a high diversity of bioactive compounds with some of them having anticancer activity in several in vitro and in vivo models. The state-of-art suggests that their use during cancer treatment may improve the outcome. We reviewed here the yet few data supporting anti-leukemic activity of some carotenoids and phlorotannins in some leukemia models. Also, strategies to overcome drug resistance are discussed, particularly the combination of conventional drugs with natural compounds.
Collapse
Affiliation(s)
- Tânia P Almeida
- Team of Histomorphology, Physiopathology and Applied Toxicology, CIIMAR/CIMAR - Interdisciplinary Center for Marine and Environmental Research, U.Porto - University of Porto, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.,Laboratory of Histology and Embryology, Department of Microscopy, ICBAS - Institute of Biomedical Sciences Abel Salazar, U.Porto - University of Porto, Rua de Jorge Viterbo Ferreira, no 228, 4050-313 Porto, Portugal.,FCUP - Faculty of Sciences, U. Porto - University of Porto (U.Porto), Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Alice A Ramos
- Team of Histomorphology, Physiopathology and Applied Toxicology, CIIMAR/CIMAR - Interdisciplinary Center for Marine and Environmental Research, U.Porto - University of Porto, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.,Laboratory of Histology and Embryology, Department of Microscopy, ICBAS - Institute of Biomedical Sciences Abel Salazar, U.Porto - University of Porto, Rua de Jorge Viterbo Ferreira, no 228, 4050-313 Porto, Portugal
| | - Joana Ferreira
- Team of Histomorphology, Physiopathology and Applied Toxicology, CIIMAR/CIMAR - Interdisciplinary Center for Marine and Environmental Research, U.Porto - University of Porto, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.,Laboratory of Histology and Embryology, Department of Microscopy, ICBAS - Institute of Biomedical Sciences Abel Salazar, U.Porto - University of Porto, Rua de Jorge Viterbo Ferreira, no 228, 4050-313 Porto, Portugal.,FCUP - Faculty of Sciences, U. Porto - University of Porto (U.Porto), Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, University of Navarra, C/Irunlarrea 1, CP 31008 Pamplona, Navarra, Spain
| | - Eduardo Rocha
- Team of Histomorphology, Physiopathology and Applied Toxicology, CIIMAR/CIMAR - Interdisciplinary Center for Marine and Environmental Research, U.Porto - University of Porto, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.,Laboratory of Histology and Embryology, Department of Microscopy, ICBAS - Institute of Biomedical Sciences Abel Salazar, U.Porto - University of Porto, Rua de Jorge Viterbo Ferreira, no 228, 4050-313 Porto, Portugal
| |
Collapse
|
117
|
Repair of Erythrocyte Membranes by the Lipid Fraction from Brown Seaweed Sargassum Pallidum after Experimental Ccl4-Induced Toxic Hepatitis. Pharm Chem J 2020. [DOI: 10.1007/s11094-020-02123-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
118
|
Liu T, Cui Y, Jia X, Chen B, Ma Z, Zou H, Wang S, Wu M. The complete chloroplast genome of Sargassum fusiforme. Mitochondrial DNA B Resour 2020; 5:576-577. [PMID: 33366654 PMCID: PMC7748419 DOI: 10.1080/23802359.2019.1710296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Tao Liu
- College of Life Sciences, Yantai University, Yantai, Shandong, China
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Yutong Cui
- College of Life Sciences, Yantai University, Yantai, Shandong, China
| | - Xuli Jia
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Binbin Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Zengling Ma
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Huixi Zou
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Shengqin Wang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Mingjiang Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| |
Collapse
|
119
|
Schepers M, Martens N, Tiane A, Vanbrabant K, Liu HB, Lütjohann D, Mulder M, Vanmierlo T. Edible seaweed-derived constituents: an undisclosed source of neuroprotective compounds. Neural Regen Res 2020; 15:790-795. [PMID: 31719238 PMCID: PMC6990778 DOI: 10.4103/1673-5374.268894] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Edible marine algae, or seaweeds, are a rich source of several bioactive compounds including phytosterols, carotenoids, and polysaccharides. Over the last decades, seaweed-derived constituents turned out to not only reside in the systemic circulation, but are able to cross the blood-brain barrier to exert neuro-active functions both in homeostatic and pathological conditions. Therefore, seaweed-derived constituents have gained increasing interest for their neuro-immunomodulatory and neuroprotective properties, rendering them interesting candidates for the management of several neurodegenerative disorders. In particular seaweed-derived phytosterols gained interest for the treatment of neurodegenerative disorders as they potentiate neuroplasticity, enhance phagocytic clearance of neurotoxic peptides and have anti-inflammatory properties. Though, the anti-inflammatory and anti-oxidative properties of other constituents including carotenoids, phenols and polysaccharides have recently gained more interest. In this review, we provide an overview of a selection of the described neuro-active properties of seaweed-derived constituents with a focus on phytosterols.
Collapse
Affiliation(s)
- Melissa Schepers
- Department of Neuroimmunology, Biomedical Research Institute, Hasselt University, European Graduate School of Neuroscience (EURON), Hasselt, Belgium; Department of Psychiatry & Neuropsychology, Division of Translational Neuroscience, School for Mental Health and Neuroscience, Maastricht University, European Graduate School of Neuroscience (EURON), Maastricht, The Netherlands
| | - Nikita Martens
- Department of Internal Medicine, Laboratory of Vascular Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Assia Tiane
- Department of Neuroimmunology, Biomedical Research Institute, Hasselt University, European Graduate School of Neuroscience (EURON), Hasselt, Belgium; Department of Psychiatry & Neuropsychology, Division of Translational Neuroscience, School for Mental Health and Neuroscience, Maastricht University, European Graduate School of Neuroscience (EURON), Maastricht, The Netherlands
| | - Kenneth Vanbrabant
- Department of Neuroimmunology, Biomedical Research Institute, Hasselt University, European Graduate School of Neuroscience (EURON), Hasselt, Belgium; Institue for Clinical Chemistry and Clinical Pharmacology, Bonn, Germany
| | - Hong-Bing Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong Province, China
| | - Dieter Lütjohann
- Institue for Clinical Chemistry and Clinical Pharmacology, Bonn, Germany
| | - Monique Mulder
- Department of Internal Medicine, Laboratory of Vascular Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Tim Vanmierlo
- Department of Neuroimmunology, Biomedical Research Institute, Hasselt University, European Graduate School of Neuroscience (EURON), Hasselt, Belgium; Department of Psychiatry & Neuropsychology, Division of Translational Neuroscience, School for Mental Health and Neuroscience, Maastricht University, European Graduate School of Neuroscience (EURON), Maastricht, The Netherlands
| |
Collapse
|
120
|
Prasedya ES, Martyasari NWR, Abidin AS, Pebriani SA, Ilhami BTK, Frediansyah A, Sunarwidhi AL, Widyastuti S, Sunarpi H. Macroalgae Sargassum cristaefolium Extract Inhibits Proinflammatory Cytokine Expression in BALB/C Mice. SCIENTIFICA 2020; 2020:9769454. [PMID: 33101756 PMCID: PMC7569464 DOI: 10.1155/2020/9769454] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/24/2020] [Indexed: 05/05/2023]
Abstract
Ultraviolet radiation (UVR) which could induce skin damage and skin disease is a growing concern due to the increase in global warming. Brown macroalgae Sargassum cristaefolium has been recognized to exhibit UV protective activities. However, the mechanism of its photoprotective activity remains unclear. The purpose of this study is to investigate the potential mechanism of S. cristaefolium's photoprotective activity against UV radiation. Phytochemical analyses revealed valuable bioactive compounds in SCE, such as fucoxanthin which is widely known as an anti-inflammatory carotenoid. Treatment with SCE before UV-A radiation show reduced levels of wrinkles and desquamation. Interestingly, SCE treatment induces the skin healing process after UV radiation. SCE effectively inhibited proinflammatory TNF-α and IL-6 expression while increasing IL-10 production in the BALB/c mice skin. Current results suggest that SCE potentially protects the skin by attenuation of inflammatory cytokines. In addition, SCE demonstrates promising antibacterial activity (MIC = 1.302 µg/mL) against Staphylococcus aureus. Overall, SCE could be a source of an effective anti-inflammatory agent protecting against UV irradiation-induced skin damages.
Collapse
Affiliation(s)
- Eka Sunarwidhi Prasedya
- Bioscience and Biotechnology Research Centre, Faculty of Mathematics and Natural Sciences, University of Mataram, Mataram, Indonesia
| | | | - Angga Susmana Abidin
- Bioscience and Biotechnology Research Centre, Faculty of Mathematics and Natural Sciences, University of Mataram, Mataram, Indonesia
| | - Sonia Ardilla Pebriani
- Bioscience and Biotechnology Research Centre, Faculty of Mathematics and Natural Sciences, University of Mataram, Mataram, Indonesia
| | - Bq Tri Khairina Ilhami
- Bioscience and Biotechnology Research Centre, Faculty of Mathematics and Natural Sciences, University of Mataram, Mataram, Indonesia
| | - Andri Frediansyah
- Pharmaceutical Institute, University of Tuebingen, Tuebingen, Germany
- Research Division for Natural Product Technology (BPTBA), Indonesian Institute of Sciences (LIPI), Wonosari, Indonesia
| | | | - Sri Widyastuti
- Faculty of Food Technology and Agroindustry, University of Mataram, Mataram, Indonesia
| | - Haji Sunarpi
- Bioscience and Biotechnology Research Centre, Faculty of Mathematics and Natural Sciences, University of Mataram, Mataram, Indonesia
| |
Collapse
|
121
|
Rushdi MI, Abdel-Rahman IAM, Saber H, Attia EZ, Abdelraheem WM, Madkour HA, Hassan HM, Elmaidomy AH, Abdelmohsen UR. Pharmacological and natural products diversity of the brown algae genus Sargassum. RSC Adv 2020; 10:24951-24972. [PMID: 35517468 PMCID: PMC9055232 DOI: 10.1039/d0ra03576a] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/13/2020] [Indexed: 12/22/2022] Open
Abstract
Sargassum (F. Sargassaceae) is an important seaweed excessively distributed in tropical and subtropical regions.
Collapse
Affiliation(s)
- Mohammed I. Rushdi
- Department of Pharmacognosy
- Faculty of Pharmacy
- South Valley University
- Qena
- Egypt
| | | | - Hani Saber
- Department of Botany and Microbiology
- Faculty of Science
- South Valley University
- Qena
- Egypt
| | - Eman Zekry Attia
- Department of Pharmacognosy
- Faculty of Pharmacy
- Minia University
- 61519 Minia
- Egypt
| | - Wedad M. Abdelraheem
- Department of Medical Microbiology and Immunology
- Faculty of Medicine
- Minia University
- 61519 Minia
- Egypt
| | - Hashem A. Madkour
- Department of Marine and Environmental Geology
- National Institute of Oceanography and Fisheries
- 84511 Hurghada
- Egypt
| | - Hossam M. Hassan
- Department of Pharmacognosy
- Faculty of Pharmacy
- Beni-Suef University
- Beni-Suef
- Egypt
| | - Abeer H. Elmaidomy
- Department of Pharmacognosy
- Faculty of Pharmacy
- Beni-Suef University
- Beni-Suef
- Egypt
| | | |
Collapse
|
122
|
Sanjeewa KKA, Jayawardena TU, Lee HG, Herath KHINM, Jee Y, Jeon YJ. The protective effect of Sargassum horneri against particulate matter-induced inflammation in lung tissues of an in vivo mouse asthma model. Food Funct 2019; 10:7995-8004. [PMID: 31793623 DOI: 10.1039/c9fo02068c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Sargassum horneri is an edible brown seaweed with potential anti-inflammatory properties. The present study was designed to evaluate the anti-inflammatory properties of S. horneri using an in vivo mouse asthma model following exposure to particulate matter (PM). 7-8 week old BALB/c mice (20-25 g) were randomly divided into seven groups (n = 4) as follows: 1: no treatment, 2: OVA (ovalbumin) + PM, 3: OVA + PM + SHE (S. horneri ethanol extract) 200 mg kg-1, 4: OVA + PM + SHE 400 mg kg-1, 5: OVA + PM + prednisone 5 mg kg-1, 6: OVA only, and 7: PM only. All mice (except healthy controls) were sensitized on the first day by intraperitoneal injection of 10 μg OVA and 2 mg Al(OH)3 in 200 μL of saline. Starting from day 15, mice (except groups 1 and 6) were exposed to sonicated PM (5 mg m-3, 30 min day-1) through a nebulizer daily for 7 consecutive days. Mice exposed to PM and OVA showed up-regulated expression of MAPKs and pro-inflammatory cytokine production in the lungs. Furthermore, PM-exposed lungs had significantly reduced expression of Nrf2 and HO-1 genes. However, oral administration of the SHE reduced the phosphorylation levels of MAPKs, iNOS and COX2 expression levels, and mRNA expression levels of pro-inflammatory cytokines. In addition, SHE treated group mice had up-regulated anti-oxidant gene expression levels in the lungs compared to group 2. These findings demonstrate that oral administration of the SHE re-establishes PM-induced inflammation and oxidative stress in the lungs. Taken together, the SHE has therapeutic potential in preventing PM-induced inflammation and oxidative stress.
Collapse
Affiliation(s)
- K K Asanka Sanjeewa
- Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University, Jeju 63243, Korea.
| | | | | | | | | | | |
Collapse
|
123
|
Saraswati, Giriwono PE, Iskandriati D, Tan CP, Andarwulan N. Sargassum Seaweed as a Source of Anti-Inflammatory Substances and the Potential Insight of the Tropical Species: A Review. Mar Drugs 2019; 17:E590. [PMID: 31627414 PMCID: PMC6835611 DOI: 10.3390/md17100590] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/21/2019] [Accepted: 08/30/2019] [Indexed: 02/06/2023] Open
Abstract
Sargassum is recognized both empirically and scientifically as a potential anti-inflammatory agent. Inflammation is an important response in the body that helps to overcome various challenges to body homeostasis such as microbial infections, tissue stress, and certain injuries. Excessive and uncontrolled inflammatory conditions can affect the pathogenesis of various diseases. This review aims to explore the potential of Sargassum's anti-inflammatory activity, not only in crude extracts but also in sulfated polysaccharides and purified compounds. The tropical region has a promising availability of Sargassum biomass because its climate allows for the optimal growth of seaweed throughout the year. This is important for its commercial utilization as functional ingredients for both food and non-food applications. To the best of our knowledge, studies related to Sargassum's anti-inflammatory activity are still dominated by subtropical species. Studies on tropical Sargassum are mainly focused on the polysaccharides group, though there are some other potentially bioactive compounds such as polyphenols, terpenoids, fucoxanthin, fatty acids and their derivatives, typical polar lipids, and other groups. Information on the modulation mechanism of Sargassum's bioactive compounds on the inflammatory response is also discussed here, but specific mechanisms related to the interaction between bioactive compounds and targets in cells still need to be further studied.
Collapse
Affiliation(s)
- Saraswati
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, Bogor Agricultural University, Bogor 16680, Indonesia; (S.); (P.E.G.)
| | - Puspo Edi Giriwono
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, Bogor Agricultural University, Bogor 16680, Indonesia; (S.); (P.E.G.)
- Southeast Asian Food and Agricultural Science Technology (SEAFAST) Center, Bogor Agricultural University, Bogor 16680, Indonesia
| | - Diah Iskandriati
- Primate Research Center, Bogor Agricultural University, Bogor 16151, Indonesia;
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Nuri Andarwulan
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, Bogor Agricultural University, Bogor 16680, Indonesia; (S.); (P.E.G.)
- Southeast Asian Food and Agricultural Science Technology (SEAFAST) Center, Bogor Agricultural University, Bogor 16680, Indonesia
| |
Collapse
|
124
|
Yang CF, Lai SS, Chen YH, Liu D, Liu B, Ai C, Wan XZ, Gao LY, Chen XH, Zhao C. Anti-diabetic effect of oligosaccharides from seaweed Sargassum confusum via JNK-IRS1/PI3K signalling pathways and regulation of gut microbiota. Food Chem Toxicol 2019; 131:110562. [PMID: 31181236 DOI: 10.1016/j.fct.2019.110562] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 12/18/2022]
Abstract
Brown seaweed Sargassum confusum (C. Agardh) has been used in traditional Chinese medicine to treat a variety of diseases. The aim of the present study was to evaluate the anti-diabetic effect of oligosaccharides from brown seaweed S. confusum (SCO). The anti-diabetic effect of SCO was evaluated in vivo using high-fat/high-sucrose fed hamsters. Molecular mechanisms of modulating gene expression of specific members of insulin signaling pathways were determined. The components of the intestinal microflora in diabetic animals were also analyzed by high-throughput 16S rRNA gene sequencing. And it was found that SCO had a sequence of sulfated anhydrogalactose and methyl sulfated galactoside units. Fasting blood glucose levels were significantly decreased after SCO administration. Histology showed that SCO could protect the cellular architecture of the liver. SCO could also significantly increase the relative abundance of Lactobacillus and Clostridium XIVa and decrease that of Allobaculum, Bacteroides and Clostridium IV. The active role of SCO in anti-diabetic effect was revealed by its regulation of insulin receptor substrate 1/phosphatidylinositol 3-kinase and c-Jun N-terminal kinase pathways. These results suggested that SCO might be used as a functional material to regulate gut microbiota in obese and diabetic individuals.
Collapse
Affiliation(s)
- Cheng-Feng Yang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Shan-Shan Lai
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Yi-Han Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dan Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Bin Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chao Ai
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Xu-Zhi Wan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lu-Ying Gao
- Department of Pediatrics, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Xin-Hua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Chao Zhao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; Institute of Chinese Medical Sciences, State Key Laboratory of Quality Control in Chinese Medicine, University of Macau, Taipa, Macau, China.
| |
Collapse
|
125
|
Luthuli S, Wu S, Cheng Y, Zheng X, Wu M, Tong H. Therapeutic Effects of Fucoidan: A Review on Recent Studies. Mar Drugs 2019; 17:md17090487. [PMID: 31438588 PMCID: PMC6780838 DOI: 10.3390/md17090487] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/16/2019] [Accepted: 08/19/2019] [Indexed: 12/20/2022] Open
Abstract
Fucoidan is a polysaccharide largely made up of l-fucose and sulfate groups. Fucoidan is favorable worldwide, especially amongst the food and pharmaceutical industry as a consequence of its promising therapeutic effects. Its applaudable biological functions are ascribed to its unique biological structure. Classical bioactivities associated with fucoidan include anti-oxidant, anti-tumor, anti-coagulant, anti-thrombotic, immunoregulatory, anti-viral and anti-inflammatory effects. More recently, a variety of in vitro and in vivo studies have been carried out to further highlight its therapeutic potentials. This review focuses on the progress towards understanding fucoidan and its biological activities, which may be beneficial as a future therapy. Hence, we have summarized in vitro and in vivo studies that were done within the current decade. We expect this review and a variety of others can contribute as a theoretical basis for understanding and inspire further product development of fucoidan.
Collapse
Affiliation(s)
- Sibusiso Luthuli
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Siya Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yang Cheng
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Xiaoli Zheng
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Mingjiang Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Haibin Tong
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
126
|
Zhang Y, Xu M, Hu C, Liu A, Chen J, Gu C, Zhang X, You C, Tong H, Wu M, Chen P. Sargassum fusiforme Fucoidan SP2 Extends the Lifespan of Drosophila melanogaster by Upregulating the Nrf2-Mediated Antioxidant Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8918914. [PMID: 31485301 PMCID: PMC6710776 DOI: 10.1155/2019/8918914] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/31/2019] [Accepted: 07/02/2019] [Indexed: 01/19/2023]
Abstract
Damage accumulated in the genome and macromolecules is largely attributed to increased oxidative damage and a lack of damage repair in a cell, and this can eventually trigger the process of aging. Alleviating the extent of oxidative damage is therefore considered as a potential way to promote longevity. SFPS, a heteropolysaccharide extracted from the brown alga Sargassum fusiforme, has previously been shown to alleviate oxidative damage during the aging process in mice, but whether SFPS could extend the lifespan of an organism was not demonstrated. Furthermore, the precise component within SFPS that is responsible for the antioxidant activity and the underlying mechanism of such activity was also not resolved. In this study, SP2, a fucoidan derived from SFPS, was shown to exhibit strong antioxidant activity as measured by in vitro radical-scavenging assays. SP2 also improved the survival rate of D. melanogaster subjected to oxidative stress. The flies that were fed with a diet containing SP2 from the time of eclosion displayed significant enhancement in lifespan and reduced accumulation of triglyceride at the old-age stage. In addition, SP2 markedly improved the activities of the antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) and reduced the contents of the malondialdehyde (MDA) and oxidized glutathione (GSSG) in old flies. Furthermore, SP2 also upregulated the expression levels of the nuclear factor-erythroid-2-like 2 (nfe2l2 or nrf2) and its downstream target genes, accompanied by a dramatic reduction in the expression of kelch-like ECH-associated protein 1 (keap1, a canonical inhibitor of the Nrf2) in old flies. Additional support linking the crucial role of the Nrf2/ARE pathway to the antioxidant effect of SP2 was the relatively high survival rate under heat stress for D. melanogaster individuals receiving SP2 supplement, an effect that was abolished by the inclusion of inhibitors specific for the Nrf2/ARE pathway. Collectively, the results indicated that SP2, a S. fusiforme fucoidan, could promote longevity in D. melanogaster by enhancing the Nrf2-mediated antioxidant signaling pathway during the aging process.
Collapse
Affiliation(s)
- Ya Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
- Department of Natural Resources and Environmental Studies, University of Northern British Columbia, Prince George, BC, Canada
| | - Man Xu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Chenxi Hu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
- Department of Natural Resources and Environmental Studies, University of Northern British Columbia, Prince George, BC, Canada
| | - Amei Liu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Junjie Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Chenfei Gu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Xu Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Cuiping You
- Department of Central Laboratory, Linyi People's Hospital, Shandong University, Linyi, Shandong Province, China
| | - Haibin Tong
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Mingjiang Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Peichao Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
127
|
Wu S, Zhang X, Liu J, Song J, Yu P, Chen P, Liao Z, Wu M, Tong H. Physicochemical characterization of Sargassum fusiforme fucoidan fractions and their antagonistic effect against P-selectin-mediated cell adhesion. Int J Biol Macromol 2019; 133:656-662. [PMID: 30930270 DOI: 10.1016/j.ijbiomac.2019.03.218] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/28/2019] [Accepted: 03/28/2019] [Indexed: 12/22/2022]
Abstract
P-selectin, mediated adhesion between endothelium and neutrophils, is a promising target for the therapeutics of acute inflammatory-related diseases. It is reported that brown algal fucoidans can antagonize P-selectin function. However, the fractionation and physicochemical characterization of Sargassum fusiforme fucoidan, and the screening of fucoidan fractions with P-selectin antagonistic capability have not been investigated. In this study, we isolated and fractionated systematically the S. fusiforme fucoidan by ion-exchange chromatography and size exclusion chromatography to obtain eight fucoidan fractions. Their physicochemical characterization was determined by chemical methods, HPLC and FT-IR. The inhibitory capacity of the fucoidan fractions in P-selectin-mediated leukocyte adhesion was evaluated by static adhesion assay and parallel-plate flow chamber. Results showed that fucoidan fractions possessed distinct physicochemical properties, including total carbohydrate, uronic acid and sulfate contents, molecular weight, and monosaccharide compositions. Among all the fucoidan fractions, SFF-32 and SFF-42 showed better blocking ability against P-selectin-mediated cell adhesion.
Collapse
Affiliation(s)
- Siya Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Xu Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jian Liu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jianxi Song
- Analytical and Testing Center, Beihua University, Jilin 132013, China
| | - Ping Yu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Peichao Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Zhiyong Liao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Mingjiang Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Haibin Tong
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
128
|
Husni A, Lailatussifa R, Isnansetyo A. Sargassum hystrix as a Source of Functional Food to Improve Blood Biochemistry Profiles of Rats under Stress. Prev Nutr Food Sci 2019; 24:150-158. [PMID: 31328119 PMCID: PMC6615359 DOI: 10.3746/pnf.2019.24.2.150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/22/2019] [Indexed: 02/05/2023] Open
Abstract
This study was conducted to determine the influence of Sargassum hystrix powder (SHP) as an alternative source of functional food for treating in vivo stress by measuring levels of glucose, triacylglycerol, total cholesterol, and cortisol, and liver histopathology. Wistar rats aged 3 months and weighing 150~200 g were divided into 7 groups: normal control, fasting control, negative control (stress without adaptogen), and 4 experimental conditions (stress+0.18 mg/kg diazepam, stress+450 mg/kg pellet, stress+mixture of pellet with SHP 450 mg/kg, and stress+450 mg/kg of SHP). Intake of liquids and and body weight were measured daily. Blood samples were collected on day 0 (baseline), day 5, and day 10 to analyze levels of glucose, triacylglycerol, cholesterol, and cortisol. On day 10, rats were euthanized and livers were collected to observe the severity of inflammation. The results indicated that rats receiving SHP 450 mg/kg and the mixture of pellet with SHP 450 mg/kg showed a similar ability as those receiving diazepam 0.18 mg/kg to cope with stress, indicated by an improvement in all blood biochemistry parameters. Supplementation with SHP 450 mg/kg can be used as an alternative source of functional food for overcoming oxidative stress, as indicated by its ability to improve levels of blood glucose, triacylglycerol, total cholesterol, and cortisol, and to improve liver histology by decreasing severity of liver inflammation.
Collapse
Affiliation(s)
- Amir Husni
- Department of Fisheries Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Radipta Lailatussifa
- Department of Fisheries Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.,Sidoarjo Marine and Fisheries Polytechnic, Sidoarjo 61254, Indonesia
| | - Alim Isnansetyo
- Department of Fisheries Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| |
Collapse
|
129
|
Generalić Mekinić I, Skroza D, Šimat V, Hamed I, Čagalj M, Popović Perković Z. Phenolic Content of Brown Algae (Pheophyceae) Species: Extraction, Identification, and Quantification. Biomolecules 2019; 9:E244. [PMID: 31234538 PMCID: PMC6628088 DOI: 10.3390/biom9060244] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 11/23/2022] Open
Abstract
Over the last few decades, isolations and chemical characterizations of secondary metabolites with proved biological activities have been of interest for numerous research groups across the world. Phenolics, as one of the largest and most widely distributed group of phytochemicals, have gained special attention due to their pharmacological activity and array of health-promoting benefits. Reports on phenolic potentials of marine algae, especially brown algae (Pheophyceae) that are characterized by the presence of phlorotannins, are still scarce. The aim of this review paper is to provide an overview of current knowledge about phenolic potential of different brown algae species (74 species from 7 different orders). Studies on brown algae phenolics usually involve few species, thus the focus of this review is to provide information about the phenolic potential of reported algae species and to get an insight into some issues related to the applied extraction procedures and determination/quantification methods to facilitate the comparison of results from different studies. The information provided through this review should be useful for the design and interpretation of studies investigating the brown algae as a source of valuable phytochemicals.
Collapse
Affiliation(s)
- Ivana Generalić Mekinić
- Department of Food Technology and Biotechnology Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, 21000 Split, Croatia.
| | - Danijela Skroza
- Department of Food Technology and Biotechnology Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, 21000 Split, Croatia.
| | - Vida Šimat
- University Department of Marine Studies, University of Split, R. Boškovića 37, 21000 Split, Croatia.
| | - Imen Hamed
- University Department of Marine Studies, University of Split, R. Boškovića 37, 21000 Split, Croatia.
| | - Martina Čagalj
- University Department of Marine Studies, University of Split, R. Boškovića 37, 21000 Split, Croatia.
| | | |
Collapse
|
130
|
Magura J, Moodley R, Jonnalagadda SB. Toxic metals (As and Pb) in Sargassum elegans Suhr (1840) and its bioactive compounds. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2019; 29:266-275. [PMID: 30372162 DOI: 10.1080/09603123.2018.1537439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/14/2018] [Indexed: 06/08/2023]
Abstract
Sargassum elegans Suhr 1840 (Phaeophyta) is a brown marine macro alga, which is used both nutritionally and medicinally in the coastal areas of Southern Africa. Consequently, we conducted a phytochemical and analytical investigation on samples of this species collected from seven sites along the coast of KwaZulu-Natal, South Africa. Sargassum elegans was found to be rich in β-sitosterol, fucosterol and phaeophytin a as confirmed by spectroscopic techniques. Concentrations of essential and toxic elements varied significantly with location and were in the order of Ca > Mg> Fe > As > Cu > Zn > Mn > Ni > Pb > Co > Se > Cr > Cd. The accumulation of As by S. elegans was also evident as concentrations ranged from 42 to 105 mg kg-1, of which, 21 to 53 mg kg-1 was in inorganic form; consumption of this species may therefore increase dietary exposure to inorganic arsenic. Abbreviation: CRM: Certified reference material; NMR: Nuclear magnetic resonance; ICP - OES: Inductively coupled plasma - optical emission spectroscopy; PCA: Principal component analysis.
Collapse
Affiliation(s)
- Judie Magura
- a School of Chemistry and Physics , University of KwaZulu-Natal , Durban , South Africa
| | - Roshila Moodley
- a School of Chemistry and Physics , University of KwaZulu-Natal , Durban , South Africa
| | | |
Collapse
|
131
|
Cao C, Zhang B, Li C, Huang Q, Fu X, Liu RH. Structure and in vitro hypoglycemic activity of a homogenous polysaccharide purified from Sargassum pallidum. Food Funct 2019; 10:2828-2838. [PMID: 31049543 DOI: 10.1039/c8fo02525h] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
This study aimed at investigating the structure, hypoglycemic activity and the underlying mechanism of a homogeneous polysaccharide (PSP-2) purified from Sargassum pallidum. Structural characterization revealed that PSP-2 with a molecular weight of 144.8 kDa was composed of fucose (21.6%), arabinose (2.5%), galactose (22.4%), glucose (2.2%), xylose (18.8%), mannose (1.2%), glucuronic acid (7.7%) and galacturonic acid (23.6%). The backbone chain of PSP-2 was composed of →1)-β-d-Xylp-(3→, →1,3)-β-l-Fucp-(4→, →1)-α-d-Galp-(6→, and →1)-α-d-GlcpNAc-(2→, and the side chains were composed of →1,3,6)-α-d-Galp-(2→, →3)-β-l-Fucp-(1,4→, β-d-GalpNAc-(1→, and α-d-Manp-(1→. In vitro hypoglycemic assays indicated that PSP-2 could significantly enhance glucose consumption, glycogen synthesis, and pyruvate kinase (PK) and hexokinase (HK) activities of insulin-resistant HepG2 cells. Furthermore, the underlying mechanistic studies revealed that PSP-2 could ameliorate insulin resistance by up-regulating the expression levels of insulin receptor substrate-1 (IRS-1), glycogen synthase (GS), phosphoinositide-3-kinase (PI3K) and glucose transporter-4 (GLUT4). These results suggested that PSP-2 may be a potential candidate for the prevention and treatment of Type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Changliang Cao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | | | | | | | | | | |
Collapse
|
132
|
Lim S, Choi AH, Kwon M, Joung EJ, Shin T, Lee SG, Kim NG, Kim HR. Evaluation of antioxidant activities of various solvent extract from Sargassum serratifolium and its major antioxidant components. Food Chem 2019; 278:178-184. [PMID: 30583359 DOI: 10.1016/j.foodchem.2018.11.058] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/08/2018] [Accepted: 11/10/2018] [Indexed: 01/01/2023]
Abstract
Sargassum serratifolium has been known to contain a high level of meroterpenoids as antioxidant components. We investigated antioxidant activities and active components in various solvent extracts from S. serratifolium. Ethyl acetate, ethanol, and methanol extracts showed relatively strong DPPH, ABTs, and superoxide radical scavenging activities. Hexane and ethyl acetate extract showed the strongest hydroxyl radical and reactive oxygen species (ROS), respectively, scavenging activities. Sargahydroquinoic acid (SHQA), sargachromanol (SCM) and sargaquinoic acid (SQA) were main antioxidant components in S. serratifolium. Ethanol extract showed the highest levels of SHQA, SCM, and SQA which comprised to be 227 ± 6.31 mg/g. SHQA and SCM exhibited stronger antioxidant capacities than SQA based on lower IC50 values in ROS, DPPH, ABTs, and superoxide radical scavenging assays. The result showed that ethanol is the most efficient extracting solvent for the active components from S. serratifolium and the plant has the potential as a natural antioxidant.
Collapse
Affiliation(s)
- Sujin Lim
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | - An-Hong Choi
- Division of Food and Nutrition, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Misung Kwon
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | - Eun-Ji Joung
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | - Taisun Shin
- Division of Food and Nutrition, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sang-Gil Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | - Nam-Gil Kim
- Department of Marine Biology and Aquaculture Science, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| | - Hyeung-Rak Kim
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
133
|
Lee JS, Lee HA, Han JS. Sargassum sagamianum extract protects INS-1 pancreatic β cells against high glucose-induced apoptosis. Cytotechnology 2019; 71:389-399. [PMID: 30659444 DOI: 10.1007/s10616-019-00295-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 01/09/2019] [Indexed: 01/03/2023] Open
Abstract
This study investigated the protective effects of Sargassum sagamianum extract (SSE) on INS-1 pancreatic β cells against high glucose-induced oxidative stress and apoptosis. Treatment with glucose at high concentrations (30 mM) caused β cell apoptosis, whereas treatment with SSE protected the β cells from high glucose-induced damage, by recovering the cell viability. Treatment with SSE at concentrations of 10-100 μg/mL decreased lipid peroxidation and intracellular reactive oxygen species and nitric oxide levels, and increased cell viability and insulin secretion in high glucose pretreated INS-1 cells in a dose-dependent manner. Moreover, SSE treatment significantly reduced the expression of pro-apoptotic Bax, cytochrome c, caspase-3, and caspase-9, while the expression of anti-apoptotic Bcl-2 increased. The type of cell death was examined by annexin V/propidium iodide staining, which revealed that SSE treatment markedly reduced high glucose-induced apoptosis. These findings suggest that SSE could be useful as a functional food, protecting pancreatic β cells against high glucose-induced oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Ji-Soo Lee
- Department of Food Science and Nutrition, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyun-Ah Lee
- Department of Food Science and Nutrition, Pusan National University, Busan, 46241, Republic of Korea
| | - Ji Sook Han
- Department of Food Science and Nutrition, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
134
|
Jeon H, Yoon WJ, Ham YM, Yoon SA, Kang SC. Anti-Arthritis Effect through the Anti-Inflammatory Effect of Sargassum muticum Extract in Collagen-Induced Arthritic (CIA) Mice. Molecules 2019; 24:E276. [PMID: 30642121 PMCID: PMC6358989 DOI: 10.3390/molecules24020276] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 01/07/2019] [Accepted: 01/11/2019] [Indexed: 01/02/2023] Open
Abstract
(1) Background: Rheumatoid arthritis is a chronic autoimmune disease that causes progressive articular damage and functional loss. It is characterized by synovial inflammation that leads to progressive cartilage destruction. For this reason, research on functional foods that reduce the inflammatory response are under progress. (2) Methods: We focused on the anti-inflammatory effects of Sargassum muticum, and confirmed the effect of the extract on the collagen-induced arthritis (CIA) DBA/1J mice model. (3) Results: The extract was given at concentrations of 50, 100, and 200 mg/kg, and the arthritis score and edema volume of the experimental group were significantly different from the CIA group. The level of interleukin (IL)-6, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ were determined in serum and lymphocytes. The expression of these cytokines in the serum remarkably decreased from S. muticum extract (SME)100 mg/kg, and decreased from SME 200 mg/kg in lymphocytes. Also, immunohistochemical analysis of IL-6 and TNF-α in the joints revealed that the inflammatory response was noticeably lower when treated with S. muticum extract. (4) Conclusions: This study provides results of the experiment of S. muticum extract treatment in a mouse model. The treatment was found to contribute to the alleviation of edema and symptoms by reducing the expression of inflammatory cytokines. It was concluded that it may be a useful substance to help in the mitigation of arthritis symptoms.
Collapse
Affiliation(s)
- Hyelin Jeon
- Research Institute, Genencell Co. Ltd., Yongin 16950, Korea.
| | - Weon-Jong Yoon
- Biodiversity Research Institute, Jeju Technopark, Namwon 63608, Jeju, Korea.
| | - Young-Min Ham
- Biodiversity Research Institute, Jeju Technopark, Namwon 63608, Jeju, Korea.
| | - Seon-A Yoon
- Biodiversity Research Institute, Jeju Technopark, Namwon 63608, Jeju, Korea.
| | - Se Chan Kang
- Department of Oriental Medicine Biotechnology, Kyung Hee University, Yongin 17104, Korea.
| |
Collapse
|
135
|
Microalgae in modern cancer therapy: Current knowledge. Biomed Pharmacother 2018; 111:42-50. [PMID: 30576933 DOI: 10.1016/j.biopha.2018.12.069] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/07/2018] [Accepted: 12/14/2018] [Indexed: 02/01/2023] Open
Abstract
Cancer is an everyday medical concern which requires an appropriate treatment strategy. The malfunction of cell cycle is a well-established cause for cancer induction. Chemotherapy and radiation are the standard available therapeutic approach for cancer treatment; however severe side effects were reported in association to such treatments, for instance, the efficacy of patients' immune system is adversely affected in apart by radiation. These side effects may be minimized by providing novel remedial preparations. Complementary and alternative medicinal compounds, which were obtained from fresh or marine flora particularly micro and macro algae, were reported to its anti-cancerous activities. Several types of bioactive molecules are also present in microalgae, such as carotenoids, various forms of polysaccharides, vitamins, sterol, fibres, minerals…ect; the great unused biomass of microalgae and their excellent diversity of chemical constituents may introduce a major step in developing of anti-malignant drugs. Previously, such characteristic of microalgal bio-diversity was commercially exploited to make food supplements and gelling substances. However, recently, several investigations were designed to study the potential anti-carcinogenic effect of microalgal extracts, where they mostly concluded their ability to induce apoptotic cancer cell death via caspase dependent or independent pathways. In this review paper, we reported the various species of microalgae that possessed anti-tumor activity, the tumor cell lines altered through using microalgal extracts along with the levels of such extracts that reported to its inhibitor effect against cell cycle and proliferation.
Collapse
|
136
|
Lim S, Kwon M, Joung EJ, Shin T, Oh CW, Choi JS, Kim HR. Meroterpenoid-Rich Fraction of the Ethanolic Extract from Sargassum serratifolium Suppressed Oxidative Stress Induced by Tert-Butyl Hydroperoxide in HepG2 Cells. Mar Drugs 2018; 16:E374. [PMID: 30304831 PMCID: PMC6213136 DOI: 10.3390/md16100374] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/06/2018] [Accepted: 10/07/2018] [Indexed: 11/16/2022] Open
Abstract
Sargassum species have been reported to be a source of phytochemicals, with a wide range of biological activities. In this study, we evaluated the hepatoprotective effect of a meroterpenoid-rich fraction of the ethanolic extract from Sargassum serratifolium (MES) against tert-butyl hydroperoxide (t-BHP)-treated HepG2 cells. Treatment with MES recovered the cell viability from the t-BHP-induced oxidative damage in a dose-dependent manner. It suppressed the reactive oxygen species production, lipid peroxidation, and glutathione depletion in the t-BHP-treated HepG2 cells. The activity of the antioxidants induced by t-BHP, including superoxide dismutase (SOD) and catalase, was reduced by the MES treatment. Moreover, it increased the nuclear translocation of nuclear factor erythroid 2-related factor 2, leading to the enhanced activity of glutathione S transferase, and the increased production of heme oxygenase-1 and NAD(P)H:quinine oxidoreductase 1 in t-BHP-treated HepG2 cells. These results demonstrate that the antioxidant activity of MES substituted the activity of the SOD and catalase, and induced the production of detoxifying enzymes, indicating that MES might be used as a hepatoprotectant against t-BHP-induced oxidative stress.
Collapse
Affiliation(s)
- Sujin Lim
- Department of Food Science and Nutrition, Pukyong National University, 45, Yongso-Ro, Nam-Gu, Busan 48513, Korea.
| | - Misung Kwon
- Department of Food Science and Nutrition, Pukyong National University, 45, Yongso-Ro, Nam-Gu, Busan 48513, Korea.
| | - Eun-Ji Joung
- Department of Food Science and Nutrition, Pukyong National University, 45, Yongso-Ro, Nam-Gu, Busan 48513, Korea.
| | - Taisun Shin
- Division of Food and Nutrition, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju 61186, Korea.
| | - Chul-Woong Oh
- Department of Marine Biology, Pukyong National University, 45, Yongso-Ro, Nam-Gu, Busan 48513, Korea.
| | - Jae Sue Choi
- Department of Food Science and Nutrition, Pukyong National University, 45, Yongso-Ro, Nam-Gu, Busan 48513, Korea.
| | - Hyeung-Rak Kim
- Department of Food Science and Nutrition, Pukyong National University, 45, Yongso-Ro, Nam-Gu, Busan 48513, Korea.
| |
Collapse
|
137
|
Ramu S, Mahendra SA, Kunchakuri K, Karadi PP, Swetha K, Radhakrishnan G. Isolation, characterisation and in vitro screening of anticataract potential of Fucoidan from Sargassum wightii Greville. JOURNAL OF HERBMED PHARMACOLOGY 2018. [DOI: 10.15171/jhp.2018.37] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
138
|
Uribe E, Vega-Gálvez A, Vargas N, Pasten A, Rodríguez K, Ah-Hen KS. Phytochemical components and amino acid profile of brown seaweed Durvillaea antarctica as affected by air drying temperature. Journal of Food Science and Technology 2018; 55:4792-4801. [PMID: 30482974 DOI: 10.1007/s13197-018-3412-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/15/2018] [Accepted: 09/04/2018] [Indexed: 11/30/2022]
Abstract
The effects of different drying temperatures between 40 and 80 °C on bioactive constituents and antioxidant activity of edible sub Antarctic brown seaweed, Durvillaea antarctica were studied. Dietary fibre, amino acids profile, pigments (chlorophyll and carotenoids), vitamin E, total phenolics and total flavonoids as well as antioxidant activity were determined, beside a measurement of the chromatic coordinates. The brown seaweed D. antarctica had a high content of dietary fibre and was rich in essential amino acids and drying between 40 and 80 °C did not influence significantly dietary fibre content nor the level of essential amino acids that remained around 44%. However, a significant degradation of the chlorophyll pigments was observed with the lowest level of the initial chlorophyll content occurring at 60 °C (59%). Total carotenoids content was stable during drying between 50 and 70 °C. Vitamin E showed no significant loss during drying at any of the assayed temperatures, which could be due to its occurrence within the lipid fraction. Drying at 40 °C imparted a darker brown colour to the seaweed, while a lighter brown colour was acquired as drying temperature increased. The greatest loss in total phenolics content occurred at 60 °C, while total flavonoids content showed a significant reduction, which declined as drying temperature increased. According to the experimental results, phenolics and flavonoids could be considered as an important source of bioactive compounds with relatively high antioxidant activity. Thus D. antarctica may satisfy the requirements for development of functional foods.
Collapse
Affiliation(s)
- Elsa Uribe
- 1Food Engineering Department, Faculty of Engineering, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena, Chile.,3Institute of Multidisciplinary Investigation in Science and Technology, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena, Chile
| | - Antonio Vega-Gálvez
- 1Food Engineering Department, Faculty of Engineering, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena, Chile
| | - Natalia Vargas
- 1Food Engineering Department, Faculty of Engineering, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena, Chile
| | - Alexis Pasten
- 1Food Engineering Department, Faculty of Engineering, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena, Chile
| | - Katia Rodríguez
- 1Food Engineering Department, Faculty of Engineering, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena, Chile
| | - Kong Shun Ah-Hen
- 2Faculty of Agricultural Science, Institute of Food Science and Technology, Universidad Austral de Chile, Av. Julio Sarrazín s/n, Campus Isla Teja, Valdivia, Chile
| |
Collapse
|
139
|
|
140
|
Pinteus S, Lemos MF, Alves C, Neugebauer A, Silva J, Thomas OP, Botana LM, Gaspar H, Pedrosa R. Marine invasive macroalgae: Turning a real threat into a major opportunity - the biotechnological potential of Sargassum muticum and Asparagopsis armata. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.06.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
141
|
Chen L, Chen P, Liu J, Hu C, Yang S, He D, Yu P, Wu M, Zhang X. Sargassum Fusiforme Polysaccharide SFP-F2 Activates the NF-κB Signaling Pathway via CD14/IKK and P38 Axes in RAW264.7 Cells. Mar Drugs 2018; 16:E264. [PMID: 30071655 PMCID: PMC6117693 DOI: 10.3390/md16080264] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 07/24/2018] [Indexed: 12/12/2022] Open
Abstract
Sargassum fusifrome is considered a "longevity vegetable" in Asia. Sargassum fusifrome polysaccharides exhibit numerous biological activities, specially, the modulation of immune response via the NF-κB signaling pathway. However, the precise mechanisms by which these polysaccharides modulate the immune response through the NF-κB signaling pathway have not been elucidated. In this study, we purified and characterized a novel fraction of Sargassum fusifrome polysaccharide and named it SFP-F2. SFP-F2 significantly upregulated the production of the cytokines TNF-α, IL-1β and IL-6 in RAW264.7 cells. It also activated the NF-κB signaling pathway. Data obtained from experiments carried out with specific inhibitors (PDTC, BAY 11-7082, IKK16 and SB203580) suggested that SFP-F2 activated the NF-κB signaling pathway via CD14/IKK and P38 axes. SFP-F2 could therefore potentially exert an immune-enhancement effect through inducing the CD14/IKK/NF-κB and P38/NF-κB signaling pathways.
Collapse
Affiliation(s)
- Liujun Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
- Natural Resources and Environmental Studies Program, University of Northern British Columbia, Prince George, BC V2N 4Z9, Canada.
| | - Peichao Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Jian Liu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Chenxi Hu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Shanshan Yang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Dan He
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Ping Yu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Mingjiang Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Xu Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
142
|
Wang XL, Zhu XP, Ji DX, Wang J, Zhai RH, Li P, Yang XF. Beneficial effect of traditional Chinese medicine fumigation "Bone-healing Powder" in postoperative pain and recovery of neurological function of traumatic thoracolumbar spine fractures: A case-control study. Medicine (Baltimore) 2018; 97:e11983. [PMID: 30170399 PMCID: PMC6393006 DOI: 10.1097/md.0000000000011983] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Thoracolumbar spine (TLS) fractures are commonly associated with the young healthy population, with its risk factors including both high-energy traumas and neurological deficit. The underlying mechanisms of traditional Chinese medicine (TCM) and TLS fractures have been explored. Therefore, our prospective study was conducted in order to explore the beneficial effects of TCM fumigation "Bone-healing Powder" method in both postoperative pain as well as the recovery of the patient's neurological function following healing from their traumatic TLS fractures. METHODS Patients dealing with traumatic TLS fractures were randomly assigned into both the control and the intervention groups based on whether or not they received prior TCM fumigation in addition to any and all conventional therapy. Imaging indexes, including height of the injured vertebra (%), Cobb angle (°), horizontal displacement (%), compression area (%), sagittal diameter (%), and degree of both the swelling and pain regarding the fractures were observed and recorded both before and after the treatment for proper progression documentation. The neurological function was evaluated according to American Spinal Injury Association (ASIA) classification in order to investigate whether TCM fumigation "Bone-healing Powder" could affect the recovery of the patient's neurological function. RESULTS Following the treatment as well as 1 year after its completion, patients who received TCM fumigation presented a higher height of their previously injured vertebra (%) and sagittal diameter (%), while a lower Cobb angle (°), horizontal displacement (%), and compression area (%) than those who were part of the conventional therapy group. A week posttreatment, patients that received TCM fumigation also showed no signs of swelling or mild pain. One year following the treatment, patients receiving TCM fumigation demonstrated an improved neurological function. CONCLUSION These findings help to indicate that TCM fumigation "Bone-healing Powder" reduces the degrees of postoperative pain and swelling, and effectively improves recovery of the neurological function of those patients with traumatic TLS fractures, proving its worth as a clinical method in treatment.
Collapse
Affiliation(s)
| | | | - Dong-Xing Ji
- Department of Orthopedics, Yidu Central Hospital of Weifang
| | - Jun Wang
- Department of Orthopedics, Qingzhou Municipal Hospital, Qingzhou
| | - Rui-Hua Zhai
- Department of Ear-Nose-Throat (ENT), Yidu Central Hospital of Weifang
| | | | - Xue-Fei Yang
- Department of Thoracic Surgery, Weifang People's Hospital, Weifang, P.R. China
| |
Collapse
|
143
|
Gwon WG, Joung EJ, Shin T, Utsuki T, Wakamatsu N, Kim HR. Meroterpinoid-rich fraction of the ethanol extract from Sargassum serratifolium suppresses TNF-α-induced monocytes adhesion to vascular endothelium and vascular inflammation in high cholesterol-fed C57BL/6J mice. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.05.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
|
144
|
Bioassay-guided isolation of triterpene from brown alga Padina boergesenii possess anti-inflammatory and anti-angiogenic potential with kinetic inhibition of β-carotene linoleate system. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
145
|
Lee JS, Han JS. Sargassum sagamianum Extract Alleviates Postprandial Hyperglycemia in Diabetic Mice. Prev Nutr Food Sci 2018; 23:122-126. [PMID: 30018890 PMCID: PMC6047879 DOI: 10.3746/pnf.2018.23.2.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 03/09/2018] [Indexed: 11/06/2022] Open
Abstract
In this study, we investigated the postprandial hypoglycemic effect of Sargassum sagamianum extract (SSE) in streptozotocin-induced diabetic mice. Freeze-dried S. sagamianum was extracted with 80% ethanol and concentrated. The inhibition of postprandial hyperglycemia was determined by the inhibitory activity against α-glucosidase and α-amylase as well as the measurement of postprandial blood glucose levels. SSE demonstrated a high inhibitory activity against α-glucosidase and α-amylase. The IC50 value of SSE against α-glucosidase and α-amylase was 0.095 mg/mL and 0.199 mg/mL, respectively, and thus it was significantly more efficacious than the pharmaceutical acarbose (0.115 mg/mL and 0.229 mg/mL, respectively). The postprandial blood glucose levels in the SSE-administered group were significantly lower than those in the control group. Furthermore, the area under the curve significantly decreased following the administration of SSE. These results indicate that SSE can be used as an α-glucosidase and α-amylase inhibitor and can delay the absorption of dietary carbohydrates.
Collapse
Affiliation(s)
- Ji-Soo Lee
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Korea
| | - Ji-Sook Han
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Korea
| |
Collapse
|
146
|
Vijayan R, Chitra L, Penislusshiyan S, Palvannan T. Exploring bioactive fraction of Sargassum wightii: In vitro elucidation of angiotensin-I-converting enzyme inhibition and antioxidant potential. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2018.1454465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Raji Vijayan
- Department of Biochemistry, Periyar University, Salem, Tamil Nadu India
| | - Loganathan Chitra
- Department of Biochemistry, Periyar University, Salem, Tamil Nadu India
| | | | | |
Collapse
|
147
|
Cao C, Huang Q, Zhang B, Li C, Fu X. Physicochemical characterization and in vitro hypoglycemic activities of polysaccharides from Sargassum pallidum by microwave-assisted aqueous two-phase extraction. Int J Biol Macromol 2018; 109:357-368. [PMID: 29273524 DOI: 10.1016/j.ijbiomac.2017.12.096] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/14/2017] [Accepted: 12/18/2017] [Indexed: 11/29/2022]
Abstract
Microwave-assisted aqueous two-phase extraction (MAATPE) was applied for simultaneous extraction and separation of polysaccharides from Sargassum pallidum (SPPs). The optimal extraction parameters, physicochemical properties, and hypoglycemic activities in vitro of SPPs were investigated. The results revealed that the optimal extraction conditions were as follows: 21.0% ethanol (w/w) and 22.0% ammonium sulfate (w/w) for ATPS, ratio of material to liquid 1:60 (g/mL), extraction time 15 min, microwave power 830 W, and extraction temperature 95 °C. Under the optimal these conditions, the maximum yields of SPPs were 0.75 ± 0.04% of the top phase (SPP-1) and 6.81 ± 0.33% of the bottom phase (SPP-2). SPP-1 and SPP-2 were homogeneous with molecular weights of 1518.6 and 50.6 kDa, respectively. SPP-1 mainly consisted of fucose, galactose, mannose, and glucuronic acid with a molar ratio of 4.97:9.75:6.44:6.07, whereas SPP-2 was mainly composed of fucose, galactose, glucose, and mannose with a molar ratio of 4.20:2.88:18.05:7.83. SPP-1 and SPP-2 exhibited favorable α-amylase and α-glucosidase inhibitory activities, and could remarkably improve glucose consumption in insulin resistance (IR) model cells. Notably, SPP-1 exhibited stronger α-glucosidase inhibitory activity than SPP-2, and even was comparable with acarbose.
Collapse
Affiliation(s)
- Changliang Cao
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Qiang Huang
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Bin Zhang
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Chao Li
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China.
| | - Xiong Fu
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China.
| |
Collapse
|
148
|
Deethae A, Peerapornpisal Y, Pekkoh J, Sangthong P, Tragoolpua Y. Inhibitory effect of Spirogyra spp. algal extracts against herpes simplex virus type 1 and 2 infection. J Appl Microbiol 2018. [PMID: 29532624 DOI: 10.1111/jam.13729] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To determine the antiviral activities of Spirogyra spp. algal extracts against herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2). METHODS AND RESULTS Spirogyra spp. was extracted using water, ethanol and methanol. Aqueous extract of Spirogyra spp. had the lowest toxicity on Vero cells with the 50% cytotoxicity concentration (CC50 ) of 4363·30 μg ml-1 . As for potent inhibitory effect, the ethanolic extract presented the highest inhibition of viral infection on HSV-1 in the treatment during viral attachment on Vero cells with 50% inhibitory concentration (IC50 ) and selective index (SI) values of 164·20 and 2·17 μg ml-1 . However, the methanolic extract showed the highest inhibition of HSV-2 when treated during viral attachment with IC50 and SI values of 75·03 and 3·34 μg ml-1 . The methanolic extract of Spirogyra spp. also demonstrated significant virucidal effects on viral particles. Therefore, anti-HSV activity at various stages of the viral multiplication cycle was shown. The main active compounds in the active fractions of Spirogyra spp. ethanolic extract against HSV were found to be alkaloids, essential oils and terpenoids. CONCLUSIONS The highest anti-HSV activity was obtained from the ethanolic extract of Spirogyra spp. The extract inhibited the HSV viral particles and the inhibition was during the viral attachment and the viral multiplication. SIGNIFICANCE AND IMPACT OF THE STUDY Anti-HSV activity of extract of freshwater green macroalga Spirogyra spp. in Thailand was demonstrated. Therefore, anti-HSV product containing the Spirogyra spp. extract should be developed for treatment of HSV infection.
Collapse
Affiliation(s)
- A Deethae
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.,The Graduate School, Chiang Mai University, Chiang Mai, Thailand
| | - Y Peerapornpisal
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - J Pekkoh
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Bioresources for Agriculture, Industry, and Medicine, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - P Sangthong
- Center of Excellence in Bioresources for Agriculture, Industry, and Medicine, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.,Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Y Tragoolpua
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Bioresources for Agriculture, Industry, and Medicine, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
149
|
|
150
|
Ali MY, Kim DH, Seong SH, Kim HR, Jung HA, Choi JS. α-Glucosidase and Protein Tyrosine Phosphatase 1B Inhibitory Activity of Plastoquinones from Marine Brown Alga Sargassum serratifolium. Mar Drugs 2017; 15:E368. [PMID: 29194348 PMCID: PMC5742828 DOI: 10.3390/md15120368] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/18/2017] [Accepted: 11/27/2017] [Indexed: 01/22/2023] Open
Abstract
Sargassum serratifolium C. Agardh (Phaeophyceae, Fucales) is a marine brown alga that belongs to the family Sargassaceae. It is widely distributed throughout coastal areas of Korea and Japan. S. serratifolium has been found to contain high concentrations of plastoquinones, which have strong anti-cancer, anti-inflammatory, antioxidant, and neuroprotective activity. This study aims to investigate the anti-diabetic activity of S. serratifolium and its major constituents through inhibition of protein tyrosine phosphatase 1B (PTP1B), α-glucosidase, and ONOO--mediated albumin nitration. S. serratifolium ethanolic extract and fractions exhibited broad PTP1B and α-glucosidase inhibitory activity (IC50, 1.83~7.04 and 3.16~24.16 µg/mL for PTP1B and α-glucosidase, respectively). In an attempt to identify bioactive compounds, three plastoquinones (sargahydroquinoic acid, sargachromenol and sargaquinoic acid) were isolated from the active n-hexane fraction of S. serratifolium. All three plastoquinones exhibited dose-dependent inhibitory activity against PTP1B in the IC50 range of 5.14-14.15 µM, while sargachromenol and sargaquinoic acid showed dose-dependent inhibitory activity against α-glucosidase (IC50 42.41 ± 3.09 and 96.17 ± 3.48 µM, respectively). In the kinetic study of PTP1B enzyme inhibition, sargahydroquinoic acid and sargaquinoic acid led to mixed-type inhibition, whereas sargachromenol displayed noncompetitive-type inhibition. Moreover, plastoquinones dose-dependently inhibited ONOO--mediated albumin nitration. Docking simulations of these plastoquinones demonstrated negative binding energies and close proximity to residues in the binding pocket of PTP1B and α-glucosidase, indicating that these plastoquinones have high affinity and tight binding capacity towards the active site of the enzymes. These results demonstrate that S. serratifolium and its major plastoquinones may have the potential as functional food ingredients for the prevention and treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Md Yousof Ali
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| | - Da Hye Kim
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| | - Su Hui Seong
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| | - Hyeung-Rak Kim
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| | - Hyun Ah Jung
- Department of Food Science and Human Nutrition, Chonbuk National University, Jeonju 54896, Korea.
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| |
Collapse
|