101
|
Das B, Toraman S. Deep transfer learning for automated liver cancer gene recognition using spectrogram images of digitized DNA sequences. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
102
|
Li YJ, Liu RP, Ding MN, Zheng Q, Wu JZ, Xue XY, Gu YQ, Ma BN, Cai YJ, Li S, Lin S, Zhang LY, Li X. Tetramethylpyrazine prevents liver fibrotic injury in mice by targeting hepatocyte-derived and mitochondrial DNA-enriched extracellular vesicles. Acta Pharmacol Sin 2022; 43:2026-2041. [PMID: 35027662 PMCID: PMC9343419 DOI: 10.1038/s41401-021-00843-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/10/2021] [Indexed: 12/13/2022]
Abstract
Liver fibrosis is the common consequence of almost all liver diseases and has become an urgent clinical problem without efficient therapies. Recent evidence has shown that hepatocytes-derived extracellular vesicles (EVs) play important roles in liver pathophysiology, but little is known about the role of damaged hepatocytes-derived EVs in hepatic stellate cell (HSC) activation and following fibrosis. Tetramethylpyrazine (TMP) from Ligusticum wallichii Franchat exhibits a broad spectrum of biological activities including liver protection. In this study, we investigated whether TMP exerted liver-protective action through regulating EV-dependent intercellular communication between hepatocytes and HSCs. Chronic liver injury was induced in mice by CCl4 (1.6 mg/kg, i.g.) twice a week for 8 weeks. In the last 4 weeks of CCl4 administration, mice were given TMP (40, 80, 160 mg·kg-1·d-1, i.g.). Acute liver injury was induced in mice by injection of a single dose of CCl4 (0.8 mg/kg, i.p.). After injection, mice were treated with TMP (80 mg/kg) every 24 h. We showed that TMP treatment dramatically ameliorated CCl4-induced oxidative stress and hepatic inflammation as well as acute or chronic liver fibrosis. In cultured mouse primary hepatocytes (MPHs), treatment with CCl4 or acetaminophen resulted in mitochondrial dysfunction, release of mitochondrial DNA (mtDNA) from injured hepatocytes to adjacent hepatocytes and HSCs through EVs, mediating hepatocyte damage and fibrogenic responses in activated HSCs; pretreatment of MPHs with TMP (25 μM) prevented all these pathological effects. Transplanted serum EVs from TMP-treated mice prevented both initiation and progression of liver fibrosis caused by CCl4. Taken together, this study unravels the complex mechanisms underlying the protective effects of TMP against mtDNA-containing EV-mediated hepatocyte injury and HSC activation during liver injury, and provides critical evidence inspiring the development of TMP-based innovative therapeutic agents for the treatment of liver fibrosis.
Collapse
|
103
|
Tian F, Cai D. Overexpressed GNAZ predicts poor outcome and promotes G0/G1 cell cycle progression in hepatocellular carcinoma. Gene 2022; 807:145964. [PMID: 34530087 DOI: 10.1016/j.gene.2021.145964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/19/2021] [Accepted: 09/09/2021] [Indexed: 01/11/2023]
Abstract
AIMS We aimed to investigate the role of G protein subunit alpha Z(GNAZ) in the progression and prognosis of patients with hepatocellular carcinoma (HCC). METHODS Oncomine, GEO, TCGA, GEPIA2, Kaplan-Meier Plotter, TIMER2, Metascape, CCLE, LinkedOmics, and UALCAN databases were used to analyze the differential expression of GNAZ in HCC and normal liver tissues, relationship between GNAZ expression and prognosis of patients with HCC, and expression of GNAZ in common human HCC cell lines. Western blotting was performed to analyze GNAZ expression, while the Cell Counting Kit 8 assay was used to determine cell proliferation, and flow cytometry was used to evaluate the cell cycle and apoptosis. Wound healing and transwell invasion assays were used to investigate cell metastasis and invasion. RESULTS Using Oncomine, Gene Expression Omnibus (GEO), and GEPIA2 databases, GNAZ was found to be overexpressed in HCC tissues compared with that in adjacent normal liver tissues, and western blotting analysis showed GNAZ overexpression in seven patients with HCC who underwent surgical resection of HCC and para-cancerous tissues (p < 0.01). Survival analysis revealed that high GNAZ expression was negatively associated with overall survival (OS), recurrence-free survival, progression-free survival, and disease-specific survival in patients with HCC (p < 0.05). GNAZ overexpression was associated with worse 4- month, 6- month, 12- month, 24- month, 36- month, 48- month, and 60-month OS, as well as with different clinicopathological characteristics of patients with HCC, including hepatitis virus infection state; alcohol consumption state; male; female; Asian; microvascular invasion, Stage I-II, Stage II-III, and Stage III-IV; and grade II (Cox regression, p < 0.05). KEGG/GO biological process enrichment indicated that the genes similar to GNAZ in HCC were mainly enriched in the cell cycle, cell cycle phase transition, DNA replication checkpoint, and regulation of G0 to G1 transition. siRNA-GNAZ significantly reduced the viability of JHH-2 and SNU-761 cells from 12 to 96 h; increased the percentage of cells in the G0/G1 phase and decreased that of cells in the S and G2/M phases (p < 0.05); and markedly downregulated the expression of cyclin D, cyclin E, and CDK2 protein. siRNA-GNAZ also significantly increased the percentage of JHH-2 and SNU-761 cell apoptosis at late stages, while the number of surviving cells decreased (p < 0.05), and upregulated the expression of apoptosis-related proteins Bax and caspase 3 protein. Furthermore, siRNA-GNAZ remarkably reduced the healing of scratch wounds in JHH-2 and SNU-761 cells and the number of invasive cells compared with that in the control group (p < 0.001). CONCLUSION Our study demonstrated that GNAZ plays a pivotal role as a potential oncogene and predicts poor prognosis in patients with HCC. It promotes tumor proliferation via cell cycle arrest, apoptosis, migration, and invasion. Thus, GNAZ may be a potential candidate biomarker providing useful insight into hepatocarcinogenesis and aggressiveness.
Collapse
Affiliation(s)
- Feng Tian
- Department of General Surgery, Lishui People's Hospital, the Six Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
| | - Daxia Cai
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Research, Lishui Central Hospital, Zhejiang University Lishui Hospital, The Fifth Affiliated Hospital of Wenzhou Medical College, Lishui, Zhejiang, China.
| |
Collapse
|
104
|
Li Y, Wu J, Liu R, Zhang Y, Li X. Extracellular vesicles: catching the light of intercellular communication in fibrotic liver diseases. Theranostics 2022; 12:6955-6971. [PMID: 36276639 PMCID: PMC9576620 DOI: 10.7150/thno.77256] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/20/2022] [Indexed: 02/05/2023] Open
Abstract
The increasing prevalence of fibrotic liver diseases resulting from different etiologies has become a major global problem for public health. Fibrotic liver diseases represent a redundant accumulation of extracellular matrix, dysregulation of immune homeostasis and angiogenesis, which eventually contribute to the progression of cirrhosis and liver malignancies. The concerted actions among liver cells including hepatocytes, hepatic stellate cells, kupffer cells, liver sinusoidal endothelial cells and other immune cells are essential for the outcome of liver fibrosis. Recently, a growing body of literature has highlighted that extracellular vesicles (EVs) are critical mediators of intercellular communication among different liver cells either in local or distant microenvironments, coordinating a variety of systemic pathological and physiological processes. Despite the increasing interests in this field, there are still relatively few studies to classify the contents and functions of EVs in intercellular transmission during hepatic fibrogenesis. This review aims to summarize the latest findings with regards to the cargo loading, release, and uptake of EVs in different liver cells and clarify the significant roles of EVs played in fibrotic liver diseases.
Collapse
Affiliation(s)
- Yijie Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jianzhi Wu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yinhao Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
- ✉ Corresponding author: Xiaojiaoyang Li, Ph.D., School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China. E-mail:
| |
Collapse
|
105
|
Yao S, Yin X, Chen T, Chen W, Zuo H, Bi Z, Zhang X, Jing Y, Pang L, Cheng H. ALDH2 is a prognostic biomarker and related with immune infiltrates in HCC. Am J Cancer Res 2021; 11:5319-5337. [PMID: 34873463 PMCID: PMC8640816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023] Open
Abstract
Hepatocellular carcinoma is a malignant type of carcinoma with complicated pathogenesis. For HCC patients, there is not only a lack of valuable therapeutic targets, but also a lack of prognostic biomarker. The protein encoded by Aldehyde Dehydrogenase 2 Family Member (ALDH2) is a critical member of the aldehyde dehydrogenase family. Many researchers have found that ALDH2 mutations play an important role in the activation of hepatocellular carcinoma carcinogenic pathways. However, the clinicopathological meaning of ALDH2 in HCC and its relation with immune infiltration is still indistinguishable. In this study, we explored the expression of ALDH2 in 41 HCC tissues by immunohistochemistry. The clinicopathological meaning and molecular function of ALDH2 were analyzed and evaluated through comprehensive bioinformatics. ALDH2 expression in HCC was validated in TCGA, GEO and Oncomine databases, and a survival of ALDH2 based on TCGA database was analysed. LinkedOmics was used to classify the co-expressed genes of ALDH2 and its regulatory factors. The relation between ALDH2 and immune infiltration in HCC was further explored by TIMER. IHC results showed decreased levels of ALDH2 in HCC tumor tissues compared with corresponding normal liver tissues. The pathological grade and prognosis of patients with low expression of the ALDH2 gene were worse. Bioinformatics analysis results showed that ALDH2 was considerably down-regulated in cancer tissues compared with corresponding normal liver tissues in 8 GEO series and TCGA profile (all P<0.05). A nomogram was designed using expression of ALDH2 and clinical factors. ALDH2 was correlated with dendritic cells and macrophages in immune infiltration. In conclusion, ALDH2 has significant prognostic value in hepatocellular carcinoma and they may play key roles in regulating tumor progression and the immune cells infiltration. Our results suggest that ALDH2 may be a new type of tumor biomarker, which can be used to judge the prognosis, targeted therapy and immunotherapy of patients with HCC.
Collapse
Affiliation(s)
- Senbang Yao
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei 230601, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei 230032, Anhui, China
| | - Xiangxiang Yin
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei 230601, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei 230032, Anhui, China
| | - Tingting Chen
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei 230601, Anhui, China
| | - Wenjun Chen
- Department of Oncology, Anhui Medical UniversityHefei 230032, Anhui, China
- Department of Oncology, Anhui Chest HospitalHefei 230061, Anhui, China
| | - He Zuo
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei 230601, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei 230032, Anhui, China
| | - Ziran Bi
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei 230601, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei 230032, Anhui, China
| | - Xiuqing Zhang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei 230601, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei 230032, Anhui, China
| | - Yanyan Jing
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei 230601, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei 230032, Anhui, China
| | - Lulian Pang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei 230601, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei 230032, Anhui, China
| | - Huaidong Cheng
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei 230601, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei 230032, Anhui, China
| |
Collapse
|
106
|
Desoteux M, Louis C, Bévant K, Glaise D, Coulouarn C. A Minimal Subset of Seven Genes Associated with Tumor Hepatocyte Differentiation Predicts a Poor Prognosis in Human Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:5624. [PMID: 34830779 PMCID: PMC8616205 DOI: 10.3390/cancers13225624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 12/23/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a deadly cancer worldwide as a result of a frequent late diagnosis which limits the therapeutic options. Tumor progression in HCC is closely correlated with the dedifferentiation of hepatocytes, the main parenchymal cells in the liver. Here, we hypothesized that the expression level of genes reflecting the differentiation status of tumor hepatocytes could be clinically relevant in defining subsets of patients with different clinical outcomes. To test this hypothesis, an integrative transcriptomics approach was used to stratify a cohort of 139 HCC patients based on a gene expression signature established in vitro in the HepaRG cell line using well-controlled culture conditions recapitulating tumor hepatocyte differentiation. The HepaRG model was first validated by identifying a robust gene expression signature associated with hepatocyte differentiation and liver metabolism. In addition, the signature was able to distinguish specific developmental stages in mice. More importantly, the signature identified a subset of human HCC associated with a poor prognosis and cancer stem cell features. By using an independent HCC dataset (TCGA consortium), a minimal subset of seven differentiation-related genes was shown to predict a reduced overall survival, not only in patients with HCC but also in other types of cancers (e.g., kidney, pancreas, skin). In conclusion, the study identified a minimal subset of seven genes reflecting the differentiation status of tumor hepatocytes and clinically relevant for predicting the prognosis of HCC patients.
Collapse
Affiliation(s)
- Matthis Desoteux
- Inserm, Univ. Rennes, UMR1242, Chemistry Oncogenesis Stress Signaling (COSS), 35042 Rennes, France; (M.D.); (C.L.); (K.B.)
| | - Corentin Louis
- Inserm, Univ. Rennes, UMR1242, Chemistry Oncogenesis Stress Signaling (COSS), 35042 Rennes, France; (M.D.); (C.L.); (K.B.)
| | - Kevin Bévant
- Inserm, Univ. Rennes, UMR1242, Chemistry Oncogenesis Stress Signaling (COSS), 35042 Rennes, France; (M.D.); (C.L.); (K.B.)
| | - Denise Glaise
- Inserm, Univ. Rennes, UMR991, Liver Metabolisms and Cancer, 35043 Rennes, France;
| | - Cédric Coulouarn
- Inserm, Univ. Rennes, UMR1242, Chemistry Oncogenesis Stress Signaling (COSS), 35042 Rennes, France; (M.D.); (C.L.); (K.B.)
| |
Collapse
|
107
|
Lam BQ, Srivastava R, Morvant J, Shankar S, Srivastava RK. Association of Diabetes Mellitus and Alcohol Abuse with Cancer: Molecular Mechanisms and Clinical Significance. Cells 2021; 10:cells10113077. [PMID: 34831299 PMCID: PMC8620339 DOI: 10.3390/cells10113077] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/28/2021] [Accepted: 11/06/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus (DM), one of the metabolic diseases which is characterized by sustained hyperglycemia, is a life-threatening disease. The global prevalence of DM is on the rise, mainly in low- and middle-income countries. Diabetes is a major cause of blindness, heart attacks, kidney failure, stroke, and lower limb amputation. Type 2 diabetes mellitus (T2DM) is a form of diabetes that is characterized by high blood sugar and insulin resistance. T2DM can be prevented or delayed by a healthy diet, regular physical activity, maintaining normal body weight, and avoiding alcohol and tobacco use. Ethanol and its metabolites can cause differentiation defects in stem cells and promote inflammatory injury and carcinogenesis in several tissues. Recent studies have suggested that diabetes can be treated, and its consequences can be avoided or delayed with proper management. DM has a greater risk for several cancers, such as breast, colorectal, endometrial, pancreatic, gallbladder, renal, and liver cancer. The incidence of cancer is significantly higher in patients with DM than in those without DM. In addition to DM, alcohol abuse is also a risk factor for many cancers. We present a review of the recent studies investigating the association of both DM and alcohol abuse with cancer incidence.
Collapse
Affiliation(s)
- Bao Q. Lam
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (B.Q.L.); (S.S.)
| | - Rashmi Srivastava
- Department of Pharmacology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA;
| | - Jason Morvant
- Department of Surgery, Ochsner Health System, 120 Ochsner Boulevard, Gretna, LA 70056, USA;
- A.B. Freeman School of Business, Tulane University, New Orleans, LA 70118, USA
| | - Sharmila Shankar
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (B.Q.L.); (S.S.)
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
- John W. Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA
| | - Rakesh K. Srivastava
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (B.Q.L.); (S.S.)
- A.B. Freeman School of Business, Tulane University, New Orleans, LA 70118, USA
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
- Correspondence:
| |
Collapse
|
108
|
Guo Y, Hu J, Zhao Z, Zhong G, Gong J, Cai D. Identification of a Prognostic Model Based on 2-Gene Signature and Analysis of Corresponding Tumor Microenvironment in Alcohol-Related Hepatocellular Carcinoma. Front Oncol 2021; 11:719355. [PMID: 34646769 PMCID: PMC8503534 DOI: 10.3389/fonc.2021.719355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignant tumors with the poor prognosis. Nowadays, alcohol is becoming a leading risk factor of HCC in many countries. In our study, we obtained the DEGs in alcohol-related HCC through two databases (TCGA and GEO). Subsequently, we performed enrichment analyses (GO and KEGG), constructed the PPI network and screened the 53 hub genes by Cytoscape. Two genes (BUB1B and CENPF) from hub genes was screened by LASSO and Cox regression analyses to construct the prognostic model. Then, we found that the high risk group had the worse prognosis and verified the clinical value of the risk score in alcohol-related HCC. Finally, we analyzed the tumor microenvironment between high and low risk groups through CIBERSORT and ESTIMATE. In summary, we constructed the two-gene prognostic model that could predict the poor prognosis in patients with alcohol-related HCC.
Collapse
Affiliation(s)
- Yong Guo
- Department of Hepatobiliary Surgery, People's Hospital of Changshou, Chongqing, China
| | - Jiejun Hu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhibo Zhao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guochao Zhong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianping Gong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dong Cai
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
109
|
Huang SP, Li CH, Chang WM, Lin YF. BICD Cargo Adaptor 1 (BICD1) Downregulation Correlates with a Decreased Level of PD-L1 and Predicts a Favorable Prognosis in Patients with IDH1-Mutant Lower-Grade Gliomas. BIOLOGY 2021; 10:biology10080701. [PMID: 34439934 PMCID: PMC8389329 DOI: 10.3390/biology10080701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary The hypoxic inducible factor 1A (HIF1A) pathway has been known to play an important role in tumor progression in various cancers, including lower-grade (Grade II/III) gliomas (LGGs). An in silico analysis using 34 genes associated with the activity of the HIF1A pathway demonstrated that the BICD cargo adaptor 1 (BICD1) gene is a potential prognostic marker in LGGs. Moreover, BICD1 gene (BICD1) expression was positively correlated with CD274, GSK3B, HGF, and STAT3 expression in LGGs. Importantly, BICD1 downregulation was significantly associated with well-known favorable prognostic markers, such as a higher Karnofsky performance score (KPS), IDH1/TP53/ATRX mutations, wild-type EGFR and younger patient age, in LGGs. Therefore, our findings present BICD1 as a new prognostic biomarker to more precisely predict the clinical outcomes of LGG patients in coordination with those well-known biomarkers. Abstract Although several biomarkers have been identified to predict the prognosis of lower-grade (Grade II/III) gliomas (LGGs), we still need to identify new markers to facilitate those well-known markers to obtain more accurate prognosis prediction in LGGs. Bioinformatics data from The Cancer Genome Atlas (TCGA), the Chinese Glioma Genome Atlas (CGGA), and the Cancer Cell Line Encyclopedia (CCLE) datasets were used as the research materials. In total, 34 genes associated with the HIF1A pathway were analyzed using the hierarchical method to search for the most compatible gene. The BICD cargo adaptor 1 (BICD1) gene (BICD1) was shown to be significantly correlated with The hypoxic inducible factor 1A (HIF1A) expression, the World Health Organization (WHO) grade, and IDH1 mutation status. In addition, BICD1 downregulation was significantly correlated with a higher Karnofsky performance score (KPS), IDH1/TP53/ATRX mutations, wild-type EGFR, and younger patient age in the enrolled LGG cohort. Moreover, BICD1 expression was significantly upregulated in wild-type IDH1 LGGs with EGFR mutations. Kaplan–Meier survival analysis revealed that BICD1 downregulation predicts a favorable overall survival (OS) in LGG patients, especially in those with IDH1 mutations. Intriguingly, we found a significant correlation between BICD1 downregulation and a decreased level of CD274, GSK3B, HGF, or STAT3 in LGGs. Our findings suggest that BICD1 downregulation could be a potential biomarker for a favorable prognosis of LGGs.
Collapse
Affiliation(s)
- Shang-Pen Huang
- Center of General Education, Chung Hua University, Hsinchu 707, Taiwan;
- Department of Neurology, Po-Jen General Hospital, Taipei 105, Taiwan
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan;
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Law, School of Law, Ming Chuan University, Taipei 111, Taiwan
| | - Chien-Hsiu Li
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan;
| | - Wei-Min Chang
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: (W.-M.C.); (Y.-F.L.); Tel.: +886-2-2736-1661 (ext. 5118) (W.-M.C.); +886-2-2736-1661 (ext. 3106) (Y.-F.L.)
| | - Yuan-Feng Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Correspondence: (W.-M.C.); (Y.-F.L.); Tel.: +886-2-2736-1661 (ext. 5118) (W.-M.C.); +886-2-2736-1661 (ext. 3106) (Y.-F.L.)
| |
Collapse
|
110
|
Michalak A, Lach T, Cichoż-Lach H. Oxidative Stress-A Key Player in the Course of Alcohol-Related Liver Disease. J Clin Med 2021; 10:3011. [PMID: 34300175 PMCID: PMC8303854 DOI: 10.3390/jcm10143011] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress is known to be an inseparable factor involved in the presentation of liver disorders. Free radicals interfere with DNA, proteins, and lipids, which are crucial in liver metabolism, changing their expression and biological functions. Additionally, oxidative stress modifies the function of micro-RNAs, impairing the metabolism of hepatocytes. Free radicals have also been proven to influence the function of certain transcriptional factors and to alter the cell cycle. The pathological appearance of alcohol-related liver disease (ALD) constitutes an ideal example of harmful effects due to the redox state. Finally, ethanol-induced toxicity and overproduction of free radicals provoke irreversible changes within liver parenchyma. Understanding the underlying mechanisms associated with the redox state in the course of ALD creates new possibilities of treatment for patients. The future of hepatology may become directly dependent on the effective action against reactive oxygen species. This review summarizes current data on the redox state in the natural history of ALD, highlighting the newest reports on this topic.
Collapse
Affiliation(s)
- Agata Michalak
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland;
| | - Tomasz Lach
- Department of Orthopedics and Traumatology, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland;
| | - Halina Cichoż-Lach
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland;
| |
Collapse
|
111
|
The role of ALDH2 in tumorigenesis and tumor progression: Targeting ALDH2 as a potential cancer treatment. Acta Pharm Sin B 2021; 11:1400-1411. [PMID: 34221859 PMCID: PMC8245805 DOI: 10.1016/j.apsb.2021.02.008] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
A major mitochondrial enzyme for protecting cells from acetaldehyde toxicity is aldehyde dehydrogenase 2 (ALDH2). The correlation between ALDH2 dysfunction and tumorigenesis/growth/metastasis has been widely reported. Either low or high ALDH2 expression contributes to tumor progression and varies among different tumor types. Furthermore, the ALDH2∗2 polymorphism (rs671) is the most common single nucleotide polymorphism (SNP) in Asia. Epidemiological studies associate ALDH2∗2 with tumorigenesis and progression. This study summarizes the essential functions and potential ALDH2 mechanisms in the occurrence, progression, and treatment of tumors in various types of cancer. Our study indicates that ALDH2 is a potential therapeutic target for cancer therapy.
Collapse
Key Words
- 4-HNE, 4-hydroxy-2-nonenal
- ALD, alcoholic liver disease
- ALDH2
- ALDH2, aldehyde dehydrogenase 2
- AMPK, AMP-activated protein kinase
- Acetaldehyde
- BCa, bladder cancer
- COUP-TF, chicken ovalbumin upstream promoter-transcription factor
- CRC, colorectal cancer
- CSCs, cancer stem cells
- Cancer
- Cancer therapy
- DFS, disease-free survival
- EC, esophageal cancer
- FA, Fanconi anemia
- FANCD2, Fanconi anemia protein
- GCA, gastric cancer
- HCC, hepatocellular carcinoma
- HDACs, histone deacetylases
- HNC, head and neck cancer
- HNF-4, hepatocyte nuclear factor 4
- HR, homologous recombination
- LCSCs, liver cancer stem cells
- MDA, malondialdehyde
- MDR, multi-drug resistance
- MN, micronuclei
- Metastasis
- NAD, nicotinamide adenine dinucleotide
- NCEs, normochromic erythrocytes
- NER, nucleotide excision repair pathway
- NF-κB, nuclear factor-κB
- NHEJ, non-homologous end-joining
- NRF2, nuclear factor erythroid 2 (NF-E2)-related factor 2
- NRRE, nuclear receptor response element
- NSCLC, non-small-cell lung
- NeG, 1,N2-etheno-dGuo
- OPC, oropharyngeal cancer
- OS, overall survival
- OvCa, ovarian cancer
- PBMC, peripheral blood mononuclear cell
- PC, pancreatic cancer
- PdG, N2-propano-2′-deoxyguanosine
- Polymorphism
- Progression
- REV1, Y-family DNA polymerase
- SCC, squamous cell carcinoma
- TGF-β, transforming growth factor β
- Tumorigenesis
- VHL, von Hippel-Lindau
- ccRCC, clear-cell renal cell carcinomas
- εPKC, epsilon protein kinase C
Collapse
|
112
|
Hyun J, Han J, Lee C, Yoon M, Jung Y. Pathophysiological Aspects of Alcohol Metabolism in the Liver. Int J Mol Sci 2021; 22:5717. [PMID: 34071962 PMCID: PMC8197869 DOI: 10.3390/ijms22115717] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
Alcoholic liver disease (ALD) is a globally prevalent chronic liver disease caused by chronic or binge consumption of alcohol. The liver is the major organ that metabolizes alcohol; therefore, it is particularly sensitive to alcohol intake. Metabolites and byproducts generated during alcohol metabolism cause liver damage, leading to ALD via several mechanisms, such as impairing lipid metabolism, intensifying inflammatory reactions, and inducing fibrosis. Despite the severity of ALD, the development of novel treatments has been hampered by the lack of animal models that fully mimic human ALD. To overcome the current limitations of ALD studies and therapy development, it is necessary to understand the molecular mechanisms underlying alcohol-induced liver injury. Hence, to provide insights into the progression of ALD, this review examines previous studies conducted on alcohol metabolism in the liver. There is a particular focus on the occurrence of ALD caused by hepatotoxicity originating from alcohol metabolism.
Collapse
Affiliation(s)
- Jeongeun Hyun
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea;
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan 31116, Korea
| | - Jinsol Han
- Department of Integrated Biological Science, Pusan National University, Pusan 46241, Korea; (J.H.); (C.L.)
| | - Chanbin Lee
- Department of Integrated Biological Science, Pusan National University, Pusan 46241, Korea; (J.H.); (C.L.)
| | - Myunghee Yoon
- Department of Surgery, Division of Hepatobiliary and Pancreas Surgery, Biomedical Research Institute, Pusan National University, Pusan 46241, Korea;
| | - Youngmi Jung
- Department of Integrated Biological Science, Pusan National University, Pusan 46241, Korea; (J.H.); (C.L.)
- Department of Biological Sciences, Pusan National University, Pusan 46241, Korea
| |
Collapse
|
113
|
Yang K, Ren J, Li X, Wang Z, Xue L, Cui S, Sang W, Xu T, Zhang J, Yu J, Liu Z, Shang H, Pang J, Huang X, Chen Y, Xu F. Prevention of aortic dissection and aneurysm via an ALDH2-mediated switch in vascular smooth muscle cell phenotype. Eur Heart J 2021; 41:2442-2453. [PMID: 32428930 DOI: 10.1093/eurheartj/ehaa352] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/17/2020] [Indexed: 12/27/2022] Open
Abstract
AIMS Aortic aneurysm/dissection (AAD) is a life-threatening disorder lacking effective pharmacotherapeutic remedies. Aldehyde dehydrogenase 2 (ALDH2) polymorphism is tied with various risk factors for AAD including hypertension, atherosclerosis, and hypercholesterolaemia although direct correlation between the two remains elusive. METHODS AND RESULTS Two independent case-control studies were conducted involving 307 AAD patients and 399 healthy controls in two geographically distinct areas in China. Our data revealed that subjects carrying mutant ALDH2 gene possessed a ∼50% reduced risk of AAD compared with wild-type (WT) alleles. Using 3-aminopropionitrile fumarate (BAPN)- and angiotensin II (Ang II)-induced AAD animal models, inhibition of ALDH2 was found to retard development of AAD. Mechanistically, ALDH2 inhibition ablated pathological vascular smooth muscle cell (VSMC) phenotypical switch through interaction with myocardin, a determinant of VSMC contractile phenotype. Using microarray and bioinformatics analyses, ALDH2 deficiency was found to down-regulate miR-31-5p, which further altered myocardin mRNA level. Gain-of-function and loss-of-function studies verified that miR-31-5p significantly repressed myocardin level and aggravated pathological VSMC phenotypical switch and AAD, an effect that was blunted by ALDH2 inhibition. We next noted that ALDH2 deficiency increased Max expression and decreased miR-31-5p level. Moreover, ALDH2 mutation or inhibition down-regulated levels of miR-31-5p while promoting myocardin downstream contractile genes in the face of Ang II in primary human VSMCs. CONCLUSIONS ALDH2 deficiency is associated with a lower risk of AAD in patients and mice, possibly via suppressing VSMC phenotypical switch in a miR-31-5p-myocardin-dependent manner. These findings favour a role for ALDH2 and miR-31-5p as novel targets for AAD therapy.
Collapse
Affiliation(s)
- Kehui Yang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan 250012, China.,Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan 250012, China.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan 250012, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan 250012, China
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China.,Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, 1000 E. University Avenue, Laramie, WY 82071, USA
| | - Xin Li
- Department of Emergency Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Road II, Guangzhou 510080, China
| | - Zheng Wang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan 250012, China.,Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan 250012, China.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan 250012, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan 250012, China
| | - Li Xue
- Department of Emergency Medicine, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan 250012, China.,Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan 250012, China.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan 250012, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan 250012, China
| | - Sumei Cui
- Department of Emergency Medicine, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan 250012, China.,Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan 250012, China.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan 250012, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan 250012, China
| | - Wentao Sang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan 250012, China.,Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan 250012, China.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan 250012, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan 250012, China
| | - Tonghui Xu
- Department of Emergency Medicine, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan 250012, China.,Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan 250012, China.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan 250012, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan 250012, China
| | - Jian Zhang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan 250012, China.,Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan 250012, China.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan 250012, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan 250012, China
| | - Jieqiong Yu
- Department of Emergency Medicine, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan 250012, China.,Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan 250012, China.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan 250012, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan 250012, China
| | - Zhiping Liu
- Center of Intelligent Medical Engineering, School of Control Science and Engineering, Shandong University, 17923 Jingshi Road, Jinan 250061, China
| | - Haixia Shang
- Center of Intelligent Medical Engineering, School of Control Science and Engineering, Shandong University, 17923 Jingshi Road, Jinan 250061, China
| | - Jiaojiao Pang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan 250012, China.,Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan 250012, China.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan 250012, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan 250012, China
| | - Xiaoran Huang
- Department of Emergency Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Road II, Guangzhou 510080, China
| | - Yuguo Chen
- Department of Emergency Medicine, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan 250012, China.,Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan 250012, China.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan 250012, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan 250012, China
| | - Feng Xu
- Department of Emergency Medicine, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan 250012, China.,Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan 250012, China.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan 250012, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan 250012, China
| |
Collapse
|
114
|
Liu SX, Du YC, Zeng T. A mini-review of the rodent models for alcoholic liver disease: shortcomings, application, and future prospects. Toxicol Res (Camb) 2021; 10:523-530. [PMID: 34141166 DOI: 10.1093/toxres/tfab042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/19/2022] Open
Abstract
Rodents are the most common models in studies of alcoholic liver disease (ALD). Although several rodents ALD models have been established and multiple mechanisms have been elucidated based on them, these models have some non-negligible shortcomings, specifically only inducing early stage (mainly steatosis, slight to moderate steatohepatitis) but not the whole spectrum of human ALD. The resistance of rodents to advanced ALD has been suggested to be due to the physiological differences between rodents and human beings. Previous studies have reported significant interstrain differences in the susceptibility to ethanol-induced liver injury and in the manifestation of ALD (such as different alteration of lipid profiles). Therefore, it would be interesting to characterize the manifestation of ethanol-induced liver damage in various rodents, which may provide a recommendation to investigators of ALD. Furthermore, more severe ALD models need to be established for the study of serious ALD forms, which may be achieved by using genetic modified rodents.
Collapse
Affiliation(s)
- Shi-Xuan Liu
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Yan-Chao Du
- Jinan Institute for Product Quality Inspection, 1311 Longao Bei Road, Jinan, Shandong, 250102, China
| | - Tao Zeng
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, China
| |
Collapse
|
115
|
Jiang N, Davies S, Jiao Y, Blyth J, Butt H, Montelongo Y, Yetisen AK. Doubly Photopolymerized Holographic Sensors. ACS Sens 2021; 6:915-924. [PMID: 33557517 DOI: 10.1021/acssensors.0c02109] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Holographic sensors are two-dimensional (2D) photonic crystals that diffract narrow-band light in the visible spectrum to quantify analytes in aqueous solutions. Here, a holographic fabrication setup was developed to produce holographic sensors through a doubly polymerization system of a poly-2-hydroxyethyl methacrylate hydrogel film using a pulsed Nd:YAG laser (λ = 355 nm, 5 ns, 100 mJ). Wavelength shifts of holographic Bragg peak in response to alcohol species (0-100 vol %) were characterized. Diffraction spectra showed that the holographic sensors could be used for short-chain alcohols at concentrations up to 60 vol %. The reversibility of the sensor was demonstrated, exhibiting a response time of 7.5 min for signal saturation. After 30 cycles, the Bragg peak and color remained the same in both 20 and 60 vol %. The fabrication parameters were simulated in MATLAB using a 2D finite-difference time-domain algorithm to model the interference pattern and energy flux profile of laser beam recording in the hydrogel medium. This work demonstrates a particle-free holographic sensor that offers continuous, reversible, and rapid colorimetric readouts for the real-time quantification of alcohols.
Collapse
Affiliation(s)
- Nan Jiang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, U.K
| | - Sam Davies
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, U.K
| | - Yimeng Jiao
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, U.K
| | - Jeff Blyth
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, U.K
| | - Haider Butt
- Department of Mechanical Engineering, Khalifa University, Abu Dhabi 127788, UAE
| | - Yunuen Montelongo
- Centro de Investigaciones en Óptica, A.C., Colonia Lomas del campestre, PC, León 37150, Mexico
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, U.K
| | - Ali K. Yetisen
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, U.K
| |
Collapse
|
116
|
Guo X, Lin W, Wen W, Huyghe J, Bien S, Cai Q, Harrison T, Chen Z, Qu C, Bao J, Long J, Yuan Y, Wang F, Bai M, Abecasis GR, Albanes D, Berndt SI, Bézieau S, Bishop DT, Brenner H, Buch S, Burnett-Hartman A, Campbell PT, Castellví-Bel S, Chan AT, Chang-Claude J, Chanock SJ, Cho SH, Conti DV, Chapelle ADL, Feskens EJM, Gallinger SJ, Giles GG, Goodman PJ, Gsur A, Guinter M, Gunter MJ, Hampe J, Hampel H, Hayes RB, Hoffmeister M, Kampman E, Kang HM, Keku TO, Kim HR, Le Marchand L, Lee SC, Li CI, Li L, Lindblom A, Lindor N, Milne RL, Moreno V, Murphy N, Newcomb PA, Nickerson DA, Offit K, Pearlman R, Pharoah PDP, Platz EA, Potter JD, Rennert G, Sakoda LC, Schafmayer C, Schmit SL, Schoen RE, Schumacher FR, Slattery ML, Su YR, Tangen CM, Ulrich CM, van Duijnhoven FJB, Van Guelpen B, Visvanathan K, Vodicka P, Vodickova L, Vymetalkova V, Wang X, White E, Wolk A, Woods MO, Casey G, Hsu L, Jenkins MA, Gruber SB, Peters U, Zheng W. Identifying Novel Susceptibility Genes for Colorectal Cancer Risk From a Transcriptome-Wide Association Study of 125,478 Subjects. Gastroenterology 2021; 160:1164-1178.e6. [PMID: 33058866 PMCID: PMC7956223 DOI: 10.1053/j.gastro.2020.08.062] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 08/20/2020] [Accepted: 08/28/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND AIMS Susceptibility genes and the underlying mechanisms for the majority of risk loci identified by genome-wide association studies (GWAS) for colorectal cancer (CRC) risk remain largely unknown. We conducted a transcriptome-wide association study (TWAS) to identify putative susceptibility genes. METHODS Gene-expression prediction models were built using transcriptome and genetic data from the 284 normal transverse colon tissues of European descendants from the Genotype-Tissue Expression (GTEx), and model performance was evaluated using data from The Cancer Genome Atlas (n = 355). We applied the gene-expression prediction models and GWAS data to evaluate associations of genetically predicted gene-expression with CRC risk in 58,131 CRC cases and 67,347 controls of European ancestry. Dual-luciferase reporter assays and knockdown experiments in CRC cells and tumor xenografts were conducted. RESULTS We identified 25 genes associated with CRC risk at a Bonferroni-corrected threshold of P < 9.1 × 10-6, including genes in 4 novel loci, PYGL (14q22.1), RPL28 (19q13.42), CAPN12 (19q13.2), MYH7B (20q11.22), and MAP1L3CA (20q11.22). In 9 known GWAS-identified loci, we uncovered 9 genes that have not been reported previously, whereas 4 genes remained statistically significant after adjusting for the lead risk variant of the locus. Through colocalization analysis in GWAS loci, we additionally identified 12 putative susceptibility genes that were supported by TWAS analysis at P < .01. We showed that risk allele of the lead risk variant rs1741640 affected the promoter activity of CABLES2. Knockdown experiments confirmed that CABLES2 plays a vital role in colorectal carcinogenesis. CONCLUSIONS Our study reveals new putative susceptibility genes and provides new insight into the biological mechanisms underlying CRC development.
Collapse
Affiliation(s)
- Xingyi Guo
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee.
| | - Weiqiang Lin
- The Kidney Disease Center, the First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Jeroen Huyghe
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Stephanie Bien
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Tabitha Harrison
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Zhishan Chen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Conghui Qu
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jiandong Bao
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Yuan Yuan
- The Kidney Disease Center, the First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Fangqin Wang
- The Kidney Disease Center, the First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengqiu Bai
- The Kidney Disease Center, the First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Goncalo R Abecasis
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Stéphane Bézieau
- Service de Génétique Médicale, Centre Hospitalier Universitaire, Nantes, France
| | - D Timothy Bishop
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany; Division of Preventive Oncology, German Cancer Research Center and National Center for Tumor Diseases, Heidelberg, Germany
| | - Stephan Buch
- Department of Medicine I, University Hospital Dresden, Technische Universität Dresden, Dresden, Germany
| | | | - Peter T Campbell
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia
| | - Sergi Castellví-Bel
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, University of Barcelona, Barcelona, Spain
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany; University Medical Centre Hamburg-Eppendorf, University Cancer Centre Hamburg, Hamburg, Germany
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Sang Hee Cho
- Department of Hematology-Oncology, Chonnam National University Hospital, Hwasun, South Korea
| | - David V Conti
- Department of Preventive Medicine and University of Southern California Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Albert de la Chapelle
- Department of Cancer Biology and Genetics and the Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Edith J M Feskens
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, the Netherlands
| | - Steven J Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Phyllis J Goodman
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Andrea Gsur
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna, Vienna, Austria
| | - Mark Guinter
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia
| | - Marc J Gunter
- Nutrition and Metabolism Section, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Jochen Hampe
- Department of Medicine I, University Hospital Dresden, Technische Universität Dresden, Dresden, Germany
| | - Heather Hampel
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Richard B Hayes
- Division of Epidemiology, Department of Population Health, New York University School of Medicine, New York, New York
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
| | - Ellen Kampman
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, the Netherlands
| | - Hyun Min Kang
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan
| | - Temitope O Keku
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, North Carolina
| | - Hyeong Rok Kim
- Department of Surgery, Chonnam National University Hwasun Hospital and Medical School, Hwasun, Korea
| | | | - Soo Chin Lee
- National University Cancer Institute, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Christopher I Li
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Li Li
- Department of Family Medicine, University of Virginia, Charlottesville, Virginia
| | - Annika Lindblom
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | | | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Victor Moreno
- Oncology Data Analytics Program, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Neil Murphy
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia
| | - Polly A Newcomb
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington; School of Public Health, University of Washington, Seattle, Washington
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Kenneth Offit
- Clinical Genetics Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Rachel Pearlman
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Paul D P Pharoah
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Elizabeth A Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - John D Potter
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Gad Rennert
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel; Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Lori C Sakoda
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington; Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Clemens Schafmayer
- Department of General Surgery, University Hospital Rostock, Rostock, Germany
| | - Stephanie L Schmit
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Robert E Schoen
- Department of Medicine and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Fredrick R Schumacher
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Martha L Slattery
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Yu-Ru Su
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Catherine M Tangen
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Cornelia M Ulrich
- Huntsman Cancer Institute and Department of Population Health Sciences, University of Utah, Salt Lake City, Utah
| | | | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
| | - Kala Visvanathan
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Xiaoliang Wang
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Emily White
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Michael O Woods
- Memorial University of Newfoundland, Discipline of Genetics, St John's, Newfoundland and Labrador, Canada
| | - Graham Casey
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Li Hsu
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Stephen B Gruber
- Department of Preventive Medicine and University of Southern California Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Ulrike Peters
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
117
|
Wang Q, Chang B, Li X, Zou Z. Role of ALDH2 in Hepatic Disorders: Gene Polymorphism and Disease Pathogenesis. J Clin Transl Hepatol 2021; 9:90-98. [PMID: 33604259 PMCID: PMC7868706 DOI: 10.14218/jcth.2020.00104] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
Aldehyde dehydrogenase 2 (ALDH2) is a key enzyme of alcohol metabolism and it is involved in the cellular mechanism of alcohol liver disease. ALDH2 gene mutations exist in about 8% of the world's population, with the incidence reaching 45% in East Asia. The mutations will result in impairment of enzyme activity and accumulation of acetaldehyde, facilitating the progression of other liver diseases, including non-alcoholic fatty liver diseases, viral hepatitis and hepatocellular carcinoma, through adduct formation and inflammatory responses. In this review, we seek to summarize recent research progress on the correlation between ALDH2 gene polymorphism and multiple liver diseases, with an attempt to provide clues for better understanding of the disease mechanism and for strategy making.
Collapse
Affiliation(s)
- Qiaoling Wang
- Peking University, 302 Clinical Medical School, Beijing, China
- Diagnosis and Treatment Center for Non-Infectious Liver Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Binxia Chang
- Diagnosis and Treatment Center for Non-Infectious Liver Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaoyan Li
- Anhui Medical University, Hefei, Anhui, China
| | - Zhengsheng Zou
- Peking University, 302 Clinical Medical School, Beijing, China
- Diagnosis and Treatment Center for Non-Infectious Liver Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Correspondence to: Zhengsheng Zou, The Center for Diagnosis and Treatment of Non-Infectious Liver Disease, The General Hospital of Chinese People’s Liberation Army No. 5 Medical Science Center, No. 100 Xisihuan Middle Road, Beijing 100039, China. E-mail:
| |
Collapse
|
118
|
Du XY, Wen L, Hu YY, Deng SQ, Xie LC, Jiang GB, Yang GL, Niu YM. Association Between the Aldehyde Dehydrogenase-2 rs671 G>A Polymorphism and Head and Neck Cancer Susceptibility: A Meta-Analysis in East Asians. Alcohol Clin Exp Res 2021; 45:307-317. [PMID: 33283290 DOI: 10.1111/acer.14527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Aldehyde dehydrogenase-2 (ALDH2) plays an important role in the alcohol detoxification and acetaldehyde metabolism. Published studies have demonstrated some inconsistent associations between ALDH2 rs671 G>A polymorphism and head and neck cancer (HNC) risk. METHODS A meta-analysis was performed to provide pooled data on the association between the ALDH2 rs671 G>A polymorphism and HNC risk. Electronic databases were searched to identify relevant studies. Odds ratios and 95% confidence intervals (CIs) were used to examine the pooled effect size of each genetic model. In addition, heterogeneity test, accumulative analysis, sensitivity analysis, and publication bias were conducted to test the statistical power. RESULTS Thirteen publications (14 independent case-control studies) involving 10,939 subjects were selected. The stratified analysis indicated that both light/moderated drinking (e.g., GA vs. GG: OR = 1.47, 95% CI = 1.16 to 1.86, p < 0.01, I2 = 81.1%) and heavy drinking would increase HNC risk with rs671 G>A mutation (e.g., GA vs. GG: OR = 2.30, 95% CI = 1.11 to 4.77, p = 0.03, I2 = 81.9%). CONCLUSIONS In summary, this meta-analysis suggested that the ALDH2 rs671 G>A polymorphism may play an important synergistic effect in the pathogenesis of HNC development in East Asians.
Collapse
Affiliation(s)
- Xin-Ya Du
- From the, Department of Stomatology, (X-YD, G-LY, Y-MN), The People's Hospital of Longhua Shenzhen, Affiliated Longhua People's Hospital, Southern Medicine University, Shenzhen, China
| | - Li Wen
- Department of Dermatology, (LW), Suizhou Hospital, Hubei University of Medicine, Suizhou, China
| | - Yuan-Yuan Hu
- Department of Stomatology, (Y-YH, L-CX, Y-MN), Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China.,Department of Research Affair Management, (Y-YH, S-QD), Gongli Hospital, the Secondary Military Medical University, Shanghai, China.,Department of Radiology and Stomatology, (Y-YH, G-BJ), Suizhou Hospital, Hubei University of Medicine, Suizhou, China
| | - Sheng-Qiong Deng
- Department of Research Affair Management, (Y-YH, S-QD), Gongli Hospital, the Secondary Military Medical University, Shanghai, China
| | - Long-Chuan Xie
- Department of Stomatology, (Y-YH, L-CX, Y-MN), Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Guang-Bin Jiang
- Department of Radiology and Stomatology, (Y-YH, G-BJ), Suizhou Hospital, Hubei University of Medicine, Suizhou, China
| | - Gong-Li Yang
- From the, Department of Stomatology, (X-YD, G-LY, Y-MN), The People's Hospital of Longhua Shenzhen, Affiliated Longhua People's Hospital, Southern Medicine University, Shenzhen, China.,Department of Gastroenterology, (G-Li Y), Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| | - Yu-Ming Niu
- From the, Department of Stomatology, (X-YD, G-LY, Y-MN), The People's Hospital of Longhua Shenzhen, Affiliated Longhua People's Hospital, Southern Medicine University, Shenzhen, China.,Department of Stomatology, (Y-YH, L-CX, Y-MN), Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
119
|
Identification of Immune-Related Prognostic Biomarkers Associated with HPV-Positive Head and Neck Squamous Cell Carcinoma. J Immunol Res 2021; 2021:6661625. [PMID: 33506058 PMCID: PMC7810542 DOI: 10.1155/2021/6661625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/20/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022] Open
Abstract
Background As a type of malignant tumor, head and neck squamous cell carcinoma (HNSCC) seriously threatens human health. This study is aimed at constructing a new, reliable prognostic model. Method The gene expression profile data of HNSCC patients were downloaded from the Gene Expression Omnibus and The Cancer Genome Atlas databases. The immune-related differentially expressed genes (IRDEGs) related to HNSCC were identified. We then used Cox regression analysis and least absolute shrinkage and selection operator (LASSO) analysis to explore IRDEGs related to the HNSCC prognosis and to construct and validate a risk scoring model and used ESTIMATE to evaluate tumor immune infiltration in HNSCC patients. Finally, we validated IGSF5 expression and function in HNSCC cells. Results A total of 1,195 IRDEGs were found from the GSE65858 dataset. Thirty-one of the 1,195 IRDEGs were associated with the prognosis of HNSCC. Nine key IRDEGs were further selected using the LASSO method, and a risk scoring model was established for predicting the survival of HNSCC patients. According to the risk scoring model, the prognosis of patients in the high-risk group was worse than that of the low-risk group; the high-risk group had significantly higher immune scores than the low-risk group; and between the high- and low-risk samples, there were significant differences in the proportion of 10 types of cells, including naive cells, plasma cells, and resting CD4+ memory T cells. IGSF5 has low expression in HNSCC, and overexpression of IGSF5 significantly impaired HNSCC cell proliferation. Conclusion This prognostic risk assessment model can help systematically evaluate the survival prognosis of HNSCC patients and provides a new research direction for the improvement of the survival prognosis of HNSCC patients in clinical practice.
Collapse
|
120
|
Analysis of Clinical Characteristics of Hepatitis B and Alcohol-Related Liver Cancer. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:9752534. [PMID: 34840599 PMCID: PMC8616662 DOI: 10.1155/2021/9752534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/06/2021] [Accepted: 10/30/2021] [Indexed: 11/24/2022]
Abstract
In order to analyze the clinical characteristics of hepatitis B and alcohol-related liver cancer, this paper combines the investigation and analysis methods to analyze the clinical characteristics of hepatitis B and alcohol-related liver cancer, studies them in combination with the actual situation, and studies multiple parameters with statistical methods. Different causes of liver cancer have different pathogenic mechanisms, which may make the clinical characteristics of liver cancer different. This study mainly explores the difference in clinical characteristics between hepatitis B-related hepatocellular carcinoma and alcohol-related hepatocellular carcinoma. Through comparative analysis and analysis of the clinical characteristics of hepatitis B and alcohol-related liver cancer, the study found that hepatitis B and alcohol-related liver cancer have obvious differences in their impact mechanisms. Therefore, targeted prevention and diagnosis and treatment measures can be put forward on this basis to provide a theoretical reference for subsequent clinical treatment analysis of liver cancer.
Collapse
|
121
|
Dingler FA, Wang M, Mu A, Millington CL, Oberbeck N, Watcham S, Pontel LB, Kamimae-Lanning AN, Langevin F, Nadler C, Cordell RL, Monks PS, Yu R, Wilson NK, Hira A, Yoshida K, Mori M, Okamoto Y, Okuno Y, Muramatsu H, Shiraishi Y, Kobayashi M, Moriguchi T, Osumi T, Kato M, Miyano S, Ito E, Kojima S, Yabe H, Yabe M, Matsuo K, Ogawa S, Göttgens B, Hodskinson MRG, Takata M, Patel KJ. Two Aldehyde Clearance Systems Are Essential to Prevent Lethal Formaldehyde Accumulation in Mice and Humans. Mol Cell 2020; 80:996-1012.e9. [PMID: 33147438 PMCID: PMC7758861 DOI: 10.1016/j.molcel.2020.10.012] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/20/2020] [Accepted: 10/08/2020] [Indexed: 01/04/2023]
Abstract
Reactive aldehydes arise as by-products of metabolism and are normally cleared by multiple families of enzymes. We find that mice lacking two aldehyde detoxifying enzymes, mitochondrial ALDH2 and cytoplasmic ADH5, have greatly shortened lifespans and develop leukemia. Hematopoiesis is disrupted profoundly, with a reduction of hematopoietic stem cells and common lymphoid progenitors causing a severely depleted acquired immune system. We show that formaldehyde is a common substrate of ALDH2 and ADH5 and establish methods to quantify elevated blood formaldehyde and formaldehyde-DNA adducts in tissues. Bone-marrow-derived progenitors actively engage DNA repair but also imprint a formaldehyde-driven mutation signature similar to aging-associated human cancer mutation signatures. Furthermore, we identify analogous genetic defects in children causing a previously uncharacterized inherited bone marrow failure and pre-leukemic syndrome. Endogenous formaldehyde clearance alone is therefore critical for hematopoiesis and in limiting mutagenesis in somatic tissues.
Collapse
Affiliation(s)
- Felix A Dingler
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Meng Wang
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; Department of Haematology, University of Cambridge, Cambridge, UK
| | - Anfeng Mu
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto University, Kyoto, Japan; Department of Genome Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | | | - Nina Oberbeck
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Sam Watcham
- Department of Haematology, University of Cambridge, Cambridge, UK; Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Lucas B Pontel
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET, Polo Científico Tecnológico, Godoy Cruz 2390, C1425FQD Buenos Aires, Argentina
| | | | - Frederic Langevin
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Camille Nadler
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Rebecca L Cordell
- Department of Chemistry, University of Leicester, Leicester LE1 7RH, UK
| | - Paul S Monks
- Department of Chemistry, University of Leicester, Leicester LE1 7RH, UK
| | - Rui Yu
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Nicola K Wilson
- Department of Haematology, University of Cambridge, Cambridge, UK; Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Asuka Hira
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto University, Kyoto, Japan; Department of Genome Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Minako Mori
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto University, Kyoto, Japan; Department of Genome Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yusuke Okamoto
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto University, Kyoto, Japan; Department of Genome Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yusuke Okuno
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideki Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuichi Shiraishi
- Section of Genome Analysis Platform, Center for Cancer Genomic and Advanced Therapeutics, National Cancer Center, Tokyo, Japan
| | - Masayuki Kobayashi
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Hematology, Kyoto Katsura Hospital, Kyoto, Japan
| | | | - Tomoo Osumi
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Motohiro Kato
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Satoru Miyano
- Laboratory of DNA Information Analysis, Human Genome Center, The Institute of Medical Science, University of Tokyo, Tokyo Japan
| | - Etsuro Ito
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Seiji Kojima
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiromasa Yabe
- Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan
| | - Miharu Yabe
- Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan; Division of Analytical Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institute, Sweden; Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Berthold Göttgens
- Department of Haematology, University of Cambridge, Cambridge, UK; Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | | | - Minoru Takata
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto University, Kyoto, Japan; Department of Genome Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
| | - Ketan J Patel
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 2QQ, UK; MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK.
| |
Collapse
|
122
|
Zhang XN, Meng FG, Wang YR, Liu SX, Zeng T. Transformed ALDH2 -/- hepatocytes by ethanol could serve as a useful tool for studying alcoholic hepatocarcinogenesis. Med Hypotheses 2020; 146:110366. [PMID: 33208242 DOI: 10.1016/j.mehy.2020.110366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/16/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023]
Abstract
Alcohol is a well-recognized hepatic carcinogen. Alcohol is metabolized into genotoxic acetaldehyde in hepatocytes, which is catalyzed by aldehyde dehydrogenase 2 (ALDH2). The detailed underlying mechanisms of alcohol-related hepatocellular carcinoma (HCC) remains unclear, at least partially, due to the absence of appropriate experimental models. Current studies suggest that rodents are not good models of the most common liver diseases that trigger HCC including alcoholic liver injury. We hypothesize that ethanol could induce transformation of immortalized normal liver cells, which may serve as a versatile tool for studying alcoholic HCC. Besides, we believe that knockout of ALDH2 will help to shorten the time course of transformation, as ALDH2 deficiency will significantly increase the accumulation of acetaldehyde in hepatocytes. Using this model, the dynamic changes of carcinogenesis-related molecular events could be easily examined. Furthermore, the transformed cells isolated from soft agar could be inoculated to mice for studying invasion, metastasis, and also for screening prophylactics.
Collapse
Affiliation(s)
- Xiu-Ning Zhang
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Fan-Ge Meng
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yi-Ran Wang
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Shi-Xuan Liu
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Tao Zeng
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
123
|
Li W, Deng R, Liu S, Wang K, Sun J. Hepatitis B virus-related hepatocellular carcinoma in the era of antiviral therapy: The emerging role of non-viral risk factors. Liver Int 2020; 40:2316-2325. [PMID: 32666675 DOI: 10.1111/liv.14607] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/17/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC), one of the major malignant lethal tumours, is most prevalent in Asian patients with chronic hepatitis B virus (HBV) infection. Both viral and non-viral factors contribute to the development of HCC. It is established that viral factors associated with HBV DNA level, HBV genotype, designated gene mutation, HBV DNA integration, HBx protein, hepatitis B surface antigen (HBsAg), hepatitis B core-related antigen (HBcrAg) and HBV RNA are correlated with hepatocarcinogenesis. Before the introduction of antiviral therapy, viral factors once attracted more attention during the development of HCC. With the widespread use of antiviral therapy, predominantly nucleos(t)ide analogues (NAs), most patients with chronic hepatitis B (CHB) have achieved sustained viral control. The role of non-viral factors, especially modifiable factors, is anticipated to be reinforced in the future. Herein, we reviewed the modifiable non-viral risk factors of HBV-related HCC, in the hope of providing substantial evidence for further development of novel precautionary measures for HCC. In addition, the therapeutic interventions for reducing the risk of HCC, like potential conventional pharmaceutical interventions and lifestyle modification are also discussed in this review. Future studies that would explore the specific mechanism of HBV-related HCC development in patients with satisfactory viral control and related precision treatment are warranted.
Collapse
Affiliation(s)
- Wanying Li
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rui Deng
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shi Liu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kaifeng Wang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Sun
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
124
|
Kim YS, Kim SG. Endoplasmic reticulum stress and autophagy dysregulation in alcoholic and non-alcoholic liver diseases. Clin Mol Hepatol 2020; 26:715-727. [PMID: 32951410 PMCID: PMC7641579 DOI: 10.3350/cmh.2020.0173] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/31/2020] [Indexed: 12/15/2022] Open
Abstract
Alcoholic and non-alcoholic liver diseases begin from an imbalance in lipid metabolism in hepatocytes as the earliest response. Both liver diseases share common disease features and stages (i.e., steatosis, hepatitis, cirrhosis, and hepatocellular carcinoma). However, the two diseases have differential pathogenesis and clinical symptoms. Studies have elucidated the molecular basis underlying similarities and differences in the pathogenesis of the diseases; the factors contributing to the progression of liver diseases include depletion of sulfhydryl pools, enhanced levels of reactive oxygen and nitrogen intermediates, increased sensitivity of hepatocytes to toxic cytokines, mitochondrial dysfunction, and insulin resistance. Endoplasmic reticulum (ER) stress, which is caused by the accumulation of misfolded proteins and calcium depletion, contributes to the pathogenesis, often causing catastrophic cell death. Several studies have demonstrated a mechanism by which ER stress triggers liver disease progression. Autophagy is an evolutionarily conserved process that regulates organelle turnover and cellular energy balance through decomposing damaged organelles including mitochondria, misfolded proteins, and lipid droplets. Autophagy dysregulation also exacerbates liver diseases. Thus, autophagy-related molecules can be potential therapeutic targets for liver diseases. Since ER stress and autophagy are closely linked to each other, an understanding of the molecules, gene clusters, and networks engaged in these processes would be of help to find new remedies for alcoholic and non-alcoholic liver diseases. In this review, we summarize the recent findings and perspectives in the context of the molecular pathogenesis of the liver diseases.
Collapse
Affiliation(s)
- Yun Seok Kim
- College of Pharmacy, Seoul National University, Seoul, Korea
| | - Sang Geon Kim
- College of Pharmacy, Seoul National University, Seoul, Korea.,College of Pharmacy, Dongguk University, Goyang, Korea
| |
Collapse
|
125
|
Colnot S, Lechel A. Maternal obesity: A severe risk factor in hepatocarcinogenesis? J Hepatol 2020; 73:502-504. [PMID: 32593683 DOI: 10.1016/j.jhep.2020.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Sabine Colnot
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Équipe labellisée Ligue Nationale Contre le Cancer, Paris, France.
| | - André Lechel
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany.
| |
Collapse
|
126
|
Hwang S, He Y, Xiang X, Seo W, Kim SJ, Ma J, Ren T, Park SH, Zhou Z, Feng D, Kunos G, Gao B. Interleukin-22 Ameliorates Neutrophil-Driven Nonalcoholic Steatohepatitis Through Multiple Targets. Hepatology 2020; 72:412-429. [PMID: 31705800 PMCID: PMC7210045 DOI: 10.1002/hep.31031] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/30/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS Nonalcoholic fatty liver disease encompasses a spectrum of diseases ranging from simple steatosis to nonalcoholic steatohepatitis (NASH), cirrhosis, and liver cancer. At present, how simple steatosis progresses to NASH remains obscure and effective pharmacological therapies are lacking. Hepatic expression of C-X-C motif chemokine ligand 1 (CXCL1), a key chemokine for neutrophil infiltration (a hallmark of NASH), is highly elevated in NASH patients but not in fatty livers in obese individuals or in high-fat diet (HFD)-fed mice. The aim of this study was to test whether overexpression of CXCL1 itself in the liver can induce NASH in HFD-fed mice and to test the therapeutic potential of IL-22 in this new NASH model. APPROACH AND RESULTS Overexpression of Cxcl1 in the liver alone promotes steatosis-to-NASH progression in HFD-fed mice by inducing neutrophil infiltration, oxidative stress, and stress kinase (such as apoptosis signal-regulating kinase 1 and p38 mitogen-activated protein kinase) activation. Myeloid cell-specific deletion of the neutrophil cytosolic factor 1 (Ncf1)/p47phox gene, which encodes a component of the NADPH oxidase 2 complex that mediates neutrophil oxidative burst, markedly reduced CXCL1-induced NASH and stress kinase activation in HFD-fed mice. Treatment with interleukin (IL)-22, a cytokine with multiple targets, ameliorated CXCL1/HFD-induced NASH or methionine-choline deficient diet-induced NASH in mice. Mechanistically, IL-22 blocked hepatic oxidative stress and its associated stress kinases via the induction of metallothionein, one of the most potent antioxidant proteins. Moreover, although it does not target immune cells, IL-22 treatment attenuated the inflammatory functions of hepatocyte-derived, mitochondrial DNA-enriched extracellular vesicles, thereby suppressing liver inflammation in NASH. CONCLUSIONS Hepatic overexpression of CXCL1 is sufficient to drive steatosis-to-NASH progression in HFD-fed mice through neutrophil-derived reactive oxygen species and activation of stress kinases, which can be reversed by IL-22 treatment via the induction of metallothionein.
Collapse
Affiliation(s)
- Seonghwan Hwang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yong He
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xiaogang Xiang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Wonhyo Seo
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Seung-Jin Kim
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jing Ma
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tianyi Ren
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Seol Hee Park
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Zhou Zhou
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
127
|
Malkin EZ, Bratman SV. Bioactive DNA from extracellular vesicles and particles. Cell Death Dis 2020; 11:584. [PMID: 32719324 PMCID: PMC7385258 DOI: 10.1038/s41419-020-02803-4] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles (EVs) and particles (EPs) have recently emerged as active carriers of molecular biomarkers and mediators of intercellular communication. While most investigations have focused exclusively on the protein, lipid and RNA constituents of these extracellular entities, EV/EP DNA remains poorly understood, despite DNA being found in association with virtually all EV/EP populations. The functional potential of EV/EP DNA has been proposed in a number of pathological states, including malignancies and autoimmune diseases. Moreover, the effectiveness of cell-free DNA as the biomarker of choice in emerging liquid biopsy applications highlights the role that EV/EP DNA may play as a novel disease biomarker. In this review, we provide a comprehensive overview of EV/EP DNA studies conducted to date, with a particular focus on the roles of EV/EP DNA as a functional mediator and molecular biomarker in various pathologic states. We also review what is currently known about the origins, structure, localisation and distribution of EV/EP DNA, highlighting current controversies as well as opportunities for future investigation.
Collapse
Affiliation(s)
- Ethan Z Malkin
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Scott V Bratman
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada.
- Princess Margaret Cancer Centre, Toronto, ON, Canada.
| |
Collapse
|
128
|
Ma J, Cao H, Rodrigues RM, Xu M, Ren T, He Y, Hwang S, Feng D, Ren R, Yang P, Liangpunsakul S, Sun J, Gao B. Chronic-plus-binge alcohol intake induces production of proinflammatory mtDNA-enriched extracellular vesicles and steatohepatitis via ASK1/p38MAPKα-dependent mechanisms. JCI Insight 2020; 5:136496. [PMID: 32544093 DOI: 10.1172/jci.insight.136496] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/05/2020] [Indexed: 12/14/2022] Open
Abstract
Alcohol-associated liver disease is a spectrum of liver disorders with histopathological changes ranging from simple steatosis to steatohepatitis, cirrhosis, and hepatocellular carcinoma. Recent data suggest that chronic-plus-binge ethanol intake induces steatohepatitis by promoting release by hepatocytes of proinflammatory mitochondrial DNA-enriched (mtDNA-enriched) extracellular vesicles (EVs). The aim of the present study was to investigate the role of the stress kinase apoptosis signal-regulating kinase 1 (ASK1) and p38 mitogen-activated protein kinase (p38) in chronic-plus-binge ethanol-induced steatohepatitis and mtDNA-enriched EV release. Microarray analysis revealed the greatest hepatic upregulation of metallothionein 1 and 2 (Mt1/2), which encode 2 of the most potent antioxidant proteins. Genetic deletion of the Mt1 and Mt2 genes aggravated ethanol-induced liver injury, as evidenced by elevation of serum ALT, neutrophil infiltration, oxidative stress, and ASK1/p38 activation in the liver. Inhibition or genetic deletion of Ask1 or p38 ameliorated ethanol-induced liver injury, inflammation, ROS levels, and expression of phagocytic oxidase and ER stress markers in the liver. In addition, inhibition of ASK1 or p38 also attenuated ethanol-induced mtDNA-enriched EV secretion from hepatocytes. Taken together, these findings indicate that induction of hepatic mtDNA-enriched EVs by ethanol is dependent on ASK1 and p38, thereby promoting alcoholic steatohepatitis.
Collapse
Affiliation(s)
- Jing Ma
- State Key Laboratory of Organ Failure Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA
| | - Haixia Cao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA
| | - Robim M Rodrigues
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA
| | - Mingjiang Xu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA
| | - Tianyi Ren
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA
| | - Yong He
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA
| | - Seonghwan Hwang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA
| | - Ruixue Ren
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA
| | - Peixin Yang
- Department of Obstetrics and Gynecology Science, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, and.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, USA
| | - Jian Sun
- State Key Laboratory of Organ Failure Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA
| |
Collapse
|
129
|
Trichloroethylene injures rat liver and elevates the level of peroxisomal bifunctional enzyme (Ehhadh). Mol Cell Toxicol 2020. [DOI: 10.1007/s13273-020-00075-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
130
|
Roles of peroxisome proliferator-activated receptor α in the pathogenesis of ethanol-induced liver disease. Chem Biol Interact 2020; 327:109176. [PMID: 32534989 DOI: 10.1016/j.cbi.2020.109176] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/02/2020] [Accepted: 06/09/2020] [Indexed: 12/18/2022]
Abstract
Alcoholic liver disease (ALD) is a progressively aggravated liver disease with high incidence in alcoholics. Ethanol-induced fat accumulation and the subsequent lipopolysaccharide (LPS)-driven inflammation bring liver from reversible steatosis, to irreversible hepatitis, fibrosis, cirrhosis, and even hepatocellular carcinoma. Peroxisome proliferator-activated receptor α (PPARα) is a member of the nuclear receptor superfamily of ligand-activated transcription factors and plays pivotal roles in the regulation of fatty acid homeostasis as well as the inflammation control in the liver. It has been well documented that PPARα activity and/or expression are downregulated in liver of mice exposed to ethanol, which is thought to be one of the prime contributors to ethanol-induced steatosis, hepatitis and fibrosis. This article summarizes the current evidences from in vitro and animal models for the critical roles of PPARα in the onset and progression of ALD. Importantly, it should be noted that the expression of PPARα in human liver is reported to be similar to that in mice, and PPARα expression is downregulated in the liver of patients with nonalcoholic fatty liver disease (NAFLD), a disease sharing many similarities with ALD. Therefore, clinical trials investigating the expression of PPARα in the liver of ALD patients and the efficacy of strong PPARα agonists for the prevention and treatment of ALD are warranted.
Collapse
|
131
|
Kitakaze T, Yuan S, Inoue M, Yoshioka Y, Yamashita Y, Ashida H. 6-(Methylsulfinyl)hexyl isothiocyanate protects acetaldehyde-caused cytotoxicity through the induction of aldehyde dehydrogenase in hepatocytes. Arch Biochem Biophys 2020; 686:108329. [DOI: 10.1016/j.abb.2020.108329] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/13/2020] [Accepted: 03/04/2020] [Indexed: 12/30/2022]
|
132
|
Recent advances of sterile inflammation and inter-organ cross-talk in alcoholic liver disease. Exp Mol Med 2020; 52:772-780. [PMID: 32457490 PMCID: PMC7272465 DOI: 10.1038/s12276-020-0438-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
Alcoholic liver disease (ALD) is one of the fastest-growing concerns worldwide. In addition to bacterial endotoxins in the portal circulation, recent lines of evidence have suggested that sterile inflammation caused by a wide range of stimuli induces alcoholic liver injury, in which damage-associated molecular patterns (DAMPs) play critical roles in inducing de novo lipogenesis and inflammation through the activation of cellular pattern recognition receptors such as Toll-like receptors in non-parenchymal cells. Interestingly, alcohol-mediated metabolic, neurological, and immune stresses stimulate the generation of DAMPs that are released not only in the liver, but also in other organs, such as adipose tissue, intestine, and bone marrow. Thus, diverse DAMPs, including retinoic acids, proteins, lipids, microRNAs, mitochondrial DNA, and mitochondrial double-stranded RNA, contribute to a broad spectrum of ALD through the production of multiple pro-inflammatory cytokines, chemokines, and ligands in non-parenchymal cells, such as Kupffer cells, hepatic stellate cells, and various immune cells. Therefore, this review summarizes recent studies on the identification and understanding of DAMPs, their receptors, and cross-talk between the liver and other organs, and highlights successful therapeutic targets and potential strategies in drug development that can be used to combat ALD.
Collapse
|
133
|
Battling IL-17, the troublemaker in alcohol-induced hepatocellular carcinoma. J Hepatol 2020; 72:809-812. [PMID: 32122724 DOI: 10.1016/j.jhep.2020.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 12/04/2022]
|
134
|
Sato K, Glaser S, Alvaro D, Meng F, Francis H, Alpini G. Cholangiocarcinoma: novel therapeutic targets. Expert Opin Ther Targets 2020; 24:345-357. [PMID: 32077341 PMCID: PMC7129482 DOI: 10.1080/14728222.2020.1733528] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/19/2020] [Indexed: 02/06/2023]
Abstract
Introduction: Cholangiocarcinoma (CCA) is a liver cancer derived from the biliary tree with a less than 30% five-year survival rate. Early diagnosis of CCA is challenging and treatment options are limited. Some CCA patients have genetic mutations and several therapeutic drugs or antibodies have been introduced to target abnormally expressed proteins. However, CCA is heterogeneous and patients often present with drug resistance which is attributed to multiple mutations or other factors. Novel approaches and methodologies for CCA treatments are in demand.Area covered: This review summarizes current approaches for CCA treatments leading to the development of novel therapeutic drugs or tools for human CCA patients. A literature search was conducted in PubMed utilizing the combination of the searched term 'cholangiocarcinoma' with other keywords such as 'miRNA', 'FGFR', 'immunotherapy' or 'microenvironment'. Papers published within 2015-2019 were obtained for reading.Expert opinion: Preclinical studies have demonstrated promising therapeutic approaches that target various cells or pathways. Recent studies have revealed that hepatic cells coordinate to promote CCA tumor progression in the tumor microenvironment, which may be a new therapeutic target. Although further studies are required, novel therapeutic tools such as extracellular vesicles could be utilized to manage CCA and its microenvironment.
Collapse
Affiliation(s)
- Keisaku Sato
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University, College of Medicine, Bryan, Texas
| | - Domenico Alvaro
- Gastroenterology, Medicine, Università Sapienza, Rome, Italy
| | - Fanyin Meng
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| |
Collapse
|
135
|
Avila MA, Dufour JF, Gerbes AL, Zoulim F, Bataller R, Burra P, Cortez-Pinto H, Gao B, Gilmore I, Mathurin P, Moreno C, Poznyak V, Schnabl B, Szabo G, Thiele M, Thursz MR. Recent advances in alcohol-related liver disease (ALD): summary of a Gut round table meeting. Gut 2020; 69:764-780. [PMID: 31879281 PMCID: PMC7236084 DOI: 10.1136/gutjnl-2019-319720] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 11/28/2019] [Accepted: 12/06/2019] [Indexed: 12/14/2022]
Abstract
Alcohol-related liver disease (ALD), which includes a range of disorders of different severity and is one of the most prevalent types of liver disease worldwide, has recently regained increased attention. Among other reasons, the realisation that any alcohol intake, regardless of type of beverage represents a health risk, and the new therapeutic strategies tested in recently published or undergoing clinical trials spur scientific interest in this area.In April 2019, Gut convened a round table panel of experts during the European Association for the Study of the Liver International Liver Congress in Vienna to discuss critical and up-to-date issues and clinical trial data regarding ALD, its epidemiology, diagnosis, management, pathomechanisms, possible future treatments and prevention. This paper summarises the discussion and its conclusions.
Collapse
Affiliation(s)
- Matias A Avila
- Hepatology, CIBERehd, IdiSNA, CIMA, University of Navarra, Pamplona, Spain
| | - Jean-François Dufour
- Hepatology, Department of Clinical Research and University Clinic for Visceral Surgery and Medicine, Inselspital, University of Bern, Bern, Switzerland
| | - Alexander L Gerbes
- Liver Centre Munich, Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Fabien Zoulim
- Hepatology Department, INSERM U1052, Hospices Civils de Lyon, Cancer Research Centerl of Lyon, University of Lyon, Lyon, France
| | - Ramon Bataller
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Patrizia Burra
- Multivisceral Transplant Unit, Gastroenterology, Department of Surgery, Oncology and Gastroenterology, Padua University Hospital, Padua, Italy
| | - Helena Cortez-Pinto
- Departamento de Gastroenterologia, CHLN, Laboratorio de Nutriçao, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Ian Gilmore
- Liverpool Centre for Alcohol Research, University of Liverpool, Liverpool, UK
| | - Philippe Mathurin
- Service des Maladies de l'Appareil Digestif, INSERM U795, Hôpital Huriez, Lille, France
| | - Christophe Moreno
- Service de Gastroentérologie, Hépatopancréatologie et Oncologie Digestive, CUB Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Vladimir Poznyak
- Department of Mental Health and Substance Abuse, World Health Organization, Geneve, Switzerland
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Gyongyi Szabo
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Maja Thiele
- Department of Gastroenterology and Hepatology, and Department of Clinical Research, Odense University Hospital and University of Southern Denmark, Odense, Denmark
| | - Mark R Thursz
- Department of Metabolism, Faculty of Medicine, Imperial College, London, UK
| |
Collapse
|
136
|
He Y, Yu X, Li J, Zhang Q, Zheng Q, Guo W. Role of m 5C-related regulatory genes in the diagnosis and prognosis of hepatocellular carcinoma. Am J Transl Res 2020; 12:912-922. [PMID: 32269723 PMCID: PMC7137052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/19/2020] [Indexed: 06/11/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies globally, and is frequently associated with a poor prognosis. 5-methylcytosine (m5C) is a common epigenetic modification with many critical roles in eukaryotes. However, the expression and functional roles of m5C regulators are largely unknown. In this study, we utilized The Cancer Genome Atlas (TCGA) to determine the expression, gene signatures, and prognostic values of m5C-related genes. We confirmed that the frequency of mutation events of m5C regulatory genes was high in HCC (35/363). Dysregulation of m5C-related genes was also associated with a higher HCC stage. Moreover, a strong relationship was found between the expression of m5C regulatory genes and HCC patient survival. High expression of NSUN4 and ALYREF correlated significantly with survival outcome. We developed a two-gene signature of m5C regulators with HCC prognostic value based on the least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression models. Gene set enrichment analysis (GSEA) results indicated that high expression of NSUN4 was associated with methylation and demethylation processes. Meanwhile, high expression of ALYREF was clearly related to cell cycle regulation and mitosis. In conclusion, our results revealed that m5C-related genes play an essential role in tumor progression in HCC. Further detection of m5C methylation could provide a novel method for HCC targeted therapy.
Collapse
Affiliation(s)
- Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, P. R. China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, P. R. China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhou 450052, Henan, P. R. China
- Henan Key Laboratory of Digestive Organ TransplantationZhengzhou 450052, Henan, P. R. China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, P. R. China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, P. R. China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhou 450052, Henan, P. R. China
- Henan Key Laboratory of Digestive Organ TransplantationZhengzhou 450052, Henan, P. R. China
| | - Jie Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, P. R. China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, P. R. China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhou 450052, Henan, P. R. China
- Henan Key Laboratory of Digestive Organ TransplantationZhengzhou 450052, Henan, P. R. China
| | - Qiyao Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, P. R. China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, P. R. China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhou 450052, Henan, P. R. China
- Henan Key Laboratory of Digestive Organ TransplantationZhengzhou 450052, Henan, P. R. China
| | - Qingyuan Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, P. R. China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, P. R. China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhou 450052, Henan, P. R. China
- Henan Key Laboratory of Digestive Organ TransplantationZhengzhou 450052, Henan, P. R. China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, P. R. China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, P. R. China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhou 450052, Henan, P. R. China
- Henan Key Laboratory of Digestive Organ TransplantationZhengzhou 450052, Henan, P. R. China
| |
Collapse
|
137
|
Wang W, Wang C, Xu H, Gao Y. Aldehyde Dehydrogenase, Liver Disease and Cancer. Int J Biol Sci 2020; 16:921-934. [PMID: 32140062 PMCID: PMC7053332 DOI: 10.7150/ijbs.42300] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/03/2020] [Indexed: 12/19/2022] Open
Abstract
Acetaldehyde dehydrogenase 2 (ALDH2) is the key enzyme responsible for metabolism of the alcohol metabolite acetaldehyde in the liver. In addition to conversion of the acetaldehyde molecule, ALDH is also involved in other cellular functions. Recently, many studies have investigated the involvement of ALDH expression in viral hepatitis, alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), liver fibrosis, and liver cancer. Notably, ALDH2 expression has been linked with liver cancer risk, as well as pathogenesis and prognosis, and has emerged as a promising therapeutic target. Of note, approximately 8% of the world's population, and approximately 30-40% of the population in East Asia carry an inactive ALDH2 gene. This review summarizes new progress in understanding tissue-specific acetaldehyde metabolism by ALDH2 as well as the association of ALDH2 gene polymorphisms with liver disease and cancer. New research directions emerging in the field are also briefly discussed.
Collapse
Affiliation(s)
- Wenjun Wang
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130021, China
| | - Chunguang Wang
- Department of Thoracic & Cardiovascular Surgery, Second Clinical College, Jilin University, Changchun, 130041, China
| | - Hongxin Xu
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130021, China
| | - Yanhang Gao
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130021, China
| |
Collapse
|
138
|
Ren T, Mackowiak B, Lin Y, Gao Y, Niu J, Gao B. Hepatic injury and inflammation alter ethanol metabolism and drinking behavior. Food Chem Toxicol 2019; 136:111070. [PMID: 31870920 DOI: 10.1016/j.fct.2019.111070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/12/2019] [Accepted: 12/19/2019] [Indexed: 01/15/2023]
Abstract
While liver injury is commonly associated with excessive alcohol consumption, how liver injury affects alcohol metabolism and drinking preference remains unclear. To answer these questions, we measured the expression and activity of alcohol dehydrogenase 1 (ADH1) and acetaldehyde dehydrogenase 2 (ALDH2) enzymes, ethanol and acetaldehyde levels in vivo, and binge-like and preferential drinking behaviors with drinking in the dark and two-bottle choice in animal models with liver injury. Acute and chronic carbon tetrachloride (CCl4), and acute LPS-induced liver injury repressed hepatic ALDH2 activity and expression and consequently, blood and liver acetaldehyde concentrations were increased in these models. In addition, chronic CCl4 and acute LPS treatment inhibited hepatic ADH1 expression and activity, leading to increases in blood and liver ethanol concentrations. Consistent with the increase in acetaldehyde levels, alcohol drinking behaviors were reduced in mice with acute or chronic liver injury. Furthermore, oxidative stress induced by hydrogen peroxide attenuated ADH1 and ALDH2 activity post-transcriptionally, while proinflammatory cytokines led to transcriptional repression of ADH1 and ALDH2 in cultured hepatocytes, which correlated with the repression of transcription factor HNF4α. Collectively, our data suggest that alcohol metabolism is suppressed by inflammation and oxidative stress, which is correlated with decreased drinking behavior.
Collapse
Affiliation(s)
- Tianyi Ren
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, 130021, China; Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bryan Mackowiak
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yuhong Lin
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yanhang Gao
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, 130021, China
| | - Junqi Niu
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, 130021, China.
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
139
|
Li Z, Lou Y, Tian G, Wu J, Lu A, Chen J, Xu B, Shi J, Yang J. Discovering master regulators in hepatocellular carcinoma: one novel MR, SEC14L2 inhibits cancer cells. Aging (Albany NY) 2019; 11:12375-12411. [PMID: 31851620 PMCID: PMC6949064 DOI: 10.18632/aging.102579] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022]
Abstract
Identification of master regulator (MR) genes offers a relatively rapid and efficient way to characterize disease-specific molecular programs. Since strong consensus regarding commonly altered MRs in hepatocellular carcinoma (HCC) is lacking, we generated a compendium of HCC datasets from 21 studies and identified a comprehensive signature consisting of 483 genes commonly deregulated in HCC. We then used reverse engineering of transcriptional networks to identify the MRs that underpin the development and progression of HCC. After cross-validation in different HCC datasets, systematic assessment using patient-derived data confirmed prognostic predictive capacities for most HCC MRs and their corresponding regulons. Our HCC signature covered well-established liver cancer hallmarks, and network analyses revealed coordinated interaction between several MRs. One novel MR, SEC14L2, exerted an anti-proliferative effect in HCC cells and strongly suppressed tumor growth in a mouse model. This study advances our knowledge of transcriptional MRs potentially involved in HCC development and progression that may be targeted by specific interventions.
Collapse
Affiliation(s)
- Zhihui Li
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China
| | - Yi Lou
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China.,Department of Occupational Medicine, Zhejiang Provincial Integrated Chinese and Western Medicine Hospital, Hangzhou, Zhejiang 310003, P.R. China
| | - Guoyan Tian
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China
| | - Jianyue Wu
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China
| | - Anqian Lu
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China
| | - Jin Chen
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China
| | - Beibei Xu
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China
| | - Junping Shi
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China
| | - Jin Yang
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China
| |
Collapse
|
140
|
Targeting liver aldehyde dehydrogenase-2 prevents heavy but not moderate alcohol drinking. Proc Natl Acad Sci U S A 2019; 116:25974-25981. [PMID: 31792171 DOI: 10.1073/pnas.1908137116] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aldehyde dehydrogenase 2 (ALDH2), a key enzyme for detoxification the ethanol metabolite acetaldehyde, is recognized as a promising therapeutic target to treat alcohol use disorders (AUDs). Disulfiram, a potent ALDH2 inhibitor, is an approved drug for the treatment of AUD but has clinical limitations due to its side effects. This study aims to elucidate the relative contribution of different organs in acetaldehyde clearance through ALDH2 by using global- (Aldh2 -/-) and tissue-specific Aldh2-deficient mice, and to examine whether liver-specific ALDH2 inhibition can prevent alcohol-seeking behavior. Aldh2 -/- mice showed markedly higher acetaldehyde concentrations than wild-type (WT) mice after acute ethanol gavage. Acetaldehyde levels in hepatocyte-specific Aldh2 knockout (Aldh2 Hep-/-) mice were significantly higher than those in WT mice post gavage, but did not reach the levels observed in Aldh2 -/- mice. Energy expenditure and motility were dramatically dampened in Aldh2 -/- mice, but moderately decreased in Aldh2 Hep-/- mice compared to controls. In the 2-bottle paradigm and the drinking-in-the-dark model, Aldh2 -/- mice drank negligible volumes from ethanol-containing bottles, whereas Aldh2 Hep-/- mice showed reduced alcohol preference at high but not low alcohol concentrations. Glial cell- or neuron-specific Aldh2 deficiency did not affect voluntary alcohol consumption. Finally, specific liver Aldh2 knockdown via injection of shAldh2 markedly decreased alcohol preference. In conclusion, although the liver is the major organ responsible for acetaldehyde metabolism, a cumulative effect of ALDH2 from other organs likely also contributes to systemic acetaldehyde clearance. Liver-targeted ALDH2 inhibition can decrease heavy drinking without affecting moderate drinking, providing molecular basis for hepatic ALDH2 targeting/editing for the treatment of AUD.
Collapse
|
141
|
Cao S, Bian Y, Zhou X, Yuan Q, Wei S, Xue L, Yang F, Qianqian Dong, Wenjun Wang, Zheng B, Zhang J, Wang Z, Han Z, Yang K, Rui H, Zhang Y, Xu F, Chen Y. A small-molecule activator of mitochondrial aldehyde dehydrogenase 2 reduces the severity of cerulein-induced acute pancreatitis. Biochem Biophys Res Commun 2019; 522:518-524. [PMID: 31784085 DOI: 10.1016/j.bbrc.2019.11.128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 11/19/2019] [Indexed: 02/08/2023]
Abstract
Acute pancreatitis (AP) is one of the leading causes of hospital admission for gastrointestinal disorders. Although lipid peroxides are produced in AP, it is unknown if targeting lipid peroxides prevents AP. This study aimed to investigate the role of mitochondrial aldehyde dehydrogenase 2 (ALDH2), a critical enzyme for lipid peroxide degradation, in AP and the possible underlying mechanisms. Cerulein was used to induce AP in C57BL/6 J male mice and pancreatic acinar cells were used to elucidate underlying mechanisms in vitro. Pancreatic enzymes in the serum, lipid peroxidation products malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE), and Bcl-2, Bax and cleaved caspase-3 were measured. ALDH2 activation with a small-molecule activator, Alda-1, reduced the levels of the pancreatic enzymes in the serum and the lipid peroxidation products MDA and 4-HNE. In addition, Alda-1 decreased Bax and cleaved caspase-3 expression and increased Bcl-2 expression in vivo and in vitro. In conclusion, ALDH2 activation by Alda-1 has a protective effect in cerulein-induced AP by mitigating apoptosis in pancreatic acinar cells by alleviating lipid peroxidation.
Collapse
Affiliation(s)
- Shengchuan Cao
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Yuan Bian
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China.
| | - Xin Zhou
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Qiuhuan Yuan
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Shujian Wei
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Li Xue
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Feihong Yang
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Qianqian Dong
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Wenjun Wang
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Boyuan Zheng
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jian Zhang
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Zheng Wang
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Ziqi Han
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Kehui Yang
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Haiying Rui
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Ying Zhang
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Feng Xu
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China.
| | - Yuguo Chen
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|