101
|
NMR-based quantitative component analysis and geographical origin identification of China's sweet orange. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
102
|
Zughaibi TA, Suhail M, Tarique M, Tabrez S. Targeting PI3K/Akt/mTOR Pathway by Different Flavonoids: A Cancer Chemopreventive Approach. Int J Mol Sci 2021; 22:12455. [PMID: 34830339 PMCID: PMC8621356 DOI: 10.3390/ijms222212455] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/02/2021] [Accepted: 11/13/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer is, globally, one of the main causes of death. Even though various therapies are available, they are still painful because of their adverse side effects. Available treatments frequently fail due to unpromising responses, resistance to classical anticancer drugs, radiation therapy, chemotherapy, and low accessibility to tumor tissues. Developing novel strategies to minimize adverse side effects, improve chemotherapy sensitivity, and control cancer progression is needed. Many studies have suggested small dietary molecules as complementary treatments for cancer patients. Different components of herbal/edible plants, known as flavonoids, have recently garnered attention due to their broad biological properties (e.g., antioxidant, antiviral, antimicrobial, anti-inflammatory, anti-mutagenic, anticancer, hepatoprotective, and cardioprotective). These flavonoids have shown anticancer activity by affecting different signaling cascades. This article summarizes the key progress made in this area and discusses the role of flavonoids by specifically inhibiting the PI3K/Akt/mTOR pathway in various cancers.
Collapse
Affiliation(s)
- Torki A. Zughaibi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohd Suhail
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammad Tarique
- Department of Child Health, School of Medicine, University of Missouri, Columbia, MO 65201, USA;
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
103
|
Fabrication of Nanoparticles based on Hesperidin-Loaded Chitosan-Functionalized Fe3O4: Evaluation of In vitro Antioxidant and Anticancer Properties. Macromol Res 2021. [DOI: 10.1007/s13233-021-9091-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
104
|
Zhang J, Liang Y, He L, Kaliaperumal K, Tan H, Jiang Y, Zhong B, Zhang J. Effects of storage time and temperature on the chemical composition and organoleptic quality of Gannan navel orange (Citrus sinensis Osbeck cv. Newhall). JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01218-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
105
|
Mangiferin and Hesperidin Transdermal Distribution and Permeability through the Skin from Solutions and Honeybush Extracts ( Cyclopia sp.)-A Comparison Ex Vivo Study. Molecules 2021; 26:molecules26216547. [PMID: 34770957 PMCID: PMC8587049 DOI: 10.3390/molecules26216547] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 01/17/2023] Open
Abstract
Polyphenolic compounds—mangiferin and hesperidin—are, among others, the most important secondary metabolites of African shrub Cyclopia sp. (honeybush). The aim of this study was to compare the percutaneous absorption of mangiferin and hesperidin from solutions (water, ethanol 50%, (v/v)) and extracts obtained from green and fermented honeybush (water, ethanol 50%, (v/v)). Research was performed with the Bronaugh cells, on human dorsal skin. The mangiferin and hesperidin distributions in skin layers (stratum corneum, epidermis, and dermis) and in acceptor fluid (in every 2, 4, 6, and 24 h) were evaluated by HPLC–Photodiode Array Coulometric and Coulometric Electrochemical Array Detection. The transdermal distribution of hesperidin was also demonstrated by fluorescence microscopy. Results indicated that mangiferin and hesperidin were able to cross the stratum corneum and penetrate into the epidermis and dermis. An advantage of hesperidin penetration into the skin from the water over ethanol solution was observed (451.02 ± 14.50 vs. 357.39 ± 4.51 ng/cm2), as well as in the mangiferin study (127.56 ± 9.49 vs. 97.23 ± 2.92 ng/cm2). Furthermore, mangiferin penetration was more evident from nonfermented honeybush ethanol extract (189.85 ± 4.11 ng/cm2) than from solutions. The permeation of mangiferin and hesperidin through the skin to the acceptor fluid was observed regardless of whether the solution or the honeybush extract was applied. The highest ability to permeate the skin was demonstrated for the water solution of hesperidin (250.92 ± 16.01 ng/cm2), while the hesperidin occurring in the extracts permeated in a very low capacity. Mangiferin from nonfermented honeybush ethanol extract had the highest ability to permeate to the acceptor fluid within 24 h (152.36 ± 8.57 ng/cm2).
Collapse
|
106
|
Wang ST, Chen JA, Hsu C, Su NW. Microbial Phosphorylation Product of Hesperetin by Bacillus subtilis BCRC 80517 Improves Oral Bioavailability in Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10184-10193. [PMID: 34449206 DOI: 10.1021/acs.jafc.1c04298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The flavanoid hesperidin (Hsd) is one of the major polyphenols in citrus fruits. Hsd and its aglycone hesperetin (Hst) have a broad array of bioactivities; however, their low aqueous solubility and low intestinal permeability lead to their limited oral bioavailability. In the present study, we generated two water-soluble derivatives of Hst, namely, Hst 7-O-phosphate and Hst3'-O-phosphate, by a unique bioconversion process of Bacillus subtilis var. natto BCRC80517. The phosphorylated products showed superior aqueous solubility and distinct physicochemical properties compared with the original Hst. The Hst phosphate derivatives (HstPs) remained stable in simulated gastric and intestinal fluids for 240 min and could revert to the original Hst form by alkaline phosphatase treatment in Caco-2 cells, showing enhanced intestinal permeability in vitro. After oral administration in rats, HstPs greatly elevated plasma exposure to Hst and showed better bioavailability than did Hsd. HstPs may be a potential and efficient alternative to Hst.
Collapse
Affiliation(s)
- Shang-Ta Wang
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan
- Department of Food Science, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Jou-An Chen
- Department of Biochemical Science & Technology, National Taiwan University, Taipei 106, Taiwan
| | - Chen Hsu
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Nan-Wei Su
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan
- Department of Biochemical Science & Technology, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
107
|
Silva-Espinoza MA, Salvador A, Camacho MDM, Martínez-Navarrete N. Impact of freeze-drying conditions on the sensory perception of a freeze-dried orange snack. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4585-4590. [PMID: 33474724 DOI: 10.1002/jsfa.11101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/28/2020] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The health benefits provided by fruit mean that there is continuous interest in offering consumers new products to stimulate its consumption. To this end, dehydrated fruit snacks may be an interesting option. In this study, we evaluated the impact of freezing rate (slow and high), shelf temperature (40 and 50 °C), and working pressure (5 and 100 Pa) on the perception and acceptability of a freeze-dried orange snack obtained from an orange puree. RESULTS Of the different freeze-drying conditions studied, working pressure was the variable with the greatest effect. The lowest working pressure (5 Pa) led to samples being obtained with a slightly lower water content, which was perceived with higher citrus flavor and crispiest. The highest pressure (100 Pa) led to samples with a greater water content, perceived with a more yellow intense color. Nevertheless, there is no significant consumer preference for any of the different processed samples. The number of force peaks, which is positively correlated with the crispness, shows a significant and negative correlation (r = -0.91) with the water content of the sample. CONCLUSION The study revealed that considerations other than the sensory can determine the best conditions of the freeze-drying process with which to obtain an orange snack. The number of force peaks obtained from a penetration test may be proposed as a tool for instrumental analysis of the snack's crispness that supplies information closely resembling customer perception of this attribute. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Marilú Andrea Silva-Espinoza
- Food Technology Department, Food Investigation and Innovation Group, Universitat Politècnica de València, Valencia, Spain
| | - Ana Salvador
- Laboratorio de Propiedades Físicas y Sensoriales y Ciencia del Consumidor, Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Valencia, Spain
| | - María Del Mar Camacho
- Food Technology Department, Food Investigation and Innovation Group, Universitat Politècnica de València, Valencia, Spain
| | - Nuria Martínez-Navarrete
- Food Technology Department, Food Investigation and Innovation Group, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
108
|
Fazary AE, Alfaifi MY, Elbehairi SEI, Amer ME, Nasr MSM, Abuamara TMM, Badr DA, Ju YH, Mohamed AF. Bioactivity Studies of Hesperidin and XAV939. ACS OMEGA 2021; 6:20042-20052. [PMID: 34368589 PMCID: PMC8340382 DOI: 10.1021/acsomega.1c03080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/09/2021] [Indexed: 05/14/2023]
Abstract
The present work aimed to evaluate the reactivity of natural bioflavonoid hesperidin (HSP) and synthetically derived XAV939 (XAV) against human hepatocellular carcinoma (HepG2), human breast cancer (MDA-MB231) cancer cell lines, and related molecular and pathological profiles. Data recorded revealed that the cytotoxic potential of the tested products was found to be cell type- and concentration-dependent. The half-maximal inhibitory concentration (IC50) value of the HSP-XAV mixture against MDA-MB231 was significantly decreased in the case of using the HSP-XAV mixture against the HepG2 cell line. Also, there was a significant upregulation of the phosphotumor suppressor protein gene (P53) and proapoptotic genes such as B-cell lymphoma-associated X-protein (Bax, CK, and Caspase-3), while antiapoptotic gene B-cell lymphoma (Bcl-2) was significantly downregulated compared with the untreated cell control. The cell cycle analysis demonstrated that DNA accumulation was detected mainly during the G2/M phase of the cell cycle accompanied with the elevated reactive oxygen species level in the treatment of HepG2 and MDA-MB231 cell lines by the HSP-XAV mixture, more significantly than that in the case of cell control. Finally, our finding suggests that both HSP and XAV939 and their mixture may offer an alternative in human liver and breast cancer therapy.
Collapse
Affiliation(s)
- Ahmed E. Fazary
- Applied
Research Department, Research and Development Sector, Egyptian Organization for Biological Products and Vaccines (VACSERA
Holding Company), 51
Wezaret El-Zeraa St., Agouza, Giza 12654, Egypt
- National
Committee for Pure and Applied Chemistry (NCPAC 2018-2022), Academy of Scientific Research and Technology (ASRT), 110 Al Kasr Al Aini, El-Sayeda Zainab, Cairo Governorate 11334, Egypt
- . Tel.: +2-0106-358-2851
| | - Mohammad Y. Alfaifi
- Department
of Biology, Science Collage, King Khalid
University, Abha 9004, Saudi Arabia
| | - Serag Eldin I. Elbehairi
- Department
of Biology, Science Collage, King Khalid
University, Abha 9004, Saudi Arabia
- Cell
Culture Laboratory, Research and Development Sector, Egyptian Organization for Biological Products and Vaccines (VACSERA
Holding Company), 51
Wezaret El-Zeraa St., Agouza, Giza 12654, Egypt
| | - Mohamed E. Amer
- Histology
Department, Faculty of Medicine, Al-Azhar
University, Damietta, P.C. 34511, Egypt
| | - Mohamed S. M. Nasr
- Histology
Department, Faculty of Medicine, Al-Azhar
University, Nasr City, Cairo 11884, Egypt
| | - Tamer M. M. Abuamara
- Histology
Department, Faculty of Medicine, Al-Azhar
University, Nasr City, Cairo 11884, Egypt
| | - Doaa A. Badr
- Applied
Research Department, Research and Development Sector, Egyptian Organization for Biological Products and Vaccines (VACSERA
Holding Company), 51
Wezaret El-Zeraa St., Agouza, Giza 12654, Egypt
| | - Yi-Hsu Ju
- Graduate
Institute of Applied Science and Technology, Department of Chemical
Engineering, Taiwan Building Technology Center, National Taiwan University of Science and Technology, 43 Section 4, Keelung Road, Taipei 10607, Taiwan
| | - Aly F. Mohamed
- The
International Center for Advanced Researches (ICTAR-Egypt), Cairo 307422, Egypt
| |
Collapse
|
109
|
Küçükler S, Çomaklı S, Özdemir S, Çağlayan C, Kandemir FM. Hesperidin protects against the chlorpyrifos-induced chronic hepato-renal toxicity in rats associated with oxidative stress, inflammation, apoptosis, autophagy, and up-regulation of PARP-1/VEGF. ENVIRONMENTAL TOXICOLOGY 2021; 36:1600-1617. [PMID: 33908150 DOI: 10.1002/tox.23156] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 04/17/2021] [Indexed: 06/12/2023]
Abstract
In this study, we investigated the effects of hesperidin (HSP) on oxidants/antioxidants status, inflammation, apoptotic, and autophagic activity in hepato-renal toxicity induced by chronic chlorpyrifos (CPF) exposure in rats. We used a total of 35 male albino rats in five groups of seven: control, HSP 100, CPF, CPF + HSP50, and CPF + HSP100. After rats were sacrificed, blood, liver, and kidney samples were collected. Serum levels of aspartate aminotransferases (ALT and AST), alkaline phosphatase (ALP), creatinine, and urea were tested. Then, contents of the superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), glutathione peroxidase (GPx), and glutathione (GSH) were measured to detect the level of oxidative stress in rat liver and renal tissues. We measured inflammatory and autophagy markers of chlorpyrifos induced oxidative stress in the liver and kidney tissues including TNF-α, iNOS, IL-1 β, COX-2, NF-κB, MAPK14, and Beclin-1 using ELISA. Histopathological findings were also examined followed by immunohistochemical determination of 8-OHdG expression. Real-time PCR (RT-PCR) was used to examine Cas-3, Bax, Bcl-2, PARP-1, and VEGF, which are associated with apoptosis, autophagy, DNA, and endothelial damage, respectively. In addition, PARP-1 activity was supported by western blot and immunofluorescence, VEGF activity was supported by western blot methods. Treatment with HSP reduced the effect of CPF on ALT, AST, ALP, and total proteins, and increased its effect on tissue antioxidants. PARP/VEGF, apoptotic, pro-apoptotic, anti-apoptotic, and autophagic gene expressions were regulated, and Caspase-3 and Bax expressions were decreased; Bcl-2 expression increased in both the liver and kidney samples, and positivity of 8-OHdG and PARP-1 were reduced in the CPF plus HSP-treated group. Overall, the study demonstrates that HSP may reduce the effects of hepato-renal toxicity caused by CPF by regulating oxidative stress, inflammation, apoptosis, autophagy, and PARP/VEGF genes at biochemical, cellular, and molecular levels.
Collapse
Affiliation(s)
- Sefa Küçükler
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Selim Çomaklı
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Selçuk Özdemir
- Department of Genetics, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Cüneyt Çağlayan
- Department of Biochemistry, Faculty of Veterinary Medicine, Bingöl University, Bingöl, Turkey
| | - Fatih Mehmet Kandemir
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|
110
|
Coelho EM, da Silva Haas IC, de Azevedo LC, Bastos DC, Fedrigo IMT, dos Santos Lima M, de Mello Castanho Amboni RD. Multivariate chemometric analysis for the evaluation of 22 Citrus fruits growing in Brazil’s semi-arid region. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103964] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
111
|
Yan J, Nie Y, Luo M, Chen Z, He B. Natural Compounds: A Potential Treatment for Alcoholic Liver Disease? Front Pharmacol 2021; 12:694475. [PMID: 34290612 PMCID: PMC8287649 DOI: 10.3389/fphar.2021.694475] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Excessive alcohol intake is a direct cause of alcoholic liver disease (ALD). ALD usually manifests as fatty liver in the initial stage and then develops into alcoholic hepatitis (ASH), fibrosis and cirrhosis. Severe alcoholism induces extensive hepatocyte death, liver failure, and even hepatocellular carcinoma (HCC). Currently, there are few effective clinical means to treat ALD, except for abstinence. Natural compounds are a class of compounds extracted from herbs with an explicit chemical structure. Several natural compounds, such as silymarin, quercetin, hesperidin, and berberine, have been shown to have curative effects on ALD without side effects. In this review, we pay particular attention to natural compounds and developing clinical drugs based on natural compounds for ALD, with the aim of providing a potential treatment for ALD.
Collapse
Affiliation(s)
- Junbin Yan
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yunmeng Nie
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Minmin Luo
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhiyun Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Beihui He
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
112
|
Fahmy A, Abuelenain GL, Rasheed N, Abdou A. 'de Novo' repurposing of Daflon as anti-intestinal parasitic drug in experimental giardiasis. Exp Parasitol 2021; 226-227:108124. [PMID: 34139241 DOI: 10.1016/j.exppara.2021.108124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 04/19/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND There is a necessity to develop or discover an alternative drug to combat the drug resistance by Giardia duodenalis and minimize the multiple doses and frequency of the conventional drug administration. Progressive repositioning or 'repurposing' of drugs has become widespread due to economic circumstances and medical emergency needs. Daflon 500 mg (DFL) is a natural product used safely as a nutrient supplement and an antidiabetic drug in many European countries and the US. OBJECTIVE This study aimed at investigating the efficiency of DFL, in vivo, in a murine model as a safe alternative or co-drug for giardiasis. MATERIALS AND METHODS Swiss Albino mice (n = 32) were inoculated with 1X104Giardia cysts and assigned to four groups: One group was the infected non-treated control mice and three experimental groups that were treated differently, either with Metronidazole (MTZ), DFL, or combined therapy of DFL/MTZ. Also, eight normal mice served as a control group. All mice were sacrificed 13 days post-infection for the parasitic, histopathological, and oxidative stress analysis. RESULTS MTZ, DFL, and the combined therapy significantly reduced the number of trophozoites and cysts compared to their counterparts of the infected mice. The histopathological analysis of the small intestines of the mice treated with the combined therapy retained typical intestinal architecture and normal levels of malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione. CONCLUSION This study indicated promising actions of Daflon 500 as an anti-giardial drug, and the results demonstrated its potential effect in improving the intestinal epithelial tissue and disturbing the Giardia stages when it was taken collectively with Metronidazole.
Collapse
Affiliation(s)
- Azza Fahmy
- Parasitology Lab, Department of Immunology and Drug Evaluation, Theodor Bilharz Research Institute, Imbaba, Egypt
| | - Gehan Labib Abuelenain
- Parasitology Lab, Department of Immunology and Drug Evaluation, Theodor Bilharz Research Institute, Imbaba, Egypt.
| | | | - Amr Abdou
- Microbiology and Immunology Department, NRC, Giza, Egypt
| |
Collapse
|
113
|
Pera orange (Citrus sinensis) and Moro orange (Citrus sinensis (L.) Osbeck) juices attenuate left ventricular dysfunction and oxidative stress and improve myocardial energy metabolism in acute doxorubicin-induced cardiotoxicity in rats. Nutrition 2021; 91-92:111350. [PMID: 34265580 DOI: 10.1016/j.nut.2021.111350] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/22/2021] [Accepted: 05/16/2021] [Indexed: 11/23/2022]
Abstract
OBJECTIVES Doxorubicin is a highly effective chemotherapeutic agent for treating several types of cancer; however, it can induce cardiotoxicity. We evaluated the influence of Pera and Moro orange juices on cardiac remodeling induced by acute administration of doxorubicin in rats. METHODS We allocated 120 male Wistar rats into six groups: control (C), Pera orange juice (PO), Moro orange juice (MO), doxorubicin (D), doxorubicin + Pera orange juice (DPO), and doxorubicin + Moro orange juice (DMO). Groups PO and DPO received Pera orange juice, MO and DMO received Moro orange juice, and C and D received water with maltodextrin (100 g/L) for 4 wk. Subsequently, groups D, DPO, and DMO received 20 mg/kg doxorubicin and C, PO, and MO received saline. Echocardiogram and euthanasia were performed 48 h after doxorubicin injection. Juice and animal-serum flavonoid identification and quantification were evaluated by liquid chromatography/electrospray ionization multistage mass spectrometry. Oxidative stress and myocardial metabolism were evaluated by spectrophotometry. RESULTS Systolic and diastolic left ventricular dysfunction increased oxidative stress and pathologic changes in myocardial energy metabolism of rats treated with doxorubicin. Intake of both orange juices improved left ventricular function, decreased oxidative stress, and attenuated the myocardial energy metabolism changes. Moro orange juice had a more pronounced effect than Pera orange juice in glutathione peroxidase activity, citrate synthase, and β-hydroxyacyl-CoA dehydrogenase activity. CONCLUSIONS Pera and Moro orange juices attenuated cardiac remodeling induced by doxorubicin, improved myocardial energy metabolism, and attenuated oxidative stress. However, Moro orange juice was more effective than Pera orange juice in modifying energy metabolism.
Collapse
|
114
|
Morais PAB, Francisco CS, de Paula H, Ribeiro R, Eloy MA, Javarini CL, Neto ÁC, Júnior VL. Semisynthetic Triazoles as an Approach in the Discovery of Novel Lead Compounds. CURR ORG CHEM 2021. [DOI: 10.2174/1385272825666210126100227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Historically, medicinal chemistry has been concerned with the approach of organic
chemistry for new drug synthesis. Considering the fruitful collections of new molecular entities,
the dedicated efforts for medicinal chemistry are rewarding. Planning and search for new
and applicable pharmacologic therapies involve the altruistic nature of the scientists. Since
the 19th century, notoriously applying isolated and characterized plant-derived compounds in
modern drug discovery and various stages of clinical development highlight its viability and
significance. Natural products influence a broad range of biological processes, covering transcription,
translation, and post-translational modification, being effective modulators of most
basic cellular processes. The research of new chemical entities through “click chemistry”
continuously opens up a map for the remarkable exploration of chemical space towards leading
natural products optimization by structure-activity relationship. Finally, in this review, we expect to gather a
broad knowledge involving triazolic natural product derivatives, synthetic routes, structures, and their biological activities.
Collapse
Affiliation(s)
- Pedro Alves Bezerra Morais
- Centro de Ciencias Exatas, Naturais e da Saude, Universidade Federal do Espirito Santo, 29500000, Alegre, ES, Brazil
| | - Carla Santana Francisco
- Programa de Pos-Graduacao em Quimica, Universidade Federal do Espirito Santo, 29075910, Vitória, ES, Brazil
| | - Heberth de Paula
- Centro de Ciencias Exatas, Naturais e da Saude, Universidade Federal do Espirito Santo, 29500000, Alegre, ES, Brazil
| | - Rayssa Ribeiro
- Programa de Pos- Graduacao em Agroquimica, Universidade Federal do Espirito Santo, 29500000, Alegre, ES, Brazil
| | - Mariana Alves Eloy
- Programa de Pos- Graduacao em Agroquimica, Universidade Federal do Espirito Santo, 29500000, Alegre, ES, Brazil
| | - Clara Lirian Javarini
- Programa de Pos-Graduacao em Quimica, Universidade Federal do Espirito Santo, 29075910, Vitória, ES, Brazil
| | - Álvaro Cunha Neto
- Programa de Pos-Graduacao em Quimica, Universidade Federal do Espirito Santo, 29075910, Vitória, ES, Brazil
| | - Valdemar Lacerda Júnior
- Programa de Pos-Graduacao em Quimica, Universidade Federal do Espirito Santo, 29075910, Vitória, ES, Brazil
| |
Collapse
|
115
|
Adewole KE, Attah AF, Osawe SO. Exploring phytotherapeutic approach in the management of valproic acid-induced toxicity. ADVANCES IN TRADITIONAL MEDICINE 2021. [DOI: 10.1007/s13596-021-00575-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
116
|
Wang J, Li Q, Chen Z, Qi X, Wu X, Di G, Fan J, Guo C. Improved bioavailability and anticancer efficacy of Hesperetin on breast cancer via a self-assembled rebaudioside A nanomicelles system. Toxicol Appl Pharmacol 2021; 419:115511. [PMID: 33819459 DOI: 10.1016/j.taap.2021.115511] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/15/2022]
Abstract
Hesperetin (HSP) has excellent biological activities with poor water solubility which limits its clinical development. In this study, we successfully prepared a novel, self-assembled micelle based on Rebaudioside A (RA) for oral delivery of HSP with improved bioavailability and therapeutic effects. We found that RA and HSP could be formylated into nanomicelles with particle sizes of 4.541 nm ± 0.048 nm. HSP was readily encapsulated into RA micelles and this improved its water solubility (to 12.74 mg/mL ± 0.28 mg/mL). The MTT results showed that RA-HSP enhanced the cytotoxicity, the clonal formation inhibitory activity, and cell migration inhibitory activity of HSP in human breast cancer MDA-MB-231 cells. The mechanism results showed that RA-HSP induced cell apoptosis by inducing the production of reactive oxygen species (ROS), destroying the mitochondrial membrane potential (MMP), and inhibiting the PI3K/Akt signaling pathway. Moreover, RA-HSP enhanced the anticancer activity, increased the oral bioavailability and tissue distribution of HSP in vivo. Moreover, the mechanism studies in vivo found that HSP inhibited PI3K/Akt signaling pathway with low side effects. These findings indicate that RA micelle formulations have great potential in oral drug delivery systems for the delivery of hydrophobic drugs.
Collapse
Affiliation(s)
- Jun Wang
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Qiqi Li
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zekun Chen
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xueju Qi
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xianggen Wu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Guohu Di
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Junting Fan
- Department of Pharmaceutical Analysis, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Chuanlong Guo
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
117
|
Jubaidi FF, Zainalabidin S, Taib IS, Hamid ZA, Budin SB. The Potential Role of Flavonoids in Ameliorating Diabetic Cardiomyopathy via Alleviation of Cardiac Oxidative Stress, Inflammation and Apoptosis. Int J Mol Sci 2021; 22:ijms22105094. [PMID: 34065781 PMCID: PMC8151300 DOI: 10.3390/ijms22105094] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/20/2021] [Accepted: 04/30/2021] [Indexed: 12/15/2022] Open
Abstract
Diabetic cardiomyopathy is one of the major mortality risk factors among diabetic patients worldwide. It has been established that most of the cardiac structural and functional alterations in the diabetic cardiomyopathy condition resulted from the hyperglycemia-induced persistent oxidative stress in the heart, resulting in the maladaptive responses of inflammation and apoptosis. Flavonoids, the most abundant phytochemical in plants, have been reported to exhibit diverse therapeutic potential in medicine and other biological activities. Flavonoids have been widely studied for their effects in protecting the heart against diabetes-induced cardiomyopathy. The potential of flavonoids in alleviating diabetic cardiomyopathy is mainly related with their remedial actions as anti-hyperglycemic, antioxidant, anti-inflammatory, and anti-apoptotic agents. In this review, we summarize the latest findings of flavonoid treatments on diabetic cardiomyopathy as well as elucidating the mechanisms involved.
Collapse
Affiliation(s)
- Fatin Farhana Jubaidi
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (F.F.J.); (I.S.T.); (Z.A.H.)
| | - Satirah Zainalabidin
- Center for Toxicology and Health Risk Research, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
| | - Izatus Shima Taib
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (F.F.J.); (I.S.T.); (Z.A.H.)
| | - Zariyantey Abd Hamid
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (F.F.J.); (I.S.T.); (Z.A.H.)
| | - Siti Balkis Budin
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (F.F.J.); (I.S.T.); (Z.A.H.)
- Correspondence: ; Tel.: +603-9289-7645
| |
Collapse
|
118
|
Li J, Wang T, Liu P, Yang F, Wang X, Zheng W, Sun W. Hesperetin ameliorates hepatic oxidative stress and inflammation via the PI3K/AKT-Nrf2-ARE pathway in oleic acid-induced HepG2 cells and a rat model of high-fat diet-induced NAFLD. Food Funct 2021; 12:3898-3918. [PMID: 33977953 DOI: 10.1039/d0fo02736g] [Citation(s) in RCA: 243] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is considered the most common liver disease. Dietary supplementation has become a promising strategy for managing NAFLD. Hesperetin, a citrus flavonoid, is mainly found in citrus fruits (oranges, grapefruit, and lemons) and possesses multiple pharmacological properties, including anti-cancer, anti-Alzheimer and anti-diabetic effects. However, the anti-NAFLD effect and mechanisms of hesperetin remain unclear. In this study, we investigated the therapeutic effect of hesperetin against NAFLD and the underlying mechanism in vitro and in vivo. In oleic acid (OA)-induced HepG2 cells, hesperetin upregulated antioxidant levels (SOD/GPx/GR/GCLC/HO-1) by triggering the PI3 K/AKT-Nrf2 pathway, alleviating OA-induced reactive oxygen species (ROS) overproduction and hepatotoxicity. Furthermore, hesperetin suppressed NF-κB activation and reduced inflammatory cytokine secretion (TNF-α and IL-6). More importantly, we revealed that this anti-inflammatory effect is attributed to reduced ROS overproduction by the Nrf2 pathway, as pre-treatment with Nrf2 siRNA or an inhibitor of superoxide dismutase (SOD) or/and glutathione peroxidase (GPx) abolished hesperetin-induced NF-κB inactivation and reductions in inflammatory cytokine secretion. In a rat model of high-fat diet (HFD)-induced NAFLD, we confirmed that hesperetin relieved hepatic steatosis, oxidative stress, inflammatory cell infiltration and fibrosis. Moreover, hesperetin activated the PI3 K/AKT-Nrf2 pathway in the liver, increasing antioxidant expression and inhibiting NF-κB activation and inflammatory cytokine secretion. In summary, our results demonstrate that hesperetin ameliorates hepatic oxidative stress through the PI3 K/AKT-Nrf2 pathway and that this antioxidative effect further suppresses NF-κB-mediated inflammation during NAFLD progression. Thus, our study suggests that hesperetin may be an effective dietary supplement for improving NAFLD by suppressing hepatic oxidative stress and inflammation.
Collapse
Affiliation(s)
- Jingda Li
- College of Life Science, Yangtze University, Jingzhou, Hubei, China.
| | - Tianqi Wang
- College of Agriculture, Yangtze University, Jingzhou, Hubei, China
| | - Panpan Liu
- Institute of Biomedical Research, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, China.
| | - Fuyuan Yang
- Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Xudong Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Weilong Zheng
- Institute of Biomass Resources, Taizhou University, Taizhou, Zhejiang, China
| | - Wenlong Sun
- Institute of Biomedical Research, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, China.
| |
Collapse
|
119
|
Wang F, Zhao C, Yang M, Zhang L, Wei R, Meng K, Bao Y, Zhang L, Zheng J. Four Citrus Flavanones Exert Atherosclerosis Alleviation Effects in ApoE -/- Mice via Different Metabolic and Signaling Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5226-5237. [PMID: 33890787 DOI: 10.1021/acs.jafc.1c01463] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Citrus flavanones have the potential to alleviate atherosclerosis. The metabolism and anti-atherosclerosis signaling pathways of four citrus flavanones (naringin, naringenin, hesperidin, and hesperetin) were compared in ApoE-/- mice. Naringin had the most potent anti-atherogenic effect, followed by hesperidin, naringenin, and hesperetin with reductions of 55.92, 34.98, 42.87, and 24.70% in the atherosclerotic plaque rate compared with the control, respectively. Oral naringin mainly existed in the intestine due to the high water solubility of 7-O-nohesperidoside and alleviated atherosclerosis mainly by enhancing bile acid synthesis in the gut microbiota-FXR/FGF15-CYP7A1 pathway. The other three flavanones mainly alleviated atherosclerosis in the liver after absorption from the intestine. Hesperidin upregulates ABCA1 by 1.8-fold to enhance cholesterol reverse transport, while the aglycones naringenin and hesperetin inhibited cholesterol synthesis via downregulating HMGCR by 2.4- and 2.3-fold, respectively. Hesperetin was more resistant to absorption than naringenin due to the existence of a 4'-methoxyl group and had relatively weak effects on atherosclerosis. The alleviation of atherosclerosis by the four citrus flavanones was tightly related to differences in their in vivo metabolism and signaling pathways. This provides new insights into the anti-atherosclerotic mechanisms of food functional flavanones and guidance for the design of novel, efficient strategies for preventing atherosclerosis based on citrus flavanones.
Collapse
Affiliation(s)
- Feng Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chengying Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Minke Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lin Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Rujun Wei
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Kun Meng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuming Bao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lina Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinkai Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
120
|
Lohakul J, Chaiprasongsuk A, Jeayeng S, Saelim M, Muanjumpon P, Thanachaiphiwat S, Tripatara P, Soontrapa K, Lumlerdkij N, Akarasereenont P, Panich U. The Protective Effect of Polyherbal Formulation, Harak Formula, on UVA-Induced Photoaging of Human Dermal Fibroblasts and Mouse Skin via Promoting Nrf2-Regulated Antioxidant Defense. Front Pharmacol 2021; 12:649820. [PMID: 33912060 PMCID: PMC8072377 DOI: 10.3389/fphar.2021.649820] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/24/2021] [Indexed: 11/13/2022] Open
Abstract
Polyherbal formulation combining multiple herbs is suggested to achieve enhanced therapeutic effects and reduce toxicity. Harak herbal formula (HRF) extracts were proposed to regulate skin responses to UVR through their ability to suppress UVA-induced matrix metalloproteinase-1 (MMP-1) and pigmentation via promoting antioxidant defenses in in vitro models. Therefore, natural products targeting Nrf2 (nuclear factor erythroid 2-related factor 2)-regulated antioxidant response might represent promising anti-photoaging candidates. Hesperetin (HSP) was suggested as a putative bioactive compound of the HRF, as previously shown by its chemical profiling using the liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (LC-QTOF-MS). In this study, we explored the anti-photoaging effects of HRF extracts and HSP on normal human dermal fibroblasts (NHDFs) and mouse skin exposed to UVA irradiation. Pretreatment of NHDFs with HRF extracts and HSP protected against UVA (8 J/cm2)-mediated cytotoxicity and reactive oxygen species (ROS) formation. The HRF and HSP pretreatment also attenuated the UVA-induced MMP-1 activity and collagen depletion concomitant with an upregulation of Nrf2 activity and its downstream genes (GST and NQO-1). Moreover, our findings provided the in vivo relevance to the in vitro anti-photoaging effects of HRF as topical application of the extracts (10, 30 and 100 mg/cm2) and HSP (0.3, 1, and 3 mg/cm2) 1 h before UVA exposure 3 times per week for 2 weeks (a total dose of 60 J/cm2) mitigated MMP-1 upregulation, collagen loss in correlation with enhanced Nrf2 nuclear accumulation and its target protein GST and NQO-1 as well as reduced 8-hydroxy-2′-deoxyguanosine (8-OHdG) in irradiated mouse skin. Thus, our findings revealed that HRF extracts and HSP attenuated UVA-induced photoaging via upregulating Nrf2, together with their abilities to reduce ROS formation and oxidative damage. Our study concluded that the HRF and its bioactive ingredient HSP may represent potential candidates for preventing UVA-induced photoaging via restoration of redox balance.
Collapse
Affiliation(s)
- Jinapath Lohakul
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Anyamanee Chaiprasongsuk
- Faculty of Medicine and Public Health, HRH Princess Chulabhorn College of Medicine Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Saowanee Jeayeng
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Malinee Saelim
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Phetthinee Muanjumpon
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Saowalak Thanachaiphiwat
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pinpat Tripatara
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kittipong Soontrapa
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Natchagorn Lumlerdkij
- Center of Applied Thai Traditional Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pravit Akarasereenont
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Center of Applied Thai Traditional Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Uraiwan Panich
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
121
|
Liu P, Li J, Liu M, Zhang M, Xue Y, Zhang Y, Han X, Jing X, Chu L. Hesperetin modulates the Sirt1/Nrf2 signaling pathway in counteracting myocardial ischemia through suppression of oxidative stress, inflammation, and apoptosis. Biomed Pharmacother 2021; 139:111552. [PMID: 33839495 DOI: 10.1016/j.biopha.2021.111552] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 11/17/2022] Open
Abstract
Hesperetin (HSP) is a natural flavonoid that offers useful curative effects for cardiovascular diseases, but its effect on myocardial ischemia and its precise mechanism remains unclear. The aim of this study is to explore the potential cardioprotective mechanism of HSP on myocardial ischemia caused by isoproterenol (ISO). Adult male Kunming mice were randomly divided into five groups: control, ISO, low-dose HSP (L-HSP, 25 mg/kg/d), high-dose HSP (H-HSP, 50 mg/kg/d), and verapamil (VER) group. Treatment groups of mice received HSP or VER for seven days, and the groups other than the control group were injected with ISO (100 mg/kg/d) subcutaneously for two consecutive days to establish a model of myocardial ischemia. Electrocardiogram and heart-histology changes were used to assess changes in myocardial architecture. The activities and the content of oxidative stress markers and inflammatory cytokines were determined and assayed using kits respectively. The expressions of proteins associated with apoptosis and the Sirt1/Nrf2 pathway were evaluated by Western blotting. The results demonstrate that VER, L-HSP and H-HSP significantly reduced the J-point displacement, heart rate, cardiac pathomorphological changes, and the levels of creatine kinase, lactated dehydrogenase, malonaldehyde, interleukin-6, and tumor necrosis factor-α in serum while promoting the activation of superoxide dismutase, catalase, glutathione in serum in the ISO-treated animals. Furthermore, L-HSP and H-HSP also reversed the ISO-induced apoptosis and the changes in the Sirt1/Nrf2 signaling pathway, as evident from the levels of proteins Bax, Bcl-2, caspase-3, Sirt1, Nrf2, NQO-1, and HO-1. In conclusion, HSP plays a protective role in ISO-induced myocardial ischemia by modulating oxidative stress, inflammation, and apoptosis via Sirt1/Nrf2 pathway activation.
Collapse
Affiliation(s)
- Panpan Liu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Jinghan Li
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Miaomiao Liu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Muqing Zhang
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Yucong Xue
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Yuanyuan Zhang
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Xue Han
- Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China.
| | - Xuan Jing
- Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China.
| | - Li Chu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China; Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Shijiazhuang 050200, Hebei, China.
| |
Collapse
|
122
|
Sakr HI, Khowailed AA, Gaber SS, Ahmed OM, Eesa AN. Effect of mandarin peel extract on experimentally induced arthritis in male rats. Arch Physiol Biochem 2021; 127:136-147. [PMID: 31172817 DOI: 10.1080/13813455.2019.1623263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is associated with joint damage. For treatment, non-steroidal anti-inflammatory drugs (NSAIDs), steroidal agents, and immune-suppressants are used. Their side-effects require a safe and effective natural alternative. ANIMALS AND METHODS Thirty-six male albino rats, half kept under observation for 1 week (group I) and others for 2 weeks (group II) were used. Each group was subdivided into: normal (A), RA (B), and oral mandarin-peel extract (MPE) treated (C). Ankle diameter, serum levels of RF, interleukin (IL)-1β, TNFα, IL-4, IL-10, liver homogenates malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), and nitric oxide (NO) were measured together with the histopathological examination. RESULTS MPE treatment was associated with increased serum IL-4, IL-10, liver homogenates GSH, and SOD, and decreased ankle diameter, serum RF, IL-1β, TNFα, liver homogenates MDA, NO, inflammatory cell infiltrate, and necrosis. Two weeks' treatment was better. CONCLUSIONS MPE has useful effects in alleviating the disturbed ankle diameter, serum pro- and anti-inflammatory mediators, oxidative stress, and ankle joint histopathology in rheumatic rats.
Collapse
Affiliation(s)
- Hader I Sakr
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Akef A Khowailed
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Safy S Gaber
- Department of Medical Physiology, Faculty of Medicine, Beni-suef University, Beni-suef, Egypt
| | - Osama M Ahmed
- Department of Zoology, Physiology Division, Faculty of Science, Beni-suef University, Beni-suef, Egypt
| | - Ahmed N Eesa
- Department of Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
123
|
CORCIOVĂ A, IVĂNESCU B, ABABEI DC, BURLEC AF, MIRCEA C, BILD V. In vivo antinociceptive and anti-inflammatory potential of hesperidin and its cyclodextrin inclusion compounds. BALNEO AND PRM RESEARCH JOURNAL 2021. [DOI: 10.12680/balneo.2021.417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction. This study aims to evaluate the antinociceptive activity on inflammatory and non-inflammatory nociception models, as well as the anti-inflammatory action of hesperidin and its inclusion compounds with beta-cyclodextrin and hydroxypropyl-beta-cyclodextrin. Material and method. For these experiments, we employed nociception models using thermal, chemical and pressure stimuli and an inflammation model for the evaluation of inflammatory edema by plethysmometer test. Results and discussions. The obtained results demonstrate that the HES-βCD inclusion compounds exhibited antinociceptive action predominantly on experimental non-inflammatory nociception models, while HES-HP-βCD exhibited anti-inflammatory and antinociceptive activities predominantly in inflammatory nociception models. Conclusions. This research may be the starting point for future studies regarding the improvement of biopharmaceutical qualities of HES by encapsulation in cyclodextrins.
Keywords: hesperidin, cyclodextrin inclusion compunds, antinociceptive, anti-inflammatory activity,
Collapse
Affiliation(s)
- Andreia CORCIOVĂ
- “Grigore T. Popa” University of Medicine and Pharmacy, Faculty of Pharmacy, Iași, Romania
| | - Bianca IVĂNESCU
- “Grigore T. Popa” University of Medicine and Pharmacy, Faculty of Pharmacy, Iași, Romania
| | - Daniela Carmen ABABEI
- “Grigore T. Popa” University of Medicine and Pharmacy, Faculty of Pharmacy, Iași, Romania
| | - Ana Flavia BURLEC
- “Grigore T. Popa” University of Medicine and Pharmacy, Faculty of Pharmacy, Iași, Romania
| | - Cornelia MIRCEA
- “Grigore T. Popa” University of Medicine and Pharmacy, Faculty of Pharmacy, Iași, Romania
| | - Veronica BILD
- “Grigore T. Popa” University of Medicine and Pharmacy, Faculty of Pharmacy, Iași, Romania
| |
Collapse
|
124
|
Evaluation of folic acid functionalized BSA-CaFe2O4 nanohybrid carrier for the controlled delivery of natural cytotoxic drugs hesperidin and eugenol. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102105] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
125
|
Li S, Shao L, Fang J, Zhang J, Chen Y, Yeo AJ, Lavin MF, Yu G, Shao H. Hesperetin attenuates silica-induced lung injury by reducing oxidative damage and inflammatory response. Exp Ther Med 2021; 21:297. [PMID: 33717240 PMCID: PMC7885076 DOI: 10.3892/etm.2021.9728] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress and the inflammatory response are two important mechanisms of silica-induced lung injury. Hesperetin (HSP) is a natural flavonoid compound that is found in citrus fruits and has been indicated to exhibit strong antioxidant and anti-inflammatory properties. The current study evaluated the protective effect of HSP on lung injury in rats exposed to silica. The results indicated that the degree of alveolitis and pulmonary fibrosis in the HSP-treated group was significantly decreased compared with the silica model group. The content of hydroxyproline (HYP) was also revealed to decrease overall in the HSP treated group compared with the silica model group, indicating that the degree of pulmonary fibrosis was decreased compared with the silica model group. The present study also demonstrated that HSP reduced oxidation levels of malondialdehyde (MDA) and increased the activities of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-PX). Total antioxidant capacity (T-AOC) was also increased following HSP treatment, indicating that HSP can alleviate oxidative stress in the lung tissue of silica-exposed rats. In addition, HSP was revealed to inhibit the synthesis and secretion of fibrogenic factor TGF-β1, reduce the production of pro-inflammatory cytokines IL-1β, IL-4, TNF-α and increase the levels of anti-inflammatory factors IFN-γ and IL-10. The current study demonstrated that HSP can effectively attenuate silica-induced lung injury by reducing oxidative damage and the inflammatory response.
Collapse
Affiliation(s)
- Shuxian Li
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Linlin Shao
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Jinguo Fang
- Primary Health Department, Linqing Health Bureau, Linqing, Shandong 252600, P.R. China
| | - Juan Zhang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Yanqin Chen
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Abrey J Yeo
- Centre for Clinical Research, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Martin F Lavin
- Centre for Clinical Research, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Gongchang Yu
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Hua Shao
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| |
Collapse
|
126
|
Jin H, Zhao Z, Lan Q, Zhou H, Mai Z, Wang Y, Ding X, Zhang W, Pi J, Evans CE, Liu X. Nasal Delivery of Hesperidin/Chitosan Nanoparticles Suppresses Cytokine Storm Syndrome in a Mouse Model of Acute Lung Injury. Front Pharmacol 2021; 11:592238. [PMID: 33584267 PMCID: PMC7873598 DOI: 10.3389/fphar.2020.592238] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/12/2020] [Indexed: 12/19/2022] Open
Abstract
The cytokine storm or cytokine storm syndrome (CSS) is associated with high mortality in patients with acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), for example following sepsis or infectious diseases including COVID-19. However, there are no effective treatments for CSS-associated ALI or ALI/ARDS. Thus, there remains an urgent need to develop effective drugs and therapeutic strategies against CSS and ALI/ARDS. Nasal and inhaled drug delivery methods represent a promising strategy in the treatment of inflammatory lung disease as a result of their ability to improve drug delivery to lungs. Improving the nasal mucosa absorption of poorly water-soluble drugs with poor mucosa bioavailability to a therapeutically effective level is another promising strategy in the fight against ALI/ARDS. Here, chitosan nanoparticles loaded with hesperidin (HPD/NPs) were developed for nasal delivery of the anti-inflammatory HPD compound to inflammatory lungs. In vitro and in vivo, HPD/NPs exhibited enhanced cellular uptake in the inflammatory microenvironment compared with free HPD. In a mouse model of inflammatory lung disease, the HPD/NPs markedly inhibited lung injury as evidenced by reduced inflammatory cytokine levels and suppressed vascular permeability compared with free HPD. Collectively, our study demonstrates that nasal delivery of HPD/NPs suppresses CSS and ALI/ARDS in a murine model of inflammatory lung disease, and that nanoparticle-based treatment strategies with anti-inflammatory effects could be used to reduce CSS and ALI in patients with inflammatory lung injury.
Collapse
Affiliation(s)
- Hua Jin
- College of Pharmacy, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Zuguo Zhao
- College of Pharmacy, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Qian Lan
- College of Pharmacy, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Haotong Zhou
- College of Pharmacy, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Zesen Mai
- College of Pharmacy, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Yuan Wang
- College of Pharmacy, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Xiaowen Ding
- College of Pharmacy, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Wenting Zhang
- College of Pharmacy, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Jiang Pi
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, United States
| | - Colin E Evans
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Xinguang Liu
- College of Pharmacy, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| |
Collapse
|
127
|
Rajasekar M. Synthesis and characterization of hesperetin derivatives and toxicity level of the zebrafish model. Heliyon 2021; 7:e06066. [PMID: 33537489 PMCID: PMC7841361 DOI: 10.1016/j.heliyon.2021.e06066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/10/2020] [Accepted: 01/19/2021] [Indexed: 11/06/2022] Open
Abstract
Hesperetin derivatives were synthesized through the esterification of acid chlorides with hesperetin under ambient reaction conditions with good yields. The product was confirmed using different spectral techniques. It was treated on zebrafish embryos to study the lethality, phenotypic deformities, and toxicity level of the compound. In that assessment, embryos showed lethality towards 3e at the minimal concentration. It assesses slow heartbeat since the compound loaded, the curvature on the back, upcurved fish, Cardiac chamber bulging, and poor survival rate in 72 h. 3a shows less toxicity more than other compounds. It shows only pericardial edema at higher concentration and 3c induced pericardial edema and upcurved tail at a medium range of the concentration. But both compounds were shown a good survival ratio at the minimal concentration.
Collapse
Affiliation(s)
- Mani Rajasekar
- Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology (Deemed to be University), Chennai 600 119, India
| |
Collapse
|
128
|
Jia JY, Zang EH, Lv LJ, Li QY, Zhang CH, Xia Y, Zhang L, Dang LS, Li MH. Flavonoids in myocardial ischemia-reperfusion injury: Therapeutic effects and mechanisms. CHINESE HERBAL MEDICINES 2021; 13:49-63. [PMID: 36117755 PMCID: PMC9476686 DOI: 10.1016/j.chmed.2020.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/05/2020] [Accepted: 09/04/2020] [Indexed: 12/30/2022] Open
Abstract
Ischemic heart diseases are one of the major causes of death worldwide. Effective restoration of blood flow can significantly improve patients' quality of life and reduce mortality. However, reperfusion injury cannot be ignored. Flavonoids possess well-established antioxidant properties; They also have other benefits that may be relevant for ameliorating myocardial ischemia-reperfusion injury (MIRI). In this review, we focus on flavonoids with cardiovascular-protection function and emphasize their pharmacological effects. The main mechanisms of flavonoid pharmacological activities against MIRI involve the following aspects: a) antioxidant, b) anti-inflammatory, c) anti-platelet aggregation, d) anti-apoptosis, and e) myocardial-function regulation activities. We also summarized the effectiveness of flavonoids for MIRI.
Collapse
Affiliation(s)
- Jun-ying Jia
- College of Agriculture, Inner Mongolia University for Nationalities, Tongliao 028000, China
| | | | - Li-juan Lv
- Department of Basic Science, Tianjin Agricultural University, Tianjin 300384, China
| | - Qin-yu Li
- Baotou Medical College, Baotou 014040, China
| | | | - Ying Xia
- Inner Mongolia Institute of Traditional Chinese Medicine, Hohhot 010020, China
| | - Lei Zhang
- Inner Mongolia Medical University, Hohhot 010110, China
| | - Lian-sheng Dang
- Department of Geriatrics, The First Affiliated Hospital of Baotou Medical College, Baotou 014000, China
| | - Min-hui Li
- Baotou Medical College, Baotou 014040, China
- Inner Mongolia Institute of Traditional Chinese Medicine, Hohhot 010020, China
- Inner Mongolia Medical University, Hohhot 010110, China
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources and Utilization, Baotou Medical College, Baotou 014040, China
| |
Collapse
|
129
|
Ahmed OM, AbouZid SF, Ahmed NA, Zaky MY, Liu H. An Up-to-Date Review on Citrus Flavonoids: Chemistry and Benefits in Health and Diseases. Curr Pharm Des 2021; 27:513-530. [PMID: 33245267 DOI: 10.2174/1381612826666201127122313] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 08/09/2020] [Indexed: 11/22/2022]
Abstract
Flavonoids, the main class of polyphenols, are characterized by the presence of 2-phenyl-benzo-pyrane nucleus. They are found in rich quantities in citrus fruits. Citrus flavonoids are classified into flavanones, flavones, flavonols, polymethoxyflavones and anthocyanins (found only in blood oranges). Flavanones are the most abundant flavonoids in citrus fruits. In many situations, there are structure-function relationships. Due to their especial structures and presence of many hydroxyls, polymethoxies and glycoside moiety, the flavonoids have an array of multiple biological and pharmacological activities. This article provides an updated overview of the differences in chemical structures of the classes and members of citrus flavonoids and their benefits in health and diseases. The review article also sheds light on the mechanisms of actions of citrus flavonoids in the treatment of different diseases, including arthritis, diabetes mellitus, cancer and neurodegenerative disorders as well as liver, kidney and heart diseases. The accumulated and updated knowledge in this review may provide useful information and ideas in the discovery of new strategies for the use of citrus flavonoids in the protection, prevention and therapy of diseases.
Collapse
Affiliation(s)
- Osama M Ahmed
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Egypt
| | - Sameh F AbouZid
- Pharmacognosy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Noha A Ahmed
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Egypt
| | - Mohamed Y Zaky
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Egypt
| | - Han Liu
- Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| |
Collapse
|
130
|
Cheng H, Wu X, Ni G, Wang S, Peng W, Zhang H, Gao J, Li X. Citri Reticulatae Pericarpium protects against isoproterenol-induced chronic heart failure via activation of PPARγ. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1396. [PMID: 33313141 PMCID: PMC7723657 DOI: 10.21037/atm-20-2200] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Accumulated clinical trials and animal studies showed that Qiliqiangxin (QLQX), a traditional Chinese medicine formula containing extracts of 11 herbs, exerts beneficial effects on chronic heart failure (HF). Citri Reticulatae Pericarpium (CRP), one herbal medicine in QLQX, has been widely used in treatment against digestive, respiratory and cardiovascular diseases (CVDs) in China. However, the cardiac protective effects and mechanisms of CRP are still unclear. Methods The effects of CRP were investigated in isoproterenol (ISO)-induced chronic HF mice model and neonatal rat ventricular cardiomyocytes (NRVMs) treated with ISO. Echocardiography was used to determine cardiac function. Hematoxylin-eosin (HE) staining and α-actinin immunofluorescent staining were used to measure cardiomyocyte size. Cardiac fibrosis was evaluated by Masson’s trichrome staining. The expression of atrial natriuretic polypeptide (ANP) and brain natriuretic polypeptide (BNP) were determined by quantitative real time PCR (qRT-PCR). Western blot was applied to examine the expression of peroxisome proliferator-activated receptor gamma (PPARγ), PPARγ coactivator-1α (PGC-1α), fibrosis-related and apoptosis-related proteins. Results We found that CRP could significantly attenuate ISO-induced cardiac dysfunction, inhibit cardiac pathological hypertrophy and alleviate myocardial fibrosis and apoptosis. Mechanistically, the downregulation of PPARγ and PGC-1α in ISO-injected mice hearts and ISO-treated NRVMs could be reversed by CRP treatment. The beneficial effects of CRP against ISO-induced HF were abolished by PPARγ inhibitor (T0070907), suggesting that CRP-mediated PPARγ upregulation was essential for the preventive effect of CRP on ISO-induced cardiac dysfunction. Conclusions In conclusion, our study demonstrated that CRP attenuates ISO-induced cardiac remodeling via PPARγ activation, which represents a new application for CRP in the prevention of chronic HF.
Collapse
Affiliation(s)
- Huiling Cheng
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaodong Wu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Gehui Ni
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Siqi Wang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Wenjing Peng
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Haifeng Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Juan Gao
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Xinli Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
131
|
Babich O, Sukhikh S, Pungin A, Ivanova S, Asyakina L, Prosekov A. Modern Trends in the In Vitro Production and Use of Callus, Suspension Cells and Root Cultures of Medicinal Plants. Molecules 2020; 25:molecules25245805. [PMID: 33316965 PMCID: PMC7763305 DOI: 10.3390/molecules25245805] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
This paper studies modern methods of producing and using callus, suspension cells and root cultures of medicinal plants in vitro. A new solution for natural product production is the use of an alternative source of renewable, environmentally friendly raw materials: callus, suspension and root cultures of higher plants in vitro. The possibility of using hairy root cultures as producers of various biologically active substances is studied. It is proven that the application of the genetic engineering achievements that combine in vitro tissue culture and molecular biology methods was groundbreaking in terms of the intensification of the extraction process of compounds significant for the medical industry. It is established that of all the callus processing methods, suspension and root cultures in vitro, the Agrobacterium method is the most widely used in practice. The use of agrobacteria has advantages over the biolistic method since it increases the proportion of stable transformation events, can deliver large DNA segments and does not require special ballistic devices. As a result of the research, the most effective strains of agrobacteria are identified.
Collapse
Affiliation(s)
- Olga Babich
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (S.S.); (A.P.)
| | - Stanislav Sukhikh
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (S.S.); (A.P.)
- Department of Bionanotechnology, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia;
| | - Artem Pungin
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (S.S.); (A.P.)
| | - Svetlana Ivanova
- Natural Nutraceutical Biotesting Laboratory, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia
- Department of General Mathematics and Informatics, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia
- Correspondence: ; Tel.: +7-384-239-6832
| | - Lyudmila Asyakina
- Department of Bionanotechnology, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia;
| | - Alexander Prosekov
- Laboratory of Biocatalysis, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia;
| |
Collapse
|
132
|
Wang Y, Chen Y, Zhang H, Chen J, Cao J, Chen Q, Li X, Sun C. Polymethoxyflavones from citrus inhibited gastric cancer cell proliferation through inducing apoptosis by upregulating RARβ, both in vitro and in vivo. Food Chem Toxicol 2020; 146:111811. [PMID: 33058988 DOI: 10.1016/j.fct.2020.111811] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/05/2020] [Accepted: 10/09/2020] [Indexed: 12/15/2022]
Abstract
In order to discover the active anti-tumor ingredients during the flavonoids separation process of Ougan (Citrus reticulata cv. Suavissima), gastric cancer cell lines including AGS, BGC-823, and SGC-7901 were employed to evaluate the proliferation inhibition abilities of Ougan extracts, flavanone components, polymethoxyflavone components, neohesperidin, nobiletin, tangeretin, and 5-demethylnobiletin. Quantitative real-time PCR was used to detect the expression of three retinoic acid receptor genes, including RARA, RARB, and RARG. Western blot and immunohistochemistry were used to detect protein expressions. The results showed that the polymethoxyflavone components and the PMFs monomers inhibited the proliferation of three gastric cancer cell lines and induced apoptosis. The mechanism exploration found that PMFs up-regulated the expression of the RARB gene selectively and activated the Caspase3, 9, and PARP1 proteins. In addition to 5-demethylnobiletin, other PMFs also upregulated the expression of cleaved Caspase8. The mechanism was preliminarily verified by a RARβ inhibitor AGN 193109. Moreover, a nude mice tumor xenograft model confirmed the tangeretin could exhibit in vivo anti-tumor effect through inducing apoptosis and upregulating RARβ protein. All result suggested that tangeretin may be a potentially novel, safe and effective drugs with less toxicity and lesser side effects for gastric cancer therapeutics.
Collapse
Affiliation(s)
- Yue Wang
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
| | - Yunyi Chen
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
| | - He Zhang
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
| | - Jiebiao Chen
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
| | - Jinping Cao
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
| | - Qingjun Chen
- Zanyu Tecnology Group Co., LTD, No. 628, Xinggang Road, Qingshan Lake Science and Technology City, Hangzhou, China
| | - Xian Li
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
| | - Chongde Sun
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China.
| |
Collapse
|
133
|
Ullah A, Munir S, Badshah SL, Khan N, Ghani L, Poulson BG, Emwas AH, Jaremko M. Important Flavonoids and Their Role as a Therapeutic Agent. Molecules 2020; 25:molecules25225243. [PMID: 33187049 PMCID: PMC7697716 DOI: 10.3390/molecules25225243] [Citation(s) in RCA: 556] [Impact Index Per Article: 111.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/25/2020] [Accepted: 11/01/2020] [Indexed: 12/14/2022] Open
Abstract
Flavonoids are phytochemical compounds present in many plants, fruits, vegetables, and leaves, with potential applications in medicinal chemistry. Flavonoids possess a number of medicinal benefits, including anticancer, antioxidant, anti-inflammatory, and antiviral properties. They also have neuroprotective and cardio-protective effects. These biological activities depend upon the type of flavonoid, its (possible) mode of action, and its bioavailability. These cost-effective medicinal components have significant biological activities, and their effectiveness has been proved for a variety of diseases. The most recent work is focused on their isolation, synthesis of their analogs, and their effects on human health using a variety of techniques and animal models. Thousands of flavonoids have been successfully isolated, and this number increases steadily. We have therefore made an effort to summarize the isolated flavonoids with useful activities in order to gain a better understanding of their effects on human health.
Collapse
Affiliation(s)
- Asad Ullah
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan; (A.U.); (S.M.); (N.K.)
| | - Sidra Munir
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan; (A.U.); (S.M.); (N.K.)
| | - Syed Lal Badshah
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan; (A.U.); (S.M.); (N.K.)
- Correspondence: (S.L.B.); (M.J.)
| | - Noreen Khan
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan; (A.U.); (S.M.); (N.K.)
| | - Lubna Ghani
- Department of Chemistry, The University of Azad Jammu and Kashmir, Muzaffarabad, Azad Kashmir 13230, Pakistan;
| | - Benjamin Gabriel Poulson
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
- Correspondence: (S.L.B.); (M.J.)
| |
Collapse
|
134
|
Tan S, Dai L, Tan P, Liu W, Mu Y, Wang J, Huang X, Hou A. Hesperidin administration suppresses the proliferation of lung cancer cells by promoting apoptosis via targeting the miR‑132/ZEB2 signalling pathway. Int J Mol Med 2020; 46:2069-2077. [PMID: 33125117 PMCID: PMC7595658 DOI: 10.3892/ijmm.2020.4756] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/10/2020] [Indexed: 01/10/2023] Open
Abstract
This aim of the present study was to identify the relationship between hesperidin and microRNA (miR)-132, and to study the role of hesperidin and miR-132 in the pathogenesis of non-small cell lung cancer (NSCLC). Computational analysis and luciferase assays were performed to identify the target of miR-132. Subsequently, reverse transcription-quantitative PCR and western blot assays were used to detect the effect of miR-132 and hesperidin on the expression of haematological and neurological expressed 1 (HN1) and zinc finger E-box binding homeobox 2 (ZEB2). Finally, MTT assays and flow cytometry analysis were used to investigate the effect of hesperidin on cell proliferation and apoptosis. ZEB2 was identified as a target gene of miR-132, and transfection with miR-132 mimic reduced the luciferase activity of the wild-type ZEB2 3′-untranslated region (3′-UTR) but not that of the mutant ZEB2 3′-UTR. By contrast, neither transfection with miR-132 mimic nor hesperidin treatment affected HN1 expression. Furthermore, hesperidin evidently inhibited cell proliferation and promoted apoptosis in a dose-dependent manner. Furthermore, the tumour volume in rats transplanted with NSCLC cells and treated with hesperidin was notably smaller compared with that in rats transplanted with NSCLC cells alone, while treatment with hesperidin significantly reduced the colony formation efficiency of NSCLC cells by increasing miR-132 expression and decreasing ZEB2 expression. To the best of our knowledge, the present study demonstrated for the first time that the administration of hesperidin decreased the expression of ZEB2 by upregulating the expression of miR-132, which in turn promoted apoptosis and inhibited the proliferation of NSCLC cells.
Collapse
Affiliation(s)
- Song Tan
- Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong 264000, P.R. China
| | - Lingling Dai
- Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong 264000, P.R. China
| | - Pengcheng Tan
- Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong 264000, P.R. China
| | - Wei Liu
- Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong 264000, P.R. China
| | - Yuejun Mu
- Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong 264000, P.R. China
| | - Jinguo Wang
- Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong 264000, P.R. China
| | - Xiaoming Huang
- Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong 264000, P.R. China
| | - Aihua Hou
- Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
135
|
New Sustainable Process for Hesperidin Isolation and Anti-Ageing Effects of Hesperidin Nanocrystals. Molecules 2020; 25:molecules25194534. [PMID: 33022944 PMCID: PMC7582684 DOI: 10.3390/molecules25194534] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/20/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Hesperidin, a secondary orange (Citrus sinensis) metabolite, was extracted from orange bagasse. No organic solvents or additional energy consumption were used in the clean and sustainable process. Hesperidin purity was approximately 98% and had a yield of 1%. Hesperidin is a known supplement due to antioxidant, chelating, and anti-ageing properties. Herein, hesperidin application to eliminate dark eye circles, which are sensitive and thin skin regions, was studied. In addition, the proposed method for its aqueous extraction was especially important for human consumption. Further, the most effective methods for hesperidin nanonization were explored, after which the nanoemulsions were incorporated into a cream formulation that was formulated for a tropical climate. Silky cream formulations (oil in water) were tested in vitro on artificial 3D skin from cultured cells extracted from skin residues after plastic surgery. The proposed in vitro assay avoided tests of the different formulations in human volunteers and animals. It was shown that one of the nanonized hesperidin formulations was the most skin-friendly and might be used in cosmetics.
Collapse
|
136
|
Cho EJ, Lee YG, Chang J, Bae HJ. A High-Yield Process for Production of Biosugars and Hesperidin from Mandarin Peel Wastes. Molecules 2020; 25:E4286. [PMID: 32962056 PMCID: PMC7571014 DOI: 10.3390/molecules25184286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 11/16/2022] Open
Abstract
In this research, novel biorefinery processes for obtaining value-added chemicals such as biosugar and hesperidin from mandarin peel waste (MPW) are described. Herein, three different treatment methods were comparatively evaluated to obtain high yields of biosugar and hesperidin from MPW. Each method was determined by changes in the order of three processing steps, i.e., oil removal, hesperidin extraction, and enzymatic hydrolysis. The order of the three steps was found to have a significant influence on the production yields. Biosugar and hesperidin production yields were highest with method II, where the processing steps were performed in the following order: oil removal, enzymatic hydrolysis, and hesperidin extraction. The maximum yields obtained with method II were 34.46 g of biosugar and 6.48 g of hesperidin per initial 100 g of dry MPW. Therefore, the methods shown herein are useful for the production of hesperidin and biosugar from MPW. Furthermore, the utilization of MPWs as sources of valuable materials may be of considerable economic benefits and has become increasingly attractive.
Collapse
Affiliation(s)
- Eun Jin Cho
- Bio-energy Research Center, Chonnam National University, Gwangju 61186, Korea;
| | - Yoon Gyo Lee
- Department of Bioenergy science and Technology, Chonnam National University, Gwangju 61186, Korea; (Y.G.L.); (J.C.)
| | - Jihye Chang
- Department of Bioenergy science and Technology, Chonnam National University, Gwangju 61186, Korea; (Y.G.L.); (J.C.)
| | - Hyeun-Jong Bae
- Bio-energy Research Center, Chonnam National University, Gwangju 61186, Korea;
- Department of Bioenergy science and Technology, Chonnam National University, Gwangju 61186, Korea; (Y.G.L.); (J.C.)
| |
Collapse
|
137
|
Balakrishnan K, Casimeer SC, Ghidan AY, Ghethan FY, Venkatachalam K, Singaravelu A. Bioformulated Hesperidin-Loaded PLGA Nanoparticles Counteract the Mitochondrial-Mediated Intrinsic Apoptotic Pathway in Cancer Cells. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01746-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
138
|
Nano-hesperetin enhances the functional recovery and endogenous remyelination of the optic pathway in focal demyelination model. Brain Res Bull 2020; 164:392-399. [PMID: 32926949 DOI: 10.1016/j.brainresbull.2020.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/26/2020] [Accepted: 09/07/2020] [Indexed: 02/08/2023]
Abstract
Our recent report demonstrated that hesperetin (Hst) as a citrus flavonoid, significantly reduces the levels of demyelination in optic chiasm of rats. Previous evidence also indicated that nano-hesperetin (nano-Hst) possesses beneficial impacts in experimental models of Alzheimer's disease and autism. In this study, the effects of nano-Hst on latency of visual signals, demyelination levels, glial activation, and expression of Olig2 and MBP were evaluated in lysolecithin (LPC)-induced demyelination model. Focal demyelination was induced by injection of LPC (1%, 2 μL) into the rat optic chiasm. Animals received oral administration of nano-Hst at dose of 20 mg/kg for 14 or 21 days post LPC injection. Visual evoked potential (VEP) recording showed that nano-Hst reduces the latency of visual signals and ameliorates the extent of demyelination areas and glial activation. Expression levels of the Olig2 and MBP were also significantly increased in nano-Hst treated rats. Overall, our data suggest that nano-Hst reduces the latency of visual signals through its protective effects on myelin sheath, amelioration of glial activation, and enhancement of endogenous remyelination.
Collapse
|
139
|
Targeting the Nrf2/ARE Signalling Pathway to Mitigate Isoproterenol-Induced Cardiac Hypertrophy: Plausible Role of Hesperetin in Redox Homeostasis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9568278. [PMID: 32952852 PMCID: PMC7482027 DOI: 10.1155/2020/9568278] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/27/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023]
Abstract
Cardiac hypertrophy is the underlying cause of heart failure and is characterized by excessive oxidative stress leading to collagen deposition. Therefore, understanding the signalling mechanisms involved in excessive extracellular matrix deposition is necessary to prevent cardiac remodelling and heart failure. In this study, we hypothesized that hesperetin, a flavanone that elicits the activation of Nrf2 signalling and thereby suppresses oxidative stress, mediated pathological cardiac hypertrophy progression. A cardiac hypertrophy model was established with subcutaneous injection of isoproterenol in male Wistar rats. Oxidative stress markers, antioxidant defense status, and its upstream signalling molecules were evaluated to discover the impacts of hesperetin in ameliorating cardiac hypertrophy. Our results implicate that hesperetin pretreatment resulted in the mitigation of oxidative stress by upregulating antioxidant capacity of the heart. This curative effect might be owing to the activation of the master regulator of antioxidant defense system, known as Nrf2. Further, analysis of Nrf2 revealed that hesperetin enhances its nuclear translocation as well as the expression of its downstream targets (GCLC, NQO1, and HO-1) to boost the antioxidative status of the cells. To support this notion, in vitro studies were carried out in isoproterenol-treated H9c2 cells. Immunocytochemical analysis showed augmented nuclear localization of Nrf2 implicating the action of hesperetin at the molecular level to maintain the cellular redox homeostasis. Thus, it is conceivable that hesperetin could be a potential therapeutic candidate that enhances Nrf2 signalling and thereby ameliorates pathological cardiac remodelling.
Collapse
|
140
|
He P, Ma J, Liu Y, Deng H, Dong W. Hesperetin Promotes Cisplatin-Induced Apoptosis of Gastric Cancer In Vitro and In Vivo by Upregulating PTEN Expression. Front Pharmacol 2020; 11:1326. [PMID: 32973533 PMCID: PMC7482524 DOI: 10.3389/fphar.2020.01326] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 08/10/2020] [Indexed: 12/24/2022] Open
Abstract
As one of the most common malignant gastrointestinal tumors, gastric cancer (GC) has a high incidence and poor prognosis. Cisplatin (DDP) is often used as chemotherapy for advanced GC; however, the high incidence of drug resistance remains a problem. The use of several anti-tumor drugs as combined chemotherapy is an effective strategy. Hesperetin has anti-tumor ability via its pro-apoptotic effect on various human cancers, both in vitro and in vivo, with no significant toxicity. However, a combination of DDP and hesperetin in GC has not been reported. The present study aimed to investigate the in vitro and in vivo chemosensitization effect and mechanism of hesperetin-augmented DDP-induced apoptosis of GC. The proliferation of GC ty -60cells was inhibited significantly in a time and dose-dependent manner by combined treatment of DDP with hesperetin. Hesperetin markedly increased DDP-induced apoptosis of GC cell lines. In a xenograft tumor mouse model, markedly better tumor suppression was observed after treatment with DDP plus hesperetin compared with that of either agent alone. Additionally, the combination of DDP and hesperetin remarkably increased the expression levels of phosphatase and tensin homolog (PTEN) and Cytochrome C (Cyt C), and significantly decreased the levels of phosphorylated protein kinase B (p-AKT) and CyclinD1. DDP and hesperetin also induced significant increases in apoptosis inducing factor (AIF), BCL2 associated X, apoptosis regulator (BAX), cleaved caspase-9, and cleaved caspase-3, and decreased B-cell lymphoma 2 (BCL2), caspase-9, and caspase-3 levels. Thus, we demonstrated that hesperetin could inhibit the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/AKT signaling pathway and induce the mitochondrial pathway via upregulating PTEN expression, thereby significantly enhancing DDP’s anti-tumor effect on GC. Hesperetin is a potential chemotherapeutic agent for GC and merits further clinical investigation.
Collapse
Affiliation(s)
- Pengzhan He
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, China
| | - Jingjing Ma
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yinghui Liu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, China
| | - Huan Deng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, China
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
141
|
Clinopodium tomentosum (Kunth) Govaerts Leaf Extract Influences in vitro Cell Proliferation and Angiogenesis on Primary Cultures of Porcine Aortic Endothelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2984613. [PMID: 32908631 PMCID: PMC7450313 DOI: 10.1155/2020/2984613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/23/2020] [Accepted: 07/01/2020] [Indexed: 01/17/2023]
Abstract
Clinopodium tomentosum (Kunth) Govaerts is an endemic species in Ecuador, where it is used as an anti-inflammatory plant to treat respiratory and digestive affections. In this work, effects of a Clinopodium tomentosum ethanolic extract (CTEE), prepared from aerial parts of the plant, were investigated on vascular endothelium functions. In particularly, angiogenesis activity was evaluated, using primary cultures of porcine aortic endothelial cells (pAECs). Cells were cultured for 24 h in the presence of CTEE different concentrations (10, 25, 50, and 100 μg/ml); no viability alterations were found in the 10-50 μg/ml range, while a slight, but significant, proliferative effect was observed at the highest dose. In addition, treatment with CTEE was able to rescue LPS-induced injury in terms of cell viability. The CTEE ability to affect angiogenesis was evaluated by scratch test analysis and by an in vitro capillary-like network assay. Treatment with 25-50 μg/ml of extract caused a significant increase in pAEC's migration and tube formation capabilities compared to untreated cells, as results from the increased master junctions' number. On the other hand, CTEE at 100 μg/ml did not induce the same effects. Quantitative PCR data demonstrated that FLK-1 mRNA expression significantly increased at a CTEE dose of 25 μg/ml. The CTEE phytochemical composition was assessed through HPLC-DAD; rosmarinic acid among phenolic acids and hesperidin among flavonoids were found as major phenolic components. Total phenolic content and total flavonoid content assays showed that flavonoids are the most abundant class of polyphenols. The CTEE antioxidant activity was also showed by means of the DPPH and ORAC assays. Results indicate that CTEE possesses an angiogenic capacity in a dose-dependent manner; this represents an initial step in elucidating the mechanism of the therapeutic use of the plant.
Collapse
|
142
|
Bellavite P, Donzelli A. Hesperidin and SARS-CoV-2: New Light on the Healthy Function of Citrus Fruits. Antioxidants (Basel) 2020; 9:E742. [PMID: 32823497 PMCID: PMC7465267 DOI: 10.3390/antiox9080742] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
Among the many approaches to Coronavirus disease 2019 (COVID-19) prevention, the possible role of nutrition has so far been rather underestimated. Foods are very rich in substances, with a potential beneficial effect on health, and some of these could have an antiviral action or be important in modulating the immune system and in defending cells from the oxidative stress associated with infection. This short review draws the attention on some components of citrus fruits, and especially of the orange (Citrus sinensis), well known for its vitamin and flavonoid content. Among the flavonoids, hesperidin has recently attracted the attention of researchers, because it binds to the key proteins of the Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Several computational methods, independently applied by different researchers, showed that hesperidin has a low binding energy, both with the coronavirus "spike" protein, and with the main protease that transforms the early proteins of the virus (pp1a and ppa1b) into the complex responsible for viral replication. The binding energy of hesperidin to these important components is lower than that of lopinavir, ritonavir, and indinavir, suggesting that it could perform an effective antiviral action. Furthermore, both hesperidin and ascorbic acid counteract the cell damaging effects of the oxygen free radicals triggered by virus infection and inflammation. There is discussion about the preventive efficacy of vitamin C, at the dose achievable by the diet, but recent reviews suggest that this substance can be useful in the case of strong immune system burden caused by viral disease. Computational methods and laboratory studies support the need to undertake apposite preclinical, epidemiological, and experimental studies on the potential benefits of citrus fruit components for the prevention of infectious diseases, including COVID-19.
Collapse
Affiliation(s)
- Paolo Bellavite
- Department of Medicine, Section of General Pathology, University of Verona Medical School, Strada Le Grazie 8, 37134 Verona, Italy
| | - Alberto Donzelli
- Medical Doctor, Scientific Committee of Fondazione Allineare Sanità e Salute, 20122 Milano, Italy;
| |
Collapse
|
143
|
Montané X, Kowalczyk O, Reig-Vano B, Bajek A, Roszkowski K, Tomczyk R, Pawliszak W, Giamberini M, Mocek-Płóciniak A, Tylkowski B. Current Perspectives of the Applications of Polyphenols and Flavonoids in Cancer Therapy. Molecules 2020; 25:E3342. [PMID: 32717865 PMCID: PMC7435624 DOI: 10.3390/molecules25153342] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022] Open
Abstract
The development of anticancer therapies that involve natural drugs has undergone exponential growth in recent years. Among the natural compounds that produce beneficial effects on human health, polyphenols have shown potential therapeutic applications in cancer due to their protective functions in plants, their use as food additives, and their excellent antioxidant properties. The possibility of combining conventional drugs-which are usually more aggressive than natural compounds-with polyphenols offers very valuable advantages such as the building of more efficient anticancer therapies with less side effects on human health. This review shows a wide range of trials in which polyphenolic compounds play a crucial role as anticancer medicines alone or in combination with other drugs at different stages of cancer: cancer initiation, promotion, and growth or progression. Moreover, the future directions in applications of various polyphenols in cancer therapy are emphasized.
Collapse
Affiliation(s)
- Xavier Montané
- Department of Chemical Engineering, University Rovira i Virgili, Av. Països Catalans 26, Campus Sescelades, 43007 Tarragona, Spain; (B.R.-V.); (M.G.)
| | - Oliwia Kowalczyk
- Research and Education Unit for Communication in Healthcare Department of Cardiac Surgery, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, M. Curie Sklodowskiej St. 9, 85-094 Bydgoszcz, Poland;
- Kazimierz Wielki University, Jagiellonska St. 11, 95-067 Bydgoszcz, Poland
| | - Belen Reig-Vano
- Department of Chemical Engineering, University Rovira i Virgili, Av. Països Catalans 26, Campus Sescelades, 43007 Tarragona, Spain; (B.R.-V.); (M.G.)
| | - Anna Bajek
- Department of Tissue Engineering Chair of Urology, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, Karlowicza St. 24, 85-092 Bydgoszcz, Poland;
| | - Krzysztof Roszkowski
- Department of Oncology, Nicolaus Copernicus University in Torun, Romanowskiej St. 2, 85-796 Bydgoszcz, Poland;
| | - Remigiusz Tomczyk
- Department of Cardiac Surgery, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, M. Curie Sklodowskiej St. 9, 85-094 Bydgoszcz, Poland; (R.T.); (W.P.)
| | - Wojciech Pawliszak
- Department of Cardiac Surgery, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, M. Curie Sklodowskiej St. 9, 85-094 Bydgoszcz, Poland; (R.T.); (W.P.)
| | - Marta Giamberini
- Department of Chemical Engineering, University Rovira i Virgili, Av. Països Catalans 26, Campus Sescelades, 43007 Tarragona, Spain; (B.R.-V.); (M.G.)
| | - Agnieszka Mocek-Płóciniak
- Department of General and Environmental Microbiology, University of Life Sciences Poznan, ul. Szydłowska 50, 60-656 Poznań, Poland;
| | - Bartosz Tylkowski
- Eurecat, Centre Tecnològic de Catalunya. Chemical Technologies Unit, Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| |
Collapse
|
144
|
Ferreira de Oliveira JMP, Santos C, Fernandes E. Therapeutic potential of hesperidin and its aglycone hesperetin: Cell cycle regulation and apoptosis induction in cancer models. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 73:152887. [PMID: 30975541 DOI: 10.1016/j.phymed.2019.152887] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/20/2019] [Accepted: 03/09/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The ability of cancer cells to divide without restriction and to escape programmed cell death is a feature of the proliferative state. Citrus flavanones are flavonoids with potential multiple anticancer actions, from antioxidant and chemopreventive, to anti-inflammatory, anti-angiogenic, cytostatic and cytotoxic in different cancer models. PURPOSE This review aims to summarize the current knowledge on the antiproliferative actions of the citrus flavanones hesperidin (HSD) and hesperetin (HST), with emphasis on cell cycle arrest and apoptosis. METHODS Cochrane Library, Scopus, Pubmed and Web of Science collection databases were queried for publications reporting antiproliferative effects of HSD and HST in cancer models. RESULTS HSD and HST have been proven to delay cell proliferation in several cancer models. Depending on the compound, dose and cell line studied, different effects have been reported. Cell cycle arrest associated with cytostatic effects has been reported in cells with increased levels of p53 and also cyclin-dependent kinase inhibitors, as well as decreased levels of specific cyclins and cyclin-dependent kinases. Moreover, apoptotic effects have been found to be associated with altered ratios of pro-/antiapoptotic proteins, caspase activation, c-Jun N-terminal kinase (JNK) pathway activation and caspase-independent pathways. CONCLUSION Available scientific literature data indicate complex effects, dependent on cell lines and exposure conditions, suggesting that HSD and HST doses need to be optimized according to the cellular and organismal context. The establishment of the main antiproliferative mechanisms is of utmost importance for a possible therapeutic benefit of citrus flavanones in the context of cancer.
Collapse
Affiliation(s)
- José Miguel P Ferreira de Oliveira
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, 4050-313 Porto, Portugal.
| | - Conceição Santos
- Integrated Biology and Biotechnology Laboratory, Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre, 4169-007 Porto, Portugal; LAQV, REQUIMTE, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal.
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
145
|
Abou Baker DH, Ibrahim BMM, Hassan NS, Yousuf AF, Gengaihi SE. Exploiting Citrus aurantium seeds and their secondary metabolites in the management of Alzheimer disease. Toxicol Rep 2020; 7:723-729. [PMID: 32551234 PMCID: PMC7289753 DOI: 10.1016/j.toxrep.2020.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 05/11/2020] [Accepted: 06/02/2020] [Indexed: 01/23/2023] Open
Abstract
Fruit by-products are considered nature’s golden gift for human health and a good starting point to discover new drugs depending on the fact that they contain millions of bio-active compounds that are responsible for therapeutic activities. In this context, the main goal of this study is to recycle Citrus aurantium (C. aurantium) seeds to produce pharmaceutical molecules to be used in the prevention of the progressive neurological damage associated with Alzheimer disease (AD). Donepezil (0.75 mg/kg), hesperidin (125 and 250 mg/kg) and limonoids (50 and 100 mg/kg) were used for treatment of rats for 2 weeks prior to concomitant administration of AlCl3 for three successive weeks. Protection against cognitive deterioration was observed among study group with insignificant difference from normal control group and significant difference from positive control group in the Y-Maze test. On the other hand, treatment with both doses of hesperidin (125 and 250 mg/kg) and high dose of limonoids only (100 mg/kg) produced improvement in psychological state, observed by significant increase in ambulation frequency in comparison to positive control group, however it was not as frequent as normal group, as it was significantly less than normal group in the open field test. Regarding acetylcholine esterase (AChE) and beta-amyloid (β amyloid) levels, the effect of limonoids low dose was the best as it didn’t have a significant effect when compared to normal control, also hesperidin in both doses showed insignificant effects on β amyloid levels when compared to normal control group. Our results encourage the use of C. aurantium seeds which are wasted in huge amounts, as Alzheimer prophylactic food additives.
Collapse
Affiliation(s)
- Doha H Abou Baker
- Medicinal and Aromatic Plants Department. National Research Centre, Dokki, Giza. PO 12622, Egypt
| | - Bassant M M Ibrahim
- Pharmacology Department. Medical Research Division. National Research Centre, Dokki, Giza, PO 12622, Egypt
| | - Nabila S Hassan
- Pathology Department. Medical Research Division. National Research Centre, Cairo, PO 12622, Egypt
| | - A F Yousuf
- Physiology Department. Faculty of Medicine for Girls, Al-Azhar University, Egypt
| | - Souad El Gengaihi
- Medicinal and Aromatic Plants Department. National Research Centre, Dokki, Giza. PO 12622, Egypt
| |
Collapse
|
146
|
Zhang J, Li X, Huang L. Anticancer activities of phytoconstituents and their liposomal targeting strategies against tumor cells and the microenvironment. Adv Drug Deliv Rev 2020; 154-155:245-273. [PMID: 32473991 PMCID: PMC7704676 DOI: 10.1016/j.addr.2020.05.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/07/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022]
Abstract
Various bioactive ingredients have been extracted from Chinese herbal medicines (CHMs) that affect tumor progression and metastasis. To further understand the mechanisms of CHMs in cancer therapy, this article summarizes the effects of five categories of CHMs and their active ingredients on tumor cells and the tumor microenvironment. Despite their treatment potential, the undesirable physicochemical properties (poor permeability, instability, high hydrophilicity or hydrophobicity, toxicity) and unwanted pharmacokinetic profiles (short half-life in blood and low bioavailability) restrict clinical studies of CHMs. Therefore, development of liposomes through relevant surface modifying techniques to achieve targeted CHM delivery for cancer cells, i.e., extracellular and intracellular targets and targets in tumor microenvironment or vasculature, have been reviewed. Current challenges of liposomal targeting of these phytoconstituents and future perspective of CHM applications are discussed to provide an informative reference for interested readers.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Xiang Li
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|
147
|
Flori L, Macaluso M, Taglieri I, Sanmartin C, Sgherri C, De Leo M, Ciccone V, Donnini S, Venturi F, Pistelli L, Martelli A, Calderone V, Testai L, Zinnai A. Development of Fortified Citrus Olive Oils: From Their Production to Their Nutraceutical Properties on the Cardiovascular System. Nutrients 2020; 12:E1557. [PMID: 32471156 PMCID: PMC7352984 DOI: 10.3390/nu12061557] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 12/13/2022] Open
Abstract
: Recently the use of food by-products as natural sources of biologically active substances has been extensively investigated especially for the development of functional foods fortified with natural antioxidants. Due to their content of bioactive compounds, such as carotenoids, flavonoids and limonoids, citrus peels could be suitable to formulate enriched olive oils able to boost healthy nutrition. The aim of this study was: (i) to determine the compositional and sensory profiles of citrus olive oil; and (ii) to evaluate its nutraceutical properties in rats with high fat diet-induced metabolic syndrome and oxidative stress. The results obtained show the potential of using citrus peels as a source of bioactive compounds to improve the sensory profile as well as the phytochemical composition of olive oil. We demonstrated that the production system of Citrus x aurantium olive oil and Citrus limon olive oil improves its organoleptic properties without altering its beneficial effects, which, like control extra virgin olive oil, showed protective effects relating to glucose and serum lipid levels, metabolic activity of adipocytes, myocardial tissue functionality, oxidative stress markers and endothelial function at blood vessel level.
Collapse
Affiliation(s)
- Lorenzo Flori
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy; (L.F.); (M.D.L.); (L.P.); (A.M.); (V.C.); (A.Z.)
| | - Monica Macaluso
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (M.M.); (I.T.); (C.S.); (F.V.)
| | - Isabella Taglieri
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (M.M.); (I.T.); (C.S.); (F.V.)
| | - Chiara Sanmartin
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (M.M.); (I.T.); (C.S.); (F.V.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Cristina Sgherri
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (M.M.); (I.T.); (C.S.); (F.V.)
| | - Marinella De Leo
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy; (L.F.); (M.D.L.); (L.P.); (A.M.); (V.C.); (A.Z.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Valerio Ciccone
- Department of Life Science, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (V.C.); (S.D.)
- Toscana Life Sciences Str. del Petriccio e Belriguardo 35, 53100 Siena, Italy
| | - Sandra Donnini
- Department of Life Science, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (V.C.); (S.D.)
- Toscana Life Sciences Str. del Petriccio e Belriguardo 35, 53100 Siena, Italy
| | - Francesca Venturi
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (M.M.); (I.T.); (C.S.); (F.V.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Luisa Pistelli
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy; (L.F.); (M.D.L.); (L.P.); (A.M.); (V.C.); (A.Z.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy; (L.F.); (M.D.L.); (L.P.); (A.M.); (V.C.); (A.Z.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy; (L.F.); (M.D.L.); (L.P.); (A.M.); (V.C.); (A.Z.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Lara Testai
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy; (L.F.); (M.D.L.); (L.P.); (A.M.); (V.C.); (A.Z.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Angela Zinnai
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy; (L.F.); (M.D.L.); (L.P.); (A.M.); (V.C.); (A.Z.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
148
|
Koolaji N, Shammugasamy B, Schindeler A, Dong Q, Dehghani F, Valtchev P. Citrus Peel Flavonoids as Potential Cancer Prevention Agents. Curr Dev Nutr 2020; 4:nzaa025. [PMID: 32391511 PMCID: PMC7199889 DOI: 10.1093/cdn/nzaa025] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/11/2019] [Accepted: 02/24/2020] [Indexed: 12/18/2022] Open
Abstract
Citrus fruit and in particular flavonoid compounds from citrus peel have been identified as agents with utility in the treatment of cancer. This review provides a background and overview regarding the compounds found within citrus peel with putative anticancer potential as well as the associated in vitro and in vivo studies. Historical studies have identified a number of cellular processes that can be modulated by citrus peel flavonoids including cell proliferation, cell cycle regulation, apoptosis, metastasis, and angiogenesis. More recently, molecular studies have started to elucidate the underlying cell signaling pathways that are responsible for the flavonoids' mechanism of action. These growing data support further research into the chemopreventative potential of citrus peel extracts, and purified flavonoids in particular. This critical review highlights new research in the field and synthesizes the pathways modulated by flavonoids and other polyphenolic compounds into a generalized schema.
Collapse
Affiliation(s)
- Nooshin Koolaji
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, Australia
- Center for Advanced Food Enginomics, University of Sydney, Sydney, Australia
| | - Balakrishnan Shammugasamy
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, Australia
- Center for Advanced Food Enginomics, University of Sydney, Sydney, Australia
| | - Aaron Schindeler
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, Australia
- Center for Advanced Food Enginomics, University of Sydney, Sydney, Australia
- Bioengineering & Molecular Medicine, The Children's Hospital at Westmead, Sydney, Australia
| | - Qihan Dong
- School of Science and Health, Western Sydney University, Sydney, Australia
- Greg Brown Laboratory, Central Clinical School and Charles Perkins Centre, University of Sydney, Sydney, Australia
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Fariba Dehghani
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, Australia
- Center for Advanced Food Enginomics, University of Sydney, Sydney, Australia
| | - Peter Valtchev
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, Australia
- Center for Advanced Food Enginomics, University of Sydney, Sydney, Australia
| |
Collapse
|
149
|
Magnetic casein-CaFe2O4 nanohybrid carrier conjugated with progesterone for enhanced cytotoxicity of citrus peel derived hesperidin drug towards breast and ovarian cancer. Int J Biol Macromol 2020; 151:293-304. [DOI: 10.1016/j.ijbiomac.2020.02.172] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 02/07/2023]
|
150
|
Tabeshpour J, Hosseinzadeh H, Hashemzaei M, Karimi G. A review of the hepatoprotective effects of hesperidin, a flavanon glycoside in citrus fruits, against natural and chemical toxicities. ACTA ACUST UNITED AC 2020; 28:305-317. [PMID: 32277430 DOI: 10.1007/s40199-020-00344-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/30/2020] [Indexed: 01/30/2023]
Abstract
OBJECTIVES Liver is the most important and functional organ in the body to metabolize and detoxify endogenous compounds and xenobiotics. The major goal of the present narrative review is to assess the hepatoprotective properties of hesperidin against a variety of natural and chemical hepatotoxins via different mechanisms. EVIDENCE ACQUISITION Scientific databases such as Scopus, Medline, Web of Science and Google scholar were thoroughly searched, based on different keywords. RESULTS A variety of natural hepatotoxins such as lipopolysaccharide, concanavalin A and microcystins, and chemical hepatotoxins such as ethanol, acrylamide and carbon tetrachloride have been shown to damage hepatocytes as well as other liver cells. In addition to hepatocytes, ethanol can also damage liver hepatic stellate cells, Kupffer cells and sinusoidal endothelial cells. In this regard, the flavanone hesperidin, occur in the rind of citrus fruits, had been demonstrated to possess widespread pharmacological properties. Hesperidin exerts its hepatoprotective properties via different mechanisms including elevation in the activities of nuclear factor-like 2/antioxidant response element and heme oxygenase 1 as well as the levels of enzymatic and non-enzymatic antioxidants. Furthermore, reduction in the levels of high-mobility group box 1 protein, inhibitor of kappa B protein-alpha, matrix metalloproteinase-9 and C-reactive protein are some other important hesperidin-derived hepatoprotective mechanisms. CONCLUSION Based on several research papers, it could be concluded that hesperidin is able to protect against liver damage from inflammation and/or oxidative stress-mediated natural and chemical toxins.
Collapse
Affiliation(s)
- Jamshid Tabeshpour
- Faculty of Pharmacy, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, P. O. Box 1365-91775, Mashhad, Iran
| | - Mahmoud Hashemzaei
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. .,Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, P. O. Box 1365-91775, Mashhad, Iran.
| |
Collapse
|