101
|
Fabbiano S, Suárez-Zamorano N, Rigo D, Veyrat-Durebex C, Stevanovic Dokic A, Colin DJ, Trajkovski M. Caloric Restriction Leads to Browning of White Adipose Tissue through Type 2 Immune Signaling. Cell Metab 2016; 24:434-446. [PMID: 27568549 DOI: 10.1016/j.cmet.2016.07.023] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/22/2016] [Accepted: 07/26/2016] [Indexed: 12/14/2022]
Abstract
Caloric restriction (CR) extends lifespan from yeast to mammals, delays onset of age-associated diseases, and improves metabolic health. We show that CR stimulates development of functional beige fat within the subcutaneous and visceral adipose tissue, contributing to decreased white fat and adipocyte size in lean C57BL/6 and BALB/c mice kept at room temperature or at thermoneutrality and in obese leptin-deficient mice. These metabolic changes are mediated by increased eosinophil infiltration, type 2 cytokine signaling, and M2 macrophage polarization in fat of CR animals. Suppression of the type 2 signaling, using Il4ra(-/-), Stat6(-/-), or mice transplanted with Stat6(-/-) bone marrow-derived hematopoietic cells, prevents the CR-induced browning and abrogates the subcutaneous fat loss and the metabolic improvements induced by CR. These results provide insights into the overall energy homeostasis during CR, and they suggest beige fat development as a common feature in conditions of negative energy balance.
Collapse
Affiliation(s)
- Salvatore Fabbiano
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire (CMU), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Diabetes Centre, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Nicolas Suárez-Zamorano
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire (CMU), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Diabetes Centre, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Dorothée Rigo
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire (CMU), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Diabetes Centre, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Christelle Veyrat-Durebex
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire (CMU), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Diabetes Centre, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Ana Stevanovic Dokic
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire (CMU), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Diabetes Centre, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Didier J Colin
- Centre for BioMedical Imaging (CIBM), University Hospitals of Geneva, 1211 Geneva, Switzerland
| | - Mirko Trajkovski
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire (CMU), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Diabetes Centre, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
102
|
Choi WH, Ahn J, Jung CH, Jang YJ, Ha TY. β-Lapachone Prevents Diet-Induced Obesity by Increasing Energy Expenditure and Stimulating the Browning of White Adipose Tissue via Downregulation of miR-382 Expression. Diabetes 2016; 65:2490-501. [PMID: 27246910 DOI: 10.2337/db15-1423] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 05/18/2016] [Indexed: 11/13/2022]
Abstract
There has been great interest in the browning of fat for the treatment of obesity. Although β-lapachone (BLC) has potential therapeutic effects on obesity, the fat-browning effect and thermogenic capacity of BLC on obesity have never been demonstrated. Here, we showed that BLC stimulated the browning of white adipose tissue (WAT), increased the expression of brown adipocyte-specific genes (e.g., uncoupling protein 1 [UCP1]), decreased body weight gain, and ameliorated metabolic parameters in mice fed a high-fat diet. Consistently, BLC-treated mice showed significantly higher energy expenditure compared with control mice. In vitro, BLC increased the expression of brown adipocyte-specific genes in stromal vascular fraction-differentiated adipocytes. BLC also controlled the expression of miR-382, which led to the upregulation of its direct target, Dio2. Upregulation of miR-382 markedly inhibited the differentiation of adipocytes into beige adipocytes, whereas BLC recovered beige adipocyte differentiation and increased the expression of Dio2 and UCP1. Our findings suggest that the BLC-mediated increase in the browning of WAT and the thermogenic capacity of BAT significantly results in increases in energy expenditure. Browning of WAT by BLC was partially controlled via the regulation of miR-382 targeting Dio2 and may lead to the prevention of diet-induced obesity.
Collapse
MESH Headings
- Adipocytes/drug effects
- Adipocytes, Brown/drug effects
- Adipocytes, Brown/metabolism
- Adipose Tissue, Brown/drug effects
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, White/drug effects
- Adipose Tissue, White/metabolism
- Animals
- Calorimetry, Indirect
- Cells, Cultured
- Diet, High-Fat
- Energy Metabolism/drug effects
- Gene Expression Regulation/drug effects
- Glucose Tolerance Test
- Male
- Mice
- Mice, Inbred C57BL
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Naphthoquinones/pharmacology
- Naphthoquinones/therapeutic use
- Obesity/drug therapy
- Obesity/etiology
- Obesity/prevention & control
- Oxygen Consumption/drug effects
- Thermogenesis/drug effects
Collapse
Affiliation(s)
- Won Hee Choi
- Research Group of Nutrition and Metabolic System, Korea Food Research Institute, Seongnam, Korea Division of Food Biotechnology, University of Science and Technology, Daejeon, Korea
| | - Jiyun Ahn
- Research Group of Nutrition and Metabolic System, Korea Food Research Institute, Seongnam, Korea Division of Food Biotechnology, University of Science and Technology, Daejeon, Korea
| | - Chang Hwa Jung
- Research Group of Nutrition and Metabolic System, Korea Food Research Institute, Seongnam, Korea Division of Food Biotechnology, University of Science and Technology, Daejeon, Korea
| | - Young Jin Jang
- Research Group of Nutrition and Metabolic System, Korea Food Research Institute, Seongnam, Korea
| | - Tae Youl Ha
- Research Group of Nutrition and Metabolic System, Korea Food Research Institute, Seongnam, Korea Division of Food Biotechnology, University of Science and Technology, Daejeon, Korea
| |
Collapse
|
103
|
McCourt AC, Jakobsson L, Larsson S, Holm C, Piel S, Elmér E, Björkqvist M. White Adipose Tissue Browning in the R6/2 Mouse Model of Huntington's Disease. PLoS One 2016; 11:e0159870. [PMID: 27486903 PMCID: PMC4972251 DOI: 10.1371/journal.pone.0159870] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 07/08/2016] [Indexed: 12/12/2022] Open
Abstract
Huntington’s disease (HD) is a fatal, autosomal dominantly inherited neurodegenerative disorder, characterised not only by progressive cognitive, motor and psychiatric impairments, but also of peripheral pathology. In both human HD and in mouse models of HD there is evidence of increased energy expenditure and weight loss, alongside altered body composition. Unlike white adipose tissue (WAT), brown adipose tissue (BAT), as well as brown-like cells within WAT, expresses the mitochondrial protein, uncoupling protein 1 (UCP1). UCP1 enables dissociation of cellular respiration from ATP utilization, resulting in the release of stored energy as heat. Hyperplasia of brown/beige cells in WAT has been suggested to enhance energy expenditure. In this study, we therefore investigated the gene expression profile, histological appearance, response to cold challenge and functional aspects of WAT in the R6/2 HD mouse model and selected WAT gene expression in the full-length Q175 mouse model of HD. WAT from R6/2 mice contained significantly more brown-like adipocyte regions and had a gene profile suggestive of the presence of brown-like adipocytes, such as higher Ucp1 expression. Cold exposure induced Ucp1 expression in R6/2 inguinal WAT to a markedly higher degree as compared to the thermogenic response in WT WAT. Alongside this, gene expression of transcription factors (Zfp516 and Pparα), important inducers of WAT browning, were increased in R6/2 inguinal WAT, and Creb1 was highlighted as a key transcription factor in HD. In addition to increased WAT Ucp1 expression, a trend towards increased mitochondrial oxygen consumption due to enhanced uncoupling activity was found in inguinal R6/2 WAT. Key gene expressional changes (increased expression of (Zfp516 and Pparα)) were replicated in inguinal WAT obtained from Q175 mice. In summary, for the first time, we here show that HD mouse WAT undergoes a process of browning, resulting in molecular and functional alterations that may contribute to the weight loss and altered metabolism observed with disease progression.
Collapse
Affiliation(s)
- Andrew C. McCourt
- Brain Disease Biomarker Unit, Department of Experimental Medical Science, Lund University, BMC A10, 22184 Lund, Sweden
| | - Lovisa Jakobsson
- Brain Disease Biomarker Unit, Department of Experimental Medical Science, Lund University, BMC A10, 22184 Lund, Sweden
| | - Sara Larsson
- Section for Diabetes, Metabolism and Endocrinology, Department of Experimental Medical Science, Lund University, BMC C11, 221 84 Lund, Sweden
| | - Cecilia Holm
- Section for Diabetes, Metabolism and Endocrinology, Department of Experimental Medical Science, Lund University, BMC C11, 221 84 Lund, Sweden
| | - Sarah Piel
- Mitochondrial Medicine, Department of Clinical Sciences, Lund University, BMC A13, 221 84 Lund, Sweden
| | - Eskil Elmér
- Mitochondrial Medicine, Department of Clinical Sciences, Lund University, BMC A13, 221 84 Lund, Sweden
| | - Maria Björkqvist
- Brain Disease Biomarker Unit, Department of Experimental Medical Science, Lund University, BMC A10, 22184 Lund, Sweden
- * E-mail:
| |
Collapse
|
104
|
Kim J, Okla M, Erickson A, Carr T, Natarajan SK, Chung S. Eicosapentaenoic Acid Potentiates Brown Thermogenesis through FFAR4-dependent Up-regulation of miR-30b and miR-378. J Biol Chem 2016; 291:20551-62. [PMID: 27489163 DOI: 10.1074/jbc.m116.721480] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Indexed: 01/25/2023] Open
Abstract
Emerging evidence suggests that n-3 polyunsaturated fatty acids (PUFA) promote brown adipose tissue thermogenesis. However, the underlying mechanisms remain elusive. Here, we hypothesize that n-3 PUFA promotes brown adipogenesis by modulating miRNAs. To test this hypothesis, murine brown preadipocytes were induced to differentiate the fatty acids of palmitic, oleate, or eicosapentaenoic acid (EPA). The increases of brown-specific signature genes and oxygen consumption rate by EPA were concurrent with up-regulation of miR-30b and 378 but not by oleate or palmitic acid. Next, we hypothesize that free fatty acid receptor 4 (Ffar4), a functional receptor for n-3 PUFA, modulates miR-30b and 378. Treatment of Ffar4 agonist (GW9508) recapitulated the thermogenic activation of EPA by increasing oxygen consumption rate, brown-specific marker genes, and miR-30b and 378, which were abrogated in Ffar4-silenced cells. Intriguingly, addition of the miR-30b mimic was unable to restore EPA-induced Ucp1 expression in Ffar4-depleted cells, implicating that Ffar4 signaling activity is required for up-regulating the brown adipogenic program. Moreover, blockage of miR-30b or 378 by locked nucleic acid inhibitors significantly attenuated Ffar4 as well as brown-specific signature gene expression, suggesting the signaling interplay between Ffar4 and miR-30b/378. The association between miR-30b/378 and brown thermogenesis was also confirmed in fish oil-fed C57/BL6 mice. Interestingly, the Ffar4 agonism-mediated signaling axis of Ffar4-miR-30b/378-Ucp1 was linked with an elevation of cAMP in brown adipocytes, similar to cold-exposed or fish oil-fed brown fat. Taken together, our work identifies a novel function of Ffar4 in modulating brown adipogenesis partly through a mechanism involving cAMP activation and up-regulation of miR-30b and miR-378.
Collapse
Affiliation(s)
- Jiyoung Kim
- From the Department of Nutrition and Health Sciences, the University of Nebraska, Lincoln, Nebraska 68583
| | - Meshail Okla
- From the Department of Nutrition and Health Sciences, the University of Nebraska, Lincoln, Nebraska 68583
| | - Anjeza Erickson
- From the Department of Nutrition and Health Sciences, the University of Nebraska, Lincoln, Nebraska 68583
| | - Timothy Carr
- From the Department of Nutrition and Health Sciences, the University of Nebraska, Lincoln, Nebraska 68583
| | - Sathish Kumar Natarajan
- From the Department of Nutrition and Health Sciences, the University of Nebraska, Lincoln, Nebraska 68583
| | - Soonkyu Chung
- From the Department of Nutrition and Health Sciences, the University of Nebraska, Lincoln, Nebraska 68583
| |
Collapse
|
105
|
Xie W, Li L, Zhang M, Cheng HP, Gong D, Lv YC, Yao F, He PP, Ouyang XP, Lan G, Liu D, Zhao ZW, Tan YL, Zheng XL, Yin WD, Tang CK. MicroRNA-27 Prevents Atherosclerosis by Suppressing Lipoprotein Lipase-Induced Lipid Accumulation and Inflammatory Response in Apolipoprotein E Knockout Mice. PLoS One 2016; 11:e0157085. [PMID: 27257686 PMCID: PMC4892477 DOI: 10.1371/journal.pone.0157085] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 05/24/2016] [Indexed: 01/11/2023] Open
Abstract
Atherosclerotic lesions are lipometabolic disorder characterized by chronic progressive inflammation in arterial walls. Previous studies have shown that macrophage-derived lipoprotein lipase (LPL) might be a key factor that promotes atherosclerosis by accelerating lipid accumulation and proinflammatory cytokine secretion. Increasing evidence indicates that microRNA-27 (miR-27) has beneficial effects on lipid metabolism and inflammatory response. However, it has not been fully understood whether miR-27 affects the expression of LPL and subsequent development of atherosclerosis in apolipoprotein E knockout (apoE KO) mice. To address these questions and its potential mechanisms, oxidized low-density lipoprotein (ox-LDL)-treated THP-1 macrophages were transfected with the miR-27 mimics/inhibitors and apoE KO mice fed high-fat diet were given a tail vein injection with miR-27 agomir/antagomir, followed by exploring the potential roles of miR-27. MiR-27 agomir significantly down-regulated LPL expression in aorta and peritoneal macrophages by western blot and real-time PCR analyses. We performed LPL activity assay in the culture media and found that miR-27 reduced LPL activity. ELISA showed that miR-27 reduced inflammatory response as analyzed in vitro and in vivo experiments. Our results showed that miR-27 had an inhibitory effect on the levels of lipid both in plasma and in peritoneal macrophages of apoE KO mice as examined by HPLC. Consistently, miR-27 suppressed the expression of scavenger receptors associated with lipid uptake in ox-LDL-treated THP-1 macrophages. In addition, transfection with LPL siRNA inhibited the miR-27 inhibitor-induced lipid accumulation and proinflammatory cytokines secretion in ox-LDL-treated THP-1 macrophages. Finally, systemic treatment revealed that miR-27 decreased aortic plaque size and lipid content in apoE KO mice. The present results provide evidence that a novel antiatherogenic role of miR-27 was closely related to reducing lipid accumulation and inflammatory response via downregulation of LPL gene expression, suggesting a potential strategy to the diagnosis and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Wei Xie
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China.,Laboratory of Clinical Anatomy, University of South China, Hengyang, Hunan, China
| | - Liang Li
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China.,Department of Pathophysiology, University of South China, Hengyang, Hunan, China
| | - Min Zhang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
| | - Hai-Peng Cheng
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
| | - Duo Gong
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
| | - Yun-Cheng Lv
- Laboratory of Clinical Anatomy, University of South China, Hengyang, Hunan, China
| | - Feng Yao
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
| | - Ping-Ping He
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
| | - Xin-Ping Ouyang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
| | - Gang Lan
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
| | - Dan Liu
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
| | - Zhen-Wang Zhao
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
| | - Yu-Lin Tan
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Health Sciences Center, Hospital Dr NW, Calgary, Alberta, Canada
| | - Wei-Dong Yin
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
| | - Chao-Ke Tang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
| |
Collapse
|
106
|
Inagaki T, Sakai J, Kajimura S. Transcriptional and epigenetic control of brown and beige adipose cell fate and function. Nat Rev Mol Cell Biol 2016; 17:480-95. [PMID: 27251423 DOI: 10.1038/nrm.2016.62] [Citation(s) in RCA: 235] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
White adipocytes store excess energy in the form of triglycerides, whereas brown and beige adipocytes dissipate energy in the form of heat. This thermogenic function relies on the activation of brown and beige adipocyte-specific gene programmes that are coordinately regulated by adipose-selective chromatin architectures and by a set of unique transcriptional and epigenetic regulators. A number of transcriptional and epigenetic regulators are also required for promoting beige adipocyte biogenesis in response to various environmental stimuli. A better understanding of the molecular mechanisms governing the generation and function of brown and beige adipocytes is necessary to allow us to control adipose cell fate and stimulate thermogenesis. This may provide a therapeutic approach for the treatment of obesity and obesity-associated diseases, such as type 2 diabetes.
Collapse
Affiliation(s)
- Takeshi Inagaki
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan 153-8904.,The Translational Systems Biology and Medicine Initiative (TSBMI), Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan 113-8655
| | - Juro Sakai
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan 153-8904.,The Translational Systems Biology and Medicine Initiative (TSBMI), Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan 113-8655
| | - Shingo Kajimura
- UCSF Diabetes Center and Department of Cell and Tissue Biology, University of California, San Francisco, California 94143-0669, USA
| |
Collapse
|
107
|
MicroRNA: a connecting road between apoptosis and cholesterol metabolism. Tumour Biol 2016; 37:8529-54. [PMID: 27105614 DOI: 10.1007/s13277-016-4988-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/10/2016] [Indexed: 12/15/2022] Open
Abstract
Resistance to apoptosis leads to tumorigenesis and failure of anti-cancer therapy. Recent studies also highlight abrogated lipid/cholesterol metabolism as one of the root causes of cancer that can lead to metastatic transformations. Cancer cells are dependent on tremendous supply of cellular cholesterol for the formation of new membranes and continuation of cell signaling. Cholesterol homeostasis network tightly regulates this metabolic need of cancer cells on cholesterol and other lipids. Genetic landscape is also shared between apoptosis and cholesterol metabolism. MicroRNAs (miRNAs) are the new fine tuners of signaling pathways and cellular processes and are known for their ability to post-transcriptionally repress gene expression in a targeted manner. This review summarizes the current knowledge about the cross talk between apoptosis and cholesterol metabolism via miRNAs. In addition, we also emphasize herein recent therapeutic modulations of specific miRNAs and their promising potential for the treatment of deadly diseases including cancer and cholesterol related pathologies. Understanding of the impact of miRNA-based regulation of apoptosis and metabolic processes is still at its dawn and needs further research for the development of future miRNA-based therapies. As both these physiological processes affect cellular homeostasis, we believe that this comprehensive summary of miRNAs modulating both apoptosis and cholesterol metabolism will open uncharted territory for scientific exploration and will provide the foundation for discovering novel drug targets for cancer and metabolic diseases.
Collapse
|
108
|
Fu T, Kemper JK. MicroRNA-34a and Impaired FGF19/21 Signaling in Obesity. VITAMINS AND HORMONES 2016; 101:175-96. [PMID: 27125742 DOI: 10.1016/bs.vh.2016.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The obesity epidemic and the urgent need for effective and safe drugs to treat obesity-related diseases have greatly increased research interest in the metabolic hormones, fibroblast growth factor-19 (FGF19, FGF15 in mice), and FGF21. FGF19 and FGF21 function as endocrine hormones that play key roles in energy metabolism and counteract obesity. Importantly, in obese humans and lab animals, circulating FGF19 and FGF21 levels are elevated, and metabolic actions of these hormones are impaired but the underlying mechanisms remained unknown. Recent microRNA (miR) studies have revealed that aberrantly elevated miR-34a in obesity directly targets β-Klotho, the obligate coreceptor for both FGF19 and FGF21, and attenuates metabolic signaling of these hormones. In this review, we will discuss recent findings in the miR and FGF19/21 fields, emphasizing the novel function of obesity-associated miR-34a in attenuation of FGF19/21 metabolic actions, and further discuss miRs, including miR-34a, as potential drug targets for obesity-related diseases.
Collapse
Affiliation(s)
- T Fu
- University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - J K Kemper
- University of Illinois at Urbana-Champaign, Urbana, IL, United States.
| |
Collapse
|
109
|
Torriani M, Srinivasa S, Fitch KV, Thomou T, Wong K, Petrow E, Kahn CR, Cypess AM, Grinspoon SK. Dysfunctional Subcutaneous Fat With Reduced Dicer and Brown Adipose Tissue Gene Expression in HIV-Infected Patients. J Clin Endocrinol Metab 2016; 101:1225-34. [PMID: 26756119 PMCID: PMC4803164 DOI: 10.1210/jc.2015-3993] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT HIV patients are at an increased risk for cardiometabolic disease secondary to depot-specific alterations in adipose function, but mechanisms remain poorly understood. OBJECTIVE The endoribonuclease Dicer has been linked to the modulation of brown and white adipocyte differentiation. We previously demonstrated that Dicer knockout mice undergo transformation of brown adipose tissue to white adipose tissue and develop a lipodystrophic phenotype. We hypothesized reduced Dicer and brown adipose tissue gene expression from nonlipomatous sc fat among HIV patients with a lipodystrophic phenotype. DESIGN Eighteen HIV (nine with and without lipodystrophic changes in fat distribution, characterized by excess dorsocervical adipose tissue [DCAT]) and nine non-HIV subjects underwent punch biopsy of abdominal sc fat to determine expression of Dicer and other adipose-related genes. RESULTS HIV subjects with long-duration antiretroviral use demonstrated excess DCAT vs non-HIV subjects (9.8 ± 1.0 vs 6.6 ± 0.8 cm(2), P = .02) with similar body mass index. Dicer expression was decreased in abdominal sc fat of HIV vs non-HIV (4.88 [1.91, 11.93] vs 17.69 [10.72, 47.91], P = .01), as were PPARα, ZIC1, PRDM16, DIO2, and HSP60 (all P ≤ .03). Moreover, the expression of Dicer (2.49 [0.02, 4.88] vs 11.20 [4.83, 21.45], P = .006), brown fat (PPARα [P = .002], ZIC1 [P = .004], LHX8 [P = .03], PRDM16 [P = .0008], PAT2 [P = .008], P2RX5 [P = .02]), beige fat (TMEM26 [P = .004], CD137 [P = .008]), and other genes (DIO2 [P = .002], leptin [P = .003], HSP60 [P = .0004]) was further decreased in abdominal sc fat comparing HIV subjects with vs without excess DCAT. Down-regulation of Dicer in the abdominal sc fat correlated with the down-regulation of all brown and beige fat genes (all P ≤ .01). CONCLUSION Our results demonstrate dysfunctional sc adipose tissue marked by reduced Dicer in relationship to the down-regulation of brown and beige fat-related genes in lipodystrophic HIV patients and may provide a novel mechanism for metabolic dysregulation. A strategy to increase browning of white adipose tissue may improve cardiometabolic health in HIV.
Collapse
Affiliation(s)
- Martin Torriani
- Program in Nutritional Metabolism (M.T., S.S., K.V.F., K.W., E.P., S.K.G.) and Division of Musculoskeletal Imaging and Intervention (M.T.), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114; Section on Integrative Physiology and Metabolism (T.T., C.R.K., A.M.C.), Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts 02215; and Translational Physiology Section, Diabetes, Endocrinology, and Obesity Branch, National Institutes of Health/National Institute of Diabetes and Digestive and Kidney Diseases (A.M.C.), Bethesda, Maryland 20892
| | - Suman Srinivasa
- Program in Nutritional Metabolism (M.T., S.S., K.V.F., K.W., E.P., S.K.G.) and Division of Musculoskeletal Imaging and Intervention (M.T.), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114; Section on Integrative Physiology and Metabolism (T.T., C.R.K., A.M.C.), Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts 02215; and Translational Physiology Section, Diabetes, Endocrinology, and Obesity Branch, National Institutes of Health/National Institute of Diabetes and Digestive and Kidney Diseases (A.M.C.), Bethesda, Maryland 20892
| | - Kathleen V Fitch
- Program in Nutritional Metabolism (M.T., S.S., K.V.F., K.W., E.P., S.K.G.) and Division of Musculoskeletal Imaging and Intervention (M.T.), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114; Section on Integrative Physiology and Metabolism (T.T., C.R.K., A.M.C.), Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts 02215; and Translational Physiology Section, Diabetes, Endocrinology, and Obesity Branch, National Institutes of Health/National Institute of Diabetes and Digestive and Kidney Diseases (A.M.C.), Bethesda, Maryland 20892
| | - Thomas Thomou
- Program in Nutritional Metabolism (M.T., S.S., K.V.F., K.W., E.P., S.K.G.) and Division of Musculoskeletal Imaging and Intervention (M.T.), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114; Section on Integrative Physiology and Metabolism (T.T., C.R.K., A.M.C.), Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts 02215; and Translational Physiology Section, Diabetes, Endocrinology, and Obesity Branch, National Institutes of Health/National Institute of Diabetes and Digestive and Kidney Diseases (A.M.C.), Bethesda, Maryland 20892
| | - Kimberly Wong
- Program in Nutritional Metabolism (M.T., S.S., K.V.F., K.W., E.P., S.K.G.) and Division of Musculoskeletal Imaging and Intervention (M.T.), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114; Section on Integrative Physiology and Metabolism (T.T., C.R.K., A.M.C.), Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts 02215; and Translational Physiology Section, Diabetes, Endocrinology, and Obesity Branch, National Institutes of Health/National Institute of Diabetes and Digestive and Kidney Diseases (A.M.C.), Bethesda, Maryland 20892
| | - Eva Petrow
- Program in Nutritional Metabolism (M.T., S.S., K.V.F., K.W., E.P., S.K.G.) and Division of Musculoskeletal Imaging and Intervention (M.T.), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114; Section on Integrative Physiology and Metabolism (T.T., C.R.K., A.M.C.), Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts 02215; and Translational Physiology Section, Diabetes, Endocrinology, and Obesity Branch, National Institutes of Health/National Institute of Diabetes and Digestive and Kidney Diseases (A.M.C.), Bethesda, Maryland 20892
| | - C Ronald Kahn
- Program in Nutritional Metabolism (M.T., S.S., K.V.F., K.W., E.P., S.K.G.) and Division of Musculoskeletal Imaging and Intervention (M.T.), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114; Section on Integrative Physiology and Metabolism (T.T., C.R.K., A.M.C.), Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts 02215; and Translational Physiology Section, Diabetes, Endocrinology, and Obesity Branch, National Institutes of Health/National Institute of Diabetes and Digestive and Kidney Diseases (A.M.C.), Bethesda, Maryland 20892
| | - Aaron M Cypess
- Program in Nutritional Metabolism (M.T., S.S., K.V.F., K.W., E.P., S.K.G.) and Division of Musculoskeletal Imaging and Intervention (M.T.), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114; Section on Integrative Physiology and Metabolism (T.T., C.R.K., A.M.C.), Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts 02215; and Translational Physiology Section, Diabetes, Endocrinology, and Obesity Branch, National Institutes of Health/National Institute of Diabetes and Digestive and Kidney Diseases (A.M.C.), Bethesda, Maryland 20892
| | - Steven K Grinspoon
- Program in Nutritional Metabolism (M.T., S.S., K.V.F., K.W., E.P., S.K.G.) and Division of Musculoskeletal Imaging and Intervention (M.T.), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114; Section on Integrative Physiology and Metabolism (T.T., C.R.K., A.M.C.), Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts 02215; and Translational Physiology Section, Diabetes, Endocrinology, and Obesity Branch, National Institutes of Health/National Institute of Diabetes and Digestive and Kidney Diseases (A.M.C.), Bethesda, Maryland 20892
| |
Collapse
|
110
|
Price NL, Fernández-Hernando C. miRNA regulation of white and brown adipose tissue differentiation and function. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:2104-2110. [PMID: 26898181 DOI: 10.1016/j.bbalip.2016.02.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/12/2016] [Accepted: 02/13/2016] [Indexed: 01/06/2023]
Abstract
Obesity and metabolic disorders are a major health concern in all developed countries and a primary focus of current medical research is to improve our understanding treatment of metabolic diseases. One avenue of research that has attracted a great deal of recent interest focuses upon understanding the role of miRNAs in the development of metabolic diseases. miRNAs have been shown to be dysregulated in a number of different tissues under conditions of obesity and insulin resistance, and have been demonstrated to be important regulators of a number of critical metabolic functions, including insulin secretion in the pancreas, lipid and glucose metabolism in the liver, and nutrient signaling in the hypothalamus. In this review we will focus on the important role of miRNAs in regulating the differentiation and function of white and brown adipose tissue and the potential importance of this for maintaining metabolic function and treating metabolic diseases. This article is part of a Special Issue entitled: MicroRNAs and lipid/energy metabolism and related diseases edited by Carlos Fernández-Hernando and Yajaira Suárez.
Collapse
Affiliation(s)
- Nathan L Price
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
111
|
Chi J, Cohen P. The Multifaceted Roles of PRDM16: Adipose Biology and Beyond. Trends Endocrinol Metab 2016; 27:11-23. [PMID: 26688472 DOI: 10.1016/j.tem.2015.11.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/05/2015] [Accepted: 11/09/2015] [Indexed: 01/07/2023]
Abstract
The PRDM [PRDI-BFI (positive regulatory domain I-binding factor 1) and RIZ1 (retinoblastoma protein-interacting zinc finger gene 1) homologous domain containing] protein family is involved in a spectrum of biological processes including cell fate determination and development. These proteins regulate transcription through intrinsic chromatin-modifying activity or by complexing with histone-modifying or other nuclear proteins. Studies have indicated crucial roles for PRDM16 in the determination and function of brown and beige fat as well as in hematopoiesis and cardiac development, highlighting the importance of PRDM16 in developmental processes in different tissues. More recently, PRDM16 mutations were also identified in humans. The substantial progress in understanding the mechanism underlying the action of PRDM16 in adipose biology may have relevance to other PRDM family members, and this new knowledge has the potential to be exploited for therapeutic benefit.
Collapse
Affiliation(s)
- Jingyi Chi
- The Rockefeller University, Laboratory of Molecular Metabolism, New York, NY 10065, USA
| | - Paul Cohen
- The Rockefeller University, Laboratory of Molecular Metabolism, New York, NY 10065, USA.
| |
Collapse
|
112
|
Arias N, Aguirre L, Fernández-Quintela A, González M, Lasa A, Miranda J, Macarulla MT, Portillo MP. MicroRNAs involved in the browning process of adipocytes. J Physiol Biochem 2015; 72:509-21. [PMID: 26695012 DOI: 10.1007/s13105-015-0459-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/13/2015] [Indexed: 12/25/2022]
Abstract
The present review focuses on the role of miRNAs in the control of white adipose tissue browning, a process which describes the recruitment of adipocytes showing features of brown adipocytes in white adipose tissue. MicroRNAs (miRNAs) are a class of short non-coding RNAs (19-22 nucleotides) involved in gene regulation. Although the main effect of miRNAs is the inhibition of the translational machinery, thereby preventing the production of the protein product, the activation of protein translation has also been described in the literature. In addition to modifying translation, miRNAs binding to its target mRNAs also trigger the recruitment and association of mRNA decay factors, leading to mRNA destabilization, degradation, and thus to the decrease in expression levels. Although a great number of miRNAs have been reported to potentially regulate genes that play important roles in the browning process, only a reduced number of studies have demonstrated experimentally an effect on this process associated to changes in miRNA expressions, so far.
These studies have shown, by using either primary adipocyte cultures or experimental models of mice (KO mice, mice overexpressing a specific miRNA), that miR-196a, miR-26, and miR-30 are needed for browning process development. By contrast, miR-155, miR-133, miR-27b, and miR-34 act as negative regulators of this process [corrected]. Further studies are needed to fully describe the miRNA network-involved white adipose tissue browning regulation.
Collapse
Affiliation(s)
- N Arias
- Nutrition and Obesity Group, Department of Nutrition and Food Sciences, University of Basque Country (UPV/EHU) and Lucio Lascaray Research Center, Vitoria-Gasteiz, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - L Aguirre
- Nutrition and Obesity Group, Department of Nutrition and Food Sciences, University of Basque Country (UPV/EHU) and Lucio Lascaray Research Center, Vitoria-Gasteiz, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - A Fernández-Quintela
- Nutrition and Obesity Group, Department of Nutrition and Food Sciences, University of Basque Country (UPV/EHU) and Lucio Lascaray Research Center, Vitoria-Gasteiz, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - M González
- Nutrition and Food Science, Faculty of Biochemistry and Biological Sciences, National University of Litoral, Santa Fe, Argentina
| | - A Lasa
- Nutrition and Obesity Group, Department of Nutrition and Food Sciences, University of Basque Country (UPV/EHU) and Lucio Lascaray Research Center, Vitoria-Gasteiz, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - J Miranda
- Nutrition and Obesity Group, Department of Nutrition and Food Sciences, University of Basque Country (UPV/EHU) and Lucio Lascaray Research Center, Vitoria-Gasteiz, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - M T Macarulla
- Nutrition and Obesity Group, Department of Nutrition and Food Sciences, University of Basque Country (UPV/EHU) and Lucio Lascaray Research Center, Vitoria-Gasteiz, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - M P Portillo
- Nutrition and Obesity Group, Department of Nutrition and Food Sciences, University of Basque Country (UPV/EHU) and Lucio Lascaray Research Center, Vitoria-Gasteiz, Spain. .,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
113
|
Chen SZ, Xu X, Ning LF, Jiang WY, Xing C, Tang QQ, Huang HY. miR-27 impairs the adipogenic lineage commitment via targeting lysyl oxidase. Obesity (Silver Spring) 2015; 23:2445-53. [PMID: 26536844 DOI: 10.1002/oby.21319] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/17/2015] [Accepted: 07/30/2015] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The recruitment and commitment of mesenchymal stem cells and their terminal differentiation into adipocytes are the main pathways for increasing adipocyte cell numbers during obesity. Our previous studies have shown that lysyl oxidase (Lox) is upregulated and functions as an essential factor during bone morphogenetic protein 4 (BMP4) -induced C3H10T1/2 cell adipocytic lineage commitment. However, the mechanism of Lox regulation during adipogenic lineage commitment has remained largely unestablished. METHODS Samples of adipose tissue from humans with different BMI and C57BL/6 mice with a high-fat diet were used to compare microRNA-27 (miR-27) expression level associated with obesity. Taqman assays were used for miR-27 expression detection and Oil Red O staining for adipogenesis analysis. RESULTS A negative correlation was identified between Lox expression level and miR-27 expression in both BMP4-treated C3H10T1/2 cells and human subcutaneous adipose tissues. A Lox 3' UTR luciferase reporter assay showed that miR-27 directly targeted Lox. Furthermore, overexpression of miR-27 impaired BMP4-induced upregulation of Lox and adipocytic commitment, which could be rescued by overexpression of mature Lox. Conversely, miR-27 inhibition by specific inhibitors increased Lox expression and adipocytic commitment. CONCLUSIONS Taken together, these results suggest a novel role for miR-27 in repressing adipogenic lineage commitment by targeting Lox.
Collapse
Affiliation(s)
- Su-Zhen Chen
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Shanghai, People's Republic of China
- Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai, People's Republic of China
| | - Xu Xu
- Institute of Stem Cell Research and Regenerative Medicine, Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Liu-Fang Ning
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Shanghai, People's Republic of China
- Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai, People's Republic of China
| | - Wen-Yan Jiang
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Shanghai, People's Republic of China
- Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai, People's Republic of China
| | - Chun Xing
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Shanghai, People's Republic of China
- Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai, People's Republic of China
| | - Qi-Qun Tang
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Shanghai, People's Republic of China
- Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai, People's Republic of China
- Institute of Stem Cell Research and Regenerative Medicine, Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Hai-Yan Huang
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Shanghai, People's Republic of China
- Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai, People's Republic of China
- Institute of Stem Cell Research and Regenerative Medicine, Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
114
|
Microbiota depletion promotes browning of white adipose tissue and reduces obesity. Nat Med 2015; 21:1497-1501. [PMID: 26569380 PMCID: PMC4675088 DOI: 10.1038/nm.3994] [Citation(s) in RCA: 311] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/15/2015] [Indexed: 12/16/2022]
Abstract
Brown adipose tissue (BAT) promotes a lean and healthy phenotype and improves insulin sensitivity. In response to cold or exercise, brown fat cells also emerge in the white adipose tissue (WAT; also known as beige cells), a process known as browning. Here we show that the development of functional beige fat in the inguinal subcutaneous adipose tissue (ingSAT) and perigonadal visceral adipose tissue (pgVAT) is promoted by the depletion of microbiota either by means of antibiotic treatment or in germ-free mice. This leads to improved glucose tolerance and insulin sensitivity and decreased white fat and adipocyte size in lean mice, obese leptin-deficient (ob/ob) mice and high-fat diet (HFD)-fed mice. Such metabolic improvements are mediated by eosinophil infiltration, enhanced type 2 cytokine signaling and M2 macrophage polarization in the subcutaneous white fat depots of microbiota-depleted animals. The metabolic phenotype and the browning of the subcutaneous fat are impaired by the suppression of type 2 cytokine signaling, and they are reversed by recolonization of the antibiotic-treated or germ-free mice with microbes. These results provide insight into the microbiota-fat signaling axis and beige-fat development in health and metabolic disease.
Collapse
|
115
|
Comparative analysis of microRNA expression in mouse and human brown adipose tissue. BMC Genomics 2015; 16:820. [PMID: 26482036 PMCID: PMC4617708 DOI: 10.1186/s12864-015-2045-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 10/09/2015] [Indexed: 11/26/2022] Open
Abstract
Background In small mammals brown adipose tissue (BAT) plays a predominant role in regulating energy expenditure (EE) via adaptive thermogenesis. New-born babies require BAT to control their body temperature, however its relevance in adults has been questioned. Active BAT has recently been observed in adult humans, albeit in much lower relative quantities than small mammals. Comparing and contrasting the molecular mechanisms controlling BAT growth and development in mice and humans will increase our understanding or how human BAT is developed and may identify potential therapeutic targets to increase EE. MicroRNAs are molecular mechanisms involved in mouse BAT development however, little is known about the miRNA profile in human BAT. The aims of this study were to establish a mouse BAT-enriched miRNA profile and compare this with miRNAs measured in human BAT. To achieve this we firstly established a mouse BAT enriched-miRNA profile by comparing miRNAs expressed in mouse BAT, white adipose tissue and skeletal muscle. Following this the BAT-enriched miRNAs predicted to target genes potentially involved in growth and development were identified. Methods MiRNA levels were measured using PCR-based miRNA arrays. Results were analysed using ExpressionSuite software with the global mean expression value of all expressed miRNAs in a givensample used as the normalisation factor. Bio-informatic analyses was used to predict gene targets followed by Ingenuity Pathway Analysis. Results We identified 35 mouse BAT-enriched miRNAs that were predicted to target genes potentially involved in growth and development. We also identified 145 miRNAs expressed in both mouse and human BAT, of which 25 were enriched in mouse BAT. Of these 25 miRNAs, miR-20a was predicted to target MYF5 and PPARγ, two important genes involved in brown adipogenesis, as well as BMP2 and BMPR2, genes involved in white adipogenesis. For the first time, 69 miRNAs were identified in human BAT but absent in mouse BAT, and 181 miRNAs were expressed in mouse but not in human BAT. Conclusion The present study has identified a small sub-set of miRNAs common to both mouse and human BAT. From this sub-set bioinformatics analysis suggested a potential role of miR-20a in the control of cell fate and this warrants further investigation. The large number of miRNAs found only in mouse BAT or only in human BAT highlights the differing molecular profile between species that is likely to influence the functional role of BAT across species. Nevertheless the BAT-enriched miRNA profiles established in the present study suggest targets to investigate in the control BAT development and EE. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2045-8) contains supplementary material, which is available to authorized users.
Collapse
|
116
|
Unser AM, Mooney B, Corr DT, Tseng YH, Xie Y. 3D brown adipogenesis to create "Brown-Fat-in-Microstrands". Biomaterials 2015; 75:123-134. [PMID: 26496384 DOI: 10.1016/j.biomaterials.2015.10.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 10/05/2015] [Accepted: 10/06/2015] [Indexed: 01/19/2023]
Abstract
The ability of brown adipocytes (fat cells) to dissipate energy as heat shows great promise for the treatment of obesity and other metabolic disorders. Employing pluripotent stem cells, with an emphasis on directed differentiation, may overcome many issues currently associated with primary fat cell cultures. In addition, three-dimensional (3D) cell culture systems are needed to better understand the role of brown adipocytes in energy balance and treating obesity. To address this need, we created 3D "Brown-Fat-in-Microstrands" by microfluidic synthesis of alginate hydrogel microstrands that encapsulated cells and directly induced cell differentiation into brown adipocytes, using mouse embryonic stem cells (ESCs) as a model of pluripotent stem cells, and brown preadipocytes as a positive control. Brown adipocyte differentiation within microstrands was confirmed by immunocytochemistry and qPCR analysis of the expression of the brown adipocyte-defining marker uncoupling protein 1 (UCP1), as well as other general adipocyte markers. Cells within microstrands were responsive to a β-adrenergic agonist with an increase in gene expression of thermogenic UCP1, indicating that these "Brown-Fat-in-Microstrands" are functional. The ability to create "Brown-Fat-in-Microstrands" from pluripotent stem cells opens up a new arena to understanding brown adipogenesis and its implications in obesity and metabolic disorders.
Collapse
Affiliation(s)
- Andrea M Unser
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12203, USA
| | - Bridget Mooney
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12203, USA
| | - David T Corr
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Yubing Xie
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12203, USA.
| |
Collapse
|
117
|
Abente EJ, Subramanian M, Ramachandran V, Najafi-Shoushtari SH. MicroRNAs in obesity-associated disorders. Arch Biochem Biophys 2015; 589:108-19. [PMID: 26416722 DOI: 10.1016/j.abb.2015.09.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/17/2015] [Accepted: 09/18/2015] [Indexed: 02/08/2023]
Abstract
The emergence of a worldwide obesity epidemic has dramatically increased the prevalence of insulin resistance and metabolic syndrome, predisposing individuals to a greater risk for the development of non-alcoholic fatty liver disease, type II diabetes and atherosclerotic cardiovascular diseases. Current available pharmacological interventions combined with diet and exercise-based managements are still poorly effective for weight management, likely in part due to an incomplete understanding of regulatory mechanisms and pathways contributing to the systemic metabolic abnormalities under disturbed energy homeostasis. MicroRNAs, small non-coding RNAs that regulate posttranscriptional gene expression, have been increasingly described to influence shifts in metabolic pathways under various obesity-related disease settings. Here we review recent discoveries of the mechanistic role that microRNAs play in regulating metabolic functions in liver and adipose tissues involved in obesity associated disorders, and briefly discusses the potential candidates that are being pursued as viable therapeutic targets.
Collapse
Affiliation(s)
- Eugenio J Abente
- Department of Cell and Developmental Biology, Weill Cornell Medical College, Cornell University, New York 10021, NY, USA; Weill Cornell Medical College-Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar
| | - Murugan Subramanian
- Department of Cell and Developmental Biology, Weill Cornell Medical College, Cornell University, New York 10021, NY, USA; Weill Cornell Medical College-Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar
| | - Vimal Ramachandran
- Department of Cell and Developmental Biology, Weill Cornell Medical College, Cornell University, New York 10021, NY, USA; Weill Cornell Medical College-Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar
| | - S Hani Najafi-Shoushtari
- Department of Cell and Developmental Biology, Weill Cornell Medical College, Cornell University, New York 10021, NY, USA; Weill Cornell Medical College-Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar.
| |
Collapse
|
118
|
Regulatory networks of non-coding RNAs in brown/beige adipogenesis. Biosci Rep 2015; 35:BSR20150155. [PMID: 26283634 PMCID: PMC4626868 DOI: 10.1042/bsr20150155] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/14/2015] [Indexed: 12/13/2022] Open
Abstract
BAT (brown adipose tissue) is specialized to burn fatty acids for heat generation and energy expenditure to defend against cold and obesity. Accumulating studies have demonstrated that manipulation of BAT activity through various strategies can regulate metabolic homoeostasis and lead to a healthy phenotype. Two classes of ncRNA (non-coding RNA), miRNA and lncRNA (long non-coding RNA), play crucial roles in gene regulation during tissue development and remodelling. In the present review, we summarize recent findings on regulatory role of distinct ncRNAs in brown/beige adipocytes, and discuss how these ncRNA regulatory networks contribute to brown/beige fat development, differentiation and function. We suggest that targeting ncRNAs could be an attractive approach to enhance BAT activity for protecting the body against obesity and its pathological consequences.
Collapse
|
119
|
Unser AM, Tian Y, Xie Y. Opportunities and challenges in three-dimensional brown adipogenesis of stem cells. Biotechnol Adv 2015; 33:962-79. [PMID: 26231586 DOI: 10.1016/j.biotechadv.2015.07.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 07/07/2015] [Accepted: 07/23/2015] [Indexed: 12/21/2022]
Abstract
The formation of brown adipose tissue (BAT) via brown adipogenesis has become a notable process due to its ability to expend energy as heat with implications in the treatment of metabolic disorders and obesity. With the advent of complexity within white adipose tissue (WAT) along with inducible brown adipocytes (also known as brite and beige), there has been a surge in deciphering adipocyte biology as well as in vivo adipogenic microenvironments. A therapeutic outcome would benefit from understanding early events in brown adipogenesis, which can be accomplished by studying cellular differentiation. Pluripotent stem cells are an efficient model for differentiation and have been directed towards both white adipogenic and brown adipogenic lineages. The stem cell microenvironment greatly contributes to terminal cell fate and as such, has been mimicked extensively by various polymers including those that can form 3D hydrogel constructs capable of biochemical and/or mechanical modifications and modulations. Using bioengineering approaches towards the creation of 3D cell culture arrangements is more beneficial than traditional 2D culture in that it better recapitulates the native tissue biochemically and biomechanically. In addition, such an approach could potentially protect the tissue formed from necrosis and allow for more efficient implantation. In this review, we highlight the promise of brown adipocytes with a focus on brown adipogenic differentiation of stem cells using bioengineering approaches, along with potential challenges and opportunities that arise when considering the energy expenditure of BAT for prospective therapeutics.
Collapse
Affiliation(s)
- Andrea M Unser
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road Albany, NY 12203, USA
| | - Yangzi Tian
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road Albany, NY 12203, USA
| | - Yubing Xie
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road Albany, NY 12203, USA.
| |
Collapse
|
120
|
miR-27 and miR-125 Distinctly Regulate Muscle-Enriched Transcription Factors in Cardiac and Skeletal Myocytes. BIOMED RESEARCH INTERNATIONAL 2015. [PMID: 26221592 PMCID: PMC4499371 DOI: 10.1155/2015/391306] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
MicroRNAs are noncoding RNAs of approximately 22–24 nucleotides which are capable of interacting with the 3′ untranslated region of coding RNAs (mRNAs), leading to mRNA degradation and/or protein translation blockage. In recent years, differential microRNA expression in distinct cardiac development and disease contexts has been widely reported, yet the role of individual microRNAs in these settings remains largely unknown. We provide herein evidence of the role of miR-27 and miR-125 regulating distinct muscle-enriched transcription factors. Overexpression of miR-27 leads to impair expression of Mstn and Myocd in HL1 atrial cardiomyocytes but not in Sol8 skeletal muscle myoblasts, while overexpression of miR-125 resulted in selective upregulation of Mef2d in HL1 atrial cardiomyocytes and downregulation in Sol8 cells. Taken together our data demonstrate that a single microRNA, that is, miR-27 or miR-125, can selectively upregulate and downregulate discrete number of target mRNAs in a cell-type specific manner.
Collapse
|
121
|
Alvarez-Dominguez JR, Bai Z, Xu D, Yuan B, Lo KA, Yoon MJ, Lim YC, Knoll M, Slavov N, Chen S, Peng C, Lodish HF, Sun L. De Novo Reconstruction of Adipose Tissue Transcriptomes Reveals Long Non-coding RNA Regulators of Brown Adipocyte Development. Cell Metab 2015; 21:764-776. [PMID: 25921091 PMCID: PMC4429916 DOI: 10.1016/j.cmet.2015.04.003] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 12/17/2014] [Accepted: 03/31/2015] [Indexed: 12/21/2022]
Abstract
Brown adipose tissue (BAT) protects against obesity by promoting energy expenditure via uncoupled respiration. To uncover BAT-specific long non-coding RNAs (lncRNAs), we used RNA-seq to reconstruct de novo transcriptomes of mouse brown, inguinal white, and epididymal white fat and identified ∼1,500 lncRNAs, including 127 BAT-restricted loci induced during differentiation and often targeted by key regulators PPARγ, C/EBPα, and C/EBPβ. One of them, lnc-BATE1, is required for establishment and maintenance of BAT identity and thermogenic capacity. lnc-BATE1 inhibition impairs concurrent activation of brown fat and repression of white fat genes and is partially rescued by exogenous lnc-BATE1 with mutated siRNA-targeting sites, demonstrating a function in trans. We show that lnc-BATE1 binds heterogeneous nuclear ribonucleoprotein U and that both are required for brown adipogenesis. Our work provides an annotated catalog for the study of fat depot-selective lncRNAs and establishes lnc-BATE1 as a regulator of BAT development and physiology.
Collapse
Affiliation(s)
- Juan R Alvarez-Dominguez
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Zhiqiang Bai
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| | - Dan Xu
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| | - Bingbing Yuan
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
| | - Kinyui Alice Lo
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Myeong Jin Yoon
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| | - Yen Ching Lim
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| | - Marko Knoll
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
| | - Nikolai Slavov
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Shuai Chen
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, 210061, China
| | - Chen Peng
- Division of Bioengineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457
| | - Harvey F Lodish
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Lei Sun
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore.,Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| |
Collapse
|
122
|
Hilton C, Karpe F, Pinnick KE. Role of developmental transcription factors in white, brown and beige adipose tissues. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:686-96. [PMID: 25668679 DOI: 10.1016/j.bbalip.2015.02.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 01/08/2015] [Accepted: 02/03/2015] [Indexed: 02/06/2023]
Abstract
In this review we discuss the role of developmental transcription factors in adipose tissue biology with a focus on how these developmental genes may contribute to regional variation in adipose tissue distribution and function. Regional, depot-specific, differences in lipid handling and signalling (lipolysis, lipid storage and adipokine/lipokine signalling) are important determinants of metabolic health. At a cellular level, preadipocytes removed from their original depot and cultured in vitro retain depot-specific functional properties, implying that these are intrinsic to the cells and not a function of their environment in situ. High throughput screening has identified a number of developmental transcription factors involved in embryological development, including members of the Homeobox and T-Box gene families, that are strongly differentially expressed between regional white adipose tissue depots and also between brown and white adipose tissue. However, the significance of depot-specific developmental signatures remains unclear. Developmental transcription factors determine body patterning during embryogenesis. The divergent developmental origins of regional adipose tissue depots may explain their differing functional characteristics. There is evidence from human genetics that developmental genes determine adipose tissue distribution: in GWAS studies a number of developmental genes have been identified as being correlated with anthropometric measures of adiposity and fat distribution. Additionally, compelling functional studies have recently implicated developmental genes in both white adipogenesis and the so-called 'browning' of white adipose tissue. Understanding the genetic and developmental pathways in adipose tissue may help uncover novel ways to intervene with the function of adipose tissue in order to promote health.
Collapse
Affiliation(s)
- Catriona Hilton
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, OUH Trust, Churchill Hospital, Oxford, UK
| | - Katherine E Pinnick
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
123
|
Kong X, Yu J, Bi J, Qi H, Di W, Wu L, Wang L, Zha J, Lv S, Zhang F, Li Y, Hu F, Liu F, Zhou H, Liu J, Ding G. Glucocorticoids transcriptionally regulate miR-27b expression promoting body fat accumulation via suppressing the browning of white adipose tissue. Diabetes 2015; 64:393-404. [PMID: 25187367 PMCID: PMC4876791 DOI: 10.2337/db14-0395] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Long-term glucocorticoid (GC) treatment induces central fat accumulation and metabolic dysfunction. We demonstrate that microRNA-27b (miR-27b) plays a central role in the pathogenesis of GC-induced central fat accumulation. Overexpression of miR-27b had the same effects as dexamethasone (DEX) treatment on the inhibition of brown adipose differentiation and the energy expenditure of primary adipocytes. Conversely, antagonizing miR-27b function prevented DEX suppression of the expression of brown adipose tissue-specific genes. GCs transcriptionally regulate miR-27b expression through a GC receptor-mediated direct DNA-binding mechanism, and miR-27b suppresses browning of white adipose tissue (WAT) by targeting the three prime untranslated region of Prdm16. In vivo, antagonizing miR-27b function in DEX-treated mice resulted in the efficient induction of brown adipocytes within WAT and improved GC-induced central fat accumulation. Collectively, these results indicate that miR-27b functions as a central target of GC and as an upstream regulator of Prdm16 to control browning of WAT and, consequently, may represent a potential target in preventing obesity.
Collapse
Affiliation(s)
- Xiaocen Kong
- Department of Geratology, The First Hospital Affiliated to Nanjing Medical University, Nanjing, People's Republic of China
| | - Jing Yu
- Department of Geratology, The First Hospital Affiliated to Nanjing Medical University, Nanjing, People's Republic of China
| | - Jianhua Bi
- Department of Geratology, The First Hospital Affiliated to Nanjing Medical University, Nanjing, People's Republic of China
| | - Hanmei Qi
- Department of Geratology, The First Hospital Affiliated to Nanjing Medical University, Nanjing, People's Republic of China
| | - Wenjuan Di
- Department of Geratology, The First Hospital Affiliated to Nanjing Medical University, Nanjing, People's Republic of China
| | - Lin Wu
- Department of Geratology, The First Hospital Affiliated to Nanjing Medical University, Nanjing, People's Republic of China
| | - Long Wang
- Department of Geratology, The First Hospital Affiliated to Nanjing Medical University, Nanjing, People's Republic of China
| | - Juanmin Zha
- Department of Geratology, The First Hospital Affiliated to Nanjing Medical University, Nanjing, People's Republic of China
| | - Shan Lv
- Department of Geratology, The First Hospital Affiliated to Nanjing Medical University, Nanjing, People's Republic of China
| | - Feng Zhang
- Department of General Surgery, The First Hospital Affiliated to Nanjing Medical University, Nanjing, People's Republic of China
| | - Yan Li
- Metabolic Syndrome Research Center of Central South University, Institute of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Fang Hu
- Metabolic Syndrome Research Center of Central South University, Institute of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Feng Liu
- Metabolic Syndrome Research Center of Central South University, Institute of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Hong Zhou
- Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, Australia
| | - Juan Liu
- Department of Geratology, The First Hospital Affiliated to Nanjing Medical University, Nanjing, People's Republic of China
| | - Guoxian Ding
- Department of Geratology, The First Hospital Affiliated to Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
124
|
Park JH, Hur W, Lee SB. Intricate Transcriptional Networks of Classical Brown and Beige Fat Cells. Front Endocrinol (Lausanne) 2015; 6:124. [PMID: 26322018 PMCID: PMC4533000 DOI: 10.3389/fendo.2015.00124] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/24/2015] [Indexed: 02/05/2023] Open
Abstract
Brown adipocytes are a specialized cell type that is critical for adaptive thermogenesis, energy homeostasis, and metabolism. In response to cold, both classical brown fat and the newly identified "beige" or "brite" cells are activated by β-adrenergic signaling and catabolize stored lipids and carbohydrates to produce heat via UCP1. Once thought to be non-existent in adults, recent studies have discovered active classical brown and beige fat cells in humans, thus reinvigorating interest in brown and beige adipocytes. This review will focus on the newly discovered transcription factors and microRNAs that specify and orchestrate the classical brown and beige fat cell development.
Collapse
Affiliation(s)
- Jun Hong Park
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Wonhee Hur
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Sean Bong Lee
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
- *Correspondence: Sean Bong Lee, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1700 Tulane Avenue Room 808, New Orleans, LA 70112, USA,
| |
Collapse
|
125
|
MicroRNA Functions in Brite/Brown Fat - Novel Perspectives towards Anti-Obesity Strategies. Comput Struct Biotechnol J 2014; 11:101-5. [PMID: 25408843 PMCID: PMC4232565 DOI: 10.1016/j.csbj.2014.09.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/10/2014] [Accepted: 09/11/2014] [Indexed: 12/19/2022] Open
Abstract
Current anti-obesity strategies are aiming at restricting energy uptake, but still, obesity treatment is far from being satisfactory. The discovery of active brown adipose tissue (BAT) in adult humans currently opens new avenues to combat obesity and follow-up complications as it tackles the other site of the energy balance: energy expenditure via non-shivering thermogenesis. This process of energy dissipation in the adipose tissue is tightly controlled, and the elucidation of its regulatory network is a key plank for therapeutic applications. MicroRNAs (miRNAs) belong to a novel class of regulatory determinants which are small non-coding RNAs with vital roles in regulating gene expression that also play a role in many human diseases. In this review we summarize miRNAs which have been shown to govern thermogenic, i.e. brite or brown, adipocyte recruitment and physiology. Notably, most miRNAs in this context have so far been characterized solely in mice, revealing a great demand for more human studies. As in the context of other diseases, RNA-based therapeutics have meanwhile entered clinical trials, further exploring the functions of miRNAs in brown and white adipose tissues could result in novel therapeutic approaches to treat obesity and its follow-up complications.
Collapse
|
126
|
Price NL, Ramírez CM, Fernández-Hernando C. Relevance of microRNA in metabolic diseases. Crit Rev Clin Lab Sci 2014; 51:305-20. [PMID: 25034902 DOI: 10.3109/10408363.2014.937522] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Metabolic syndrome is a complex metabolic condition caused by abnormal adipose deposition and function, dyslipidemia and hyperglycemia, which affects >47 million American adults and ∼1 million children. Individuals with the metabolic syndrome have essentially twice the risk for developing cardiovascular disease (CVD) and Type 2 diabetes mellitus (T2D), compared to those without the syndrome. In the search for improved and novel therapeutic strategies, microRNAs (miRNA) have been shown to be interesting targets due to their regulatory role on gene networks controlling different crucial aspects of metabolism, including lipid and glucose homeostasis. More recently, the discovery of circulating miRNAs suggest that miRNAs may be involved in facilitating metabolic crosstalk between organs as well as serving as novel biomarkers of diseases, including T2D and atherosclerosis. These findings highlight the importance of miRNAs for regulating pathways that underlie metabolic diseases, and their potential as therapeutic targets for the development of novel treatments.
Collapse
|
127
|
Peirce V, Carobbio S, Vidal-Puig A. The different shades of fat. Nature 2014; 510:76-83. [PMID: 24899307 DOI: 10.1038/nature13477] [Citation(s) in RCA: 342] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 03/26/2014] [Indexed: 01/09/2023]
Abstract
Our understanding of adipose tissue biology has progressed rapidly since the turn of the century. White adipose tissue has emerged as a key determinant of healthy metabolism and metabolic dysfunction. This realization is paralleled only by the confirmation that adult humans have heat-dissipating brown adipose tissue, an important contributor to energy balance and a possible therapeutic target for the treatment of metabolic disease. We propose that the development of successful strategies to target brown and white adipose tissues will depend on investigations that elucidate their developmental origins and cell-type-specific functional regulators.
Collapse
Affiliation(s)
- Vivian Peirce
- University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge CB2 OQQ, UK
| | - Stefania Carobbio
- 1] University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge CB2 OQQ, UK. [2] Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Antonio Vidal-Puig
- 1] University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge CB2 OQQ, UK. [2] Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| |
Collapse
|
128
|
Lang-Ouellette D, Morin PJ. Differential expression of miRNAs with metabolic implications in hibernating thirteen-lined ground squirrels, Ictidomys tridecemlineatus. Mol Cell Biochem 2014; 394:291-8. [DOI: 10.1007/s11010-014-2105-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 05/15/2014] [Indexed: 12/11/2022]
|
129
|
Shen Y, Liu X, Dong M, Lin J, Zhao Q, Lee H, Jin W. Recent advances in brown adipose tissue biology. CHINESE SCIENCE BULLETIN-CHINESE 2014. [DOI: 10.1007/s11434-014-0386-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|