101
|
van Breukelen F, Krumschnabel G, Podrabsky JE. Vertebrate cell death in energy-limited conditions and how to avoid it: what we might learn from mammalian hibernators and other stress-tolerant vertebrates. Apoptosis 2010; 15:386-99. [DOI: 10.1007/s10495-010-0467-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
102
|
Abstract
Cells exposed to genotoxic insults such as ionizing radiation activate a signaling cascade to repair the damaged DNA. Two recent articles published in Nature show that such genome maintenance requires modifications of tumor suppressor proteins BRCA1 and 53BP1 by the small ubiquitin-like modifier SUMO.
Collapse
Affiliation(s)
- Jiri Bartek
- Institute of Cancer Biology and Centre for Genotoxic Stress Research, Danish Cancer Society, Strandboulevarden 49, DK-2100 Copenhagen, Denmark.
| | | |
Collapse
|
103
|
Woo CH, Abe JI. SUMO--a post-translational modification with therapeutic potential? Curr Opin Pharmacol 2010; 10:146-55. [PMID: 20079693 DOI: 10.1016/j.coph.2009.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 12/16/2009] [Accepted: 12/18/2009] [Indexed: 12/20/2022]
Abstract
Sumoylation is a covalent modification, which is mediated by small ubiquitin-like modifier (SUMO) polypeptides. A growing body of evidence has shown that sumoylation affects the functional properties of many substrates in the regulation of cellular processes. Recent reports indicate the crucial role of sumoylation in human diseases including familial dilated cardiomyopathy, suggesting that targeting of sumoylation would be of considerable interest for novel therapies. Even though hundreds of SUMO substrates have been identified, their pathophysiological roles remain to be determined. Among them, ERK5-sumoylation has recently been linked to diabetes and implicated in endothelial dysfunction and cardiomyocyte apoptosis in vivo. These findings support the idea that ERK5-sumoylation is a novel therapeutic target for the treatment of diabetes-related cardiovascular diseases.
Collapse
Affiliation(s)
- Chang-Hoon Woo
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box CVRI, Rochester, NY 14642, United States
| | | |
Collapse
|
104
|
Roles for SUMO modification during senescence. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 694:160-71. [PMID: 20886763 DOI: 10.1007/978-1-4419-7002-2_12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
SUMOylation is a reversible post-translational modification, where a small peptide (SUMO) is covalently attached to a target protein and changes its activity, subcellular localization and/or interaction with other macromolecules. SUMOylation substrates are numerous and diverse and modification by SUMO is involved in many biological functions, including the response to stress. The SUMO pathway has recently been implicated in the process of cellular senescence, the irreversible loss of cell replication potential that occurs during aging in vivo and in vitro. SUMO peptides, a SUMO E3 ligase and a SUMO-specific peptidase can induce or hinder the onset of senescence, thus supporting an association of SUMOylation with cell growth arrest and organismal aging. Preliminary results on comparative analysis ofproteomics and mRNA levels between young and old human and murine tissues show elevated levels of global protein SUMOylation and a decrease in components of the SUMOylation process with age. Further connections between the SUMO pathway and the aging process remain to be elucidated.
Collapse
|
105
|
Xirodimas DP, Scheffner M. Ubiquitin Family Members in the Regulation of the Tumor Suppressor p53. Subcell Biochem 2010; 54:116-135. [PMID: 21222278 DOI: 10.1007/978-1-4419-6676-6_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
It is commonly assumed that the p53 tumor suppressor pathway is deregulated in most if not all human cancers. Thus, the past two decades have witnessed intense efforts to identify and characterize the growth-suppressive properties of p53 as well as the proteins and mechanisms involved in regulating p53 activity. In retrospect, it may therefore not be surprising that p53 was one of the very first mammalian proteins that were identified as physiologically relevant substrate proteins of the ubiquitin-proteasome system. Since then, plenty of evidence has been accumulated that p53 is in part controlled by canonical (i.e., resulting in proteasome-mediated degradation) and noncanonical (i.e., nonproteolytic) ubiquitination and by modification with the ubiquitin family members SUMO-1 and NED 8. In this chapter, we will largely neglect the plethora of mechanisms that have been reported to be involved in the regulation of p53 ubiquitination but will focus on the enzymes and components of the respective conjugation systems that have been implicated in p53 modification and how the respective modifications (ubiquitin, SUMO-1, NED 8) may impinge on p53 activity.
Collapse
Affiliation(s)
- Dimitris P Xirodimas
- Division of Gene Expression and Regulation, The Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | | |
Collapse
|
106
|
Zhang C, Yuan X, Yue L, Fu J, Luo L, Yin Z. PIASy interacts with p73α and regulates cell cycle in HEK293 cells. Cell Immunol 2010; 263:235-40. [DOI: 10.1016/j.cellimm.2010.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 03/19/2010] [Accepted: 04/12/2010] [Indexed: 11/28/2022]
|
107
|
Chang PC, Izumiya Y, Wu CY, Fitzgerald LD, Campbell M, Ellison TJ, Lam KS, Luciw PA, Kung HJ. Kaposi's sarcoma-associated herpesvirus (KSHV) encodes a SUMO E3 ligase that is SIM-dependent and SUMO-2/3-specific. J Biol Chem 2009; 285:5266-73. [PMID: 20034935 DOI: 10.1074/jbc.m109.088088] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Sumoylation has emerged as a major post-translational modification of cellular proteins, affecting a variety of cellular processes. Viruses have exploited the sumoylation pathway to advance their own replication by evolving several ways to perturb the host sumoylation apparatus. However, there has been no report of virally encoded enzymes directly involved in catalyzing the sumoylation reaction. Here, we report that the K-bZIP protein encoded by Kaposi's sarcoma-associated herpesvirus (KSHV) is a SUMO E3 ligase with specificity toward SUMO2/3. K-bZIP is a nuclear factor that functions to modulate viral gene expression and to prolong the G1 phase, allowing viral transcription and translation to proceed at the early stage of infection. In addition to functioning as a transcriptional factor, we show that K-bZIP carries a SIM (SUMO-interacting motif), which specifically binds to SUMO-2/3 but not SUMO-1. K-bZIP catalyzes its own SUMO modification as well as that of its interacting partners such as the cellular tumor suppressor proteins p53 and Rb, both in vitro and in vivo. This reaction depends on an intact SIM. Sumoylation of p53 leads to its activation and K-bZIP is recruited to several p53 target chromatin sites in a SIM-dependent manner. In addition to the identification of a viral SUMO-2/3 E3 ligase, our results provide additional insights into the mechanisms whereby K-bZIP induces cell cycle arrest.
Collapse
Affiliation(s)
- Pei-Ching Chang
- Department of Biological Chemistry and Molecular Medicine, University of California, Davis, California 95616, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Posttranslational modification of p53: cooperative integrators of function. Cold Spring Harb Perspect Biol 2009; 1:a000950. [PMID: 20457558 DOI: 10.1101/cshperspect.a000950] [Citation(s) in RCA: 348] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The p53 protein is modified by as many as 50 individual posttranslational modifications. Many of these occur in response to genotoxic or nongenotoxic stresses and show interdependence, such that one or more modifications can nucleate subsequent events. This interdependent nature suggests a pathway that operates through multiple cooperative events as opposed to distinct functions for individual, isolated modifications. This concept, supported by recent investigations, which provide exquisite detail as to how various modifications mediate precise protein-protein interactions in a cooperative manner, may explain why knockin mice expressing p53 proteins substituted at one or just a few sites of modification typically show only subtle effects on p53 function. The present article focuses on recent, exciting progress and develops the idea that the impact of modification on p53 function is achieved through collective and integrated events.
Collapse
|
109
|
Martin N, Schwamborn K, Schreiber V, Werner A, Guillier C, Zhang XD, Bischof O, Seeler JS, Dejean A. PARP-1 transcriptional activity is regulated by sumoylation upon heat shock. EMBO J 2009; 28:3534-48. [PMID: 19779455 DOI: 10.1038/emboj.2009.279] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 08/27/2009] [Indexed: 11/09/2022] Open
Abstract
Heat shock and other environmental stresses rapidly induce transcriptional responses subject to regulation by a variety of post-translational modifications. Among these, poly(ADP-ribosyl)ation and sumoylation have received growing attention. Here we show that the SUMO E3 ligase PIASy interacts with the poly(ADP-ribose) polymerase PARP-1, and that PIASy mediates heat shock-induced poly-sumoylation of PARP-1. Furthermore, PIASy, and hence sumoylation, appears indispensable for full activation of the inducible HSP70.1 gene. Chromatin immunoprecipitation experiments show that PIASy, SUMO and the SUMO-conjugating enzyme Ubc9 are rapidly recruited to the HSP70.1 promoter upon heat shock, and that they are subsequently released with kinetics similar to PARP-1. Finally, we provide evidence that the SUMO-targeted ubiquitin ligase RNF4 mediates heat-shock-inducible ubiquitination of PARP-1, regulates the stability of PARP-1, and, like PIASy, is a positive regulator of HSP70.1 gene activity. These results, thus, point to a novel mechanism for regulating PARP-1 transcription function, and suggest crosstalk between sumoylation and RNF4-mediated ubiquitination in regulating gene expression in response to heat shock.
Collapse
Affiliation(s)
- Nadine Martin
- Department of Cell Biology and Infection, Nuclear Organisation and Oncogenesis Unit, INSERM U579, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Rytinki MM, Kaikkonen S, Pehkonen P, Jääskeläinen T, Palvimo JJ. PIAS proteins: pleiotropic interactors associated with SUMO. Cell Mol Life Sci 2009; 66:3029-41. [PMID: 19526197 PMCID: PMC11115825 DOI: 10.1007/s00018-009-0061-z] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 05/05/2009] [Accepted: 05/27/2009] [Indexed: 01/02/2023]
Abstract
The interactions and functions of protein inhibitors of activated STAT (PIAS) proteins are not restricted to the signal transducers and activators of transcription (STATs), but PIAS1, -2, -3 and -4 interact with and regulate a variety of distinct proteins, especially transcription factors. Although the majority of PIAS-interacting proteins are prone to modification by small ubiquitin-related modifier (SUMO) proteins and the PIAS proteins have the capacity to promote the modification as RING-type SUMO ligases, they do not function solely as SUMO E3 ligases. Instead, their effects are often independent of their Siz/PIAS (SP)-RING finger, but dependent on their capability to noncovalently interact with SUMOs or DNA through their SUMO-interacting motif and scaffold attachment factor-A/B, acinus and PIAS domain, respectively. Here, we present an overview of the cellular regulation by PIAS proteins and propose that many of their functions are due to their capability to mediate and facilitate SUMO-linked protein assemblies.
Collapse
Affiliation(s)
- Miia M. Rytinki
- Institute of Biomedicine/Medical Biochemistry, University of Kuopio, Kuopio, Finland
| | - Sanna Kaikkonen
- Institute of Biomedicine/Medical Biochemistry, University of Kuopio, Kuopio, Finland
| | - Petri Pehkonen
- Department of Biosciences, University of Kuopio, P.O. Box 1627, 70211 Kuopio, Finland
| | - Tiina Jääskeläinen
- Institute of Biomedicine/Medical Biochemistry, University of Kuopio, Kuopio, Finland
| | - Jorma J. Palvimo
- Institute of Biomedicine/Medical Biochemistry, University of Kuopio, Kuopio, Finland
| |
Collapse
|
111
|
Xu Z, Chan HY, Lam WL, Lam KH, Lam LSM, Ng TB, Au SWN. SUMO proteases: redox regulation and biological consequences. Antioxid Redox Signal 2009; 11:1453-84. [PMID: 19186998 DOI: 10.1089/ars.2008.2182] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Small-ubiquitin modifier (SUMO) has emerged as a novel modification system that governs the activities of a wide spectrum of protein substrates. SUMO-specific proteases (SENP) are of particular interest, as they are responsible for both the maturation of SUMO precursors and for their deconjugation. The interruption of SENPs has been implicated in embryonic defects and carcinoma cells, indicating that a proper balance of SUMO conjugation and deconjugation is crucial. Recent advances in molecular and cellular biology have highlighted the distinct subcellular localization, and endopeptidase and isopeptidase activities of SENPs, suggesting that they are nonredundant. A better understanding of the molecular basis of SUMO recognition and hydrolytic cleavage has been obtained from the crystal structures of SENP-substrate complexes. While a number of proteomic studies have shown an upregulation of sumoylation, attention is now increasingly being directed towards the regulatory mechanism of sumoylation, in particular the oxidative effect. Findings on the oxidation-induced intermolecular disulfide of E1-E2 ligases and SENP1/2 have improved our understanding of the mechanism by which modification is switched up or down. More intriguingly, a growing body of evidence suggests that sumoylation cross-talks with other modifications, and that the upstream and downstream signaling pathway is co-regulated by more than one modifier.
Collapse
Affiliation(s)
- Zheng Xu
- Centre for Protein Science and Crystallography, Department of Biochemistry and Molecular Biotechnology Program, Faculty of Science, The Chinese University of Hong Kong, Hong Kong
| | | | | | | | | | | | | |
Collapse
|
112
|
Modifications of p53: competing for the lysines. Curr Opin Genet Dev 2009; 19:18-24. [PMID: 19179064 DOI: 10.1016/j.gde.2008.11.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 11/26/2008] [Indexed: 11/20/2022]
Abstract
The p53 tumour suppressor protein is subject to numerous post-translational modifications, which coalesce in various combinations and patterns to regulate its activity. In addition to a multitude of phosphorylated serines and threonines, many of the lysine residues in p53 can be modified to regulate activity, stability and subcellular localization of the protein. This complexity is amplified by the variety of modifications that can target the same lysine residue - often with opposing effects on p53 function.
Collapse
|
113
|
MAPL is a new mitochondrial SUMO E3 ligase that regulates mitochondrial fission. EMBO Rep 2009; 10:748-54. [PMID: 19407830 DOI: 10.1038/embor.2009.86] [Citation(s) in RCA: 270] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 03/10/2009] [Accepted: 03/19/2009] [Indexed: 02/05/2023] Open
Abstract
The modification of proteins by the small ubiquitin-like modifier (SUMO) is known to regulate an increasing array of cellular processes. SUMOylation of the mitochondrial fission GTPase dynamin-related protein 1 (DRP1) stimulates mitochondrial fission, suggesting that SUMOylation has an important function in mitochondrial dynamics. The conjugation of SUMO to its substrates requires a regulatory SUMO E3 ligase; however, so far, none has been functionally associated with the mitochondria. By using biochemical assays, overexpression and RNA interference experiments, we characterized the mitochondrial-anchored protein ligase (MAPL) as the first mitochondrial-anchored SUMO E3 ligase. Furthermore, we show that DRP1 is a substrate for MAPL, providing a direct link between MAPL and the fission machinery. Importantly, the large number of unidentified mitochondrial SUMO targets suggests a global role for SUMOylation in mitochondrial function, placing MAPL as a crucial component in the regulation of multiple conjugation events.
Collapse
|
114
|
Zunino R, Braschi E, Xu L, McBride HM. Translocation of SenP5 from the nucleoli to the mitochondria modulates DRP1-dependent fission during mitosis. J Biol Chem 2009; 284:17783-95. [PMID: 19411255 DOI: 10.1074/jbc.m901902200] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The mechanisms that ensure an equal inheritance of cellular organelles during mitosis are an important area of study in cell biology. For the mitochondria fragment during mitosis, however, the cellular links that signal these changes are largely unknown. We recently identified a SUMO protease, SenP5, that deSUMOylates a number of mitochondrial targets, including the dynamin-related fission GTPase, DRP1. In interphase, SenP5 resides primarily within the nucleoli, in addition to a cytosolic pool. Here we report the relocalization of SenP5 from the nucleoli to the mitochondrial surface at G2/M transition prior to nuclear envelope breakdown. The recruitment of SenP5 results in a significant loss in mitochondrial SUMOylation, and a concomitant increase in the labile pool of DRP1 that drives mitochondrial fragmentation. Importantly, silencing of SenP5 leads to an arrest in the cell cycle precisely at the time when the protease is translocated to the mitochondria. These data indicate that transition of SenP5 to the mitochondria plays an important role in mitochondrial fragmentation during mitosis. The altered intracellular localization of SenP5 represents the first example of the mitochondrial recruitment of a SUMO protease and provides new insights into the mechanisms of interorganellar communication during the cell cycle.
Collapse
Affiliation(s)
- Rodolfo Zunino
- University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada
| | | | | | | |
Collapse
|
115
|
Abstract
The orphan nuclear receptor LRH-1 (liver receptor homologue-1; NR5A2) plays a critical role in development, bile acid synthesis and cholesterol metabolism. LRH-1 is also expressed in the ovary where it is implicated in the regulation of steroidogenic genes for steroid hormone synthesis. In the present study, we investigated the molecular mechanisms of the transcriptional regulation of CYP11A1 by LRH-1 and found that LRH-1-mediated transactivation was markedly repressed by PIASy [protein inhibitor of activated STAT (signal transducer and activator of transcription) y], the shortest member of the PIAS family. The suppression of LRH-1 activity requires the N-terminal repression domain. Although PIAS proteins also function as E3 SUMO (small ubiquitin-related modifier) ligases and enhance SUMO conjugation, PIASy-mediated repression was independent of LRH-1 SUMOylation status. In addition, histone deacetylase activity was not involved in the inhibition of LRH-1 by PIASy. Immunoprecipitation and mammalian two-hybrid analyses indicated that PIASy interacted with LRH-1 through the C-terminal region, including the AF-2 (activation function-2) motif, which was also involved in the interaction between LRH-1 and the co-activator SRC-1 (steroid receptor co-activator-1). PIASy inhibited the binding of SRC-1 to LRH-1, although overexpression of SRC-1 partially overcame the PIASy inhibition of LRH-1 induction of the CYP11A1 promoter. The results of the present study suggest that competition with co-activators may be an important mechanism underlying the PIASy repression of LRH-1-mediated transactivation.
Collapse
|
116
|
Klase Z, Winograd R, Davis J, Carpio L, Hildreth R, Heydarian M, Fu S, McCaffrey T, Meiri E, Ayash-Rashkovsky M, Gilad S, Bentwich Z, Kashanchi F. HIV-1 TAR miRNA protects against apoptosis by altering cellular gene expression. Retrovirology 2009; 6:18. [PMID: 19220914 PMCID: PMC2654423 DOI: 10.1186/1742-4690-6-18] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Accepted: 02/16/2009] [Indexed: 12/23/2022] Open
Abstract
Background RNA interference is a gene regulatory mechanism that employs small RNA molecules such as microRNA. Previous work has shown that HIV-1 produces TAR viral microRNA. Here we describe the effects of the HIV-1 TAR derived microRNA on cellular gene expression. Results Using a variation of standard techniques we have cloned and sequenced both the 5' and 3' arms of the TAR miRNA. We show that expression of the TAR microRNA protects infected cells from apoptosis and acts by down-regulating cellular genes involved in apoptosis. Specifically, the microRNA down-regulates ERCC1 and IER3, protecting the cell from apoptosis. Comparison to our cloned sequence reveals possible target sites for the TAR miRNA as well. Conclusion The TAR microRNA is expressed in all stages of the viral life cycle, can be detected in latently infected cells, and represents a mechanism wherein the virus extends the life of the infected cell for the purpose of increasing viral replication.
Collapse
Affiliation(s)
- Zachary Klase
- The Department of Microbiology, Immunology and Tropical Medicine program, The George Washington University School of Medicine, Washington, District of Columbia 20037, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Kim KI, Baek SH. Small ubiquitin-like modifiers in cellular malignancy and metastasis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 273:265-311. [PMID: 19215907 DOI: 10.1016/s1937-6448(08)01807-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Small ubiquitin-like modifiers (SUMOs) mediate a variety of cellular functions of protein targets mainly in the nucleus but in other cellular compartments as well, and thereby participate in maintaining cellular homeostasis. SUMO system plays important roles in transcriptional regulation, DNA damage responses, maintaining genome integrity, and signaling pathways. Thus, in some cases, loss of regulated control on SUMOylation/deSUMOylation processes causes a defect in maintaining homeostasis and hence gives a cue to cancer development and progression. Furthermore, recent studies have revealed that SUMO system is involved in cancer metastasis. In this review, we will summarize the possible role of SUMO system in cancer development, progression, and metastasis and discuss future directions.
Collapse
Affiliation(s)
- Keun Il Kim
- Department of Biological Sciences, Research Center for Women's Disease, Sookmyung Women's University, Seoul, Korea
| | | |
Collapse
|
118
|
Yates KE, Korbel GA, Shtutman M, Roninson IB, DiMaio D. Repression of the SUMO-specific protease Senp1 induces p53-dependent premature senescence in normal human fibroblasts. Aging Cell 2008; 7:609-21. [PMID: 18616636 PMCID: PMC2745089 DOI: 10.1111/j.1474-9726.2008.00411.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The proliferative lifespan of normal somatic human cells in culture terminates in a permanent growth-arrested state known as replicative senescence. In this study, we show that RNA interference-mediated repression of the genes encoding the small ubiquitin-related modifier (SUMO)-specific proteases, Senp1, Senp2, and Senp7, induced low passage primary human fibroblasts to senesce rapidly. Following Senp1 repression, we observed a global increase in sumoylated proteins and in the number and size of nuclear SUMO-containing promyelocytic leukemia (PML) bodies. SUMO/PML bodies also increased during replicative senescence. p53 transcriptional activity was enhanced towards known p53 target genes following repression of Senp1, and inhibition of p53 function prevented senescence after Senp1 repression. These data indicate that Senp1 repression induces p53-mediated premature senescence and that SUMO proteases may thus be required for proliferation of normal human cells.
Collapse
Affiliation(s)
- Kristin E. Yates
- Department of Genetics, Yale University School of Medicine P.O. Box 208005 New Haven, CT 06520-8005
| | - Gregory A. Korbel
- Department of Genetics, Yale University School of Medicine P.O. Box 208005 New Haven, CT 06520-8005
| | | | | | - Daniel DiMaio
- Department of Genetics, Yale University School of Medicine P.O. Box 208005 New Haven, CT 06520-8005
- Departments of Therapeutic Radiology, and Molecular Biophysics & Biochemistry, Yale University School of Medicine P.O. Box 208005 New Haven, CT 06520-8005
| |
Collapse
|
119
|
Zhou S, Si J, Liu T, DeWille JW. PIASy represses CCAAT/enhancer-binding protein delta (C/EBPdelta) transcriptional activity by sequestering C/EBPdelta to the nuclear periphery. J Biol Chem 2008; 283:20137-48. [PMID: 18477566 PMCID: PMC2459298 DOI: 10.1074/jbc.m801307200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 05/01/2008] [Indexed: 12/21/2022] Open
Abstract
CCAAT/enhancer binding proteindelta (C/EBPdelta) plays a key role in mammary epithelial cell G(0) growth arrest, and "loss of function" alterations in C/EBPdelta have been reported in breast cancer and acute myeloid leukemia. C/EBPdelta is regulated at the transcriptional, post-transcriptional, and post-translational levels, suggesting tight control of C/EBPdelta content and function. Protein inhibitors of activated STATs (PIASs) regulate a growing number of transcription factors, including C/EBPs. HC11 nontransformed mammary epithelial cells express PIAS3, PIASxbeta, and PIASy, and all three PIAS family members repress C/EBPdelta transcriptional activity. PIASy is the most potent, however, repressing C/EBPdelta transcriptional activity by >80%. PIASy repression of C/EBPdelta transcriptional activity is dependent upon interaction between the highly conserved PIASy N-terminal nuclear matrix binding domain (SAPD) and the C/EBPdelta transactivation domain (TAD). PIASy repression of C/EBPdelta transcriptional activity is independent of histone deacetylase activity, PIASy E3 SUMO ligase activity, and C/EBPdelta sumoylation status. PIASy expression is associated with C/EBPdelta translocation from nuclear foci, where C/EBPdelta co-localizes with p300, to the nuclear periphery. PIASy-mediated translocation of C/EBPdelta is dependent upon the PIASy SAPD and C/EBPdelta TAD. PIASy reduces the expression of C/EBPdelta adhesion-related target genes and enhances repopulation of open areas within a cell monolayer in the in vitro "scratch" assay. These results demonstrate that PIASy represses C/EBPdelta by a mechanism that requires interaction between the PIASy SAPD and C/EBPdelta TAD and does not require PIASy SUMO ligase activity or C/EBPdelta sumoylation. PIASy alters C/EBPdelta nuclear localization, reduces C/EBPdelta transcriptional activity, and enhances cell proliferation/migration.
Collapse
Affiliation(s)
- Shanggen Zhou
- Ohio State Biochemistry Program, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
120
|
Eun Jeoung L, Sung Hee H, Jaesun C, Sung Hwa S, Kwang Hum Y, Min Kyoung K, Tae Yoon P, Sang Sun K. Regulation of glycogen synthase kinase 3beta functions by modification of the small ubiquitin-like modifier. Open Biochem J 2008; 2:67-76. [PMID: 18949077 PMCID: PMC2570553 DOI: 10.2174/1874091x00802010067] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2008] [Revised: 02/14/2006] [Accepted: 02/03/2008] [Indexed: 01/29/2023] Open
Abstract
Modification of the Small Ubiquitin-like Modifier (SUMO) (SUMOylation) appears to regulate diverse cellular processes, including nuclear transport, signal transduction, apoptosis, autophagy, cell cycle control, ubiquitin-dependent degradation and gene transcription. Glycogen synthase kinase 3beta (GSK 3beta) is a serine/threonine kinase that is thought to contribute to a variety of biological events, including embryonic development, metabolism, tumorigenesis, and cell death. GSK 3beta is a constitutively active kinase that regulates many intracellular signaling pathways by phosphorylating substrates such as beta-catenin. We noticed that the putative SUMOylation sites are localized on K(292 )residueof (291)FKFPQ(295) in GSK 3beta based on analysis of the SUMOylation consensus sequence. In this report, we showed that the SUMOylation of GSK 3beta occurs on its K(292) residue, and this modification promotes its nuclear localization in COS-1. Additionally, our data showed that the GSK 3beta SUMO mutant (K292R) decreased its kinase activity and protein stability, affecting cell death. Therefore, our observations at first time suggested that SUMOylation on the K(292) residue of GSK 3beta might be a GSK 3beta regulation mechanism for its kinase activation, subcellular localization, protein stability, and cell apoptosis.
Collapse
Affiliation(s)
- Lee Eun Jeoung
- School of Science Education, Chungbuk National University, Gaeshin-dong, Heungdok-gu, Cheongju, Chungbuk, 361-763, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
121
|
Tan JAT, Sun Y, Song J, Chen Y, Krontiris TG, Durrin LK. SUMO conjugation to the matrix attachment region-binding protein, special AT-rich sequence-binding protein-1 (SATB1), targets SATB1 to promyelocytic nuclear bodies where it undergoes caspase cleavage. J Biol Chem 2008; 283:18124-34. [PMID: 18408014 DOI: 10.1074/jbc.m800512200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
SATB1 (special AT-rich sequence-binding protein-1) provides a key link between DNA loop organization, chromatin modification/remodeling, and association of transcription factors at matrix attachment regions (MARs). To investigate the role of SATB1 in cellular events, we performed a yeast two-hybrid screen that identified SUMO-1, Ubc9, and protein inhibitor of activated STAT (PIAS) family members as SATB1 interaction partners. These proteins, working in concert, enhanced SUMO conjugation to lysine-744 of SATB1. Overexpression of SUMO or PIAS in Jurkat cells, which express high levels of endogenous SATB1, exhibited enhanced caspase cleavage of this MAR-associating protein. Sumoylation-deficient SATB1 (SATB1(K744R)) failed to display the characteristic caspase cleavage pattern; however, fusion of SUMO in-frame to SATB1(K744R) restored cleavage. A SUMO-independent interaction of inactive caspase-6 and SATB1 was noted. A subset of total cellular SATB1 localized into promyelocytic leukemia nuclear bodies where enhanced SATB1 cleavage was detected subsequent to caspase activation. These results reveal a novel sumoylation-directed caspase cleavage of this key regulatory molecule. The role of regulated proteolysis of SATB1 may be to control transcription in immune cells during normal cell functions or to assist in efficient and rapid clearance of nonfunctional or potentially damaging immune cells.
Collapse
Affiliation(s)
- Joseph-Anthony T Tan
- Division of Molecular Medicine, Division of Immunology, and Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope Medical Center, Duarte, CA 91010, USA
| | | | | | | | | | | |
Collapse
|
122
|
Schwamborn K, Knipscheer P, van Dijk E, van Dijk WJ, Sixma TK, Meloen RH, Langedijk JPM. SUMO assay with peptide arrays on solid support: insights into SUMO target sites. J Biochem 2008; 144:39-49. [PMID: 18344540 DOI: 10.1093/jb/mvn039] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The modification of proteins by SUMO (small ubiquitin-like modifier) regulates various cellular processes. Sumoylation often occurs on a specific lysine residue within the consensus motif psiKxE/D. However, little is known about the specificity and selectivity of SUMO target sites. We describe here a SUMO assay with peptide array on solid support for the simultaneous characterization of hundreds of different SUMO target sites. This approach was used to characterize known SUMO substrates. The position of the motif within the peptide and the amino acids flanking the acceptor site affected the efficiency of SUMO modification. Interestingly, a sequence of only four amino acids, corresponding to the SUMO consensus motif without flanking amino acids, was a bona fide target site. Analysis of a peptide library for all variants of the psiKxE/D consensus motif revealed that the first and third positions in the tetrapeptide preferably contain aromatic amino acid residues. Furthermore, by adding the SUMO E3 ligase PIAS1 to the reaction mixture, we show specific enhancement of the modification of a PIAS1-dependent SUMO substrate in this system. Overall, our results demonstrate that the sumoylation assay with peptide array on solid support can be used for the high-throughput characterization of SUMO target sites, and provide new insights into the composition, selectivity and specificity of SUMO target sites.
Collapse
Affiliation(s)
- Klaus Schwamborn
- Pepscan Therapeutics BV, Zuidersluisweg 2, 8243 RC Lelystad, the Netherlands.
| | | | | | | | | | | | | |
Collapse
|
123
|
Spatial interplay between PIASy and FIP200 in the regulation of signal transduction and transcriptional activity. Mol Cell Biol 2008; 28:2771-81. [PMID: 18285457 DOI: 10.1128/mcb.01210-07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The members of the protein inhibitor of activated STAT (PIAS) family of proteins are implicated in fundamental cellular processes, including transcriptional regulation, either through action as E3 SUMO ligases or through SUMO-independent effects. We report here the identification of FIP200 (focal adhesion kinase family-interacting protein of 200 kDa) as a new PIASy-interacting protein. We show that the interaction depends on the integrity of the RING finger of PIASy and the carboxy terminus of FIP200. Both in vitro and in vivo sumoylation assays failed to reveal any sumoylation of FIP200, suggesting that FIP200 is not a bona fide SUMO substrate. Immunofluorescence microscopy and subcellular fractionation, either upon forced PIASy expression or in the absence of PIASy, revealed that interaction with PIASy redistributes FIP200 from the cytoplasm to the nucleus, correlating with abrogation of FIP200 regulation of TSC/S6K signaling. Conversely, FIP200 enhances the transcriptional activation of the p21 promoter by PIASy whereas PIASy transcription activity is severely reduced upon FIP200 depletion by RNA interference. Chromatin immunoprecipitation analysis demonstrates that endogenous PIASy and FIP200 are corecruited to the p21 promoter. Altogether, these results provide the first evidence for the existence of a close-spatially controlled-mode of regulation of FIP200 and PIASy nucleocytoplasmic functions.
Collapse
|
124
|
Albor A, Kulesz-Martin M. Novel initiation genes in squamous cell carcinomagenesis: a role for substrate-specific ubiquitylation in the control of cell survival. Mol Carcinog 2007; 46:585-90. [PMID: 17626251 DOI: 10.1002/mc.20344] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The study of experimental epidermal carcinogenesis offers several advantages over other epithelial carcinogenesis models, including easy accessibility and a database of research findings spanning over a century. Our studies make use of a clonal in vitro/in vivo keratinocyte carcinogenesis model with low frequency of ras mutation and derivative clonal-initiated lineages with distinct tumor fate. Analysis of this model has yielded candidate genes involved in the stages of initiation and tumorigenic progression, and has revealed novel roles for ubiquitylation in transcriptional control of survival and apoptotic pathways during the early stages of carcinogenesis. The expression of a recently described E3-ubiquitin ligase, Trim32, is elevated during initiation, and ectopic expression of Trim32 confers extended survival in response to terminal differentiation and ultraviolet light (UV) B/TNF-alpha death signals. Trim32 binds and ubiquitylates Piasy, controlling its stability and accumulation. Piasy is a SUMOylation factor involved in the control of apoptosis, senescence, and NF-kappaB activation. NF-kappaB is a survival factor for keratinocytes in response to UV irradiation, the main carcinogenic stimulus for the epidermis. Piasy inhibits NF-kappaB activity, and promotes keratinocyte apoptosis in response to UV and TNF-alpha. In human skin squamous cell carcinoma (SCC) samples, we found an inverse correlation between Trim32 and Piasy expression supporting a role for Trim32-Piasy interaction in human epidermal carcinogenesis. Our hypothesis is that increased expression of Trim32 may enhance epidermal carcinogenesis, by increasing the threshold of NF-kappaB activity through Piasy downmodulation.
Collapse
Affiliation(s)
- Amador Albor
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon 97239, USA
| | | |
Collapse
|
125
|
Dick FA. Structure-function analysis of the retinoblastoma tumor suppressor protein - is the whole a sum of its parts? Cell Div 2007; 2:26. [PMID: 17854503 PMCID: PMC2082274 DOI: 10.1186/1747-1028-2-26] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Accepted: 09/13/2007] [Indexed: 12/28/2022] Open
Abstract
Biochemical analysis of the retinoblastoma protein's function has received considerable attention since it was cloned just over 20 years ago. During this time pRB has emerged as a key regulator of the cell division cycle and its ability to block proliferation is disrupted in the vast majority of human cancers. Much has been learned about the regulation of E2F transcription factors by pRB in the cell cycle. However, many questions remain unresolved and researchers continue to explore this multifunctional protein. In particular, understanding how its biochemical functions contribute to its role as a tumor suppressor remains to be determined. Since pRB has been shown to function as an adaptor molecule that links different proteins together, or to particular promoters, analyzing pRB by disrupting individual protein interactions holds tremendous promise in unraveling the intricacies of its function. Recently, crystal structures have reported how pRB interacts with some of its molecular partners. This information has created the possibility of rationally separating pRB functions by studying mutants that disrupt individual binding sites. This review will focus on literature that investigates pRB by isolating functions based on binding sites within the pocket domain. This article will also discuss the prospects for using this approach to further explore the unknown functions of pRB.
Collapse
|
126
|
Jakobs A, Himstedt F, Funk M, Korn B, Gaestel M, Niedenthal R. Ubc9 fusion-directed SUMOylation identifies constitutive and inducible SUMOylation. Nucleic Acids Res 2007; 35:e109. [PMID: 17709345 PMCID: PMC2034454 DOI: 10.1093/nar/gkm617] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Constitutive and induced protein SUMOylation is involved in the regulation of a variety of cellular processes, such as regulation of gene expression and protein transport, and proceeds mainly in the nucleus of the cell. So far, several hundred SUMOylation targets have been identified, but presumably they represent only a part of the total of proteins which are regulated by SUMOylation. Here, we used the Ubc9 fusion-dependent SUMOylation system (UFDS) to screen for constitutive and induced SUMOylation of 46 randomly chosen proteins with proven or potential nuclear localization. Fourteen new UFDS-substrate proteins were identified of which eight could be demonstrated to be SUMOylated in a UFDS-independent manner in vivo. Of these, three were constitutively SUMOylated (FOS, CRSP9 and CDC37) while the remaining five substrates (CSNK2B, TAF10, HSF2BP, PSMC3 and DRG1) showed a stimulation-dependent SUMOylation induced by the MAP3 kinase MEKK1. Hence, UFDS is appropriate for the identification and characterization of constitutive and, more importantly, induced protein SUMOylation in vivo.
Collapse
Affiliation(s)
- Astrid Jakobs
- Institut für Physiologische Chemie, Medizinische Hochschule Hannover, Carl-Neuberg Street, 1, 30625 Hannover, MediGene AG, Lochhamer Street, 11, 82152 Martinsried and Deutsches Krebsforschungszentrum, Genomics and Proteomics Core Facilities, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Fabian Himstedt
- Institut für Physiologische Chemie, Medizinische Hochschule Hannover, Carl-Neuberg Street, 1, 30625 Hannover, MediGene AG, Lochhamer Street, 11, 82152 Martinsried and Deutsches Krebsforschungszentrum, Genomics and Proteomics Core Facilities, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Martin Funk
- Institut für Physiologische Chemie, Medizinische Hochschule Hannover, Carl-Neuberg Street, 1, 30625 Hannover, MediGene AG, Lochhamer Street, 11, 82152 Martinsried and Deutsches Krebsforschungszentrum, Genomics and Proteomics Core Facilities, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Bernhard Korn
- Institut für Physiologische Chemie, Medizinische Hochschule Hannover, Carl-Neuberg Street, 1, 30625 Hannover, MediGene AG, Lochhamer Street, 11, 82152 Martinsried and Deutsches Krebsforschungszentrum, Genomics and Proteomics Core Facilities, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Matthias Gaestel
- Institut für Physiologische Chemie, Medizinische Hochschule Hannover, Carl-Neuberg Street, 1, 30625 Hannover, MediGene AG, Lochhamer Street, 11, 82152 Martinsried and Deutsches Krebsforschungszentrum, Genomics and Proteomics Core Facilities, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Rainer Niedenthal
- Institut für Physiologische Chemie, Medizinische Hochschule Hannover, Carl-Neuberg Street, 1, 30625 Hannover, MediGene AG, Lochhamer Street, 11, 82152 Martinsried and Deutsches Krebsforschungszentrum, Genomics and Proteomics Core Facilities, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
- *To whom correspondence should be addressed. +0511 532 2826+0511 532 2827
| |
Collapse
|
127
|
Tahk S, Liu B, Chernishof V, Wong KA, Wu H, Shuai K. Control of specificity and magnitude of NF-kappa B and STAT1-mediated gene activation through PIASy and PIAS1 cooperation. Proc Natl Acad Sci U S A 2007; 104:11643-8. [PMID: 17606919 PMCID: PMC1913887 DOI: 10.1073/pnas.0701877104] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
NF-kappaB and STATs regulate multiple cellular processes through the transcriptional activation of genes with diversified functions. Although the molecular mechanisms that can turn on/off the overall NF-kappaB/STAT signaling have been extensively studied, how NF-kappaB/STAT-target genes can be differentially regulated is poorly understood. Here we report that PIASy, a member of the PIAS (for protein inhibitor of activated STAT) protein family, is a physiologically important transcriptional repressor of NF-kappaB and STAT1. Piasy deletion in dendritic cells resulted in enhanced expression of a subset of NF-kappaB and STAT1-dependent genes in response to LPS or IFN-gamma treatment, respectively. Consistently, Piasy null mice are hypersensitive to the LPS-induced endotoxic shock. Furthermore, PIASy and PIAS1 display specific as well as redundant effects on the regulation of NF-kappaB/STAT1 signaling. Pias1-/-Piasy-/- embryos died before day 11.5. The disruption of one allele of Pias1 in the Piasy-/- background significantly enhanced the effect of Piasy deletion on the transcriptional induction of NF-kappaB/STAT1-dependent genes, and vice versa. Our results demonstrate that PIASy cooperates with PIAS1 to regulate the specificity and magnitude of NF-kappaB/STAT1-mediated gene activation.
Collapse
Affiliation(s)
| | - Bin Liu
- Division of Hematology–Oncology, Department of Medicine
| | | | - Kelly A. Wong
- *Molecular Biology Institute
- Department of Molecular and Medical Pharmacology, and
| | - Hong Wu
- *Molecular Biology Institute
- Department of Molecular and Medical Pharmacology, and
| | - Ke Shuai
- *Molecular Biology Institute
- Division of Hematology–Oncology, Department of Medicine
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095
- To whom correspondence should be addressed at:
Division of Hematology–Oncology, 11-934 Factor Building, 10833 Le Conte Avenue, Los Angeles, CA 90095-1678. E-mail:
| |
Collapse
|
128
|
Wasiak S, Zunino R, McBride HM. Bax/Bak promote sumoylation of DRP1 and its stable association with mitochondria during apoptotic cell death. ACTA ACUST UNITED AC 2007; 177:439-50. [PMID: 17470634 PMCID: PMC2064824 DOI: 10.1083/jcb.200610042] [Citation(s) in RCA: 424] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Dynamin-related protein 1 (DRP1) plays an important role in mitochondrial fission at steady state and during apoptosis. Using fluorescence recovery after photobleaching, we demonstrate that in healthy cells, yellow fluorescent protein (YFP)–DRP1 recycles between the cytoplasm and mitochondria with a half-time of 50 s. Strikingly, during apoptotic cell death, YFP-DRP1 undergoes a transition from rapid recycling to stable membrane association. The rapid cycling phase that characterizes the early stages of apoptosis is independent of Bax/Bak. However, after Bax recruitment to the mitochondrial membranes but before the loss of mitochondrial membrane potential, YFP-DRP1 becomes locked on the membrane, resulting in undetectable fluorescence recovery. This second phase in DRP1 cycling is dependent on the presence of Bax/Bak but independent of hFis1 and mitochondrial fragmentation. Coincident with Bax activation, we detect a Bax/Bak-dependent stimulation of small ubiquitin-like modifier-1 conjugation to DRP1, a modification that correlates with the stable association of DRP1 with mitochondrial membranes. Altogether, these data demonstrate that the apoptotic machinery regulates the biochemical properties of DRP1 during cell death.
Collapse
Affiliation(s)
- Sylwia Wasiak
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
129
|
Abstract
Over the years, p53 has been shown to sit at the centre of an increasingly complex web of incoming stress signals and outgoing effector pathways. The number and diversity of stress signals that lead to p53 activation illustrates the breadth of p53's remit - responding to a wide variety of potentially oncogenic insults to prevent tumour development. Interestingly, different stress signals can use different and independent pathways to activate p53, and there is some evidence that different stress signals can mediate different responses. How each of the responses to p53 contributes to inhibition of malignant progression is beginning to be clarified, with the hope that identification of responses that are key to tumour suppression will allow a more focused and effective search for new therapeutic targets. In this review, we will highlight some recently identified roles for p53 in tumour suppression, and discuss some of the numerous mechanisms through which p53 can be regulated and activated.
Collapse
Affiliation(s)
- H F Horn
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow, UK
| | | |
Collapse
|
130
|
Auré K, Mamchaoui K, Frachon P, Butler-Browne GS, Lombès A, Mouly V. Impact on oxidative phosphorylation of immortalization with the telomerase gene. Neuromuscul Disord 2007; 17:368-75. [PMID: 17383182 DOI: 10.1016/j.nmd.2007.01.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Revised: 11/03/2006] [Accepted: 01/29/2007] [Indexed: 11/25/2022]
Abstract
Skin fibroblasts are essential tools for biochemical, genetic and physiopathological investigations of mitochondrial diseases. Their immortalization has been previously performed to overcome the limited number of divisions of these primary cells but it has never been systematically evaluated with respect to efficacy and impact on the oxidative phosphorylation (OXPHOS) characteristics of the cells. We successfully immortalized with the human telomerase gene 15 human fibroblasts populations, 4 derived from controls and 11 from patients with diverse respiratory chain defects. Immortalization induced significant but mild modification of the OXPHOS characteristics of the cells with lower rates of oxygen consumption and ATP synthesis associated with their loose coupling. However, it never significantly altered the type and severity of any genetic OXPHOS defect present prior to immortalization. Furthermore, it did not significantly modify the cells' dependence on glucose and sensitivity to galactose thus showing that immortalized cells could be screened by their nutritional requirement. Immortalized skin fibroblasts with significant OXPHOS defect provide reliable tools for the diagnosis and research of the genetic cause of mitochondrial defects. They also represent precious material to investigate the cellular responses to these defects, even though these should afterwards be verified in unmodified primary cells.
Collapse
Affiliation(s)
- K Auré
- Inserm, U582, Institut de Myologie, Paris F-75013, France
| | | | | | | | | | | |
Collapse
|
131
|
Carter S, Bischof O, Dejean A, Vousden KH. C-terminal modifications regulate MDM2 dissociation and nuclear export of p53. Nat Cell Biol 2007; 9:428-35. [PMID: 17369817 DOI: 10.1038/ncb1562] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Accepted: 02/15/2007] [Indexed: 01/15/2023]
Abstract
p53 functions to prevent malignant progression, in part by inhibiting proliferation or inducing the death of potential tumour cells. One of the most important regulators of p53 is MDM2, a RING domain E3 ligase that ubiquitinates p53, leading to both proteasomal degradation and relocation of p53 from the nucleus to the cytoplasm. Previous studies have suggested that although polyubiquitination is required for degradation, monoubiquitination of p53 is sufficient for nuclear export. Using a p53-ubiquitin fusion protein we show that ubiquitination contributes to two steps before export: exposure of a carboxy-terminal nuclear export sequence (NES), and dissociation of MDM2. Monoubiquitination can directly promote further modifications of p53 with ubiquitin-like proteins and MDM2 promotes the interaction of the SUMO E3 ligase PIASy with p53, enhancing both sumoylation and nuclear export. Our results suggest that modifications such as sumoylation can regulate the strength of the p53-MDM2 interaction and participate in driving the export of p53.
Collapse
Affiliation(s)
- Stephanie Carter
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | | | | | | |
Collapse
|
132
|
Deng Z, Wan M, Sui G. PIASy-mediated sumoylation of Yin Yang 1 depends on their interaction but not the RING finger. Mol Cell Biol 2007; 27:3780-92. [PMID: 17353273 PMCID: PMC1899983 DOI: 10.1128/mcb.01761-06] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
As a multifunctional protein, Yin Yang 1 (YY1) has been demonstrated to regulate both gene expression and protein posttranslational modifications. However, gaps still exist in our knowledge of how YY1 can be modified and what the consequences of its modifications are. Here we report that YY1 protein can be sumoylated both in vivo and in vitro. We have identified lysine 288 as the major sumoylation site of YY1. We also discovered that PIASy, a SUMO E3 ligase, is a novel YY1-interacting protein and can stimulate the sumoylation of YY1 both in vitro and in vivo. Importantly, the effects of PIASy mutants on in vivo YY1 sumoylation correlate with the YY1-PIASy interaction but do not depend on the RING finger domain of PIASy. This regulation is unique to YY1 sumoylation because PIASy-mediated p53 sumoylation still relies on the integrity of PIASy, which is also true of all of the previously identified substrates of PIASy. In addition, PIASy colocalizes with YY1 in the nucleus, stabilizes YY1 in vivo, and differentially regulates YY1 transcriptional activity on different target promoters. This study demonstrates that YY1 is a target of SUMOs and reveals a novel feature of a SUMO E3 ligase in the PIAS family that selectively stimulates protein sumoylation independent of the RING finger domain.
Collapse
Affiliation(s)
- Zhiyong Deng
- Department of Cancer Biology, Wake Forest University School of Medicine, Hanes 4052, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | | | |
Collapse
|
133
|
Abstract
SUMO modification (sumoylation) plays important roles in nucleo-cytoplasmic transport, maintenance of sub-nuclear architecture, the regulation of gene expression and in DNA replication, repair and recombination. Here we review recent evidence for SUMO's role in protecting genomic integrity at both the chromosomal and the DNA level. Furthermore, the involvement of sumoylation and of specific SUMO targets in cancer is discussed.
Collapse
Affiliation(s)
- J S Seeler
- Nuclear Organisation and Oncogenesis Unit, INSERM U.579, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris 15, France.
| | | | | | | |
Collapse
|
134
|
Cougot D, Wu Y, Cairo S, Caramel J, Renard CA, Lévy L, Buendia MA, Neuveut C. The hepatitis B virus X protein functionally interacts with CREB-binding protein/p300 in the regulation of CREB-mediated transcription. J Biol Chem 2006; 282:4277-4287. [PMID: 17158882 DOI: 10.1074/jbc.m606774200] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The hepatitis B virus infects more than 350 million people worldwide and is a leading cause of liver cancer. The virus encodes a multifunctional regulator, the hepatitis B virus X protein (HBx), that is essential for virus replication. HBx is involved in modulating signal transduction pathways and transcription mediated by various factors, notably CREB that requires the recruitment of the co-activators CREB-binding protein (CBP)/p300. Here we investigated the role of HBx and its potential interaction with CBP/p300 in regulating CREB transcriptional activity. We show that HBx and CBP/p300 synergistically enhanced CREB activity and that CREB phosphorylation by protein kinase A was a prerequisite for the cooperative action of HBx and CBP/p300. We further show that HBx interacted directly with CBP/p300 in vitro and in vivo. Using chromatin immunoprecipitation, we provide evidence that HBx physically occupied the CREB-binding domain of CREB-responsive promoters of endogenous cellular genes such as interleukin 8 and proliferating cell nuclear antigen. Moreover expression of HBx increased the recruitment of p300 to the interleukin 8 and proliferating cell nuclear antigen promoters in cells, and this is associated with increased gene expression. As recruitment of CBP/p300 is known to represent the limiting event for activating CREB target genes, HBx may disrupt this cellular regulation, thus predisposing cells to transformation.
Collapse
Affiliation(s)
- Delphine Cougot
- Unité d'Oncogene`se et Virologie Moléculaire, Institut Pasteur and INSERM U579, 28 rue du Dr. Roux, 75015 Paris, France
| | - Yuanfei Wu
- Unité d'Oncogene`se et Virologie Moléculaire, Institut Pasteur and INSERM U579, 28 rue du Dr. Roux, 75015 Paris, France
| | - Stefano Cairo
- Unité d'Oncogene`se et Virologie Moléculaire, Institut Pasteur and INSERM U579, 28 rue du Dr. Roux, 75015 Paris, France
| | - Julie Caramel
- Unité d'Oncogene`se et Virologie Moléculaire, Institut Pasteur and INSERM U579, 28 rue du Dr. Roux, 75015 Paris, France
| | - Claire-Angélique Renard
- Unité d'Oncogene`se et Virologie Moléculaire, Institut Pasteur and INSERM U579, 28 rue du Dr. Roux, 75015 Paris, France
| | - Laurence Lévy
- Unité d'Oncogene`se et Virologie Moléculaire, Institut Pasteur and INSERM U579, 28 rue du Dr. Roux, 75015 Paris, France
| | - Marie Annick Buendia
- Unité d'Oncogene`se et Virologie Moléculaire, Institut Pasteur and INSERM U579, 28 rue du Dr. Roux, 75015 Paris, France
| | - Christine Neuveut
- Unité d'Oncogene`se et Virologie Moléculaire, Institut Pasteur and INSERM U579, 28 rue du Dr. Roux, 75015 Paris, France.
| |
Collapse
|
135
|
Abstract
Mutations in TP53, the gene that encodes the tumour suppressor p53, are found in 50% of human cancers, and increased levels of its negative regulators MDM2 and MDM4 (also known as MDMX) downregulate p53 function in many of the rest. Understanding p53 regulation remains a crucial goal to design broadly applicable anticancer strategies based on this pathway. This Review of in vitro studies, human tumour data and recent mouse models shows that p53 post-translational modifications have modulatory roles, and MDM2 and MDM4 have more profound roles for regulating p53. Importantly, MDM4 emerges as an independent target for drug development, as its inactivation is crucial for full p53 activation.
Collapse
Affiliation(s)
- Franck Toledo
- Institut Curie, Centre de Recherche, UMR CNRS 7147, 26 rue d'Ulm, 75248 Paris Cedex 05, France.
| | | |
Collapse
|
136
|
Li T, Santockyte R, Shen RF, Tekle E, Wang G, Yang DCH, Chock PB. Expression of SUMO-2/3 Induced Senescence through p53- and pRB-mediated Pathways. J Biol Chem 2006; 281:36221-7. [PMID: 17012228 DOI: 10.1074/jbc.m608236200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Three highly homologous small ubiquitin-related modifier (SUMO) proteins have been identified in mammals. Modifications of proteins by SUMO-1 have been shown to regulate transcription, nucleocytoplasmic transport, protein stability, and protein-protein interactions. Relative to SUMO-1, little is known about the functions of SUMO-2 or SUMO-3 (referred to as SUMO-2/3). Here, stable cell lines overexpressing processed forms of SUMO-2/3 (SUMO-2/3GG) as well as their non-conjugatable derivatives, SUMO-2/3DeltaGG, were established. Cells overexpressing SUMO-2/3GG showed a premature senescence phenotype as revealed by cellular morphology and senescence-associated galactosidase activity. The senescence pathway protein p21 was up-regulated in cells overexpressing SUMO-2/3GG. In contrast, cells overexpressing non-conjugatable forms of SUMO-2/3DeltaGG showed neither an apparent senescent phenotype nor elevated p21. Both p53 and pRB were found to be modified by SUMO-2/3. Site-directed mutagenesis studies showed that Lys-386 of p53, the SUMO-1 modification site, is also the modification site for SUMO-2/3. In addition, H2O2 treatment of untransfected cells caused an increase in p53 sumoylation by SUMO-2/3, whereas that by SUMO-1 remained unchanged. Moreover, knocking down tumor suppressor proteins p53 or pRB using small interfering RNA significantly alleviated the premature senescence phenotypes in SUMO-2/3GG overexpressing cells. Together, our results reveal that p53 and pRB can be sumoylated by SUMO-2/3 in vivo, and such modification of p53 and pRB may play roles in premature senescence and stress response.
Collapse
Affiliation(s)
- Tianwei Li
- Laboratory of Biochemistry and Proteomics Core Facility, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
137
|
Abstract
Ubiquitin and ubiquitin-like proteins (Ubls) are signalling messengers that control many cellular functions, such as cell proliferation, apoptosis, the cell cycle and DNA repair. It is becoming apparent that the deregulation of ubiquitin pathways results in the development of human diseases, including many types of tumours. Here we summarize the common principles and specific features of ubiquitin and Ubls in the regulation of cancer-relevant pathways, and discuss new strategies to target ubiquitin signalling in drug discovery.
Collapse
Affiliation(s)
- Daniela Hoeller
- Institute of Biochemistry II, Goethe University School of Medicine, University Hospital, Building 75, Theodour-Stern-Kai 7, D-60590 Frankfurt, Germany
| | | | | |
Collapse
|