101
|
Yamashita SI, Kanki T. Mitophagy Responds to the Environmental Temperature and Regulates Mitochondrial Mass in Adipose Tissues. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1461:229-243. [PMID: 39289285 DOI: 10.1007/978-981-97-4584-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
There are at least two types of adipose tissues in the body, defined as brown adipose tissues (BATs) and white adipose tissues (WATs). These tissues comprise brown and white adipocytes, respectively. The adipocytes are commonly endowed with mitochondria, but they have diverse characteristics and roles. Brown adipocytes have abundant mitochondria that contribute to the β-oxidation of fatty acids to produce chemical energy and the production of heat via uncoupling of the mitochondrial membrane potential from ATP synthesis. Alternatively, white adipocytes have fewer mitochondria that contribute to the generation of free fatty acids via lipogenesis by providing key intermediates. Besides the described types of adipocytes, brown-like adipocytes, termed beige adipocytes, are developed in WAT depots during cold exposure. Beige adipocytes also contribute to thermogenesis. Notably, beige adipocytes may transform into white-like adipocytes after the withdrawal of cold exposure. This process is marked by the elimination of mitochondria through the activation of mitochondria autophagy (mitophagy). This review aims to describe the mitophagy that occurs during the beige-to-white transition and discuss recent insights into the molecular mechanisms of this transformation. Additionally, we describe the mitophagy monitoring strategy in adipose tissues using three independent reporter systems and discuss the availabilities and limitations of the method.
Collapse
Affiliation(s)
- Shun-Ichi Yamashita
- Department of Cellular Physiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Tomotake Kanki
- Department of Cellular Physiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
102
|
Yao J, Kan B, Dong Z, Tang Z. Research Progress of Mitophagy in Alzheimer's Disease. Curr Alzheimer Res 2024; 20:827-844. [PMID: 38482617 DOI: 10.2174/0115672050300063240305074310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 07/16/2024]
Abstract
The prevalence of Alzheimer's disease (AD) is increasing as the elderly population, which hurts elderly people's cognition and capacity for self-care. The process of mitophagy involves the selective clearance of ageing and impaired mitochondria, which is required to preserve intracellular homeostasis and energy metabolism. Currently, it has been discovered that mitophagy abnormalities are intimately linked to the beginning and progression of AD. This article discusses the mechanism of mitophagy, abnormal mitophagy, and therapeutic effects in AD. The purpose is to offer fresh perspectives on the causes and remedies of AD.
Collapse
Affiliation(s)
- Jinglin Yao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Institute of Acupuncture & Moxibustion, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Bohong Kan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Institute of Acupuncture & Moxibustion, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhengjia Dong
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhenyu Tang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Institute of Acupuncture & Moxibustion, Tianjin, China
| |
Collapse
|
103
|
Gao A, Wang M, Tang X, Shi G, Hou K, Fang J, Zhou L, Zhou H, Jiang W, Li Y, Ouyang F. NDP52 SUMOylation contributes to low-dose X-rays-induced cardiac hypertrophy through PINK1/Parkin-mediated mitophagy via MUL1/SUMO2 signalling. J Cell Physiol 2024; 239:79-96. [PMID: 37942585 DOI: 10.1002/jcp.31145] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023]
Abstract
Radiation-induced heart damage caused by low-dose X-rays has a significant impact on tumour patients' prognosis, with cardiac hypertrophy being the most severe noncarcinogenic adverse effect. Our previous study demonstrated that mitophagy activation promoted cardiac hypertrophy, but the underlying mechanisms remained unclear. In the present study, PARL-IN-1 enhanced excessive hypertrophy of cardiomyocytes and exacerbated mitochondrial damage. Isobaric tags for relative and absolute quantification-based quantitative proteomics identified NDP52 as a crucial target mediating cardiac hypertrophy induced by low-dose X-rays. SUMOylation proteomics revealed that the SUMO E3 ligase MUL1 facilitated NDP52 SUMOylation through SUMO2. Co-IP coupled with LC-MS/MS identified a critical lysine residue at position 262 of NDP52 as the key site for SUMO2-mediated SUMOylation of NDP52. The point mutation plasmid NDP52K262R inhibited mitophagy under MUL1 overexpression, as evidenced by inhibition of LC3 interaction with NDP52, PINK1 and LAMP2A. A mitochondrial dissociation study revealed that NDP52K262R inhibited PINK1 targeting to endosomes early endosomal marker (EEA1), late/lysosome endosomal marker (LAMP2A) and recycling endosomal marker (RAB11), and laser confocal microscopy confirmed that NDP52K262R impaired the recruitment of mitochondria to the autophagic pathway through EEA1/RAB11 and ATG3, ATG5, ATG16L1 and STX17, but did not affect mitochondrial delivery to lysosomes via LAMP2A for degradation. In conclusion, our findings suggest that MUL1-mediated SUMOylation of NDP52 plays a crucial role in regulating mitophagy in the context of low-dose X-ray-induced cardiac hypertrophy. Two hundred sixty-second lysine of NDP52 is identified as a key SUMOylation site for low-dose X-ray promoting mitophagy activation and cardiac hypertrophy. Collectively, this study provides novel implications for the development of therapeutic strategies aimed at preventing the progression of cardiac hypertrophy induced by low-dose X-rays.
Collapse
Affiliation(s)
- Anbo Gao
- Hengyang Medical School, Clinical Research Institute, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Mengjie Wang
- Hengyang Medical School, Clinical Research Institute, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Xing Tang
- Hengyang Medical School, Clinical Research Institute, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Gangqing Shi
- Hengyang Medical School, Clinical Research Institute, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Hengyang Medical School, Cancer Research Institute, University of South China, Hengyang, Hunan, China
| | - Kai Hou
- Hengyang Medical School, Clinical Research Institute, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Jinren Fang
- Hengyang Medical School, Clinical Research Institute, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Linlin Zhou
- Hengyang Medical School, Clinical Research Institute, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Hong Zhou
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Weimin Jiang
- Department of Cardiology, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
| | - Yukun Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
| | - Fan Ouyang
- Department of Cardiology, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
| |
Collapse
|
104
|
Chacon-Camacho OF, Arce-Gonzalez R, Sanchez-de la Rosa F, Urióstegui-Rojas A, Hofmann-Blancas ME, Mata-Flores F, Zenteno JC. Genetic Aspects of Glaucoma: An Updated Review. Curr Mol Med 2024; 24:1231-1249. [PMID: 37272463 DOI: 10.2174/1566524023666230602143617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 06/06/2023]
Abstract
Glaucoma is a group of diverse diseases characterized by cupping of the optic nerve head due to the loss of retinal ganglion cells. It is the most common cause of irreversible blindness throughout the world; therefore, its timely diagnosis and early detection through an ophthalmological examination are very important. We, herein, present the information on the epidemiology, pathophysiology, clinical diagnosis, and treatment of glaucoma. We also emphasize the investigations of the last decades that have allowed identifying numerous genes and susceptibility genetic factors. We have also described in detail the genes whose mutations cause or contribute to the development of the disease.
Collapse
Affiliation(s)
- Oscar Francisco Chacon-Camacho
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
- Laboratorio 5 Edificio A-4, Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rocio Arce-Gonzalez
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | | | - Andrés Urióstegui-Rojas
- Department of Integral Ophthalmology, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | | | - Felipe Mata-Flores
- Department of Glaucoma, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | - Juan Carlos Zenteno
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
- Biochemistry Department, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
105
|
Shima T, Ogura M, Matsuda R, Nakamura S, Jin N, Yoshimori T, Kuma A. The TMEM192-mKeima probe specifically assays lysophagy and reveals its initial steps. J Cell Biol 2023; 222:e202204048. [PMID: 37801070 PMCID: PMC10558291 DOI: 10.1083/jcb.202204048] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 04/28/2023] [Accepted: 09/19/2023] [Indexed: 10/07/2023] Open
Abstract
Membrane rupture of lysosomes results in leakage of their contents, which is harmful to cells. Recent studies have reported that several systems contribute to the repair or elimination of damaged lysosomes. Lysophagy is a type of selective autophagy that plays a crucial role in the lysosomal damage response. Because multiple pathways are involved in this response, an assay that specifically evaluates lysophagy is needed. Here, we developed the TMEM192-mKeima probe to evaluate lysophagy. By comparing the use of this probe with the conventional galectin-3 assay, we showed that this probe is more specific to lysophagy. Using TMEM192-mKeima, we showed that TFEB and p62 are important for the lysosomal damage response but not for lysophagy, although they have previously been considered to be involved in lysophagy. We further investigated the initial steps in lysophagy and identified UBE2L3, UBE2N, TRIM10, 16, and 27 as factors involved in it. Our results demonstrate that the TMEM192-mKeima probe is a useful tool for investigating lysophagy.
Collapse
Affiliation(s)
- Takayuki Shima
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Monami Ogura
- Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Ruriko Matsuda
- Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Shuhei Nakamura
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, Osaka, Japan
| | - Natsuko Jin
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tamotsu Yoshimori
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan
| | - Akiko Kuma
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
106
|
Liang Y, Zhong G, Ren M, Sun T, Li Y, Ye M, Ma C, Guo Y, Liu C. The Role of Ubiquitin-Proteasome System and Mitophagy in the Pathogenesis of Parkinson's Disease. Neuromolecular Med 2023; 25:471-488. [PMID: 37698835 DOI: 10.1007/s12017-023-08755-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 08/24/2023] [Indexed: 09/13/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease that is mainly in middle-aged people and elderly people, and the pathogenesis of PD is complex and diverse. The ubiquitin-proteasome system (UPS) is a master regulator of neural development and the maintenance of brain structure and function. Dysfunction of components and substrates of this UPS has been linked to neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease. Moreover, UPS can regulate α-synuclein misfolding and aggregation, mitophagy, neuroinflammation and oxidative stress to affect the development of PD. In the present study, we review the role of several related E3 ubiquitin ligases and deubiquitinating enzymes (DUBs) on the pathogenesis of PD such as Parkin, CHIP, USP8, etc. On this basis, we summarize the connections and differences of different E3 ubiquitin ligases in the pathogenesis, and elaborate on the regulatory progress of different DUBs on the pathogenesis of PD. Therefore, we can better understand their relationships and provide feasible and valuable therapeutic clues for UPS-related PD treatment research.
Collapse
Affiliation(s)
- Yu Liang
- School of Clinical Medicine, Bengbu Medical College, Bengbu, 233000, China
| | - Guangshang Zhong
- School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China
| | - Mingxin Ren
- School of Clinical Medicine, Bengbu Medical College, Bengbu, 233000, China
| | - Tingting Sun
- School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China
| | - Yangyang Li
- School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China
| | - Ming Ye
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, Bengbu, 233000, China
| | - Caiyun Ma
- School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China
| | - Yu Guo
- School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China.
| | - Changqing Liu
- School of Clinical Medicine, Bengbu Medical College, Bengbu, 233000, China.
- School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China.
| |
Collapse
|
107
|
Agarwal R, Iezhitsa I. Genetic rodent models of glaucoma in representing disease phenotype and insights into the pathogenesis. Mol Aspects Med 2023; 94:101228. [PMID: 38016252 DOI: 10.1016/j.mam.2023.101228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/31/2023] [Accepted: 11/11/2023] [Indexed: 11/30/2023]
Abstract
Genetic rodent models are widely used in glaucoma related research. With vast amount of information revealed by human studies about genetic correlations with glaucoma, use of these models is relevant and required. In this review, we discuss the glaucoma endophenotypes and importance of their representation in an experimental animal model. Mice and rats are the most popular animal species used as genetic models due to ease of genetic manipulations in these animal species as well as the availability of their genomic information. With technological advances, induction of glaucoma related genetic mutations commonly observed in human is possible to achieve in rodents in a desirable manner. This approach helps to study the pathobiology of the disease process with the background of genetic abnormalities, reveals potential therapeutic targets and gives an opportunity to test newer therapeutic options. Various genetic manipulation leading to appearance of human relevant endophenotypes in rodents indicate their relevance in glaucoma pathology and the utility of these rodent models for exploring various aspects of the disease related to targeted mutation. The molecular pathways involved in the pathophysiology of glaucoma leading to elevated intraocular pressure and the disease hallmark, apoptosis of retinal ganglion cells and optic nerve degeneration, have been extensively explored in genetic rodent models. In this review, we discuss the consequences of various genetic manipulations based on the primary site of pathology in the anterior or the posterior segment. We discuss how these genetic manipulations produce features in rodents that can be considered a close representation of disease phenotype in human. We also highlight several molecular mechanisms revealed by using genetic rodent models of glaucoma including those involved in increased aqueous outflow resistance, loss of retinal ganglion cells and optic neuropathy. Lastly, we discuss the limitations of the use of genetic rodent models in glaucoma related research.
Collapse
Affiliation(s)
- Renu Agarwal
- School of Medicine, International Medical University, Malaysia.
| | - Igor Iezhitsa
- School of Medicine, International Medical University, Malaysia
| |
Collapse
|
108
|
Wang Y, Dai X, Li H, Jiang H, Zhou J, Zhang S, Guo J, Shen L, Yang H, Lin J, Yan H. The role of mitochondrial dynamics in disease. MedComm (Beijing) 2023; 4:e462. [PMID: 38156294 PMCID: PMC10753647 DOI: 10.1002/mco2.462] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/14/2023] [Accepted: 12/03/2023] [Indexed: 12/30/2023] Open
Abstract
Mitochondria are multifaceted and dynamic organelles regulating various important cellular processes from signal transduction to determining cell fate. As dynamic properties of mitochondria, fusion and fission accompanied with mitophagy, undergo constant changes in number and morphology to sustain mitochondrial homeostasis in response to cell context changes. Thus, the dysregulation of mitochondrial dynamics and mitophagy is unsurprisingly related with various diseases, but the unclear underlying mechanism hinders their clinical application. In this review, we summarize the recent developments in the molecular mechanism of mitochondrial dynamics and mitophagy, particularly the different roles of key components in mitochondrial dynamics in different context. We also summarize the roles of mitochondrial dynamics and target treatment in diseases related to the cardiovascular system, nervous system, respiratory system, and tumor cell metabolism demanding high-energy. In these diseases, it is common that excessive mitochondrial fission is dominant and accompanied by impaired fusion and mitophagy. But there have been many conflicting findings about them recently, which are specifically highlighted in this view. We look forward that these findings will help broaden our understanding of the roles of the mitochondrial dynamics in diseases and will be beneficial to the discovery of novel selective therapeutic targets.
Collapse
Affiliation(s)
- Yujuan Wang
- Immunotherapy LaboratoryQinghai Tibet Plateau Research InstituteSouthwest Minzu UniversityChengduSichuanChina
| | - Xinyan Dai
- Immunotherapy LaboratoryQinghai Tibet Plateau Research InstituteSouthwest Minzu UniversityChengduSichuanChina
| | - Hui Li
- Immunotherapy LaboratoryCollege of PharmacologySouthwest Minzu UniversityChengduSichuanChina
| | - Huiling Jiang
- Immunotherapy LaboratoryCollege of PharmacologySouthwest Minzu UniversityChengduSichuanChina
| | - Junfu Zhou
- Immunotherapy LaboratoryCollege of PharmacologySouthwest Minzu UniversityChengduSichuanChina
| | - Shiying Zhang
- Immunotherapy LaboratoryQinghai Tibet Plateau Research InstituteSouthwest Minzu UniversityChengduSichuanChina
| | - Jiacheng Guo
- Immunotherapy LaboratoryQinghai Tibet Plateau Research InstituteSouthwest Minzu UniversityChengduSichuanChina
| | - Lidu Shen
- Immunotherapy LaboratoryCollege of PharmacologySouthwest Minzu UniversityChengduSichuanChina
| | - Huantao Yang
- Immunotherapy LaboratoryQinghai Tibet Plateau Research InstituteSouthwest Minzu UniversityChengduSichuanChina
| | - Jie Lin
- Immunotherapy LaboratoryCollege of PharmacologySouthwest Minzu UniversityChengduSichuanChina
| | - Hengxiu Yan
- Immunotherapy LaboratoryCollege of PharmacologySouthwest Minzu UniversityChengduSichuanChina
| |
Collapse
|
109
|
Zhang H, Niu Y, Qiu L, Yang J, Sun J, Xia J. Melatonin-mediated mitophagy protects against long-term impairments after repeated neonatal sevoflurane exposures. Int Immunopharmacol 2023; 125:111210. [PMID: 37976600 DOI: 10.1016/j.intimp.2023.111210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/29/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Melatonin is known to have protective effects in aging, neurodegenerative disorders and mitochondria-related diseases, while there is a poor understanding of the effects of melatonin treatment on mitophagy in neonatal cognitive dysfunction after repeated sevoflurane exposures. This study explores the protective effects of melatonin on mitophagy and cognition in developing rats exposed to sevoflurane. METHODS Postnatal day six (P6) neonatal rats were exposed to 3 % sevoflurane for 2 h daily from P6 to P8. In the intervention groups, rats received 3-Methyladenine (3-MA) intracerebroventricularly from P6 to P8 and melatonin intraperitoneally from P6 to P8 following water drinking once daily from P21 to P41, respectively. Behavioral tests, including open field (OF), novel object recognition (NOR), and fear conditioning (FC) tests, were performed to assess cognitive function during young adulthood. In another experiment, rat brains were harvested for biochemical, histopathological, and electron microscopy studies. RESULTS Rats exposed to sevoflurane showed disordered mitophagy and mitochondrial dysfunction as revealed by increased mitophagy marker proteins (microtubule-associated protein 1 light chain 3 (LC3) II/I, and parkin), decreased autophagy marker protein (sequestosome 1 (P62/SQSTM1)), electron transport chain (ETC) proteins and ATP levels. Immunofluorescent staining of LC3 was co-localized mostly with a neuronal marker and microglial marker but was not co-localized with a marker for astrocytes in rats exposed to sevoflurane. These rats had poorer performance in the NOR and FC tests than control rats during young adulthood. Melatonin treatment reversed the abnormal expression of mitophagy proteins, mitochondrial energy metabolism, the activity of microglia, and impaired cognition. These ameliorations were blocked by an autophagy inhibitor, 3-MA, except for the activation of microglia. CONCLUSION We have demonstrated that melatonin inhibits microglial activation by enhancing mitophagy and finally significantly reduces sevoflurane-induced deficits in cognition in neonatal rats. These results suggest that melatonin might be beneficial if considered when the anesthesia must be administered at a very young age.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China.
| | - Yingqiao Niu
- Department of Anesthesiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Lili Qiu
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China.
| | - Jiaojiao Yang
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China.
| | - Jie Sun
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China.
| | - Jiangyan Xia
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China.
| |
Collapse
|
110
|
Bunker EN, Le Guerroué F, Wang C, Strub M, Werner A, Tjandra N, Youle RJ. Nix interacts with WIPI2 to induce mitophagy. EMBO J 2023; 42:e113491. [PMID: 37621214 PMCID: PMC10646555 DOI: 10.15252/embj.2023113491] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 08/26/2023] Open
Abstract
Nix is a membrane-anchored outer mitochondrial protein that induces mitophagy. While Nix has an LC3-interacting (LIR) motif that binds to ATG8 proteins, it also contains a minimal essential region (MER) that induces mitophagy through an unknown mechanism. We used chemically induced dimerization (CID) to probe the mechanism of Nix-mediated mitophagy and found that both the LIR and MER are required for robust mitophagy. We find that the Nix MER interacts with the autophagy effector WIPI2 and recruits WIPI2 to mitochondria. The Nix LIR motif is also required for robust mitophagy and converts a homogeneous WIPI2 distribution on the surface of the mitochondria into puncta, even in the absence of ATG8s. Together, this work reveals unanticipated mechanisms in Nix-induced mitophagy and the elusive role of the MER, while also describing an interesting example of autophagy induction that acts downstream of the canonical initiation complexes.
Collapse
Affiliation(s)
- Eric N Bunker
- Surgical Neurology BranchNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMDUSA
| | - François Le Guerroué
- Surgical Neurology BranchNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMDUSA
| | - Chunxin Wang
- Surgical Neurology BranchNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMDUSA
| | - Marie‐Paule Strub
- Biochemistry and Biophysics CenterNational Heart, Lung, and Blood Institute, National Institutes of HealthBethesdaMDUSA
| | - Achim Werner
- Stem Cell Biochemistry UnitNational Institute of Dental and Craniofacial Research, National Institutes of HealthBethesdaMDUSA
| | - Nico Tjandra
- Biochemistry and Biophysics CenterNational Heart, Lung, and Blood Institute, National Institutes of HealthBethesdaMDUSA
| | - Richard J Youle
- Surgical Neurology BranchNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMDUSA
| |
Collapse
|
111
|
Meyer LM, Koschade SE, Vischedyk JB, Thoelken M, Gubas A, Wegner M, Basoglu M, Knapp S, Kaulich M, Eimer S, Shaid S, Brandts CH. Deciphering the mitophagy receptor network identifies a crucial role for OPTN (optineurin) in acute myeloid leukemia. Autophagy 2023; 19:2982-2996. [PMID: 37439113 PMCID: PMC10549194 DOI: 10.1080/15548627.2023.2230839] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 05/31/2023] [Accepted: 06/20/2023] [Indexed: 07/14/2023] Open
Abstract
The selective autophagic degradation of mitochondria via mitophagy is essential for preserving mitochondrial homeostasis and, thereby, disease maintenance and progression in acute myeloid leukemia (AML). Mitophagy is orchestrated by a variety of mitophagy receptors whose interplay is not well understood. Here, we established a pairwise multiplexed CRISPR screen targeting mitophagy receptors to elucidate redundancies and gain a deeper understanding of the functional interactome governing mitophagy in AML. We identified OPTN (optineurin) as sole non-redundant mitophagy receptor and characterized its unique role in AML. Knockdown and overexpression experiments demonstrated that OPTN expression is rate-limiting for AML cell proliferation. In a MN1-driven murine transplantation model, loss of OPTN prolonged overall median survival by 7 days (+21%). Mechanistically, we found broadly impaired mitochondrial respiration and function with increased mitochondrial ROS, that most likely caused the proliferation defect. Our results decipher the intertwined network of mitophagy receptors in AML for both ubiquitin-dependent and receptor-mediated mitophagy, identify OPTN as a non-redundant tool to study mitophagy in the context of leukemia and suggest OPTN inhibition as an attractive therapeutic strategy.Abbreviations: AML: acute myeloid leukemia; CRISPR: Clustered Regularly Interspaced Short Palindromic Repeats; CTRL: control; DFP: deferiprone; GI: genetic interaction; KD: knockdown; KO: knockout; ldMBM, lineage-depleted murine bone marrow; LFC: log2 fold change; LIR: LC3-interacting region; LSC: leukemic stem cell; MAGeCK: Model-based Analysis of Genome-wide CRISPR-Cas9 Knockout; MDIVI-1: mitochondrial division inhibitor 1; MOI: multiplicity of infection; MOM: mitochondrial outer membrane; NAC: N-acetyl-L-cysteine; OA: oligomycin-antimycin A; OCR: oxygen consumption rate; OE: overexpression; OPTN: optineurin; PINK1: PTEN induced putative kinase 1; ROS: reactive oxygen species; SEM: standard error of the mean; TCGA: The Cancer Genome Atlas; TEM: transmission electron microscopy; UBD: ubiquitin-binding domain; WT: wild type.
Collapse
Affiliation(s)
- Laura M. Meyer
- Goethe University Frankfurt, University Hospital, Department of Medicine, Hematology/Oncology, Frankfurt am Main, Germany
- University Cancer Center Frankfurt (UCT), Frankfurt am Main, Germany
| | - Sebastian E. Koschade
- Goethe University Frankfurt, University Hospital, Department of Medicine, Hematology/Oncology, Frankfurt am Main, Germany
- University Cancer Center Frankfurt (UCT), Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jonas B. Vischedyk
- Goethe University Frankfurt, University Hospital, Department of Medicine, Hematology/Oncology, Frankfurt am Main, Germany
- University Cancer Center Frankfurt (UCT), Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
| | - Marlyn Thoelken
- Goethe University Frankfurt, University Hospital, Department of Medicine, Hematology/Oncology, Frankfurt am Main, Germany
- University Cancer Center Frankfurt (UCT), Frankfurt am Main, Germany
| | - Andrea Gubas
- Goethe University Frankfurt, Institute of Biochemistry II, Frankfurt am Main, Germany
| | - Martin Wegner
- Goethe University Frankfurt, Institute of Biochemistry II, Frankfurt am Main, Germany
| | - Marion Basoglu
- Goethe University Frankfurt, Transmission-Electron Microscopy Core Facility, Frankfurt am Main, Germany
| | - Stefan Knapp
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- Goethe University Frankfurt, Department of Biochemistry, Chemistry and Pharmacy, Institute for Pharmaceutical Chemistry, Frankfurt am Main, Germany
| | - Manuel Kaulich
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- Goethe University Frankfurt, Institute of Biochemistry II, Frankfurt am Main, Germany
| | - Stefan Eimer
- Goethe University Frankfurt, Transmission-Electron Microscopy Core Facility, Frankfurt am Main, Germany
- Goethe University Frankfurt, Institute for Cell Biology and Neuroscience, Frankfurt am Main, Germany
| | - Shabnam Shaid
- Goethe University Frankfurt, University Hospital, Department of Medicine, Hematology/Oncology, Frankfurt am Main, Germany
- University Cancer Center Frankfurt (UCT), Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian H. Brandts
- Goethe University Frankfurt, University Hospital, Department of Medicine, Hematology/Oncology, Frankfurt am Main, Germany
- University Cancer Center Frankfurt (UCT), Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
112
|
Mei L, Chen X, Wei F, Huang X, Liu L, Yao J, Chen J, Luo X, Wang Z, Yang A. Tethering ATG16L1 or LC3 induces targeted autophagic degradation of protein aggregates and mitochondria. Autophagy 2023; 19:2997-3013. [PMID: 37424101 PMCID: PMC10549199 DOI: 10.1080/15548627.2023.2234797] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 06/23/2023] [Accepted: 07/05/2023] [Indexed: 07/11/2023] Open
Abstract
Proteolysis-targeting chimeras (PROTACs) based on the ubiquitin-proteasome system have made great progress in the field of drug discovery. There is mounting evidence that the accumulation of aggregation-prone proteins or malfunctioning organelles is associated with the occurrence of various age-related neurodegenerative disorders and cancers. However, PROTACs are inefficient for the degradation of such large targets due to the narrow entrance channel of the proteasome. Macroautophagy (hereafter referred to as autophagy) is known as a self-degradative process involved in the degradation of bulk cytoplasmic components or specific cargoes that are sequestered into autophagosomes. In the present study, we report the development of a generalizable strategy for the targeted degradation of large targets. Our results suggested that tethering large target models to phagophore-associated ATG16L1 or LC3 induced targeted autophagic degradation of the large target models. Furthermore, we successfully applied this autophagy-targeting degradation strategy to the targeted degradation of HTT65Q aggregates and mitochondria. Specifically, chimeras consisting of polyQ-binding peptide 1 (QBP) and ATG16L1-binding peptide (ABP) or LC3-interacting region (LIR) induced targeted autophagic degradation of pathogenic HTT65Q aggregates; and the chimeras consisting of mitochondria-targeting sequence (MTS) and ABP or LIR promoted targeted autophagic degradation of dysfunctional mitochondria, hence ameliorating mitochondrial dysfunction in a Parkinson disease cell model and protecting cells from apoptosis induced by the mitochondrial stress agent FCCP. Therefore, this study provides a new strategy for the selective proteolysis of large targets and enrich the toolkit for autophagy-targeting degradation.Abbreviations: ABP: ATG16L1-binding peptide; ATG16L1: autophagy related 16 like 1; ATTEC: autophagy-tethering compound; AUTAC: autophagy-targeting chimera; AUTOTAC: autophagy-targeting chimera; Baf A1: bafilomycin A1; BCL2: BCL2 apoptosis regulator; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CASP3: caspase 3; CPP: cell-penetrating peptide; CQ: chloroquine phosphate; DAPI: 4',6-diamidino-2-phenylindole; DCM: dichloromethane; DMF: N,N-dimethylformamide; DMSO: dimethyl sulfoxide; EBSS: Earle's balanced salt solution; FCCP: carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone; FITC: fluorescein-5-isothiocyanate; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; HEK293: human embryonic kidney 293; HEK293T: human embryonic kidney 293T; HPLC: high-performance liquid chromatography; HRP: horseradish peroxidase; HTT: huntingtin; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MFF: mitochondrial fission factor; MTS: mitochondria-targeting sequence; NBR1: NBR1 autophagy cargo receptor; NLRX1: NLR family member X1; OPTN: optineurin; P2A: self-cleaving 2A peptide; PB1: Phox and Bem1p; PBS: phosphate-buffered saline; PE: phosphatidylethanolamine; PINK1: PTEN induced kinase 1; PRKN: parkin RBR E3 ubiquitin protein ligase; PROTACs: proteolysis-targeting chimeras; QBP: polyQ-binding peptide 1; SBP: streptavidin-binding peptide; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis; SPATA33: spermatogenesis associated 33; TIMM23: translocase of inner mitochondrial membrane 23; TMEM59: transmembrane protein 59; TOMM20: translocase of outer mitochondrial membrane 20; UBA: ubiquitin-associated; WT: wild type.
Collapse
Affiliation(s)
- Ligang Mei
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Xiaorong Chen
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Fujing Wei
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Xue Huang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Lu Liu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Jia Yao
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Jing Chen
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Xunguang Luo
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Zhuolin Wang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Aimin Yang
- School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
113
|
Ma Y, Zheng Y, Zhou Y, Weng N, Zhu Q. Mitophagy involved the biological processes of hormones. Biomed Pharmacother 2023; 167:115468. [PMID: 37703662 DOI: 10.1016/j.biopha.2023.115468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/02/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023] Open
Abstract
Mitochondria fulfill vital functions in energy production, maintaining ion balance, and facilitating material metabolism. Mitochondria are sacrificed to protect cells or induce apoptosis when the body is under stress. The regulatory pathways of mitophagy include both ubiquitin-dependent and non-dependent pathways. The involvement of mitophagy has been demonstrated in the onset and progression of numerous diseases, highlighting its significant role. Endocrine hormones are chemical substances secreted by endocrine organs or endocrine cells, which participate in the regulation of physiological functions and internal environmental homeostasis of the body. Imbalances in endocrine hormones contribute to the development of various diseases. However, the precise impact of mitophagy on the physiological and pathological processes involving endocrine hormones remains unclear. This article aims to comprehensively overview recent advancements in understanding the mechanisms through which mitophagy regulates endocrine hormones.
Collapse
Affiliation(s)
- Yifei Ma
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu 610041, Sichuan, PR China
| | - Ying Zheng
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu 610041, Sichuan, PR China
| | - Ying Zhou
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu 610041, Sichuan, PR China
| | - Ningna Weng
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350011, PR China.
| | - Qing Zhu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu 610041, Sichuan, PR China.
| |
Collapse
|
114
|
Saha B, Olsvik H, Williams GL, Oh S, Evjen G, Sjøttem E, Mandell MA. TBK1 is ubiquitinated by TRIM5α to assemble mitophagy machinery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.19.563195. [PMID: 37905089 PMCID: PMC10614974 DOI: 10.1101/2023.10.19.563195] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Ubiquitination of mitochondrial proteins provides a basis for the downstream recruitment of mitophagy machinery, yet whether ubiquitination of the machinery itself contributes to mitophagy is unknown. Here, we show that K63-linked polyubiquitination of the key mitophagy regulator TBK1 is essential for its mitophagy functions. This modification is catalyzed by the ubiquitin ligase TRIM5α. Mitochondrial damage triggers TRIM5α's auto-ubiquitination and its interaction with ubiquitin-binding autophagy adaptors including NDP52, optineurin, and NBR1. Autophagy adaptors, along with TRIM27, enable TRIM5α to engage with TBK1. TRIM5α with intact ubiquitination function is required for the proper accumulation of active TBK1 on damaged mitochondria in Parkin-dependent and Parkin-independent mitophagy pathways. Additionally, we show that TRIM5α can directly recruit autophagy initiation machinery to damaged mitochondria. Our data support a model in which TRIM5α provides a self-amplifying, mitochondria-localized, ubiquitin-based, assembly platform for TBK1 and mitophagy adaptors that is ultimately required to recruit the core autophagy machinery.
Collapse
Affiliation(s)
- Bhaskar Saha
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 USA
| | - Hallvard Olsvik
- Autophagy Research Group, Department of Medical Biology, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Geneva L Williams
- Biomedical Sciences Graduate Program, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 USA
| | - Seeun Oh
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 USA
| | - Gry Evjen
- Autophagy Research Group, Department of Medical Biology, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Eva Sjøttem
- Autophagy Research Group, Department of Medical Biology, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Michael A Mandell
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 USA
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center
| |
Collapse
|
115
|
Uoselis L, Nguyen TN, Lazarou M. Mitochondrial degradation: Mitophagy and beyond. Mol Cell 2023; 83:3404-3420. [PMID: 37708893 DOI: 10.1016/j.molcel.2023.08.021] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023]
Abstract
Mitochondria are central hubs of cellular metabolism that also play key roles in signaling and disease. It is therefore fundamentally important that mitochondrial quality and activity are tightly regulated. Mitochondrial degradation pathways contribute to quality control of mitochondrial networks and can also regulate the metabolic profile of mitochondria to ensure cellular homeostasis. Here, we cover the many and varied ways in which cells degrade or remove their unwanted mitochondria, ranging from mitophagy to mitochondrial extrusion. The molecular signals driving these varied pathways are discussed, including the cellular and physiological contexts under which the different degradation pathways are engaged.
Collapse
Affiliation(s)
- Louise Uoselis
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia; Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, MD 20185, USA
| | - Thanh Ngoc Nguyen
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia; Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, MD 20185, USA.
| | - Michael Lazarou
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia; Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, MD 20185, USA.
| |
Collapse
|
116
|
Zhang SM, Fan B, Li YL, Zuo ZY, Li GY. Oxidative Stress-Involved Mitophagy of Retinal Pigment Epithelium and Retinal Degenerative Diseases. Cell Mol Neurobiol 2023; 43:3265-3276. [PMID: 37391574 PMCID: PMC10477140 DOI: 10.1007/s10571-023-01383-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/22/2023] [Indexed: 07/02/2023]
Abstract
The retinal pigment epithelium (RPE) is a highly specialized and polarized epithelial cell layer that plays an important role in sustaining the structural and functional integrity of photoreceptors. However, the death of RPE is a common pathological feature in various retinal diseases, especially in age-related macular degeneration (AMD) and diabetic retinopathy (DR). Mitophagy, as a programmed self-degradation of dysfunctional mitochondria, is crucial for maintaining cellular homeostasis and cell survival under stress. RPE contains a high density of mitochondria necessary for it to meet energy demands, so severe stimuli can cause mitochondrial dysfunction and the excess generation of intracellular reactive oxygen species (ROS), which can further trigger oxidative stress-involved mitophagy. In this review, we summarize the classical pathways of oxidative stress-involved mitophagy in RPE and investigate its role in the progression of retinal diseases, aiming to provide a new therapeutic strategy for treating retinal degenerative diseases. The role of mitophagy in AMD and DR. In AMD, excessive ROS production promotes mitophagy in the RPE by activating the Nrf2/p62 pathway, while in DR, ROS may suppress mitophagy by the FOXO3-PINK1/parkin signaling pathway or the TXNIP-mitochondria-lysosome-mediated mitophagy.
Collapse
Affiliation(s)
- Si-Ming Zhang
- Department of Ophthalmology, Second Norman Bethune Hospital of Jilin University, Changchun, 130000, China
| | - Bin Fan
- Department of Ophthalmology, Second Norman Bethune Hospital of Jilin University, Changchun, 130000, China
| | - Yu- Lin Li
- Department of Ophthalmology, Second Norman Bethune Hospital of Jilin University, Changchun, 130000, China
| | - Zhao-Yang Zuo
- Department of Ophthalmology, Second Norman Bethune Hospital of Jilin University, Changchun, 130000, China
| | - Guang-Yu Li
- Department of Ophthalmology, Second Norman Bethune Hospital of Jilin University, Changchun, 130000, China.
| |
Collapse
|
117
|
Harrington JS, Ryter SW, Plataki M, Price DR, Choi AMK. Mitochondria in health, disease, and aging. Physiol Rev 2023; 103:2349-2422. [PMID: 37021870 PMCID: PMC10393386 DOI: 10.1152/physrev.00058.2021] [Citation(s) in RCA: 236] [Impact Index Per Article: 118.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Mitochondria are well known as organelles responsible for the maintenance of cellular bioenergetics through the production of ATP. Although oxidative phosphorylation may be their most important function, mitochondria are also integral for the synthesis of metabolic precursors, calcium regulation, the production of reactive oxygen species, immune signaling, and apoptosis. Considering the breadth of their responsibilities, mitochondria are fundamental for cellular metabolism and homeostasis. Appreciating this significance, translational medicine has begun to investigate how mitochondrial dysfunction can represent a harbinger of disease. In this review, we provide a detailed overview of mitochondrial metabolism, cellular bioenergetics, mitochondrial dynamics, autophagy, mitochondrial damage-associated molecular patterns, mitochondria-mediated cell death pathways, and how mitochondrial dysfunction at any of these levels is associated with disease pathogenesis. Mitochondria-dependent pathways may thereby represent an attractive therapeutic target for ameliorating human disease.
Collapse
Affiliation(s)
- John S Harrington
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| | | | - Maria Plataki
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| | - David R Price
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| | - Augustine M K Choi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| |
Collapse
|
118
|
Hou K, Liu T, Li J, Xian M, Sun L, Wei J. Liquid-liquid phase separation regulates alpha-synuclein aggregate and mitophagy in Parkinson's disease. Front Neurosci 2023; 17:1250532. [PMID: 37781241 PMCID: PMC10536155 DOI: 10.3389/fnins.2023.1250532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease in the world, and alpha-synuclein (α-syn) abnormal aggregate and mitochondrial dysfunction play a crucial role in its pathological development. Recent studies have revealed that proteins can form condensates through liquid-liquid phase separation (LLPS), and LLPS has been found to be widely present in α-syn aberrant aggregate and mitophagy-related protein physiological processes. This review summarizes the occurrence of α-syn LLPS and its influencing factors, introduces the production and transformation of the related protein LLPS during PINK1-Parkin-mediated mitophagy, hoping to provide new ideas and methods for the study of PD pathology.
Collapse
Affiliation(s)
- Kaiying Hou
- School of Life Sciences, Henan University, Kaifeng, China
| | - Tingting Liu
- School of Life Sciences, Henan University, Kaifeng, China
| | - Jingwen Li
- School of Life Sciences, Henan University, Kaifeng, China
| | - Meiyan Xian
- School of Life Sciences, Henan University, Kaifeng, China
| | - Lin Sun
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, China
| | - Jianshe Wei
- School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
119
|
Ling J, Yu S, Xiong F, Xu T, Li S. Melatonin Attenuates Sepsis-Induced Acute Lung Injury via Inhibiting Excessive Mitophagy. Drug Des Devel Ther 2023; 17:2775-2786. [PMID: 37719362 PMCID: PMC10503510 DOI: 10.2147/dddt.s423264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/31/2023] [Indexed: 09/19/2023] Open
Abstract
Background Epidemiological studies have indicated that lung injury is a frequent complication of sepsis. Mitophagy is vital to multiple pathological processes and diseases; however, its influence on sepsis-induced acute lung injury remains elusive. Melatonin has multiple antioxidant action and anti-inflammatory effects, including regulating mitophagy and inflammatory cytokine expression. Whereas, little is known about the affection of melatonin and mitophagy on CLP-induced ALI. Methods The in vivo effect of melatonin on OPTN-mediated mitophagy was studied by CLP-induced ALI in a mouse model using C57BL/6 followed by treatment with vehicle and melatonin (30 mg/kg/d, intraperitoneal injection). ALI was assayed by lung wet /dry ratio, hematoxylin and eosin staining, and immunohistochemical staining. Signaling pathway changes were subsequently determined by Western blotting and immunofluorescence staining. The effects of melatonin on STAT3 activation and TNF-α production were detected by Western blotting, PCR, and immunohistochemical staining. Results Our results indicated that OPTN, mitophagy adaptors were significantly repressed in CLP-induced ALI, accompanied by overactivation of mitophagy and inflammation. At the same time, we found that melatonin treatment alleviated ALI caused by CLP, and the effect was highly correlated with OPTN-related mitophagy. Furthermore, we demonstrated that OPTN-related mitophagy, which was normalized by melatonin, blocked STAT3 involved epithelial barrier and inflammation in vivo. Conclusion Overall, our results confirm that mitophagy is adjusted by melatonin in the CLP-induced ALI. Moreover, manipulation of mitophagy through melatonin could be a possible treatment to reduce sepsis-associated lung injury.
Collapse
Affiliation(s)
- Jianmin Ling
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, People’s Republic of China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, People’s Republic of China
| | - Shanshan Yu
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, People’s Republic of China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, People’s Republic of China
| | - Feng Xiong
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, People’s Republic of China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, People’s Republic of China
| | - Tingting Xu
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, People’s Republic of China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, People’s Republic of China
| | - Shusheng Li
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, People’s Republic of China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, People’s Republic of China
| |
Collapse
|
120
|
Harding O, Holzer E, Riley JF, Martens S, Holzbaur ELF. Damaged mitochondria recruit the effector NEMO to activate NF-κB signaling. Mol Cell 2023; 83:3188-3204.e7. [PMID: 37683611 PMCID: PMC10510730 DOI: 10.1016/j.molcel.2023.08.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 05/25/2023] [Accepted: 08/08/2023] [Indexed: 09/10/2023]
Abstract
Failure to clear damaged mitochondria via mitophagy disrupts physiological function and may initiate damage signaling via inflammatory cascades, although how these pathways intersect remains unclear. We discovered that nuclear factor kappa B (NF-κB) essential regulator NF-κB effector molecule (NEMO) is recruited to damaged mitochondria in a Parkin-dependent manner in a time course similar to recruitment of the structurally related mitophagy adaptor, optineurin (OPTN). Upon recruitment, NEMO partitions into phase-separated condensates distinct from OPTN but colocalizing with p62/SQSTM1. NEMO recruitment, in turn, recruits the active catalytic inhibitor of kappa B kinase (IKK) component phospho-IKKβ, initiating NF-κB signaling and the upregulation of inflammatory cytokines. Consistent with a potential neuroinflammatory role, NEMO is recruited to mitochondria in primary astrocytes upon oxidative stress. These findings suggest that damaged, ubiquitinated mitochondria serve as an intracellular platform to initiate innate immune signaling, promoting the formation of activated IKK complexes sufficient to activate NF-κB signaling. We propose that mitophagy and NF-κB signaling are initiated as parallel pathways in response to mitochondrial stress.
Collapse
Affiliation(s)
- Olivia Harding
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Elisabeth Holzer
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Max Perutz Labs, Vienna Biocenter Campus, Vienna, Austria; Center for Molecular Biology, Department of Biochemistry and Cell Biology, University of Vienna, Vienna, Austria; Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Julia F Riley
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Sascha Martens
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Max Perutz Labs, Vienna Biocenter Campus, Vienna, Austria; Center for Molecular Biology, Department of Biochemistry and Cell Biology, University of Vienna, Vienna, Austria
| | - Erika L F Holzbaur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| |
Collapse
|
121
|
Ma Q, Xin J, Peng Q, Li N, Sun S, Hou H, Ma G, Wang N, Zhang L, Tam KY, Dussmann H, Prehn JHM, Wang H, Ying Z. UBQLN2 and HSP70 participate in Parkin-mediated mitophagy by facilitating outer mitochondrial membrane rupture. EMBO Rep 2023; 24:e55859. [PMID: 37501540 PMCID: PMC10481660 DOI: 10.15252/embr.202255859] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two aging-related neurodegenerative diseases that share common key features, including aggregation of pathogenic proteins, dysfunction of mitochondria, and impairment of autophagy. Mutations in ubiquilin 2 (UBQLN2), a shuttle protein in the ubiquitin-proteasome system (UPS), can cause ALS/FTD, but the mechanism underlying UBQLN2-mediated pathogenesis is still uncertain. Recent studies indicate that mitophagy, a selective form of autophagy which is crucial for mitochondrial quality control, is tightly associated with neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and ALS. In this study, we show that after Parkin-dependent ubiquitination of damaged mitochondria, UBQLN2 is recruited to poly-ubiquitinated mitochondria through the UBA domain. UBQLN2 cooperates with the chaperone HSP70 to promote UPS-driven degradation of outer mitochondrial membrane (OMM) proteins. The resulting rupture of the OMM triggers the autophagosomal recognition of the inner mitochondrial membrane receptor PHB2. UBQLN2 is required for Parkin-mediated mitophagy and neuronal survival upon mitochondrial damage, and the ALS/FTD pathogenic mutations in UBQLN2 impair mitophagy in primary cultured neurons. Taken together, our findings link dysfunctional mitophagy to UBQLN2-mediated neurodegeneration.
Collapse
Affiliation(s)
- Qilian Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical SciencesSoochow UniversitySuzhouChina
- Department of Physiology & Medical Physics and FUTURE‐NEURO Research CentreRoyal College of Surgeons in IrelandDublinIreland
| | - Jiaqi Xin
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical SciencesSoochow UniversitySuzhouChina
| | - Qiang Peng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical SciencesSoochow UniversitySuzhouChina
| | - Ningning Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical SciencesSoochow UniversitySuzhouChina
| | - Shan Sun
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical SciencesSoochow UniversitySuzhouChina
- Faculty of Health SciencesUniversity of MacauMacauChina
| | - Hongyu Hou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical SciencesSoochow UniversitySuzhouChina
| | - Guoqiang Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical SciencesSoochow UniversitySuzhouChina
| | - Nana Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical SciencesSoochow UniversitySuzhouChina
| | - Li Zhang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear MedicineJiangsu Institute of Nuclear MedicineWuxiChina
| | - Kin Yip Tam
- Faculty of Health SciencesUniversity of MacauMacauChina
| | - Heiko Dussmann
- Department of Physiology & Medical Physics and FUTURE‐NEURO Research CentreRoyal College of Surgeons in IrelandDublinIreland
| | - Jochen HM Prehn
- Department of Physiology & Medical Physics and FUTURE‐NEURO Research CentreRoyal College of Surgeons in IrelandDublinIreland
| | - Hongfeng Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical SciencesSoochow UniversitySuzhouChina
| | - Zheng Ying
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical SciencesSoochow UniversitySuzhouChina
| |
Collapse
|
122
|
Kubat GB, Bouhamida E, Ulger O, Turkel I, Pedriali G, Ramaccini D, Ekinci O, Ozerklig B, Atalay O, Patergnani S, Nur Sahin B, Morciano G, Tuncer M, Tremoli E, Pinton P. Mitochondrial dysfunction and skeletal muscle atrophy: Causes, mechanisms, and treatment strategies. Mitochondrion 2023; 72:33-58. [PMID: 37451353 DOI: 10.1016/j.mito.2023.07.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/02/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Skeletal muscle, which accounts for approximately 40% of total body weight, is one of the most dynamic and plastic tissues in the human body and plays a vital role in movement, posture and force production. More than just a component of the locomotor system, skeletal muscle functions as an endocrine organ capable of producing and secreting hundreds of bioactive molecules. Therefore, maintaining healthy skeletal muscles is crucial for supporting overall body health. Various pathological conditions, such as prolonged immobilization, cachexia, aging, drug-induced toxicity, and cardiovascular diseases (CVDs), can disrupt the balance between muscle protein synthesis and degradation, leading to skeletal muscle atrophy. Mitochondrial dysfunction is a major contributing mechanism to skeletal muscle atrophy, as it plays crucial roles in various biological processes, including energy production, metabolic flexibility, maintenance of redox homeostasis, and regulation of apoptosis. In this review, we critically examine recent knowledge regarding the causes of muscle atrophy (disuse, cachexia, aging, etc.) and its contribution to CVDs. Additionally, we highlight the mitochondrial signaling pathways involvement to skeletal muscle atrophy, such as the ubiquitin-proteasome system, autophagy and mitophagy, mitochondrial fission-fusion, and mitochondrial biogenesis. Furthermore, we discuss current strategies, including exercise, mitochondria-targeted antioxidants, in vivo transfection of PGC-1α, and the potential use of mitochondrial transplantation as a possible therapeutic approach.
Collapse
Affiliation(s)
- Gokhan Burcin Kubat
- Department of Mitochondria and Cellular Research, Gulhane Health Sciences Institute, University of Health Sciences, 06010 Ankara, Turkey.
| | - Esmaa Bouhamida
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Oner Ulger
- Department of Mitochondria and Cellular Research, Gulhane Health Sciences Institute, University of Health Sciences, 06010 Ankara, Turkey
| | - Ibrahim Turkel
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, 06800 Ankara, Turkey
| | - Gaia Pedriali
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Daniela Ramaccini
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Ozgur Ekinci
- Department of Pathology, Gazi University, 06500 Ankara, Turkey
| | - Berkay Ozerklig
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, 06800 Ankara, Turkey
| | - Ozbeyen Atalay
- Department of Physiology, Faculty of Medicine, Hacettepe University, 06230 Ankara, Turkey
| | - Simone Patergnani
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy; Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Beyza Nur Sahin
- Department of Physiology, Faculty of Medicine, Hacettepe University, 06230 Ankara, Turkey
| | - Giampaolo Morciano
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy; Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Meltem Tuncer
- Department of Physiology, Faculty of Medicine, Hacettepe University, 06230 Ankara, Turkey
| | - Elena Tremoli
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Paolo Pinton
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy; Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy.
| |
Collapse
|
123
|
Stavropoulos F, Georgiou E, Schiza N, Bell S, Baloh RH, Kleopa KA, Sargiannidou I. Mitofusin 1 overexpression rescues the abnormal mitochondrial dynamics caused by the Mitofusin 2 K357T mutation in vitro. J Peripher Nerv Syst 2023; 28:329-340. [PMID: 37220142 DOI: 10.1111/jns.12564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS Mitofusin 1 (MFN1) and MFN2 are outer mitochondrial membrane fusogenic proteins regulating mitochondrial network morphology. MFN2 mutations cause Charcot-Marie-Tooth type 2A (CMT2A), an axonal neuropathy characterized by mitochondrial fusion defects, which in the case of a GTPase domain mutant, were rescued following wild-type MFN1/2 (MFN1/2WT ) overexpression. In this study, we compared the therapeutic efficiency between MFN1WT and MFN2WT overexpression in correcting mitochondrial defects induced by the novel MFN2K357T mutation located in the highly conserved R3 region. METHODS Constructs expressing either MFN2K357T , MFN2WT , or MFN1WT under the ubiquitous chicken β-actin hybrid (CBh) promoter were generated. Flag or myc tag was used for their detection. Differentiated SH-SY5Y cells were single transfected with MFN1WT , MFN2WT , or MFN2K357T , as well as double transfected with MFN2K357T /MFN2WT or MFN2K357T /MFN1WT . RESULTS SH-SY5Y cells transfected with MFN2K357T exhibited severe perinuclear mitochondrial clustering with axon-like processes devoid of mitochondria. Single transfection with MFN1WT resulted in a more interconnected mitochondrial network than transfection with MFN2WT , accompanied by mitochondrial clusters. Double transfection of MFN2K357T with either MFN1WT or MFN2WT resolved the mutant-induced mitochondrial clusters and led to detectable mitochondria throughout the axon-like processes. MFN1WT showed higher efficacy than MFN2WT in rescuing these defects. INTERPRETATION These results further demonstrate the higher potential of MFN1WT over MFN2WT overexpression to rescue CMT2A-induced mitochondrial network abnormalities due to mutations outside the GTPase domain. This higher phenotypic rescue conferred by MFN1WT , possibly due to its higher mitochondrial fusogenic ability, may be applied to different CMT2A cases regardless of the MFN2 mutation type.
Collapse
Affiliation(s)
- Filippos Stavropoulos
- Department of Neuroscience, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Elena Georgiou
- Department of Neuroscience, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Natasa Schiza
- Department of Neuroscience, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Shaughn Bell
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Robert H Baloh
- Global Head of Neuroscience, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA
| | - Kleopas A Kleopa
- Department of Neuroscience, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Center for Neuromuscular Disorders and Center for Multiple Sclerosis and Related Disorders, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Irene Sargiannidou
- Department of Neuroscience, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
124
|
Oh SJ, Park K, Sonn SK, Oh GT, Lee MS. Pancreatic β-cell mitophagy as an adaptive response to metabolic stress and the underlying mechanism that involves lysosomal Ca 2+ release. Exp Mol Med 2023; 55:1922-1932. [PMID: 37653033 PMCID: PMC10545665 DOI: 10.1038/s12276-023-01055-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/18/2023] [Accepted: 05/11/2023] [Indexed: 09/02/2023] Open
Abstract
Mitophagy is an excellent example of selective autophagy that eliminates damaged or dysfunctional mitochondria, and it is crucial for the maintenance of mitochondrial integrity and function. The critical roles of autophagy in pancreatic β-cell structure and function have been clearly shown. Furthermore, morphological abnormalities and decreased function of mitochondria have been observed in autophagy-deficient β-cells, suggesting the importance of β-cell mitophagy. However, the role of authentic mitophagy in β-cell function has not been clearly demonstrated, as mice with pancreatic β-cell-specific disruption of Parkin, one of the most important players in mitophagy, did not exhibit apparent abnormalities in β-cell function or glucose homeostasis. Instead, the role of mitophagy in pancreatic β-cells has been investigated using β-cell-specific Tfeb-knockout mice (TfebΔβ-cell mice); Tfeb is a master regulator of lysosomal biogenesis or autophagy gene expression and participates in mitophagy. TfebΔβ-cell mice were unable to adaptively increase mitophagy or mitochondrial complex activity in response to high-fat diet (HFD)-induced metabolic stress. Consequently, TfebΔβ-cell mice exhibited impaired β-cell responses and further exacerbated metabolic deterioration after HFD feeding. TFEB was activated by mitochondrial or metabolic stress-induced lysosomal Ca2+ release, which led to calcineurin activation and mitophagy. After lysosomal Ca2+ release, depleted lysosomal Ca2+ stores were replenished by ER Ca2+ through ER→lysosomal Ca2+ refilling, which supplemented the low lysosomal Ca2+ capacity. The importance of mitophagy in β-cell function was also demonstrated in mice that developed β-cell dysfunction and glucose intolerance after treatment with a calcineurin inhibitor that hampered TFEB activation and mitophagy.
Collapse
Affiliation(s)
- Soo-Jin Oh
- Soonchunhyang Institute of Medi-bio Science and Division of Endocrinology, Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, 31151, Korea
| | - Kihyoun Park
- Soonchunhyang Institute of Medi-bio Science and Division of Endocrinology, Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, 31151, Korea
| | - Seong Keun Sonn
- Heart-Immune-Brain Network Research Center, Department of Life Science, Ewha Womans University, Seoul, 03767, Korea
| | - Goo Taeg Oh
- Heart-Immune-Brain Network Research Center, Department of Life Science, Ewha Womans University, Seoul, 03767, Korea
| | - Myung-Shik Lee
- Soonchunhyang Institute of Medi-bio Science and Division of Endocrinology, Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, 31151, Korea.
| |
Collapse
|
125
|
Wang S, Long H, Hou L, Feng B, Ma Z, Wu Y, Zeng Y, Cai J, Zhang DW, Zhao G. The mitophagy pathway and its implications in human diseases. Signal Transduct Target Ther 2023; 8:304. [PMID: 37582956 PMCID: PMC10427715 DOI: 10.1038/s41392-023-01503-7] [Citation(s) in RCA: 175] [Impact Index Per Article: 87.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/03/2023] [Accepted: 05/16/2023] [Indexed: 08/17/2023] Open
Abstract
Mitochondria are dynamic organelles with multiple functions. They participate in necrotic cell death and programmed apoptotic, and are crucial for cell metabolism and survival. Mitophagy serves as a cytoprotective mechanism to remove superfluous or dysfunctional mitochondria and maintain mitochondrial fine-tuning numbers to balance intracellular homeostasis. Growing evidences show that mitophagy, as an acute tissue stress response, plays an important role in maintaining the health of the mitochondrial network. Since the timely removal of abnormal mitochondria is essential for cell survival, cells have evolved a variety of mitophagy pathways to ensure that mitophagy can be activated in time under various environments. A better understanding of the mechanism of mitophagy in various diseases is crucial for the treatment of diseases and therapeutic target design. In this review, we summarize the molecular mechanisms of mitophagy-mediated mitochondrial elimination, how mitophagy maintains mitochondrial homeostasis at the system levels and organ, and what alterations in mitophagy are related to the development of diseases, including neurological, cardiovascular, pulmonary, hepatic, renal disease, etc., in recent advances. Finally, we summarize the potential clinical applications and outline the conditions for mitophagy regulators to enter clinical trials. Research advances in signaling transduction of mitophagy will have an important role in developing new therapeutic strategies for precision medicine.
Collapse
Affiliation(s)
- Shouliang Wang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Haijiao Long
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
- Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lianjie Hou
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Baorong Feng
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Zihong Ma
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Ying Wu
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Yu Zeng
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Jiahao Cai
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Da-Wei Zhang
- Group on the Molecular and Cell Biology of Lipids and Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| | - Guojun Zhao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China.
| |
Collapse
|
126
|
Zhao T, Zhang J, Lei H, Meng Y, Cheng H, Zhao Y, Geng G, Mu C, Chen L, Liu Q, Luo Q, Zhang C, Long Y, Su J, Wang Y, Li Z, Sun J, Chen G, Li Y, Liao X, Shang Y, Hu G, Chen Q, Zhu Y. NRF1-mediated mitochondrial biogenesis antagonizes innate antiviral immunity. EMBO J 2023; 42:e113258. [PMID: 37409632 PMCID: PMC10425878 DOI: 10.15252/embj.2022113258] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 07/07/2023] Open
Abstract
Mitochondrial biogenesis is the process of generating new mitochondria to maintain cellular homeostasis. Here, we report that viruses exploit mitochondrial biogenesis to antagonize innate antiviral immunity. We found that nuclear respiratory factor-1 (NRF1), a vital transcriptional factor involved in nuclear-mitochondrial interactions, is essential for RNA (VSV) or DNA (HSV-1) virus-induced mitochondrial biogenesis. NRF1 deficiency resulted in enhanced innate immunity, a diminished viral load, and morbidity in mice. Mechanistically, the inhibition of NRF1-mediated mitochondrial biogenesis aggravated virus-induced mitochondrial damage, promoted the release of mitochondrial DNA (mtDNA), increased the production of mitochondrial reactive oxygen species (mtROS), and activated the innate immune response. Notably, virus-activated kinase TBK1 phosphorylated NRF1 at Ser318 and thereby triggered the inactivation of the NRF1-TFAM axis during HSV-1 infection. A knock-in (KI) strategy that mimicked TBK1-NRF1 signaling revealed that interrupting the TBK1-NRF1 connection ablated mtDNA release and thereby attenuated the HSV-1-induced innate antiviral response. Our study reveals a previously unidentified antiviral mechanism that utilizes a NRF1-mediated negative feedback loop to modulate mitochondrial biogenesis and antagonize innate immune response.
Collapse
Affiliation(s)
- Tian Zhao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Jiaojiao Zhang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Hong Lei
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Yuanyuan Meng
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Hongcheng Cheng
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Yanping Zhao
- School of Statistics and Data Science, LPMC and KLMDASRNankai UniversityTianjinChina
| | - Guangfeng Geng
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Chenglong Mu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Linbo Chen
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Qiangqiang Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Qian Luo
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Chuanmei Zhang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Yijia Long
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Jingyi Su
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Yinhao Wang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Zhuoya Li
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Jiaxing Sun
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Guo Chen
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Yanjun Li
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Xudong Liao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Yingli Shang
- Department of Preventive Veterinary Medicine, College of Veterinary MedicineShandong Agricultural UniversityTaianChina
| | - Gang Hu
- School of Statistics and Data Science, LPMC and KLMDASRNankai UniversityTianjinChina
| | - Quan Chen
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Yushan Zhu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| |
Collapse
|
127
|
Zhou Y, Luo D, Shi J, Yang X, Xu W, Gao W, Guo Y, Zhao Q, Xie X, He Y, Du G, Pang X. Loganin alleviated cognitive impairment in 3×Tg-AD mice through promoting mitophagy mediated by optineurin. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116455. [PMID: 37019163 DOI: 10.1016/j.jep.2023.116455] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/21/2023] [Accepted: 04/01/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Corni Fructus is a traditional Chinese herb and widely applied for treatment of age-related disorders in China. Iridoid glycoside was considered as the active ingredient of Corni Fructus. Loganin is one of the major iridoid glycosides and quality control components of Corni Fructus. Emerging evidence emphasized the beneficial effect of loganin on neurodegenerative disorders, such as Alzheimer's disease (AD). However, the detailed mechanism underlying the neuroprotective action of loganin remains to be unraveled. AIM OF THE STUDY To explore the improvement of loganin on cognitive impairment in 3 × Tg-AD mice and reveal the potential mechanism. MATERIALS AND METHODS Eight-month 3 × Tg-AD male mice were intraperitoneally injected with loganin (20 and 40 mg/kg) for consecutive 21 days. Behavioral tests were used to evaluated the cognition-enhancing effects of loganin, and Nissl staining and thioflavine S staining were performed to analyze neuronal survival and Aβ pathology. Western blot analysis, transmission electron microscopy and immunofluorescence were utilized to explore the molecular mechanism of loganin in AD mice involved mitochondrial dynamics and mitophagy. Aβ25-35-induced SH-SY5Y cells were applied to verify the potential mechanism in vitro. RESULTS Loganin significantly mitigated the learning and memory deficit and amyloid β-protein (Aβ) deposition, and recovered synaptic ultrastructure in 3 × Tg-AD mice. Perturbed mitochondrial dynamics characterized by excessive fission and insufficient fusion were restored after loganin treatment. Meanwhile, loganin reversed the increase of mitophagy markers (LC3II, p62, PINK1 and Parkin) and mitochondrial markers (TOM20 and COXIV) in hippocampus of AD mice, and enhanced the location of optineurin (OPTN, a well-known mitophagy receptor) to mitochondria. Accumulated PINK1, Parkin, p62 and LC3II were also revealed in Aβ25-35-induced SH-SY5Y cells, which were ameliorated by loganin. Increased OPTN in Aβ25-35-treated SH-SY5Y cells was further upregulated by loganin incubation, along with the reduction of mitochondrial ROSand elevation ofmitochondrial membrane potential (MMP). Conversely, OPTN silence neutralized the effect of loganin on mitophagy and mitochondrial function, which is consistent with the finding that loganin presented strong affinity with OPTN measured by molecular docking in silico. CONCLUSIONS Our observations confirmed that loganin enhanced cognitive function and alleviated AD pathology probably by promoting OPTN-mediated mitophagy,. Loganin might be a potential drug candidate for AD therapy via targeting mitophagy.
Collapse
Affiliation(s)
- Yunfeng Zhou
- School of Pharmacy, Henan University, Kaifeng, 475004, China; Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, School of Pharmacy, Henan University, Kaifeng, 475004, China.
| | - Dongmei Luo
- School of Pharmacy, Henan University, Kaifeng, 475004, China.
| | - Junzhuo Shi
- School of Pharmacy, Henan University, Kaifeng, 475004, China.
| | - Xiaojia Yang
- School of Pharmacy, Henan University, Kaifeng, 475004, China.
| | - Wangjun Xu
- School of Pharmacy, Henan University, Kaifeng, 475004, China.
| | - Weiping Gao
- School of Pharmacy, Henan University, Kaifeng, 475004, China.
| | - Yukun Guo
- School of Pharmacy, Henan University, Kaifeng, 475004, China.
| | - Qian Zhao
- School of Pharmacy, Henan University, Kaifeng, 475004, China.
| | - Xinmei Xie
- School of Pharmacy, Henan University, Kaifeng, 475004, China; Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, School of Pharmacy, Henan University, Kaifeng, 475004, China.
| | - Yangyang He
- School of Pharmacy, Henan University, Kaifeng, 475004, China; Institutes of Traditional Chinese Medicine, Henan University, Kaifeng, 475004, China.
| | - Guanhua Du
- School of Pharmacy, Henan University, Kaifeng, 475004, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China.
| | - Xiaobin Pang
- School of Pharmacy, Henan University, Kaifeng, 475004, China; Institutes of Traditional Chinese Medicine, Henan University, Kaifeng, 475004, China; Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, School of Pharmacy, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
128
|
Kraus F, Goodall EA, Smith IR, Jiang Y, Paoli JC, Adolf F, Zhang J, Paulo JA, Schulman BA, Harper JW. PARK15/FBXO7 is dispensable for PINK1/Parkin mitophagy in iNeurons and HeLa cell systems. EMBO Rep 2023; 24:e56399. [PMID: 37334901 PMCID: PMC10398645 DOI: 10.15252/embr.202256399] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 05/16/2023] [Accepted: 06/01/2023] [Indexed: 06/21/2023] Open
Abstract
The protein kinase PINK1 and ubiquitin ligase Parkin promote removal of damaged mitochondria via a feed-forward mechanism involving ubiquitin (Ub) phosphorylation (pUb), Parkin activation, and ubiquitylation of mitochondrial outer membrane proteins to support the recruitment of mitophagy receptors. The ubiquitin ligase substrate receptor FBXO7/PARK15 is mutated in an early-onset parkinsonian-pyramidal syndrome. Previous studies have proposed a role for FBXO7 in promoting Parkin-dependent mitophagy. Here, we systematically examine the involvement of FBXO7 in depolarization and mt UPR-dependent mitophagy in the well-established HeLa and induced-neurons cell systems. We find that FBXO7-/- cells have no demonstrable defect in: (i) kinetics of pUb accumulation, (ii) pUb puncta on mitochondria by super-resolution imaging, (iii) recruitment of Parkin and autophagy machinery to damaged mitochondria, (iv) mitophagic flux, and (v) mitochondrial clearance as quantified by global proteomics. Moreover, global proteomics of neurogenesis in the absence of FBXO7 reveals no obvious alterations in mitochondria or other organelles. These results argue against a general role for FBXO7 in Parkin-dependent mitophagy and point to the need for additional studies to define how FBXO7 mutations promote parkinsonian-pyramidal syndrome.
Collapse
Affiliation(s)
- Felix Kraus
- Department of Cell Biology, Blavatnik InstituteHarvard Medical SchoolBostonMAUSA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research NetworkChevy ChaseMDUSA
| | - Ellen A Goodall
- Department of Cell Biology, Blavatnik InstituteHarvard Medical SchoolBostonMAUSA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research NetworkChevy ChaseMDUSA
| | - Ian R Smith
- Department of Cell Biology, Blavatnik InstituteHarvard Medical SchoolBostonMAUSA
| | - Yizhi Jiang
- Department of Cell Biology, Blavatnik InstituteHarvard Medical SchoolBostonMAUSA
| | - Julia C Paoli
- Department of Cell Biology, Blavatnik InstituteHarvard Medical SchoolBostonMAUSA
| | - Frank Adolf
- Aligning Science Across Parkinson's (ASAP) Collaborative Research NetworkChevy ChaseMDUSA
- Department of Molecular Machines and SignalingMax Planck Institute of BiochemistryMartinsriedGermany
| | - Jiuchun Zhang
- Department of Cell Biology, Blavatnik InstituteHarvard Medical SchoolBostonMAUSA
| | - Joao A Paulo
- Department of Cell Biology, Blavatnik InstituteHarvard Medical SchoolBostonMAUSA
| | - Brenda A Schulman
- Aligning Science Across Parkinson's (ASAP) Collaborative Research NetworkChevy ChaseMDUSA
- Department of Molecular Machines and SignalingMax Planck Institute of BiochemistryMartinsriedGermany
| | - J Wade Harper
- Department of Cell Biology, Blavatnik InstituteHarvard Medical SchoolBostonMAUSA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research NetworkChevy ChaseMDUSA
| |
Collapse
|
129
|
López-Palacios TP, Andersen JL. Kinase regulation by liquid-liquid phase separation. Trends Cell Biol 2023; 33:649-666. [PMID: 36528418 PMCID: PMC10267292 DOI: 10.1016/j.tcb.2022.11.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022]
Abstract
Liquid-liquid phase separation (LLPS) is emerging as a mechanism of spatiotemporal regulation that could answer long-standing questions about how order is achieved in biochemical signaling. In this review we discuss how LLPS orchestrates kinase signaling, either by creating condensate structures that are sensed by kinases or by direct LLPS of kinases, cofactors, and substrates - thereby acting as a mechanism to compartmentalize kinase-substrate relationships, and in some cases also sequestering the kinase away from inhibitory factors. We also examine the possibility that selective pressure promotes genomic rearrangements that fuse pro-growth kinases to LLPS-prone protein sequences, which in turn drives aberrant kinase activation through LLPS.
Collapse
Affiliation(s)
- Tania P López-Palacios
- Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Joshua L Andersen
- Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
130
|
Dong Y, Zhuang XX, Wang YT, Tan J, Feng D, Li M, Zhong Q, Song Z, Shen HM, Fang EF, Lu JH. Chemical mitophagy modulators: Drug development strategies and novel regulatory mechanisms. Pharmacol Res 2023; 194:106835. [PMID: 37348691 DOI: 10.1016/j.phrs.2023.106835] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/09/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Maintaining mitochondrial homeostasis is a potential therapeutic strategy for various diseases, including neurodegenerative diseases, cardiovascular diseases, metabolic disorders, and cancer. Selective degradation of mitochondria by autophagy (mitophagy) is a fundamental mitochondrial quality control mechanism conserved from yeast to humans. Indeed, small-molecule modulators of mitophagy are valuable pharmaceutical tools that can be used to dissect complex biological processes and turn them into potential drugs. In the past few years, pharmacological regulation of mitophagy has shown promising therapeutic efficacy in various disease models. However, with the increasing number of chemical mitophagy modulator studies, frequent methodological flaws can be observed, leading some studies to draw unreliable or misleading conclusions. This review attempts (a) to summarize the molecular mechanisms of mitophagy; (b) to propose a Mitophagy Modulator Characterization System (MMCS); (c) to perform a comprehensive analysis of methods used to characterize mitophagy modulators, covering publications over the past 20 years; (d) to provide novel targets for pharmacological intervention of mitophagy. We believe this review will provide a panorama of current research on chemical mitophagy modulators and promote the development of safe and robust mitophagy modulators with therapeutic potential by introducing high methodological standards.
Collapse
Affiliation(s)
- Yu Dong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 999078, Macau
| | - Xu-Xu Zhuang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 999078, Macau
| | - Yi-Ting Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 999078, Macau
| | - Jieqiong Tan
- Center for medical genetics, Central South University, Changsha 410031, Hunan, China
| | - Du Feng
- Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, College of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Min Li
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region
| | - Qing Zhong
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhiyin Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, Hubei, China
| | - Han-Ming Shen
- Department of Biomedical Sciences, Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, 999078, Macau
| | - Evandro F Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 999078, Macau.
| |
Collapse
|
131
|
Rühmkorf A, Harbauer AB. Role of Mitochondria-ER Contact Sites in Mitophagy. Biomolecules 2023; 13:1198. [PMID: 37627263 PMCID: PMC10452924 DOI: 10.3390/biom13081198] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Mitochondria are often referred to as the "powerhouse" of the cell. However, this organelle has many more functions than simply satisfying the cells' metabolic needs. Mitochondria are involved in calcium homeostasis and lipid metabolism, and they also regulate apoptotic processes. Many of these functions require contact with the ER, which is mediated by several tether proteins located on the respective organellar surfaces, enabling the formation of mitochondria-ER contact sites (MERCS). Upon damage, mitochondria produce reactive oxygen species (ROS) that can harm the surrounding cell. To circumvent toxicity and to maintain a functional pool of healthy organelles, damaged and excess mitochondria can be targeted for degradation via mitophagy, a form of selective autophagy. Defects in mitochondria-ER tethers and the accumulation of damaged mitochondria are found in several neurodegenerative diseases, including Parkinson's disease and amyotrophic lateral sclerosis, which argues that the interplay between the two organelles is vital for neuronal health. This review provides an overview of the different mechanisms of mitochondrial quality control that are implicated with the different mitochondria-ER tether proteins, and also provides a novel perspective on how MERCS are involved in mediating mitophagy upon mitochondrial damage.
Collapse
Affiliation(s)
- Alina Rühmkorf
- TUM Medical Graduate Center, Technical University of Munich, 81675 Munich, Germany
- Max Planck Institute for Biological Intelligence, 82152 Planegg-Martinsried, Germany
| | - Angelika Bettina Harbauer
- Max Planck Institute for Biological Intelligence, 82152 Planegg-Martinsried, Germany
- Institute of Neuronal Cell Biology, Technical University of Munich, 80802 Munich, Germany
- Munich Cluster for Systems Neurology, 81377 Munich, Germany
| |
Collapse
|
132
|
Gugliandolo A, Blando S, Salamone S, Pollastro F, Mazzon E, D’Angiolini S. Transcriptome Highlights Cannabinol Modulation of Mitophagy in a Parkinson's Disease In Vitro Model. Biomolecules 2023; 13:1163. [PMID: 37627228 PMCID: PMC10452113 DOI: 10.3390/biom13081163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra and the accumulation of α-synuclein aggregates, known as Lewy bodies. It is known that mitochondria dysfunctions, including impaired localization, transport and mitophagy, represent features of PD. Cannabinoids are arising as new therapeutic strategies against neurodegenerative diseases. In this study, we aimed to evaluate the potential protective effects of cannabinol (CBN) pre-treatment in an in vitro PD model, namely retinoic acid-differentiated SH-SY5Y neuroblastoma cells treated with 1-methyl-4-phenylpyridinium (MPP+). With this aim, we performed a transcriptomic analysis through next-generation sequencing. We found that CBN counteracted the loss of cell viability caused by MPP+ treatment. Then, we focused on biological processes relative to mitochondria functions and found that CBN pre-treatment was able to attenuate the MPP+-induced changes in the expression of genes involved in mitochondria transport, localization and protein targeting. Notably, MPP+ treatment increased the expression of the genes involved in PINK1/Parkin mitophagy, while CBN pre-treatment reduced their expression. The results suggested that CBN can exert a protection against MPP+ induced mitochondria impairment.
Collapse
Affiliation(s)
- Agnese Gugliandolo
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (A.G.); (S.B.); (S.D.)
| | - Santino Blando
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (A.G.); (S.B.); (S.D.)
| | - Stefano Salamone
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Largo Donegani 2, 28100 Novara, Italy; (S.S.); (F.P.)
| | - Federica Pollastro
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Largo Donegani 2, 28100 Novara, Italy; (S.S.); (F.P.)
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (A.G.); (S.B.); (S.D.)
| | - Simone D’Angiolini
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (A.G.); (S.B.); (S.D.)
| |
Collapse
|
133
|
Picca A, Guerra F, Calvani R, Romano R, Coelho-Junior HJ, Bucci C, Leeuwenburgh C, Marzetti E. Mitochondrial-derived vesicles in skeletal muscle remodeling and adaptation. Semin Cell Dev Biol 2023; 143:37-45. [PMID: 35367122 DOI: 10.1016/j.semcdb.2022.03.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/25/2022] [Accepted: 03/19/2022] [Indexed: 12/24/2022]
Abstract
Mitochondrial remodeling is crucial to meet the bioenergetic demand to support muscle contractile activity during daily tasks and muscle regeneration following injury. A set of mitochondrial quality control (MQC) processes, including mitochondrial biogenesis, dynamics, and mitophagy, are in place to maintain a well-functioning mitochondrial network and support muscle regeneration. Alterations in any of these pathways compromises mitochondrial quality and may potentially lead to impaired myogenesis, defective muscle regeneration, and ultimately loss of muscle function. Among MQC processes, mitophagy has gained special attention for its implication in the clearance of dysfunctional mitochondria via crosstalk with the endo-lysosomal system, a major cell degradative route. Along this pathway, additional opportunities for mitochondrial disposal have been identified that may also signal at the systemic level. This communication occurs via inclusion of mitochondrial components within membranous shuttles named mitochondrial-derived vesicles (MDVs). Here, we discuss MDV generation and release as a mitophagy-complementing route for the maintenance of mitochondrial homeostasis in skeletal myocytes. We also illustrate the possible role of muscle-derived MDVs in immune signaling during muscle remodeling and adaptation.
Collapse
Affiliation(s)
- Anna Picca
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies, Università del Salento, Lecce, Italy
| | - Riccardo Calvani
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Roberta Romano
- Department of Biological and Environmental Sciences and Technologies, Università del Salento, Lecce, Italy
| | | | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies, Università del Salento, Lecce, Italy
| | - Christiaan Leeuwenburgh
- Department of Aging and Geriatric Research, Institute on Aging, Division of Biology of Aging, University of Florida, Gainesville, USA
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy; Università Cattolica del Sacro Cuore, Department of Geriatrics and Orthopedics, Rome, Italy.
| |
Collapse
|
134
|
F AR, Quadrilatero J. Emerging role of mitophagy in myoblast differentiation and skeletal muscle remodeling. Semin Cell Dev Biol 2023; 143:54-65. [PMID: 34924331 DOI: 10.1016/j.semcdb.2021.11.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 12/17/2022]
Abstract
Mitochondrial turnover in the form of mitophagy is emerging as a central process in maintaining cellular function. The degradation of damaged mitochondria through mitophagy is particularly important in cells/tissues that exhibit high energy demands. Skeletal muscle is one such tissue that requires precise turnover of mitochondria in several conditions in order to optimize energy production and prevent bioenergetic crisis. For instance, the formation of skeletal muscle (i.e., myogenesis) is accompanied by robust turnover of low-functioning mitochondria to eventually allow the formation of high-functioning mitochondria. In mature skeletal muscle, alterations in mitophagy-related signaling occur during exercise, aging, and various disease states. Nonetheless, several questions regarding the direct role of mitophagy in various skeletal muscle conditions remain unknown. Furthermore, given the heterogenous nature of skeletal muscle with respect to various cellular and molecular properties, and the plasticity in these properties in various conditions, the involvement and characterization of mitophagy requires more careful consideration in this tissue. Therefore, this review will highlight the known mechanisms of mitophagy in skeletal muscle, and discuss their involvement during myogenesis and various skeletal muscle conditions. This review also provides important considerations for the accurate measurement of mitophagy and interpretation of data in skeletal muscle.
Collapse
Affiliation(s)
- Ahmad Rahman F
- Department of Kinesiology & Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Joe Quadrilatero
- Department of Kinesiology & Health Sciences, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
135
|
Minami Y, Hoshino A, Higuchi Y, Hamaguchi M, Kaneko Y, Kirita Y, Taminishi S, Nishiji T, Taruno A, Fukui M, Arany Z, Matoba S. Liver lipophagy ameliorates nonalcoholic steatohepatitis through extracellular lipid secretion. Nat Commun 2023; 14:4084. [PMID: 37443159 PMCID: PMC10344867 DOI: 10.1038/s41467-023-39404-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a progressive disorder with aberrant lipid accumulation and subsequent inflammatory and profibrotic response. Therapeutic efforts at lipid reduction via increasing cytoplasmic lipolysis unfortunately worsens hepatitis due to toxicity of liberated fatty acid. An alternative approach could be lipid reduction through autophagic disposal, i.e., lipophagy. We engineered a synthetic adaptor protein to induce lipophagy, combining a lipid droplet-targeting signal with optimized LC3-interacting domain. Activating hepatocyte lipophagy in vivo strongly mitigated both steatosis and hepatitis in a diet-induced mouse NASH model. Mechanistically, activated lipophagy promoted the excretion of lipid from hepatocytes, thereby suppressing harmful intracellular accumulation of nonesterified fatty acid. A high-content compound screen identified alpelisib and digoxin, clinically-approved compounds, as effective activators of lipophagy. Administration of alpelisib or digoxin in vivo strongly inhibited the transition to steatohepatitis. These data thus identify lipophagy as a promising therapeutic approach to prevent NASH progression.
Collapse
Affiliation(s)
- Yoshito Minami
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Atsushi Hoshino
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan.
| | - Yusuke Higuchi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yusaku Kaneko
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yuhei Kirita
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Shunta Taminishi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Toshiyuki Nishiji
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Akiyuki Taruno
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
- Japan Science and Technology Agency, PRESTO, Kawaguchi, Saitama, 332-0012, Japan
- Japan Science and Technology Agency, CREST, Kawaguchi, Saitama, 332-0012, Japan
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Zoltan Arany
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| |
Collapse
|
136
|
Popov LD. Mitochondria as intracellular signalling organelles. An update. Cell Signal 2023:110794. [PMID: 37422005 DOI: 10.1016/j.cellsig.2023.110794] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/23/2023] [Accepted: 07/02/2023] [Indexed: 07/10/2023]
Abstract
Traditionally, mitochondria are known as "the powerhouse of the cell," responsible for energy (ATP) generation (by the electron transport chain, oxidative phosphorylation, the tricarboxylic acid cycle, and fatty acid ß-oxidation), and for the regulation of several metabolic processes, including redox homeostasis, calcium signalling, and cellular apoptosis. The extensive studies conducted in the last decades portray mitochondria as multifaceted signalling organelles that ultimately command cells' survival or death. Based on current knowledge, we'll outline the mitochondrial signalling to other intracellular compartments in homeostasis and pathology-related mitochondrial stress conditions here. The following topics are discussed: (i) oxidative stress and mtROS signalling in mitohormesis, (ii) mitochondrial Ca2+ signalling; (iii) the anterograde (nucleus-to-mitochondria) and retrograde (mitochondria-to-nucleus) signal transduction, (iv) the mtDNA role in immunity and inflammation, (v) the induction of mitophagy- and apoptosis - signalling cascades, (vi) the mitochondrial dysfunctions (mitochondriopathies) in cardiovascular, neurodegenerative, and malignant diseases. The novel insights into molecular mechanisms of mitochondria-mediated signalling can explain mitochondria adaptation to metabolic and environmental stresses to achieve cell survival.
Collapse
Affiliation(s)
- Lucia-Doina Popov
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania.
| |
Collapse
|
137
|
Moehlman AT, Kanfer G, Youle RJ. Loss of STING in parkin mutant flies suppresses muscle defects and mitochondria damage. PLoS Genet 2023; 19:e1010828. [PMID: 37440574 PMCID: PMC10368295 DOI: 10.1371/journal.pgen.1010828] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/25/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
The early pathogenesis and underlying molecular causes of motor neuron degeneration in Parkinson's Disease (PD) remains unresolved. In the model organism Drosophila melanogaster, loss of the early-onset PD gene parkin (the ortholog of human PRKN) results in impaired climbing ability, damage to the indirect flight muscles, and mitochondrial fragmentation with swelling. These stressed mitochondria have been proposed to activate innate immune pathways through release of damage associated molecular patterns (DAMPs). Parkin-mediated mitophagy is hypothesized to suppress mitochondrial damage and subsequent activation of the cGAS/STING innate immunity pathway, but the relevance of this interaction in the fly remains unresolved. Using a combination of genetics, immunoassays, and RNA sequencing, we investigated a potential role for STING in the onset of parkin-null phenotypes. Our findings demonstrate that loss of Drosophila STING in flies rescues the thorax muscle defects and the climbing ability of parkin-/- mutants. Loss of STING also suppresses the disrupted mitochondrial morphology in parkin-/- flight muscles, suggesting unexpected feedback of STING on mitochondria integrity or activation of a compensatory mitochondrial pathway. In the animals lacking both parkin and sting, PINK1 is activated and cell death pathways are suppressed. These findings support a unique, non-canonical role for Drosophila STING in the cellular and organismal response to mitochondria stress.
Collapse
Affiliation(s)
- Andrew T. Moehlman
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
- Postdoctoral Research Associate Training Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Gil Kanfer
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Richard J. Youle
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
138
|
Wu W, Yuan S, Tang Y, Meng X, Peng M, Hu Z, Liu W. Effect of Exercise and Oral Niacinamide Mononucleotide on Improving Mitochondrial Autophagy in Alzheimer's Disease. Nutrients 2023; 15:2851. [PMID: 37447179 DOI: 10.3390/nu15132851] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Oral niacinamide mononucleotide (NMN) and aerobic exercise have been shown to enhance niacinamide adenine dinucleotide (NAD+) in the body. NAD+ plays a critical role in the body and can directly and indirectly affect many key cellular functions, including metabolic pathways, DNA repair, chromatin remodeling, cell aging, and immune cell function. It is noteworthy that the level of NAD+ decreases gradually with increasing age. Decreased levels of NAD+ have been causally associated with a number of diseases associated with aging, including cognitive decline, cancer, metabolic diseases, sarcopenia, and frailty. Many diseases related to aging can be slowed down or even reversed by restoring NAD+ levels. For example, oral NMN or exercise to increase NAD+ levels in APP/PS1 mice have been proven to improve mitochondrial autophagy, but currently, there is no regimen combining oral NMN with exercise. This review summarizes recent studies on the effect of oral NMN on the enhancement of NAD+ in vivo and the improvements in mitochondrial autophagy abnormalities in AD through aerobic exercise, focusing on (1) how oral NMN improves the internal NAD+ level; (2) how exercise regulates the content of NAD+ in the body; (3) the relationship between exercise activation of NAD+ and AMPK; (4) how SIRT1 is regulated by NAD+ and AMPK and activates PGC-1α to mediate mitochondrial autophagy through changes in mitochondrial dynamics. By summarizing the results of the above four aspects, and combined with the synthesis of NAD+ in vivo, we can infer how exercise elevates the level of NAD+ in vivo to mediate mitochondrial autophagy, so as to propose a new hypothesis that exercise interferes with Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Weijia Wu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Shunling Yuan
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Yingzhe Tang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Xiangyuan Meng
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Mei Peng
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Zelin Hu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Wenfeng Liu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
139
|
Jeong Y, Davis CHO, Muscarella AM, Deshpande V, Kim KY, Ellisman MH, Marsh-Armstrong N. Glaucoma-associated Optineurin mutations increase transmitophagy in a vertebrate optic nerve. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.26.542507. [PMID: 37398269 PMCID: PMC10312487 DOI: 10.1101/2023.05.26.542507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
We previously described a process referred to as transmitophagy where mitochondria shed by retinal ganglion cell (RGC) axons are transferred to and degraded by surrounding astrocytes in the optic nerve head of mice. Since the mitophagy receptor Optineurin (OPTN) is one of few large-effect glaucoma genes and axonal damage occurs at the optic nerve head in glaucoma, here we explored whether OPTN mutations perturb transmitophagy. Live-imaging of Xenopus laevis optic nerves revealed that diverse human mutant but not wildtype OPTN increase stationary mitochondria and mitophagy machinery and their colocalization within, and in the case of the glaucoma-associated OPTN mutations also outside of, RGC axons. These extra-axonal mitochondria are degraded by astrocytes. Our studies support the view that in RGC axons under baseline conditions there are low levels of mitophagy, but that glaucoma-associated perturbations in OPTN result in increased axonal mitophagy involving the shedding and astrocytic degradation of the mitochondria.
Collapse
Affiliation(s)
- Yaeram Jeong
- Department of Ophthalmology and Vision Science, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | | | - Aaron M. Muscarella
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Viraj Deshpande
- Department of Ophthalmology and Vision Science, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Keun-Young Kim
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Mark H. Ellisman
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Nicholas Marsh-Armstrong
- Department of Ophthalmology and Vision Science, University of California Davis School of Medicine, Sacramento, CA 95817, USA
- Lead contact
| |
Collapse
|
140
|
Quarato G, Mari L, Barrows NJ, Yang M, Ruehl S, Chen MJ, Guy CS, Low J, Chen T, Green DR. Mitophagy restricts BAX/BAK-independent, Parkin-mediated apoptosis. SCIENCE ADVANCES 2023; 9:eadg8156. [PMID: 37224250 PMCID: PMC10208567 DOI: 10.1126/sciadv.adg8156] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/18/2023] [Indexed: 05/26/2023]
Abstract
Degradation of defective mitochondria is an essential process to maintain cellular homeostasis and it is strictly regulated by the ubiquitin-proteasome system (UPS) and lysosomal activities. Here, using genome-wide CRISPR and small interference RNA screens, we identified a critical contribution of the lysosomal system in controlling aberrant induction of apoptosis following mitochondrial damage. After treatment with mitochondrial toxins, activation of the PINK1-Parkin axis triggered a BAX- and BAK-independent process of cytochrome c release from mitochondria followed by APAF1 and caspase 9-dependent apoptosis. This phenomenon was mediated by UPS-dependent outer mitochondrial membrane (OMM) degradation and was reversed using proteasome inhibitors. We found that the subsequent recruitment of the autophagy machinery to the OMM protected cells from apoptosis, mediating the lysosomal degradation of dysfunctional mitochondria. Our results underscore a major role of the autophagy machinery in counteracting aberrant noncanonical apoptosis and identified autophagy receptors as key elements in the regulation of this process.
Collapse
Affiliation(s)
- Giovanni Quarato
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Luigi Mari
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Nicholas J. Barrows
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Mao Yang
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Sebastian Ruehl
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Mark J. Chen
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Cliff S. Guy
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jonathan Low
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Douglas R. Green
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
141
|
Nguyen TN, Sawa-Makarska J, Khuu G, Lam WK, Adriaenssens E, Fracchiolla D, Shoebridge S, Bernklau D, Padman BS, Skulsuppaisarn M, Lindblom RSJ, Martens S, Lazarou M. Unconventional initiation of PINK1/Parkin mitophagy by Optineurin. Mol Cell 2023; 83:1693-1709.e9. [PMID: 37207627 DOI: 10.1016/j.molcel.2023.04.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/06/2023] [Accepted: 04/19/2023] [Indexed: 05/21/2023]
Abstract
Cargo sequestration is a fundamental step of selective autophagy in which cells generate a double-membrane structure termed an "autophagosome" on the surface of cargoes. NDP52, TAX1BP1, and p62 bind FIP200, which recruits the ULK1/2 complex to initiate autophagosome formation on cargoes. How OPTN initiates autophagosome formation during selective autophagy remains unknown despite its importance in neurodegeneration. Here, we uncover an unconventional path of PINK1/Parkin mitophagy initiation by OPTN that does not begin with FIP200 binding or require the ULK1/2 kinases. Using gene-edited cell lines and in vitro reconstitutions, we show that OPTN utilizes the kinase TBK1, which binds directly to the class III phosphatidylinositol 3-kinase complex I to initiate mitophagy. During NDP52 mitophagy initiation, TBK1 is functionally redundant with ULK1/2, classifying TBK1's role as a selective autophagy-initiating kinase. Overall, this work reveals that OPTN mitophagy initiation is mechanistically distinct and highlights the mechanistic plasticity of selective autophagy pathways.
Collapse
Affiliation(s)
- Thanh Ngoc Nguyen
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| | - Justyna Sawa-Makarska
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Grace Khuu
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Wai Kit Lam
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Elias Adriaenssens
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Dorotea Fracchiolla
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Stephen Shoebridge
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Daniel Bernklau
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Benjamin Scott Padman
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Marvin Skulsuppaisarn
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Runa S J Lindblom
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Sascha Martens
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria.
| | - Michael Lazarou
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| |
Collapse
|
142
|
Zhang Y, Weng J, Huan L, Sheng S, Xu F. Mitophagy in atherosclerosis: from mechanism to therapy. Front Immunol 2023; 14:1165507. [PMID: 37261351 PMCID: PMC10228545 DOI: 10.3389/fimmu.2023.1165507] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/12/2023] [Indexed: 06/02/2023] Open
Abstract
Mitophagy is a type of autophagy that can selectively eliminate damaged and depolarized mitochondria to maintain mitochondrial activity and cellular homeostasis. Several pathways have been found to participate in different steps of mitophagy. Mitophagy plays a significant role in the homeostasis and physiological function of vascular endothelial cells, vascular smooth muscle cells, and macrophages, and is involved in the development of atherosclerosis (AS). At present, many medications and natural chemicals have been shown to alter mitophagy and slow the progression of AS. This review serves as an introduction to the field of mitophagy for researchers interested in targeting this pathway as part of a potential AS management strategy.
Collapse
Affiliation(s)
- Yanhong Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiajun Weng
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Traditional Chinese Medicine Clinical Medical School (Xiyuan), Peking University, Beijing, China
- Department of Integrated Traditional and Western Medicine, Peking University Health Science Center, Beijing, China
| | - Luyao Huan
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Song Sheng
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengqin Xu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Traditional Chinese Medicine Clinical Medical School (Xiyuan), Peking University, Beijing, China
- Department of Integrated Traditional and Western Medicine, Peking University Health Science Center, Beijing, China
| |
Collapse
|
143
|
Themistokleous C, Bagnoli E, Parulekar R, M K Muqit M. Role of autophagy pathway in Parkinson's disease and related Genetic Neurological disorders. J Mol Biol 2023:168144. [PMID: 37182812 DOI: 10.1016/j.jmb.2023.168144] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023]
Abstract
The elucidation of the function of the PINK1 protein kinase and Parkin ubiquitin E3 ligase in the elimination of damaged mitochondria by autophagy (mitophagy) has provided unprecedented understanding of the mechanistic pathways underlying Parkinson's disease (PD). We provide a comprehensive overview of the general importance of autophagy in Parkinson's disease and related disorders of the central nervous system. This reveals a critical link between autophagy and neurodegenerative and neurodevelopmental disorders and suggests that strategies to modulate mitophagy may have greater relevance in the CNS beyond PD.
Collapse
Affiliation(s)
- Christos Themistokleous
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK of Dundee, Dundee, DD1 5EH, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Enrico Bagnoli
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK of Dundee, Dundee, DD1 5EH, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Ramaa Parulekar
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK of Dundee, Dundee, DD1 5EH, UK
| | - Miratul M K Muqit
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK of Dundee, Dundee, DD1 5EH, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| |
Collapse
|
144
|
Wang X, Jiang X, Li B, Zheng J, Guo J, Gao L, Du M, Weng X, Li L, Chen S, Zhang J, Fang L, Liu T, Wang L, Liu W, Neculai D, Sun Q. A regulatory circuit comprising the CBP and SIRT7 regulates FAM134B-mediated ER-phagy. J Cell Biol 2023; 222:e202201068. [PMID: 37043189 PMCID: PMC10103787 DOI: 10.1083/jcb.202201068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 11/14/2022] [Accepted: 02/21/2023] [Indexed: 04/13/2023] Open
Abstract
Macroautophagy (autophagy) utilizes a serial of receptors to specifically recognize and degrade autophagy cargoes, including damaged organelles, to maintain cellular homeostasis. Upstream signals spatiotemporally regulate the biological functions of selective autophagy receptors through protein post-translational modifications (PTM) such as phosphorylation. However, it is unclear how acetylation directly controls autophagy receptors in selective autophagy. Here, we report that an ER-phagy receptor FAM134B is acetylated by CBP acetyltransferase, eliciting intense ER-phagy. Furthermore, FAM134B acetylation promoted CAMKII-mediated phosphorylation to sustain a mode of milder ER-phagy. Conversely, SIRT7 deacetylated FAM134B to temper its activities in ER-phagy to avoid excessive ER degradation. Together, this work provides further mechanistic insights into how ER-phagy receptor perceives environmental signals for fine-tuning of ER homeostasis and demonstrates how nucleus-derived factors are programmed to control ER stress by modulating ER-phagy.
Collapse
Affiliation(s)
- Xinyi Wang
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang UniversitySchool of Medicine, Hangzhou, China
| | - Xiao Jiang
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang UniversitySchool of Medicine, Hangzhou, China
| | - Boran Li
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang UniversitySchool of Medicine, Hangzhou, China
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang UniversitySchool of Medicine, Yiwu, China
| | - Jiahua Zheng
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang UniversitySchool of Medicine, Hangzhou, China
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang UniversitySchool of Medicine, Yiwu, China
| | - Jiansheng Guo
- Center of Cryo-Electron Microscopy, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lei Gao
- Microscopy Core Facility, Westlake University, Hangzhou, China
| | - Mengjie Du
- Department of Neurology of Second Affiliated Hospital, Institute of Neuroscience, Mental Health Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang UniversitySchool of Medicine, Hangzhou, China
| | - Xialian Weng
- Department of Cell Biology, Department of General Surgery of Sir Run Run Shaw Hospital, Zhejiang UniversitySchool of Medicine, Hangzhou, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing, Beijing, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, Beijing, China
| | - Jingzi Zhang
- Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing, China
| | - Lei Fang
- Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing, China
| | - Ting Liu
- Department of Cell Biology, Department of General Surgery of Sir Run Run Shaw Hospital, Zhejiang UniversitySchool of Medicine, Hangzhou, China
| | - Liang Wang
- Department of Neurology of Second Affiliated Hospital, Institute of Neuroscience, Mental Health Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang UniversitySchool of Medicine, Hangzhou, China
| | - Wei Liu
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang UniversitySchool of Medicine, Hangzhou, China
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang UniversitySchool of Medicine, Yiwu, China
| | - Dante Neculai
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang UniversitySchool of Medicine, Yiwu, China
- Department of Cell Biology, Department of General Surgery of Sir Run Run Shaw Hospital, Zhejiang UniversitySchool of Medicine, Hangzhou, China
| | - Qiming Sun
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang UniversitySchool of Medicine, Hangzhou, China
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang UniversitySchool of Medicine, Yiwu, China
| |
Collapse
|
145
|
Park K, Sonn SK, Seo S, Kim J, Hur KY, Oh GT, Lee MS. Impaired TFEB activation and mitophagy as a cause of PPP3/calcineurin inhibitor-induced pancreatic β-cell dysfunction. Autophagy 2023; 19:1444-1458. [PMID: 36217215 PMCID: PMC10240995 DOI: 10.1080/15548627.2022.2132686] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/02/2022] Open
Abstract
Macroautophagy/autophagy or mitophagy plays crucial roles in the maintenance of pancreatic β-cell function. PPP3/calcineurin can modulate the activity of TFEB, a master regulator of lysosomal biogenesis and autophagy gene expression, through dephosphorylation. We studied whether PPP3/calcineurin inhibitors can affect the mitophagy of pancreatic β-cells and pancreatic β-cell function employing FK506, an immunosuppressive drug against graft rejection. FK506 suppressed rotenone- or oligomycin+antimycin-A-induced mitophagy measured by Mito-Keima localization in acidic lysosomes or RFP-LC3 puncta colocalized with TOMM20 in INS-1 insulinoma cells. FK506 diminished nuclear translocation of TFEB after treatment with rotenone or oligomycin+antimycin A. Forced TFEB nuclear translocation by a constitutively active TFEB mutant transfection restored impaired mitophagy by FK506, suggesting the role of decreased TFEB nuclear translocation in FK506-mediated mitophagy impairment. Probably due to reduced mitophagy, recovery of mitochondrial potential or quenching of mitochondrial ROS after removal of rotenone or oligomycin+antimycin A was delayed by FK506. Mitochondrial oxygen consumption was reduced by FK506, indicating reduced mitochondrial function by FK506. Likely due to mitochondrial dysfunction, insulin release from INS-1 cells was reduced by FK506 in vitro. FK506 treatment also reduced insulin release and impaired glucose tolerance in vivo, which was associated with decreased mitophagy and mitochondrial COX activity in pancreatic islets. FK506-induced mitochondrial dysfunction and glucose intolerance were ameliorated by an autophagy enhancer activating TFEB. These results suggest that diminished mitophagy and consequent mitochondrial dysfunction of pancreatic β-cells contribute to FK506-induced β-cell dysfunction or glucose intolerance, and autophagy enhancement could be a therapeutic modality against post-transplantation diabetes mellitus caused by PPP3/calcineurin inhibitors.
Collapse
Affiliation(s)
- Kihyoun Park
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Seong Keun Sonn
- Heart-Immune-Brain Network Research Center, Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Seungwoon Seo
- Heart-Immune-Brain Network Research Center, Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Jinyoung Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Kyu Yeon Hur
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Goo Taeg Oh
- Heart-Immune-Brain Network Research Center, Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Myung-Shik Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
- Soonchunhyang Institute of Medi-bio Science and Division of Endocrinology, Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, Korea
| |
Collapse
|
146
|
Akabane S, Watanabe K, Kosako H, Yamashita SI, Nishino K, Kato M, Sekine S, Kanki T, Matsuda N, Endo T, Oka T. TIM23 facilitates PINK1 activation by safeguarding against OMA1-mediated degradation in damaged mitochondria. Cell Rep 2023:112454. [PMID: 37160114 DOI: 10.1016/j.celrep.2023.112454] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 02/24/2023] [Accepted: 04/16/2023] [Indexed: 05/11/2023] Open
Abstract
PINK1 is activated by autophosphorylation and forms a high-molecular-weight complex, thereby initiating the selective removal of damaged mitochondria by autophagy. Other than translocase of the outer mitochondrial membrane complexes, members of PINK1-containing protein complexes remain obscure. By mass spectrometric analysis of PINK1 co-immunoprecipitates, we identify the inner membrane protein TIM23 as a component of the PINK1 complex. TIM23 downregulation decreases PINK1 levels and significantly delays autophosphorylation, indicating that TIM23 promotes PINK1 accumulation in response to depolarization. Moreover, inactivation of the mitochondrial protease OMA1 not only enhances PINK1 accumulation but also represses the reduction in PINK1 levels induced by TIM23 downregulation, suggesting that TIM23 facilitates PINK1 activation by safeguarding against degradation by OMA1. Indeed, deficiencies of pathogenic PINK1 mutants that fail to interact with TIM23 are partially restored by OMA1 inactivation. These findings indicate that TIM23 plays a distinct role in activating mitochondrial autophagy by protecting PINK1.
Collapse
Affiliation(s)
- Shiori Akabane
- Department of Life Science, Rikkyo University, Tokyo 171-8501, Japan; Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Kiyona Watanabe
- Department of Life Science, Rikkyo University, Tokyo 171-8501, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Shun-Ichi Yamashita
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Kohei Nishino
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Masahiro Kato
- Department of Life Science, Rikkyo University, Tokyo 171-8501, Japan
| | - Shiori Sekine
- Aging Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Tomotake Kanki
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Noriyuki Matsuda
- Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Toshiya Endo
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan; Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Toshihiko Oka
- Department of Life Science, Rikkyo University, Tokyo 171-8501, Japan.
| |
Collapse
|
147
|
Zhang J, Li J, You P, Jiang H, Liu Y, Han D, Liu M, Yu H, Su B. Mice with the Rab10 T73V mutation exhibit anxiety-like behavior and alteration of neuronal functions in the striatum. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166641. [PMID: 36669576 DOI: 10.1016/j.bbadis.2023.166641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/19/2023]
Abstract
Hyperphosphorylated Rab10 has been implicated in the pathogenesis of neurodegenerative diseases, such as Parkinson's disease and Alzheimer's disease. However, the neurophysiological function of the evolutionarily conserved Thr73 phosphorylation of Rab10 remains poorly understood. Here, we generated a novel mouse model expressing the non-phosphorylatable T73V mutation of Rab10 and performed a comprehensive series of neurological analyses, including behavioral tests, synaptic evaluations, neuronal and glial staining, assessments of neurite arborization and spine morphogenesis. The Rab10 T73V mutantmice exhibited a characteristic anxiety-like phenotype with other behavioral modules relatively unaffected. Moreover, Rab10 T73V mutant mice displayed striatum-specific synaptic dysfunction, as indicated by aberrantly increased expression levels of synaptic proteins and impaired frequencies of miniature inhibitory postsynaptic currents. The genetic deletion of Rab10 phosphorylation enhanced neurite arborization and accelerated spine maturation in striatal medium spiny neurons. Our findings emphasize the specific role of intrinsic phospho-Rab10 in the regulation of the striatal circuitry and its related behaviors.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Jie Li
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Pan You
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Haitian Jiang
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yanjun Liu
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Daobin Han
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Meiqi Liu
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Hui Yu
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Bo Su
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, China.
| |
Collapse
|
148
|
Wen H, Zuo Y, Li L, Zhan L, Xue J, Sun W, Xu E. Hypoxic postconditioning restores mitophagy against transient global cerebral ischemia via Parkin-induced posttranslational modification of TBK1. Neurobiol Dis 2023; 179:106043. [PMID: 36805078 DOI: 10.1016/j.nbd.2023.106043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/31/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023] Open
Abstract
Hypoxic postconditioning (HPC) has been reported to enhance Parkin-catalyzed mitochondrial ubiquitination to restore mitophagy in hippocampal CA1 against transient global cerebral ischemia (tGCI). However, the molecular mechanism leading ubiquitinated mitochondria to final clearance during HPC-mediated mitophagy after tGCI is unclear. This study aims to investigate whether HPC restores mitophagy after tGCI through Parkin-induced K63-linked poly-ubiquitination (K63-Ub) to activate tumor necrosis factor associated factor family member associated nuclear factor κB activator -binding kinase 1 (TBK1) in CA1 of male rats. We found that HPC maintained TBK1 expression, promoted p62 and TBK1 phosphorylation in mitochondria, and enhanced their recruitments to mitochondria in CA1 after tGCI. However, these effects were partially abolished by TBK1 inhibitor BX795. K63-Ub of mitochondrial TBK1 was disturbed at 26 h of reperfusion after tGCI, which was reversed by HPC. The maintenance of K63-Ub of mitochondrial TBK1 induced by HPC was counteracted under Parkin knockdown with AAV-mediated Prkn small-interfering RNA, accompanied by the suppression on TBK1 activation and the reduction of mitochondrial p62 phosphorylation. This innovative study indicated that HPC maintained K63-Ub of TBK1 in a Parkin-dependent manner to promote TBK1 phosphorylation, and then phosphorylated TBK1 activated p62 to restore mitophagy, thereby alleviating neuronal damage in CA1 after tGCI.
Collapse
Affiliation(s)
- Haixia Wen
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, PR China; Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yunyan Zuo
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, PR China
| | - Luxi Li
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, PR China; Department of Neurology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lixuan Zhan
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, PR China
| | - Jiahui Xue
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, PR China
| | - Weiwen Sun
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, PR China
| | - En Xu
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, PR China.
| |
Collapse
|
149
|
Ke PY. Crosstalk between Autophagy and RLR Signaling. Cells 2023; 12:cells12060956. [PMID: 36980296 PMCID: PMC10047499 DOI: 10.3390/cells12060956] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Autophagy plays a homeostatic role in regulating cellular metabolism by degrading unwanted intracellular materials and acts as a host defense mechanism by eliminating infecting pathogens, such as viruses. Upon viral infection, host cells often activate retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) signaling to induce the transcription of type I interferons, thus establishing the first line of the innate antiviral response. In recent years, numerous studies have shown that virus-mediated autophagy activation may benefit viral replication through different actions on host cellular processes, including the modulation of RLR-mediated innate immunity. Here, an overview of the functional molecules and regulatory mechanism of the RLR antiviral immune response as well as autophagy is presented. Moreover, a summary of the current knowledge on the biological role of autophagy in regulating RLR antiviral signaling is provided. The molecular mechanisms underlying the crosstalk between autophagy and RLR innate immunity are also discussed.
Collapse
Affiliation(s)
- Po-Yuan Ke
- Department of Biochemistry & Molecular Biology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| |
Collapse
|
150
|
Diab R, Pilotto F, Saxena S. Autophagy and neurodegeneration: Unraveling the role of C9ORF72 in the regulation of autophagy and its relationship to ALS-FTD pathology. Front Cell Neurosci 2023; 17:1086895. [PMID: 37006471 PMCID: PMC10060823 DOI: 10.3389/fncel.2023.1086895] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/01/2023] [Indexed: 03/18/2023] Open
Abstract
The proper functioning of the cell clearance machinery is critical for neuronal health within the central nervous system (CNS). In normal physiological conditions, the cell clearance machinery is actively involved in the elimination of misfolded and toxic proteins throughout the lifetime of an organism. The highly conserved and regulated pathway of autophagy is one of the important processes involved in preventing and neutralizing pathogenic buildup of toxic proteins that could eventually lead to the development of neurodegenerative diseases (NDs) such as Alzheimer’s disease or Amyotrophic lateral sclerosis (ALS). The most common genetic cause of ALS and frontotemporal dementia (FTD) is a hexanucleotide expansion consisting of GGGGCC (G4C2) repeats in the chromosome 9 open reading frame 72 gene (C9ORF72). These abnormally expanded repeats have been implicated in leading to three main modes of disease pathology: loss of function of the C9ORF72 protein, the generation of RNA foci, and the production of dipeptide repeat proteins (DPRs). In this review, we discuss the normal physiological role of C9ORF72 in the autophagy-lysosome pathway (ALP), and present recent research deciphering how dysfunction of the ALP synergizes with C9ORF72 haploinsufficiency, which together with the gain of toxic mechanisms involving hexanucleotide repeat expansions and DPRs, drive the disease process. This review delves further into the interactions of C9ORF72 with RAB proteins involved in endosomal/lysosomal trafficking, and their role in regulating various steps in autophagy and lysosomal pathways. Lastly, the review aims to provide a framework for further investigations of neuronal autophagy in C9ORF72-linked ALS-FTD as well as other neurodegenerative diseases.
Collapse
Affiliation(s)
- Rim Diab
- Department of Neurology, Center for Experimental Neurology, Inselspital University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Federica Pilotto
- Department of Neurology, Center for Experimental Neurology, Inselspital University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Smita Saxena
- Department of Neurology, Center for Experimental Neurology, Inselspital University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- *Correspondence: Smita Saxena,
| |
Collapse
|