101
|
Sanchez A, Lee D, Kim DI, Miller KM. Making Connections: Integrative Signaling Mechanisms Coordinate DNA Break Repair in Chromatin. Front Genet 2021; 12:747734. [PMID: 34659365 PMCID: PMC8514019 DOI: 10.3389/fgene.2021.747734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/31/2021] [Indexed: 01/25/2023] Open
Abstract
DNA double-strand breaks (DSBs) are hazardous to genome integrity and can promote mutations and disease if not handled correctly. Cells respond to these dangers by engaging DNA damage response (DDR) pathways that are able to identify DNA breaks within chromatin leading ultimately to their repair. The recognition and repair of DSBs by the DDR is largely dependent on the ability of DNA damage sensing factors to bind to and interact with nucleic acids, nucleosomes and their modified forms to target these activities to the break site. These contacts orientate and localize factors to lesions within chromatin, allowing signaling and faithful repair of the break to occur. Coordinating these events requires the integration of several signaling and binding events. Studies are revealing an enormously complex array of interactions that contribute to DNA lesion recognition and repair including binding events on DNA, as well as RNA, RNA:DNA hybrids, nucleosomes, histone and non-histone protein post-translational modifications and protein-protein interactions. Here we examine several DDR pathways that highlight and provide prime examples of these emerging concepts. A combination of approaches including genetic, cellular, and structural biology have begun to reveal new insights into the molecular interactions that govern the DDR within chromatin. While many questions remain, a clearer picture has started to emerge for how DNA-templated processes including transcription, replication and DSB repair are coordinated. Multivalent interactions with several biomolecules serve as key signals to recruit and orientate proteins at DNA lesions, which is essential to integrate signaling events and coordinate the DDR within the milieu of the nucleus where competing genome functions take place. Genome architecture, chromatin structure and phase separation have emerged as additional vital regulatory mechanisms that also influence genome integrity pathways including DSB repair. Collectively, recent advancements in the field have not only provided a deeper understanding of these fundamental processes that maintain genome integrity and cellular homeostasis but have also started to identify new strategies to target deficiencies in these pathways that are prevalent in human diseases including cancer.
Collapse
Affiliation(s)
- Anthony Sanchez
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
| | - Doohyung Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
| | - Dae In Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
| | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States.,Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
102
|
Nickoloff JA, Sharma N, Taylor L, Allen SJ, Hromas R. The Safe Path at the Fork: Ensuring Replication-Associated DNA Double-Strand Breaks are Repaired by Homologous Recombination. Front Genet 2021; 12:748033. [PMID: 34646312 PMCID: PMC8502867 DOI: 10.3389/fgene.2021.748033] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/14/2021] [Indexed: 01/15/2023] Open
Abstract
Cells must replicate and segregate their DNA to daughter cells accurately to maintain genome stability and prevent cancer. DNA replication is usually fast and accurate, with intrinsic (proofreading) and extrinsic (mismatch repair) error-correction systems. However, replication forks slow or stop when they encounter DNA lesions, natural pause sites, and difficult-to-replicate sequences, or when cells are treated with DNA polymerase inhibitors or hydroxyurea, which depletes nucleotide pools. These challenges are termed replication stress, to which cells respond by activating DNA damage response signaling pathways that delay cell cycle progression, stimulate repair and replication fork restart, or induce apoptosis. Stressed forks are managed by rescue from adjacent forks, repriming, translesion synthesis, template switching, and fork reversal which produces a single-ended double-strand break (seDSB). Stressed forks also collapse to seDSBs when they encounter single-strand nicks or are cleaved by structure-specific nucleases. Reversed and cleaved forks can be restarted by homologous recombination (HR), but seDSBs pose risks of mis-rejoining by non-homologous end-joining (NHEJ) to other DSBs, causing genome rearrangements. HR requires resection of broken ends to create 3' single-stranded DNA for RAD51 recombinase loading, and resected ends are refractory to repair by NHEJ. This Mini Review highlights mechanisms that help maintain genome stability by promoting resection of seDSBs and accurate fork restart by HR.
Collapse
Affiliation(s)
- Jac A Nickoloff
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO, United States
| | - Neelam Sharma
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO, United States
| | - Lynn Taylor
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO, United States
| | - Sage J Allen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO, United States
| | - Robert Hromas
- Division of Hematology and Medical Oncology, Department of Medicine and the Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, United States
| |
Collapse
|
103
|
Giaccherini C, Gaillard P. Control of structure-specific endonucleases during homologous recombination in eukaryotes. Curr Opin Genet Dev 2021; 71:195-205. [PMID: 34624742 DOI: 10.1016/j.gde.2021.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 01/14/2023]
Abstract
Structure-Specific Endonucleases (SSE) are specialized DNA endonucleases that recognize and process DNA secondary structures without any strict dependency on the nucleotide sequence context. This enables them to act virtually anywhere in the genome and to make key contributions to the maintenance of genome stability by removing DNA structures that may stall essential cellular processes such as DNA replication, transcription, repair and chromosome segregation. During repair of double strand breaks by homologous recombination mechanisms, DNA secondary structures are formed and processed in a timely manner. Their homeostasis relies on the combined action of helicases, SSE and topoisomerases. In this review, we focus on how SSE contribute to DNA end resection, single-strand annealing and double-strand break repair, with an emphasis on how their action is fine-tuned in those processes.
Collapse
Affiliation(s)
- C Giaccherini
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm, CNRS, Aix-Marseille Université, Institut Paoli-Calmettes, Marseille, France
| | - Phl Gaillard
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm, CNRS, Aix-Marseille Université, Institut Paoli-Calmettes, Marseille, France.
| |
Collapse
|
104
|
Yannuzzi I, Butler MA, Fernandez J, LaRocque JR. The Role of Drosophila CtIP in Homology-Directed Repair of DNA Double-Strand Breaks. Genes (Basel) 2021; 12:genes12091430. [PMID: 34573412 PMCID: PMC8468788 DOI: 10.3390/genes12091430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/05/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022] Open
Abstract
DNA double-strand breaks (DSBs) are a particularly genotoxic type of DNA damage that can result in chromosomal aberrations. Thus, proper repair of DSBs is essential to maintaining genome integrity. DSBs can be repaired by non-homologous end joining (NHEJ), where ends are processed before joining through ligation. Alternatively, DSBs can be repaired through homology-directed repair, either by homologous recombination (HR) or single-strand annealing (SSA). Both types of homology-directed repair are initiated by DNA end resection. In cultured human cells, the protein CtIP has been shown to play a role in DNA end resection through its interactions with CDK, BRCA1, DNA2, and the MRN complex. To elucidate the role of CtIP in a multicellular context, CRISPR/Cas9 genome editing was used to create a DmCtIPΔ allele in Drosophila melanogaster. Using the DSB repair reporter assay direct repeat of white (DR-white), a two-fold decrease in HR in DmCtIPΔ/Δ mutants was observed when compared to heterozygous controls. However, analysis of HR gene conversion tracts (GCTs) suggests DmCtIP plays a minimal role in determining GCT length. To assess the function of DmCtIP on both short (~550 bp) and long (~3.6 kb) end resection, modified homology-directed SSA repair assays were implemented, resulting in a two-fold decrease in SSA repair in both short and extensive end resection requirements in the DmCtIPΔ/Δ mutants compared to heterozygote controls. Through these analyses, we affirmed the importance of end resection on DSB repair pathway choice in multicellular systems, described the function of DmCtIP in short and extensive DNA end resection, and determined the impact of end resection on GCT length during HR.
Collapse
Affiliation(s)
- Ian Yannuzzi
- Biology Department, Georgetown College, Georgetown University, Washington, DC 20057, USA;
| | - Margaret A. Butler
- Georgetown University Medical Center, Department of Human Science, Georgetown University, Washington, DC 20057, USA; (M.A.B.); (J.F.)
| | - Joel Fernandez
- Georgetown University Medical Center, Department of Human Science, Georgetown University, Washington, DC 20057, USA; (M.A.B.); (J.F.)
| | - Jeannine R. LaRocque
- Georgetown University Medical Center, Department of Human Science, Georgetown University, Washington, DC 20057, USA; (M.A.B.); (J.F.)
- Correspondence:
| |
Collapse
|
105
|
ATM controls the extent of DNA end resection by eliciting sequential posttranslational modifications of CtIP. Proc Natl Acad Sci U S A 2021; 118:2022600118. [PMID: 33723063 DOI: 10.1073/pnas.2022600118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA end resection is a critical step in the repair of DNA double-strand breaks (DSBs) via homologous recombination (HR). However, the mechanisms governing the extent of resection at DSB sites undergoing homology-directed repair remain unclear. Here, we show that, upon DSB induction, the key resection factor CtIP is modified by the ubiquitin-like protein SUMO at lysine 578 in a PIAS4-dependent manner. CtIP SUMOylation occurs on damaged chromatin and requires prior hyperphosphorylation by the ATM protein kinase. SUMO-modified hyperphosphorylated CtIP is targeted by the SUMO-dependent E3 ubiquitin ligase RNF4 for polyubiquitination and subsequent degradation. Consequently, disruption of CtIP SUMOylation results in aberrant accumulation of CtIP at DSBs, which, in turn, causes uncontrolled excessive resection, defective HR, and increased cellular sensitivity to DSB-inducing agents. These findings reveal a previously unidentified regulatory mechanism that regulates CtIP activity at DSBs and thus the extent of end resection via ATM-dependent sequential posttranslational modification of CtIP.
Collapse
|
106
|
Progress in Gene-Editing Technology of Zebrafish. Biomolecules 2021; 11:biom11091300. [PMID: 34572513 PMCID: PMC8468279 DOI: 10.3390/biom11091300] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 12/26/2022] Open
Abstract
As a vertebrate model, zebrafish (Danio rerio) plays a vital role in the field of life sciences. Recently, gene-editing technology has become increasingly innovative, significantly promoting scientific research on zebrafish. However, the implementation of these methods in a reasonable and accurate manner to achieve efficient gene-editing remains challenging. In this review, we systematically summarize the development and latest progress in zebrafish gene-editing technology. Specifically, we outline trends in double-strand break-free genome modification and the prospective applications of fixed-point orientation transformation of any base at any location through a multi-method approach.
Collapse
|
107
|
ATM's Role in the Repair of DNA Double-Strand Breaks. Genes (Basel) 2021; 12:genes12091370. [PMID: 34573351 PMCID: PMC8466060 DOI: 10.3390/genes12091370] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022] Open
Abstract
Ataxia telangiectasia mutated (ATM) is a central kinase that activates an extensive network of responses to cellular stress via a signaling role. ATM is activated by DNA double strand breaks (DSBs) and by oxidative stress, subsequently phosphorylating a plethora of target proteins. In the last several decades, newly developed molecular biological techniques have uncovered multiple roles of ATM in response to DNA damage-e.g., DSB repair, cell cycle checkpoint arrest, apoptosis, and transcription arrest. Combinational dysfunction of these stress responses impairs the accuracy of repair, consequently leading to dramatic sensitivity to ionizing radiation (IR) in ataxia telangiectasia (A-T) cells. In this review, we summarize the roles of ATM that focus on DSB repair.
Collapse
|
108
|
DNA end resection during homologous recombination. Curr Opin Genet Dev 2021; 71:99-105. [PMID: 34329854 DOI: 10.1016/j.gde.2021.07.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 12/15/2022]
Abstract
Exposure to environmental mutagens but also cell-endogenous processes can create DNA double-strand breaks (DSBs) in a cell's genome. DSBs need to be repaired accurately and timely to ensure genomic integrity and cell survival. One major DSB repair mechanism, called homologous recombination, relies on the nucleolytic degradation of the 5'-terminated strands in a process termed end resection. Here, we review new insights into end resection with a focus on the mechanistic interplay of the nucleases, helicases, and accessory factors involved.
Collapse
|
109
|
Interplay between Sae2 and Rif2 in the regulation of Mre11-Rad50 activities at DNA ends. Curr Opin Genet Dev 2021; 71:72-77. [PMID: 34311383 DOI: 10.1016/j.gde.2021.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023]
Abstract
DNA double-strand breaks (DSBs) can be repaired by non-homologous end-joining (NHEJ) or homologous recombination (HR). HR is initiated by nucleolytic degradation of the DSB ends in a process termed resection. The Mre11-Rad50-Xrs2/NBS1 (MRX/N) complex is a multifunctional enzyme that, aided by the Sae2/CtIP protein, promotes DSB resection and maintains the DSB ends tethered to each other to facilitate their re-ligation. Furthermore, it activates the protein kinase Tel1/ATM, which initiates DSB signaling. In Saccharomyces cerevisiae, these MRX functions are inhibited by the Rif2 protein, which is enriched at telomeres and protects telomeric DNA from being sensed and processed as a DSB. The present review focuses on recent data showing that Sae2 and Rif2 regulate MRX functions in opposite manners by interacting with Rad50 and influencing ATP-dependent Mre11-Rad50 conformational changes. As Sae2 is enriched at DSBs whereas Rif2 is predominantly present at telomeres, the relative abundance of these two MRX regulators can provide an effective mechanism to activate or inactivate MRX depending on the nature of chromosome ends.
Collapse
|
110
|
Thakar T, Moldovan GL. The emerging determinants of replication fork stability. Nucleic Acids Res 2021; 49:7224-7238. [PMID: 33978751 PMCID: PMC8287955 DOI: 10.1093/nar/gkab344] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 12/21/2022] Open
Abstract
A universal response to replication stress is replication fork reversal, where the nascent complementary DNA strands are annealed to form a protective four-way junction allowing forks to avert DNA damage while replication stress is resolved. However, reversed forks are in turn susceptible to nucleolytic digestion of the regressed nascent DNA arms and rely on dedicated mechanisms to protect their integrity. The most well studied fork protection mechanism involves the BRCA pathway and its ability to catalyze RAD51 nucleofilament formation on the reversed arms of stalled replication forks. Importantly, the inability to prevent the degradation of reversed forks has emerged as a hallmark of BRCA deficiency and underlies genome instability and chemosensitivity in BRCA-deficient cells. In the past decade, multiple factors underlying fork stability have been discovered. These factors either cooperate with the BRCA pathway, operate independently from it to augment fork stability in its absence, or act as enablers of fork degradation. In this review, we examine these novel determinants of fork stability, explore the emergent conceptual underpinnings underlying fork protection, as well as the impact of fork protection on cellular viability and cancer therapy.
Collapse
Affiliation(s)
- Tanay Thakar
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
111
|
Paull TT. Reconsidering pathway choice: a sequential model of mammalian DNA double-strand break pathway decisions. Curr Opin Genet Dev 2021; 71:55-62. [PMID: 34293662 DOI: 10.1016/j.gde.2021.06.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/14/2021] [Accepted: 06/29/2021] [Indexed: 12/27/2022]
Abstract
DNA double-strand breaks can be repaired through ligation-based pathways (non-homologous end-joining) or replication-based pathways (homologous recombination) in eukaryotic cells. The decisions that govern these outcomes are widely viewed as a competition between factors that recognize DNA ends and physically promote association of factors specific to each pathway, commonly known as 'pathway choice'. Here I review recent results in the literature and propose that this decision is better described as a sequential set of binding and end processing events, with non-homologous end joining as the first decision point. Physical association and co-localization of end resection factors with non-homologous end-joining factors suggests that ends are transferred between these complexes, thus the ultimate outcome is not the result of a competition but is more akin to a relay race that is determined by the efficiency of the initial end-joining event and the availability of activated DNA end-processing enzymes.
Collapse
Affiliation(s)
- Tanya T Paull
- The University of Texas at Austin, Department of Molecular Biosciences, Austin, TX, 78712, United States.
| |
Collapse
|
112
|
Ackerson SM, Romney C, Schuck PL, Stewart JA. To Join or Not to Join: Decision Points Along the Pathway to Double-Strand Break Repair vs. Chromosome End Protection. Front Cell Dev Biol 2021; 9:708763. [PMID: 34322492 PMCID: PMC8311741 DOI: 10.3389/fcell.2021.708763] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/17/2021] [Indexed: 01/01/2023] Open
Abstract
The regulation of DNA double-strand breaks (DSBs) and telomeres are diametrically opposed in the cell. DSBs are considered one of the most deleterious forms of DNA damage and must be quickly recognized and repaired. Telomeres, on the other hand, are specialized, stable DNA ends that must be protected from recognition as DSBs to inhibit unwanted chromosome fusions. Decisions to join DNA ends, or not, are therefore critical to genome stability. Yet, the processing of telomeres and DSBs share many commonalities. Accordingly, key decision points are used to shift DNA ends toward DSB repair vs. end protection. Additionally, DSBs can be repaired by two major pathways, namely homologous recombination (HR) and non-homologous end joining (NHEJ). The choice of which repair pathway is employed is also dictated by a series of decision points that shift the break toward HR or NHEJ. In this review, we will focus on these decision points and the mechanisms that dictate end protection vs. DSB repair and DSB repair choice.
Collapse
Affiliation(s)
- Stephanie M Ackerson
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
| | - Carlan Romney
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
| | - P Logan Schuck
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
| | - Jason A Stewart
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
113
|
Feng W, Simpson DA, Cho JE, Carvajal-Garcia J, Smith CM, Headley KM, Hathaway N, Ramsden DA, Gupta GP. Marker-free quantification of repair pathway utilization at Cas9-induced double-strand breaks. Nucleic Acids Res 2021; 49:5095-5105. [PMID: 33963863 PMCID: PMC8136827 DOI: 10.1093/nar/gkab299] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/24/2021] [Accepted: 05/05/2021] [Indexed: 12/14/2022] Open
Abstract
Genome integrity and genome engineering require efficient repair of DNA double-strand breaks (DSBs) by non-homologous end joining (NHEJ), homologous recombination (HR), or alternative end-joining pathways. Here we describe two complementary methods for marker-free quantification of DSB repair pathway utilization at Cas9-targeted chromosomal DSBs in mammalian cells. The first assay features the analysis of amplicon next-generation sequencing data using ScarMapper, an iterative break-associated alignment algorithm to classify individual repair products based on deletion size, microhomology usage, and insertions. The second assay uses repair pathway-specific droplet digital PCR assays ('PathSig-dPCR') for absolute quantification of signature DSB repair outcomes. We show that ScarMapper and PathSig-dPCR enable comprehensive assessment of repair pathway utilization in different cell models, after a variety of experimental perturbations. We use these assays to measure the differential impact of DNA end resection on NHEJ, HR and polymerase theta-mediated end joining (TMEJ) repair. These approaches are adaptable to any cellular model system and genomic locus where Cas9-mediated targeting is feasible. Thus, ScarMapper and PathSig-dPCR allow for systematic fate mapping of a targeted DSB with facile and accurate quantification of DSB repair pathway choice at endogenous chromosomal loci.
Collapse
Affiliation(s)
- Wanjuan Feng
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Dennis A Simpson
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jang-Eun Cho
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Juan Carvajal-Garcia
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.,Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA.,Biological and Biomedical Sciences Program, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Chelsea M Smith
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.,Biological and Biomedical Sciences Program, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kathryn M Headley
- School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Nate Hathaway
- School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Dale A Ramsden
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.,Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Gaorav P Gupta
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.,Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA.,Department of Radiation Oncology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
114
|
Muhseena N K, Mathukkada S, Das SP, Laha S. The repair gene BACH1 - a potential oncogene. Oncol Rev 2021; 15:519. [PMID: 34322202 PMCID: PMC8273628 DOI: 10.4081/oncol.2021.519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
BACH1 encodes for a protein that belongs to RecQ DEAH helicase family and interacts with the BRCT repeats of BRCA1. The N-terminus of BACH1 functions in DNA metabolism as DNA-dependent ATPase and helicase. The C-terminus consists of BRCT domain, which interacts with BRCA1 and this interaction is one of the major regulator of BACH1 function. BACH1 plays important roles both in phosphorylated as well as dephosphorylated state and functions in coordination with multiple signaling molecules. The active helicase property of BACH1 is maintained by its dephosphorylated state. Imbalance between these two states enhances the development and progression of the diseased condition. Currently BACH1 is known as a tumor suppressor gene based on the presence of its clinically relevant mutations in different cancers. Through this review we have justified it to be named as an oncogene. In this review, we have explained the mechanism of how BACH1 in collaboration with BRCA1 or independently regulates various pathways like cell cycle progression, DNA replication during both normal and stressed situation, recombination and repair of damaged DNA, chromatin remodeling and epigenetic modifications. Mutation and overexpression of BACH1 are significantly found in different cancer types. This review enlists the molecular players which interact with BACH1 to regulate DNA metabolic functions, thereby revealing its potential for cancer therapeutics. We have identified the most mutated functional domain of BACH1, the hot spot for tumorigenesis, justifying it as a target molecule in different cancer types for therapeutics. BACH1 has high potentials of transforming a normal cell into a tumor cell if compromised under certain circumstances. Thus, through this review, we justify BACH1 as an oncogene along with the existing role of being a tumor suppressant.
Collapse
Affiliation(s)
- Katheeja Muhseena N
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Sooraj Mathukkada
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Shankar Prasad Das
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Suparna Laha
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| |
Collapse
|
115
|
Xue C, Greene EC. DNA Repair Pathway Choices in CRISPR-Cas9-Mediated Genome Editing. Trends Genet 2021; 37:639-656. [PMID: 33896583 PMCID: PMC8187289 DOI: 10.1016/j.tig.2021.02.008] [Citation(s) in RCA: 186] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/14/2022]
Abstract
Many clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9)-based genome editing technologies take advantage of Cas nucleases to induce DNA double-strand breaks (DSBs) at desired locations within a genome. Further processing of the DSBs by the cellular DSB repair machinery is then necessary to introduce desired mutations, sequence insertions, or gene deletions. Thus, the accuracy and efficiency of genome editing are influenced by the cellular DSB repair pathways. DSBs are themselves highly genotoxic lesions and as such cells have evolved multiple mechanisms for their repair. These repair pathways include homologous recombination (HR), classical nonhomologous end joining (cNHEJ), microhomology-mediated end joining (MMEJ) and single-strand annealing (SSA). In this review, we briefly highlight CRISPR-Cas9 and then describe the mechanisms of DSB repair. Finally, we summarize recent findings of factors that can influence the choice of DNA repair pathway in response to Cas9-induced DSBs.
Collapse
Affiliation(s)
- Chaoyou Xue
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Eric C Greene
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
116
|
Morton CR, Rzechorzek NJ, Maman JD, Kuramochi M, Sekiguchi H, Rambo R, Sasaki YC, Davies OR, Pellegrini L. Structural basis for the coiled-coil architecture of human CtIP. Open Biol 2021; 11:210060. [PMID: 34129781 PMCID: PMC8205527 DOI: 10.1098/rsob.210060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The DNA repair factor CtIP has a critical function in double-strand break (DSB) repair by homologous recombination, promoting the assembly of the repair apparatus at DNA ends and participating in DNA-end resection. However, the molecular mechanisms of CtIP function in DSB repair remain unclear. Here, we present an atomic model for the three-dimensional architecture of human CtIP, derived from a multi-disciplinary approach that includes X-ray crystallography, small-angle X-ray scattering (SAXS) and diffracted X-ray tracking (DXT). Our data show that CtIP adopts an extended dimer-of-dimers structure, in agreement with a role in bridging distant sites on chromosomal DNA during the recombinational repair. The zinc-binding motif in the CtIP N-terminus alters dynamically the coiled-coil structure, with functional implications for the long-range interactions of CtIP with DNA. Our results provide a structural basis for the three-dimensional arrangement of chains in the CtIP tetramer, a key aspect of CtIP function in DNA DSB repair.
Collapse
Affiliation(s)
- C R Morton
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - N J Rzechorzek
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - J D Maman
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - M Kuramochi
- Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.,AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Kashiwa, Japan
| | - H Sekiguchi
- Centre for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - R Rambo
- Diamond Light Source, Didcot, Oxfordshire OX11 0DE, UK
| | - Y C Sasaki
- Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.,AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Kashiwa, Japan.,Centre for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - O R Davies
- Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - L Pellegrini
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| |
Collapse
|
117
|
Orhan E, Velazquez C, Tabet I, Sardet C, Theillet C. Regulation of RAD51 at the Transcriptional and Functional Levels: What Prospects for Cancer Therapy? Cancers (Basel) 2021; 13:2930. [PMID: 34208195 PMCID: PMC8230762 DOI: 10.3390/cancers13122930] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 01/07/2023] Open
Abstract
The RAD51 recombinase is a critical effector of Homologous Recombination (HR), which is an essential DNA repair mechanism for double-strand breaks. The RAD51 protein is recruited onto the DNA break by BRCA2 and forms homopolymeric filaments that invade the homologous chromatid and use it as a template for repair. RAD51 filaments are detectable by immunofluorescence as distinct foci in the cell nucleus, and their presence is a read out of HR proficiency. RAD51 is an essential gene, protecting cells from genetic instability. Its expression is low and tightly regulated in normal cells and, contrastingly, elevated in a large fraction of cancers, where its level of expression and activity have been linked with sensitivity to genotoxic treatment. In particular, BRCA-deficient tumors show reduced or obliterated RAD51 foci formation and increased sensitivity to platinum salt or PARP inhibitors. However, resistance to treatment sets in rapidly and is frequently based on a complete or partial restoration of RAD51 foci formation. Consequently, RAD51 could be a highly valuable therapeutic target. Here, we review the multiple levels of regulation that impact the transcription of the RAD51 gene, as well as the post-translational modifications that determine its expression level, recruitment on DNA damage sites and the efficient formation of homofilaments. Some of these regulation levels may be targeted and their impact on cancer cell survival discussed.
Collapse
Affiliation(s)
- Esin Orhan
- IRCM, Institut de Recherche en Cancérologie de Montpellier U1194 INSERM, Université de Montpellier, 34090 Montpellier, France; (E.O.); (I.T.); (C.S.)
| | | | - Imene Tabet
- IRCM, Institut de Recherche en Cancérologie de Montpellier U1194 INSERM, Université de Montpellier, 34090 Montpellier, France; (E.O.); (I.T.); (C.S.)
| | - Claude Sardet
- IRCM, Institut de Recherche en Cancérologie de Montpellier U1194 INSERM, Université de Montpellier, 34090 Montpellier, France; (E.O.); (I.T.); (C.S.)
| | - Charles Theillet
- IRCM, Institut de Recherche en Cancérologie de Montpellier U1194 INSERM, Université de Montpellier, 34090 Montpellier, France; (E.O.); (I.T.); (C.S.)
- ICM, Institut du Cancer de Montpellier, 34090 Montpellier, France;
| |
Collapse
|
118
|
Repair pathway choice for double-strand breaks. Essays Biochem 2021; 64:765-777. [PMID: 32648897 DOI: 10.1042/ebc20200007] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 12/20/2022]
Abstract
Deoxyribonucleic acid (DNA) is at a constant risk of damage from endogenous substances, environmental radiation, and chemical stressors. DNA double-strand breaks (DSBs) pose a significant threat to genomic integrity and cell survival. There are two major pathways for DSB repair: nonhomologous end-joining (NHEJ) and homologous recombination (HR). The extent of DNA end resection, which determines the length of the 3' single-stranded DNA (ssDNA) overhang, is the primary factor that determines whether repair is carried out via NHEJ or HR. NHEJ, which does not require a 3' ssDNA tail, occurs throughout the cell cycle. 53BP1 and the cofactors PTIP or RIF1-shieldin protect the broken DNA end, inhibit long-range end resection and thus promote NHEJ. In contrast, HR mainly occurs during the S/G2 phase and requires DNA end processing to create a 3' tail that can invade a homologous region, ensuring faithful gene repair. BRCA1 and the cofactors CtIP, EXO1, BLM/DNA2, and the MRE11-RAD50-NBS1 (MRN) complex promote DNA end resection and thus HR. DNA resection is influenced by the cell cycle, the chromatin environment, and the complexity of the DNA end break. Herein, we summarize the key factors involved in repair pathway selection for DSBs and discuss recent related publications.
Collapse
|
119
|
Averbek S, Jakob B, Durante M, Averbeck NB. O-GlcNAcylation Affects the Pathway Choice of DNA Double-Strand Break Repair. Int J Mol Sci 2021; 22:ijms22115715. [PMID: 34071949 PMCID: PMC8198441 DOI: 10.3390/ijms22115715] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/13/2022] Open
Abstract
Exposing cells to DNA damaging agents, such as ionizing radiation (IR) or cytotoxic chemicals, can cause DNA double-strand breaks (DSBs), which are crucial to repair to maintain genetic integrity. O-linked β-N-acetylglucosaminylation (O-GlcNAcylation) is a post-translational modification (PTM), which has been reported to be involved in the DNA damage response (DDR) and chromatin remodeling. Here, we investigated the impact of O-GlcNAcylation on the DDR, DSB repair and chromatin status in more detail. We also applied charged particle irradiation to analyze differences of O-GlcNAcylation and its impact on DSB repair in respect of spatial dose deposition and radiation quality. Various techniques were used, such as the γH2AX foci assay, live cell microscopy and Fluorescence Lifetime Microscopy (FLIM) to detect DSB rejoining, protein accumulation and chromatin states after treating the cells with O-GlcNAc transferase (OGT) or O-GlcNAcase (OGA) inhibitors. We confirmed that O-GlcNAcylation of MDC1 is increased upon irradiation and identified additional repair factors related to Homologous Recombination (HR), CtIP and BRCA1, which were increasingly O-GlcNAcyated upon irradiation. This is consistent with our findings that the function of HR is affected by OGT inhibition. Besides, we found that OGT and OGA activity modulate chromatin compaction states, providing a potential additional level of DNA-repair regulation.
Collapse
Affiliation(s)
- Sera Averbek
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany; (S.A.); (B.J.); (M.D.)
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Burkhard Jakob
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany; (S.A.); (B.J.); (M.D.)
| | - Marco Durante
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany; (S.A.); (B.J.); (M.D.)
- Department of Physics, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Nicole B. Averbeck
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany; (S.A.); (B.J.); (M.D.)
- Correspondence:
| |
Collapse
|
120
|
Williams RM, Zhang X. Roles of ATM and ATR in DNA double strand breaks and replication stress. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 161:27-38. [DOI: 10.1016/j.pbiomolbio.2020.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/17/2020] [Accepted: 11/25/2020] [Indexed: 12/22/2022]
|
121
|
Tye S, Ronson GE, Morris JR. A fork in the road: Where homologous recombination and stalled replication fork protection part ways. Semin Cell Dev Biol 2021; 113:14-26. [PMID: 32653304 PMCID: PMC8082280 DOI: 10.1016/j.semcdb.2020.07.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/06/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022]
Abstract
In response to replication hindrances, DNA replication forks frequently stall and are remodelled into a four-way junction. In such a structure the annealed nascent strand is thought to resemble a DNA double-strand break and remodelled forks are vulnerable to nuclease attack by MRE11 and DNA2. Proteins that promote the recruitment, loading and stabilisation of RAD51 onto single-stranded DNA for homology search and strand exchange in homologous recombination (HR) repair and inter-strand cross-link repair also act to set up RAD51-mediated protection of nascent DNA at stalled replication forks. However, despite the similarities of these pathways, several lines of evidence indicate that fork protection is not simply analogous to the RAD51 loading step of HR. Protection of stalled forks not only requires separate functions of a number of recombination proteins, but also utilises nucleases important for the resection steps of HR in alternative ways. Here we discuss how fork protection arises and how its differences with HR give insights into the differing contexts of these two pathways.
Collapse
Affiliation(s)
- Stephanie Tye
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, SW7 2AZ, UK
| | - George E Ronson
- University of Birmingham, College of Medical Dental Schools, Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, Vincent Drive, Edgbaston, Birmingham, B15 2TT, UK
| | - Joanna R Morris
- University of Birmingham, College of Medical Dental Schools, Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, Vincent Drive, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
122
|
Kim K, Kirby TW, Perera L, London RE. Phosphopeptide interactions of the Nbs1 N-terminal FHA-BRCT1/2 domains. Sci Rep 2021; 11:9046. [PMID: 33907233 PMCID: PMC8079451 DOI: 10.1038/s41598-021-88400-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/05/2021] [Indexed: 11/21/2022] Open
Abstract
Human Nbs1, a component of the MRN complex involved in DNA double strand break repair, contains a concatenated N-terminal FHA-BRCT1/2 sequence that supports interaction with multiple phosphopeptide binding partners. MDC1 binding localizes Nbs1 to the damage site, while binding of CDK-phosphorylated CtIP activates additional ATM-dependent CtIP phosphorylation, modulating substrate-dependent resection. We have investigated the phosphopeptide binding characteristics of Nbs1 BRCT1/2 based on a molecular modeling approach that revealed structural homology with the tandem TopBP1 BRCT7/8 domains. Relevance of the model was substantiated by the ability of TopBP1-binding FANCJ phosphopeptide to interact with hsNbsBRCT1/2, albeit with lower affinity. The modeled BRCT1/2 is characterized by low pSer/pThr selectivity, preference for a cationic residue at the + 2 position, and an inter-domain binding cleft selective for hydrophobic residues at the + 3/ + 4 positions. These features provide insight into the basis for interaction of SDT motifs with the BRCT1/2 domains and allowed identification of CtIP pSer347- and pThr847-containing phosphopeptides as high and lower affinity ligands, respectively. Among other binding partners considered, rodent XRCC1 contains an SDT sequence in the second linker consistent with high-affinity Nbs1 binding, while human XRCC1 lacks this motif, but contains other phosphorylated sequences that exhibit low-affinity binding.
Collapse
Affiliation(s)
- Kyungmin Kim
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709, USA
| | - Thomas W Kirby
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709, USA
| | - Lalith Perera
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709, USA
| | - Robert E London
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
123
|
Ren J, Wu Y, Wang Y, Zhao Y, Li Y, Hao S, Lin L, Zhang S, Xu X, Wang H. CtIP suppresses primary microRNA maturation and promotes metastasis of colon cancer cells in a xenograft mouse model. J Biol Chem 2021; 296:100707. [PMID: 33901493 PMCID: PMC8164041 DOI: 10.1016/j.jbc.2021.100707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/15/2021] [Accepted: 04/22/2021] [Indexed: 12/30/2022] Open
Abstract
miRNAs are important regulators of eukaryotic gene expression. The post-transcriptional maturation of miRNAs is controlled by the Drosha-DiGeorge syndrome critical region gene 8 (DGCR8) microprocessor. Dysregulation of miRNA biogenesis has been implicated in the pathogenesis of human diseases, including cancers. C-terminal-binding protein-interacting protein (CtIP) is a well-known DNA repair factor that promotes the processing of DNA double-strand break (DSB) to initiate homologous recombination-mediated DSB repair. However, it was unclear whether CtIP has other unknown cellular functions. Here, we aimed to uncover the roles of CtIP in miRNA maturation and cancer cell metastasis. We found that CtIP is a potential regulatory factor that suppresses the processing of miRNA primary transcripts (pri-miRNA). CtIP directly bound to both DGCR8 and pri-miRNAs through a conserved Sae2-like domain, reduced the binding of Drosha to DGCR8 and pri-miRNA substrate, and inhibited processing activity of Drosha complex. CtIP depletion significantly increased the expression levels of a subset of mature miRNAs, including miR-302 family members that are associated with tumor progression and metastasis in several cancer types. We also found that CtIP-inhibited miRNAs, such as miR-302 family members, are not crucial for DSB repair. However, increase of miR-302b levels or loss of CtIP function severely suppressed human colon cancer cell line tumor cell metastasis in a mouse xenograft model. These studies reveal a previously unrecognized mechanism of CtIP in miRNA processing and tumor metastasis that represents a new function of CtIP in cancer.
Collapse
Affiliation(s)
- Jianping Ren
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, China
| | - Yan Wu
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, China
| | - Ya Wang
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, China
| | - Yuqin Zhao
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, China
| | - Youhang Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, China
| | - Shuailin Hao
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, China
| | - Lixiu Lin
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, China
| | - Shuyuan Zhang
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, China
| | - Xingzhi Xu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer Center, Marshall Laboratory of Biomedical Engineering, China Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Hailong Wang
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, China.
| |
Collapse
|
124
|
Roles of ATM and ATR in DNA double strand breaks and replication stress. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 163:109-119. [PMID: 33887296 DOI: 10.1016/j.pbiomolbio.2021.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/17/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023]
Abstract
The maintenance of genome integrity is critical for the faithful replication of the genome during cell division and for protecting cells from accumulation of DNA damage, which if left unrepaired leads to a loss of genetic information, a breakdown in cell function and ultimately cell death and cancer. ATM and ATR are master kinases that are integral to homologous recombination-mediated repair of double strand breaks and preventing accumulation of dangerous DNA structures and genome instability during replication stress. While the roles of ATM and ATR are heavily intertwined in response to double strand breaks, their roles diverge in the response to replication stress. This review summarises our understanding of the players and their mode of actions in recruitment, activation and activity of ATM and ATR in response to DNA damage and replication stress and discusses how controlling localisation of these kinases and their activators allows them to orchestrate a stress-specific response.
Collapse
|
125
|
Harrell K, Day M, Smolikove S. Recruitment of MRE-11 to complex DNA damage is modulated by meiosis-specific chromosome organization. Mutat Res 2021; 822:111743. [PMID: 33975127 DOI: 10.1016/j.mrfmmm.2021.111743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/11/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022]
Abstract
DNA double-strand breaks (DSBs) are one of the most dangerous assaults on the genome, and yet their natural and programmed production are inherent to life. When DSBs arise close together they are particularly deleterious, and their repair may require an altered form of the DNA damage response. Our understanding of how clustered DSBs are repaired in the germline is unknown. Using laser microirradiation, we examine early events in the repair of clustered DSBs in germ cells within Caenorhabditis elegans. We use precise temporal resolution to show how the recruitment of MRE-11 to complex damage is regulated, and that clustered DNA damage can recruit proteins from various repair pathways. Abrogation of non-homologous end joining or COM-1 attenuates the recruitment of MRE-11 through distinct mechanisms. The synaptonemal complex plays both positive and negative regulatory roles in these mutant contexts. These findings indicate that MRE-11 is regulated by modifying its accessibility to chromosomes.
Collapse
Affiliation(s)
- Kailey Harrell
- Department of Biology, University of Iowa, Iowa City, IA, 52241, USA
| | - Madison Day
- Department of Biology, University of Iowa, Iowa City, IA, 52241, USA
| | - Sarit Smolikove
- Department of Biology, University of Iowa, Iowa City, IA, 52241, USA.
| |
Collapse
|
126
|
Caracciolo D, Riillo C, Di Martino MT, Tagliaferri P, Tassone P. Alternative Non-Homologous End-Joining: Error-Prone DNA Repair as Cancer's Achilles' Heel. Cancers (Basel) 2021; 13:cancers13061392. [PMID: 33808562 PMCID: PMC8003480 DOI: 10.3390/cancers13061392] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Cancer onset and progression lead to a high rate of DNA damage, due to replicative and metabolic stress. To survive in this dangerous condition, cancer cells switch the DNA repair machinery from faithful systems to error-prone pathways, strongly increasing the mutational rate that, in turn, supports the disease progression and drug resistance. Although DNA repair de-regulation boosts genomic instability, it represents, at the same time, a critical cancer vulnerability that can be exploited for synthetic lethality-based therapeutic intervention. We here discuss the role of the error-prone DNA repair, named Alternative Non-Homologous End Joining (Alt-NHEJ), as inducer of genomic instability and as a potential therapeutic target. We portray different strategies to drug Alt-NHEJ and discuss future challenges for selecting patients who could benefit from Alt-NHEJ inhibition, with the aim of precision oncology. Abstract Error-prone DNA repair pathways promote genomic instability which leads to the onset of cancer hallmarks by progressive genetic aberrations in tumor cells. The molecular mechanisms which foster this process remain mostly undefined, and breakthrough advancements are eagerly awaited. In this context, the alternative non-homologous end joining (Alt-NHEJ) pathway is considered a leading actor. Indeed, there is experimental evidence that up-regulation of major Alt-NHEJ components, such as LIG3, PolQ, and PARP1, occurs in different tumors, where they are often associated with disease progression and drug resistance. Moreover, the Alt-NHEJ addiction of cancer cells provides a promising target to be exploited by synthetic lethality approaches for the use of DNA damage response (DDR) inhibitors and even as a sensitizer to checkpoint-inhibitors immunotherapy by increasing the mutational load. In this review, we discuss recent findings highlighting the role of Alt-NHEJ as a promoter of genomic instability and, therefore, as new cancer’s Achilles’ heel to be therapeutically exploited in precision oncology.
Collapse
|
127
|
A conserved Ctp1/CtIP C-terminal peptide stimulates Mre11 endonuclease activity. Proc Natl Acad Sci U S A 2021; 118:2016287118. [PMID: 33836577 DOI: 10.1073/pnas.2016287118] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Mre11-Rad50-Nbs1 complex (MRN) is important for repairing DNA double-strand breaks (DSBs) by homologous recombination (HR). The endonuclease activity of MRN is critical for resecting 5'-ended DNA strands at DSB ends, producing 3'-ended single-strand DNA, a prerequisite for HR. This endonuclease activity is stimulated by Ctp1, the Schizosaccharomyces pombe homolog of human CtIP. Here, with purified proteins, we show that Ctp1 phosphorylation stimulates MRN endonuclease activity by inducing the association of Ctp1 with Nbs1. The highly conserved extreme C terminus of Ctp1 is indispensable for MRN activation. Importantly, a polypeptide composed of the conserved 15 amino acids at the C terminus of Ctp1 (CT15) is sufficient to stimulate Mre11 endonuclease activity. Furthermore, the CT15 equivalent from CtIP can stimulate human MRE11 endonuclease activity, arguing for the generality of this stimulatory mechanism. Thus, we propose that Nbs1-mediated recruitment of CT15 plays a pivotal role in the activation of the Mre11 endonuclease by Ctp1/CtIP.
Collapse
|
128
|
Marsella A, Gobbini E, Cassani C, Tisi R, Cannavo E, Reginato G, Cejka P, Longhese MP. Sae2 and Rif2 regulate MRX endonuclease activity at DNA double-strand breaks in opposite manners. Cell Rep 2021; 34:108906. [PMID: 33789097 PMCID: PMC8028314 DOI: 10.1016/j.celrep.2021.108906] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/29/2021] [Accepted: 03/04/2021] [Indexed: 11/17/2022] Open
Abstract
The Mre11-Rad50-Xrs2 (MRX) complex detects and processes DNA double-strand breaks (DSBs). Its DNA binding and processing activities are regulated by transitions between an ATP-bound state and a post-hydrolysis cutting state that is nucleolytically active. Mre11 endonuclease activity is stimulated by Sae2, whose lack increases MRX persistence at DSBs and checkpoint activation. Here we show that the Rif2 protein inhibits Mre11 endonuclease activity and is responsible for the increased MRX retention at DSBs in sae2Δ cells. We identify a Rad50 residue that is important for Rad50-Rif2 interaction and Rif2 inhibition of Mre11 nuclease. This residue is located near a Rad50 surface that binds Sae2 and is important in stabilizing the Mre11-Rad50 (MR) interaction in the cutting state. We propose that Sae2 stimulates Mre11 endonuclease activity by stabilizing a post-hydrolysis MR conformation that is competent for DNA cleavage, whereas Rif2 antagonizes this Sae2 function and stabilizes an endonuclease inactive MR conformation. Sae2 stimulates Mre11 endonuclease activity by stabilizing the MRX cutting state Rif2 inhibits Sae2-mediated stimulation of Mre11 endonuclease activity The rad50-N18S mutation escapes Rif2-mediated inhibition of Mre11 nuclease Rif2 stabilizes an endonuclease inactive MR conformation that persistently binds DSBs
Collapse
Affiliation(s)
- Antonio Marsella
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milano 20126, Italy
| | - Elisa Gobbini
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milano 20126, Italy
| | - Corinne Cassani
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milano 20126, Italy
| | - Renata Tisi
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milano 20126, Italy
| | - Elda Cannavo
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Bellinzona, Switzerland
| | - Giordano Reginato
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Bellinzona, Switzerland; Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| | - Petr Cejka
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Bellinzona, Switzerland; Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milano 20126, Italy.
| |
Collapse
|
129
|
Li F, Zhou C, Tu T, Liu Y, Lv X, Wang B, Song Z, Zhao Q, Liu C, Gu F, Zhao J. Rational Selection of CRISPR-Cas Triggering Homology-Directed Repair in Human Cells. Hum Gene Ther 2021; 32:302-309. [PMID: 33323021 DOI: 10.1089/hum.2020.247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The CRISPR (clustered regularly interspaced short palindromic repeat)-Cas (CRISPR-associated) nucleases have been widely applied for genome engineering. Cas9 (Streptococcus pyogenes Cas9 [SpCas9] and Staphylococcus aureus Cas9 [SaCas9]) and Cpf1 (i.e., Francisella novicida U112 Cpf1 [FnCpf1], also named FnCas12a) were harnessed to perform gene editing in human cells. Precise genetic modification by homology-directed repair (HDR) is an attractive approach for in situ gene correction. However, so far, the comparative efficiencies of HDR mediated by different CRISPR orthologs remain unknown. To address this question, in this study, we developed a reporter system to investigate HDR efficiencies triggered by various CRISPR orthologs. We found that SpCas9 and SaCas9, the two most commonly used Cas9 enzymes, possessed a similar ability to induce HDR. Interestingly, with the increasing amount of coding plasmids or additional nuclear localization sequences, FnCpf1 could improve the HDR efficacy. Collectively, our study provides insights for the rational selection of appropriate tools for human genome manipulation.
Collapse
Affiliation(s)
- Fanfan Li
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, China.,The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chenchen Zhou
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, China
| | - Tianxiang Tu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, China
| | - Yuanyuan Liu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, China
| | - Xiujuan Lv
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, China
| | - Bang Wang
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, China
| | - Zongming Song
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, China.,Henan Eye Hospital, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Qifeng Zhao
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Changbao Liu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Feng Gu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, China
| | - Junzhao Zhao
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
130
|
Gartner A, Engebrecht J. DNA repair, recombination, and damage signaling. Genetics 2021; 220:6522877. [PMID: 35137093 PMCID: PMC9097270 DOI: 10.1093/genetics/iyab178] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/10/2021] [Indexed: 01/09/2023] Open
Abstract
DNA must be accurately copied and propagated from one cell division to the next, and from one generation to the next. To ensure the faithful transmission of the genome, a plethora of distinct as well as overlapping DNA repair and recombination pathways have evolved. These pathways repair a large variety of lesions, including alterations to single nucleotides and DNA single and double-strand breaks, that are generated as a consequence of normal cellular function or by external DNA damaging agents. In addition to the proteins that mediate DNA repair, checkpoint pathways have also evolved to monitor the genome and coordinate the action of various repair pathways. Checkpoints facilitate repair by mediating a transient cell cycle arrest, or through initiation of cell suicide if DNA damage has overwhelmed repair capacity. In this chapter, we describe the attributes of Caenorhabditis elegans that facilitate analyses of DNA repair, recombination, and checkpoint signaling in the context of a whole animal. We review the current knowledge of C. elegans DNA repair, recombination, and DNA damage response pathways, and their role during development, growth, and in the germ line. We also discuss how the analysis of mutational signatures in C. elegans is helping to inform cancer mutational signatures in humans.
Collapse
Affiliation(s)
- Anton Gartner
- Department for Biological Sciences, IBS Center for Genomic Integrity, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea,Corresponding author: (A.G.); (J.E.)
| | - JoAnne Engebrecht
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616, USA,Corresponding author: (A.G.); (J.E.)
| |
Collapse
|
131
|
Kuster A, Mozaffari NL, Wilkinson OJ, Wojtaszek JL, Zurfluh C, Przetocka S, Zyla D, von Aesch C, Dillingham MS, Williams RS, Sartori AA. A stapled peptide mimetic of the CtIP tetramerization motif interferes with double-strand break repair and replication fork protection. SCIENCE ADVANCES 2021; 7:7/8/eabc6381. [PMID: 33608267 PMCID: PMC7895427 DOI: 10.1126/sciadv.abc6381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Cancer cells display high levels of DNA damage and replication stress, vulnerabilities that could be exploited by drugs targeting DNA repair proteins. Human CtIP promotes homology-mediated repair of DNA double-strand breaks (DSBs) and protects stalled replication forks from nucleolytic degradation, thus representing an attractive candidate for targeted cancer therapy. Here, we establish a peptide mimetic of the CtIP tetramerization motif that inhibits CtIP activity. The hydrocarbon-stapled peptide encompassing amino acid residues 18 to 28 of CtIP (SP18-28) stably binds to CtIP tetramers in vitro and facilitates their aggregation into higher-order structures. Efficient intracellular uptake of SP18-28 abrogates CtIP localization to damaged chromatin, impairs DSB repair, and triggers extensive fork degradation. Moreover, prolonged SP18-28 treatment causes hypersensitivity to DNA-damaging agents and selectively reduces the viability of BRCA1-mutated cancer cell lines. Together, our data provide a basis for the future development of CtIP-targeting compounds with the potential to treat patients with cancer.
Collapse
Affiliation(s)
- Anika Kuster
- Institute of Molecular Cancer Research, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Nour L Mozaffari
- Institute of Molecular Cancer Research, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Oliver J Wilkinson
- School of Biochemistry, University of Bristol, University Walk, Clifton BS8 1TD, Bristol, UK
| | - Jessica L Wojtaszek
- Structural Cell Biology Group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, U.S. National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Christina Zurfluh
- Institute of Molecular Cancer Research, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Sara Przetocka
- Institute of Molecular Cancer Research, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Dawid Zyla
- Institute of Molecular Biology and Biophysics, ETH-Zürich, Otto-Stern-Weg 5, CH-8093 Zürich, Switzerland
| | - Christine von Aesch
- Institute of Molecular Cancer Research, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Mark S Dillingham
- School of Biochemistry, University of Bristol, University Walk, Clifton BS8 1TD, Bristol, UK
| | - R Scott Williams
- Structural Cell Biology Group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, U.S. National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Alessandro A Sartori
- Institute of Molecular Cancer Research, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
| |
Collapse
|
132
|
Locke AJ, Hossain L, McCrostie G, Ronato DA, Fitieh A, Rafique T, Mashayekhi F, Motamedi M, Masson JY, Ismail I. SUMOylation mediates CtIP's functions in DNA end resection and replication fork protection. Nucleic Acids Res 2021; 49:928-953. [PMID: 33406258 PMCID: PMC7826263 DOI: 10.1093/nar/gkaa1232] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022] Open
Abstract
Double-strand breaks and stalled replication forks are a significant threat to genomic stability that can lead to chromosomal rearrangements or cell death. The protein CtIP promotes DNA end resection, an early step in homologous recombination repair, and has been found to protect perturbed forks from excessive nucleolytic degradation. However, it remains unknown how CtIP's function in fork protection is regulated. Here, we show that CtIP recruitment to sites of DNA damage and replication stress is impaired upon global inhibition of SUMOylation. We demonstrate that CtIP is a target for modification by SUMO-2 and that this occurs constitutively during S phase. The modification is dependent on the activities of cyclin-dependent kinases and the PI-3-kinase-related kinase ATR on CtIP's carboxyl-terminal region, an interaction with the replication factor PCNA, and the E3 SUMO ligase PIAS4. We also identify residue K578 as a key residue that contributes to CtIP SUMOylation. Functionally, a CtIP mutant where K578 is substituted with a non-SUMOylatable arginine residue is defective in promoting DNA end resection, homologous recombination, and in protecting stalled replication forks from excessive nucleolytic degradation. Our results shed further light on the tightly coordinated regulation of CtIP by SUMOylation in the maintenance of genome stability.
Collapse
Affiliation(s)
- Andrew J Locke
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta; Cross Cancer Institute, Edmonton, Alberta, T6G 1Z2, Canada
| | - Lazina Hossain
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta; Cross Cancer Institute, Edmonton, Alberta, T6G 1Z2, Canada
| | - Glynnis McCrostie
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta; Cross Cancer Institute, Edmonton, Alberta, T6G 1Z2, Canada
| | - Daryl A Ronato
- Oncology Division, CHU de Québec-Université Laval Research Center, Québec City, Québec, G1R 3S3, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine; Laval University Cancer Research Center, Université Laval, Québec City, Québec, G1V 0A6, Canada
| | - Amira Fitieh
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta; Cross Cancer Institute, Edmonton, Alberta, T6G 1Z2, Canada
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Tanzeem Ahmed Rafique
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta; Cross Cancer Institute, Edmonton, Alberta, T6G 1Z2, Canada
| | - Fatemeh Mashayekhi
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta; Cross Cancer Institute, Edmonton, Alberta, T6G 1Z2, Canada
| | - Mobina Motamedi
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta; Cross Cancer Institute, Edmonton, Alberta, T6G 1Z2, Canada
| | - Jean-Yves Masson
- Oncology Division, CHU de Québec-Université Laval Research Center, Québec City, Québec, G1R 3S3, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine; Laval University Cancer Research Center, Université Laval, Québec City, Québec, G1V 0A6, Canada
| | - Ismail Hassan Ismail
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta; Cross Cancer Institute, Edmonton, Alberta, T6G 1Z2, Canada
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
133
|
Suzuki R, Murata MM, Manguso N, Watanabe T, Mouakkad-Montoya L, Igari F, Rahman MM, Qu Y, Cui X, Giuliano AE, Takeda S, Tanaka H. The fragility of a structurally diverse duplication block triggers recurrent genomic amplification. Nucleic Acids Res 2021; 49:244-256. [PMID: 33290559 PMCID: PMC7797068 DOI: 10.1093/nar/gkaa1136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/20/2020] [Accepted: 12/05/2020] [Indexed: 11/12/2022] Open
Abstract
The human genome contains hundreds of large, structurally diverse blocks that are insufficiently represented in the reference genome and are thus not amenable to genomic analyses. Structural diversity in the human population suggests that these blocks are unstable in the germline; however, whether or not these blocks are also unstable in the cancer genome remains elusive. Here we report that the 500 kb block called KRTAP_region_1 (KRTAP-1) on 17q12-21 recurrently demarcates the amplicon of the ERBB2 (HER2) oncogene in breast tumors. KRTAP-1 carries numerous tandemly-duplicated segments that exhibit diversity within the human population. We evaluated the fragility of the block by cytogenetically measuring the distances between the flanking regions and found that spontaneous distance outliers (i.e DNA breaks) appear more frequently at KRTAP-1 than at the representative common fragile site (CFS) FRA16D. Unlike CFSs, KRTAP-1 is not sensitive to aphidicolin. The exonuclease activity of DNA repair protein Mre11 protects KRTAP-1 from breaks, whereas CtIP does not. Breaks at KRTAP-1 lead to the palindromic duplication of the ERBB2 locus and trigger Breakage-Fusion-Bridge cycles. Our results indicate that an insufficiently investigated area of the human genome is fragile and could play a crucial role in cancer genome evolution.
Collapse
Affiliation(s)
- Ryusuke Suzuki
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Michael M Murata
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Nicholas Manguso
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Takaaki Watanabe
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | - Fumie Igari
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Md Maminur Rahman
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Ying Qu
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Xiaojiang Cui
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.,Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Armando E Giuliano
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.,Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.,Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Hisashi Tanaka
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.,Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.,Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
134
|
Sharma S, Anand R, Zhang X, Francia S, Michelini F, Galbiati A, Williams H, Ronato DA, Masson JY, Rothenberg E, Cejka P, d'Adda di Fagagna F. MRE11-RAD50-NBS1 Complex Is Sufficient to Promote Transcription by RNA Polymerase II at Double-Strand Breaks by Melting DNA Ends. Cell Rep 2021; 34:108565. [PMID: 33406426 PMCID: PMC7788559 DOI: 10.1016/j.celrep.2020.108565] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/19/2020] [Accepted: 12/07/2020] [Indexed: 12/24/2022] Open
Abstract
The MRE11-RAD50-NBS1 (MRN) complex supports the synthesis of damage-induced long non-coding RNA (dilncRNA) by RNA polymerase II (RNAPII) from DNA double-strand breaks (DSBs) by an unknown mechanism. Here, we show that recombinant human MRN and native RNAPII are sufficient to reconstitute a minimal functional transcriptional apparatus at DSBs. MRN recruits and stabilizes RNAPII at DSBs. Unexpectedly, transcription is promoted independently from MRN nuclease activities. Rather, transcription depends on the ability of MRN to melt DNA ends, as shown by the use of MRN mutants and specific allosteric inhibitors. Single-molecule FRET assays with wild-type and mutant MRN show a tight correlation between the ability to melt DNA ends and to promote transcription. The addition of RPA enhances MRN-mediated transcription, and unpaired DNA ends allow MRN-independent transcription by RNAPII. These results support a model in which MRN generates single-strand DNA ends that favor the initiation of transcription by RNAPII.
Collapse
Affiliation(s)
- Sheetal Sharma
- IFOM-The FIRC Institute of Molecular Oncology, Milan 20139, Italy; Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Roopesh Anand
- Institute for Research in Biomedicine, Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Bellinzona 6500, Switzerland
| | - Xuzhu Zhang
- NYU Langone Medical Center, 450 East 29th Street, New York, NY, USA
| | - Sofia Francia
- IFOM-The FIRC Institute of Molecular Oncology, Milan 20139, Italy; Istituto di Genetica Molecolare, CNR-Consiglio Nazionale delle Ricerche, Pavia 2700, Italy
| | - Flavia Michelini
- IFOM-The FIRC Institute of Molecular Oncology, Milan 20139, Italy
| | | | | | - Daryl A Ronato
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Axis, 9 McMahon, Québec City, QC G1R 2J6, Canada; Department of Molecular Biology, Medical Biochemistry, and Pathology, Laval University Cancer Research Center, Québec City, QC G1R 2J6, Canada
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Axis, 9 McMahon, Québec City, QC G1R 2J6, Canada; Department of Molecular Biology, Medical Biochemistry, and Pathology, Laval University Cancer Research Center, Québec City, QC G1R 2J6, Canada
| | - Eli Rothenberg
- NYU Langone Medical Center, 450 East 29th Street, New York, NY, USA
| | - Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Bellinzona 6500, Switzerland; Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), Zürich 8093, Switzerland.
| | - Fabrizio d'Adda di Fagagna
- IFOM-The FIRC Institute of Molecular Oncology, Milan 20139, Italy; Istituto di Genetica Molecolare, CNR-Consiglio Nazionale delle Ricerche, Pavia 2700, Italy.
| |
Collapse
|
135
|
Chansel-Da Cruz M, Hohl M, Ceppi I, Kermasson L, Maggiorella L, Modesti M, de Villartay JP, Ileri T, Cejka P, Petrini JHJ, Revy P. A Disease-Causing Single Amino Acid Deletion in the Coiled-Coil Domain of RAD50 Impairs MRE11 Complex Functions in Yeast and Humans. Cell Rep 2020; 33:108559. [PMID: 33378670 PMCID: PMC7788285 DOI: 10.1016/j.celrep.2020.108559] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/30/2020] [Accepted: 12/04/2020] [Indexed: 12/20/2022] Open
Abstract
The MRE11-RAD50-NBS1 complex plays a central role in response to DNA double-strand breaks. Here, we identify a patient with bone marrow failure and developmental defects caused by biallelic RAD50 mutations. One of the mutations creates a null allele, whereas the other (RAD50E1035Δ) leads to the loss of a single residue in the heptad repeats within the RAD50 coiled-coil domain. This mutation represents a human RAD50 separation-of-function mutation that impairs DNA repair, DNA replication, and DNA end resection without affecting ATM-dependent DNA damage response. Purified recombinant proteins indicate that RAD50E1035Δ impairs MRE11 nuclease activity. The corresponding mutation in Saccharomyces cerevisiae causes severe thermosensitive defects in both DNA repair and Tel1ATM-dependent signaling. These findings demonstrate that a minor heptad break in the RAD50 coiled coil suffices to impede MRE11 complex functions in human and yeast. Furthermore, these results emphasize the importance of the RAD50 coiled coil to regulate MRE11-dependent DNA end resection in humans.
Collapse
Affiliation(s)
- Marie Chansel-Da Cruz
- INSERM UMR 1163, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée la Ligue contre le Cancer, Paris, France; University of Paris-Sorbonne Paris Cité University, Imagine Institute, Paris, France; Genomic Vision, R&D Innovation Department, Bagneux, France
| | - Marcel Hohl
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ilaria Ceppi
- Institute for Research in Biomedicine, Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland; Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8093 Zürich, Switzerland
| | - Laëtitia Kermasson
- INSERM UMR 1163, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée la Ligue contre le Cancer, Paris, France; University of Paris-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | | | - Mauro Modesti
- Cancer Research Center of Marseille, CNRS UMR7258, INSERM U1068, Institut Paoli-Calmettes, Aix-Marseille Université, Marseille, France
| | - Jean-Pierre de Villartay
- INSERM UMR 1163, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée la Ligue contre le Cancer, Paris, France; University of Paris-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Talia Ileri
- Ankara University School of Medicine, Pediatric Hematology and Oncology, Ankara, Turkey
| | - Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland; Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8093 Zürich, Switzerland
| | - John H J Petrini
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Patrick Revy
- INSERM UMR 1163, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée la Ligue contre le Cancer, Paris, France; University of Paris-Sorbonne Paris Cité University, Imagine Institute, Paris, France.
| |
Collapse
|
136
|
Zabolotnaya E, Mela I, Henderson RM, Robinson NP. Turning the Mre11/Rad50 DNA repair complex on its head: lessons from SMC protein hinges, dynamic coiled-coil movements and DNA loop-extrusion? Biochem Soc Trans 2020; 48:2359-2376. [PMID: 33300987 PMCID: PMC7752040 DOI: 10.1042/bst20170168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022]
Abstract
The bacterial SbcC/SbcD DNA repair proteins were identified over a quarter of a century ago. Following the subsequent identification of the homologous Mre11/Rad50 complex in the eukaryotes and archaea, it has become clear that this conserved chromosomal processing machinery is central to DNA repair pathways and the maintenance of genomic stability in all forms of life. A number of experimental studies have explored this intriguing genome surveillance machinery, yielding significant insights and providing conceptual advances towards our understanding of how this complex operates to mediate DNA repair. However, the inherent complexity and dynamic nature of this chromosome-manipulating machinery continue to obfuscate experimental interrogations, and details regarding the precise mechanisms that underpin the critical repair events remain unanswered. This review will summarize our current understanding of the dramatic structural changes that occur in Mre11/Rad50 complex to mediate chromosomal tethering and accomplish the associated DNA processing events. In addition, undetermined mechanistic aspects of the DNA enzymatic pathways driven by this vital yet enigmatic chromosomal surveillance and repair apparatus will be discussed. In particular, novel and putative models of DNA damage recognition will be considered and comparisons will be made between the modes of action of the Rad50 protein and other related ATPases of the overarching SMC superfamily.
Collapse
Affiliation(s)
| | - Ioanna Mela
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, U.K
| | | | - Nicholas P. Robinson
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, U.K
| |
Collapse
|
137
|
Jiang Y, Yam JC, Tham CC, Pang CP, Chu WK. RB Regulates DNA Double Strand Break Repair Pathway Choice by Mediating CtIP Dependent End Resection. Int J Mol Sci 2020; 21:E9176. [PMID: 33271982 PMCID: PMC7730402 DOI: 10.3390/ijms21239176] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/20/2020] [Accepted: 11/30/2020] [Indexed: 01/15/2023] Open
Abstract
Inactivation of the retinoblastoma tumor suppressor gene (RB1) leads to genome instability, and can be detected in retinoblastoma and other cancers. One damaging effect is causing DNA double strand breaks (DSB), which, however, can be repaired by homologous recombination (HR), classical non-homologous end joining (C-NHEJ), and micro-homology mediated end joining (MMEJ). We aimed to study the mechanistic roles of RB in regulating multiple DSB repair pathways. Here we show that HR and C-NHEJ are decreased, but MMEJ is elevated in RB-depleted cells. After inducing DSB by camptothecin, RB co-localizes with CtIP, which regulates DSB end resection. RB depletion leads to less RPA and native BrdU foci, which implies less end resection. In RB-depleted cells, less CtIP foci, and a lack of phosphorylation on CtIP Thr847, are observed. According to the synthetic lethality principle, based on the altered DSB repair pathway choice, after inducing DSBs by camptothecin, RB depleted cells are more sensitive to co-treatment with camptothecin and MMEJ blocker poly-ADP ribose polymerase 1 (PARP1) inhibitor. We propose a model whereby RB can regulate DSB repair pathway choice by mediating the CtIP dependent DNA end resection. The use of PARP1 inhibitor could potentially improve treatment outcomes for RB-deficient cancers.
Collapse
Affiliation(s)
| | | | | | | | - Wai Kit Chu
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China; (Y.J.); (J.C.Y.); (C.C.T.); (C.P.P.)
| |
Collapse
|
138
|
Zhao F, Kim W, Kloeber JA, Lou Z. DNA end resection and its role in DNA replication and DSB repair choice in mammalian cells. Exp Mol Med 2020; 52:1705-1714. [PMID: 33122806 PMCID: PMC8080561 DOI: 10.1038/s12276-020-00519-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/29/2020] [Accepted: 09/09/2020] [Indexed: 12/19/2022] Open
Abstract
DNA end resection has a key role in double-strand break repair and DNA replication. Defective DNA end resection can cause malfunctions in DNA repair and replication, leading to greater genomic instability. DNA end resection is initiated by MRN-CtIP generating short, 3′-single-stranded DNA (ssDNA). This newly generated ssDNA is further elongated by multiple nucleases and DNA helicases, such as EXO1, DNA2, and BLM. Effective DNA end resection is essential for error-free homologous recombination DNA repair, the degradation of incorrectly replicated DNA and double-strand break repair choice. Because of its importance in DNA repair, DNA end resection is strictly regulated. Numerous mechanisms have been reported to regulate the initiation, extension, and termination of DNA end resection. Here, we review the general process of DNA end resection and its role in DNA replication and repair pathway choice. Carefully regulated enzymatic processing of the ends of DNA strands is essential for efficient replication and damage repair while also minimizing the risk of genomic instability. Replication and repair depend on a mechanism known as DNA resection, in which enzymes trim back double-stranded DNA ends to leave single-stranded overhangs. Zhenkun Lou and colleagues at the Mayo Clinic in Rochester, USA, have reviewed the various steps involved in the initiation and control of DNA resection. There are multiple different DNA repair processes, and the manner in which resection occurs can determine which of these processes subsequently takes place. The authors note that cancer cells rely heavily on these repair pathways to survive radiotherapy and chemotherapy, and highlight research opportunities that might reveal therapeutically useful vulnerabilities in the resection mechanism.
Collapse
Affiliation(s)
- Fei Zhao
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Wootae Kim
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jake A Kloeber
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA.,Mayo Clinic Medical Scientist Training Program, Mayo Clinic, Rochester, MN, 55905, USA.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
139
|
USP52 regulates DNA end resection and chemosensitivity through removing inhibitory ubiquitination from CtIP. Nat Commun 2020; 11:5362. [PMID: 33097710 PMCID: PMC7584643 DOI: 10.1038/s41467-020-19202-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023] Open
Abstract
Human C-terminal binding protein (CtBP)–interacting protein (CtIP) is a central regulator to initiate DNA end resection and homologous recombination (HR). Several studies have shown that post-translational modifications control the activity or expression of CtIP. However, it remains unclear whether and how cells restrain CtIP activity in unstressed cells and activate CtIP when needed. Here, we identify that USP52 directly interacts with and deubiquitinates CtIP, thereby promoting DNA end resection and HR. Mechanistically, USP52 removes the ubiquitination of CtIP to facilitate the phosphorylation and activation of CtIP at Thr-847. In addition, USP52 is phosphorylated by ATM at Ser-1003 after DNA damage, which enhances the catalytic activity of USP52. Furthermore, depletion of USP52 sensitizes cells to PARP inhibition in a CtIP-dependent manner in vitro and in vivo. Collectively, our findings reveal the key role of USP52 and the regulatory complexity of CtIP deubiquitination in DNA repair. C-terminal binding protein (CtBP) interacting protein (CtIP) is a fundamental factor for the initiation of DNA end resection to initiate DNA repair. Here the authors reveal mechanistic insights into the regulation of CtIP via the deubiquitinase USP52.
Collapse
|
140
|
Ding G, Xu X, Li D, Chen Y, Wang W, Ping D, Jia S, Cao L. Fisetin inhibits proliferation of pancreatic adenocarcinoma by inducing DNA damage via RFXAP/KDM4A-dependent histone H3K36 demethylation. Cell Death Dis 2020; 11:893. [PMID: 33093461 PMCID: PMC7582166 DOI: 10.1038/s41419-020-03019-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/05/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022]
Abstract
Pancreatic adenocarcinoma (PDAC) is an extremely malignant tumor that is associated with low survival rates. Fisetin is a natural flavonoid that shows diverse antitumor effects, including DNA damage, in various cancers. Increasing studies have demonstrated that epigenetic modifications play critical roles in DNA-damage response. However, the epigenetic regulation mechanism of fisetin in cancers is hardly studied. RFXAP is a critical transcription factor for MHC II molecules, however, its transcriptional role in PDAC is poorly understood. The anti-PDAC effect of fisetin was measured by CCK-8, flow cytometry, xenograft tumor nude mice model. DNA-damage levels were examined by immunofluorescence. Bioinformatics analysis was used to examine the expression of RFXAP and other genes involved in DNA-damage response. ChIP sequencing was used to explore the transcriptional role of RFXAP. The expression of target gene KDM4A was measured by qRT-PCR and western blots. KDM4A promoter activity was analyzed using dual-luciferase reporter assay. RFXAP overexpressing or silencing of PDAC cells was used to explore the effect of RFXAP in DNA damage induced by fisetin. We found that fisetin inhibited cell proliferation and induced DNA damage and S-phase arrest in PDAC. Expression of RFXAP and other DNA-damage response genes were upregulated by fisetin. We revealed that RFXAP expression was relatively low in PDAC and correlated with tumor stage and poor prognosis. Then we explored the transcriptional role of RFXAP and found that RFXAP targeted KDM4A, a special demethylase specific for tri- and dimethylated histone H3K36. We found that overexpression of RFXAP upregulated KDM4A and attenuated methylation of H3K36, thereby impairing DNA repair and enhancing the DNA damage induced by fisetin, while RFXAP silencing showed the opposite effect. We also found the function of fisetin in enhancing the effect of chemotherapy on pancreatic cancer cells. Our findings revealed that fisetin induced DNA damage via RFXAP/KDM4A-dependent histone H3K36 demethylation, thus causing inhibition of proliferation in PDAC.
Collapse
Affiliation(s)
- Guoping Ding
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Xiaodong Xu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Dan Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China.,Department of General Surgery, School of Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou, 310000, China
| | - Yuhao Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China.,Emergency Department, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Weimin Wang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China.,Department of General Surgery, Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, 313003, Zhejiang, China
| | - Dongnan Ping
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Shengnan Jia
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China.
| | - Liping Cao
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China. .,Innovation Center for Minimally Invasive Technique and Device, Zhejiang University, Hangzhou, 310000, Zhejiang, China.
| |
Collapse
|
141
|
Britton S, Chanut P, Delteil C, Barboule N, Frit P, Calsou P. ATM antagonizes NHEJ proteins assembly and DNA-ends synapsis at single-ended DNA double strand breaks. Nucleic Acids Res 2020; 48:9710-9723. [PMID: 32890395 PMCID: PMC7515714 DOI: 10.1093/nar/gkaa723] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 07/29/2020] [Accepted: 08/21/2020] [Indexed: 12/15/2022] Open
Abstract
Two DNA repair pathways operate at DNA double strand breaks (DSBs): non-homologous end-joining (NHEJ), that requires two adjacent DNA ends for ligation, and homologous recombination (HR), that resects one DNA strand for invasion of a homologous duplex. Faithful repair of replicative single-ended DSBs (seDSBs) is mediated by HR, due to the lack of a second DNA end for end-joining. ATM stimulates resection at such breaks through multiple mechanisms including CtIP phosphorylation, which also promotes removal of the DNA-ends sensor and NHEJ protein Ku. Here, using a new method for imaging the recruitment of the Ku partner DNA-PKcs at DSBs, we uncover an unanticipated role of ATM in removing DNA-PKcs from seDSBs in human cells. Phosphorylation of DNA-PKcs on the ABCDE cluster is necessary not only for DNA-PKcs clearance but also for the subsequent MRE11/CtIP-dependent release of Ku from these breaks. We propose that at seDSBs, ATM activity is necessary for the release of both Ku and DNA-PKcs components of the NHEJ apparatus, and thereby prevents subsequent aberrant interactions between seDSBs accompanied by DNA-PKcs autophosphorylation and detrimental commitment to Lig4-dependent end-joining.
Collapse
Affiliation(s)
- Sébastien Britton
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Equipe Labellisée Ligue contre le Cancer 2018, Toulouse, France
| | - Pauline Chanut
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Equipe Labellisée Ligue contre le Cancer 2018, Toulouse, France
| | - Christine Delteil
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Equipe Labellisée Ligue contre le Cancer 2018, Toulouse, France
| | - Nadia Barboule
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Equipe Labellisée Ligue contre le Cancer 2018, Toulouse, France
| | - Philippe Frit
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Equipe Labellisée Ligue contre le Cancer 2018, Toulouse, France
| | - Patrick Calsou
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Equipe Labellisée Ligue contre le Cancer 2018, Toulouse, France
| |
Collapse
|
142
|
Mozaffari NL, Pagliarulo F, Sartori AA. Human CtIP: A 'double agent' in DNA repair and tumorigenesis. Semin Cell Dev Biol 2020; 113:47-56. [PMID: 32950401 DOI: 10.1016/j.semcdb.2020.09.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/20/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022]
Abstract
Human CtIP was originally identified as an interactor of the retinoblastoma protein and BRCA1, two bona fide tumour suppressors frequently mutated in cancer. CtIP is renowned for its role in the resection of DNA double-strand breaks (DSBs) during homologous recombination, a largely error-free DNA repair pathway crucial in maintaining genome integrity. However, CtIP-dependent DNA end resection is equally accountable for alternative end-joining, a mutagenic DSB repair mechanism implicated in oncogenic chromosomal translocations. In addition, CtIP contributes to transcriptional regulation of G1/S transition, DNA damage checkpoint signalling, and replication fork protection pathways. In this review, we present a perspective on the current state of knowledge regarding the tumour-suppressive and oncogenic properties of CtIP and provide an overview of their relevance for cancer development, progression, and therapy.
Collapse
Affiliation(s)
- Nour L Mozaffari
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Fabio Pagliarulo
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Alessandro A Sartori
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
143
|
Abstract
The DNA of our cells is constantly exposed to various types of damaging agents. One of the most critical types of damage is when both strands of the DNA break, and thus such breaks need to be efficiently repaired. It is known that CtIP promotes nucleases in DNA break repair. Here we show that CtIP can also hold the two DNA strands together in solution when DNA is free to move, using novel methodology that allows the monitoring of thousands of single DNA molecules in nanofabricated devices. DNA bridging likely facilitates the enzymatic repair steps and identifies novel CtIP functions that are crucial for repairing broken DNA. The early steps of DNA double-strand break (DSB) repair in human cells involve the MRE11-RAD50-NBS1 (MRN) complex and its cofactor, phosphorylated CtIP. The roles of these proteins in nucleolytic DSB resection are well characterized, but their role in bridging the DNA ends for efficient and correct repair is much less explored. Here we study the binding of phosphorylated CtIP, which promotes the endonuclease activity of MRN, to single long (∼50 kb) DNA molecules using nanofluidic channels and compare it to the yeast homolog Sae2. CtIP bridges DNA in a manner that depends on the oligomeric state of the protein, and truncated mutants demonstrate that the bridging depends on CtIP regions distinct from those that stimulate the nuclease activity of MRN. Sae2 is a much smaller protein than CtIP, and its bridging is significantly less efficient. Our results demonstrate that the nuclease cofactor and structural functions of CtIP may depend on the same protein population, which may be crucial for CtIP functions in both homologous recombination and microhomology-mediated end-joining.
Collapse
|
144
|
Howard SM, Ceppi I, Anand R, Geiger R, Cejka P. The internal region of CtIP negatively regulates DNA end resection. Nucleic Acids Res 2020; 48:5485-5498. [PMID: 32347940 PMCID: PMC7261161 DOI: 10.1093/nar/gkaa273] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 04/05/2020] [Accepted: 04/14/2020] [Indexed: 12/16/2022] Open
Abstract
DNA double-strand breaks are repaired by end-joining or homologous recombination. A key-committing step of recombination is DNA end resection. In resection, phosphorylated CtIP first promotes the endonuclease of MRE11-RAD50-NBS1 (MRN). Subsequently, CtIP also stimulates the WRN/BLM-DNA2 pathway, coordinating thus both short and long-range resection. The structure of CtIP differs from its orthologues in yeast, as it contains a large internal unstructured region. Here, we conducted a domain analysis of CtIP to define the function of the internal region in DNA end resection. We found that residues 350-600 were entirely dispensable for resection in vitro. A mutant lacking these residues was unexpectedly more efficient than full-length CtIP in DNA end resection and homologous recombination in vivo, and consequently conferred resistance to lesions induced by the topoisomerase poison camptothecin, which require high MRN-CtIP-dependent resection activity for repair. This suggested that the internal CtIP region, further mapped to residues 550-600, may mediate a negative regulatory function to prevent over resection in vivo. The CtIP internal deletion mutant exhibited sensitivity to other DNA-damaging drugs, showing that upregulated resection may be instead toxic under different conditions. These experiments together identify a region within the central CtIP domain that negatively regulates DNA end resection.
Collapse
Affiliation(s)
- Sean Michael Howard
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Ilaria Ceppi
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland.,Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH) Zürich, Switzerland
| | - Roopesh Anand
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Roger Geiger
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland.,Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH) Zürich, Switzerland
| |
Collapse
|
145
|
The Effects of Genetic and Epigenetic Alterations of BARD1 on the Development of Non-Breast and Non-Gynecological Cancers. Genes (Basel) 2020; 11:genes11070829. [PMID: 32708251 PMCID: PMC7396976 DOI: 10.3390/genes11070829] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 02/06/2023] Open
Abstract
Breast Cancer 1 (BRCA1) gene is a well-characterized tumor suppressor gene, mutations of which are primarily found in women with breast and ovarian cancers. BRCA1-associated RING domain 1 (BARD1) gene has also been identified as an important tumor suppressor gene in breast, ovarian, and uterine cancers. Underscoring the functional significance of the BRCA1 and BARD1 interactions, prevalent mutations in the BRCA1 gene are found in its RING domain, through which it binds the RING domain of BARD1. BARD1-BRCA1 heterodimer plays a crucial role in a variety of DNA damage response (DDR) pathways, including DNA damage checkpoint and homologous recombination (HR). However, many mutations in both BARD1 and BRCA1 also exist in other domains that significantly affect their biological functions. Intriguingly, recent genome-wide studies have identified various single nucleotide polymorphisms (SNPs), genetic alterations, and epigenetic modifications in or near the BARD1 gene that manifested profound effects on tumorigenesis in a variety of non-breast and non-gynecological cancers. In this review, we will briefly discuss the molecular functions of BARD1, including its BRCA1-dependent as well as BRCA1-independent functions. We will then focus on evaluating the common BARD1 related SNPs as well as genetic and epigenetic changes that occur in the non-BRCA1-dominant cancers, including neuroblastoma, lung, and gastrointestinal cancers. Furthermore, the pro- and anti-tumorigenic functions of different SNPs and BARD1 variants will also be discussed.
Collapse
|
146
|
DNA double-strand break end resection: a critical relay point for determining the pathway of repair and signaling. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s42764-020-00017-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AbstractA DNA double-strand break (DSB) is considered the most critical DNA lesion because it causes cell death and severe mutations if it is not repaired or repaired incorrectly. Accumulating evidence has shown that the majority of DSBs are repaired by DNA non-homologous end joining (NHEJ), the first utilized repair pathway in human cells. In contrast, the repair pathway is sometimes diverted into using homologous recombination (HR), which has increased precision under specific circumstances: e.g., when DSBs are generated at transcriptionally active loci or are not readily repaired due to the complexity of damage at the DSB ends or due to highly compacted chromatin. DSB end resection (resection) is considered the most critical turning point for directing repair towards HR. After resection, the HR process is finalized by RAD51 loading and recombination. Thus, understanding the process of resection is critically important to understand the regulation of the choice of DSB repair pathway. In addition, resection is also an important factor influencing DNA damage signaling because unresected ends preferentially activate ATM, whereas longer resected ends activate ATR. Thus, DSB end resection is a key relay point that determines the repair pathway and the signal balance. In this review, we summarize the mechanism underlying DSB end resection and further discuss how it is involved in cancer therapy.
Collapse
|
147
|
Reginato G, Cejka P. The MRE11 complex: A versatile toolkit for the repair of broken DNA. DNA Repair (Amst) 2020; 91-92:102869. [PMID: 32480356 DOI: 10.1016/j.dnarep.2020.102869] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022]
Abstract
When DNA breaks, the ends need to be stabilized and processed to facilitate subsequent repair, which can occur by either direct but error-prone end-joining with another broken DNA molecule or a more accurate homology-directed repair by the recombination machinery. At the same time, the presence of broken DNA triggers a signaling cascade that regulates the repair events and cellular progression through the cell cycle. The MRE11 nuclease, together with RAD50 and NBS1 forms a complex termed MRN that participates in all these processes. Although MRE11 was first identified more than 20 years ago, deep insights into its mechanism of action and regulation are much more recent. Here we review how MRE11 functions within MRN, and how the complex is further regulated by CtIP and its phosphorylation in a cell cycle dependent manner. We describe how RAD50, NBS1 and CtIP convert MRE11, exhibiting per se a 3'→5' exonuclease activity, into an ensemble that instead degrades primarily the 5'-terminated strand by endonucleolytic cleavage at DNA break sites to generate 3' overhangs, as required for the initiation of homologous recombination. The unique mechanism of DNA end resection by MRN-CtIP makes it a very flexible toolkit to process DNA breaks with a variety of secondary structures and protein blocks. Such a block can also be the Ku heterodimer, and emerging evidence suggests that MRN-CtIP may often need to remove Ku from DNA ends before initiating homologous recombination. Misregulation of DNA break repair results in mutations and chromosome rearrangements that can drive cancer development. Therefore, a detailed understanding of the underlying processes is highly relevant for human health.
Collapse
Affiliation(s)
- Giordano Reginato
- Institute for Research in Biomedicine, Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland; Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| | - Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland; Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland.
| |
Collapse
|
148
|
Bennett LG, Wilkie AM, Antonopoulou E, Ceppi I, Sanchez A, Vernon EG, Gamble A, Myers KN, Collis SJ, Cejka P, Staples CJ. MRNIP is a replication fork protection factor. SCIENCE ADVANCES 2020; 6:eaba5974. [PMID: 32832601 PMCID: PMC7439443 DOI: 10.1126/sciadv.aba5974] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/28/2020] [Indexed: 05/04/2023]
Abstract
The remodeling of stalled replication forks to form four-way DNA junctions is an important component of the replication stress response. Nascent DNA at the regressed arms of these reversed forks is protected by RAD51 and the tumor suppressors BRCA1/2, and when this function is compromised, stalled forks undergo pathological MRE11-dependent degradation, leading to chromosomal instability. However, the mechanisms regulating MRE11 functions at reversed forks are currently unclear. Here, we identify the MRE11-binding protein MRNIP as a novel fork protection factor that directly binds to MRE11 and specifically represses its exonuclease activity. The loss of MRNIP results in impaired replication fork progression, MRE11 exonuclease-dependent degradation of reversed forks, persistence of underreplicated genomic regions, chemosensitivity, and chromosome instability. Our findings identify MRNIP as a novel regulator of MRE11 at reversed forks and provide evidence that regulation of specific MRE11 nuclease activities ensures protection of nascent DNA and thereby genome integrity.
Collapse
Affiliation(s)
- L. G. Bennett
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, Bangor LL57 2UW, UK
| | - A. M. Wilkie
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, Bangor LL57 2UW, UK
| | - E. Antonopoulou
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, Bangor LL57 2UW, UK
| | - I. Ceppi
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
- Institute of Biochemistry, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - A. Sanchez
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | - E. G. Vernon
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, Bangor LL57 2UW, UK
| | - A. Gamble
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, Bangor LL57 2UW, UK
| | - K. N. Myers
- Sheffield Institute for Nucleic Acids, Department of Oncology and Metabolism, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | - S. J. Collis
- Sheffield Institute for Nucleic Acids, Department of Oncology and Metabolism, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | - P. Cejka
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
- Institute of Biochemistry, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - C. J. Staples
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, Bangor LL57 2UW, UK
| |
Collapse
|
149
|
Kaushal S, Wollmuth CE, Das K, Hile SE, Regan SB, Barnes RP, Haouzi A, Lee SM, House NCM, Guyumdzhyan M, Eckert KA, Freudenreich CH. Sequence and Nuclease Requirements for Breakage and Healing of a Structure-Forming (AT)n Sequence within Fragile Site FRA16D. Cell Rep 2020; 27:1151-1164.e5. [PMID: 31018130 DOI: 10.1016/j.celrep.2019.03.103] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 02/07/2019] [Accepted: 03/27/2019] [Indexed: 01/20/2023] Open
Abstract
Common fragile sites (CFSs) are genomic regions that display gaps and breaks in human metaphase chromosomes under replication stress and are often deleted in cancer cells. We studied an ∼300-bp subregion (Flex1) of human CFS FRA16D in yeast and found that it recapitulates characteristics of CFS fragility in human cells. Flex1 fragility is dependent on the ability of a variable-length AT repeat to form a cruciform structure that stalls replication. Fragility at Flex1 is initiated by structure-specific endonuclease Mus81-Mms4 acting together with the Slx1-4/Rad1-10 complex, whereas Yen1 protects Flex1 against breakage. Sae2 is required for healing of Flex1 after breakage. Our study shows that breakage within a CFS can be initiated by nuclease cleavage at forks stalled at DNA structures. Furthermore, our results suggest that CFSs are not just prone to breakage but also are impaired in their ability to heal, and this deleterious combination accounts for their fragility.
Collapse
Affiliation(s)
- Simran Kaushal
- Department of Biology, Tufts University, Suite 4700, 200 Boston Ave., Medford, MA 02155, USA
| | - Charles E Wollmuth
- Department of Biology, Tufts University, Suite 4700, 200 Boston Ave., Medford, MA 02155, USA
| | - Kohal Das
- Department of Biology, Tufts University, Suite 4700, 200 Boston Ave., Medford, MA 02155, USA
| | - Suzanne E Hile
- Department of Pathology, The Jake Gittlen Laboratories for Cancer Research, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Samantha B Regan
- Department of Biology, Tufts University, Suite 4700, 200 Boston Ave., Medford, MA 02155, USA
| | - Ryan P Barnes
- Department of Pathology, The Jake Gittlen Laboratories for Cancer Research, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Alice Haouzi
- Department of Biology, Tufts University, Suite 4700, 200 Boston Ave., Medford, MA 02155, USA
| | - Soo Mi Lee
- Department of Biology, Tufts University, Suite 4700, 200 Boston Ave., Medford, MA 02155, USA
| | - Nealia C M House
- Department of Biology, Tufts University, Suite 4700, 200 Boston Ave., Medford, MA 02155, USA
| | - Michael Guyumdzhyan
- Department of Biology, Tufts University, Suite 4700, 200 Boston Ave., Medford, MA 02155, USA
| | - Kristin A Eckert
- Department of Pathology, The Jake Gittlen Laboratories for Cancer Research, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Catherine H Freudenreich
- Department of Biology, Tufts University, Suite 4700, 200 Boston Ave., Medford, MA 02155, USA; Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA.
| |
Collapse
|
150
|
Huang JW, Acharya A, Taglialatela A, Nambiar TS, Cuella-Martin R, Leuzzi G, Hayward SB, Joseph SA, Brunette GJ, Anand R, Soni RK, Clark NL, Bernstein KA, Cejka P, Ciccia A. MCM8IP activates the MCM8-9 helicase to promote DNA synthesis and homologous recombination upon DNA damage. Nat Commun 2020; 11:2948. [PMID: 32528060 PMCID: PMC7290032 DOI: 10.1038/s41467-020-16718-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 05/19/2020] [Indexed: 02/06/2023] Open
Abstract
Homologous recombination (HR) mediates the error-free repair of DNA double-strand breaks to maintain genomic stability. Here we characterize C17orf53/MCM8IP, an OB-fold containing protein that binds ssDNA, as a DNA repair factor involved in HR. MCM8IP-deficient cells exhibit HR defects, especially in long-tract gene conversion, occurring downstream of RAD51 loading, consistent with a role for MCM8IP in HR-dependent DNA synthesis. Moreover, loss of MCM8IP confers cellular sensitivity to crosslinking agents and PARP inhibition. Importantly, we report that MCM8IP directly associates with MCM8-9, a helicase complex mutated in primary ovarian insufficiency, and RPA1. We additionally show that the interactions of MCM8IP with MCM8-9 and RPA facilitate HR and promote replication fork progression and cellular viability in response to treatment with crosslinking agents. Mechanistically, MCM8IP stimulates the helicase activity of MCM8-9. Collectively, our work identifies MCM8IP as a key regulator of MCM8-9-dependent DNA synthesis during DNA recombination and replication.
Collapse
Affiliation(s)
- Jen-Wei Huang
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Ananya Acharya
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana, Bellinzona, Switzerland
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Angelo Taglialatela
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Tarun S Nambiar
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Raquel Cuella-Martin
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Giuseppe Leuzzi
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Samuel B Hayward
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Sarah A Joseph
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Gregory J Brunette
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Roopesh Anand
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Rajesh K Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Nathan L Clark
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Kara A Bernstein
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Petr Cejka
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana, Bellinzona, Switzerland
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Alberto Ciccia
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|