101
|
Brigidi GS, Bamji SX. Cadherin-catenin adhesion complexes at the synapse. Curr Opin Neurobiol 2011; 21:208-14. [PMID: 21255999 DOI: 10.1016/j.conb.2010.12.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 12/21/2010] [Indexed: 01/28/2023]
Abstract
Classic cadherins function as key organizers during the formation and remodeling of synapses in the vertebrate central nervous system. Cadherins are Ca2+-dependent homophilic adhesion molecules whose adhesive strength can be regulated by conformational changes, through cadherin's association with intracellular binding proteins, and by the regulation of cadherin turnover and internalization. In this mini-review, we will highlight recent studies on the role of cadherins and their associated partners in regulating synaptic architecture. Moreover, we will discuss molecular mechanisms underlying cadherin turnover and the subsequent impact on synaptic connections.
Collapse
Affiliation(s)
- G Stefano Brigidi
- Department of Cellular and Physiological Sciences and the Brain Research Centre, University of British Columbia, Canada
| | | |
Collapse
|
102
|
Xie Z, Cahill ME, Radulovic J, Wang J, Campbell SL, Miller CA, Sweatt JD, Penzes P. Hippocampal phenotypes in kalirin-deficient mice. Mol Cell Neurosci 2011; 46:45-54. [PMID: 20708080 PMCID: PMC3576140 DOI: 10.1016/j.mcn.2010.08.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 07/31/2010] [Accepted: 08/03/2010] [Indexed: 11/19/2022] Open
Abstract
Regulation of forebrain cellular structure and function by small GTPase pathways is crucial for normal and pathological brain development and function. Kalirin is a brain-specific activator of Rho-like small GTPases implicated in neuropsychiatric disorders. We have recently demonstrated key roles for kalirin in cortical synaptic transmission, dendrite branching, spine density, and working memory. However, little is known about the impact of the complete absence of kalirin on the hippocampus in mice. We thus investigated hippocampal function, structure, and associated behavioral phenotypes in KALRN knockout (KO) mice we have recently generated. Here we show that KALRN KO mice had modest impairments in hippocampal LTP, but normal hippocampal synaptic transmission. In these mice, both context and cue-dependent fear conditioning were impaired. Spine density and dendrite morphology in hippocampal pyramidal neurons were not significantly affected in the KALRN KO mice, but small alterations in the gross morphology of the hippocampus were detected. These data suggest that hippocampal structure and function are more resilient to the complete loss of kalirin, and reveal impairments in fear learning. These studies allow the comparison of the phenotypes of different kalirin mutant mice and shed light on the brain region-specific functions of small GTPase signaling.
Collapse
Affiliation(s)
- Zhong Xie
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Michael E. Cahill
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Jelena Radulovic
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- The Asher Center for Depressive Disorders, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Jing Wang
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Susan L. Campbell
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Courtney A. Miller
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - J. David Sweatt
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Peter Penzes
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|
103
|
The molecular evolution of the p120-catenin subfamily and its functional associations. PLoS One 2010; 5:e15747. [PMID: 21209830 PMCID: PMC3013132 DOI: 10.1371/journal.pone.0015747] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 11/26/2010] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND p120-catenin (p120) is the prototypical member of a subclass of armadillo-related proteins that includes δ-catenin/NPRAP, ARVCF, p0071, and the more distantly related plakophilins 1-3. In vertebrates, p120 is essential in regulating surface expression and stability of all classical cadherins, and directly interacts with Kaiso, a BTB/ZF family transcription factor. METHODOLOGY/PRINCIPAL FINDINGS To clarify functional relationships between these proteins and how they relate to the classical cadherins, we have examined the proteomes of 14 diverse vertebrate and metazoan species. The data reveal a single ancient δ-catenin-like p120 family member present in the earliest metazoans and conserved throughout metazoan evolution. This single p120 family protein is present in all protostomes, and in certain early-branching chordate lineages. Phylogenetic analyses suggest that gene duplication and functional diversification into "p120-like" and "δ-catenin-like" proteins occurred in the urochordate-vertebrate ancestor. Additional gene duplications during early vertebrate evolution gave rise to the seven vertebrate p120 family members. Kaiso family members (i.e., Kaiso, ZBTB38 and ZBTB4) are found only in vertebrates, their origin following that of the p120-like gene lineage and coinciding with the evolution of vertebrate-specific mechanisms of epigenetic gene regulation by CpG island methylation. CONCLUSIONS/SIGNIFICANCE The p120 protein family evolved from a common δ-catenin-like ancestor present in all metazoans. Through several rounds of gene duplication and diversification, however, p120 evolved in vertebrates into an essential, ubiquitously expressed protein, whereas loss of the more selectively expressed δ-catenin, p0071 and ARVCF are tolerated in most species. Together with phylogenetic studies of the vertebrate cadherins, our data suggest that the p120-like and δ-catenin-like genes co-evolved separately with non-neural (E- and P-cadherin) and neural (N- and R-cadherin) cadherin lineages, respectively. The expansion of p120 relative to δ-catenin during vertebrate evolution may reflect the pivotal and largely disproportionate role of the non-neural cadherins with respect to evolution of the wide range of somatic morphology present in vertebrates today.
Collapse
|
104
|
Head BP, Peart JN, Panneerselvam M, Yokoyama T, Pearn ML, Niesman IR, Bonds JA, Schilling JM, Miyanohara A, Headrick J, Ali SS, Roth DM, Patel PM, Patel HH. Loss of caveolin-1 accelerates neurodegeneration and aging. PLoS One 2010; 5:e15697. [PMID: 21203469 PMCID: PMC3009734 DOI: 10.1371/journal.pone.0015697] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 11/29/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The aged brain exhibits a loss in gray matter and a decrease in spines and synaptic densities that may represent a sequela for neurodegenerative diseases such as Alzheimer's. Membrane/lipid rafts (MLR), discrete regions of the plasmalemma enriched in cholesterol, glycosphingolipids, and sphingomyelin, are essential for the development and stabilization of synapses. Caveolin-1 (Cav-1), a cholesterol binding protein organizes synaptic signaling components within MLR. It is unknown whether loss of synapses is dependent on an age-related loss of Cav-1 expression and whether this has implications for neurodegenerative diseases such as Alzheimer's disease. METHODOLOGY/PRINCIPAL FINDINGS We analyzed brains from young (Yg, 3-6 months), middle age (Md, 12 months), aged (Ag, >18 months), and young Cav-1 KO mice and show that localization of PSD-95, NR2A, NR2B, TrkBR, AMPAR, and Cav-1 to MLR is decreased in aged hippocampi. Young Cav-1 KO mice showed signs of premature neuronal aging and degeneration. Hippocampi synaptosomes from Cav-1 KO mice showed reduced PSD-95, NR2A, NR2B, and Cav-1, an inability to be protected against cerebral ischemia-reperfusion injury compared to young WT mice, increased Aβ, P-Tau, and astrogliosis, decreased cerebrovascular volume compared to young WT mice. As with aged hippocampi, Cav-1 KO brains showed significantly reduced synapses. Neuron-targeted re-expression of Cav-1 in Cav-1 KO neurons in vitro decreased Aβ expression. CONCLUSIONS Therefore, Cav-1 represents a novel control point for healthy neuronal aging and loss of Cav-1 represents a non-mutational model for Alzheimer's disease.
Collapse
Affiliation(s)
- Brian P. Head
- Department of Anesthesiology, University of California San Diego, La Jolla, California, United States of America
- VA San Diego Healthcare System, San Diego, California, United States of America
| | - Jason N. Peart
- Heart Foundation Research Centre, Griffith University, Gold Coast, Queensland, Australia
| | - Mathivadhani Panneerselvam
- Department of Anesthesiology, University of California San Diego, La Jolla, California, United States of America
| | - Takaakira Yokoyama
- Department of Anesthesiology, University of California San Diego, La Jolla, California, United States of America
| | - Matthew L. Pearn
- Department of Anesthesiology, University of California San Diego, La Jolla, California, United States of America
| | - Ingrid R. Niesman
- Department of Anesthesiology, University of California San Diego, La Jolla, California, United States of America
| | - Jacqueline A. Bonds
- Department of Anesthesiology, University of California San Diego, La Jolla, California, United States of America
| | - Jan M. Schilling
- Department of Anesthesiology, University of California San Diego, La Jolla, California, United States of America
- VA San Diego Healthcare System, San Diego, California, United States of America
| | - Atsushi Miyanohara
- Gene Therapy Program, University of California San Diego, La Jolla, California, United States of America
| | - John Headrick
- Heart Foundation Research Centre, Griffith University, Gold Coast, Queensland, Australia
| | - Sameh S. Ali
- Department of Medicine, University of California, La Jolla, California, United States of America
| | - David M. Roth
- Department of Anesthesiology, University of California San Diego, La Jolla, California, United States of America
- VA San Diego Healthcare System, San Diego, California, United States of America
| | - Piyush M. Patel
- Department of Anesthesiology, University of California San Diego, La Jolla, California, United States of America
- VA San Diego Healthcare System, San Diego, California, United States of America
| | - Hemal H. Patel
- Department of Anesthesiology, University of California San Diego, La Jolla, California, United States of America
- VA San Diego Healthcare System, San Diego, California, United States of America
| |
Collapse
|
105
|
Jeon CY, Jin JK, Koh YH, Chun W, Choi IG, Kown HJ, Kim YS, Park JB. Neurites from PC12 cells are connected to each other by synapse-like structures. Synapse 2010; 64:765-72. [PMID: 20698031 DOI: 10.1002/syn.20789] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
PC12 cells have been used as a model of sympathetic neurons. Nerve growth factor (NGF), basic fibroblast growth factor (bFGF), and cAMP induce neurite outgrowth from PC12 cells. cAMP induced a greater number of neurites than did NGF. In particular, we attempted to elucidate whether PC12 cell neurites, induced by several factors including NGF, bFGF, and cAMP, form synapses, and whether each neurite has presynaptic and postsynaptic properties. Using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), we observed that neurites are connected to each other. The connected regions presented dense core vesicles and a clathrin-coated membrane invagination. In addition, typical maker proteins for axon and dendrite were identified by an immuno-staining method. Tau-1, an axonal marker in neurons, was localized at a high concentration in the terminal tips of neurites from PC12 cells, which were connected to neurite processes containing MAP-2, a dendritic marker in neurons. Furthermore, neurites containing SV2 and synaptotagmin, markers of synaptic vesicles, were in contact with neurites harboring drebrin, a marker of the postsynaptic membrane, suggesting that neurites from PC12 cells induced by NGF, bFGF, and cAMP may form synapse-like structures. Tat-C3 toxin, a Rho inhibitor, augmented neurite outgrowth induced by NGF, bFGF, and cAMP. Tat-C3 toxin together with neurotrophins also exhibited synapse-like structures between neurites. However, it remains to be studied whether RhoA inhibition plays a role in the formation of synapse-like structures in PC12 cells.
Collapse
Affiliation(s)
- Chan-Young Jeon
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Kangwon-Do, 200-702, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
106
|
Hong JY, Park JI, Cho K, Gu D, Ji H, Artandi SE, McCrea PD. Shared molecular mechanisms regulate multiple catenin proteins: canonical Wnt signals and components modulate p120-catenin isoform-1 and additional p120 subfamily members. J Cell Sci 2010; 123:4351-65. [PMID: 21098636 DOI: 10.1242/jcs.067199] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Wnt signaling pathways have fundamental roles in animal development and tumor progression. Here, employing Xenopus embryos and mammalian cell lines, we report that the degradation machinery of the canonical Wnt pathway modulates p120-catenin protein stability through mechanisms shared with those regulating β-catenin. For example, in common with β-catenin, exogenous expression of destruction complex components, such as GSK3β and axin, promotes degradation of p120-catenin. Again in parallel with β-catenin, reduction of canonical Wnt signals upon depletion of LRP5 and LRP6 results in p120-catenin degradation. At the primary sequence level, we resolved conserved GSK3β phosphorylation sites in the amino-terminal region of p120-catenin present exclusively in isoform-1. Point-mutagenesis of these residues inhibited the association of destruction complex components, such as those involved in ubiquitylation, resulting in stabilization of p120-catenin. Functionally, in line with predictions, p120 stabilization increased its signaling activity in the context of the p120-Kaiso pathway. Importantly, we found that two additional p120-catenin family members, ARVCF-catenin and δ-catenin, associate with axin and are degraded in its presence. Thus, as supported using gain- and loss-of-function approaches in embryo and cell line systems, canonical Wnt signals appear poised to have an impact upon a breadth of catenin biology in vertebrate development and, possibly, human cancers.
Collapse
Affiliation(s)
- Ji Yeon Hong
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
107
|
Wong LE, Reynolds AB, Dissanayaka NT, Minden A. p120-catenin is a binding partner and substrate for Group B Pak kinases. J Cell Biochem 2010; 110:1244-54. [PMID: 20564219 DOI: 10.1002/jcb.22639] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Pak5 is a member of the Group B p21-activated kinases, which are effectors of the Rho family GTPases Cdc42 and Rac. Pak5 has been shown to promote cytoskeletal reorganization, inducing filopodia formation and neurite outgrowth in neuroblastoma cells. In this study, we used affinity chromatography followed by SDS-PAGE and mass spectrometry to identify potential downstream effectors of Pak5. Using this approach, we isolated p120-catenin (p120), a known regulator of cytoskeletal reorganization and Rho GTPases. Using co-immunoprecipitation assays we found that p120 preferentially interacts with Pak5 among the Group B Paks. Results from immunofluorescence studies revealed that Pak5 and p120 co-localize in cells. Both Pak5 and constitutively active Pak4, the founding member of the Group B Paks, directly phosphorylate p120 in vitro. The phosphorylation was shown by Western blot and immunofluorescence to take place specifically on serine 288. This study is the first report of an upstream serine/threonine kinase that phosphorylates p120.
Collapse
Affiliation(s)
- Lisa Epstein Wong
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy at Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
108
|
Asimaki O, Mangoura D. Cannabinoid receptor 1 induces a biphasic ERK activation via multiprotein signaling complex formation of proximal kinases PKCε, Src, and Fyn in primary neurons. Neurochem Int 2010; 58:135-44. [PMID: 21074588 DOI: 10.1016/j.neuint.2010.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 11/02/2010] [Accepted: 11/03/2010] [Indexed: 11/17/2022]
Abstract
Cannabinoid receptors 1 (CB1Rs) play important roles in the regulation of dendritic branching, synapse density, and synaptic transmission through multiple G-protein-coupled signaling systems, including the activation of the extracellular signal-regulated kinases ERK1/2. The proximal signaling interactions leading to ERK1/2 activation by CB1R in CNS remain, however, unclear. Here, we present evidence that the CB1R agonist methanandamide induced a biphasic and sustained activation of ERK1/2 in primary neurons derived from E7 telencephalon. We show that E7 neurons natively express high levels of CB1R message and protein, the majority of which associates with PKCɛ at basal conditions. We now demonstrate that the first peak of ERK activation by CB1R was mediated by the sequential activation of G(q), PLC, and PKCɛ, selectively, and that the CB1R-activated PKCɛ acutely formed transient signaling modules containing activated Src and Fyn. A second pool of CB1Rs, coupled to PTX-sensitive activation of G(i/o), utilized as effectors additional Src and Fyn molecules to generate a second, additional wave of ERK activation at 15 min. Concurrently to these intermolecular signaling interactions, cytoskeleton-associated proteins MARCKS and p120catenin were drastically modified by phosphorylation of PKC and Src, respectively. These receptor-proximal signaling events correlated well with induction of neuritic outgrowth in the long term. Our data provide evidence for multiprotein signaling complex formation in the coupling of CB1R to activation of ERK in CNS neurons, and may elucidate several of the less understood acute effects of cannabinoid drugs.
Collapse
Affiliation(s)
- Olga Asimaki
- Developmental Neurobiology and Neurochemistry Group, Basic Neurosciences, Center for Preventive Medicine, Neurosciences and Social Psychiatry, Biomedical Research Foundation of the Academy of Athens, 4, Soranou Ephessiou Street, 11527 Athens, Greece
| | | |
Collapse
|
109
|
Céspedes-Rubio A, Jurado FW, Cardona-Gómez GP. p120 catenin/αN-catenin are molecular targets in the neuroprotection and neuronal plasticity mediated by atorvastatin after focal cerebral ischemia. J Neurosci Res 2010; 88:3621-34. [PMID: 20936696 DOI: 10.1002/jnr.22511] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 08/01/2010] [Accepted: 08/12/2010] [Indexed: 02/06/2023]
Abstract
Atorvastatin (ATV), a 3-hydroxy 3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, exerts beneficial effects on stroke through several pleiotropic mechanisms. However, its role following cerebral ischemia is not completely understood yet. We evaluated the effect of ATV treatment on the synaptic adhesion proteins after a transient middle cerebral artery occlusion (t-MCAO) model in rats. Ischemic male Wistar rats were treated with 10 mg/kg ATV. The first dose was 6 hr after reperfusion, then every 24 hr for 3days. Our findings showed that ATV treatment produced an increase in pAkt ser473 and a decrease in pMAPK 44/42 protein levels 12 and 24 hr postischemia in the cerebral cortex and the hippocampus. However, p120 catenin and αN-catenin became drastically increased throughout the temporal course of postischemia treatment (12-72 hr), mainly in the hippocampus. Neurological recovery was observed at 48 and 72 hr, supported by a significant reduction of infarct volume, neuronal loss, and glial hyperreactivity after 72 hr of postischemia treatment with ATV. ATV treatment also up-regulated the association of p120(ctn) , αN-catenin to PSD-95, accompanied by a reduction of RhoA activation and the recovery of MAP2 immunoreactivity, these being significantly affected by the focal cerebral ischemia. Our findings suggested that p120(ctn) and αN-catenin synaptic adhesion proteins are crucial molecular targets in ATV-mediated neuroprotection and neuronal plasticity after focal cerebral ischemia.
Collapse
Affiliation(s)
- Angel Céspedes-Rubio
- Neuroscience Group, Cellular and Molecular Neurobiology Area, School of Medicine, SIU, Universidad de Antioquia, Medellín, Colombia
| | | | | |
Collapse
|
110
|
Giagtzoglou N, Ly CV, Bellen HJ. Cell adhesion, the backbone of the synapse: "vertebrate" and "invertebrate" perspectives. Cold Spring Harb Perspect Biol 2010; 1:a003079. [PMID: 20066100 DOI: 10.1101/cshperspect.a003079] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Synapses are asymmetric intercellular junctions that mediate neuronal communication. The number, type, and connectivity patterns of synapses determine the formation, maintenance, and function of neural circuitries. The complexity and specificity of synaptogenesis relies upon modulation of adhesive properties, which regulate contact initiation, synapse formation, maturation, and functional plasticity. Disruption of adhesion may result in structural and functional imbalance that may lead to neurodevelopmental diseases, such as autism, or neurodegeneration, such as Alzheimer's disease. Therefore, understanding the roles of different adhesion protein families in synapse formation is crucial for unraveling the biology of neuronal circuit formation, as well as the pathogenesis of some brain disorders. The present review summarizes some of the knowledge that has been acquired in vertebrate and invertebrate genetic model organisms.
Collapse
Affiliation(s)
- Nikolaos Giagtzoglou
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
111
|
Bartlett JD, Dobeck JM, Tye CE, Perez-Moreno M, Stokes N, Reynolds AB, Fuchs E, Skobe Z. Targeted p120-catenin ablation disrupts dental enamel development. PLoS One 2010; 5. [PMID: 20862276 PMCID: PMC2940824 DOI: 10.1371/journal.pone.0012703] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 08/21/2010] [Indexed: 11/19/2022] Open
Abstract
Dental enamel development occurs in stages. The ameloblast cell layer is adjacent to, and is responsible for, enamel formation. When rodent pre-ameloblasts become tall columnar secretory-stage ameloblasts, they secrete enamel matrix proteins, and the ameloblasts start moving in rows that slide by one another. This movement is necessary to form the characteristic decussating enamel prism pattern. Thus, a dynamic system of intercellular interactions is required for proper enamel development. Cadherins are components of the adherens junction (AJ), and they span the cell membrane to mediate attachment to adjacent cells. p120 stabilizes cadherins by preventing their internalization and degradation. So, we asked if p120-mediated cadherin stability is important for dental enamel formation. Targeted p120 ablation in the mouse enamel organ had a striking effect. Secretory stage ameloblasts detached from surrounding tissues, lost polarity, flattened, and ameloblast E- and N-cadherin expression became undetectable by immunostaining. The enamel itself was poorly mineralized and appeared to be composed of a thin layer of merged spheres that abraded from the tooth. Significantly, p120 mosaic mouse teeth were capable of forming normal enamel demonstrating that the enamel defects were not a secondary effect of p120 ablation. Surprisingly, blood-filled sinusoids developed in random locations around the developing teeth. This has not been observed in other p120-ablated tissues and may be due to altered p120-mediated cell signaling. These data reveal a critical role for p120 in tooth and dental enamel development and are consistent with p120 directing the attachment and detachment of the secretory stage ameloblasts as they move in rows.
Collapse
Affiliation(s)
- John D Bartlett
- Department of Cytokine Biology, Forsyth Institute, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | |
Collapse
|
112
|
Bozdagi O, Wang XB, Nikitczuk JS, Anderson TR, Bloss EB, Radice GL, Zhou Q, Benson DL, Huntley GW. Persistence of coordinated long-term potentiation and dendritic spine enlargement at mature hippocampal CA1 synapses requires N-cadherin. J Neurosci 2010; 30:9984-9. [PMID: 20668183 PMCID: PMC2921177 DOI: 10.1523/jneurosci.1223-10.2010] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 05/21/2010] [Accepted: 06/08/2010] [Indexed: 01/02/2023] Open
Abstract
Persistent changes in spine shape are coupled to long-lasting synaptic plasticity in hippocampus. The molecules that coordinate such persistent structural and functional plasticity are unknown. Here, we generated mice in which the cell adhesion molecule N-cadherin was conditionally ablated from postnatal, excitatory synapses in hippocampus. We applied to adult mice of either sex a combination of whole-cell recording, two-photon microscopy, and spine morphometric analysis to show that postnatal ablation of N-cadherin has profound effects on the stability of coordinated spine enlargement and long-term potentiation (LTP) at mature CA1 synapses, with no effects on baseline spine density or morphology, baseline properties of synaptic neurotransmission, or long-term depression. Thus, N-cadherin couples persistent spine structural modifications with long-lasting synaptic functional modifications associated selectively with LTP, revealing unexpectedly distinct roles at mature synapses in comparison with earlier, broader functions in synapse and spine development.
Collapse
Affiliation(s)
- Ozlem Bozdagi
- Fishberg Department of Neuroscience, Friedman Brain Institute and
| | - Xiao-bin Wang
- Department of Neurology, Mount Sinai School of Medicine, New York, New York 10029
| | | | | | - Erik B. Bloss
- Fishberg Department of Neuroscience, Friedman Brain Institute and
| | - Glenn L. Radice
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, and
| | - Qiang Zhou
- Genentech, South San Francisco, California 94080
| | - Deanna L. Benson
- Fishberg Department of Neuroscience, Friedman Brain Institute and
| | | |
Collapse
|
113
|
Mendez P, De Roo M, Poglia L, Klauser P, Muller D. N-cadherin mediates plasticity-induced long-term spine stabilization. ACTA ACUST UNITED AC 2010; 189:589-600. [PMID: 20440002 PMCID: PMC2867305 DOI: 10.1083/jcb.201003007] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Synaptic persistence is enhanced by N-cadherin, which clusters together in response to neural activity and long-term potentiation induction in dendritic spines. Excitatory synapses on dendritic spines are dynamic structures whose stability can vary from hours to years. However, the molecular mechanisms regulating spine persistence remain essentially unknown. In this study, we combined repetitive imaging and a gain and loss of function approach to test the role of N-cadherin (NCad) on spine stability. Expression of mutant but not wild-type NCad promotes spine turnover and formation of immature spines and interferes with the stabilization of new spines. Similarly, the long-term stability of preexisting spines is reduced when mutant NCad is expressed but enhanced in spines expressing NCad-EGFP clusters. Activity and long-term potentiation (LTP) induction selectively promote formation of NCad clusters in stimulated spines. Although activity-mediated expression of NCad-EGFP switches synapses to a highly stable state, expression of mutant NCad or short hairpin RNA–mediated knockdown of NCad prevents LTP-induced long-term stabilization of synapses. These results identify NCad as a key molecular component regulating long-term synapse persistence.
Collapse
Affiliation(s)
- Pablo Mendez
- Department of Neuroscience, University of Geneva, Faculty of Medicine, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
114
|
Essential cooperation of N-cadherin and neuroligin-1 in the transsynaptic control of vesicle accumulation. Proc Natl Acad Sci U S A 2010; 107:11116-21. [PMID: 20534458 DOI: 10.1073/pnas.0914233107] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cell adhesion molecules are key players in transsynaptic communication, precisely coordinating presynaptic differentiation with postsynaptic specialization. At glutamatergic synapses, their retrograde signaling has been proposed to control presynaptic vesicle clustering at active zones. However, how the different types of cell adhesion molecules act together during this decisive step of synapse maturation is largely unexplored. Using a knockout approach, we show that two synaptic adhesion systems, N-cadherin and neuroligin-1, cooperate to control vesicle clustering at nascent synapses. Live cell imaging and fluorescence recovery after photobleaching experiments at individual synaptic boutons revealed a strong impairment of vesicle accumulation in the absence of N-cadherin, whereas the formation of active zones was largely unaffected. Strikingly, also the clustering of synaptic vesicles triggered by neuroligin-1 overexpression required the presence of N-cadherin in cultured neurons. Mechanistically, we found that N-cadherin acts by postsynaptically accumulating neuroligin-1 and activating its function via the scaffolding molecule S-SCAM, leading, in turn, to presynaptic vesicle clustering. A similar cooperation of N-cadherin and neuroligin-1 was observed in immature CA3 pyramidal neurons in an organotypic hippocampal network. Moreover, at mature synapses, N-cadherin was required for the increase in release probability and miniature EPSC frequency induced by expressed neuroligin-1. This cooperation of two cell adhesion systems provides a mechanism for coupling bidirectional synapse maturation mediated by neuroligin-1 to cell type recognition processes mediated by classical cadherins.
Collapse
|
115
|
Smalley-Freed WG, Efimov A, Burnett PE, Short SP, Davis MA, Gumucio DL, Washington MK, Coffey RJ, Reynolds AB. p120-catenin is essential for maintenance of barrier function and intestinal homeostasis in mice. J Clin Invest 2010; 120:1824-35. [PMID: 20484816 DOI: 10.1172/jci41414] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 03/24/2010] [Indexed: 12/31/2022] Open
Abstract
Epithelial-cadherin (E-cadherin) is a master organizer of the epithelial phenotype. Its function is regulated in part by p120-catenin (referred to herein as p120), a cytoplasmic binding partner that directly regulates cadherin stability. As it has been suggested that cadherins have a role in inflammatory bowel disease (IBD), we sought to investigate this further by assessing the effect of p120 deficiency in mouse small intestine and colon. p120 conditional KO mice were superficially normal at birth but declined rapidly and died within 21 days. Cell-cell adhesion defects and inflammation led to progressive mucosal erosion and terminal bleeding, similar to what is observed in a dominant-negative cadherin mouse model of IBD. Additionally, selective loss of adherens junctions and accumulation of atypical COX-2-expressing neutrophils in p120-null areas of the colon were observed. To elucidate the mechanism, direct effects of p120 deficiency were assessed in vitro in a polarizing colon cancer cell line. Notably, transepithelial electrical resistance was dramatically reduced, neutrophil binding was increased 30 fold, and levels of COX-2, an enzyme associated with IBD, were markedly increased in neutrophils. Our data suggest that p120 loss disrupts the neonatal intestinal barrier and amplifies neutrophil engagement and that these changes lead to catastrophic inflammation during colonization of the neonatal gut with bacteria and other luminal antigens. Thus, we conclude that p120 has an essential role in barrier function and epithelial homeostasis and survival in the intestine.
Collapse
|
116
|
Affiliation(s)
- Pierre D McCrea
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| | | |
Collapse
|
117
|
Ishiyama N, Lee SH, Liu S, Li GY, Smith MJ, Reichardt LF, Ikura M. Dynamic and static interactions between p120 catenin and E-cadherin regulate the stability of cell-cell adhesion. Cell 2010; 141:117-28. [PMID: 20371349 DOI: 10.1016/j.cell.2010.01.017] [Citation(s) in RCA: 278] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 12/23/2009] [Accepted: 01/08/2010] [Indexed: 11/29/2022]
Abstract
The association of p120 catenin (p120) with the juxtamembrane domain (JMD) of the cadherin cytoplasmic tail is critical for the surface stability of cadherin-catenin cell-cell adhesion complexes. Here, we present the crystal structure of p120 isoform 4A in complex with the JMD core region (JMD(core)) of E-cadherin. The p120 armadillo repeat domain contains modular binding pockets that are complementary to electrostatic and hydrophobic properties of the JMD(core). Single-residue mutations within the JMD(core)-binding site of p120 abolished its interaction with E- and N-cadherins in vitro and in cultured cells. These mutations of p120 enabled us to clearly differentiate between N-cadherin-dependent and -independent steps of neuronal dendritic spine morphogenesis crucial for synapse development. NMR studies revealed that p120 regulates the stability of cadherin-mediated cell-cell adhesion by associating with the majority of the JMD, including residues implicated in clathrin-mediated endocytosis and Hakai-dependent ubiquitination of E-cadherin, through its discrete "dynamic" and "static" binding sites.
Collapse
Affiliation(s)
- Noboru Ishiyama
- Division of Signaling Biology, Ontario Cancer Institute, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
118
|
Okerlund ND, Kivimäe S, Tong CK, Peng IF, Ullian EM, Cheyette BNR. Dact1 is a postsynaptic protein required for dendrite, spine, and excitatory synapse development in the mouse forebrain. J Neurosci 2010; 30:4362-8. [PMID: 20335472 PMCID: PMC2848693 DOI: 10.1523/jneurosci.0354-10.2010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 02/18/2010] [Indexed: 11/21/2022] Open
Abstract
Dact1 (Dapper/Frodo), an intracellular phosphoprotein that binds Dishevelled, catenins, and other signaling proteins, is expressed in the developing and mature mammalian CNS, but its function there is unknown. Dact1 colocalized with synaptic markers and partitioned to postsynaptic fractions from cultured mouse forebrain neurons. Hippocampal neurons from Dact1 knock-out mice had simpler dendritic arbors and fewer spines than hippocampal neurons from wild-type littermates. This correlated with reductions in excitatory synapses and miniature EPSCs, whereas inhibitory synapses were not affected. Loss of Dact1 resulted in a decrease in activated Rac, and recombinant expression of either Dact1 or constitutively active Rac, but not Rho or Cdc42, rescued dendrite and spine phenotypes in Dact1 mutant neurons. Our findings suggest that, during neuronal differentiation, Dact1 plays a critical role in a molecular pathway promoting Rac activity underlying the elaboration of dendrites and the establishment of spines and excitatory synapses.
Collapse
Affiliation(s)
- Nathan D Okerlund
- Departments of Psychiatry, Physiology, and Ophthalmology and Neuroscience Graduate Program, University of California, San Francisco, San Francisco, California 94158, USA
| | | | | | | | | | | |
Collapse
|
119
|
McNair K, Spike R, Guilding C, Prendergast GC, Stone TW, Cobb SR, Morris BJ. A role for RhoB in synaptic plasticity and the regulation of neuronal morphology. J Neurosci 2010; 30:3508-17. [PMID: 20203211 PMCID: PMC6634083 DOI: 10.1523/jneurosci.5386-09.2010] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 01/14/2010] [Accepted: 01/21/2010] [Indexed: 12/22/2022] Open
Abstract
Actin-rich dendritic spines are the locus of excitatory synaptic transmission and plastic events such as long-term potentiation (LTP). Morphological plasticity of spines accompanies activity-dependent changes in synaptic strength. Several Rho GTPase family members are implicated in regulating neuronal and, in particular, spine structure via actin and the actin-binding protein cofilin. However, despite expression in hippocampus and cortex, its ability to modulate actin-regulatory proteins, and its induction during aging, RhoB has been relatively neglected. We previously demonstrated that LTP is associated with specific RhoB activation. Here, we further examined its role in synaptic function using mice with genetic deletion of the RhoB GTPase (RhoB(-/-) mice). Normal basal synaptic transmission accompanied reduced paired-pulse facilitation and post-tetanic potentiation in the hippocampus of RhoB(-/-) mice. Early phase LTP was significantly reduced in RhoB(-/-) animals, whereas the later phase was unaffected. In wild-type mice (RhoB(+/+)), Western blot analysis of potentiated hippocampus showed significant increases in phosphorylated cofilin relative to nonpotentiated slices, which were dramatically impaired in RhoB(-/-) slices. There was also a deficit in phosphorylated Lim kinase levels in the hippocampus from RhoB(-/-) mice. Morphological analysis suggested that lack of RhoB resulted in increased dendritic branching and decreased spine number. Furthermore, an increase in the proportion of stubby relative to thin spines was observed. Moreover, spines demonstrated increased length along with increased head and neck widths. These data implicate RhoB in cofilin regulation and dendritic and spine morphology, highlighting its importance in synaptic plasticity at a structural and functional level.
Collapse
Affiliation(s)
- Kara McNair
- Neuroscience and Molecular Pharmacology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom, and
| | - Rosemary Spike
- Neuroscience and Molecular Pharmacology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom, and
| | - Clare Guilding
- Neuroscience and Molecular Pharmacology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom, and
| | | | - Trevor W. Stone
- Neuroscience and Molecular Pharmacology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom, and
| | - Stuart R. Cobb
- Neuroscience and Molecular Pharmacology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom, and
| | - Brian J. Morris
- Neuroscience and Molecular Pharmacology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom, and
| |
Collapse
|
120
|
Oas RG, Xiao K, Summers S, Wittich KB, Chiasson CM, Martin WD, Grossniklaus HE, Vincent PA, Reynolds AB, Kowalczyk AP. p120-Catenin is required for mouse vascular development. Circ Res 2010; 106:941-51. [PMID: 20110533 DOI: 10.1161/circresaha.109.207753] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
RATIONALE p120-catenin (p120) is an armadillo family protein that binds to the cytoplasmic domain of classical cadherins and prevents cadherin endocytosis. The role of p120 in vascular development is unknown. OBJECTIVE The purpose of this study is to examine the role of p120 in mammalian vascular development by generating a conditionally mutant mouse lacking endothelial p120 and determining the effects of the knockout on vasculogenesis, angiogenic remodeling, and the regulation of endothelial cadherin levels. METHODS AND RESULTS A conditional Cre/loxP gene deletion strategy was used to ablate p120 expression, using the Tie2 promoter to drive endothelial Cre recombinase expression. Mice lacking endothelial p120 died embryonically beginning at embryonic day 11.5. Major blood vessels appeared normal at embryonic day 9.5. However, both embryonic and extraembryonic vasculature of mutant animals were disorganized and displayed decreased microvascular density by embryonic day 11.5. Importantly, both vascular endothelial cadherin and N-cadherin levels were significantly reduced in vessels lacking p120. This decrease in cadherin expression was accompanied by reduced pericyte recruitment and hemorrhaging. Furthermore, p120-null cultured endothelial cells exhibited proliferation defects that could be rescued by exogenous expression of vascular endothelial cadherin. CONCLUSIONS These findings reveal a fundamental role for p120 in regulating endothelial cadherin levels during vascular development, as well as microvascular patterning, vessel integrity, and endothelial cell proliferation. Loss of endothelial p120 results in lethality attributable to decreased microvascular density and hemorrhages.
Collapse
Affiliation(s)
- Rebecca G Oas
- Department of Cell Biology, 615 Michael St, Room 465, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Lin YC, Koleske AJ. Mechanisms of synapse and dendrite maintenance and their disruption in psychiatric and neurodegenerative disorders. Annu Rev Neurosci 2010; 33:349-78. [PMID: 20367247 PMCID: PMC3063389 DOI: 10.1146/annurev-neuro-060909-153204] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Emerging evidence indicates that once established, synapses and dendrites can be maintained for long periods, if not for the organism's entire lifetime. In contrast to the wealth of knowledge regarding axon, dendrite, and synapse development, we understand comparatively little about the cellular and molecular mechanisms that enable long-term synapse and dendrite maintenance. Here, we review how the actin cytoskeleton and its regulators, adhesion receptors, and scaffolding proteins mediate synapse and dendrite maintenance. We examine how these mechanisms are reinforced by trophic signals passed between the pre- and postsynaptic compartments. We also discuss how synapse and dendrite maintenance mechanisms are compromised in psychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Yu-Chih Lin
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8024
| | - Anthony J. Koleske
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8024
- Department of Neurobiology, Yale University, New Haven, Connecticut 06520-8024
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut 06520-8024
| |
Collapse
|
122
|
Matter C, Pribadi M, Liu X, Trachtenberg JT. Delta-catenin is required for the maintenance of neural structure and function in mature cortex in vivo. Neuron 2009; 64:320-7. [PMID: 19914181 DOI: 10.1016/j.neuron.2009.09.026] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2009] [Indexed: 10/20/2022]
Abstract
Delta-catenin is a brain-specific member of the adherens junction complex that localizes to the postsynaptic and dendritic compartments. This protein is likely critical for normal cognitive function; its hemizygous loss is linked to the severe mental retardation syndrome Cri-du-Chat and it directly interacts with presenilin-1 (PS1), the protein most frequently mutated in familial Alzheimer's disease. Here we examine dendritic structure and cortical function in vivo in mice lacking delta-catenin. We find that in cerebral cortex of 5-week-old mice, dendritic complexity, spine density, and cortical responsiveness are similar between mutant and littermate controls; thereafter, mutant mice experience progressive dendritic retraction, a reduction in spine density and stability, and concomitant reductions in cortical responsiveness. Our results indicate that delta-catenin regulates the maintenance of dendrites and dendritic spines in mature cortex but does not appear to be necessary for the initial establishment of these structures during development.
Collapse
Affiliation(s)
- Cheryl Matter
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
123
|
Stepniak E, Radice GL, Vasioukhin V. Adhesive and signaling functions of cadherins and catenins in vertebrate development. Cold Spring Harb Perspect Biol 2009; 1:a002949. [PMID: 20066120 PMCID: PMC2773643 DOI: 10.1101/cshperspect.a002949] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Properly regulated intercellular adhesion is critical for normal development of all metazoan organisms. Adherens junctions play an especially prominent role in development because they link the adhesive function of cadherin-catenin protein complexes to the dynamic forces of the actin cytoskeleton, which helps to orchestrate a spatially confined and very dynamic assembly of intercellular connections. Intriguingly, in addition to maintaining intercellular adhesion, cadherin-catenin proteins are linked to several major developmental signaling pathways crucial for normal morphogenesis. In this article we will highlight the key genetic studies that uncovered the role of cadherin-catenin proteins in vertebrate development and discuss the potential role of these proteins as molecular biosensors of external cellular microenvironment that may spatially confine signaling molecules and polarity cues to orchestrate cellular behavior throughout the complex process of normal morphogenesis.
Collapse
Affiliation(s)
- Ewa Stepniak
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109
| | - Glenn L. Radice
- Center for Translational Medicine, Department of Medicine, Jefferson Medical College, Philadelphia, Pennsylvania 19107
| | - Valeri Vasioukhin
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109
- Department of Pathology and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington 98195
| |
Collapse
|
124
|
Gu D, Sater AK, Ji H, Cho K, Clark M, Stratton SA, Barton MC, Lu Q, McCrea PD. Xenopus delta-catenin is essential in early embryogenesis and is functionally linked to cadherins and small GTPases. J Cell Sci 2009; 122:4049-61. [PMID: 19843587 DOI: 10.1242/jcs.031948] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Catenins of the p120 subclass display an array of intracellular localizations and functions. Although the genetic knockout of mouse delta-catenin results in mild cognitive dysfunction, we found severe effects of its depletion in Xenopus. delta-catenin in Xenopus is transcribed as a full-length mRNA, or as three (or more) alternatively spliced isoforms designated A, B and C. Further structural and functional complexity is suggested by three predicted and alternative translation initiation sites. Transcript analysis suggests that each splice isoform is expressed during embryogenesis, with the B and C transcript levels varying according to developmental stage. Unlike the primarily neural expression of delta-catenin reported in mammals, delta-catenin is detectable in most adult Xenopus tissues, although it is enriched in neural structures. delta-catenin associates with classical cadherins, with crude embryo fractionations further revealing non-plasma-membrane pools that might be involved in cytoplasmic and/or nuclear functions. Depletion of delta-catenin caused gastrulation defects, phenotypes that were further enhanced by co-depletion of the related p120-catenin. Depletion was significantly rescued by titrated p120-catenin expression, suggesting that these catenins have shared roles. Biochemical assays indicated that delta-catenin depletion results in reduced cadherin levels and cell adhesion, as well as perturbation of RhoA and Rac1. Titrated doses of C-cadherin, dominant-negative RhoA or constitutively active Rac1 significantly rescued delta-catenin depletion. Collectively, our experiments indicate that delta-catenin has an essential role in amphibian development, and has functional links to cadherins and Rho-family GTPases.
Collapse
Affiliation(s)
- Dongmin Gu
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Impey S, Davare M, Lesiak A, Lasiek A, Fortin D, Ando H, Varlamova O, Obrietan K, Soderling TR, Goodman RH, Wayman GA. An activity-induced microRNA controls dendritic spine formation by regulating Rac1-PAK signaling. Mol Cell Neurosci 2009; 43:146-56. [PMID: 19850129 DOI: 10.1016/j.mcn.2009.10.005] [Citation(s) in RCA: 232] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 10/06/2009] [Accepted: 10/12/2009] [Indexed: 01/22/2023] Open
Abstract
Activity-regulated gene expression is believed to play a key role in the development and refinement of neuronal circuitry. Nevertheless, the transcriptional networks that regulate synaptic plasticity remain largely uncharacterized. We show here that the CREB- and activity-regulated microRNA, miR132, is induced during periods of active synaptogenesis. Moreover, miR132 is necessary and sufficient for hippocampal spine formation. Expression of the miR132 target, p250GAP, is inversely correlated with miR132 levels and spinogenesis. Furthermore, knockdown of p250GAP increases spine formation while introduction of a p250GAP mutant unresponsive to miR132 attenuates this activity. Inhibition of miR132 decreases both mEPSC frequency and the number of GluR1-positive spines, while knockdown of p250GAP has the opposite effect. Additionally, we show that the miR132/p250GAP circuit regulates Rac1 activity and spine formation by modulating synapse-specific Kalirin7-Rac1 signaling. These data suggest that neuronal activity regulates spine formation, in part, by increasing miR132 transcription, which in turn activates a Rac1-Pak actin remodeling pathway.
Collapse
Affiliation(s)
- Soren Impey
- Oregon Stem Cell Center, Oregon Health and Science University, Portland, OR, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Xie Z, Cahill ME, Penzes P. Kalirin loss results in cortical morphological alterations. Mol Cell Neurosci 2009; 43:81-9. [PMID: 19800004 DOI: 10.1016/j.mcn.2009.09.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 09/04/2009] [Accepted: 09/21/2009] [Indexed: 11/26/2022] Open
Abstract
Morphogenesis of pyramidal neuronal dendrites and spines is crucial for the formation and refinement of forebrain neuronal circuits underlying cognition. Aberrant dendrite and spine morphology is associated with neuropathological disorders. However, the molecular mechanisms controlling pyramidal neuronal dendrite and spine morphogenesis in vivo remain largely unknown. Kalirin is a brain-specific guanine-nucleotide exchange factor for Rho-like small GTPases, and an important regulator of spine morphogenesis in cultured neurons. Here we show that RNAi-dependent knockdown of kalirin in cultured neurons affected dendrite morphology. Cortical pyramidal neurons from KALRN-null mice showed reduced spine density and impaired activity-dependent spine plasticity; and they exhibited reduced complexity of dendritic trees. KALRN-null mice also displayed smaller neuronal cell bodies and reductions in the size of the cortex and cortical layers. These data demonstrate important roles for kalirin in the regulation of cortical structure, ultrastructure, and spine structural plasticity.
Collapse
Affiliation(s)
- Zhong Xie
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | |
Collapse
|
127
|
Synaptic plasticity-associated proteases and protease inhibitors in the brain linked to the processing of extracellular matrix and cell adhesion molecules. ACTA ACUST UNITED AC 2009; 4:223-34. [DOI: 10.1017/s1740925x09990172] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Research on the molecular and cellular basis of learning and memory has focused on the mechanisms that underlie the induction and expression of synaptic plasticity. There is increasing evidence that structural changes at the synapse are associated with synaptic plasticity and that extracellular matrix (ECM) components and cell adhesion molecules are associated with these changes. The functions of both groups of molecules can be regulated by proteolysis. In this article we review the roles of selected proteases and protease inhibitors in perisynaptic proteolysis of the ECM and synaptic adhesion proteins and the impact of proteolysis on synaptic modification and cognitive function.
Collapse
|
128
|
Robertson HR, Gibson ES, Benke TA, Dell'Acqua ML. Regulation of postsynaptic structure and function by an A-kinase anchoring protein-membrane-associated guanylate kinase scaffolding complex. J Neurosci 2009; 29:7929-43. [PMID: 19535604 PMCID: PMC2716089 DOI: 10.1523/jneurosci.6093-08.2009] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 04/29/2009] [Accepted: 05/19/2009] [Indexed: 01/08/2023] Open
Abstract
A-kinase anchoring protein (AKAP) 79/150 is a scaffold protein found in dendritic spines that recruits the cAMP-dependent protein kinase (PKA) and protein phosphatase 2B-calcineurin (CaN) to membrane-associated guanylate kinase (MAGUK)-linked AMPA receptors (AMPARs) to control receptor phosphorylation and synaptic plasticity. However, AKAP79/150 may also coordinate regulation of AMPAR activity with spine structure directly through MAGUK binding and membrane-cytoskeletal interactions of its N-terminal targeting domain. In cultured hippocampal neurons, we observed that rat AKAP150 expression was low early in development but then increased coincident with spine formation and maturation. Overexpression of human AKAP79 in immature or mature neurons increased the number of dendritic filopodia and spines and enlarged spine area. However, RNA interference knockdown of AKAP150 decreased dendritic spine area only in mature neurons. Importantly, AKAP79 overexpression in immature neurons increased AMPAR postsynaptic localization and activity. Neither the AKAP79 PKA nor CaN anchoring domain was required for increasing dendritic protrusion numbers, spine area, or AMPAR synaptic localization; however, an internal region identified as the MAGUK binding domain was found to be essential as shown by expression of a MAGUK binding mutant that formed mainly filopodia and decreased AMPAR synaptic localization and activity. Expression of the AKAP79 N-terminal targeting domain alone also increased filopodia numbers but not spine area. Overall, these results demonstrate a novel structural role for AKAP79/150 in which the N-terminal targeting domain induces dendritic filopodia and binding to MAGUKs promotes spine enlargement and AMPAR recruitment.
Collapse
Affiliation(s)
| | | | - Timothy A. Benke
- Departments of Pharmacology
- Pediatrics, and
- Neurology and
- Program in Neuroscience, School of Medicine, University of Colorado Denver, Aurora, Colorado 80045
| | - Mark L. Dell'Acqua
- Departments of Pharmacology
- Program in Neuroscience, School of Medicine, University of Colorado Denver, Aurora, Colorado 80045
| |
Collapse
|
129
|
Inoue E, Deguchi-Tawarada M, Togawa A, Matsui C, Arita K, Katahira-Tayama S, Sato T, Yamauchi E, Oda Y, Takai Y. Synaptic activity prompts gamma-secretase-mediated cleavage of EphA4 and dendritic spine formation. ACTA ACUST UNITED AC 2009; 185:551-64. [PMID: 19414612 PMCID: PMC2700400 DOI: 10.1083/jcb.200809151] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Alzheimer's disease is an age-dependent neurodegenerative disorder that is characterized by a progressive decline in cognitive function. gamma-secretase dysfunction is evident in many cases of early onset familial Alzheimer's disease. However, the mechanism by which gamma-secretase dysfunction results in memory loss and neurodegeneration is not fully understood. Here, we demonstrate that gamma-secretase is localized at synapses and regulates spine formation. We identify EphA4, one of the Ephrin receptor family members, as a substrate of gamma-secretase, and find that EphA4 processing is enhanced by synaptic activity. Moreover, overexpression of EphA4 intracellular domain increases the number of dendritic spines by activating the Rac signaling pathway. These findings reveal a function for EphA4-mediated intracellular signaling in the morphogenesis of dendritic spines and suggest that the processing of EphA4 by gamma-secretase affects the pathogenesis of Alzheimer's disease.
Collapse
|
130
|
Arikkath J. Regulation of dendrite and spine morphogenesis and plasticity by catenins. Mol Neurobiol 2009; 40:46-54. [PMID: 19401831 DOI: 10.1007/s12035-009-8068-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 04/03/2009] [Indexed: 10/20/2022]
Abstract
The appropriate regulation of dendrite, spine, and synapse morphogenesis in neurons both during and after development is critical for the formation and maintenance of neural circuits. It is becomingly increasingly clear that the cadherin-catenin cell adhesion complex, a complex that has been widely studied in epithelia, regulates neuronal morphogenesis. More interestingly, the catenins, cytosolic proteins that bind to cadherins, regulate multiple aspects of neuronal morphogenesis including dendrite, spine, and synapse morphogenesis and plasticity, both independent of and dependent on their ability to bind cadherins. In this review, we examine some of the more recent and exciting studies that implicate individual catenins in various aspects of neuronal morphogenesis and plasticity.
Collapse
Affiliation(s)
- Jyothi Arikkath
- University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
131
|
Arikkath J, Peng IF, Gie Ng Y, Israely I, Liu X, Ullian EM, Reichardt LF. Delta-catenin regulates spine and synapse morphogenesis and function in hippocampal neurons during development. J Neurosci 2009; 29:5435-42. [PMID: 19403811 PMCID: PMC2763482 DOI: 10.1523/jneurosci.0835-09.2009] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 03/11/2009] [Accepted: 03/23/2009] [Indexed: 11/21/2022] Open
Abstract
The maintenance of spine and synapse number during development is critical for neuronal circuit formation and function. Here we show that delta-catenin, a component of the cadherin-catenin cell adhesion complex, regulates spine and synapse morphogenesis during development. Genetic ablation or acute knockdown of delta-catenin leads to increases in spine and synapse density, accompanied by a decrease in tetrodotoxin induced spine plasticity. Our results indicate that delta-catenin may mediate conversion of activity-dependent signals to morphological spine plasticity. The functional role of delta-catenin in regulating spine density does not require binding to cadherins, but does require interactions with PDZ domain-containing proteins. We propose that the perturbations in spine and synaptic structure and function observed after depletion of delta-catenin during development may contribute to functional alterations in neural circuitry, the cognitive deficits observed in mutant mice, and the mental retardation pathology of Cri-du-chat syndrome.
Collapse
Affiliation(s)
| | - I-Feng Peng
- Ophthalmology, Beckman Vision Center, University of California, San Francisco, San Francisco, California 94143, and
| | | | - Inbal Israely
- Departments of Molecular and Medical Pharmacology and
| | - Xin Liu
- Departments of Molecular and Medical Pharmacology and
- Pathology and Laboratory Medicine and
- Brain Research Institute, University of California, Los Angeles, Los Angeles, California 90095
| | - Erik M. Ullian
- Ophthalmology, Beckman Vision Center, University of California, San Francisco, San Francisco, California 94143, and
| | | |
Collapse
|
132
|
Head BP, Patel HH, Niesman IR, Drummond JC, Roth DM, Patel PM. Inhibition of p75 neurotrophin receptor attenuates isoflurane-mediated neuronal apoptosis in the neonatal central nervous system. Anesthesiology 2009; 110:813-25. [PMID: 19293698 PMCID: PMC2767332 DOI: 10.1097/aln.0b013e31819b602b] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Exposure to anesthetics during synaptogenesis results in apoptosis and subsequent cognitive dysfunction in adulthood. Probrain-derived neurotrophic factor (proBDNF) is involved in synaptogenesis and can induce neuronal apoptosis via p75 neurotrophic receptors (p75). proBDNF is cleaved into mature BDNF (mBDNF) by plasmin, a protease converted from plasminogen by tissue plasminogen activator (tPA) that is released with neuronal activity; mBDNF supports survival and stabilizes synapses through tropomyosin receptor kinase B. The authors hypothesized that anesthetics suppress tPA release from neurons, enhance p75 signaling, and reduce synapses, resulting in apoptosis. METHODS Primary neurons (DIV5) and postnatal day 5-7 (PND5-7) mice were exposed to isoflurane (1.4%, 4 h) in 5% CO2, 95% air. Apoptosis was assessed by cleaved caspase-3 (Cl-Csp3) immunoblot and immunofluorescence microscopy. Dendritic spine changes were evaluated with the neuronal spine marker, drebrin. Changes in synapses in PND5-7 mouse hippocampi were assessed by electron microscopy. Primary neurons were exposed to tPA, plasmin, or pharmacologic inhibitors of p75 (Fc-p75 or TAT-Pep5) 15 min before isoflurane. TAT-Pep5 was administered by intraperitoneal injection to PND5-7 mice 15 min before isoflurane. RESULTS Exposure of neurons in vitro (DIV5) to isoflurane decreased tPA in the culture medium, reduced drebrin expression (marker of dendritic filopodial spines), and enhanced Cl-Csp3. tPA, plasmin, or TAT-Pep5 stabilized dendritic filopodial spines and decreased Cl-Csp3 in neurons. TAT-Pep5 blocked isoflurane-mediated increase in Cl-Csp3 and reduced synapses in PND5-7 mouse hippocampi. CONCLUSION tPA, plasmin, or p75 inhibition blocked isoflurane-mediated reduction in dendritic filopodial spines and neuronal apoptosis in vitro. Isoflurane reduced synapses and enhanced Cl-Csp3 in the hippocampus of PND5-7 mice, the latter effect being mitigated by p75 inhibition in vivo. These data support the hypothesis that isoflurane neurotoxicity in the developing rodent brain is mediated by reduced synaptic tPA release and enhanced proBDNF/p75-mediated apoptosis.
Collapse
Affiliation(s)
- Brian P. Head
- Department of Anesthesiology, University of California, San Diego, La Jolla, California 92093
| | - Hemal H. Patel
- Department of Anesthesiology, University of California, San Diego, La Jolla, California 92093
| | - Ingrid R. Niesman
- Department of Anesthesiology, University of California, San Diego, La Jolla, California 92093
| | - John C. Drummond
- Department of Anesthesiology, University of California, San Diego, La Jolla, California 92093
- VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
| | - David M. Roth
- Department of Anesthesiology, University of California, San Diego, La Jolla, California 92093
- VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
| | - Piyush M. Patel
- Department of Anesthesiology, University of California, San Diego, La Jolla, California 92093
- VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
| |
Collapse
|
133
|
Chen CC, Abrams S, Pinhas A, Brumberg JC. Morphological heterogeneity of layer VI neurons in mouse barrel cortex. J Comp Neurol 2009; 512:726-46. [PMID: 19065632 PMCID: PMC2692599 DOI: 10.1002/cne.21926] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Understanding the basic neuronal building blocks of the neocortex is a necessary first step toward comprehending the composition of cortical circuits. Neocortical layer VI is the most morphologically diverse layer and plays a pivotal role in gating information to the cortex via its feedback connection to the thalamus and other ipsilateral and callosal corticocortical connections. The heterogeneity of function within this layer is presumably linked to its varied morphological composition. However, so far, very few studies have attempted to define cell classes in this layer using unbiased quantitative methodologies. Utilizing the Golgi staining technique along with the Neurolucida software, we recontructed 222 cortical neurons from layer VI of mouse barrel cortex. Morphological analyses were performed by quantifying somatic and dendritic parameters, and, by using principal component and cluster analyses, we quantitatively categorized neurons into six distinct morphological groups. Additional systematic replication on a separate population of neurons yielded similar results, demonstrating the consistency and reliability of our categorization methodology. Subsequent post hoc analyses of dendritic parameters supported our neuronal classification scheme. Characterizing neuronal elements with unbiased quantitative techniques provides a framework for better understanding structure-function relationships within neocortical circuits in general.
Collapse
Affiliation(s)
- Chia-Chien Chen
- Neuropsychology Doctoral Subprogram, The Graduate Center, City University of New York, New York, New York 10016
| | - Svetlana Abrams
- Department of Psychology, Queens College, City University of New York, Flushing, New York 11367
| | - Alex Pinhas
- Department of Psychology, Queens College, City University of New York, Flushing, New York 11367
| | - Joshua C. Brumberg
- Neuropsychology Doctoral Subprogram, The Graduate Center, City University of New York, New York, New York 10016
- Department of Psychology, Queens College, City University of New York, Flushing, New York 11367
| |
Collapse
|
134
|
Liu Y, Wang Y, Zhang Y, Miao Y, Zhao Y, Zhang PX, Jiang GY, Zhang JY, Han Y, Lin XY, Yang LH, Li QC, Zhao C, Wang EH. Abnormal expression of p120-catenin, E-cadherin, and small GTPases is significantly associated with malignant phenotype of human lung cancer. Lung Cancer 2009; 63:375-82. [PMID: 19162367 DOI: 10.1016/j.lungcan.2008.12.012] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 11/10/2008] [Accepted: 12/09/2008] [Indexed: 10/21/2022]
Abstract
Studies on a variety of cell lines have shown that p120-catenin can directly regulate the stability of E-cadherin complexes and control the activity of small GTPases to influence cell adhesion. Despite this data, clinical studies of human solid tumors have not been reported to investigate these protein interactions. To explore the correlation between p120-catenin, E-cadherin, and small GTPases in human lung cancer, we examined the expression patterns of p120-catenin, E-cadherin, RhoA, Cdc42, and Rac1, and their prognostic significance in 138 patients with non-small cell lung cancer (NSCLC). While normal bronchial epithelium showed strong membrane expression of p120-catenin and E-cadherin, lung cancer tissues had reduced membrane expression and ectopic cytoplasmic expression of p120-catenin and E-cadherin. Expression of RhoA, Cdc42, and Rac1 was also found to be higher in tumor tissue than in normal lung tissue. A correlation between abnormal p120-catenin, E-cadherin expression, and overexpression of specific small GTPases was also associated with poor differentiation, high TNM stage, and lymph node metastasis in NSCLC patients. We also used an in vitro model to evaluate their expression, and to determine whether protein expression correlated with the invasive capacity of lung cancer cell lines. Consistent with our in vivo data, abnormal expression of p120-catenin and E-cadherin with overexpression of specific small GTPases were significantly associated with the high metastatic capacity of BE1 cells. Based on our results, we conclude that abnormal p120-catenin expression correlates with abnormal E-cadherin expression and specific small GTPase overexpression, which contribute to the malignancy-related to NSCLC.
Collapse
Affiliation(s)
- Yang Liu
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang 110001, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Togashi H, Sakisaka T, Takai Y. Cell adhesion molecules in the central nervous system. Cell Adh Migr 2009; 3:29-35. [PMID: 19372758 DOI: 10.4161/cam.3.1.6773] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cell-cell adhesion molecules play key roles at the intercellular junctions of a wide variety of cells, including interneuronal synapses and neuron-glia contacts. Functional studies suggest that adhesion molecules are implicated in many aspects of neural network formation, such as axon-guidance, synapse formation, regulation of synaptic structure and astrocyte-synapse contacts. Some basic cell biological aspects of the assembly of junctional complexes of neurons and glial cells resemble those of epithelial cells. However, the neuron specific junctional machineries are required to exert neuronal functions, such as synaptic transmission and plasticity. In this review, we describe the distribution and function of cell adhesion molecules at synapses and at contacts between synapses and astrocytes.
Collapse
Affiliation(s)
- Hideru Togashi
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | | | | |
Collapse
|
136
|
Lee SH, Peng IF, Ng YG, Yanagisawa M, Bamji SX, Elia LP, Balsamo J, Lilien J, Anastasiadis PZ, Ullian EM, Reichardt LF. Synapses are regulated by the cytoplasmic tyrosine kinase Fer in a pathway mediated by p120catenin, Fer, SHP-2, and beta-catenin. ACTA ACUST UNITED AC 2008; 183:893-908. [PMID: 19047464 PMCID: PMC2592841 DOI: 10.1083/jcb.200807188] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Localization of presynaptic components to synaptic sites is critical for hippocampal synapse formation. Cell adhesion–regulated signaling is important for synaptic development and function, but little is known about differentiation of the presynaptic compartment. In this study, we describe a pathway that promotes presynaptic development involving p120catenin (p120ctn), the cytoplasmic tyrosine kinase Fer, the protein phosphatase SHP-2, and β-catenin. Presynaptic Fer depletion prevents localization of active zone constituents and synaptic vesicles and inhibits excitatory synapse formation and synaptic transmission. Depletion of p120ctn or SHP-2 similarly disrupts synaptic vesicle localization with active SHP-2, restoring synapse formation in the absence of Fer. Fer or SHP-2 depletion results in elevated tyrosine phosphorylation of β-catenin. β-Catenin overexpression restores normal synaptic vesicle localization in the absence of Fer or SHP-2. Our results indicate that a presynaptic signaling pathway through p120ctn, Fer, SHP-2, and β-catenin promotes excitatory synapse development and function.
Collapse
Affiliation(s)
- Seung-Hye Lee
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Edbauer D, Cheng D, Batterton MN, Wang CF, Duong DM, Yaffe MB, Peng J, Sheng M. Identification and characterization of neuronal mitogen-activated protein kinase substrates using a specific phosphomotif antibody. Mol Cell Proteomics 2008; 8:681-95. [PMID: 19054758 PMCID: PMC2667352 DOI: 10.1074/mcp.m800233-mcp200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitogen-activated protein kinases (MAPKs) control neuronal synaptic function; however, little is known about the synaptic substrates regulated by MAPKs. A phosphopeptide library incorporating the MAPK consensus motif (PX(pS/pT)P where pS is phosphoserine and pT is phosphothreonine) was used to raise a phosphospecific antibody that detected MAPK-mediated phosphorylation. The antibody (termed “5557”) recognized a variety of phosphoproteins in the brain, many of which were enriched in postsynaptic density fractions. The immunoblot pattern changed rapidly in response to altered synaptic activity and with the inhibition of specific MAPKs and protein phosphatases. By immunoaffinity purification with 5557 antibody followed by mass spectrometry, we identified 449 putative MAPK substrates of which many appeared dynamically regulated in neuron cultures. Several of the novel candidate MAPK substrates were validated by in vitro phosphorylation assays. Additionally 82 specific phosphorylation sites were identified in 34 proteins, including Ser-447 in δ-catenin, a component of the cadherin adhesion complex. We further raised another phosphospecific antibody to confirm that δ-catenin Ser-447 is modified in neurons by the MAPK JNK in a synaptic activity-dependent manner. Ser-447 phosphorylation by JNK appears to be correlated with δ-catenin degradation, and a δ-catenin mutant defective in Ser-447 phosphorylation showed enhanced ability to promote dendrite branching in cultured neurons. Thus, phosphomotif-based affinity purification is a powerful approach to identify novel substrates of MAPKs in vivo and to reveal functionally significant phosphorylation events.
Collapse
Affiliation(s)
- Dieter Edbauer
- The Picower Institute for Learning and Memory, Howard Hughes Medical Institute, RIKEN-MIT Neuroscience Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|
138
|
[P1.01]: Functional regulations of p120 catenin at presynaptic site in neuron cultures. Int J Dev Neurosci 2008. [DOI: 10.1016/j.ijdevneu.2008.09.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
139
|
Kouchi Z, Barthet G, Serban G, Georgakopoulos A, Shioi J, Robakis NK. p120 catenin recruits cadherins to gamma-secretase and inhibits production of Abeta peptide. J Biol Chem 2008; 284:1954-61. [PMID: 19008223 DOI: 10.1074/jbc.m806250200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The gamma-secretase complex cleaves many transmembrane proteins, including amyloid precursor protein, EphB and ErbB tyrosine kinase receptors, Notch1 receptors, and adhesion factors. Presenilin 1, the catalytic subunit of gamma-secretase, associates with the cadherin/catenin cell-cell adhesion/communication system and promotes cadherin processing (Georgakopoulos, A., et al. (1999) Mol. Cell 4, 893-902; Marambaud, P., et al. (2002) EMBO J. 21, 1948-1956), but the mechanism by which gamma-secretase and cadherins associate is unclear. Here we report that p120 catenin (p120ctn), a component of the cadherin-catenin complex, recruits gamma-secretase to cadherins, thus stimulating their processing while inhibiting production of Abeta peptide and the amyloid precursor protein intracellular domain. This function of p120ctn depends on both p120ctn-cadherin and p120ctn-presenilin 1 binding, indicating that p120ctn is the central factor that bridges gamma-secretase and cadherin-catenin complexes. Our data show that p120ctn is a unique positive regulator of the gamma-secretase processing of cadherins and a negative regulator of the amyloid precursor protein processing. Furthermore, our data suggest that specific members of the gamma-secretase complex may be used to recruit different substrates and that distinct PS1 sequences are required for processing of APP and cadherins.
Collapse
Affiliation(s)
- Zen Kouchi
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | |
Collapse
|
140
|
Miech C, Pauer HU, He X, Schwarz TL. Presynaptic local signaling by a canonical wingless pathway regulates development of the Drosophila neuromuscular junction. J Neurosci 2008; 28:10875-84. [PMID: 18945895 PMCID: PMC2597682 DOI: 10.1523/jneurosci.0164-08.2008] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Accepted: 09/04/2008] [Indexed: 11/21/2022] Open
Abstract
Wnt/wingless signaling contributes to the development of neuronal synapses, including the Drosophila neuromuscular junction. Loss of wg (wingless) function alters the number and structure of boutons at this model synapse. Examining Wnt/wingless signaling mechanisms, we find that a distinct pathway operates presynaptically in the motoneuron and can account for many of the effects of wingless at this synapse. This pathway includes the canonical elements arrow/LRP (low-density lipoprotein receptor-related protein), dishevelled, and the glycogen synthase kinase shaggy (GSK3) and regulates the formation of microtubule loops within synaptic boutons as well as the number of synaptic boutons. This pathway, however, appears to be independent of beta-catenin signaling and the transcriptional regulation that is most frequently downstream of these components. Instead, inhibition of shaggy is likely to act locally. This pathway thus provides a parallel mechanism to the postsynaptic activation of frizzled receptors and indicates that synaptic development results from the bidirectional influence of wingless on both presynaptic and postsynaptic structures via distinct intracellular pathways.
Collapse
Affiliation(s)
- Claudia Miech
- F. M. Kirby Neurobiology Center, Children's Hospital, Boston, Massachusetts 02115
| | - Hans-Ulrich Pauer
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, and
| | - Xi He
- F. M. Kirby Neurobiology Center, Children's Hospital, Boston, Massachusetts 02115
| | - Thomas L. Schwarz
- F. M. Kirby Neurobiology Center, Children's Hospital, Boston, Massachusetts 02115
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
141
|
Salomon SN, Haber M, Murai KK, Dunn RJ. Localization of the Diaphanous-related formin Daam1 to neuronal dendrites. Neurosci Lett 2008; 447:62-7. [PMID: 18832009 DOI: 10.1016/j.neulet.2008.09.051] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 09/18/2008] [Accepted: 09/19/2008] [Indexed: 11/25/2022]
Abstract
The Rho family of small GTPase proteins are involved in the formation and maintenance of neuronal dendrites. In this study, we show that Daam1, a member of the Diaphanous-related formin protein family and a downstream effector for RhoA, is localized to the dendrites of hippocampal neurons. Immunoblot analysis showed that Daam1 is enriched in the mouse hippocampus and co-fractionates in brain lysates with dendritic and synaptic proteins. Immunohistochemical analysis revealed that Daam1 protein distributes in a punctate pattern throughout the cell body and dendritic shafts of dissociated hippocampal neurons and organotypic hippocampal cultures. Although Daam1 is mostly expressed in the shaft of dendrites, co-stainings with SV2 or PSD95 revealed that Daam1 is also present at some synapses. In addition, viral directed expression of a fluorescently tagged Daam1 fusion protein in hippocampal slices resulted in targeted delivery to the dendrites of pyramidal neurons, leading to a reduction in the density of spines.
Collapse
Affiliation(s)
- Steven N Salomon
- Center for Research in Neuroscience, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
142
|
Abu-Elneel K, Ochiishi T, Medina M, Remedi M, Gastaldi L, Caceres A, Kosik KS. A delta-catenin signaling pathway leading to dendritic protrusions. J Biol Chem 2008; 283:32781-91. [PMID: 18809680 DOI: 10.1074/jbc.m804688200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Delta-catenin is a synaptic adherens junction protein pivotally positioned to serve as a signaling sensor and integrator. Expression of delta-catenin induces filopodia-like protrusions in neurons. Here we show that the small GTPases of the Rho family act coordinately as downstream effectors of delta-catenin. A dominant negative Rac prevented delta-catenin-induced protrusions, and Cdc42 activity was dramatically increased by delta-catenin expression. A kinase dead LIMK (LIM kinase) and a mutant Cofilin also prevented delta-catenin-induced protrusions. To link the effects of delta-catenin to a physiological pathway, we noted that (S)-3,5-dihydroxyphenylglycine (DHPG) activation of metabotropic glutamate receptors induced dendritic protrusions that are very similar to those induced by delta-catenin. Furthermore, delta-catenin RNA-mediated interference can block the induction of dendritic protrusions by DHPG. Interestingly, DHPG dissociated PSD-95 and N-cadherin from the delta-catenin complex, increased the association of delta-catenin with Cortactin, and induced the phosphorylation of delta-catenin within the sites that bind to these protein partners.
Collapse
Affiliation(s)
- Kawther Abu-Elneel
- Neuroscience Research Institute, and Department of Molecular Cellular and Developmental Biology, University of California, Santa Barbara, California 93106, USA
| | | | | | | | | | | | | |
Collapse
|
143
|
Arikkath J, Reichardt LF. Cadherins and catenins at synapses: roles in synaptogenesis and synaptic plasticity. Trends Neurosci 2008; 31:487-94. [PMID: 18684518 PMCID: PMC2623250 DOI: 10.1016/j.tins.2008.07.001] [Citation(s) in RCA: 222] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 07/02/2008] [Accepted: 07/02/2008] [Indexed: 11/16/2022]
Abstract
Synapse formation involves reciprocal interactions between cells resulting in formation of a structure optimized for efficient information transfer. Recent work has implicated constituents of the cadherin-catenin cell-adhesion complex in both synapse formation and plasticity. In this review, we describe recent interesting discoveries on mechanisms of cadherin complex function, in addition to regulating adhesion, that are relevant for understanding the role of this complex in synaptogenesis and plasticity. We describe how this complex acts via (i) recruitment/stabilization of intracellular partners; (ii) regulation of intracellular signaling pathways; (iii) regulation of cadherin surface levels, stability and turnover; (iv) stabilization of receptors; and (v) regulation of gene expression. These exciting discoveries provide insights into novel functional roles of the complex beyond regulating cell adhesion.
Collapse
Affiliation(s)
- Jyothi Arikkath
- Department of Physiology, University of California San Francisco, Rock Hall, Room 284A, Mission Bay, 1550 Fourth Street, San Francisco, CA 94158-2611, USA
| | | |
Collapse
|
144
|
Arikkath J, Israely I, Tao Y, Mei L, Liu X, Reichardt LF. Erbin controls dendritic morphogenesis by regulating localization of delta-catenin. J Neurosci 2008; 28:7047-56. [PMID: 18614673 PMCID: PMC2627506 DOI: 10.1523/jneurosci.0451-08.2008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 04/02/2008] [Accepted: 05/08/2008] [Indexed: 11/21/2022] Open
Abstract
The LAP [leucine-rich and postsynaptic density-95/Discs large/zona occludens-1 (PDZ)] protein erbin and delta-catenin, a component of the cadherin-catenin cell adhesion complex, are highly expressed in neurons and associate through PDZ-mediated interaction, but have incompletely characterized neuronal functions. We show that short hairpin RNA-mediated knockdown of erbin and knockdown or genetic ablation of delta-catenin severely impaired dendritic morphogenesis in hippocampal neurons. Simultaneous loss of erbin and delta-catenin does not enhance severity of this phenotype. The dendritic phenotype observed after erbin depletion is rescued by overexpression of delta-catenin and requires a domain in delta-catenin that has been shown to regulate dendritic branching. Knockdown of delta-catenin cannot be rescued by overexpression of erbin, indicating that erbin is upstream of delta-catenin. delta-Catenin-null neurons have no alterations in global levels of active Rac1/RhoA. Knockdown of erbin results in alterations in localization of delta-catenin. These results suggest a critical role for erbin in regulating dendritic morphogenesis by maintaining appropriate localization of delta-catenin.
Collapse
Affiliation(s)
- Jyothi Arikkath
- Department of Physiology, University of California, San Francisco, San Francisco, California 94158, USA.
| | | | | | | | | | | |
Collapse
|
145
|
A molecular clutch between the actin flow and N-cadherin adhesions drives growth cone migration. J Neurosci 2008; 28:5879-90. [PMID: 18524892 DOI: 10.1523/jneurosci.5331-07.2008] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The adhesion molecule N-cadherin plays important roles in the development of the nervous system, in particular by stimulating axon outgrowth, but the molecular mechanisms underlying this effect are mostly unknown. One possibility, the so-called "molecular clutch" model, could involve a direct mechanical linkage between N-cadherin adhesion at the membrane and intracellular actin-based motility within neuronal growth cones. Using live imaging of primary rat hippocampal neurons plated on N-cadherin-coated substrates and optical trapping of N-cadherin-coated microspheres, we demonstrate here a strong correlation between growth cone velocity and the mechanical coupling between ligand-bound N-cadherin receptors and the retrograde actin flow. This relationship holds by varying ligand density and expressing mutated N-cadherin receptors or small interfering RNAs to perturb binding to catenins. By restraining microsphere motion using optical tweezers or a microneedle, we further show slippage of cadherin-cytoskeleton bonds at low forces, and, at higher forces, local actin accumulation, which strengthens nascent N-cadherin contacts. Together, these data support a direct transmission of actin-based traction forces to N-cadherin adhesions, through catenin partners, driving growth cone advance and neurite extension.
Collapse
|
146
|
Xie Z, Photowala H, Cahill ME, Srivastava DP, Woolfrey KM, Shum CY, Huganir RL, Penzes P. Coordination of synaptic adhesion with dendritic spine remodeling by AF-6 and kalirin-7. J Neurosci 2008; 28:6079-91. [PMID: 18550750 PMCID: PMC2727754 DOI: 10.1523/jneurosci.1170-08.2008] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 05/01/2008] [Accepted: 05/02/2008] [Indexed: 11/21/2022] Open
Abstract
Remodeling of central excitatory synapses is crucial for synapse maturation and plasticity, and contributes to neurodevelopmental and psychiatric disorders. Remodeling of dendritic spines and the associated synapses has been postulated to require the coordination of adhesion with spine morphology and stability; however, the molecular mechanisms that functionally link adhesion molecules with regulators of dendritic spine morphology are mostly unknown. Here, we report that spine size and N-cadherin content are tightly coordinated. In rat mature cortical pyramidal neurons, N-cadherin-dependent adhesion modulates the morphology of existing spines by recruiting the Rac1 guanine-nucleotide exchange factor kalirin-7 to synapses through the scaffolding protein AF-6/afadin. In pyramidal neurons, N-cadherin, AF-6, and kalirin-7 colocalize at synapses and participate in the same multiprotein complexes. N-cadherin clustering promotes the reciprocal interaction and recruitment of N-cadherin, AF-6, and kalirin-7, increasing the content of Rac1 and in spines and PAK (p21-activated kinase) phosphorylation. N-cadherin-dependent spine enlargement requires AF-6 and kalirin-7 function. Conversely, disruption of N-cadherin leads to thin, long spines, with reduced Rac1 contact, caused by uncoupling of N-cadherin, AF-6, and kalirin-7 from each other. By dynamically linking N-cadherin with a regulator of spine plasticity, this pathway allows synaptic adhesion molecules to rapidly coordinate spine remodeling associated with synapse maturation and plasticity. This study hence identifies a novel mechanism whereby cadherins, a major class of synaptic adhesion molecules, signal to the actin cytoskeleton to control the morphology of dendritic spines, and outlines a mechanism that underlies the coordination of synaptic adhesion with spine morphology.
Collapse
Affiliation(s)
- Zhong Xie
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, and
| | - Huzefa Photowala
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, and
| | - Michael E. Cahill
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, and
| | - Deepak P. Srivastava
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, and
| | - Kevin M. Woolfrey
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, and
| | - Cassandra Y. Shum
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, and
| | - Richard L. Huganir
- Department of Neuroscience and Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Peter Penzes
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, and
| |
Collapse
|
147
|
Abstract
Multiple signaling pathways initiate and specify the formation of synapses in the central nervous system. General principles that organize nascent synapses have emerged from the studies in multiple model organisms. These include the synapse-organizing roles of dedicated synaptic adhesion molecules, synaptic signaling following receptor-ligand interactions, and the regulation of synapse formation by secreted molecules. Intracellularly, a range of effectors subsequently regulates signaling steps and cytoskeletal changes. Together, a blueprint of synapse formation is emerging into which these distinct signaling steps will need to be integrated temporally and spatially.
Collapse
Affiliation(s)
- Thomas Biederer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
| | | |
Collapse
|
148
|
Kim H, Han JR, Park J, Oh M, James SE, Chang S, Lu Q, Lee KY, Ki H, Song WJ, Kim K. Delta-catenin-induced dendritic morphogenesis. An essential role of p190RhoGEF interaction through Akt1-mediated phosphorylation. J Biol Chem 2008; 283:977-87. [PMID: 17993462 PMCID: PMC2265781 DOI: 10.1074/jbc.m707158200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Delta-catenin was first identified through its interaction with Presenilin-1 and has been implicated in the regulation of dendrogenesis and cognitive function. However, the molecular mechanisms by which delta-catenin promotes dendritic morphogenesis were unclear. In this study, we demonstrated delta-catenin interaction with p190RhoGEF, and the importance of Akt1-mediated phosphorylation at Thr-454 residue of delta-catenin in this interaction. We have also found that delta-catenin overexpression decreased the binding between p190RhoGEF and RhoA, and significantly lowered the levels of GTP-RhoA but not those of GTP-Rac1 and -Cdc42. Delta-catenin T454A, a defective form in p190RhoGEF binding, did not decrease the binding between p190RhoGEF and RhoA. Delta-catenin T454A also did not lower GTP-RhoA levels and failed to induce dendrite-like process formation in NIH 3T3 fibroblasts. Furthermore, delta-catenin T454A significantly reduced the length and number of mature mushroom shaped spines in primary hippocampal neurons. These results highlight signaling events in the regulation of delta-catenin-induced dendrogenesis and spine morphogenesis.
Collapse
Affiliation(s)
- Hangun Kim
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 500-757, Korea
| | - Jeong Ran Han
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 500-757, Korea
| | - Jaejun Park
- Department of Life Science, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | - Minsoo Oh
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 500-757, Korea
| | - Sarah E. James
- Department of Anatomy and Cell Biology, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, U.S.A
| | - Sunghoe Chang
- Department of Life Science, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | - Qun Lu
- Department of Anatomy and Cell Biology, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, U.S.A
| | - Kwang Youl Lee
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 500-757, Korea
| | - Hyunkyoung Ki
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 500-757, Korea
| | - Woo-Joo Song
- Graduate Program in Neuroscience and Institute for Brain Science and Technology, Inje University, Daejeon, Korea
| | - Kwonseop Kim
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 500-757, Korea
| |
Collapse
|
149
|
Gottmann K. Transsynaptic modulation of the synaptic vesicle cycle by cell-adhesion molecules. J Neurosci Res 2008; 86:223-32. [PMID: 17787017 DOI: 10.1002/jnr.21484] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Delicate control of the synaptic vesicle cycle is required to meet the demands imposed on synaptic transmission by the brain's complex information processing. In addition to intensively analyzed intrinsic regulation, extrinsic modulation of the vesicle cycle by the postsynaptic target neuron has become evident. Recent studies have demonstrated that several families of synaptic cell-adhesion molecules play a significant role in transsynaptic retrograde signaling. Different adhesion systems appear to specifically target distinct steps of the synaptic vesicle cycle. Signaling via classical cadherins regulates the recruitment of synaptic vesicles to the active zone. The neurexin/neuroligin system has been shown to modulate presynaptic release probability. In addition, reverse signaling via the EphB/ephrinB system plays an important role in the activity-dependent induction of long-term potentiation of presynaptic transmitter release. Moreover, the first hints of involvement of cell-adhesion molecules in vesicle endocytosis have been published. A general hypothesis is that specific adhesion systems might use different but parallel transsynaptic signaling pathways able to selectively modulate each step of the synaptic vesicle cycle in a tightly coordinated manner.
Collapse
Affiliation(s)
- Kurt Gottmann
- Institut für Neuro- und Sinnesphysiologie, Heinrich-Heine Universität, Düsseldorf, Germany.
| |
Collapse
|
150
|
Multifunctional role of protein kinase C in regulating the formation and maturation of specific synapses. J Neurosci 2007; 27:11712-24. [PMID: 17959813 DOI: 10.1523/jneurosci.3305-07.2007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Target-dependent increases in axon growth and varicosities accompany the formation of functional synapses between Aplysia sensory neurons and specific postsynaptic neurons (L7 and not L11). The enhanced growth is regulated in part by a target-dependent increase in the secretion of sensorin, the sensory neuron neuropeptide. We report here that protein kinase C (PKC) activity is required for synapse formation by sensory neurons with L7 and for the target-dependent increases in sensorin synthesis and secretion. Blocking PKC activity reversibly blocked synapse formation and axon growth of sensory neurons contacting L7, but did not affect axon growth of sensory neurons contacting L11 or axon growth of the postsynaptic targets. Blocking PKC activity also blocked the target-induced increase in sensorin synthesis and secretion. Sensorin then activates additional signaling pathways required for synapse maturation and synapse-associated growth. Exogenous anti-sensorin antibody blocked target-induced activation and translocation into sensory neuron nuclei of p42/44 mitogen-activated protein kinase (MAPK), attenuated synapse maturation, and curtailed growth of sensory neurons contacting L7, but not the growth of sensory neurons contacting L11. Inhibitors of MAPK or phosphoinositide 3-kinase also attenuated synapse maturation and curtailed growth and varicosity formation of sensory neurons contacting L7, but not growth of sensory neurons contacting L11. These results suggest that PKC activity regulated by specific cell-cell interactions initiates the formation of specific synapses and the subsequent synthesis and release of a neuropeptide to activate additional signaling pathways required for synapse maturation.
Collapse
|