101
|
Knyazeva S, Selezneva E, Gorkin A, Ohl FW, Brosch M. Representation of Auditory Task Components and of Their Relationships in Primate Auditory Cortex. Front Neurosci 2020; 14:306. [PMID: 32372903 PMCID: PMC7186436 DOI: 10.3389/fnins.2020.00306] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/16/2020] [Indexed: 11/13/2022] Open
Abstract
The current study aimed to resolve some of the inconsistencies in the literature on which mental processes affect auditory cortical activity. To this end, we studied auditory cortical firing in four monkeys with different experience while they were involved in six conditions with different arrangements of the task components sound, motor action, and water reward. Firing rates changed most strongly when a sound-only condition was compared to a condition in which sound was paired with water. Additional smaller changes occurred in more complex conditions in which the monkeys received water for motor actions before or after sounds. Our findings suggest that auditory cortex is most strongly modulated by the subjects’ level of arousal, thus by a psychological concept related to motor activity triggered by reinforcers and to readiness for operant behavior. Our findings also suggest that auditory cortex is involved in associative and emotional functions, but not in agency and cognitive effort.
Collapse
Affiliation(s)
| | | | - Alexander Gorkin
- Institute of Psychology, Russian Academy of Sciences, Moscow, Russia
| | - Frank W Ohl
- Leibniz Institut für Neurobiologie, Magdeburg, Germany.,Institute of Biology, Otto-von-Guericke University, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany
| | - Michael Brosch
- Leibniz Institut für Neurobiologie, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
102
|
Cooke JE, Kahn MC, Mann EO, King AJ, Schnupp JWH, Willmore BDB. Contrast gain control occurs independently of both parvalbumin-positive interneuron activity and shunting inhibition in auditory cortex. J Neurophysiol 2020; 123:1536-1551. [PMID: 32186432 PMCID: PMC7191518 DOI: 10.1152/jn.00587.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 12/31/2022] Open
Abstract
Contrast gain control is the systematic adjustment of neuronal gain in response to the contrast of sensory input. It is widely observed in sensory cortical areas and has been proposed to be a canonical neuronal computation. Here, we investigated whether shunting inhibition from parvalbumin-positive interneurons-a mechanism involved in gain control in visual cortex-also underlies contrast gain control in auditory cortex. First, we performed extracellular recordings in the auditory cortex of anesthetized male mice and optogenetically manipulated the activity of parvalbumin-positive interneurons while varying the contrast of the sensory input. We found that both activation and suppression of parvalbumin interneuron activity altered the overall gain of cortical neurons. However, despite these changes in overall gain, we found that manipulating parvalbumin interneuron activity did not alter the strength of contrast gain control in auditory cortex. Furthermore, parvalbumin-positive interneurons did not show increases in activity in response to high-contrast stimulation, which would be expected if they drive contrast gain control. Finally, we performed in vivo whole-cell recordings in auditory cortical neurons during high- and low-contrast stimulation and found that no increase in membrane conductance was observed during high-contrast stimulation. Taken together, these findings indicate that while parvalbumin-positive interneuron activity modulates the overall gain of auditory cortical responses, other mechanisms are primarily responsible for contrast gain control in this cortical area.NEW & NOTEWORTHY We investigated whether contrast gain control is mediated by shunting inhibition from parvalbumin-positive interneurons in auditory cortex. We performed extracellular and intracellular recordings in mouse auditory cortex while presenting sensory stimuli with varying contrasts and manipulated parvalbumin-positive interneuron activity using optogenetics. We show that while parvalbumin-positive interneuron activity modulates the gain of cortical responses, this activity is not the primary mechanism for contrast gain control in auditory cortex.
Collapse
Affiliation(s)
- James E Cooke
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- University College London, London, United Kingdom
| | - Martin C Kahn
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Edward O Mann
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Andrew J King
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Jan W H Schnupp
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong
| | - Ben D B Willmore
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
103
|
Ross JM, Hamm JP. Cortical Microcircuit Mechanisms of Mismatch Negativity and Its Underlying Subcomponents. Front Neural Circuits 2020; 14:13. [PMID: 32296311 PMCID: PMC7137737 DOI: 10.3389/fncir.2020.00013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/17/2020] [Indexed: 12/11/2022] Open
Abstract
In the neocortex, neuronal processing of sensory events is significantly influenced by context. For instance, responses in sensory cortices are suppressed to repetitive or redundant stimuli, a phenomenon termed “stimulus-specific adaptation” (SSA). However, in a context in which that same stimulus is novel, or deviates from expectations, neuronal responses are augmented. This augmentation is termed “deviance detection” (DD). This contextual modulation of neural responses is fundamental for how the brain efficiently processes the sensory world to guide immediate and future behaviors. Notably, context modulation is deficient in some neuropsychiatric disorders such as schizophrenia (SZ), as quantified by reduced “mismatch negativity” (MMN), an electroencephalography waveform reflecting a combination of SSA and DD in sensory cortex. Although the role of NMDA-receptor function and other neuromodulatory systems on MMN is established, the precise microcircuit mechanisms of MMN and its underlying components, SSA and DD, remain unknown. When coupled with animal models, the development of powerful precision neurotechnologies over the past decade carries significant promise for making new progress into understanding the neurobiology of MMN with previously unreachable spatial resolution. Currently, rodent models represent the best tool for mechanistic study due to the vast genetic tools available. While quantifying human-like MMN waveforms in rodents is not straightforward, the “oddball” paradigms used to study it in humans and its underlying subcomponents (SSA/DD) are highly translatable across species. Here we summarize efforts published so far, with a focus on cortically measured SSA and DD in animals to maintain relevance to the classically measured MMN, which has cortical origins. While mechanistic studies that measure and contrast both components are sparse, we synthesize a potential set of microcircuit mechanisms from the existing rodent, primate, and human literature. While MMN and its subcomponents likely reflect several mechanisms across multiple brain regions, understanding fundamental microcircuit mechanisms is an important step to understand MMN as a whole. We hypothesize that SSA reflects adaptations occurring at synapses along the sensory-thalamocortical pathways, while DD depends on both SSA inherited from afferent inputs and resulting disinhibition of non-adapted neurons arising from the distinct physiology and wiring properties of local interneuronal subpopulations and NMDA-receptor function.
Collapse
Affiliation(s)
- Jordan M Ross
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States.,Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, United States
| | - Jordan P Hamm
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States.,Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, United States.,Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
104
|
Bjerre AS, Palmer LM. Probing Cortical Activity During Head-Fixed Behavior. Front Mol Neurosci 2020; 13:30. [PMID: 32180705 PMCID: PMC7059801 DOI: 10.3389/fnmol.2020.00030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/10/2020] [Indexed: 01/20/2023] Open
Abstract
The cortex is crucial for many behaviors, ranging from sensory-based behaviors to working memory and social behaviors. To gain an in-depth understanding of the contribution to these behaviors, cellular and sub-cellular recordings from both individual and populations of cortical neurons are vital. However, techniques allowing such recordings, such as two-photon imaging and whole-cell electrophysiology, require absolute stability of the head, a requirement not often fulfilled in freely moving animals. Here, we review and compare behavioral paradigms that have been developed and adapted for the head-fixed preparation, which together offer the needed stability for live recordings of neural activity in behaving animals. We also review how the head-fixed preparation has been used to explore the function of primary sensory cortices, posterior parietal cortex (PPC) and anterior lateral motor (ALM) cortex in sensory-based behavioral tasks, while also discussing the considerations of performing such recordings. Overall, this review highlights the head-fixed preparation as allowing in-depth investigation into the neural activity underlying behaviors by providing highly controllable settings for precise stimuli presentation which can be combined with behavioral paradigms ranging from simple sensory detection tasks to complex, cross-modal, memory-guided decision-making tasks.
Collapse
Affiliation(s)
- Ann-Sofie Bjerre
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Lucy M Palmer
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
105
|
Kouvaros S, Kumar M, Tzounopoulos T. Synaptic Zinc Enhances Inhibition Mediated by Somatostatin, but not Parvalbumin, Cells in Mouse Auditory Cortex. Cereb Cortex 2020; 30:3895-3909. [PMID: 32090251 DOI: 10.1093/cercor/bhaa005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/23/2019] [Accepted: 01/06/2020] [Indexed: 11/13/2022] Open
Abstract
Cortical inhibition is essential for brain activity and behavior. Yet, the mechanisms that modulate cortical inhibition and their impact on sensory processing remain less understood. Synaptically released zinc, a neuromodulator released by cortical glutamatergic synaptic vesicles, has emerged as a powerful modulator of sensory processing and behavior. Despite the puzzling finding that the vesicular zinc transporter (ZnT3) mRNA is expressed in cortical inhibitory interneurons, the actions of synaptic zinc in cortical inhibitory neurotransmission remain unknown. Using in vitro electrophysiology and optogenetics in mouse brain slices containing the layer 2/3 (L2/3) of auditory cortex, we discovered that synaptic zinc increases the quantal size of inhibitory GABAergic neurotransmission mediated by somatostatin (SOM)- but not parvalbumin (PV)-expressing neurons. Using two-photon imaging in awake mice, we showed that synaptic zinc is required for the effects of SOM- but not PV-mediated inhibition on frequency tuning of principal neurons. Thus, cell-specific zinc modulation of cortical inhibition regulates frequency tuning.
Collapse
Affiliation(s)
- Stylianos Kouvaros
- Department of Otolaryngology, Pittsburgh Hearing Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Manoj Kumar
- Department of Otolaryngology, Pittsburgh Hearing Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Thanos Tzounopoulos
- Department of Otolaryngology, Pittsburgh Hearing Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
106
|
Maor I, Shwartz-Ziv R, Feigin L, Elyada Y, Sompolinsky H, Mizrahi A. Neural Correlates of Learning Pure Tones or Natural Sounds in the Auditory Cortex. Front Neural Circuits 2020; 13:82. [PMID: 32047424 PMCID: PMC6997498 DOI: 10.3389/fncir.2019.00082] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/17/2019] [Indexed: 11/17/2022] Open
Abstract
Associative learning of pure tones is known to cause tonotopic map expansion in the auditory cortex (ACx), but the function this plasticity sub-serves is unclear. We developed an automated training platform called the “Educage,” which was used to train mice on a go/no-go auditory discrimination task to their perceptual limits, for difficult discriminations among pure tones or natural sounds. Spiking responses of excitatory and inhibitory parvalbumin (PV+) L2/3 neurons in mouse ACx revealed learning-induced overrepresentation of the learned frequencies, as expected from previous literature. The coordinated plasticity of excitatory and inhibitory neurons supports a role for PV+ neurons in homeostatic maintenance of excitation–inhibition balance within the circuit. Using a novel computational model to study auditory tuning curves, we show that overrepresentation of the learned tones does not necessarily improve discrimination performance of the network to these tones. In a separate set of experiments, we trained mice to discriminate among natural sounds. Perceptual learning of natural sounds induced “sparsening” and decorrelation of the neural response, consequently improving discrimination of these complex sounds. This signature of plasticity in A1 highlights its role in coding natural sounds.
Collapse
Affiliation(s)
- Ido Maor
- Department of Neurobiology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ravid Shwartz-Ziv
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Libi Feigin
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yishai Elyada
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Haim Sompolinsky
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adi Mizrahi
- Department of Neurobiology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
107
|
Tang L, Higley MJ. Layer 5 Circuits in V1 Differentially Control Visuomotor Behavior. Neuron 2020; 105:346-354.e5. [PMID: 31757603 PMCID: PMC6981039 DOI: 10.1016/j.neuron.2019.10.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 09/03/2019] [Accepted: 10/07/2019] [Indexed: 10/25/2022]
Abstract
Neocortical sensory areas are thought to act as distribution hubs, transmitting information about the external environment to downstream areas. Within primary visual cortex, various populations of pyramidal neurons (PNs) send axonal projections to distinct targets, suggesting multiple cellular networks may be independently engaged during behavior. We investigated whether PN subpopulations differentially support visual detection by training mice on a novel eyeblink conditioning task. Applying 2-photon calcium imaging and optogenetic manipulation of anatomically defined PNs, we show that layer 5 corticopontine neurons strongly encode sensory and motor task information and are selectively necessary for performance. Our findings support a model in which target-specific cortical subnetworks form the basis for adaptive behavior by directing relevant information to distinct brain areas. Overall, this work highlights the potential for neurons to form physically interspersed but functionally segregated networks capable of parallel, independent control of perception and behavior.
Collapse
Affiliation(s)
- Lan Tang
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Michael J Higley
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
108
|
Lohse M, Bajo VM, King AJ, Willmore BDB. Neural circuits underlying auditory contrast gain control and their perceptual implications. Nat Commun 2020; 11:324. [PMID: 31949136 PMCID: PMC6965083 DOI: 10.1038/s41467-019-14163-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/19/2019] [Indexed: 11/09/2022] Open
Abstract
Neural adaptation enables sensory information to be represented optimally in the brain despite large fluctuations over time in the statistics of the environment. Auditory contrast gain control represents an important example, which is thought to arise primarily from cortical processing. Here we show that neurons in the auditory thalamus and midbrain of mice show robust contrast gain control, and that this is implemented independently of cortical activity. Although neurons at each level exhibit contrast gain control to similar degrees, adaptation time constants become longer at later stages of the processing hierarchy, resulting in progressively more stable representations. We also show that auditory discrimination thresholds in human listeners compensate for changes in contrast, and that the strength of this perceptual adaptation can be predicted from physiological measurements. Contrast adaptation is therefore a robust property of both the subcortical and cortical auditory system and accounts for the short-term adaptability of perceptual judgments.
Collapse
Affiliation(s)
- Michael Lohse
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, OX1 3PT, UK.
| | - Victoria M Bajo
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Andrew J King
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, OX1 3PT, UK.
| | - Ben D B Willmore
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| |
Collapse
|
109
|
Kim T, Chaloner FA, Cooke SF, Harnett MT, Bear MF. Opposing Somatic and Dendritic Expression of Stimulus-Selective Response Plasticity in Mouse Primary Visual Cortex. Front Cell Neurosci 2020; 13:555. [PMID: 32009901 PMCID: PMC6971207 DOI: 10.3389/fncel.2019.00555] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/02/2019] [Indexed: 12/19/2022] Open
Abstract
Daily exposure of awake mice to a phase-reversing visual grating stimulus leads to enhancement of the visual-evoked potential (VEP) in layer 4 of the primary visual cortex (V1). This stimulus-selective response potentiation (SRP) resembles and shares mechanistic requirements with canonical long-term synaptic potentiation (LTP). However, it remains to be determined how this augmentation of a population response translates into altered neuronal activity of individual V1 neurons. To address this question, we performed longitudinal calcium imaging of layer 4 excitatory neurons in V1 and tracked changes associated with the induction and expression of SRP. We found no evidence for a net change in the fraction of visually responsive neurons as the stimulus became familiar. However, endoscopic calcium imaging of layer 4 principal neurons revealed that somatic calcium transients in response to phase-reversals of the familiar visual stimulus are reduced and undergo strong within-session adaptation. Conversely, neuropil calcium responses and VEPs are enhanced during familiar stimulus viewing, and the VEPs show reduced within-session adaptation. Consistent with the exquisite selectivity of SRP, the plasticity of cellular responses to phase-reversing gratings did not translate into altered orientation selectivity to drifting gratings. Our findings suggest a model in which augmentation of fast, short-latency synaptic (dendritic) responses, manifested as enhanced layer 4 VEPs, recruits inhibition to suppress cellular activity. Reduced cellular activity to the familiar stimulus may account for the behavioral correlate of SRP, orientation-selective long-term habituation.
Collapse
Affiliation(s)
- Taekeun Kim
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Francesca A. Chaloner
- MRC Centre for Neurodevelopmental Disorders (CNDD), King’s College London, London, United Kingdom
- Department of Basic and Clinical Neuroscience, Maurice Wohl Institute for Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Sam F. Cooke
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States
- MRC Centre for Neurodevelopmental Disorders (CNDD), King’s College London, London, United Kingdom
- Department of Basic and Clinical Neuroscience, Maurice Wohl Institute for Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Mark T. Harnett
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Mark F. Bear
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
110
|
Brunk MGK, Deane KE, Kisse M, Deliano M, Vieweg S, Ohl FW, Lippert MT, Happel MFK. Optogenetic stimulation of the VTA modulates a frequency-specific gain of thalamocortical inputs in infragranular layers of the auditory cortex. Sci Rep 2019; 9:20385. [PMID: 31892726 PMCID: PMC6938496 DOI: 10.1038/s41598-019-56926-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/16/2019] [Indexed: 12/22/2022] Open
Abstract
Reward associations during auditory learning induce cortical plasticity in the primary auditory cortex. A prominent source of such influence is the ventral tegmental area (VTA), which conveys a dopaminergic teaching signal to the primary auditory cortex. Yet, it is unknown, how the VTA influences cortical frequency processing and spectral integration. Therefore, we investigated the temporal effects of direct optogenetic stimulation of the VTA onto spectral integration in the auditory cortex on a synaptic circuit level by current-source-density analysis in anesthetized Mongolian gerbils. While auditory lemniscal input predominantly terminates in the granular input layers III/IV, we found that VTA-mediated modulation of spectral processing is relayed by a different circuit, namely enhanced thalamic inputs to the infragranular layers Vb/VIa. Activation of this circuit yields a frequency-specific gain amplification of local sensory input and enhances corticocortical information transfer, especially in supragranular layers I/II. This effects persisted over more than 30 minutes after VTA stimulation. Altogether, we demonstrate that the VTA exhibits a long-lasting influence on sensory cortical processing via infragranular layers transcending the signaling of a mere reward-prediction error. We thereby demonstrate a cellular and circuit substrate for the influence of reinforcement-evaluating brain systems on sensory processing in the auditory cortex.
Collapse
Affiliation(s)
- Michael G K Brunk
- Department of Systems Physiology of Learning, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany.
| | - Katrina E Deane
- Department of Systems Physiology of Learning, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
| | - Martin Kisse
- Department of Systems Physiology of Learning, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
| | - Matthias Deliano
- Department of Systems Physiology of Learning, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
| | - Silvia Vieweg
- Department of Systems Physiology of Learning, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
| | - Frank W Ohl
- Department of Systems Physiology of Learning, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), 39106, Magdeburg, Germany
- Institute for Biology, Otto-von-Guericke-University, 39120, Magdeburg, Germany
| | - Michael T Lippert
- Department of Systems Physiology of Learning, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), 39106, Magdeburg, Germany
| | - Max F K Happel
- Department of Systems Physiology of Learning, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany.
- Institute for Biology, Otto-von-Guericke-University, 39120, Magdeburg, Germany.
| |
Collapse
|
111
|
Somatostatin receptors (SSTR1-5) on inhibitory interneurons in the barrel cortex. Brain Struct Funct 2019; 225:387-401. [PMID: 31873798 PMCID: PMC6957562 DOI: 10.1007/s00429-019-02011-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 12/11/2019] [Indexed: 12/11/2022]
Abstract
Inhibitory interneurons in the cerebral cortex contain specific proteins or peptides characteristic for a certain interneuron subtype. In mice, three biochemical markers constitute non-overlapping interneuron populations, which account for 80–90% of all inhibitory cells. These interneurons express parvalbumin (PV), somatostatin (SST), or vasoactive intestinal peptide (VIP). SST is not only a marker of a specific interneuron subtype, but also an important neuropeptide that participates in numerous biochemical and signalling pathways in the brain via somatostatin receptors (SSTR1-5). In the nervous system, SST acts as a neuromodulator and neurotransmitter affecting, among others, memory, learning, and mood. In the sensory cortex, the co-localisation of GABA and SST is found in approximately 30% of interneurons. Considering the importance of interactions between inhibitory interneurons in cortical plasticity and the possible GABA and SST co-release, it seems important to investigate the localisation of different SSTRs on cortical interneurons. Here, we examined the distribution of SSTR1-5 on barrel cortex interneurons containing PV, SST, or VIP. Immunofluorescent staining using specific antibodies was performed on brain sections from transgenic mice that expressed red fluorescence in one specific interneuron subtype (PV-Ai14, SST-Ai14, and VIP-Ai14 mice). SSTRs expression on PV, SST, and VIP interneurons varied among the cortical layers and we found two patterns of SSTRs distribution in L4 of barrel cortex. We also demonstrated that, in contrast to other interneurons, PV cells did not express SSTR2, but expressed other SSTRs. SST interneurons, which were not found to make chemical synapses among themselves, expressed all five SSTR subtypes.
Collapse
|
112
|
Reciprocal connectivity between secondary auditory cortical field and amygdala in mice. Sci Rep 2019; 9:19610. [PMID: 31873139 PMCID: PMC6928164 DOI: 10.1038/s41598-019-56092-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/06/2019] [Indexed: 01/01/2023] Open
Abstract
Recent studies have examined the feedback pathway from the amygdala to the auditory cortex in conjunction with the feedforward pathway from the auditory cortex to the amygdala. However, these connections have not been fully characterized. Here, to visualize the comprehensive connectivity between the auditory cortex and amygdala, we injected cholera toxin subunit b (CTB), a bidirectional tracer, into multiple subfields in the mouse auditory cortex after identifying the location of these subfields using flavoprotein fluorescence imaging. After injecting CTB into the secondary auditory field (A2), we found densely innervated CTB-positive axon terminals that were mainly located in the lateral amygdala (La), and slight innervations in other divisions such as the basal amygdala. Moreover, we found a large number of retrogradely-stained CTB-positive neurons in La after injecting CTB into A2. When injecting CTB into the primary auditory cortex (A1), a small number of CTB-positive neurons and axons were visualized in the amygdala. Finally, we found a near complete absence of connections between the other auditory cortical fields and the amygdala. These data suggest that reciprocal connections between A2 and La are main conduits for communication between the auditory cortex and amygdala in mice.
Collapse
|
113
|
Audio-visual experience strengthens multisensory assemblies in adult mouse visual cortex. Nat Commun 2019; 10:5684. [PMID: 31831751 PMCID: PMC6908602 DOI: 10.1038/s41467-019-13607-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/07/2019] [Indexed: 11/09/2022] Open
Abstract
We experience the world through multiple senses simultaneously. To better understand mechanisms of multisensory processing we ask whether inputs from two senses (auditory and visual) can interact and drive plasticity in neural-circuits of the primary visual cortex (V1). Using genetically-encoded voltage and calcium indicators, we find coincident audio-visual experience modifies both the supra and subthreshold response properties of neurons in L2/3 of mouse V1. Specifically, we find that after audio-visual pairing, a subset of multimodal neurons develops enhanced auditory responses to the paired auditory stimulus. This cross-modal plasticity persists over days and is reflected in the strengthening of small functional networks of L2/3 neurons. We find V1 processes coincident auditory and visual events by strengthening functional associations between feature specific assemblies of multimodal neurons during bouts of sensory driven co-activity, leaving a trace of multisensory experience in the cortical network.
Collapse
|
114
|
Abstract
Changes in brain state modulate how information is processed in sensory cortical areas. Here we use population imaging and intracellular recording to show that arousal regulates frequency tuning in layer 2/3 of primary auditory cortex. Increased arousal reduces lateral inhibition, broadens frequency tuning and enhances cortical representations of pure tones. Despite the arousal-dependent reduction in stimulus selectivity, frequency discrimination by cell ensembles improves due to a reduction in correlated variability (noise correlations). Changes in arousal influence cortical sensory representations, but the synaptic mechanisms underlying arousal-dependent modulation of cortical processing are unclear. Here, we use 2-photon Ca2+ imaging in the auditory cortex of awake mice to show that heightened arousal, as indexed by pupil diameter, broadens frequency-tuned activity of layer 2/3 (L2/3) pyramidal cells. Sensory representations are less sparse, and the tuning of nearby cells more similar when arousal increases. Despite the reduction in selectivity, frequency discrimination by cell ensembles improves due to a decrease in shared trial-to-trial variability. In vivo whole-cell recordings reveal that mechanisms contributing to the effects of arousal on sensory representations include state-dependent modulation of membrane potential dynamics, spontaneous firing, and tone-evoked synaptic potentials. Surprisingly, changes in short-latency tone-evoked excitatory input cannot explain the effects of arousal on the broadness of frequency-tuned output. However, we show that arousal strongly modulates a slow tone-evoked suppression of recurrent excitation underlying lateral inhibition [H. K. Kato, S. K. Asinof, J. S. Isaacson, Neuron, 95, 412–423, (2017)]. This arousal-dependent “network suppression” gates the duration of tone-evoked responses and regulates the broadness of frequency tuning. Thus, arousal can shape tuning via modulation of indirect changes in recurrent network activity.
Collapse
|
115
|
Ohga S, Tsukano H, Horie M, Terashima H, Nishio N, Kubota Y, Takahashi K, Hishida R, Takebayashi H, Shibuki K. Direct Relay Pathways from Lemniscal Auditory Thalamus to Secondary Auditory Field in Mice. Cereb Cortex 2019; 28:4424-4439. [PMID: 30272122 PMCID: PMC6215474 DOI: 10.1093/cercor/bhy234] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 09/01/2018] [Indexed: 12/19/2022] Open
Abstract
Tonotopy is an essential functional organization in the mammalian auditory cortex, and its source in the primary auditory cortex (A1) is the incoming frequency-related topographical projections from the ventral division of the medial geniculate body (MGv). However, circuits that relay this functional organization to higher-order regions such as the secondary auditory field (A2) have yet to be identified. Here, we discovered a new pathway that projects directly from MGv to A2 in mice. Tonotopy was established in A2 even when primary fields including A1 were removed, which indicates that tonotopy in A2 can be established solely by thalamic input. Moreover, the structural nature of differing thalamocortical connections was consistent with the functional organization of the target regions in the auditory cortex. Retrograde tracing revealed that the region of MGv input to a local area in A2 was broader than the region of MGv input to A1. Consistent with this anatomy, two-photon calcium imaging revealed that neuronal responses in the thalamocortical recipient layer of A2 showed wider bandwidth and greater heterogeneity of the best frequency distribution than those of A1. The current study demonstrates a new thalamocortical pathway that relays frequency information to A2 on the basis of the MGv compartmentalization.
Collapse
Affiliation(s)
- Shinpei Ohga
- Department of Neurophysiology, Brain Research Institute, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Japan
| | - Hiroaki Tsukano
- Department of Neurophysiology, Brain Research Institute, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Japan
| | - Masao Horie
- Department of Morphological Sciences, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Japan
| | - Hiroki Terashima
- NTT Communication Science Laboratories, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi-shi, Kanagawa, Japan
| | - Nana Nishio
- Department of Neurophysiology, Brain Research Institute, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Japan
| | - Yamato Kubota
- Department of Otolaryngology, Graduate School of Medicine and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Japan
| | - Kuniyuki Takahashi
- Department of Otolaryngology, Graduate School of Medicine and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Japan
| | - Ryuichi Hishida
- Department of Neurophysiology, Brain Research Institute, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medicine and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Japan
| | - Katsuei Shibuki
- Department of Neurophysiology, Brain Research Institute, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Japan
| |
Collapse
|
116
|
Chen C, Song S. Differential cell-type dependent brain state modulations of sensory representations in the non-lemniscal mouse inferior colliculus. Commun Biol 2019; 2:356. [PMID: 31583287 PMCID: PMC6769006 DOI: 10.1038/s42003-019-0602-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/23/2019] [Indexed: 02/01/2023] Open
Abstract
Sensory responses of the neocortex are strongly influenced by brain state changes. However, it remains unclear whether and how the sensory responses of the midbrain are affected. Here we addressed this issue by using in vivo two-photon calcium imaging to monitor the spontaneous and sound-evoked activities in the mouse inferior colliculus (IC). We developed a method enabling us to image the first layer of non-lemniscal IC (IC shell L1) in awake behaving mice. Compared with the awake state, spectral tuning selectivity of excitatory neurons was decreased during isoflurane anesthesia. Calcium imaging in behaving animals revealed that activities of inhibitory neurons were highly correlated with locomotion. Compared with stationary periods, spectral tuning selectivity of excitatory neurons was increased during locomotion. Taken together, our studies reveal that neuronal activities in the IC shell L1 are brain state dependent, whereas the brain state modulates the excitatory and inhibitory neurons differentially.
Collapse
Affiliation(s)
- Chenggang Chen
- Tsinghua Laboratory of Brain and Intelligence and Department of Biomedical Engineering, Beijing Innovation Center for Future Chip, Center for Brain-Inspired Computing Research, McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084 China
| | - Sen Song
- Tsinghua Laboratory of Brain and Intelligence and Department of Biomedical Engineering, Beijing Innovation Center for Future Chip, Center for Brain-Inspired Computing Research, McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084 China
| |
Collapse
|
117
|
A Non-Canonical Cortico-Amygdala Inhibitory Loop. J Neurosci 2019; 39:8424-8438. [PMID: 31511429 DOI: 10.1523/jneurosci.1515-19.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 11/21/2022] Open
Abstract
Discriminating between auditory signals of different affective value is critical for the survival and success of social interaction of an individual. Anatomical, electrophysiological, imaging, and optogenetics approaches have established that the auditory cortex (AC) by providing auditory information to the lateral amygdala (LA) via long-range excitatory glutamatergic projections has an impact on sound-driven aversive/fear behavior. Here we test the hypothesis that the LA also receives GABAergic projections from the cortex. We addressed this fundamental question by taking advantage of optogenetics, anatomical, and electrophysiology approaches and directly examining the functional effects of cortical GABAergic inputs to LA neurons of the mouse (male/female) AC. We found that the cortex, via cortico-lateral-amygdala somatostatin neurons (CLA-SOM), has a direct inhibitory influence on the output of the LA principal neurons. Our results define a CLA long-range inhibitory circuit (CLA-SOM inhibitory projections → LA principal neurons) underlying the control of spike timing/generation in LA and LA-AC projecting neurons, and attributes a specific function to a genetically defined type of cortical long-range GABAergic neurons in CLA communication.SIGNIFICANCE STATEMENT It is very well established that cortical auditory inputs to the lateral amygdala are exclusively excitatory and that cortico-amygdala neuronal activity has been shown to be involved in sound-driven aversive/fear behavior. Here, for the first time, we show that the lateral amygdala receives long-range GABAergic projection from the auditory cortex and these form direct monosynaptic inhibitory connections onto lateral amygdala principal neurons. Our results define a cellular basis for direct inhibitory communication from auditory cortex to the lateral amygdala, suggesting that the timing and ratio of excitation and inhibition, two opposing forces in the mammalian cerebral cortex, can dynamically affect the output of the lateral amygdala, providing a general mechanism for fear/aversive behavior driven by auditory stimuli.
Collapse
|
118
|
Moore JM, Woolley SMN. Emergent tuning for learned vocalizations in auditory cortex. Nat Neurosci 2019; 22:1469-1476. [PMID: 31406364 PMCID: PMC6713594 DOI: 10.1038/s41593-019-0458-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 06/24/2019] [Indexed: 12/20/2022]
Abstract
Vocal learners use early social experience to develop auditory skills specialized for communication. However, it is unknown where in the auditory pathway neural responses become selective for vocalizations or how the underlying encoding mechanisms change with experience. We used a vocal tutoring manipulation in two species of songbird to reveal that tuning for conspecific song arises within the primary auditory cortical circuit. Neurons in the deep region of primary auditory cortex responded more to conspecific songs than to other species' songs and more to species-typical spectrotemporal modulations, but neurons in the intermediate (thalamorecipient) region did not. Moreover, birds that learned song from another species exhibited parallel shifts in selectivity and tuning toward the tutor species' songs in the deep but not the intermediate region. Our results locate a region in the auditory processing hierarchy where an experience-dependent coding mechanism aligns auditory responses with the output of a learned vocal motor behavior.
Collapse
Affiliation(s)
- Jordan M Moore
- Department of Psychology, Columbia University, New York, NY, USA
- Zuckerman Institute, Columbia University, New York, NY, USA
| | - Sarah M N Woolley
- Department of Psychology, Columbia University, New York, NY, USA.
- Zuckerman Institute, Columbia University, New York, NY, USA.
- Kavli Institute for Brain Science, Columbia University, New York, NY, USA.
- Center for Integrative Animal Behavior, Columbia University, New York, NY, USA.
| |
Collapse
|
119
|
Xin Y, Zhong L, Zhang Y, Zhou T, Pan J, Xu NL. Sensory-to-Category Transformation via Dynamic Reorganization of Ensemble Structures in Mouse Auditory Cortex. Neuron 2019; 103:909-921.e6. [PMID: 31296412 DOI: 10.1016/j.neuron.2019.06.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 03/08/2019] [Accepted: 06/10/2019] [Indexed: 12/19/2022]
Abstract
The ability to group physical stimuli into behaviorally relevant categories is fundamental to perception and cognition. Despite a large body of work on stimulus categorization at the behavioral and cognitive levels, little is known about the underlying mechanisms at the neuronal level. Here, combining mouse auditory psychophysical behavior and in vivo two-photon imaging from the auditory cortex, we investigate how sensory-to-category transformation is implemented by cortical neurons during a stimulus categorization task. Distinct from responses during passive listening, many neurons exhibited emergent selectivity to stimuli near the category boundary during task performance, reshaping local tuning maps; other neurons became more selective to category membership of stimuli. At the population level, local cortical ensembles robustly encode category information and predict trial-by-trial decisions during task performance. Our data uncover a task-dependent dynamic reorganization of cortical response patterns serving as a neural mechanism for sensory-to-category transformation during perceptual decision-making.
Collapse
Affiliation(s)
- Yu Xin
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Zhong
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Taotao Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jingwei Pan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ning-Long Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China.
| |
Collapse
|
120
|
Riedemann T. Diversity and Function of Somatostatin-Expressing Interneurons in the Cerebral Cortex. Int J Mol Sci 2019; 20:E2952. [PMID: 31212931 PMCID: PMC6627222 DOI: 10.3390/ijms20122952] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/08/2019] [Accepted: 06/14/2019] [Indexed: 02/01/2023] Open
Abstract
Inhibitory interneurons make up around 10-20% of the total neuron population in the cerebral cortex. A hallmark of inhibitory interneurons is their remarkable diversity in terms of morphology, synaptic connectivity, electrophysiological and neurochemical properties. It is generally understood that there are three distinct and non-overlapping interneuron classes in the mouse neocortex, namely, parvalbumin-expressing, 5-HT3A receptor-expressing and somatostatin-expressing interneuron classes. Each class is, in turn, composed of a multitude of subclasses, resulting in a growing number of interneuron classes and subclasses. In this review, I will focus on the diversity of somatostatin-expressing interneurons (SOM+ INs) in the cerebral cortex and elucidate their function in cortical circuits. I will then discuss pathological consequences of a malfunctioning of SOM+ INs in neurological disorders such as major depressive disorder, and present future avenues in SOM research and brain pathologies.
Collapse
Affiliation(s)
- Therese Riedemann
- Ludwig-Maximilians-University, Biomedical Center, Physiological Genomics, Großhaderner Str. 9, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
121
|
Evoked Response Strength in Primary Auditory Cortex Predicts Performance in a Spectro-Spatial Discrimination Task in Rats. J Neurosci 2019; 39:6108-6121. [PMID: 31175214 DOI: 10.1523/jneurosci.0041-18.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/19/2019] [Accepted: 05/12/2019] [Indexed: 11/21/2022] Open
Abstract
The extent to which the primary auditory cortex (A1) participates in instructing animal behavior remains debated. Although multiple studies have shown A1 activity to correlate with animals' perceptual judgments (Jaramillo and Zador, 2011; Bizley et al., 2013; Rodgers and DeWeese, 2014), others have found no relationship between A1 responses and reported auditory percepts (Lemus et al., 2009; Dong et al., 2011). To address this ambiguity, we performed chronic recordings of evoked local field potentials (eLFPs) in A1 of head-fixed female rats performing a two-alternative forced-choice auditory discrimination task. Rats were presented with two interleaved sequences of pure tones from opposite sides and had to indicate the side from which the higher-frequency target stimulus was played. Animal performance closely correlated (r rm = 0.68) with the difference between the target and distractor eLFP responses: the more the target response exceeded the distractor response, the better the animals were at identifying the side of the target frequency. Reducing the evoked response of either frequency through stimulus-specific adaptation affected performance in the expected way: target localization accuracy was degraded when the target frequency was adapted and improved when the distractor frequency was adapted. Target frequency eLFPs were stronger on hit trials than on error trials. Our results suggest that the degree to which one stimulus stands out over others within A1 activity may determine its perceptual saliency for the animals and accordingly bias their behavioral choices.SIGNIFICANCE STATEMENT The brain must continuously calibrate the saliency of sensory percepts against their relevance to the current behavioral goal. The inability to ignore irrelevant distractors characterizes a spectrum of human attentional disorders. Meanwhile, the connection between the neural underpinnings of stimulus saliency and sensory decisions remains elusive. Here, we record local field potentials in the primary auditory cortex of rats engaged in auditory discrimination to investigate how the cortical representation of target and distractor stimuli impacts behavior. We find that the amplitude difference between target- and distractor-evoked activity predicts discrimination performance (r rm = 0.68). Specific adaptation of target or distractor shifts performance either below or above chance, respectively. It appears that recent auditory history profoundly influences stimulus saliency, biasing animals toward diametrically-opposed decisions.
Collapse
|
122
|
Kuchibhotla KV, Hindmarsh Sten T, Papadoyannis ES, Elnozahy S, Fogelson KA, Kumar R, Boubenec Y, Holland PC, Ostojic S, Froemke RC. Dissociating task acquisition from expression during learning reveals latent knowledge. Nat Commun 2019; 10:2151. [PMID: 31089133 PMCID: PMC6517418 DOI: 10.1038/s41467-019-10089-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 04/07/2019] [Indexed: 11/30/2022] Open
Abstract
Performance on cognitive tasks during learning is used to measure knowledge, yet it remains controversial since such testing is susceptible to contextual factors. To what extent does performance during learning depend on the testing context, rather than underlying knowledge? We trained mice, rats and ferrets on a range of tasks to examine how testing context impacts the acquisition of knowledge versus its expression. We interleaved reinforced trials with probe trials in which we omitted reinforcement. Across tasks, each animal species performed remarkably better in probe trials during learning and inter-animal variability was strikingly reduced. Reinforcement feedback is thus critical for learning-related behavioral improvements but, paradoxically masks the expression of underlying knowledge. We capture these results with a network model in which learning occurs during reinforced trials while context modulates only the read-out parameters. Probing learning by omitting reinforcement thus uncovers latent knowledge and identifies context- not “smartness”- as the major source of individual variability. Performance is generally used as a metric to assay whether an animal has learnt a particular perceptual task. Here the authors demonstrate that in the context of probe trials without the possibility of reward, animals perform the correct instrumental response suggesting a latent knowledge of the task much before it is manifest in their performance.
Collapse
Affiliation(s)
- Kishore V Kuchibhotla
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA. .,Department of Neuroscience, Johns Hopkins Medical School, Baltimore, MD, 21218, USA.
| | - Tom Hindmarsh Sten
- Departments of Otolaryngology, Neuroscience and Physiology, Skirball Institute, Neuroscience Institute, New York University School of Medicine, New York, NY, 10016, USA.,Center for Neural Science, New York University, New York, NY, 10003, USA.,Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, NY, 10065, USA
| | - Eleni S Papadoyannis
- Departments of Otolaryngology, Neuroscience and Physiology, Skirball Institute, Neuroscience Institute, New York University School of Medicine, New York, NY, 10016, USA.,Center for Neural Science, New York University, New York, NY, 10003, USA
| | - Sarah Elnozahy
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Kelly A Fogelson
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Rupesh Kumar
- Laboratoire des Systèmes Perceptifs, UMR8248, École Normale Supérieure-PSL Research University, 75006, Paris, France
| | - Yves Boubenec
- Laboratoire des Systèmes Perceptifs, UMR8248, École Normale Supérieure-PSL Research University, 75006, Paris, France
| | - Peter C Holland
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA.,Department of Neuroscience, Johns Hopkins Medical School, Baltimore, MD, 21218, USA
| | - Srdjan Ostojic
- Laboratoire de Neurosciences Cognitives, INSERM U960, École Normale Supérieure-PSL Research University, 75006, Paris, France
| | - Robert C Froemke
- Departments of Otolaryngology, Neuroscience and Physiology, Skirball Institute, Neuroscience Institute, New York University School of Medicine, New York, NY, 10016, USA.,Center for Neural Science, New York University, New York, NY, 10003, USA.,Faculty Scholar, Howard Hughes Medical Institute, Chevy Chase, MA, 20815, USA
| |
Collapse
|
123
|
Goyer D, Silveira MA, George AP, Beebe NL, Edelbrock RM, Malinski PT, Schofield BR, Roberts MT. A novel class of inferior colliculus principal neurons labeled in vasoactive intestinal peptide-Cre mice. eLife 2019; 8:43770. [PMID: 30998185 PMCID: PMC6516826 DOI: 10.7554/elife.43770] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 04/17/2019] [Indexed: 12/17/2022] Open
Abstract
Located in the midbrain, the inferior colliculus (IC) is the hub of the central auditory system. Although the IC plays important roles in speech processing, sound localization, and other auditory computations, the organization of the IC microcircuitry remains largely unknown. Using a multifaceted approach in mice, we have identified vasoactive intestinal peptide (VIP) neurons as a novel class of IC principal neurons. VIP neurons are glutamatergic stellate cells with sustained firing patterns. Their extensive axons project to long-range targets including the auditory thalamus, auditory brainstem, superior colliculus, and periaqueductal gray. Using optogenetic circuit mapping, we found that VIP neurons integrate input from the contralateral IC and the dorsal cochlear nucleus. The dorsal cochlear nucleus also drove feedforward inhibition to VIP neurons, indicating that inhibitory circuits within the IC shape the temporal integration of ascending inputs. Thus, VIP neurons are well-positioned to influence auditory computations in a number of brain regions.
Collapse
Affiliation(s)
- David Goyer
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, United States
| | - Marina A Silveira
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, United States
| | - Alexander P George
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, United States
| | - Nichole L Beebe
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, United States
| | - Ryan M Edelbrock
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, United States
| | - Peter T Malinski
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, United States
| | - Brett R Schofield
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, United States
| | - Michael T Roberts
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, United States
| |
Collapse
|
124
|
Ranjbar-Slamloo Y, Arabzadeh E. Diverse tuning underlies sparse activity in layer 2/3 vibrissal cortex of awake mice. J Physiol 2019; 597:2803-2817. [PMID: 30932197 DOI: 10.1113/jp277506] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/22/2019] [Indexed: 12/23/2022] Open
Abstract
KEY POINTS Sparse population activity is a common feature observed across cortical areas, yet the implications for sensory coding are not clear. We recorded single neuron activity in the vibrissal somatosensory cortex of awake head-fixed mice using the cell-attached technique. Unlike the anaesthetised condition, in awake mice a high-velocity, piezo-controlled whisker deflection excited only a small fraction of neurons. Manual probing of whiskers revealed that the majority of these silent neurons could be activated by specific forms of whisker-object contact. Our results suggest that sparse coding in vibrissal cortex may be due to high dimensionality of the stimulus space and narrow tuning of individual neurons. ABSTRACT It is widely reported that superficial layers of the somatosensory cortex exhibit sparse firing. This sparseness could reflect weak feedforward sensory inputs that are not sufficient to generate action potentials in these layers. Alternatively, sparseness might reflect tuning to unknown or higher-level complex features that are not fully explored in the stimulus space. Here, we examined these hypotheses by applying a range of vibrotactile and manual vibrissal stimuli in awake, head-fixed mice while performing loose-seal cell-attached recordings from the vibrissal primary somatosensory (vS1) cortex. A high-velocity stimulus delivered by a piezo-electric actuator evoked activity in a small fraction of regular spiking supragranular neurons (23%) in the awake condition. However, a majority of the supragranular regular spiking neurons (84%) were driven by manual stimulation of whiskers. Our results suggest that most neurons in the superficial layers of vS1 cortex contribute to coding in the awake condition when neurons may encounter their preferred feature(s) during whisker-object interactions.
Collapse
Affiliation(s)
- Yadollah Ranjbar-Slamloo
- Eccles Institute of Neuroscience, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, The Australian National University Node, Canberra, Australian Capital Territory, Australia
| | - Ehsan Arabzadeh
- Eccles Institute of Neuroscience, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, The Australian National University Node, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
125
|
Cortical recruitment determines learning dynamics and strategy. Nat Commun 2019; 10:1479. [PMID: 30931939 PMCID: PMC6443669 DOI: 10.1038/s41467-019-09450-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 03/12/2019] [Indexed: 12/26/2022] Open
Abstract
Salience is a broad and widely used concept in neuroscience whose neuronal correlates, however, remain elusive. In behavioral conditioning, salience is used to explain various effects, such as stimulus overshadowing, and refers to how fast and strongly a stimulus can be associated with a conditioned event. Here, we identify sounds of equal intensity and perceptual detectability, which due to their spectro-temporal content recruit different levels of population activity in mouse auditory cortex. When using these sounds as cues in a Go/NoGo discrimination task, the degree of cortical recruitment matches the salience parameter of a reinforcement learning model used to analyze learning speed. We test an essential prediction of this model by training mice to discriminate light-sculpted optogenetic activity patterns in auditory cortex, and verify that cortical recruitment causally determines association or overshadowing of the stimulus components. This demonstrates that cortical recruitment underlies major aspects of stimulus salience during reinforcement learning.
Collapse
|
126
|
Fine Control of Sound Frequency Tuning and Frequency Discrimination Acuity by Synaptic Zinc Signaling in Mouse Auditory Cortex. J Neurosci 2018; 39:854-865. [PMID: 30504277 DOI: 10.1523/jneurosci.1339-18.2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/16/2018] [Accepted: 11/16/2018] [Indexed: 11/21/2022] Open
Abstract
Neurons in the auditory cortex are tuned to specific ranges of sound frequencies. Although the cellular and network mechanisms underlying neuronal sound frequency selectivity are well studied and reflect the interplay of thalamocortical and intracortical excitatory inputs and further refinement by cortical inhibition, the precise synaptic signaling mechanisms remain less understood. To gain further understanding on these mechanisms and their effects on sound-driven behavior, we used in vivo imaging as well as behavioral approaches in awake and behaving female and male mice. We discovered that synaptic zinc, a modulator of neurotransmission and responsiveness to sound, sharpened the sound frequency tuning of principal and parvalbumin-expressing neurons and widened the sound frequency tuning of somatostatin-expressing inhibitory neurons in layer 2/3 of the primary auditory cortex. In the absence of cortical synaptic zinc, mice exhibited reduced acuity for detecting changes in sound frequencies. Together, our results reveal that cell-type-specific effects of zinc contribute to cortical sound frequency tuning and enhance acuity for sound frequency discrimination.SIGNIFICANCE STATEMENT Neuronal tuning to specific features of sensory stimuli is a fundamental property of cortical sensory processing that advantageously supports behavior. Despite the established roles of synaptic thalamocortical and intracortical excitation and inhibition in cortical tuning, the precise synaptic signaling mechanisms remain unknown. Here, we investigated these mechanisms in the mouse auditory cortex. We discovered a previously unknown signaling mechanism linking synaptic zinc signaling with cell-specific cortical tuning and enhancement in sound frequency discrimination acuity. Given the abundance of synaptic zinc in all sensory cortices, this newly discovered interaction between synaptic zinc and cortical tuning can provide a general mechanism for modulating neuronal stimulus specificity and sensory-driven behavior.
Collapse
|
127
|
Kopp-Scheinpflug C, Sinclair JL, Linden JF. When Sound Stops: Offset Responses in the Auditory System. Trends Neurosci 2018; 41:712-728. [DOI: 10.1016/j.tins.2018.08.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/30/2018] [Accepted: 08/10/2018] [Indexed: 11/17/2022]
|
128
|
Learning-Related Plasticity in Dendrite-Targeting Layer 1 Interneurons. Neuron 2018; 100:684-699.e6. [PMID: 30269988 PMCID: PMC6226614 DOI: 10.1016/j.neuron.2018.09.001] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/09/2018] [Accepted: 08/31/2018] [Indexed: 11/23/2022]
Abstract
A wealth of data has elucidated the mechanisms by which sensory inputs are encoded in the neocortex, but how these processes are regulated by the behavioral relevance of sensory information is less understood. Here, we focus on neocortical layer 1 (L1), a key location for processing of such top-down information. Using Neuron-Derived Neurotrophic Factor (NDNF) as a selective marker of L1 interneurons (INs) and in vivo 2-photon calcium imaging, electrophysiology, viral tracing, optogenetics, and associative memory, we find that L1 NDNF-INs mediate a prolonged form of inhibition in distal pyramidal neuron dendrites that correlates with the strength of the memory trace. Conversely, inhibition from Martinotti cells remains unchanged after conditioning but in turn tightly controls sensory responses in NDNF-INs. These results define a genetically addressable form of dendritic inhibition that is highly experience dependent and indicate that in addition to disinhibition, salient stimuli are encoded at elevated levels of distal dendritic inhibition. Video Abstract
NDNF is a selective marker for neocortical layer 1 interneurons NDNF interneurons mediate prolonged inhibition of distal pyramidal neuron dendrites Inhibition from Martinotti cells tightly controls NDNF interneuron responses Dendritic inhibition by NDNF interneurons is highly experience dependent
Collapse
|
129
|
Sensation, movement and learning in the absence of barrel cortex. Nature 2018; 561:542-546. [PMID: 30224746 PMCID: PMC6173956 DOI: 10.1038/s41586-018-0527-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 07/27/2018] [Indexed: 11/29/2022]
Abstract
For many of our senses, the role of the cerebral cortex in detecting stimuli is controversial1–17. Here, we examine the effects of both acute and chronic inactivation of primary somatosensory cortex (S1) in mice trained to move their large facial whiskers to detect an object via touch and respond with a lever to obtain a water reward. Using transgenic animals, we expressed inhibitory opsins in excitatory cortical neurons. Transient optogenetic inactivation of S1, as well as permanent lesions, initially produced both movement and sensory deficits that impaired detection behavior, demonstrating the inextricable link between sensory and motor systems during active sensing. Surprisingly, lesioned mice rapidly recovered full behavioral capabilities by the subsequent session. Recovery was experience-dependent, and early re-exposure to the task after lesion facilitated recovery. Furthermore, primary sensory cortex ablation prior to learning did not affect task acquisition. This combined optogenetic and lesion approach suggests that manipulations of sensory cortex may be only temporarily disruptive to other brain structures, which are themselves capable of coordinating multiple, arbitrary movements with sensation. Thus, the somatosensory cortex may be dispensable for active detection of objects in the environment.
Collapse
|
130
|
Insel N, Guerguiev J, Richards BA. Irrelevance by inhibition: Learning, computation, and implications for schizophrenia. PLoS Comput Biol 2018; 14:e1006315. [PMID: 30067746 PMCID: PMC6089457 DOI: 10.1371/journal.pcbi.1006315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/13/2018] [Accepted: 06/15/2018] [Indexed: 11/18/2022] Open
Abstract
Symptoms of schizophrenia may arise from a failure of cortical circuits to filter-out irrelevant inputs. Schizophrenia has also been linked to disruptions in cortical inhibitory interneurons, consistent with the possibility that in the normally functioning brain, these cells are in some part responsible for determining which sensory inputs are relevant versus irrelevant. Here, we develop a neural network model that demonstrates how the cortex may learn to ignore irrelevant inputs through plasticity processes affecting inhibition. The model is based on the proposal that the amount of excitatory output from a cortical circuit encodes the expected magnitude of reward or punishment ("relevance"), which can be trained using a temporal difference learning mechanism acting on feedforward inputs to inhibitory interneurons. In the model, irrelevant and blocked stimuli drive lower levels of excitatory activity compared with novel and relevant stimuli, and this difference in activity levels is lost following disruptions to inhibitory units. When excitatory units are connected to a competitive-learning output layer with a threshold, the relevance code can be shown to "gate" both learning and behavioral responses to irrelevant stimuli. Accordingly, the combined network is capable of recapitulating published experimental data linking inhibition in frontal cortex with fear learning and expression. Finally, the model demonstrates how relevance learning can take place in parallel with other types of learning, through plasticity rules involving inhibitory and excitatory components, respectively. Altogether, this work offers a theory of how the cortex learns to selectively inhibit inputs, providing insight into how relevance-assignment problems may emerge in schizophrenia.
Collapse
Affiliation(s)
- Nathan Insel
- Department of Psychology, University of Montana, Missoula, Montana, United States of America
- * E-mail: (NI); (BAR)
| | - Jordan Guerguiev
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Blake A. Richards
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (NI); (BAR)
| |
Collapse
|
131
|
Auditory midbrain coding of statistical learning that results from discontinuous sensory stimulation. PLoS Biol 2018; 16:e2005114. [PMID: 30048446 PMCID: PMC6065201 DOI: 10.1371/journal.pbio.2005114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/21/2018] [Indexed: 11/19/2022] Open
Abstract
Detecting regular patterns in the environment, a process known as statistical
learning, is essential for survival. Neuronal adaptation is a key mechanism in
the detection of patterns that are continuously repeated across short (seconds
to minutes) temporal windows. Here, we found in mice that a subcortical
structure in the auditory midbrain was sensitive to patterns that were repeated
discontinuously, in a temporally sparse manner, across windows of minutes to
hours. Using a combination of behavioral, electrophysiological, and molecular
approaches, we found changes in neuronal response gain that varied in mechanism
with the degree of sound predictability and resulted in changes in frequency
coding. Analysis of population activity (structural tuning) revealed an increase
in frequency classification accuracy in the context of increased overlap in
responses across frequencies. The increase in accuracy and overlap was
paralleled at the behavioral level in an increase in generalization in the
absence of diminished discrimination. Gain modulation was accompanied by changes
in gene and protein expression, indicative of long-term plasticity.
Physiological changes were largely independent of corticofugal feedback, and no
changes were seen in upstream cochlear nucleus responses, suggesting a key role
of the auditory midbrain in sensory gating. Subsequent behavior demonstrated
learning of predictable and random patterns and their importance in auditory
conditioning. Using longer timescales than previously explored, the combined
data show that the auditory midbrain codes statistical learning of temporally
sparse patterns, a process that is critical for the detection of relevant
stimuli in the constant soundscape that the animal navigates through. Some things are learned simply because they are there and not because they are
relevant at that moment in time. This is particularly true of surrounding
sounds, which we process automatically and continuously, detecting their
repetitive patterns or singularities. Learning about rewards and punishment is
typically attributed to cortical structures in the brain and known to occur over
long time windows. Learning of surrounding regularities, on the other hand, is
attributed to subcortical structures and has been shown to occur in seconds. The
brain can, however, also detect the regularity in sounds that are
discontinuously repeated across intervals of minutes and hours. For example, we
learn to identify people by the sound of their steps through an unconscious
process involving repeated but isolated exposures to the coappearance of sound
and person. Here, we show that a subcortical structure, the auditory midbrain,
can code such temporally spread regularities. Neurons in the auditory midbrain
changed their response pattern in mice that heard a fixed tone whenever they
went into one room in the environment they lived in. Learning of temporally
spread sound patterns can, therefore, occur in subcortical structures.
Collapse
|
132
|
Oscillatory Encoding of Visual Stimulus Familiarity. J Neurosci 2018; 38:6223-6240. [PMID: 29915138 DOI: 10.1523/jneurosci.3646-17.2018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 06/02/2018] [Accepted: 06/04/2018] [Indexed: 11/21/2022] Open
Abstract
Familiarity of the environment changes the way we perceive and encode incoming information. However, the neural substrates underlying this phenomenon are poorly understood. Here we describe a new form of experience-dependent low-frequency oscillations in the primary visual cortex (V1) of awake adult male mice. The oscillations emerged in visually evoked potentials and single-unit activity following repeated visual stimulation. The oscillations were sensitive to the spatial frequency content of a visual stimulus and required the mAChRs for their induction and expression. Finally, ongoing visually evoked θ (4-8 Hz) oscillations boost the visually evoked potential amplitude of incoming visual stimuli if the stimuli are presented at the high excitability phase of the oscillations. Our results demonstrate that an oscillatory code can be used to encode familiarity and serves as a gate for oncoming sensory inputs.SIGNIFICANCE STATEMENT Previous experience can influence the processing of incoming sensory information by the brain and alter perception. However, the mechanistic understanding of how this process takes place is lacking. We have discovered that persistent low-frequency oscillations in the primary visual cortex encode information about familiarity and the spatial frequency of the stimulus. These familiarity evoked oscillations influence neuronal responses to the oncoming stimuli in a way that depends on the oscillation phase. Our work demonstrates a new mechanism of visual stimulus feature detection and learning.
Collapse
|
133
|
Natan RG, Rao W, Geffen MN. Cortical Interneurons Differentially Shape Frequency Tuning following Adaptation. Cell Rep 2018; 21:878-890. [PMID: 29069595 DOI: 10.1016/j.celrep.2017.10.012] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 08/07/2017] [Accepted: 10/03/2017] [Indexed: 01/16/2023] Open
Abstract
Neuronal stimulus selectivity is shaped by feedforward and recurrent excitatory-inhibitory interactions. In the auditory cortex (AC), parvalbumin- (PV) and somatostatin-positive (SOM) inhibitory interneurons differentially modulate frequency-dependent responses of excitatory neurons. Responsiveness of neurons in the AC to sound is also dependent on stimulus history. We found that the inhibitory effects of SOMs and PVs diverged as a function of adaptation to temporal repetition of tones. Prior to adaptation, suppressing either SOM or PV inhibition drove both increases and decreases in excitatory spiking activity. After adaptation, suppressing SOM activity caused predominantly disinhibitory effects, whereas suppressing PV activity still evoked bi-directional changes. SOM, but not PV-driven inhibition, dynamically modulated frequency tuning with adaptation. Unlike PV-driven inhibition, SOM-driven inhibition elicited gain-like increases in frequency tuning reflective of adaptation. Our findings suggest that distinct cortical interneurons differentially shape tuning to sensory stimuli across the neuronal receptive field, altering frequency selectivity of excitatory neurons during adaptation.
Collapse
Affiliation(s)
- Ryan G Natan
- Department of Otorhinolaryngology: HNS and Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Winnie Rao
- Department of Otorhinolaryngology: HNS and Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Maria N Geffen
- Department of Otorhinolaryngology: HNS and Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
134
|
Khan AG, Poort J, Chadwick A, Blot A, Sahani M, Mrsic-Flogel TD, Hofer SB. Distinct learning-induced changes in stimulus selectivity and interactions of GABAergic interneuron classes in visual cortex. Nat Neurosci 2018; 21:851-859. [PMID: 29786081 DOI: 10.1038/s41593-018-0143-z] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 03/21/2018] [Indexed: 12/16/2022]
Abstract
How learning enhances neural representations for behaviorally relevant stimuli via activity changes of cortical cell types remains unclear. We simultaneously imaged responses of pyramidal cells (PYR) along with parvalbumin (PV), somatostatin (SOM), and vasoactive intestinal peptide (VIP) inhibitory interneurons in primary visual cortex while mice learned to discriminate visual patterns. Learning increased selectivity for task-relevant stimuli of PYR, PV and SOM subsets but not VIP cells. Strikingly, PV neurons became as selective as PYR cells, and their functional interactions reorganized, leading to the emergence of stimulus-selective PYR-PV ensembles. Conversely, SOM activity became strongly decorrelated from the network, and PYR-SOM coupling before learning predicted selectivity increases in individual PYR cells. Thus, learning differentially shapes the activity and interactions of multiple cell classes: while SOM inhibition may gate selectivity changes, PV interneurons become recruited into stimulus-specific ensembles and provide more selective inhibition as the network becomes better at discriminating behaviorally relevant stimuli.
Collapse
Affiliation(s)
- Adil G Khan
- Biozentrum, University of Basel, Basel, Switzerland. .,Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Jasper Poort
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK.
| | - Angus Chadwick
- Gatsby Computational Neuroscience Unit, University College London, London, UK
| | - Antonin Blot
- Biozentrum, University of Basel, Basel, Switzerland.,Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - Maneesh Sahani
- Gatsby Computational Neuroscience Unit, University College London, London, UK
| | - Thomas D Mrsic-Flogel
- Biozentrum, University of Basel, Basel, Switzerland. .,Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK.
| | - Sonja B Hofer
- Biozentrum, University of Basel, Basel, Switzerland. .,Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK.
| |
Collapse
|
135
|
Weiler S, Bauer J, Hübener M, Bonhoeffer T, Rose T, Scheuss V. High-yield in vitro recordings from neurons functionally characterized in vivo. Nat Protoc 2018; 13:1275-1293. [DOI: 10.1038/nprot.2018.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
136
|
Li R, Wang M, Yao J, Liang S, Liao X, Yang M, Zhang J, Yan J, Jia H, Chen X, Li X. Two-Photon Functional Imaging of the Auditory Cortex in Behaving Mice: From Neural Networks to Single Spines. Front Neural Circuits 2018; 12:33. [PMID: 29740289 PMCID: PMC5928246 DOI: 10.3389/fncir.2018.00033] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 04/10/2018] [Indexed: 11/17/2022] Open
Abstract
In vivo two-photon Ca2+ imaging is a powerful tool for recording neuronal activities during perceptual tasks and has been increasingly applied to behaving animals for acute or chronic experiments. However, the auditory cortex is not easily accessible to imaging because of the abundant temporal muscles, arteries around the ears and their lateral locations. Here, we report a protocol for two-photon Ca2+ imaging in the auditory cortex of head-fixed behaving mice. By using a custom-made head fixation apparatus and a head-rotated fixation procedure, we achieved two-photon imaging and in combination with targeted cell-attached recordings of auditory cortical neurons in behaving mice. Using synthetic Ca2+ indicators, we recorded the Ca2+ transients at multiple scales, including neuronal populations, single neurons, dendrites and single spines, in auditory cortex during behavior. Furthermore, using genetically encoded Ca2+ indicators (GECIs), we monitored the neuronal dynamics over days throughout the process of associative learning. Therefore, we achieved two-photon functional imaging at multiple scales in auditory cortex of behaving mice, which extends the tool box for investigating the neural basis of audition-related behaviors.
Collapse
Affiliation(s)
- Ruijie Li
- Brain Research Center, Third Military Medical University, Chongqing, China
| | - Meng Wang
- Brain Research Center, Third Military Medical University, Chongqing, China
| | - Jiwei Yao
- Department of Urology, Institute of Urinary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Shanshan Liang
- Brain Research Center, Third Military Medical University, Chongqing, China
| | - Xiang Liao
- Brain Research Center, Third Military Medical University, Chongqing, China
| | - Mengke Yang
- Brain Research Instrument Innovation Center, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Jianxiong Zhang
- Brain Research Center, Third Military Medical University, Chongqing, China
| | - Junan Yan
- Department of Urology, Institute of Urinary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Hongbo Jia
- Brain Research Instrument Innovation Center, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Xiaowei Chen
- Brain Research Center, Third Military Medical University, Chongqing, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xingyi Li
- Brain Research Center, Third Military Medical University, Chongqing, China
| |
Collapse
|
137
|
Forli A, Vecchia D, Binini N, Succol F, Bovetti S, Moretti C, Nespoli F, Mahn M, Baker CA, Bolton MM, Yizhar O, Fellin T. Two-Photon Bidirectional Control and Imaging of Neuronal Excitability with High Spatial Resolution In Vivo. Cell Rep 2018; 22:3087-3098. [PMID: 29539433 PMCID: PMC5863087 DOI: 10.1016/j.celrep.2018.02.063] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 12/22/2017] [Accepted: 02/14/2018] [Indexed: 12/01/2022] Open
Abstract
Sensory information is encoded within the brain in distributed spatiotemporal patterns of neuronal activity. Understanding how these patterns influence behavior requires a method to measure and to bidirectionally perturb with high spatial resolution the activity of the multiple neuronal cell types engaged in sensory processing. Here, we combined two-photon holography to stimulate neurons expressing blue light-sensitive opsins (ChR2 and GtACR2) with two-photon imaging of the red-shifted indicator jRCaMP1a in the mouse neocortex in vivo. We demonstrate efficient control of neural excitability across cell types and layers with holographic stimulation and improved spatial resolution by opsin somatic targeting. Moreover, we performed simultaneous two-photon imaging of jRCaMP1a and bidirectional two-photon manipulation of cellular activity with negligible effect of the imaging beam on opsin excitation. This all-optical approach represents a powerful tool to causally dissect how activity patterns in specified ensembles of neurons determine brain function and animal behavior.
Collapse
Affiliation(s)
- Angelo Forli
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Dania Vecchia
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Noemi Binini
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Francesca Succol
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Serena Bovetti
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Claudio Moretti
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Francesco Nespoli
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Mathias Mahn
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Christopher A Baker
- Disorders of Neural Circuit Function, Max Planck Florida Institute for Neuroscience, Jupiter 33458, FL, USA
| | - McLean M Bolton
- Disorders of Neural Circuit Function, Max Planck Florida Institute for Neuroscience, Jupiter 33458, FL, USA
| | - Ofer Yizhar
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tommaso Fellin
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova 16163, Italy.
| |
Collapse
|
138
|
Tasaka GI, Guenthner CJ, Shalev A, Gilday O, Luo L, Mizrahi A. Genetic tagging of active neurons in auditory cortex reveals maternal plasticity of coding ultrasonic vocalizations. Nat Commun 2018; 9:871. [PMID: 29491360 PMCID: PMC5830453 DOI: 10.1038/s41467-018-03183-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/25/2018] [Indexed: 11/09/2022] Open
Abstract
Cortical neurons are often functionally heterogeneous even for molecularly defined subtypes. In sensory cortices, physiological responses to natural stimuli can be sparse and vary widely even for neighboring neurons. It is thus difficult to parse out circuits that encode specific stimuli for further experimentation. Here, we report the development of a Cre-reporter mouse that allows recombination for cellular labeling and genetic manipulation, and use it with an activity-dependent Fos-CreERT2 driver to identify functionally active circuits in the auditory cortex. In vivo targeted patch recordings validate our method for neurons responding to physiologically relevant natural sounds such as pup wriggling calls and ultrasonic vocalizations (USVs). Using this system to investigate cortical responses in postpartum mothers, we find a transient recruitment of neurons highly responsive to USVs. This subpopulation of neurons has distinct physiological properties that improve the coding efficiency for pup USV calls, implicating it as a unique signature in parental plasticity.
Collapse
Affiliation(s)
- Gen-Ichi Tasaka
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.,The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Casey J Guenthner
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, 94305, USA.,Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Amos Shalev
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.,The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Omri Gilday
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Liqun Luo
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, 94305, USA. .,Department of Biology, Stanford University, Stanford, CA, 94305, USA.
| | - Adi Mizrahi
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel. .,The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| |
Collapse
|
139
|
Francis NA, Winkowski DE, Sheikhattar A, Armengol K, Babadi B, Kanold PO. Small Networks Encode Decision-Making in Primary Auditory Cortex. Neuron 2018; 97:885-897.e6. [PMID: 29398362 DOI: 10.1016/j.neuron.2018.01.019] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 12/08/2017] [Accepted: 01/08/2018] [Indexed: 12/23/2022]
Abstract
Sensory detection tasks enhance representations of behaviorally meaningful stimuli in primary auditory cortex (A1). However, it remains unclear how A1 encodes decision-making. Neurons in A1 layer 2/3 (L2/3) show heterogeneous stimulus selectivity and complex anatomical connectivity, and receive input from prefrontal cortex. Thus, task-related modulation of activity in A1 L2/3 might differ across subpopulations. To study the neural coding of decision-making, we used two-photon imaging in A1 L2/3 of mice performing a tone-detection task. Neural responses to targets showed attentional gain and encoded behavioral choice. To characterize network representation of behavioral choice, we analyzed functional connectivity using Granger causality, pairwise noise correlations, and neural decoding. During task performance, small groups of four to five neurons became sparsely linked, locally clustered, and rostro-caudally oriented, while noise correlations both increased and decreased. Our results suggest that sensory-based decision-making involves small neural networks driven by the sum of sensory input, attentional gain, and behavioral choice.
Collapse
Affiliation(s)
- Nikolas A Francis
- Department of Biology, University of Maryland, College Park, MD 20742, USA; Institute for Systems Research, University of Maryland, College Park, MD 20742, USA
| | - Daniel E Winkowski
- Department of Biology, University of Maryland, College Park, MD 20742, USA; Institute for Systems Research, University of Maryland, College Park, MD 20742, USA
| | - Alireza Sheikhattar
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742, USA
| | - Kevin Armengol
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Behtash Babadi
- Institute for Systems Research, University of Maryland, College Park, MD 20742, USA; Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742, USA
| | - Patrick O Kanold
- Department of Biology, University of Maryland, College Park, MD 20742, USA; Institute for Systems Research, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
140
|
Gillet SN, Kato HK, Justen MA, Lai M, Isaacson JS. Fear Learning Regulates Cortical Sensory Representations by Suppressing Habituation. Front Neural Circuits 2018; 11:112. [PMID: 29375323 PMCID: PMC5767681 DOI: 10.3389/fncir.2017.00112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/19/2017] [Indexed: 11/13/2022] Open
Abstract
Projections from auditory cortex to the amygdala are thought to contribute to the induction of auditory fear learning. In addition, fear conditioning has been found to enhance cortical responses to conditioned tones, suggesting that cortical plasticity contributes to fear learning. However, the functional role of auditory cortex in the retrieval of fear memories is unclear and how fear learning regulates cortical sensory representations is not well understood. To address these questions, we use acute optogenetic silencing and chronic two-photon calcium imaging in mouse auditory cortex during fear learning. Longitudinal imaging of neuronal ensemble activity reveals that discriminative fear learning modulates cortical sensory representations via the suppression of cortical habituation.
Collapse
Affiliation(s)
- Shea N Gillet
- Department of Neurosciences, Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, CA, United States.,Department of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Hiroyuki K Kato
- Department of Neurosciences, Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, CA, United States
| | - Marissa A Justen
- Department of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Mandy Lai
- Department of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Jeffry S Isaacson
- Department of Neurosciences, Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
141
|
Blackwell JM, Geffen MN. Progress and challenges for understanding the function of cortical microcircuits in auditory processing. Nat Commun 2017; 8:2165. [PMID: 29255268 PMCID: PMC5735136 DOI: 10.1038/s41467-017-01755-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 10/12/2017] [Indexed: 12/21/2022] Open
Abstract
An important outstanding question in auditory neuroscience is to identify the mechanisms by which specific motifs within inter-connected neural circuits affect auditory processing and, ultimately, behavior. In the auditory cortex, a combination of large-scale electrophysiological recordings and concurrent optogenetic manipulations are improving our understanding of the role of inhibitory–excitatory interactions. At the same time, computational approaches have grown to incorporate diverse neuronal types and connectivity patterns. However, we are still far from understanding how cortical microcircuits encode and transmit information about complex acoustic scenes. In this review, we focus on recent results identifying the special function of different cortical neurons in the auditory cortex and discuss a computational framework for future work that incorporates ideas from network science and network dynamics toward the coding of complex auditory scenes. Advances in multi-neuron recordings and optogenetic manipulation have resulted in an interrogation of the function of specific cortical cell types in auditory cortex during sound processing. Here, the authors review this literature and discuss the merits of integrating computational approaches from dynamic network science.
Collapse
Affiliation(s)
- Jennifer M Blackwell
- Department of Otorhinolaryngology: HNS, Department of Neuroscience, Neuroscience Graduate Group, Computational Neuroscience Initiative, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Maria N Geffen
- Department of Otorhinolaryngology: HNS, Department of Neuroscience, Neuroscience Graduate Group, Computational Neuroscience Initiative, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
142
|
Clopath C, Bonhoeffer T, Hübener M, Rose T. Variance and invariance of neuronal long-term representations. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0161. [PMID: 28093555 PMCID: PMC5247593 DOI: 10.1098/rstb.2016.0161] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2016] [Indexed: 12/13/2022] Open
Abstract
The brain extracts behaviourally relevant sensory input to produce appropriate motor output. On the one hand, our constantly changing environment requires this transformation to be plastic. On the other hand, plasticity is thought to be balanced by mechanisms ensuring constancy of neuronal representations in order to achieve stable behavioural performance. Yet, prominent changes in synaptic strength and connectivity also occur during normal sensory experience, indicating a certain degree of constitutive plasticity. This raises the question of how stable neuronal representations are on the population level and also on the single neuron level. Here, we review recent data from longitudinal electrophysiological and optical recordings of single-cell activity that assess the long-term stability of neuronal stimulus selectivities under conditions of constant sensory experience, during learning, and after reversible modification of sensory input. The emerging picture is that neuronal representations are stabilized by behavioural relevance and that the degree of long-term tuning stability and perturbation resistance directly relates to the functional role of the respective neurons, cell types and circuits. Using a 'toy' model, we show that stable baseline representations and precise recovery from perturbations in visual cortex could arise from a 'backbone' of strong recurrent connectivity between similarly tuned cells together with a small number of 'anchor' neurons exempt from plastic changes.This article is part of the themed issue 'Integrating Hebbian and homeostatic plasticity'.
Collapse
Affiliation(s)
- Claudia Clopath
- Bioengineering Department, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Tobias Bonhoeffer
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Mark Hübener
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Tobias Rose
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany
| |
Collapse
|
143
|
Abstract
Over the last 30 years a wide range of manipulations of auditory input and experience have been shown to result in plasticity in auditory cortical and subcortical structures. The time course of plasticity ranges from very rapid stimulus-specific adaptation to longer-term changes associated with, for example, partial hearing loss or perceptual learning. Evidence for plasticity as a consequence of these and a range of other manipulations of auditory input and/or its significance is reviewed, with an emphasis on plasticity in adults and in the auditory cortex. The nature of the changes in auditory cortex associated with attention, memory and perceptual learning depend critically on task structure, reward contingencies, and learning strategy. Most forms of auditory system plasticity are adaptive, in that they serve to optimize auditory performance, prompting attempts to harness this plasticity for therapeutic purposes. However, plasticity associated with cochlear trauma and partial hearing loss appears to be maladaptive, and has been linked to tinnitus. Three important forms of human learning-related auditory system plasticity are those associated with language development, musical training, and improvement in performance with a cochlear implant. Almost all forms of plasticity involve changes in synaptic excitatory - inhibitory balance within existing patterns of connectivity. An attractive model applicable to a number of forms of learning-related plasticity is dynamic multiplexing by individual neurons, such that learning involving a particular stimulus attribute reflects a particular subset of the diverse inputs to a given neuron being gated by top-down influences. The plasticity evidence indicates that auditory cortex is a component of complex distributed networks that integrate the representation of auditory stimuli with attention, decision and reward processes.
Collapse
Affiliation(s)
- Dexter R F Irvine
- Bionics Institute, East Melbourne, Victoria 3002, Australia; School of Psychological Sciences, Monash University, Victoria 3800, Australia.
| |
Collapse
|
144
|
Derey K, Rauschecker JP, Formisano E, Valente G, de Gelder B. Localization of complex sounds is modulated by behavioral relevance and sound category. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 142:1757. [PMID: 29092572 PMCID: PMC5626571 DOI: 10.1121/1.5003779] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Meaningful sounds represent the majority of sounds that humans hear and process in everyday life. Yet studies of human sound localization mainly use artificial stimuli such as clicks, pure tones, and noise bursts. The present study investigated the influence of behavioral relevance, sound category, and acoustic properties on the localization of complex, meaningful sounds in the horizontal plane. Participants localized vocalizations and traffic sounds with two levels of behavioral relevance (low and high) within each category, as well as amplitude-modulated tones. Results showed a small but significant effect of behavioral relevance: localization acuity was higher for complex sounds with a high level of behavioral relevance at several target locations. The data also showed category-specific effects: localization biases were lower, and localization precision higher, for vocalizations than for traffic sounds in central space. Several acoustic parameters influenced sound localization performance as well. Correcting localization responses for front-back reversals reduced the overall variability across sounds, but behavioral relevance and sound category still had a modulatory effect on sound localization performance in central auditory space. The results thus demonstrate that spatial hearing performance for complex sounds is influenced not only by acoustic characteristics, but also by sound category and behavioral relevance.
Collapse
Affiliation(s)
- Kiki Derey
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD, Maastricht, The Netherlands
| | - Josef P Rauschecker
- Laboratory of Integrative Neuroscience and Cognition, Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Elia Formisano
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD, Maastricht, The Netherlands
| | - Giancarlo Valente
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD, Maastricht, The Netherlands
| | - Beatrice de Gelder
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD, Maastricht, The Netherlands
| |
Collapse
|
145
|
Anderson CT, Kumar M, Xiong S, Tzounopoulos T. Cell-specific gain modulation by synaptically released zinc in cortical circuits of audition. eLife 2017; 6:e29893. [PMID: 28887876 PMCID: PMC5876454 DOI: 10.7554/elife.29893] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/04/2017] [Indexed: 12/26/2022] Open
Abstract
In many excitatory synapses, mobile zinc is found within glutamatergic vesicles and is coreleased with glutamate. Ex vivo studies established that synaptically released (synaptic) zinc inhibits excitatory neurotransmission at lower frequencies of synaptic activity but enhances steady state synaptic responses during higher frequencies of activity. However, it remains unknown how synaptic zinc affects neuronal processing in vivo. Here, we imaged the sound-evoked neuronal activity of the primary auditory cortex in awake mice. We discovered that synaptic zinc enhanced the gain of sound-evoked responses in CaMKII-expressing principal neurons, but it reduced the gain of parvalbumin- and somatostatin-expressing interneurons. This modulation was sound intensity-dependent and, in part, NMDA receptor-independent. By establishing a previously unknown link between synaptic zinc and gain control of auditory cortical processing, our findings advance understanding about cortical synaptic mechanisms and create a new framework for approaching and interpreting the role of the auditory cortex in sound processing.
Collapse
Affiliation(s)
- Charles T Anderson
- Department of OtolaryngologyUniversity of PittsburghPittsburghUnited States
| | - Manoj Kumar
- Department of OtolaryngologyUniversity of PittsburghPittsburghUnited States
| | - Shanshan Xiong
- Department of OtolaryngologyUniversity of PittsburghPittsburghUnited States
- The Third Xiangya HospitalCentral South UniversityChangshaChina
| | | |
Collapse
|
146
|
Attenuation of Responses to Self-Generated Sounds in Auditory Cortical Neurons. J Neurosci 2017; 36:12010-12026. [PMID: 27881785 DOI: 10.1523/jneurosci.1564-16.2016] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 09/21/2016] [Accepted: 09/23/2016] [Indexed: 12/21/2022] Open
Abstract
Many of the sounds that we perceive are caused by our own actions, for example when speaking or moving, and must be distinguished from sounds caused by external events. Studies using macroscopic measurements of brain activity in human subjects have consistently shown that responses to self-generated sounds are attenuated in amplitude. However, the underlying manifestation of this phenomenon at the cellular level is not well understood. To address this, we recorded the activity of neurons in the auditory cortex of mice in response to sounds generated by their own behavior. We found that the responses of auditory cortical neurons to these self-generated sounds were consistently attenuated, compared with the same sounds generated independently of the animals' behavior. This effect was observed in both putative pyramidal neurons and in interneurons and was stronger in lower layers of auditory cortex. Downstream of the auditory cortex, we found that responses of hippocampal neurons to self-generated sounds were almost entirely suppressed. Responses to self-generated optogenetic stimulation of auditory thalamocortical terminals were also attenuated, suggesting a cortical contribution to this effect. Further analyses revealed that the attenuation of self-generated sounds was not simply due to the nonspecific effects of movement or behavioral state on auditory responsiveness. However, the strength of attenuation depended on the degree to which self-generated sounds were expected to occur, in a cell-type-specific manner. Together, these results reveal the cellular basis underlying attenuated responses to self-generated sounds and suggest that predictive processes contribute to this effect. SIGNIFICANCE STATEMENT Distinguishing self-generated from externally generated sensory input poses a fundamental problem for behaving organisms. Our study in mice shows for the first time that responses of auditory cortical neurons are attenuated to sounds generated manually by the animals' own behavior. This effect is distinct from the nonspecific effect of behavioral activity on auditory responsiveness that has previously been reported and its magnitude is modulated by the probability with which self-generated sounds occur, suggesting an underlying predictive process. We also reveal how this effect varies across cell types and cortical layers. These findings lay a foundation for studying impairments in the processing of self-generated sounds, which are observed in psychiatric illness, in animal disease models.
Collapse
|
147
|
Aghayee S, Winkowski DE, Bowen Z, Marshall EE, Harrington MJ, Kanold PO, Losert W. Particle Tracking Facilitates Real Time Capable Motion Correction in 2D or 3D Two-Photon Imaging of Neuronal Activity. Front Neural Circuits 2017; 11:56. [PMID: 28860973 PMCID: PMC5559509 DOI: 10.3389/fncir.2017.00056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 07/31/2017] [Indexed: 02/04/2023] Open
Abstract
The application of 2-photon laser scanning microscopy (TPLSM) techniques to measure the dynamics of cellular calcium signals in populations of neurons is an extremely powerful technique for characterizing neural activity within the central nervous system. The use of TPLSM on awake and behaving subjects promises new insights into how neural circuit elements cooperatively interact to form sensory perceptions and generate behavior. A major challenge in imaging such preparations is unavoidable animal and tissue movement, which leads to shifts in the imaging location (jitter). The presence of image motion can lead to artifacts, especially since quantification of TPLSM images involves analysis of fluctuations in fluorescence intensities for each neuron, determined from small regions of interest (ROIs). Here, we validate a new motion correction approach to compensate for motion of TPLSM images in the superficial layers of auditory cortex of awake mice. We use a nominally uniform fluorescent signal as a secondary signal to complement the dynamic signals from genetically encoded calcium indicators. We tested motion correction for single plane time lapse imaging as well as multiplane (i.e., volume) time lapse imaging of cortical tissue. Our procedure of motion correction relies on locating the brightest neurons and tracking their positions over time using established techniques of particle finding and tracking. We show that our tracking based approach provides subpixel resolution without compromising speed. Unlike most established methods, our algorithm also captures deformations of the field of view and thus can compensate e.g., for rotations. Object tracking based motion correction thus offers an alternative approach for motion correction, one that is well suited for real time spike inference analysis and feedback control, and for correcting for tissue distortions.
Collapse
Affiliation(s)
- Samira Aghayee
- Department of Physics, University of MarylandCollege Park, MD, United States.,Department of Biology, University of MarylandCollege Park, MD, United States
| | - Daniel E Winkowski
- Department of Biology, University of MarylandCollege Park, MD, United States
| | - Zachary Bowen
- Department of Physics, University of MarylandCollege Park, MD, United States.,Department of Biology, University of MarylandCollege Park, MD, United States
| | - Erin E Marshall
- Department of Physics, University of MarylandCollege Park, MD, United States
| | - Matt J Harrington
- Department of Physics, University of MarylandCollege Park, MD, United States
| | - Patrick O Kanold
- Department of Biology, University of MarylandCollege Park, MD, United States
| | - Wolfgang Losert
- Department of Physics, University of MarylandCollege Park, MD, United States
| |
Collapse
|
148
|
Natural Firing Patterns Imply Low Sensitivity of Synaptic Plasticity to Spike Timing Compared with Firing Rate. J Neurosci 2017; 36:11238-11258. [PMID: 27807166 DOI: 10.1523/jneurosci.0104-16.2016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 09/02/2016] [Indexed: 01/28/2023] Open
Abstract
Synaptic plasticity is sensitive to the rate and the timing of presynaptic and postsynaptic action potentials. In experimental protocols inducing plasticity, the imposed spike trains are typically regular and the relative timing between every presynaptic and postsynaptic spike is fixed. This is at odds with firing patterns observed in the cortex of intact animals, where cells fire irregularly and the timing between presynaptic and postsynaptic spikes varies. To investigate synaptic changes elicited by in vivo-like firing, we used numerical simulations and mathematical analysis of synaptic plasticity models. We found that the influence of spike timing on plasticity is weaker than expected from regular stimulation protocols. Moreover, when neurons fire irregularly, synaptic changes induced by precise spike timing can be equivalently induced by a modest firing rate variation. Our findings bridge the gap between existing results on synaptic plasticity and plasticity occurring in vivo, and challenge the dominant role of spike timing in plasticity. SIGNIFICANCE STATEMENT Synaptic plasticity, the change in efficacy of connections between neurons, is thought to underlie learning and memory. The dominant paradigm posits that the precise timing of neural action potentials (APs) is central for plasticity induction. This concept is based on experiments using highly regular and stereotyped patterns of APs, in stark contrast with natural neuronal activity. Using synaptic plasticity models, we investigated how irregular, in vivo-like activity shapes synaptic plasticity. We found that synaptic changes induced by precise timing of APs are much weaker than suggested by regular stimulation protocols, and can be equivalently induced by modest variations of the AP rate alone. Our results call into question the dominant role of precise AP timing for plasticity in natural conditions.
Collapse
|
149
|
Kato HK, Asinof SK, Isaacson JS. Network-Level Control of Frequency Tuning in Auditory Cortex. Neuron 2017; 95:412-423.e4. [PMID: 28689982 DOI: 10.1016/j.neuron.2017.06.019] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/10/2017] [Accepted: 06/09/2017] [Indexed: 11/17/2022]
Abstract
Lateral inhibition is a fundamental circuit operation that sharpens the tuning properties of cortical neurons. This operation is classically attributed to an increase in GABAergic synaptic input triggered by non-preferred stimuli. Here we use in vivo whole-cell recording and two-photon Ca2+ imaging in awake mice to show that lateral inhibition shapes frequency tuning in primary auditory cortex via an unconventional mechanism: non-preferred tones suppress both excitatory and inhibitory synaptic inputs onto layer 2/3 cells ("network suppression"). Moreover, optogenetic inactivation of inhibitory interneurons elicits a paradoxical increase in inhibitory synaptic input. These results indicate that GABAergic interneurons regulate cortical activity indirectly via the suppression of recurrent excitation. Furthermore, the network suppression underlying lateral inhibition was blocked by inactivation of somatostatin-expressing interneurons (SOM cells), but not parvalbumin-expressing interneurons (PV cells). Together, these findings reveal that SOM cells govern lateral inhibition and control cortical frequency tuning through the regulation of reverberating recurrent circuits.
Collapse
Affiliation(s)
- Hiroyuki K Kato
- Center for Neural Circuits and Behavior and Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA.
| | - Samuel K Asinof
- Center for Neural Circuits and Behavior and Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Jeffry S Isaacson
- Center for Neural Circuits and Behavior and Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
150
|
Systemic Nicotine Increases Gain and Narrows Receptive Fields in A1 via Integrated Cortical and Subcortical Actions. eNeuro 2017; 4:eN-NWR-0192-17. [PMID: 28660244 PMCID: PMC5480142 DOI: 10.1523/eneuro.0192-17.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 06/04/2017] [Indexed: 11/21/2022] Open
Abstract
Nicotine enhances sensory and cognitive processing via actions at nicotinic acetylcholine receptors (nAChRs), yet the precise circuit- and systems-level mechanisms remain unclear. In sensory cortex, nicotinic modulation of receptive fields (RFs) provides a model to probe mechanisms by which nAChRs regulate cortical circuits. Here, we examine RF modulation in mouse primary auditory cortex (A1) using a novel electrophysiological approach: current-source density (CSD) analysis of responses to tone-in-notched-noise (TINN) acoustic stimuli. TINN stimuli consist of a tone at the characteristic frequency (CF) of the recording site embedded within a white noise stimulus filtered to create a spectral “notch” of variable width centered on CF. Systemic nicotine (2.1 mg/kg) enhanced responses to the CF tone and to narrow-notch stimuli, yet reduced the response to wider-notch stimuli, indicating increased response gain within a narrowed RF. Subsequent manipulations showed that modulation of cortical RFs by systemic nicotine reflected effects at several levels in the auditory pathway: nicotine suppressed responses in the auditory midbrain and thalamus, with suppression increasing with spectral distance from CF so that RFs became narrower, and facilitated responses in the thalamocortical pathway, while nicotinic actions within A1 further contributed to both suppression and facilitation. Thus, multiple effects of systemic nicotine integrate along the ascending auditory pathway. These actions at nAChRs in cortical and subcortical circuits, which mimic effects of auditory attention, likely contribute to nicotinic enhancement of sensory and cognitive processing.
Collapse
|