101
|
Abstract
Critical periods-brief intervals during which neural circuits can be modified by activity-are necessary for proper neural circuit assembly. Extended critical periods are associated with neurodevelopmental disorders; however, the mechanisms that ensure timely critical period closure remain poorly understood1,2. Here we define a critical period in a developing Drosophila motor circuit and identify astrocytes as essential for proper critical period termination. During the critical period, changes in activity regulate dendrite length, complexity and connectivity of motor neurons. Astrocytes invaded the neuropil just before critical period closure3, and astrocyte ablation prolonged the critical period. Finally, we used a genetic screen to identify astrocyte-motor neuron signalling pathways that close the critical period, including Neuroligin-Neurexin signalling. Reduced signalling destabilized dendritic microtubules, increased dendrite dynamicity and impaired locomotor behaviour, underscoring the importance of critical period closure. Previous work defined astroglia as regulators of plasticity at individual synapses4; we show here that astrocytes also regulate motor circuit critical period closure to ensure proper locomotor behaviour.
Collapse
|
102
|
Fu Y, Yang M, Yu H, Wang Y, Wu X, Yong J, Mao Y, Cui Y, Fan X, Wen L, Qiao J, Tang F. Heterogeneity of glial progenitor cells during the neurogenesis-to-gliogenesis switch in the developing human cerebral cortex. Cell Rep 2021; 34:108788. [PMID: 33657375 DOI: 10.1016/j.celrep.2021.108788] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 12/29/2020] [Accepted: 02/03/2021] [Indexed: 12/13/2022] Open
Abstract
The heterogeneity and molecular characteristics of progenitor cells, especially glial progenitors, in the developing human cerebral cortex remain elusive. Here, we find that EGFR expression begins to sharply increase after gestational week (GW) 20, which corresponds to the beginning stages of human gliogenesis. In addition, EGFR+ cells are mainly distributed in the germinal zone and frequently colocalize with the stemness marker SOX2 during this period. Then, by performing single-cell RNA sequencing on these EGFR+ cells, we successfully enriched and characterized various glial- and neuronal-lineage progenitor cells and validated their phenotypes in fixed slices. Notably, we identified two subgroups with molecular characteristics similar to those of astrocytes, and the immunostaining results show that these cells are mainly distributed in the outer subventricular zone and might originate from the outer radial glial cells. In short, the EGFR-sorting strategy and molecular signatures in the diverse lineages provide insights into human glial development.
Collapse
Affiliation(s)
- Yuanyuan Fu
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, School of Life Sciences, Third Hospital, Peking University, Beijing 100871, China; School of Life Sciences, Tsinghua University, Beijing 100084, China; Center for Life Sciences, Beijing 100871, China
| | - Ming Yang
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, School of Life Sciences, Third Hospital, Peking University, Beijing 100871, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China; Center for Life Sciences, Beijing 100871, China
| | - Hongmin Yu
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, School of Life Sciences, Third Hospital, Peking University, Beijing 100871, China; Biomedical Pioneering Innovation Center and Center for Reproductive Medicine, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China; Center for Life Sciences, Beijing 100871, China
| | - Yicheng Wang
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, School of Life Sciences, Third Hospital, Peking University, Beijing 100871, China; Biomedical Pioneering Innovation Center and Center for Reproductive Medicine, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Xinglong Wu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Jun Yong
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, School of Life Sciences, Third Hospital, Peking University, Beijing 100871, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
| | - Yunuo Mao
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, School of Life Sciences, Third Hospital, Peking University, Beijing 100871, China; Biomedical Pioneering Innovation Center and Center for Reproductive Medicine, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Yueli Cui
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, School of Life Sciences, Third Hospital, Peking University, Beijing 100871, China; Biomedical Pioneering Innovation Center and Center for Reproductive Medicine, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Xiaoying Fan
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, 510005 Guangzhou, China
| | - Lu Wen
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, School of Life Sciences, Third Hospital, Peking University, Beijing 100871, China; Biomedical Pioneering Innovation Center and Center for Reproductive Medicine, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Jie Qiao
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, School of Life Sciences, Third Hospital, Peking University, Beijing 100871, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China; Center for Life Sciences, Beijing 100871, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China.
| | - Fuchou Tang
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, School of Life Sciences, Third Hospital, Peking University, Beijing 100871, China; Biomedical Pioneering Innovation Center and Center for Reproductive Medicine, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China; Chinese Institute for Brain Research, Beijing 100069, China; Center for Life Sciences, Beijing 100871, China.
| |
Collapse
|
103
|
Castro Colabianchi AM, Tavella MB, Boyadjián López LE, Rubinstein M, Franchini LF, López SL. Segregation of brain and organizer precursors is differentially regulated by Nodal signaling at blastula stage. Biol Open 2021; 10:bio.051797. [PMID: 33563608 PMCID: PMC7928228 DOI: 10.1242/bio.051797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The blastula Chordin- and Noggin-expressing (BCNE) center comprises animal-dorsal and marginal-dorsal cells of the amphibian blastula and contains the precursors of the brain and the gastrula organizer. Previous findings suggested that the BCNE behaves as a homogeneous cell population that only depends on nuclear β-catenin activity but does not require Nodal and later segregates into its descendants during gastrulation. In contrast to previous findings, in this work, we show that the BCNE does not behave as a homogeneous cell population in response to Nodal antagonists. In fact, we found that chordin.1 expression in a marginal subpopulation of notochordal precursors indeed requires Nodal input. We also establish that an animal BCNE subpopulation of cells that express both, chordin.1 and sox2 (a marker of pluripotent neuroectodermal cells), and gives rise to most of the brain, persisted at blastula stage after blocking Nodal. Therefore, Nodal signaling is required to define a population of chordin.1+ cells and to restrict the recruitment of brain precursors within the BCNE as early as at blastula stage. We discuss our findings in Xenopus in comparison to other vertebrate models, uncovering similitudes in early brain induction and delimitation through Nodal signaling. This article has an associated First Person interview with the first author of the paper. Summary: Nodal signaling is involved in the delimitation of the blastula cell populations that give rise to the brain and axial mesoderm in Xenopus.
Collapse
Affiliation(s)
- Aitana M Castro Colabianchi
- Universidad de Buenos Aires. Facultad de Medicina, Departamento de Biología Celular e Histología / 1° U.A. Departamento de Histología, Embriología, Biología Celular y Genética, Laboratorio de Embriología Molecular "Prof. Dr. Andrés E. Carrasco", Buenos Aires 1121, Argentina.,CONICET - Universidad de Buenos Aires. Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Universidad de Buenos Aires, Buenos Aires 1121, Argentina
| | - María B Tavella
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI) "Dr. Héctor N. Torres", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428, Argentina
| | - Laura E Boyadjián López
- Universidad de Buenos Aires. Facultad de Medicina, Departamento de Biología Celular e Histología / 1° U.A. Departamento de Histología, Embriología, Biología Celular y Genética, Laboratorio de Embriología Molecular "Prof. Dr. Andrés E. Carrasco", Buenos Aires 1121, Argentina.,CONICET - Universidad de Buenos Aires. Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Universidad de Buenos Aires, Buenos Aires 1121, Argentina
| | - Marcelo Rubinstein
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI) "Dr. Héctor N. Torres", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428, Argentina.,Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| | - Lucía F Franchini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI) "Dr. Héctor N. Torres", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428, Argentina
| | - Silvia L López
- Universidad de Buenos Aires. Facultad de Medicina, Departamento de Biología Celular e Histología / 1° U.A. Departamento de Histología, Embriología, Biología Celular y Genética, Laboratorio de Embriología Molecular "Prof. Dr. Andrés E. Carrasco", Buenos Aires 1121, Argentina .,CONICET - Universidad de Buenos Aires. Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Universidad de Buenos Aires, Buenos Aires 1121, Argentina
| |
Collapse
|
104
|
Astrocyte-immune cell interactions in physiology and pathology. Immunity 2021; 54:211-224. [DOI: 10.1016/j.immuni.2021.01.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/29/2020] [Accepted: 01/15/2021] [Indexed: 12/23/2022]
|
105
|
Tan CX, Burrus Lane CJ, Eroglu C. Role of astrocytes in synapse formation and maturation. Curr Top Dev Biol 2021; 142:371-407. [PMID: 33706922 DOI: 10.1016/bs.ctdb.2020.12.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Astrocytes are the most abundant glial cells in the mammalian brain and directly participate in the proper functioning of the nervous system by regulating ion homeostasis, controlling glutamate reuptake, and maintaining the blood-brain barrier. In the last two decades, a growing body of work also identified critical roles for astrocytes in regulating synaptic connectivity. Stemming from the observation that functional and morphological development of astrocytes occur concurrently with synapse formation and maturation, these studies revealed that both developmental processes are directly linked. In fact, astrocytes both physically contact numerous synaptic structures and actively instruct many aspects of synaptic development and function via a plethora of secreted and adhesion-based molecular signals. The complex astrocyte-to-neuron signaling modalities control different stages of synaptic development such as regulating the initial formation of structural synapses as well as their functional maturation. Furthermore, the synapse-modulating functions of astrocytes are evolutionarily conserved and contribute to the development and plasticity of diverse classes of synapses and circuits throughout the central nervous system. Importantly, because impaired synapse formation and function is a hallmark of many neurodevelopmental disorders, deficits in astrocytes are likely to be major contributors to disease pathogenesis. In this chapter, we review our current understanding of the cellular and molecular mechanisms by which astrocytes contribute to synapse development and discuss the bidirectional secretion-based and contact-mediated mechanisms responsible for these essential developmental processes.
Collapse
Affiliation(s)
- Christabel X Tan
- Department of Cell Biology, Duke University Medical Center, Durham, NC, United States
| | - Caley J Burrus Lane
- Department of Cell Biology, Duke University Medical Center, Durham, NC, United States; Department of Neurobiology, Duke University Medical Center, Durham, NC, United States
| | - Cagla Eroglu
- Department of Cell Biology, Duke University Medical Center, Durham, NC, United States; Department of Neurobiology, Duke University Medical Center, Durham, NC, United States; Duke Institute for Brain Sciences, Durham, NC, United States; Regeneration Next Initiative, Duke University, Durham, NC, United States.
| |
Collapse
|
106
|
Pekala M, Doliwa M, Kalita K. Impact of maternal immune activation on dendritic spine development. Dev Neurobiol 2021; 81:524-545. [PMID: 33382515 DOI: 10.1002/dneu.22804] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/26/2020] [Accepted: 12/28/2020] [Indexed: 01/08/2023]
Abstract
Dendritic spines are small dendritic protrusions that harbor most excitatory synapses in the brain. The proper generation and maturation of dendritic spines are crucial for the regulation of synaptic transmission and formation of neuronal circuits. Abnormalities in dendritic spine density and morphology are common pathologies in autism and schizophrenia. According to epidemiological studies, one risk factor for these neurodevelopmental disorders is maternal infection during pregnancy. This review discusses spine alterations in animal models of maternal immune activation in the context of neurodevelopmental disorders. We describe potential mechanisms that might be responsible for prenatal infection-induced changes in the dendritic spine phenotype and behavior in offspring.
Collapse
Affiliation(s)
- Martyna Pekala
- Laboratory of Neurobiology, BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Marta Doliwa
- Laboratory of Neurobiology, BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Kalita
- Laboratory of Neurobiology, BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
107
|
Perez-Catalan NA, Doe CQ, Ackerman SD. The role of astrocyte-mediated plasticity in neural circuit development and function. Neural Dev 2021; 16:1. [PMID: 33413602 PMCID: PMC7789420 DOI: 10.1186/s13064-020-00151-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/26/2020] [Indexed: 02/03/2023] Open
Abstract
Neuronal networks are capable of undergoing rapid structural and functional changes called plasticity, which are essential for shaping circuit function during nervous system development. These changes range from short-term modifications on the order of milliseconds, to long-term rearrangement of neural architecture that could last for the lifetime of the organism. Neural plasticity is most prominent during development, yet also plays a critical role during memory formation, behavior, and disease. Therefore, it is essential to define and characterize the mechanisms underlying the onset, duration, and form of plasticity. Astrocytes, the most numerous glial cell type in the human nervous system, are integral elements of synapses and are components of a glial network that can coordinate neural activity at a circuit-wide level. Moreover, their arrival to the CNS during late embryogenesis correlates to the onset of sensory-evoked activity, making them an interesting target for circuit plasticity studies. Technological advancements in the last decade have uncovered astrocytes as prominent regulators of circuit assembly and function. Here, we provide a brief historical perspective on our understanding of astrocytes in the nervous system, and review the latest advances on the role of astroglia in regulating circuit plasticity and function during nervous system development and homeostasis.
Collapse
Affiliation(s)
- Nelson A Perez-Catalan
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR, USA
- Kennedy Center, Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| | - Chris Q Doe
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR, USA
| | - Sarah D Ackerman
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR, USA.
| |
Collapse
|
108
|
Rurak GM, Woodside B, Aguilar-Valles A, Salmaso N. Astroglial cells as neuroendocrine targets in forebrain development: Implications for sex differences in psychiatric disease. Front Neuroendocrinol 2021; 60:100897. [PMID: 33359797 DOI: 10.1016/j.yfrne.2020.100897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/05/2020] [Accepted: 12/15/2020] [Indexed: 12/23/2022]
Abstract
Astroglial cells are the most abundant cell type in the mammalian brain. They are implicated in almost every aspect of brain physiology, including maintaining homeostasis, building and maintaining the blood brain barrier, and the development and maturation of neuronal networks. Critically, astroglia also express receptors for gonadal sex hormones, respond rapidly to gonadal hormones, and are able to synthesize hormones. Thus, they are positioned to guide and mediate sexual differentiation of the brain, particularly neuronal networks in typical and pathological conditions. In this review, we describe astroglial involvement in the organization and development of the brain, and consider known sex differences in astroglial responses to understand how astroglial cell-mediated organization may play a role in forebrain sexual dimorphisms in human populations. Finally, we consider how sexually dimorphic astroglial responses and functions in development may lead to sex differences in vulnerability for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Gareth M Rurak
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Barbara Woodside
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada; Concordia University, Montreal, Quebec, Canada
| | | | - Natalina Salmaso
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada.
| |
Collapse
|
109
|
Hill SA, Fu M, Garcia ADR. Sonic hedgehog signaling in astrocytes. Cell Mol Life Sci 2021; 78:1393-1403. [PMID: 33079226 PMCID: PMC7904711 DOI: 10.1007/s00018-020-03668-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/02/2020] [Accepted: 10/05/2020] [Indexed: 01/12/2023]
Abstract
Astrocytes are complex cells that perform a broad array of essential functions in the healthy and injured nervous system. The recognition that these cells are integral components of various processes, including synapse formation, modulation of synaptic activity, and response to injury, underscores the need to identify the molecular signaling programs orchestrating these diverse functional properties. Emerging studies have identified the Sonic hedgehog (Shh) signaling pathway as an essential regulator of the molecular identity and functional properties of astrocytes. Well established as a powerful regulator of diverse neurodevelopmental processes in the embryonic nervous system, its functional significance in astrocytes is only beginning to be revealed. Notably, Shh signaling is active only in discrete subpopulations of astrocytes distributed throughout the brain, a feature that has potential to yield novel insights into functional specialization of astrocytes. Here, we discuss Shh signaling and emerging data that point to essential roles for this pleiotropic signaling pathway in regulating various functional properties of astrocytes in the healthy and injured brain.
Collapse
Affiliation(s)
- Steven A Hill
- Department of Biology, Drexel University, Philadelphia, PA, 19104, USA
| | - Marissa Fu
- Department of Biology, Drexel University, Philadelphia, PA, 19104, USA
| | - A Denise R Garcia
- Department of Biology, Drexel University, Philadelphia, PA, 19104, USA.
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA.
| |
Collapse
|
110
|
Abstract
Traumatic brain injury (TBI) is a major cause of mortality and morbidity in the pediatric population. With advances in medical care, the mortality rate of pediatric TBI has declined. However, more children and adolescents are living with TBI-related cognitive and emotional impairments, which negatively affects the quality of their life. Adult hippocampal neurogenesis plays an important role in cognition and mood regulation. Alterations in adult hippocampal neurogenesis are associated with a variety of neurological and neurodegenerative diseases, including TBI. Promoting endogenous hippocampal neurogenesis after TBI merits significant attention. However, TBI affects the function of neural stem/progenitor cells in the dentate gyrus of hippocampus, which results in aberrant migration and impaired dendrite development of adult-born neurons. Therefore, a better understanding of adult hippocampal neurogenesis after TBI can facilitate a more successful neuro-restoration of damage in immature brains. Secondary injuries, such as neuroinflammation and oxidative stress, exert a significant impact on hippocampal neurogenesis. Currently, a variety of therapeutic approaches have been proposed for ameliorating secondary TBI injuries. In this review, we discuss the uniqueness of pediatric TBI, adult hippocampal neurogenesis after pediatric TBI, and current efforts that promote neuroprotection to the developing brains, which can be leveraged to facilitate neuroregeneration.
Collapse
Affiliation(s)
- Mariam Rizk
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, USA
| | - Justin Vu
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, USA
| | - Zhi Zhang
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, USA
| |
Collapse
|
111
|
Ren F, Guo R. Synaptic Microenvironment in Depressive Disorder: Insights from Synaptic Plasticity. Neuropsychiatr Dis Treat 2021; 17:157-165. [PMID: 33519203 PMCID: PMC7838013 DOI: 10.2147/ndt.s268012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022] Open
Abstract
Depression is a major disease that can affect both mental and physical health, limits psychosocial functioning and diminishes the quality of life. But its complex pathogenesis remains poorly understood. The dynamic changes of synaptic structure and function, known as synaptic plasticity, occur with the changes of different cellular microenvironment and are closely related to learning and memory function. Accumulating evidence implies that synaptic plasticity is integrally involved in the pathological changes of mood disorders, especially in depressive disorder. However, the complex dynamic process of synaptic plasticity is influenced by many factors. Here, we reviewed and discussed various factors affecting synaptic plasticity in depression, and proposed a specific framework named synaptic microenvironment, which may be critical for synaptic plasticity under pathological conditions. Based on this concept, we will show how we understand the balance between the synaptic microenvironment and the synaptic plasticity network in depression. Finally, we point out the clinical significance of the synaptic microenvironment in depression.
Collapse
Affiliation(s)
- Feifei Ren
- Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Rongjuan Guo
- Department of Neurology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, People's Republic of China
| |
Collapse
|
112
|
Wahis J, Hennes M, Arckens L, Holt MG. Star power: the emerging role of astrocytes as neuronal partners during cortical plasticity. Curr Opin Neurobiol 2020; 67:174-182. [PMID: 33360483 PMCID: PMC8202513 DOI: 10.1016/j.conb.2020.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/27/2020] [Accepted: 12/03/2020] [Indexed: 12/20/2022]
Abstract
Plasticity is a fundamental property of neuronal circuits, allowing them to adapt to alterations in activation. Generally speaking, plasticity has been viewed from a 'neuron-centric' perspective, with changes in circuit function attributed to alterations in neuronal excitability, synaptic strength or neuronal connectivity. However, it is now clear that glial cells, in particular astrocytes, are key regulators of neuronal plasticity. This article reviews recent progress made in understanding astrocyte function and attempts to summarize these functions into a coherent framework that positions astrocytes as central players in the plasticity process.
Collapse
Affiliation(s)
- Jérôme Wahis
- Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Maroussia Hennes
- Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium; Laboratory of Neuroplasticity and Neuroproteomics, Department of Biology, KU Leuven, Leuven, Belgium
| | - Lutgarde Arckens
- Laboratory of Neuroplasticity and Neuroproteomics, Department of Biology, KU Leuven, Leuven, Belgium; Leuven Brain Institute, Leuven, Belgium.
| | - Matthew G Holt
- Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium; Leuven Brain Institute, Leuven, Belgium.
| |
Collapse
|
113
|
Astrocyte-secreted IL-33 mediates homeostatic synaptic plasticity in the adult hippocampus. Proc Natl Acad Sci U S A 2020; 118:2020810118. [PMID: 33443211 PMCID: PMC7817131 DOI: 10.1073/pnas.2020810118] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Synaptic plasticity in the hippocampus is important for learning and memory formation. In particular, homeostatic synaptic plasticity enables neurons to restore their activity levels in response to chronic neuronal activity changes. While astrocytes modulate synaptic functions via the secretion of factors, the underlying molecular mechanisms remain unclear. Here, we show that suppression of hippocampal neuronal activity increases cytokine IL-33 release from astrocytes in the CA1 region. Activation of IL-33 and its neuronal ST2 receptor complex promotes functional excitatory synapse formation. Moreover, IL-33/ST2 signaling is important for the neuronal activity blockade-induced increase of CA1 excitatory synapses in vivo and spatial memory formation. This study suggests that astrocyte-secreted IL-33 acts as a negative feedback control signal to regulate hippocampal homeostatic synaptic plasticity. Hippocampal synaptic plasticity is important for learning and memory formation. Homeostatic synaptic plasticity is a specific form of synaptic plasticity that is induced upon prolonged changes in neuronal activity to maintain network homeostasis. While astrocytes are important regulators of synaptic transmission and plasticity, it is largely unclear how they interact with neurons to regulate synaptic plasticity at the circuit level. Here, we show that neuronal activity blockade selectively increases the expression and secretion of IL-33 (interleukin-33) by astrocytes in the hippocampal cornu ammonis 1 (CA1) subregion. This IL-33 stimulates an increase in excitatory synapses and neurotransmission through the activation of neuronal IL-33 receptor complex and synaptic recruitment of the scaffold protein PSD-95. We found that acute administration of tetrodotoxin in hippocampal slices or inhibition of hippocampal CA1 excitatory neurons by optogenetic manipulation increases IL-33 expression in CA1 astrocytes. Furthermore, IL-33 administration in vivo promotes the formation of functional excitatory synapses in hippocampal CA1 neurons, whereas conditional knockout of IL-33 in CA1 astrocytes decreases the number of excitatory synapses therein. Importantly, blockade of IL-33 and its receptor signaling in vivo by intracerebroventricular administration of its decoy receptor inhibits homeostatic synaptic plasticity in CA1 pyramidal neurons and impairs spatial memory formation in mice. These results collectively reveal an important role of astrocytic IL-33 in mediating the negative-feedback signaling mechanism in homeostatic synaptic plasticity, providing insights into how astrocytes maintain hippocampal network homeostasis.
Collapse
|
114
|
Huo Y, Gao Y, Zheng Q, Zhao D, Guo T, Zhang S, Zeng Y, Cheng Y, Gu H, Zhang L, Zhu B, Luo H, Zhang X, Zhou Y, Zhang YW, Sun H, Xu H, Wang X. Overexpression of Human SNX27 Enhances Learning and Memory Through Modulating Synaptic Plasticity in Mice. Front Cell Dev Biol 2020; 8:595357. [PMID: 33330482 PMCID: PMC7729021 DOI: 10.3389/fcell.2020.595357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 11/11/2020] [Indexed: 11/13/2022] Open
Abstract
Abnormal synaptic transmission leads to learning and memory disorders and is the main feature of neurological diseases. Sorting nexin 27 (SNX27) is an endosomal adaptor protein associated with a variety of nervous system diseases, and it is mainly responsible for the trafficking of postsynaptic membrane receptors. However, the roles of SNX27 in regulating synaptic and cognitive function are not fully understood. Here, we first generated a neuron-specific human-SNX27 transgenic mouse model (hSNX27 Tg) that exhibited enhanced excitatory synaptic transmission and long-term potentiation (LTP). In addition, we found that the hSNX27 Tg mice displayed enhanced learning and memory, lower-level anxiety-like behavior, and increased social interaction. Furthermore, we found that SNX27 overexpression upregulated the expression of glutamate receptors in the cortex and hippocampus of hSNX27 Tg mice. Together, these results indicate that SNX27 overexpression promotes synaptic function and cognition through modulating glutamate receptors.
Collapse
Affiliation(s)
- Yuanhui Huo
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Yue Gao
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Qiuyang Zheng
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Dongdong Zhao
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Tiantian Guo
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Shuo Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Yuzhe Zeng
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Yiyun Cheng
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Huaping Gu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Lishan Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Bin Zhu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Hong Luo
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Xian Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Ying Zhou
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Yun-Wu Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Hao Sun
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Huaxi Xu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Xin Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
115
|
Li L, Shi Y. When glia meet induced pluripotent stem cells (iPSCs). Mol Cell Neurosci 2020; 109:103565. [PMID: 33068719 PMCID: PMC10506562 DOI: 10.1016/j.mcn.2020.103565] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 09/20/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023] Open
Abstract
The importance of glial cells, mainly astrocytes, oligodendrocytes, and microglia, in the central nervous system (CNS) has been increasingly appreciated. Recent advances have demonstrated the diversity of glial cells and their contribution to human CNS development, normal CNS functions, and disease progression. The uniqueness of human glial cells is also supported by multiple lines of evidence. With the discovery of induced pluripotent stem cells (iPSCs) and the progress of generating glial cells from human iPSCs, there are numerous studies to model CNS diseases using human iPSC-derived glial cells. Here we summarize the basic characteristics of glial cells, with the focus on their classical functions, heterogeneity, and uniqueness in human species. We further review the findings from recent studies that use iPSC-derived glial cells for CNS disease modeling. We conclude with promises and future directions of using iPSC-derived glial cells for CNS disease modeling.
Collapse
Affiliation(s)
- Li Li
- Division of Stem Cell Biology, Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Yanhong Shi
- Division of Stem Cell Biology, Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
116
|
Changes in Behavior and the Expression of Ionotropic Glutamate Receptor Genes in the Brains of Adult Rats after Neonatal Administration of Bacterial Lipopolysaccharide. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s11055-020-01025-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
117
|
Zubareva OE, Postnikova TY, Grifluk AV, Schwarz AP, Smolensky IV, Karepanov AA, Vasilev DS, Veniaminova EA, Rotov AY, Kalemenev SV, Zaitsev AV. Exposure to bacterial lipopolysaccharidein early life affects the expression of ionotropic glutamate receptor genes and is accompanied by disturbances in long-term potentiation and cognitive functions in young rats. Brain Behav Immun 2020; 90:3-15. [PMID: 32726683 DOI: 10.1016/j.bbi.2020.07.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 01/20/2023] Open
Abstract
Infections in childhood play an essential role in the pathogenesis of cognitive and psycho-emotional disorders. One of the possible mechanisms of these impairments is changes in the functional properties of NMDA and AMPA glutamate receptors in the brain. We suggest that bacterial infections during the early life period, which is critical for excitatory synapse maturation, can affect the subunit composition of NMDA and AMPA receptors. In the present study, we investigated the effect of repetitive lipopolysaccharide (LPS) intraperitoneal (i.p.) administration (25 μg/kg/day on P14, 16, and 18), mimicking an infectious disease, on the expression of subunits of NMDA and AMPA receptors in young rats. We revealed a substantial decrease of GluN2B subunit expression in the hippocampus at P23 using Western blot analysis and real-time polymerase chain reaction assay. Moderate changes were also found in GluN1, GluN2A, and GluA1 mRNA expression. The LPS-treated rats exhibited decreased exploratory and locomotor activity in the open field test and the impairment of spatial learning in the Morris water maze. Behavioral impairments were accompanied by a significant reduction in long-term hippocampal synaptic potentiation. Our data indicate that LPS-treatment in the critical period for excitatory synapse maturation alters ionotropic glutamate receptor gene expression, disturbs synaptic plasticity, and alters behavior.
Collapse
Affiliation(s)
- Olga E Zubareva
- Laboratory of Molecular Mechanisms of Neuronal Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia; Laboratory of Neurobiology of the Brain Integrative Functions, Pavlov Department of Physiology, Institute of Experimental Medicine, St. Petersburg, Russia
| | - Tatyana Y Postnikova
- Laboratory of Molecular Mechanisms of Neuronal Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Alexandra V Grifluk
- Laboratory of Molecular Mechanisms of Neuronal Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Alexander P Schwarz
- Laboratory of Molecular Mechanisms of Neuronal Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Ilya V Smolensky
- Laboratory of Molecular Mechanisms of Neuronal Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Anton A Karepanov
- Laboratory of Molecular Mechanisms of Neuronal Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Dmitry S Vasilev
- Laboratory of Molecular Mechanisms of Neuronal Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Ekaterina A Veniaminova
- Laboratory of Neurobiology of the Brain Integrative Functions, Pavlov Department of Physiology, Institute of Experimental Medicine, St. Petersburg, Russia
| | - Alexander Y Rotov
- Laboratory of Molecular Mechanisms of Neuronal Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Sergey V Kalemenev
- Laboratory of Molecular Mechanisms of Neuronal Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Aleksey V Zaitsev
- Laboratory of Molecular Mechanisms of Neuronal Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia.
| |
Collapse
|
118
|
Augusto-Oliveira M, Arrifano GP, Takeda PY, Lopes-Araújo A, Santos-Sacramento L, Anthony DC, Verkhratsky A, Crespo-Lopez ME. Astroglia-specific contributions to the regulation of synapses, cognition and behaviour. Neurosci Biobehav Rev 2020; 118:331-357. [DOI: 10.1016/j.neubiorev.2020.07.039] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 12/11/2022]
|
119
|
Fossati M, Charrier C. Trans-synaptic interactions of ionotropic glutamate receptors. Curr Opin Neurobiol 2020; 66:85-92. [PMID: 33130410 DOI: 10.1016/j.conb.2020.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/01/2020] [Accepted: 09/01/2020] [Indexed: 01/29/2023]
Abstract
Trans-synaptic interactions organize the multiple steps of synaptic development and are critical to generate fully functional neuronal circuits. While trans-synaptic interactions are primarily mediated by cell adhesion molecules (CAMs), some directly involve ionotropic glutamate receptors (iGluRs). Here, we review the expanding extracellular and trans-synaptic proteome of iGluRs. We discuss the role of these molecular networks in specifying the formation of excitatory and inhibitory circuits and in the input-specific recruitment of iGluRs at synapses in various cell types and brain regions. We also shed light on human-specific mutations affecting iGluR-mediated trans-synaptic interactions that may provide unique features to the human brain and contribute to its susceptibility to neurodevelopmental disorders. Together, these data support a view in which iGluR function goes far beyond fast excitatory synaptic transmission by shaping the wiring and the functional properties of neural circuits.
Collapse
Affiliation(s)
- Matteo Fossati
- CNR - Institute of Neuroscience, via Manzoni 56, Rozzano (MI), 20089, Italy; Humanitas Clinical and Research Center - IRCCS, via Manzoni 56, Rozzano (MI), 20089, Italy.
| | - Cécile Charrier
- Institut de Biologie de l'École Normale Supérieure (IBENS), CNRS, Inserm, École Normale Supérieure, PSL Research University, Paris, 75005, France.
| |
Collapse
|
120
|
Fossati G, Matteoli M, Menna E. Astrocytic Factors Controlling Synaptogenesis: A Team Play. Cells 2020; 9:E2173. [PMID: 32993090 PMCID: PMC7600026 DOI: 10.3390/cells9102173] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022] Open
Abstract
Astrocytes are essential players in brain circuit development and homeostasis, controlling many aspects of synapse formation, function, plasticity and elimination both during development and adulthood. Accordingly, alterations in astrocyte morphogenesis and physiology may severely affect proper brain development, causing neurological or neuropsychiatric conditions. Recent findings revealed a huge astrocyte heterogeneity among different brain areas, which is likely at the foundation of the different synaptogenic potential of these cells in selected brain regions. This review highlights recent findings on novel mechanisms that regulate astrocyte-mediated synaptogenesis during development, and the control of synapse number in the critical period or upon synaptic plasticity.
Collapse
Affiliation(s)
- Giuliana Fossati
- Humanitas Clinical and Research Center—IRCCS—NeuroCenter, via Manzoni 56, 20089 Rozzano, Milan, Italy; (G.F.); (M.M.)
| | - Michela Matteoli
- Humanitas Clinical and Research Center—IRCCS—NeuroCenter, via Manzoni 56, 20089 Rozzano, Milan, Italy; (G.F.); (M.M.)
- CNR, Department of Biomedical Sciences, Institute of Neuroscience—URT Humanitas, via Manzoni 56, 20089 Rozzano, Italy
| | - Elisabetta Menna
- Humanitas Clinical and Research Center—IRCCS—NeuroCenter, via Manzoni 56, 20089 Rozzano, Milan, Italy; (G.F.); (M.M.)
- CNR, Department of Biomedical Sciences, Institute of Neuroscience—URT Humanitas, via Manzoni 56, 20089 Rozzano, Italy
| |
Collapse
|
121
|
Hao T, Du X, Yang S, Zhang Y, Liang F. Astrocytes-induced neuronal inhibition contributes to depressive-like behaviors during chronic stress. Life Sci 2020; 258:118099. [PMID: 32682917 DOI: 10.1016/j.lfs.2020.118099] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/01/2020] [Accepted: 07/10/2020] [Indexed: 01/09/2023]
Abstract
Although emerging evidence has highlighted the heterogeneities of astrocytes under physiological versus pathological conditions, little is known regarding these processes in different brain regions during stress. Thus, the present study established a mouse model of chronic social defeat stress (CSDS) and isolated astrocytes from the medial prefrontal cortex (mPFC) and hippocampus. The results revealed dramatic A1-specific (neurotoxic phenotype) astrocytic responses, depressive-like behaviors, and significant inhibition of neuronal activities in both the mPFC and hippocampus according to electrophysiological data. Subsequently, astrocytes in the mPFC and hippocampus of CSDS mice were suppressed and this reversed the astrocytic responses and rescued depressive-like behaviors. Furthermore, when astrocytes were activated in the mPFC and hippocampus in healthy mice, there was a non-specific phenotypic activation of astrocytes in the absence of depressive-like behaviors. Next, microglia were depleted and the mice subsequently performed in the CSDS model; this reduced astrocyte responses and restored depressive-like behaviors. On the other hand, when microglia were depleted but astrocytes were activated in CSDS mice, this abolished the restoration of microglia depletion-induced depressive-like behaviors. Taken together, these results indicate that neuronal inhibition by astrocytes in the mPFC and hippocampus contributed to depressive-like behaviors mediated by activated microglia. This study provides evidence regarding the interaction of microglia and astrocytes during stress and how that relationship can trigger depressive-like behaviors.
Collapse
Affiliation(s)
- Tianpao Hao
- Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xiaohong Du
- Department of geriatric medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Shen Yang
- Departments of Neurology, Tai'an City Central Hospital, Tai'an 271000, China
| | - Yang Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Feiyu Liang
- Department of geriatric medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
122
|
Peripheral Nerve Single-Cell Analysis Identifies Mesenchymal Ligands that Promote Axonal Growth. eNeuro 2020; 7:ENEURO.0066-20.2020. [PMID: 32349983 PMCID: PMC7294463 DOI: 10.1523/eneuro.0066-20.2020] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 11/21/2022] Open
Abstract
Peripheral nerves provide a supportive growth environment for developing and regenerating axons and are essential for maintenance and repair of many non-neural tissues. This capacity has largely been ascribed to paracrine factors secreted by nerve-resident Schwann cells. Here, we used single-cell transcriptional profiling to identify ligands made by different injured rodent nerve cell types and have combined this with cell-surface mass spectrometry to computationally model potential paracrine interactions with peripheral neurons. These analyses show that peripheral nerves make many ligands predicted to act on peripheral and CNS neurons, including known and previously uncharacterized ligands. While Schwann cells are an important ligand source within injured nerves, more than half of the predicted ligands are made by nerve-resident mesenchymal cells, including the endoneurial cells most closely associated with peripheral axons. At least three of these mesenchymal ligands, ANGPT1, CCL11, and VEGFC, promote growth when locally applied on sympathetic axons. These data therefore identify an unexpected paracrine role for nerve mesenchymal cells and suggest that multiple cell types contribute to creating a highly pro-growth environment for peripheral axons.
Collapse
|
123
|
Gleichman AJ, Carmichael ST. Glia in neurodegeneration: Drivers of disease or along for the ride? Neurobiol Dis 2020; 142:104957. [PMID: 32512150 DOI: 10.1016/j.nbd.2020.104957] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 05/13/2020] [Accepted: 06/03/2020] [Indexed: 02/08/2023] Open
Abstract
While much of the research on neurodegenerative diseases has focused on neurons, non-neuronal cells are also affected. The extent to which glia and other non-neuronal cells are causally involved in disease pathogenesis versus more passively responding to disease is an area of active research. This is complicated by the fact that there is rarely one known cause of neurodegenerative diseases; rather, these disorders likely involve feedback loops that perpetuate dysfunction. Here, we will review genetic as well as experimental evidence that suggest that non-neuronal cells are at least partially driving disease pathogenesis in numerous neurodegenerative disorders, including Alzheimer's disease, frontotemporal dementia, amyotrophic lateral sclerosis, Huntington's disease, multiple sclerosis, and Parkinson's disease.
Collapse
Affiliation(s)
- Amy J Gleichman
- Department of Neurology, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA 90095, United States.
| | - S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA 90095, United States
| |
Collapse
|
124
|
Neuronal Maturation: Challenges and Opportunities in a Nascent Field. Trends Neurosci 2020; 43:360-362. [PMID: 32459989 DOI: 10.1016/j.tins.2020.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 02/29/2020] [Indexed: 12/17/2022]
Abstract
After its initial development, the nervous system matures to connect and shape the neuronal circuitry and to keep it functional in humans for decades. Here we conceptualize neuronal maturation as a research field that will have, we would argue, a strong impact on understanding the healthy and diseased nervous system. Identifying the key mechanisms underlying neuronal maturation has the potential to reverse this process in adulthood, thereby facilitating regeneration.
Collapse
|
125
|
Gollihue J, Norris C. Astrocyte mitochondria: Central players and potential therapeutic targets for neurodegenerative diseases and injury. Ageing Res Rev 2020; 59:101039. [PMID: 32105849 DOI: 10.1016/j.arr.2020.101039] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/23/2020] [Accepted: 02/23/2020] [Indexed: 01/16/2023]
Abstract
Mitochondrial function has long been the focus of many therapeutic strategies for ameliorating age-related neurodegeneration and cognitive decline. Historically, the role of mitochondria in non-neuronal cell types has been overshadowed by neuronal mitochondria, which are responsible for the bulk of oxidative metabolism in the brain. Despite this neuronal bias, mitochondrial function in glial cells, particularly astrocytes, is increasingly recognized to play crucial roles in overall brain metabolism, synaptic transmission, and neuronal protection. Changes in astrocytic mitochondrial function appear to be intimately linked to astrocyte activation/reactivity found in most all age-related neurodegenerative diseases. Here, we address the importance of mitochondrial function to astrocyte signaling and consider how mitochondria could contribute to both the detrimental and protective properties of activated astrocytes. Strategies for protecting astrocytic mitochondrial function, promoting bidirectional transfer of mitochondria between astrocytes and neurons, and transplanting healthy mitochondria to diseased nervous tissue are also discussed.
Collapse
|
126
|
The miR-532-3p/Chrdl1 axis regulates the proliferation and migration of amniotic fluid-derived mesenchymal stromal cells. Biochem Biophys Res Commun 2020; 527:187-193. [PMID: 32446365 DOI: 10.1016/j.bbrc.2020.04.099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 04/19/2020] [Indexed: 11/21/2022]
Abstract
BACKGROUND Amniotic fluid-derived mesenchymal stromal cells (AFMSCs) are promising stem cells for regeneration medicine. However, AFMSCs isolated at different stages of pregnancy have different biological characteristics, and the therapeutic effects can differ in vivo and in vitro. The mechanisms underlying these differences have not been defined. METHODS Bioinformatics analysis of the AFMSC transcriptome identified Chrdl1 as one of the differentially expressed genes. We evaluated the effects of Chrdl1 overexpression or knockdown on the proliferation and migration of AFMSCs. Target prediction was performed using miRanda software to identify the upstream microRNA of Chrdl1. The interaction between Chrdl1 mRNA and its upstream microRNA was evaluated using a dual-luciferase reporter gene assay. RESULTS Chrdl1 was expressed at lower levels in AFMSCs derived from the early stages of pregnancy. It could suppress AFMSC proliferation and migration. miR-532-3p promoted AFMSC proliferation and migration by targeting the 3' UTR of Chrdl1 and downregulating its expression.
Collapse
|
127
|
Stress gates an astrocytic energy reservoir to impair synaptic plasticity. Nat Commun 2020; 11:2014. [PMID: 32332733 PMCID: PMC7181611 DOI: 10.1038/s41467-020-15778-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/26/2020] [Indexed: 12/21/2022] Open
Abstract
Astrocytes support the energy demands of synaptic transmission and plasticity. Enduring changes in synaptic efficacy are highly sensitive to stress, yet whether changes to astrocyte bioenergetic control of synapses contributes to stress-impaired plasticity is unclear. Here we show in mice that stress constrains the shuttling of glucose and lactate through astrocyte networks, creating a barrier for neuronal access to an astrocytic energy reservoir in the hippocampus and neocortex, compromising long-term potentiation. Impairing astrocytic delivery of energy substrates by reducing astrocyte gap junction coupling with dominant negative connexin 43 or by disrupting lactate efflux was sufficient to mimic the effects of stress on long-term potentiation. Furthermore, direct restoration of the astrocyte lactate supply alone rescued stress-impaired synaptic plasticity, which was blocked by inhibiting neural lactate uptake. This gating of synaptic plasticity in stress by astrocytic metabolic networks indicates a broader role of astrocyte bioenergetics in determining how experience-dependent information is controlled. Enduring changes in synaptic efficacy are highly sensitive to stress. Here, the authors show that astrocytic delivery of metabolites has an important role in the stress-mediated impairment of synaptic plasticity.
Collapse
|
128
|
Bayraktar OA, Bartels T, Holmqvist S, Kleshchevnikov V, Martirosyan A, Polioudakis D, Ben Haim L, Young AMH, Batiuk MY, Prakash K, Brown A, Roberts K, Paredes MF, Kawaguchi R, Stockley JH, Sabeur K, Chang SM, Huang E, Hutchinson P, Ullian EM, Hemberg M, Coppola G, Holt MG, Geschwind DH, Rowitch DH. Astrocyte layers in the mammalian cerebral cortex revealed by a single-cell in situ transcriptomic map. Nat Neurosci 2020; 23:500-509. [PMID: 32203496 PMCID: PMC7116562 DOI: 10.1038/s41593-020-0602-1] [Citation(s) in RCA: 297] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/28/2020] [Indexed: 11/09/2022]
Abstract
Although the cerebral cortex is organized into six excitatory neuronal layers, it is unclear whether glial cells show distinct layering. In the present study, we developed a high-content pipeline, the large-area spatial transcriptomic (LaST) map, which can quantify single-cell gene expression in situ. Screening 46 candidate genes for astrocyte diversity across the mouse cortex, we identified superficial, mid and deep astrocyte identities in gradient layer patterns that were distinct from those of neurons. Astrocyte layer features, established in the early postnatal cortex, mostly persisted in adult mouse and human cortex. Single-cell RNA sequencing and spatial reconstruction analysis further confirmed the presence of astrocyte layers in the adult cortex. Satb2 and Reeler mutations that shifted neuronal post-mitotic development were sufficient to alter glial layering, indicating an instructive role for neuronal cues. Finally, astrocyte layer patterns diverged between mouse cortical regions. These findings indicate that excitatory neurons and astrocytes are organized into distinct lineage-associated laminae.
Collapse
Affiliation(s)
- Omer Ali Bayraktar
- Department of Paediatrics, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
- Departments of Pediatrics and Neurosurgery, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA.
- Wellcome Sanger Institute, Hinxton, UK.
| | - Theresa Bartels
- Department of Paediatrics, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Staffan Holmqvist
- Department of Paediatrics, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | | | - Araks Martirosyan
- Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, KU Leuven Department of Neuroscience, Leuven, Belgium
| | - Damon Polioudakis
- Departments of Neurology and Human Genetics, University of California Los Angeles, Los Angeles, CA, USA
- Center for Autism Research and Treatment, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Lucile Ben Haim
- Department of Paediatrics, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Adam M H Young
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Mykhailo Y Batiuk
- Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, KU Leuven Department of Neuroscience, Leuven, Belgium
| | - Kirti Prakash
- Department of Paediatrics, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Alexander Brown
- Sainsbury Wellcome Centre, University College London, London, UK
| | | | - Mercedes F Paredes
- Departments of Pediatrics and Neurosurgery, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Riki Kawaguchi
- Department of Psychiatry, University of California Los Angeles, Los Angeles, CA, USA
| | - John H Stockley
- Department of Paediatrics, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Khalida Sabeur
- Department of Paediatrics, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Departments of Pediatrics and Neurosurgery, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Sandra M Chang
- Department of Paediatrics, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Departments of Pediatrics and Neurosurgery, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Eric Huang
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Peter Hutchinson
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Erik M Ullian
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA
| | | | - Giovanni Coppola
- Departments of Neurology and Human Genetics, University of California Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry, University of California Los Angeles, Los Angeles, CA, USA
| | - Matthew G Holt
- Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, KU Leuven Department of Neuroscience, Leuven, Belgium
| | - Daniel H Geschwind
- Departments of Neurology and Human Genetics, University of California Los Angeles, Los Angeles, CA, USA
- Center for Autism Research and Treatment, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - David H Rowitch
- Department of Paediatrics, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
- Departments of Pediatrics and Neurosurgery, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
129
|
Hennes M, Lombaert N, Wahis J, Van den Haute C, Holt MG, Arckens L. Astrocytes shape the plastic response of adult cortical neurons to vision loss. Glia 2020; 68:2102-2118. [PMID: 32237182 DOI: 10.1002/glia.23830] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/10/2020] [Accepted: 03/13/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Maroussia Hennes
- Department of BiologyKU Leuven Leuven Belgium
- VIB KU Leuven Center for Brain & Disease Research Leuven Belgium
- Leuven Brain Institute Leuven Belgium
| | | | - Jérôme Wahis
- VIB KU Leuven Center for Brain & Disease Research Leuven Belgium
- Leuven Brain Institute Leuven Belgium
- Department of NeurosciencesKU Leuven Leuven Belgium
| | - Chris Van den Haute
- Department of Biomedical SciencesKU Leuven Leuven Belgium
- KU Leuven Viral Vector Core Leuven Belgium
| | - Matthew G. Holt
- VIB KU Leuven Center for Brain & Disease Research Leuven Belgium
- Leuven Brain Institute Leuven Belgium
- Department of NeurosciencesKU Leuven Leuven Belgium
| | - Lutgarde Arckens
- Department of BiologyKU Leuven Leuven Belgium
- Leuven Brain Institute Leuven Belgium
| |
Collapse
|
130
|
Communication, Cross Talk, and Signal Integration in the Adult Hippocampal Neurogenic Niche. Neuron 2020; 105:220-235. [PMID: 31972145 DOI: 10.1016/j.neuron.2019.11.029] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022]
Abstract
Radial glia-like neural stem cells (RGLs) in the dentate gyrus subregion of the hippocampus give rise to dentate granule cells (DGCs) and astrocytes throughout life, a process referred to as adult hippocampal neurogenesis. Adult hippocampal neurogenesis is sensitive to experiences, suggesting that it may represent an adaptive mechanism by which hippocampal circuitry is modified in response to environmental demands. Experiential information is conveyed to RGLs, progenitors, and adult-born DGCs via the neurogenic niche that is composed of diverse cell types, extracellular matrix, and afferents. Understanding how the niche performs its functions may guide strategies to maintain its health span and provide a permissive milieu for neurogenesis. Here, we first discuss representative contributions of niche cell types to regulation of neural stem cell (NSC) homeostasis and maturation of adult-born DGCs. We then consider mechanisms by which the activity of multiple niche cell types may be coordinated to communicate signals to NSCs. Finally, we speculate how NSCs integrate niche-derived signals to govern their regulation.
Collapse
|
131
|
Batiuk MY, Martirosyan A, Wahis J, de Vin F, Marneffe C, Kusserow C, Koeppen J, Viana JF, Oliveira JF, Voet T, Ponting CP, Belgard TG, Holt MG. Identification of region-specific astrocyte subtypes at single cell resolution. Nat Commun 2020; 11:1220. [PMID: 32139688 PMCID: PMC7058027 DOI: 10.1038/s41467-019-14198-8] [Citation(s) in RCA: 482] [Impact Index Per Article: 96.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/17/2019] [Indexed: 01/26/2023] Open
Abstract
Astrocytes, a major cell type found throughout the central nervous system, have general roles in the modulation of synapse formation and synaptic transmission, blood-brain barrier formation, and regulation of blood flow, as well as metabolic support of other brain resident cells. Crucially, emerging evidence shows specific adaptations and astrocyte-encoded functions in regions, such as the spinal cord and cerebellum. To investigate the true extent of astrocyte molecular diversity across forebrain regions, we used single-cell RNA sequencing. Our analysis identifies five transcriptomically distinct astrocyte subtypes in adult mouse cortex and hippocampus. Validation of our data in situ reveals distinct spatial positioning of defined subtypes, reflecting the distribution of morphologically and physiologically distinct astrocyte populations. Our findings are evidence for specialized astrocyte subtypes between and within brain regions. The data are available through an online database (https://holt-sc.glialab.org/), providing a resource on which to base explorations of local astrocyte diversity and function in the brain.
Collapse
Affiliation(s)
- Mykhailo Y Batiuk
- Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
- Laboratory of Glia Biology, KU Leuven Department of Neuroscience, Leuven, Belgium
| | - Araks Martirosyan
- Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
- Laboratory of Glia Biology, KU Leuven Department of Neuroscience, Leuven, Belgium
| | - Jérôme Wahis
- Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
- Laboratory of Glia Biology, KU Leuven Department of Neuroscience, Leuven, Belgium
| | - Filip de Vin
- Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
- Laboratory of Glia Biology, KU Leuven Department of Neuroscience, Leuven, Belgium
| | - Catherine Marneffe
- Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
- Laboratory of Glia Biology, KU Leuven Department of Neuroscience, Leuven, Belgium
| | - Carola Kusserow
- Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
- Laboratory of Glia Biology, KU Leuven Department of Neuroscience, Leuven, Belgium
| | - Jordan Koeppen
- Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
- Laboratory of Glia Biology, KU Leuven Department of Neuroscience, Leuven, Belgium
| | - João Filipe Viana
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3Bs - PT Government Associate Laboratory, Braga, Portugal
| | - João Filipe Oliveira
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3Bs - PT Government Associate Laboratory, Braga, Portugal
- IPCA-EST-2Ai, Polytechnic Institute of Cávado and Ave, Applied Artificial Intelligence Laboratory, IPCA Campus, Barcelos, Portugal
| | - Thierry Voet
- Sanger Institute-EBI Single-Cell Genomics Centre, Wellcome Trust Sanger Institute, Hinxton, UK
- KU Leuven Department of Human Genetics, Leuven, Belgium
| | - Chris P Ponting
- Sanger Institute-EBI Single-Cell Genomics Centre, Wellcome Trust Sanger Institute, Hinxton, UK
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - T Grant Belgard
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- The Bioinformatics CRO, Niceville, Florida, 32578, USA
| | - Matthew G Holt
- Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.
- Laboratory of Glia Biology, KU Leuven Department of Neuroscience, Leuven, Belgium.
- Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
132
|
McKee CA, Lananna BV, Musiek ES. Circadian regulation of astrocyte function: implications for Alzheimer's disease. Cell Mol Life Sci 2020; 77:1049-1058. [PMID: 31578625 PMCID: PMC7098845 DOI: 10.1007/s00018-019-03314-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/26/2019] [Accepted: 09/19/2019] [Indexed: 12/13/2022]
Abstract
The circadian clock regulates rhythms in gene transcription that have a profound impact on cellular function, behavior, and disease. Circadian dysfunction is a symptom of aging and neurodegenerative diseases, and recent studies suggest a bidirectional relationship between impaired clock function and neurodegeneration. Glial cells possess functional circadian clocks which may serve to control glial responses to daily oscillations in brain activity, cellular stress, and metabolism. Astrocytes directly support brain function through synaptic interactions, neuronal metabolic support, neuroinflammatory regulation, and control of neurovascular coupling at blood and CSF barriers. Emerging evidence suggests that the astrocyte circadian clock may be involved in many of these processes, and that clock disruption could influence neurodegeneration by disrupting several aspects of astrocyte function. Here we review the literature surrounding circadian control of astrocyte function in health and disease, and discuss the potential implications of astrocyte clocks for neurodegeneration.
Collapse
Affiliation(s)
- Celia A McKee
- Department of Neurology, Washington University School of Medicine, Box 8111, 425 S. Euclid Ave, St. Louis, MO, 63105, USA
| | - Brian V Lananna
- Department of Neurology, Washington University School of Medicine, Box 8111, 425 S. Euclid Ave, St. Louis, MO, 63105, USA
| | - Erik S Musiek
- Department of Neurology, Washington University School of Medicine, Box 8111, 425 S. Euclid Ave, St. Louis, MO, 63105, USA.
| |
Collapse
|
133
|
Kudryashova KS, Burka K, Kulaga AY, Vorobyeva NS, Kennedy BK. Aging Biomarkers: From Functional Tests to Multi‐Omics Approaches. Proteomics 2020; 20:e1900408. [DOI: 10.1002/pmic.201900408] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/07/2020] [Indexed: 12/15/2022]
Affiliation(s)
| | - Ksenia Burka
- Centaura AG Bleicherweg 10 Zurich 8002 Switzerland
| | - Anton Y. Kulaga
- Centaura AG Bleicherweg 10 Zurich 8002 Switzerland
- Systems Biology of Aging GroupInstitute of Biochemistry of the Romanian Academy Splaiul Independentei 296 Bucharest 060031 Romania
| | | | - Brian K. Kennedy
- Departments of Biochemistry and Physiology Yong Loo Lin School of MedicineNational University of Singapore 8 Medical Drive, MD7, 117596 Singapore
- Singapore Institute for Clinical Sciences (SICS)Agency for Science and Technology (A*STAR)Brenner Centre for Molecular Medicine 30 Medical Drive Singapore 117609 Singapore
- Buck Institute for Research on Aging 8001 Redwood Blvd. Novato CA 94945‐1400 USA
| |
Collapse
|
134
|
Yu X, Nagai J, Khakh BS. Improved tools to study astrocytes. Nat Rev Neurosci 2020; 21:121-138. [DOI: 10.1038/s41583-020-0264-8] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2020] [Indexed: 12/21/2022]
|
135
|
de Majo M, Koontz M, Rowitch D, Ullian EM. An update on human astrocytes and their role in development and disease. Glia 2020; 68:685-704. [PMID: 31926040 DOI: 10.1002/glia.23771] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 11/25/2019] [Accepted: 11/29/2019] [Indexed: 12/12/2022]
Abstract
Human astrocytes provide trophic as well as structural support to the surrounding brain cells. Furthermore, they have been implicated in many physiological processes important for central nervous system function. Traditionally astrocytes have been considered to be a homogeneous class of cells, however, it has increasingly become more evident that astrocytes can have very different characteristics in different regions of the brain, or even within the same region. In this review we will discuss the features of human astrocytes, their heterogeneity, and their generation during neurodevelopment and the extraordinary progress that has been made to model these fascinating cells in vitro, mainly from induced pluripotent stem cells. Astrocytes' role in disease will also be discussed with a particular focus on their role in neurodegenerative disorders. As outlined here, astrocytes are important for the homeostasis of the central nervous system and understanding their regional specificity is a priority to elucidate the complexity of the human brain.
Collapse
Affiliation(s)
- Martina de Majo
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California
| | - Mark Koontz
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California
| | - David Rowitch
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California.,Department of Pediatrics, University of California, San Francisco, San Francisco, California.,Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Erik M Ullian
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California
| |
Collapse
|
136
|
Liddelow SA. Modern approaches to investigating non-neuronal aspects of Alzheimer's disease. FASEB J 2019; 33:1528-1535. [PMID: 30703873 DOI: 10.1096/fj.201802592] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The slow, continuous, devastating march of Alzheimer's disease continues to move across the globe. As a society, we are at a loss for options to treat or reverse the death of neurons-the final, apparently inescapable, hallmark of the disease. A continued focus on these dying neurons has taught us much about the disease but with no knowledge-based effective treatment in sight. A surge of interest in non-neuronal cells, including glia, blood vasculature, and immune cells, has shed new light on how we may better diagnose and treat patients. This may be our best hope to treat the millions patients with cognitive decline and memory loss.-Liddelow, S. A. Modern approaches to investigating non-neuronal aspects of Alzheimer's disease.
Collapse
Affiliation(s)
- Shane A Liddelow
- Neuroscience Institute and Department of Neuroscience and Physiology, New York University Langone Medical Center, New York, New York, USA; and.,Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
137
|
Abstract
A key step in excitatory synapse maturation is the switch in AMPA receptor subunit composition to GluA2-containing calcium-impermeable receptors. Now, Blanco-Suarez et al. (2018) demonstrate that astrocyte-secreted chordin-like 1 drives this process, enabling synapse maturation and limiting plasticity.
Collapse
Affiliation(s)
- Katherine T Baldwin
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Cagla Eroglu
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Duke Institute for Brain Sciences (DIBS), Durham, NC 27710, USA.
| |
Collapse
|
138
|
Apóstolo N, de Wit J. Compartmentalized distributions of neuronal and glial cell-surface proteins pattern the synaptic network. Curr Opin Neurobiol 2019; 57:126-133. [DOI: 10.1016/j.conb.2019.01.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 01/30/2019] [Indexed: 10/27/2022]
|
139
|
Hill SA, Blaeser AS, Coley AA, Xie Y, Shepard KA, Harwell CC, Gao WJ, Garcia ADR. Sonic hedgehog signaling in astrocytes mediates cell type-specific synaptic organization. eLife 2019; 8:45545. [PMID: 31194676 PMCID: PMC6629371 DOI: 10.7554/elife.45545] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 06/13/2019] [Indexed: 01/08/2023] Open
Abstract
Astrocytes have emerged as integral partners with neurons in regulating synapse formation and function, but the mechanisms that mediate these interactions are not well understood. Here, we show that Sonic hedgehog (Shh) signaling in mature astrocytes is required for establishing structural organization and remodeling of cortical synapses in a cell type-specific manner. In the postnatal cortex, Shh signaling is active in a subpopulation of mature astrocytes localized primarily in deep cortical layers. Selective disruption of Shh signaling in astrocytes produces a dramatic increase in synapse number specifically on layer V apical dendrites that emerges during adolescence and persists into adulthood. Dynamic turnover of dendritic spines is impaired in mutant mice and is accompanied by an increase in neuronal excitability and a reduction of the glial-specific, inward-rectifying K+ channel Kir4.1. These data identify a critical role for Shh signaling in astrocyte-mediated modulation of neuronal activity required for sculpting synapses. A central system of neurons in the spinal cord and brain coordinate most of our body’s actions, ranging from regulating our heart rate to controlling our movement and thoughts. As the brain develops, neurons form specialized contacts with one another known as synapses. If the number of synapses is not properly regulated this can disrupt communication between the neurons, leading to diseases like schizophrenia and autism. As the brain develops, it first forms an excess of synapses and later eliminates unnecessary or weak connections. Various factors, such gene expression or a neuron’s level of activity, regulate this turnover process. However, neurons cannot do this alone, and rely on other types of cells to help regulate their behavior. In the central nervous system, for example, a cell called an astrocyte is known to support the formation and activity of synapses. Now, Hill and Blaeser et al. show that astrocytes also exert influence over synaptic turnover during development, leading to long lasting changes in the number of synapses. Hill, Blaeser et al. revealed that disrupting activity of the signaling pathway known as Sonic hedgehog, or Shh for short, in the astrocytes of mice led to disordered synaptic connections. Notably, neurons produce Shh, suggesting that neurons use this signaling pathway to communicate to specific astrocyte partners. Further experiments showed that reducing astrocyte’s ability to respond to Shh impaired synaptic turnover as the brain developed, leading to an overabundance of synapses. Importantly, these effects were only found to influence neuron populations associated with astrocytes that actively use Shh signaling. This suggests that distinct populations of neurons and astrocytes interact in specialized ways to build the connections within the nervous system. To address how astrocytes use Shh signaling to regulate synaptic turnover, Hill, Blaeser et al. examined gene expression changes in astrocytes that lack Shh signaling. Astrocytes with a reduced capacity to respond to Shh were found to have lower levels of a protein responsible for transporting potassium ions into and out of the cell. This impairs astrocyte’s ability to regulate neuronal activity, which may lead to a failure in eliminating unnecessary synapses. Understanding how synapses are controlled and organized by astrocytes could help identify new ways to treat diseases of the developing nervous system. However, further studies would be needed to improve our understanding of how this process works.
Collapse
Affiliation(s)
- Steven A Hill
- Department of Biology, Drexel University, Philadelphia, United States
| | - Andrew S Blaeser
- Department of Biology, Drexel University, Philadelphia, United States
| | - Austin A Coley
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, United States
| | - Yajun Xie
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | | | - Corey C Harwell
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, United States
| | - A Denise R Garcia
- Department of Biology, Drexel University, Philadelphia, United States.,Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, United States
| |
Collapse
|
140
|
Miller SJ, Philips T, Kim N, Dastgheyb R, Chen Z, Hsieh YC, Daigle JG, Datta M, Chew J, Vidensky S, Pham JT, Hughes EG, Robinson MB, Sattler R, Tomer R, Suk JS, Bergles DE, Haughey N, Pletnikov M, Hanes J, Rothstein JD. Molecularly defined cortical astroglia subpopulation modulates neurons via secretion of Norrin. Nat Neurosci 2019; 22:741-752. [PMID: 30936556 PMCID: PMC6551209 DOI: 10.1038/s41593-019-0366-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 02/15/2019] [Indexed: 11/09/2022]
Abstract
Despite expanding knowledge regarding the role of astroglia in regulating neuronal function, little is known about regional or functional subgroups of brain astroglia and how they may interact with neurons. We use an astroglia-specific promoter fragment in transgenic mice to identify an anatomically defined subset of adult gray matter astroglia. Using transcriptomic and histological analyses, we generate a combinatorial profile for the in vivo identification and characterization of this astroglia subpopulation. These astroglia are enriched in mouse cortical layer V; express distinct molecular markers, including Norrin and leucine-rich repeat-containing G-protein-coupled receptor 6 (LGR6), with corresponding layer-specific neuronal ligands; are found in the human cortex; and modulate neuronal activity. Astrocytic Norrin appears to regulate dendrites and spines; its loss, as occurring in Norrie disease, contributes to cortical dendritic spine loss. These studies provide evidence that human and rodent astroglia subtypes are regionally and functionally distinct, can regulate local neuronal dendrite and synaptic spine development, and contribute to disease.
Collapse
Affiliation(s)
- Sean J Miller
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular & Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas Philips
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Namho Kim
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Raha Dastgheyb
- Department of Neurology, Richard T. Johnson Division of Neuroimmunology and Neurological Infections, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhuoxun Chen
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yi-Chun Hsieh
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - J Gavin Daigle
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Malika Datta
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Jeannie Chew
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Svetlana Vidensky
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jacqueline T Pham
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular & Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ethan G Hughes
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael B Robinson
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rita Sattler
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Raju Tomer
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Jung Soo Suk
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Departments of Biomedical Engineering, Environmental and Health Sciences, Oncology, Neurosurgery, and Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Dwight E Bergles
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Norman Haughey
- Department of Neurology, Richard T. Johnson Division of Neuroimmunology and Neurological Infections, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mikhail Pletnikov
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Justin Hanes
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Departments of Biomedical Engineering, Environmental and Health Sciences, Oncology, Neurosurgery, and Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Jeffrey D Rothstein
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Cellular & Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
141
|
Li J, Khankan RR, Caneda C, Godoy MI, Haney MS, Krawczyk MC, Bassik MC, Sloan SA, Zhang Y. Astrocyte-to-astrocyte contact and a positive feedback loop of growth factor signaling regulate astrocyte maturation. Glia 2019; 67:1571-1597. [PMID: 31033049 PMCID: PMC6557696 DOI: 10.1002/glia.23630] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 03/31/2019] [Accepted: 04/05/2019] [Indexed: 01/09/2023]
Abstract
Astrocytes are critical for the development and function of the central nervous system. In developing brains, immature astrocytes undergo morphological, molecular, cellular, and functional changes as they mature. Although the mechanisms that regulate the maturation of other major cell types in the central nervous system such as neurons and oligodendrocytes have been extensively studied, little is known about the cellular and molecular mechanisms that control astrocyte maturation. Here, we identified molecular markers of astrocyte maturation and established an in vitro assay for studying the mechanisms of astrocyte maturation. Maturing astrocytes in vitro exhibit similar molecular changes and represent multiple molecular subtypes of astrocytes found in vivo. Using this system, we found that astrocyte‐to‐astrocyte contact strongly promotes astrocyte maturation. In addition, secreted signals from microglia, oligodendrocyte precursor cells, or endothelial cells affect a small subset of astrocyte genes but do not consistently change astrocyte maturation. To identify molecular mechanisms underlying astrocyte maturation, we treated maturing astrocytes with molecules that affect the function of tumor‐associated genes. We found that a positive feedback loop of heparin‐binding epidermal growth factor‐like growth factor (HBEGF) and epidermal growth factor receptor (EGFR) signaling regulates astrocytes maturation. Furthermore, HBEGF, EGFR, and tumor protein 53 (TP53) affect the expression of genes important for cilium development, the circadian clock, and synapse function. These results revealed cellular and molecular mechanisms underlying astrocytes maturation with implications for the understanding of glioblastoma.
Collapse
Affiliation(s)
- Jiwen Li
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at the University of California, Los Angeles, California
| | - Rana R Khankan
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at the University of California, Los Angeles, California
| | - Christine Caneda
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at the University of California, Los Angeles, California
| | - Marlesa I Godoy
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at the University of California, Los Angeles, California
| | - Michael S Haney
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Mitchell C Krawczyk
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at the University of California, Los Angeles, California
| | - Michael C Bassik
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Steven A Sloan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Ye Zhang
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at the University of California, Los Angeles, California.,Intellectual and Developmental Disabilities Research Center at UCLA, Los Angeles, California.,Brain Research Institute at UCLA, Los Angeles, California.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, Los Angeles, California.,Molecular Biology Institute at UCLA, Los Angeles, California
| |
Collapse
|
142
|
Sakers K, Eroglu C. Control of neural development and function by glial neuroligins. Curr Opin Neurobiol 2019; 57:163-170. [PMID: 30991196 DOI: 10.1016/j.conb.2019.03.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 11/16/2022]
Abstract
Neuroligins are a family of cell adhesion molecules, which are best known for their functions as postsynaptic components of the trans-synaptic neurexin-neuroligin complexes. Neuroligins are highly conserved across evolution with important roles in the formation, maturation and function of synaptic structures. Mutations in the genes that encode for neuroligins have been linked to a number of neurodevelopmental disorders such as autism and schizophrenia, which stem from synaptic pathologies. Owing to their essential functions in regulating synaptic connectivity and their link to synaptic dysfunction in disease, previous studies on neuroligins have focused on neurons. Yet a recent work reveals that neuroligins are also expressed in the central nervous system by glial cells, such as astrocytes and oligodendrocytes, and perform important roles in controlling synaptic connectivity in a non-cell autonomous manner. In this review, we will highlight these recent findings demonstrating the important roles of glial neuroligins in regulating the development and connectivity of healthy and diseased brains.
Collapse
Affiliation(s)
- Kristina Sakers
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, United States
| | - Cagla Eroglu
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, United States; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, United States; Duke Institute for Brain Sciences (DIBS), Durham, NC 27710, United States; Regeneration Next Initiative, Duke University, Durham, NC 27710, United States.
| |
Collapse
|
143
|
Murphy‐Royal C, Gordon GR, Bains JS. Stress‐induced structural and functional modifications of astrocytes—Further implicating glia in the central response to stress. Glia 2019; 67:1806-1820. [DOI: 10.1002/glia.23610] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/14/2019] [Accepted: 02/20/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Ciaran Murphy‐Royal
- Department of Physiology and Pharmacology, Hotchkiss Brain InstituteUniversity of Calgary Calgary Alberta Canada
| | - Grant R. Gordon
- Department of Physiology and Pharmacology, Hotchkiss Brain InstituteUniversity of Calgary Calgary Alberta Canada
| | - Jaideep S. Bains
- Department of Physiology and Pharmacology, Hotchkiss Brain InstituteUniversity of Calgary Calgary Alberta Canada
| |
Collapse
|
144
|
Sadick JS, Liddelow SA. Don't forget astrocytes when targeting Alzheimer's disease. Br J Pharmacol 2019; 176:3585-3598. [PMID: 30636042 DOI: 10.1111/bph.14568] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/13/2018] [Accepted: 11/19/2018] [Indexed: 12/25/2022] Open
Abstract
Astrocytes are essential for CNS health, regulating homeostasis, metabolism, and synaptic transmission. In addition to these and many other physiological roles, the pathological impact of astrocytes ("reactive astrocytes") in acute trauma and chronic disease like Alzheimer's disease (AD) is well established. Growing evidence supports a fundamental and active role of astrocytes in multiple neurodegenerative diseases. With a growing interest in normal astrocyte biology, and countless studies on changes in astrocyte function in the context of disease, it may be a surprise that no therapies exist incorporating astrocytes as key targets. Here, we examine unintentional effects of current AD therapies on astrocyte function and theorize how astrocytes may be intentionally targeted for more efficacious therapeutic outcomes. Given their integral role in normal neuronal functioning, incorporating astrocytes as key criteria for AD drug development can only lead to more effective therapies for the millions of AD sufferers worldwide. LINKED ARTICLES: This article is part of a themed section on Therapeutics for Dementia and Alzheimer's Disease: New Directions for Precision Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.18/issuetoc.
Collapse
Affiliation(s)
- Jessica S Sadick
- Neuroscience Institute, NYU Langone Medical Center, New York, USA
| | - Shane A Liddelow
- Neuroscience Institute, NYU Langone Medical Center, New York, USA.,Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, USA.,Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
145
|
Lee E, Chung WS. Glial Control of Synapse Number in Healthy and Diseased Brain. Front Cell Neurosci 2019; 13:42. [PMID: 30814931 PMCID: PMC6381066 DOI: 10.3389/fncel.2019.00042] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/25/2019] [Indexed: 12/19/2022] Open
Abstract
Glial cells are emerging as crucial players that mediate development and homeostasis of the central nervous system (CNS). In particular, glial cells are closely associated with synapses, and control synapse formation, function, plasticity, and elimination during the stages of development and adulthood. Importantly, it is now increasingly evident that abnormal glial function can be an active inducer of the initiation and progression of various neurodegenerative diseases. Here, we discuss recent developments on the physiological roles of glial cells in the brain, and propose that synapse loss, which is a common characteristic of several neurodegenerative diseases, can be initiated by mis-regulation of normal glial function.
Collapse
Affiliation(s)
- Eunbeol Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Won-Suk Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| |
Collapse
|