101
|
Qutub RM, Al-Ghafari AB, Al Doghaither HA, Omar UM, Ghulam JM. Increased expressions of cellular ATP-binding cassette transporters may be a promising diagnostic marker for colorectal cancer. Saudi Med J 2021; 41:834-840. [PMID: 32789424 PMCID: PMC7502964 DOI: 10.15537/smj.2020.8.25187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES To measure the blood expression levels of related drug-resistant ATP-binding cassette (ABC) transporters in colorectal cancer (CRC) patients and to assess these examined transporters for whether they present signi cant expression in connection with the tumor appearance of CRC. METHODS In this case-control study, the messenger ribonucleic acids were isolated from the blood of 62 CRC patients who were recruited from King Abdulaziz University Hospital Oncology Clinic and 46 controls from King Fahad General Hospital Blood Bank (Jeddah, Saudi Arabia) from September 2016 to March 2017. The Biomedical Ethics Unit at King Abdulaziz University, Jeddah, Saudi Arabia approved this study. The expressions of ABC transporters were measured using quantitative polymerase chain reaction. GraphPad Prism 5 and REST 2009 Software were used to correlate the expressions with clinicopathological independent stages and body mass index. A p-value of less than 0.05 was considered significant. RESULTS The results showed that the 3 ABC transporters, particularly ABCC1 (p less than 0.0001), were highly expressed in the blood of CRC patients compared with controls. However, none of the 3 transporters was related to the progression of CRC, age, gender, or body mass index. CONCLUSION The expressions of ABC transporters were found to be significantly higher in CRC patients, and they may act as diagnostic markers and should potentially be tested for their contribution to drug sensitivity in CRC patients.
Collapse
Affiliation(s)
- Renad M Qutub
- Biochemistry Department, Faculty of Science, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia. E-mail.
| | | | | | | | | |
Collapse
|
102
|
Direct oral anticoagulants and cancer-associated VTE: good for all, or just some? Blood 2021; 136:669-673. [PMID: 32575112 DOI: 10.1182/blood.2019004177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/03/2020] [Indexed: 02/08/2023] Open
Abstract
Venous thromboembolism (VTE) is associated with significant mortality and morbidity in patients with cancer. Therefore, tailoring anticoagulation is of utmost importance to decrease the risk of recurrent VTE while minimizing the risk of bleeding. Direct oral anticoagulants have been recently compared with low-molecular-weight heparin for the management of acute cancer-associated thrombosis. Although direct oral anticoagulants are a welcome addition, clinicians need to incorporate clinical characteristics, drug-drug interactions, and patient preference in decision making.
Collapse
|
103
|
Li YS, Yang X, Zhao DS, Cai Y, Huang Z, Wu R, Wang SJ, Liu GJ, Wang J, Bao XZ, Ye XY, Wei B, Cui ZN, Wang H. Design, synthesis and bioactivity study on 5-phenylfuran derivatives as potent reversal agents against P-glycoprotein-mediated multidrug resistance in MCF-7/ADR cell. Eur J Med Chem 2021; 216:113336. [PMID: 33725657 DOI: 10.1016/j.ejmech.2021.113336] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 01/06/2023]
Abstract
P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) is a phenomenon in which cells become resistant to structurally and mechanistically unrelated drugs resulting in low intracellular drug concentrations. It is one of the noteworthy problems in malignant tumor clinical therapeutics. So P-gp protein is one of the ideal targets to solve MDR. Based on the lead compound 5m obtained from our previous work, a series of furan derivatives featuring alkyl-substituted phenols and 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline were designed and synthesized as reversal agents against P-gp in this paper. Compound 16 containing isopropoxy possessed good potency against P-gp mediated MDR in MCF-7/ADR (IC50 (doxorubicin) = 0.73 μM, RF = 69.6 with 5 μM 16 treated). Western blot results and Rh123 accumulation assays showed that 16 effectively inhibited P-gp efflux function but not its expression. The preliminary structure-activity relationship and docking studies demonstrated that compound 16 would be a potential P-gp inhibitor. Most worthy of mention is that compound 16 has achieved satisfactory results in combination with a variety of anti-tumor drugs, such as doxorubicin, paclitaxel, and vincristine. This study forwards a hopeful P-gp inhibitor for withstanding malignant tumor cell with multidrug resistance setting the basis for further studies.
Collapse
Affiliation(s)
- Ya-Sheng Li
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Delta Region, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xi Yang
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Delta Region, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Dong-Sheng Zhao
- Department of Pharmacy, Quanzhou Medical College, Quanzhou, 362100, China
| | - Yue Cai
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Delta Region, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhi Huang
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Delta Region, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Rui Wu
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Delta Region, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Si-Jia Wang
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Delta Region, Zhejiang University of Technology, Hangzhou, 310014, China; Center for Human Nutrition, David Geffen School of Medicine, University of California, Los Angeles, CA, 90024, USA
| | - Gui-Jun Liu
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Delta Region, Zhejiang University of Technology, Hangzhou, 310014, China; Key Laboratory for Core Technology of Generic Drug Evaluation National Medical Product Administration, Zhejiang Institute for Food and Drug Control, Hangzhou, 310052, China
| | - Jian Wang
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Delta Region, Zhejiang University of Technology, Hangzhou, 310014, China; Key Laboratory for Core Technology of Generic Drug Evaluation National Medical Product Administration, Zhejiang Institute for Food and Drug Control, Hangzhou, 310052, China
| | - Xiao-Ze Bao
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Delta Region, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xin-Yi Ye
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Delta Region, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Bin Wei
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Delta Region, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zi-Ning Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| | - Hong Wang
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Delta Region, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
104
|
Núñez-Torres R, Martín M, García-Sáenz JÁ, Rodrigo-Faus M, Del Monte-Millán M, Tejera-Pérez H, Pita G, de la Torre-Montero JC, Pinilla K, Herraez B, Peiró-Chova L, Bermejo B, Lluch A, González-Neira A. Association Between ABCB1 Genetic Variants and Persistent Chemotherapy-Induced Alopecia in Women With Breast Cancer. JAMA Dermatol 2021; 156:987-991. [PMID: 32756886 DOI: 10.1001/jamadermatol.2020.1867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Importance Persistent chemotherapy-induced alopecia (pCIA) has been recently described in patients with breast cancer and in its most severe form occurs in up to 10% of these patients. Genetic risk factors associated with pCIA have not been adequately explored. Objective To identify genetic variants associated with pCIA. Design, Setting, and Participants In this genetic association study, 215 women with breast cancer treated with docetaxel-based chemotherapy with a follow-up of 1.5 to 10 years after the end of the treatment were recruited retrospectively through 3 hospital oncology units across Spain between 2005 and 2018. Severe pCIA was defined as lack of scalp hair recovery (Common Terminology Criteria for Adverse Events, version 3.0, grade 2) 18 months or more after the end of treatment. Patients with grade 2 pCIA were selected as cases, and those with no sign of residual alopecia 12 months after the end of docetaxel treatment were selected as controls. A genome-wide association study in a discovery phase was conducted, and logistic regression was used to identify variants associated with the risk to develop this adverse effect. The validity of the association was addressed through a replication phase. Exposures Docetaxel-based chemotherapy. Main Outcomes and Measures Genotypes of single-nucleotide variants associated with pCIA. Results In total, 215 women with breast cancer (median age, 51.6 years; interquartile range, 44-60 years) were recruited (173 patients for the discovery phase and 42 patients for the replication phase). In the discovery phase, ABCB1 genetic variants were associated with risk to develop pCIA. In particular, single-nucleotide variation rs1202179, a regulatory variant located in an enhancer element that interacts with the ABCB1 promoter, was associated with the occurrence of pCIA. This finding was validated in the replication cohort (combined odds ratio, 4.05; 95% CI, 2.46-6.67; P = 3.946 × 10-8). This variant is associated with ABCB1 mRNA expression, and the risk allele was associated with decreased ABCB1 expression levels (P = 1.64 × 10-20). Conclusions and Relevance This is the first study, to our knowledge, that identifies an association between a regulatory variant in the ABCB1 gene and the occurrence of pCIA in patients with breast cancer who were treated with docetaxel-based therapies. This finding suggests an important insight into the biological mechanisms underlying pCIA and opens the opportunity to explore personalized treatment of these patients.
Collapse
Affiliation(s)
- Rocío Núñez-Torres
- Human Genotyping Unit-CeGen (Spanish National Genotyping Centre), Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Miguel Martín
- Medical Oncology Department, Hospital Universitario Gregorio Marañón, Departamento de Medicina, Universidad Complutense CiberOnC, Madrid, Spain
| | - Jose Ángel García-Sáenz
- Hospital Clínico San Carlos, Medical Oncology Department, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, CIBERONC, Madrid, Spain
| | - María Rodrigo-Faus
- Human Genotyping Unit-CeGen (Spanish National Genotyping Centre), Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - María Del Monte-Millán
- Medical Oncology Department, Hospital Universitario Gregorio Marañón, Departamento de Medicina, Universidad Complutense CiberOnC, Madrid, Spain
| | - Hugo Tejera-Pérez
- Human Genotyping Unit-CeGen (Spanish National Genotyping Centre), Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Guillermo Pita
- Human Genotyping Unit-CeGen (Spanish National Genotyping Centre), Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Karen Pinilla
- Hematology and Oncology Department, Hospital Clínico Universitario, Valencia, Spain
| | - Belén Herraez
- Human Genotyping Unit-CeGen (Spanish National Genotyping Centre), Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Begoña Bermejo
- Hematology and Oncology Department, Hospital Clínico Universitario, Valencia, Spain.,INCLIVA Biomedical Research Institute, Valencia, Spain.,University of Valencia, Spain.,Centro de Investigación Biomédica en Red de Oncología, CIBERONC-ISCIII
| | - Anna Lluch
- Hematology and Oncology Department, Hospital Clínico Universitario, Valencia, Spain.,INCLIVA Biomedical Research Institute, Valencia, Spain.,University of Valencia, Spain.,Centro de Investigación Biomédica en Red de Oncología, CIBERONC-ISCIII
| | - Anna González-Neira
- Human Genotyping Unit-CeGen (Spanish National Genotyping Centre), Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| |
Collapse
|
105
|
Żesławska E, Kucwaj-Brysz K, Kincses A, Spengler G, Szymańska E, Czopek A, Marć MA, Kaczor A, Nitek W, Domínguez-Álvarez E, Latacz G, Kieć-Kononowicz K, Handzlik J. An insight into the structure of 5-spiro aromatic derivatives of imidazolidine-2,4-dione, a new group of very potent inhibitors of tumor multidrug resistance in T-lymphoma cells. Bioorg Chem 2021; 109:104735. [PMID: 33640632 DOI: 10.1016/j.bioorg.2021.104735] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 01/07/2023]
Abstract
A series of 17 arylpiperazine derivatives of the 5-spiroimidazolidine-2,4-diones (6-22) has been explored, including variations in (i) the number of aromatic rings at position 5, (ii) the length of the linker, as well as (iii) the kind and position of the linked arylpiperazine terminal fragment. Synthesis (6-16) and X-ray crystallographic studies for representative compounds (8, 10, 14 and 18) have been performed. The ability to inhibit the tumor multidrug resistance (MDR) efflux pump P-glycoprotein (P-gp, ABCB1) overexpressed in mouse T-lymphoma cells was investigated. The cytotoxic and antiproliferative actions of the compounds on both the reference and the ABCB1-overproducing cells were also examined. The pharmacophore-based molecular modeling studies have been performed. ADMET properties in vitro of selected most active derivatives (6, 11 and 12) have been determined. All compounds, excluding 18, inhibited the cancer P-gp efflux pump with higher potency than that of reference verapamil. The spirofluorene derivatives with amine alkyl substituents at position 1, and the methyl group at position 3 (6-16), occurred the most potent P-gp inhibitors in the MDR T-lymphoma cell line. In particular, compounds 7 and 12 were 100-fold more potent than verapamil. Crystallography-supported pharmacophore-based SAR analysis has postulated specific structural properties that could explain this excellent cancer MDR-inhibitory action.
Collapse
Affiliation(s)
- Ewa Żesławska
- Institute of Biology, Pedagogical University, Podchorążych 2, 30-084 Kraków, Poland
| | - Katarzyna Kucwaj-Brysz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Annamária Kincses
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Gabriella Spengler
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Ewa Szymańska
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Anna Czopek
- Department of Medicinal Chemistry, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Małgorzata Anna Marć
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Aneta Kaczor
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Wojciech Nitek
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Enrique Domínguez-Álvarez
- Instituto de Química Orgánica General, Consejo Superior de Investigaciones Científicas (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland.
| |
Collapse
|
106
|
S-(+)-Pentedrone and R-(+)-methylone as the most oxidative and cytotoxic enantiomers to dopaminergic SH-SY5Y cells: Role of MRP1 and P-gp in cathinones enantioselectivity. Toxicol Appl Pharmacol 2021; 416:115442. [PMID: 33609514 DOI: 10.1016/j.taap.2021.115442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/25/2021] [Accepted: 01/30/2021] [Indexed: 11/23/2022]
Abstract
Cathinone derivatives are the most representative group within new drugs market, which have been described as neurotoxic. Since cathinones, as pentedrone and methylone, are available as racemates, it is our aim to study the neuronal cytotoxicity induced by each enantiomer. Therefore, a dopaminergic SH-SY5Y cell line was used to evaluate the hypothesis of enantioselectivity of pentedrone and methylone enantiomers on cytotoxicity, oxidative stress, and membrane efflux transport (confirmed by in silico studies). Our study demonstrated enantioselectivity of these cathinones, being the S-(+)-pentedrone and R-(+)-methylone the most oxidative enantiomers and also the most cytotoxic, suggesting the oxidative stress as main cytotoxic mechanism, as previously described in in vitro studies. Additionally, the efflux transporter multidrug resistance associated protein 1 (MRP1) seems to play, together with GSH, a selective protective role against the cytotoxicity induced by R-(-)-pentedrone enantiomer. It was also observed an enantioselectivity in the binding to P-glycoprotein (P-gp), another efflux protein, being the R-(-)-pentedrone and S-(-)-methylone the most transported enantiomeric compounds. These results were confirmed, in silico, by docking studies, revealing that R-(-)-pentedrone is the enantiomer with highest affinity to MRP1 and S-(-)-methylone and R-(-)-pentedrone are the enantiomers with highest affinity to P-gp. In conclusion, our data demonstrated that pentedrone and methylone present enantioselectivity in their cytotoxicity, which seems to involve different oxidative reactivity as well as different affinity to the P-gp and MRP1 that together with GSH play a protective role.
Collapse
|
107
|
From Natural Products to New Synthetic Small Molecules: A Journey through the World of Xanthones. Molecules 2021; 26:molecules26020431. [PMID: 33467544 PMCID: PMC7829950 DOI: 10.3390/molecules26020431] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 12/11/2022] Open
Abstract
This work reviews the contributions of the corresponding author (M.M.M.P.) and her research group to Medicinal Chemistry concerning the isolation from plant and marine sources of xanthone derivatives as well as their synthesis, biological/pharmacological activities, formulation and analytical applications. Although her group activity has been spread over several chemical families with relevance in Medicinal Chemistry, the main focus of the investigation and research has been in the xanthone family. Xanthone derivatives have a variety of activities with great potential for therapeutic applications due to their versatile framework. The group has contributed with several libraries of xanthones derivatives, with a variety of activities such as antitumor, anticoagulant, antiplatelet, anti-inflammatory, antimalarial, antimicrobial, hepatoprotective, antioxidant, and multidrug resistance reversal effects. Besides therapeutic applications, our group has also developed xanthone derivatives with analytical applications as chiral selectors for liquid chromatography and for maritime application as antifouling agents for marine paints. Chemically, it has been challenging to afford green chemistry methods and achieve enantiomeric purity of chiral derivatives. In this review, the structures of the most significant compounds will be presented.
Collapse
|
108
|
Mosca L, Ilari A, Fazi F, Assaraf YG, Colotti G. Taxanes in cancer treatment: Activity, chemoresistance and its overcoming. Drug Resist Updat 2021; 54:100742. [PMID: 33429249 DOI: 10.1016/j.drup.2020.100742] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
Since 1984, when paclitaxel was approved by the FDA for the treatment of advanced ovarian carcinoma, taxanes have been widely used as microtubule-targeting antitumor agents. However, their historic classification as antimitotics does not describe all their functions. Indeed, taxanes act in a complex manner, altering multiple cellular oncogenic processes including mitosis, angiogenesis, apoptosis, inflammatory response, and ROS production. On the one hand, identification of the diverse effects of taxanes on oncogenic signaling pathways provides opportunities to apply these cytotoxic drugs in a more rational manner. On the other hand, this may facilitate the development of novel treatment modalities to surmount anticancer drug resistance. In the latter respect, chemoresistance remains a major impediment which limits the efficacy of antitumor chemotherapy. Taxanes have shown impact on key molecular mechanisms including disruption of mitotic spindle, mitosis slippage and inhibition of angiogenesis. Furthermore, there is an emerging contribution of cellular processes including autophagy, oxidative stress, epigenetic alterations and microRNAs deregulation to the acquisition of taxane resistance. Hence, these two lines of findings are currently promoting a more rational and efficacious taxane application as well as development of novel molecular strategies to enhance the efficacy of taxane-based cancer treatment while overcoming drug resistance. This review provides a general and comprehensive picture on the use of taxanes in cancer treatment. In particular, we describe the history of application of taxanes in anticancer therapeutics, the synthesis of the different drugs belonging to this class of cytotoxic compounds, their features and the differences between them. We further dissect the molecular mechanisms of action of taxanes and the molecular basis underlying the onset of taxane resistance. We further delineate the possible modalities to overcome chemoresistance to taxanes, such as increasing drug solubility, delivery and pharmacokinetics, overcoming microtubule alterations or mitotic slippage, inhibiting drug efflux pumps or drug metabolism, targeting redox metabolism, immune response, and other cellular functions.
Collapse
Affiliation(s)
- Luciana Mosca
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council (IBPM-CNR), c/o Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| | - Francesco Fazi
- Dept. Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology and Medical Embryology, Sapienza University, Via A. Scarpa 14-16, 00161 Rome, Italy
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Lab, Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council (IBPM-CNR), c/o Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| |
Collapse
|
109
|
Wang H, Liu S, Xun X, Li M, Lou J, Zhang Y, Shi J, Hu J, Bao Z, Hu X. Toxin- and species-dependent regulation of ATP-binding cassette (ABC) transporters in scallops after exposure to paralytic shellfish toxin-producing dinoflagellates. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 230:105697. [PMID: 33254068 DOI: 10.1016/j.aquatox.2020.105697] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/12/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
ATP-binding cassette (ABC) transporters are membrane-bound proteins involved in exporting various xenobiotic compounds from living cells. Bivalve mollusks can accumulate large amounts of paralytic shellfish toxins (PSTs) from marine dinoflagellates. For aquatic invertebrates, the importance of ABC proteins in multi-xenobiotic resistance has been demonstrated, however, the systematic identification of ABC transporters is very limited. In this study, 64 and 67 ABC genes containing all eight described subfamilies (A to H) were identified in Yesso scallop (Patinopecten yessoensis) and Zhikong scallop (Chlamys farreri), respectively, with massive gene expansion being observed in the ABCC and ABCG subfamilies. The kidney harbored more specifically expressed ABC genes than other organs/tissues, most of which belonged to ABCB, ABCC, and ABCG subfamilies. After feeding the scallops with PST-producing dinoflagellates, the expression of scallop ABC genes in the kidney was regulated in toxin- and species-dependent manners. In total, 20 and 24 ABC genes in Zhikong scallop (CfABCs) were induced after exposure to Alexandrium minutum and A. catenella, with the up-regulated members from both ABCC and ABCG subfamilies mainly showing acute and chronic induction by A. minutum and A. catenella, respectively, while the up-regulated CfABCBs mainly showing chronic induction by both dinoflagellates. In Yesso scallop, only eight ABC genes (PyABCs) were regulated after A. catenella exposure, and all the five up-regulated PyABCs were acutely induced. Our findings imply the functional diversity of scallop ABC genes in coping with PST accumulation, which may contribute to the lineage-specific adaptation of scallops for dealing with algal toxins challenge.
Collapse
Affiliation(s)
- Huizhen Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shiqi Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaogang Xun
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Moli Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jiarun Lou
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yihan Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jiaoxia Shi
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xiaoli Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
110
|
NRF2 and paraquat-induced fatal redox stress. Toxicology 2021. [DOI: 10.1016/b978-0-12-819092-0.00010-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
111
|
Tang Z, Tang N, Jiang S, Bai Y, Guan C, Zhang W, Fan S, Huang Y, Lin H, Ying Y. The Chemosensitizing Role of Metformin in Anti-Cancer Therapy. Anticancer Agents Med Chem 2021; 21:949-962. [PMID: 32951587 DOI: 10.2174/1871520620666200918102642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/23/2020] [Accepted: 08/08/2020] [Indexed: 11/22/2022]
Abstract
Chemoresistance, which leads to the failure of chemotherapy and further tumor recurrence, presents the largest hurdle for the success of anti-cancer therapy. In recent years, metformin, a widely used first-line antidiabetic drug, has attracted increasing attention for its anti-cancer effects. A growing body of evidence indicates that metformin can sensitize tumor responses to different chemotherapeutic drugs, such as hormone modulating drugs, anti-metabolite drugs, antibiotics, and DNA-damaging drugs via selective targeting of Cancer Stem Cells (CSCs), improving the hypoxic microenvironment, and by suppressing tumor metastasis and inflammation. In addition, metformin may regulate metabolic programming, induce apoptosis, reverse Epithelial to Mesenchymal Transition (EMT), and Multidrug Resistance (MDR). In this review, we summarize the chemosensitization effects of metformin and focus primarily on its molecular mechanisms in enhancing the sensitivity of multiple chemotherapeutic drugs, through targeting of mTOR, ERK/P70S6K, NF-κB/HIF-1 α, and Mitogen- Activated Protein Kinase (MAPK) signaling pathways, as well as by down-regulating the expression of CSC genes and Pyruvate Kinase isoenzyme M2 (PKM2). Through a comprehensive understanding of the molecular mechanisms of chemosensitization provided in this review, the rationale for the use of metformin in clinical combination medications can be more systematically and thoroughly explored for wider adoption against numerous cancer types.>.
Collapse
Affiliation(s)
- Zhimin Tang
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Nan Tang
- Nanchang Joint Program, Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Shanshan Jiang
- Institute of Hematological Research, Shanxi Provincial People's Hospital, Xian 710000, China
| | - Yangjinming Bai
- Nanchang Joint Program, Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Chenxi Guan
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Wansi Zhang
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Shipan Fan
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510005, China
| | - Yonghong Huang
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Hui Lin
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Ying Ying
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| |
Collapse
|
112
|
Aboktifa MA, Abbas DA. Interaction Toxicity Study between P-glycoprotein Inhibitor (Captopril) and Inducer (Spironolactone) with Their Substrate (Lovastatin) in Male Rats. THE IRAQI JOURNAL OF VETERINARY MEDICINE 2020. [DOI: 10.30539/ijvm.v44i(e0).1032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
An interaction toxicity study was performed to evaluate and compare the effect of P-glycoprotein (P-gp) inhibitor (captopril) and inducer (spironolactone) on their common substrate (lovastatin) that were done by comparing LD50 of the acute study with their chronic form then with those combined therapeutic doses administered for 90 days. Therefore, isobolographic analysis and chronicity index were used as the parameters for this study. Forty rats were allocated into five groups according to the used treatment into: captopril, spironolactone, lovastatin, captopril + lovastatin and spironolactone + lovastatin using up and down method to determine their acute exposure LD50 while ninety rats were used to perform the chronic stage of the study divided equally into six groups according to daily dosing regimen as following G1- control group administered distilled water orally; G2 administered captopril 0.7 mg/kg BW orally; G3-administered spironolactone 1.4 mg/kg BW orally; G4- administered lovastatin 0.57 mg/kg BW orally; G5-administered spironolactone1.4 mg/kg BW orally and lovastatin 0.57 mg/kg BW, G6- administered captopril 0.7 mg/kg BW and lovastatin 0.57 mg/kg BW orally. The results of isobolographic analysis showed that the sort of interaction between P-gp inhibitor (captopril) and lovastatin alone and as combined administration showed to be antagonistic after acute administration while it was synergistic after chronic administration; for P-gp inducer, spironolactone and lovastatin were additive after acute administration and antagonistic after chronic administration. Chronicity index results showed that both captopril and lovastatin accumulated after administered each alone and showed more accumulation after their combined administration while the chronicity index for P-gp inducer (spironolactone) and lovastatin showed less total concentration in the body burden after their combined administration than alone one. In conclusion, it seems that P-gp inhibitor (captopril) causes accumulation of itself and substrate (lovastatin), while P-gp inducer (spironolactone) causes reduction on the body burden of itself as well as lovastatin possibly due to their effects on the kinetics of the body and this may affect the efficacy and safety of drugs.
Collapse
|
113
|
Wang B, Liu S, Huang W, Ma M, Chen X, Zeng W, Liang K, Wang H, Bi Y, Li X. Design, synthesis, and biological evaluation of hederagenin derivatives with improved aqueous solubility and tumor resistance reversal activity. Eur J Med Chem 2020; 211:113107. [PMID: 33360797 DOI: 10.1016/j.ejmech.2020.113107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/05/2020] [Accepted: 12/14/2020] [Indexed: 01/11/2023]
Abstract
Multidrug resistance (MDR) has become a major obstacle to malignancies treatment by chemotherapeutic drugs, therefore, it is important to develop MDR reversal agents with high activity. We have previously found that the hederagenin (HD) derivative HBQ showed good tumor MDR reversal activity in vitro and in vivo but had poor solubility. In this study, to enhance the aqueous solubility and tumor MDR reversal activity of HBQ, three series of HD derivatives were designed and synthesized. Nitrogen-containing heterocyclic-substituted, PEGylated, and ring-A substituted derivatives significantly reversed the MDR phenotype of KBV (multidrug-resistant oral epidermoid carcinoma) cells toward paclitaxel at a concentration of 10 μM in MTT assays. The PEGylated derivatives 10c-10e had increased aqueous solubility compared with HBQ by 18-657 fold, while maintaining tumor MDR reversal activity. The most in vitro active compound 10c possessed good chemical stability to an esterase over 24 h and enhanced the sensitivity of KBV cells to paclitaxel and vincristine with IC50 values of 4.58 and 0.79 nM, respectively. Mechanism studies indicated that compound 10c increased the accumulation of P-glycoprotein (P-gp) substrates rhodamine 123 and Flutax1 in KBV cells and MCF-7T (paclitaxel-resistant breast carcinoma) cells, that is to say, compound 10c exerted the reversal effect of tumor MDR by inhibiting the efflux function of P-gp. Finally, the structure-activity relationships were further investigated by analyzing the relationship between structure and tumor MDR reversal activity of HD derivatives. This study highlights the potential of PEGylated HD derivatives such as compound 10c for the development of tumor MDR reversal agents and provides information for the further improvement of the aqueous solubility and tumor MDR reversal activity of HD derivatives in the future.
Collapse
Affiliation(s)
- Binghua Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Shuqi Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Wentao Huang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Mengxin Ma
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Xiaoqian Chen
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Wenxuan Zeng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Kaicheng Liang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China.
| | - Yi Bi
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China.
| | - Xiaopeng Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| |
Collapse
|
114
|
Wang S, Wang SQ, Teng QX, Yang L, Lei ZN, Yuan XH, Huo JF, Chen XB, Wang M, Yu B, Chen ZS, Liu HM. Structure-Based Design, Synthesis, and Biological Evaluation of New Triazolo[1,5- a]Pyrimidine Derivatives as Highly Potent and Orally Active ABCB1 Modulators. J Med Chem 2020; 63:15979-15996. [PMID: 33280384 DOI: 10.1021/acs.jmedchem.0c01741] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
ABCB1 is a promising therapeutic target for overcoming multidrug resistance (MDR). In this work, we reported the structure-based design of triazolo[1,5-a]pyrimidines as new ABCB1 modulators, of which WS-691 significantly increased sensitization of ABCB1-overexpressed SW620/Ad300 cells to paclitaxel (PTX) (IC50 = 22.02 nM). Mechanistic studies indicated that WS-691 significantly increased the intracellular concentration of PTX and [3H]-PTX while decreasing the efflux of [3H]-PTX in SW620/Ad300 cells by inhibiting the efflux function of ABCB1. The cellular thermal shift assay suggested that WS-691 could stabilize ABCB1 by directly binding to ABCB1. WS-691 could stimulate the activity of ABCB1 ATPase but had almost no inhibitory activity against CYP3A4. Importantly, WS-691 increased the sensitivity of SW620/Ad300 cells to PTX in vivo without observed toxicity. Collectively, WS-691 is a highly potent and orally active ABCB1 modulator capable of overcoming MDR. The triazolo[1,5-a]pyrimidine may be a promising scaffold for developing more potent ABCB1 modulators.
Collapse
Affiliation(s)
- Shuai Wang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Sai-Qi Wang
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Henan Cancer Institute, Zhengzhou 450008, China
| | - Qiu-Xu Teng
- College of Pharmacy and Health Sciences, St. John's University, Queens, New York 11439, United States
| | - Linlin Yang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zi-Ning Lei
- College of Pharmacy and Health Sciences, St. John's University, Queens, New York 11439, United States
| | - Xiao-Han Yuan
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Jun-Feng Huo
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Xiao-Bing Chen
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Henan Cancer Institute, Zhengzhou 450008, China
| | - Mengru Wang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Yu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, New York 11439, United States
| | - Hong-Min Liu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
115
|
Shin HB, Jung EH, Kang P, Lim CW, Oh KY, Cho CK, Lee YJ, Choi CI, Jang CG, Lee SY, Bae JW. ABCB1 c.2677G>T/c.3435C>T diplotype increases the early-phase oral absorption of losartan. Arch Pharm Res 2020; 43:1187-1196. [PMID: 33249530 DOI: 10.1007/s12272-020-01294-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 12/29/2022]
Abstract
Losartan has been shown to be a substrate of the drug-efflux transporter MDR1, encoded by the ABCB1 gene. ABCB1 c.2677G>T and c.3435C>T variants are known to be associated with reduced expression and function of P-glycoprotein (P-gp). We investigated the effects of ABCB1 diplotype on the pharmacokinetics of losartan. Thirty-eight healthy Korean volunteers with different ABCB1 diplotypes [c.2677G> T and c.3435C>T; carriers of GG/CC (n = 13), GT/CT (n = 12) and TT/TT (n = 13) diplotype] were recruited and administered a single 50 mg oral dose of losartan potassium. Losartan and its active metabolite E-3174 samples in plasma and urine were collected up to 10 and 8 h after drug administration, respectively, and the concentrations of both samples were determined by HPLC method. Significant differences were observed in Cmax of losartan and losartan plus E-3174 (Lo + E) among the three diplotype groups (both P < 0.01). However, the power of the performed test is less than the desired power (0.800). The tmax of losartan and E-3174 in three diplotype groups were also significantly different (both P < 0.01). The AUC values of Lo + E were significantly different among the three diplotype groups until 6 h after losartan administration (P < 0.01). On the contrary, AUC at the periods of 8-10 h and 10 h-infinity of Lo + E were significantly lower in the TT/TT group than in the GG/CC group. Urinary excretion of losartan until 4 h after losartan administration in the TT/TT group was higher than that of the GG/CC group. These results suggest that c.2677G>T/c.3435C>T diplotypes of ABCB1 may significantly increase the early-phase absorption of losartan, but not the total absorption.
Collapse
Affiliation(s)
- Hyo-Bin Shin
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Eui Hyun Jung
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Pureum Kang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Chang Woo Lim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Kyung-Yul Oh
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Chang-Keun Cho
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yun Jeong Lee
- College of Pharmacy, Dankook University, Cheonan, 31116, Republic of Korea
| | - Chang-Ik Choi
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Choon-Gon Jang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seok-Yong Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Jung-Woo Bae
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| |
Collapse
|
116
|
Li R, Wang Y, Yang Q, Lai B, Zhou X, Feng M. Enhanced Stability of the Pharmacologically Active Lactone Form of 10-Hydroxycamptothecin by Self-Microemulsifying Drug Delivery Systems. AAPS PharmSciTech 2020; 21:324. [PMID: 33200259 DOI: 10.1208/s12249-020-01860-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/24/2020] [Indexed: 12/25/2022] Open
Abstract
10-Hydroxycamptothecin (HCPT) is a DNA inhibitor of topoisomerase I and exerts antitumor activities against various types of cancer. However, reversible conversion from a pharmacologically active lactone form to an inactive carboxylate form of HCPT and poor water solubility hamper its clinical applications. To overcome these shortcomings, we designed a fine self-microemulsifying drug delivery system (SMEDDS) for HCPT to effectively protect HCPT in its active lactone form as well as improving dissolution rates. A formulation of HCPT-SMEDDS that contained ethyl oleate, D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS), and polyethylene glycol 400 (PEG400) was optimized by using the central composite design and response surface methodology. Following 1:100 aqueous dilution of the optimized HCPT-SMEDDS, the droplet size of resulting microemulsions was 25.6 ± 0.7 nm, and the zeta potential was - 15.2 ± 0.4 mV. The optimized HCPT-SMEDDS appeared to stabilize the lactone moiety of HCPT with 73.6% being present in the pharmacologically active lactone forms in simulated intestinal fluid, but only 45.7% for free HCPT. Furthermore, the physically stable formulation showed the active lactone form predominated in HCPT-SMEDDS (> 95%) for 6 months under the accelerated storage condition. Meanwhile, the optimized SMEDDS formulation also significantly improved dissolution rates and membrane permeability of the lactone form of HCPT. Therefore, HCPT-SMEDDS involved designing for the ease of manufacture, and provided a potent oral dosage form for preserving its active lactone form as well as enhancing the dissolution rate.
Collapse
|
117
|
Wei H, Guan YD, Zhang LX, Liu S, Lu AP, Cheng Y, Cao DS. A combinatorial target screening strategy for deorphaning macromolecular targets of natural product. Eur J Med Chem 2020; 204:112644. [PMID: 32738412 DOI: 10.1016/j.ejmech.2020.112644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/02/2020] [Accepted: 07/02/2020] [Indexed: 11/24/2022]
Abstract
Natural products, as an ideal starting point for molecular design, play a pivotal role in drug discovery; however, ambiguous targets and mechanisms have limited their in-depth research and applications in a global dimension. In-silico target prediction methods have become an alternative to target identification experiments due to the high accuracy and speed, but most studies only use a single prediction method, which may reduce the accuracy and reliability of the prediction. Here, we firstly presented a combinatorial target screening strategy to facilitate multi-target screening of natural products considering the characteristics of diverse in-silico target prediction methods, which consists of ligand-based online approaches, consensus SAR modelling and target-specific re-scoring function modelling. To validate the practicability of the strategy, natural product neferine, a bisbenzylisoquinoline alkaloid isolated from the lotus seed, was taken as an example to illustrate the screening process and a series of corresponding experiments were implemented to explore the pharmacological mechanisms of neferine. The proposed computational method could be used for a complementary hypothesis generation and rapid analysis of potential targets of natural products.
Collapse
Affiliation(s)
- Hui Wei
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, PR China
| | - Yi-Di Guan
- Xiangya Hospital, Central South University, Changsha, 410013, Hunan, PR China
| | - Liu-Xia Zhang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, PR China
| | - Shao Liu
- Xiangya Hospital, Central South University, Changsha, 410013, Hunan, PR China
| | - Ai-Ping Lu
- Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, PR China
| | - Yan Cheng
- The Second Xiangya Hospital, Central South University, Changsha, 410013, Hunan, PR China.
| | - Dong-Sheng Cao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, PR China; Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, PR China.
| |
Collapse
|
118
|
Novel Intrinsic Mechanisms of Active Drug Extrusion at the Blood-Brain Barrier: Potential Targets for Enhancing Drug Delivery to the Brain? Pharmaceutics 2020; 12:pharmaceutics12100966. [PMID: 33066604 PMCID: PMC7602420 DOI: 10.3390/pharmaceutics12100966] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022] Open
Abstract
The blood-brain barrier (BBB) limits the pharmacotherapy of several brain disorders. In addition to the structural and metabolic characteristics of the BBB, the ATP-driven, drug efflux transporter P-glycoprotein (Pgp) is a selective gatekeeper of the BBB; thus, it is a primary hindrance to drug delivery into the brain. Here, we review the complex regulation of Pgp expression and functional activity at the BBB with an emphasis on recent studies from our laboratory. In addition to traditional processes such as transcriptional regulation and posttranscriptional or posttranslational modification of Pgp expression and functionality, novel mechanisms such as intra- and intercellular Pgp trafficking and intracellular Pgp-mediated lysosomal sequestration in BBB endothelial cells with subsequent disposal by blood neutrophils are discussed. These intrinsic mechanisms of active drug extrusion at the BBB are potential therapeutic targets that could be used to modulate P-glycoprotein activity in the treatment of brain diseases and enhance drug delivery to the brain.
Collapse
|
119
|
Domínguez CJ, Tocchetti GN, Rigalli JP, Mottino AD. Acute regulation of apical ABC transporters in the gut. Potential influence on drug bioavailability. Pharmacol Res 2020; 163:105251. [PMID: 33065282 DOI: 10.1016/j.phrs.2020.105251] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 01/09/2023]
Abstract
The extensive intestinal surface offers an advantage regarding nutrient, ion and water absorptive capacity but also brings along a high exposition to xenobiotics, including drugs of therapeutic use and food contaminants. After absorption of these compounds by the enterocytes, apical ABC transporters play a key role in secreting them back to the intestinal lumen, hence acting as a transcellular barrier. Rapid and reversible modulation of their activity is a subject of increasing interest for pharmacologists. On the one hand, a decrease in transporter activity may result in increased absorption of therapeutic agents given orally. On the other hand, an increase in transporter activity would decrease their absorption and therapeutic efficacy. Although of less relevance, apical ABC transporters also contribute to disposition of drugs systemically administered. This review article summarizes the present knowledge on the mechanisms aimed to rapidly regulate the activity of the main apical ABC transporters of the gut: multidrug resistance protein 1 (MDR1), multidrug resistance-associated protein 2 (MRP2) and breast cancer resistance protein (BCRP). Regulation of these mechanisms by drugs, drug delivery systems, drug excipients and nutritional components are particularly considered. This information could provide the basis for controlled regulation of bioavailability of therapeutic agents and at the same time would help to prevent potential drug-drug interactions.
Collapse
Affiliation(s)
- Camila Juliana Domínguez
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Sciences, Rosario National University, Suipacha 570, 2000 Rosario, Argentina
| | - Guillermo Nicolás Tocchetti
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Sciences, Rosario National University, Suipacha 570, 2000 Rosario, Argentina; Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Juan Pablo Rigalli
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Aldo Domingo Mottino
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Sciences, Rosario National University, Suipacha 570, 2000 Rosario, Argentina.
| |
Collapse
|
120
|
Zhang H, Xu H, Ashby CR, Assaraf YG, Chen ZS, Liu HM. Chemical molecular-based approach to overcome multidrug resistance in cancer by targeting P-glycoprotein (P-gp). Med Res Rev 2020; 41:525-555. [PMID: 33047304 DOI: 10.1002/med.21739] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/01/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022]
Abstract
Multidrug resistance (MDR) remains one of the major impediments for efficacious cancer chemotherapy. Increased efflux of multiple chemotherapeutic drugs by transmembrane ATP-binding cassette (ABC) transporter superfamily is considered one of the primary causes for cancer MDR, in which the role of P-glycoprotein (P-gp/ABCB1) has been most well-established. The clinical co-administration of P-gp drug efflux inhibitors, in combination with anticancer drugs which are P-gp transport substrates, was considered to be a treatment modality to surmount MDR in anticancer therapy by blocking P-gp-mediated multidrug efflux. Extensive attempts have been carried out to screen for sets of nontoxic, selective, and efficacious P-gp efflux inhibitors. In this review, we highlight the recent achievements in drug design, characterization, structure-activity relationship (SAR) studies, and mechanisms of action of the newly synthetic, potent small molecules P-gp inhibitors in the past 5 years. The development of P-gp inhibitors will increase our knowledge of the mechanisms and functions of P-gp-mediated drug efflux which will benefit drug discovery and clinical cancer therapeutics where P-gp transporter overexpression has been implicated in MDR.
Collapse
Affiliation(s)
- Hang Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Haiwei Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, St. John's University, Queens, New York, USA
| | - Yehuda G Assaraf
- Department of Biology, The Fred Wyszkowski Cancer Research Laboratory, Technion-Israel Institute of Technology, Haifa, Israel
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, St. John's University, Queens, New York, USA
| | - Hong-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
121
|
Impact of molecular weight on the mechanism of cellular uptake of polyethylene glycols (PEGs) with particular reference to P-glycoprotein. Acta Pharm Sin B 2020; 10:2002-2009. [PMID: 33163350 PMCID: PMC7606107 DOI: 10.1016/j.apsb.2020.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/15/2020] [Accepted: 02/01/2020] [Indexed: 12/27/2022] Open
Abstract
Polyethylene glycols (PEGs) in general use are polydisperse molecules with molecular weight (MW) distributed around an average value applied in their designation e.g., PEG 4000. Previous research has shown that PEGs can act as P-glycoprotein (P-gp) inhibitors with the potential to affect the absorption and efflux of concomitantly administered drugs. However, questions related to the mechanism of cellular uptake of PEGs and the exact role played by P-gp has not been addressed. In this study, we examined the mechanism of uptake of PEGs by MDCK-mock cells, in particular, the effect of MW and interaction with P-gp by MDCK-hMDR1 and A549 cells. The results show that: (a) the uptake of PEGs by MDCK-hMDR1 cells is enhanced by P-gp inhibitors; (b) PEGs stimulate P-gp ATPase activity but to a much lesser extent than verapamil; and (c) uptake of PEGs of low MW (<2000 Da) occurs by passive diffusion whereas uptake of PEGs of high MW (>5000 Da) occurs by a combination of passive diffusion and caveolae-mediated endocytosis. These findings suggest that PEGs can engage in P-gp-based drug interactions which we believe should be taken into account when using PEGs as excipients and in PEGylated drugs and drug delivery systems.
Collapse
Key Words
- ACN, acetonitrile
- AUC, area under the plasma concentration-time curve
- CE, collision energy
- Cmax, maximum plasma concentration
- CsA, cyclosporine A
- DBD, drug-binding domain
- DDS, drug delivery system
- DMEM, Dulbecco's modified Eagle's medium
- DMSO, dimethyl sulfoxide
- DP, declustering potential
- Endocytosis
- FBS, fetal bovine serum
- HBSS, Hanks' balanced salt solution
- HEPES, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
- IS, internal standard
- LC−HRMS/MS, liquid chromatography−high resolution tandem mass spectrometry
- MW, molecular weight
- NBD, nucleotide binding domain
- P-gp
- P-gp, P-glycoprotein
- P-gp-substrate
- PAC, paclitaxel
- PEG, polyethylene glycol
- PEGs
- Passive diffusion
- VER, verapamil
Collapse
|
122
|
Staples JW, Stine JM, Mäki-Lohiluoma E, Steed E, George KM, Thompson CM, Woodahl EL. Food dyes as P-glycoprotein modulators. Food Chem Toxicol 2020; 146:111785. [PMID: 33011351 DOI: 10.1016/j.fct.2020.111785] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 11/30/2022]
Abstract
The drug transporter P-glycoprotein (P-gp) is often investigated in drug-interaction studies because the activity is modulated by a wide variety of xenobiotics including drugs, herbal products, and food components. In this study, we tested six common arylsulfonate food dyes-allura red, carmoisine, ponceau 4R, quinolone yellow, sunset yellow, and tartrazine-as activators and inhibitors of P-gp activity in vitro. The dyes were studied as P-gp activators by measuring ATPase activity in P-gp-expressing membranes. Compared to verapamil, a known activator of P-gp, the six food dyes showed no stimulatory activity. The potential for these six food dyes to act as P-gp inhibitors was tested in an intracellular efflux assay with P-gp-expressing cells. Compared to GF120918, a known P-gp inhibitor, there was no inhibitory activity for these six food dyes. The six food dyes tested do not interact with P-gp in vitro and, therefore, are unlikely cause clinical drug-food dye interactions. Further investigation is necessary to determine whether these food dyes could interact with other drug transporters.
Collapse
Affiliation(s)
- Jack W Staples
- Department of Biomedical and Pharmaceuticals Sciences, University of Montana, Missoula, MT, United States
| | - Jessica M Stine
- Department of Biomedical and Pharmaceuticals Sciences, University of Montana, Missoula, MT, United States
| | - Eero Mäki-Lohiluoma
- Department of Biomedical and Pharmaceuticals Sciences, University of Montana, Missoula, MT, United States
| | - Emily Steed
- Department of Biomedical and Pharmaceuticals Sciences, University of Montana, Missoula, MT, United States
| | - Kathleen M George
- Department of Biomedical and Pharmaceuticals Sciences, University of Montana, Missoula, MT, United States
| | - Charles M Thompson
- Department of Biomedical and Pharmaceuticals Sciences, University of Montana, Missoula, MT, United States
| | - Erica L Woodahl
- Department of Biomedical and Pharmaceuticals Sciences, University of Montana, Missoula, MT, United States.
| |
Collapse
|
123
|
Shigeta K, Hasegawa M, Kikuchi E, Yasumizu Y, Kosaka T, Mizuno R, Mikami S, Miyajima A, Kufe D, Oya M. Role of the MUC1-C oncoprotein in the acquisition of cisplatin resistance by urothelial carcinoma. Cancer Sci 2020; 111:3639-3652. [PMID: 32677159 PMCID: PMC7541007 DOI: 10.1111/cas.14574] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 12/22/2022] Open
Abstract
Mucin 1 C-terminal subunit (MUC1-C) has been introduced as a key regulator for acquiring drug resistance in various cancers, but the functional role of MUC1-C in urothelial carcinoma (UC) cells remains unknown. We aimed to elucidate the molecular mechanisms underlying the acquisition of cisplatin (CDDP) resistance through MUC1-C oncoprotein in UC cells. MUC1-C expression was examined immunohistochemically in tumor specimens of 159 UC patients who received CDDP-based perioperative chemotherapy. As a result, moderate to high MUC1-C expression was independently associated with poor survival in UC patients. Using human bladder cancer cell lines and CDDP-resistant (CR) cell lines, we compared the expression levels of MUC1-C, multiple drug resistance 1 (MDR1), the PI3K-AKT-mTOR pathway, and x-cystine/glutamate transporter (xCT) to elucidate the biological mechanisms contributing to the acquisition of chemoresistance. MUC1-C was strongly expressed in CR cell lines, followed with MDR1 expression via activation of the PI3K-AKT-mTOR pathway. MUC1-C also stabilized the expression of xCT, which enhanced antioxidant defenses by increasing intracellular glutathione (GSH) levels. MUC1 down-regulation showed MDR1 inhibition along with PI3K-AKT-mTOR pathway suppression. Moreover, it inhibited xCT stabilization and resulted in significant decreases in intracellular GSH levels and increased reactive oxygen species (ROS) generation. The MUC1-C inhibitor restored sensitivity to CDDP in CR cells and UC murine xenograft models. In conclusion, we found that MUC1-C plays a pivotal role in the acquisition of CDDP resistance in UC cells, and therefore the combined treatment of CDDP with a MUC1-C inhibitor may become a novel therapeutic option in CR UC patients.
Collapse
Affiliation(s)
- Keisuke Shigeta
- Department of UrologyKeio University School of MedicineTokyoJapan
| | | | - Eiji Kikuchi
- Department of UrologyKeio University School of MedicineTokyoJapan
- Department of UrologySt. Marianna University School of MedicineKanagawaJapan
| | - Yota Yasumizu
- Department of UrologyKeio University School of MedicineTokyoJapan
| | - Takeo Kosaka
- Department of UrologyKeio University School of MedicineTokyoJapan
| | - Ryuichi Mizuno
- Department of UrologyKeio University School of MedicineTokyoJapan
| | - Shuji Mikami
- Division of Diagnostic PathologyKeio University School of MedicineTokyoJapan
| | - Akira Miyajima
- Department of UrologyTokai University School of MedicineTokyoJapan
| | - Donald Kufe
- Dana‐Farber Cancer InstituteHarvard Medical SchoolBostonMAUSA
| | - Mototsugu Oya
- Department of UrologyKeio University School of MedicineTokyoJapan
| |
Collapse
|
124
|
Ammar M, Louati N, Frikha I, Medhaffar M, Ghozzi H, Elloumi M, Menif H, Zeghal K, Ben Mahmoud L. Overexpression of P-glycoprotein and resistance to Imatinib in chronic myeloid leukemia patients. J Clin Lab Anal 2020; 34:e23374. [PMID: 32715517 PMCID: PMC7521244 DOI: 10.1002/jcla.23374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/07/2020] [Accepted: 04/20/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The P-glycoprotein (P-gp) is one of the mechanisms of Imatinib (IM) resistance in chronic myeloid leukemia (CML). P-gp has been identified as an efflux pump involved in releasing of IM outside CML cells. To date, the P-gp involvement in the IM resistance development was not completely understood. Therefore, the present study aimed at measuring the P-gp expression level on lymphocytes from Tunisian patients with CML and correlating this level with a molecular response to IM. METHOD The expression of P-gp on peripheral blood lymphocytes from 59 Tunisian patients with CML (27 IM responder patients vs 32 IM non-responder patients) was evaluated by flow cytometry. RESULT Our finding showed significantly positive expression of P-gp in the lymphocytes from the IM non-responder group when compared to the IM-responder group (P = .001). In IM non-responder CML patients, the comparison between CCyR achievers and non-achievers showed a high mean fluorescence intensity (MFI) of P-gp expression in patients who did not achieve their CCyR (P = .001). The comparison between patients with primary and secondary resistance to IM showed an increasing MFI value in patients with primary resistance to IM (P = .001). Besides, the comparison between nilotinib-treated and dasatinib-treated patients proved a high value of MFI in nilotinib-treated patients (P = .001). CONCLUSION The overexpression of P-gp on lymphocytes has significantly correlated with the failed molecular response to IM in patients with CML.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Antineoplastic Agents/pharmacology
- Biomarkers, Tumor/metabolism
- Case-Control Studies
- Drug Resistance, Neoplasm
- Female
- Follow-Up Studies
- Humans
- Imatinib Mesylate/pharmacology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Male
- Middle Aged
- Prognosis
- Retrospective Studies
- Survival Rate
Collapse
Affiliation(s)
- Mariam Ammar
- Department of Pharmacology, Faculty of MedicineUniversity of SfaxSfaxTunisia
| | - Nour Louati
- Sfax Regional Center of Blood TransfusionSfaxTunisia
| | - Imen Frikha
- Department of Clinical HematologyHedi Chaker Hospital, University of SfaxSfaxTunisia
| | - Moez Medhaffar
- Department of Clinical HematologyHedi Chaker Hospital, University of SfaxSfaxTunisia
| | - Hanen Ghozzi
- Department of Pharmacology, Faculty of MedicineUniversity of SfaxSfaxTunisia
| | - Moez Elloumi
- Department of Clinical HematologyHedi Chaker Hospital, University of SfaxSfaxTunisia
| | - Hela Menif
- Sfax Regional Center of Blood TransfusionSfaxTunisia
| | - Khaled Zeghal
- Department of Pharmacology, Faculty of MedicineUniversity of SfaxSfaxTunisia
| | - Lobna Ben Mahmoud
- Department of Pharmacology, Faculty of MedicineUniversity of SfaxSfaxTunisia
| |
Collapse
|
125
|
Anaya K, Podszun M, Franco OL, de Almeida Gadelha CA, Frank J. The Coconut Water Antimicrobial Peptide CnAMP1 Is Taken up into Intestinal Cells but Does Not Alter P-Glycoprotein Expression and Activity. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2020; 75:396-403. [PMID: 32462366 PMCID: PMC7378125 DOI: 10.1007/s11130-020-00826-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Coconut antimicrobial peptide-1 (CnAMP1) is a naturally occurring bioactive peptide from green coconut water (Cocos nucifera L.). Although biological activities have been reported, the physiological relevance of these reports remains elusive as it is unknown if CnAMP1 is taken up into intestinal cells. To address this open question, we investigated the cytotoxicity of CnAMP1 in intestinal cells and its cellular uptake into human intestinal cells. Considering the importance of the P-glycoprotein (P-gp) to the intestinal metabolism of xenobiotics, we also investigated the influence of CnAMP1 on P-gp activity and expression. Both cell lines showed intracellular fluorescence after incubation with fluorescein labelled CnAMP1, indicating cellular uptake of the intact or fragmented peptide. CnAMP1 (12.5-400 μmol/L) showed no signs of cytotoxicity in LS180 and differentiated Caco-2 cells and did not affect P-gp expression and activity. Further research is required to investigate the identity of CnAMP1 hydrolysis fragments and their potential biological activities.
Collapse
Affiliation(s)
- Katya Anaya
- Faculty of Health Sciences of Trairi, Federal University of Rio Grande do Norte, Santa Cruz, RN 59200-000 Brazil
- Institute of Nutritional Sciences, University of Hohenheim, D-70599 Stuttgart, Germany
- Department of Molecular Biology, Federal University of Paraíba, João Pessoa, PB 58051-900 Brazil
| | - Maren Podszun
- Institute of Nutritional Sciences, University of Hohenheim, D-70599 Stuttgart, Germany
| | - Octavio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF 70790-160 Brazil
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS 79117-900 Brazil
| | | | - Jan Frank
- Institute of Nutritional Sciences, University of Hohenheim, D-70599 Stuttgart, Germany
| |
Collapse
|
126
|
Morsy MA, Abdel-Aziz AM, Abdel-Hafez SMN, Venugopala KN, Nair AB, Abdel-Gaber SA. The Possible Contribution of P-Glycoprotein in the Protective Effect of Paeonol against Methotrexate-Induced Testicular Injury in Rats. Pharmaceuticals (Basel) 2020; 13:ph13090223. [PMID: 32872504 PMCID: PMC7558391 DOI: 10.3390/ph13090223] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022] Open
Abstract
Paeonol, a phenolic ingredient in the genus Paeonia, possesses antioxidant and anti-inflammatory effects. Methotrexate (MTX) is a commonly used chemotherapeutic agent; however, its germ cell damage is a critical problem. P-glycoprotein (P-gp), an efflux transporter, is a member of the blood–testis barrier. The present study evaluated the protective effect of paeonol on MTX-induced testicular injury in rats with the exploration of its mechanism and the possible contribution of P-gp in such protection. Testicular weight, serum testosterone, and testicular P-gp levels were measured. Testicular oxidant/antioxidant status was evaluated via determining the levels of malondialdehyde, total nitrite, reduced glutathione, and superoxide dismutase activity. The inflammatory cytokine tumor necrosis factor-alpha (TNF-α) and the apoptotic marker caspase 3 were estimated immunohistochemically. Testicular histopathology and spermatogenesis scores were also examined. MTX caused histopathologically evident testicular damage with decreased testicular weight, testosterone level, and spermatogenesis score, as well as significant increases in oxidative, inflammatory, and apoptotic responses. Paeonol significantly restored testicular weight, testosterone level, spermatogenesis score, and oxidant/antioxidant balance. Moreover, paeonol increased the testicular P-gp level and significantly decreased TNF-α and caspase 3 immunostaining. In conclusion, paeonol offered a protective effect against MTX-induced testicular injury through its antioxidant, anti-inflammatory, and antiapoptotic effects, as well as by increasing testicular P-gp level.
Collapse
Affiliation(s)
- Mohamed A. Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (K.N.V.); (A.B.N.)
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt; (A.M.A.-A.); (S.A.A.-G.)
- Correspondence: ; Tel.: +966-5496-72245
| | - Asmaa M. Abdel-Aziz
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt; (A.M.A.-A.); (S.A.A.-G.)
| | - Sara M. N. Abdel-Hafez
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt;
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (K.N.V.); (A.B.N.)
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban 4001, South Africa
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (K.N.V.); (A.B.N.)
| | - Seham A. Abdel-Gaber
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt; (A.M.A.-A.); (S.A.A.-G.)
| |
Collapse
|
127
|
Jiang Y, Wang Z, Duan W, Liu L, Si M, Chen X, Fang CJ. The critical size of gold nanoparticles for overcoming P-gp mediated multidrug resistance. NANOSCALE 2020; 12:16451-16461. [PMID: 32790812 PMCID: PMC7430045 DOI: 10.1039/d0nr03226c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Multidrug resistance (MDR) remains a huge obstacle during cancer treatment. One of the most studied MDR mechanisms is P-glycoprotein (P-gp) mediated drug efflux. Based on the three-dimensional structural characteristics of P-gp, gold nanoparticles (AuNPs) with average sizes of 4.1 nm and 5.4 nm were designed for the construction of nanodrug delivery systems (NanoDDSs), with the anticancer molecules 2-(9-anthracenylmethylene)-hydrazinecarbothioamide (ANS) and 6-mercaptopurine (6-MP) modified on the AuNP surfaces through the thiol group. In vitro cytotoxicity results suggested that the larger sized AuNPs can effectively decrease the drug resistance index of MCF-7/ADR cells to ∼2. Verapamil and P-gp antibody competitive experiments, combined with the cellular uptake of AuNPs, indicated that larger NanoDDSs were more conducive to intracellular drug accumulation and thus had improved anticancer activities, due to a size mismatch between the nanoparticles and the active site of P-gp, and, therefore, reduced drug efflux was seen. Measurements of ATPase activity and intracellular ATP levels indicated that the larger nanoparticles do not bind well to P-gp, thus avoiding effective recognition by P-gp. This was further evidenced by the observation that 4.1 nm and 5.4 nm NanoDDS-treated MCF-7/ADR cells showed remarkable differences in energy-related metabolic pathways. Therefore, the critical size of AuNPs for overcoming MDR was identified to be between 4.1 nm and 5.4 nm. This provides a more accurate description of the composite dimension requirements for NanoDDSs that are designed to overcome MDR.
Collapse
Affiliation(s)
- Yuqian Jiang
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China.
| | | | | | | | | | | | | |
Collapse
|
128
|
García-Varela L, Arif WM, Vállez García D, Kakiuchi T, Ohba H, Harada N, Tago T, Elsinga PH, Tsukada H, Colabufo NA, Dierckx RAJO, van Waarde A, Toyohara J, Boellaard R, Luurtsema G. Pharmacokinetic Modeling of [ 18F]MC225 for Quantification of the P-Glycoprotein Function at the Blood-Brain Barrier in Non-Human Primates with PET. Mol Pharm 2020; 17:3477-3486. [PMID: 32787277 PMCID: PMC7482398 DOI: 10.1021/acs.molpharmaceut.0c00514] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
![]()
[18F]MC225 has been developed as a weak substrate of
P-glycoprotein (P-gp) aimed to measure changes in the P-gp function
at the blood–brain barrier with positron emission tomography.
This study evaluates [18F]MC225 kinetics in non-human primates
and investigates the effect of both scan duration and P-gp inhibition.
Three rhesus monkeys underwent two 91-min dynamic scans with blood
sampling at baseline and after P-gp inhibition (8 mg/kg tariquidar).
Data were analyzed using the 1-tissue compartment model (1-TCM) and
2-tissue compartment model (2-TCM) fits using metabolite-corrected
plasma as the input function and for various scan durations (10, 20,
30, 60, and 91 min). The preferred model was chosen according to the
Akaike information criterion and the standard errors (%) of the estimated
parameters. For the 91-min scan duration, the influx constant K1 increased by 40.7% and the volume of distribution
(VT) by 30.4% after P-gp inhibition, while
the efflux constant k2 did not change
significantly. Similar changes were found for all evaluated scan durations. K1 did not depend on scan duration (10 min—K1 = 0.2191 vs 91 min—K1 = 0.2258), while VT and k2 did. A scan duration of 10 min seems sufficient
to properly evaluate the P-gp function using K1 obtained with 1-TCM. For the 91-min scan, VT and K1 can be estimated
with a 2-TCM, and both parameters can be used to assess P-gp function.
Collapse
Affiliation(s)
- Lara García-Varela
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, Groningen 9713 GZ, the Netherlands
| | - Wejdan M Arif
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, Groningen 9713 GZ, the Netherlands.,Department of Radiological Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - David Vállez García
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, Groningen 9713 GZ, the Netherlands
| | - Takeharu Kakiuchi
- Central Research Laboratory, Hamamatsu Photonics KK, 5000 Hirakuchi, Hamakita, Hamamatsu, Shizuoka 434-8601, Japan
| | - Hiroyuki Ohba
- Central Research Laboratory, Hamamatsu Photonics KK, 5000 Hirakuchi, Hamakita, Hamamatsu, Shizuoka 434-8601, Japan
| | - Norihiro Harada
- Central Research Laboratory, Hamamatsu Photonics KK, 5000 Hirakuchi, Hamakita, Hamamatsu, Shizuoka 434-8601, Japan
| | - Tetsuro Tago
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Philip H Elsinga
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, Groningen 9713 GZ, the Netherlands
| | - Hideo Tsukada
- Central Research Laboratory, Hamamatsu Photonics KK, 5000 Hirakuchi, Hamakita, Hamamatsu, Shizuoka 434-8601, Japan
| | - Nicola Antonio Colabufo
- Department of Pharmacy, University of Bari Aldo Moro, Bari 70121, Italy.,Biofordrug, Spin-off Università degli Studi di Bari "A. Moro", via Dante 99, Triggiano, Bari 70019, Italy
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, Groningen 9713 GZ, the Netherlands
| | - Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, Groningen 9713 GZ, the Netherlands
| | - Jun Toyohara
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Ronald Boellaard
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, Groningen 9713 GZ, the Netherlands
| | - Gert Luurtsema
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, Groningen 9713 GZ, the Netherlands
| |
Collapse
|
129
|
Novel Therapeutic Approaches of Ion Channels and Transporters in Cancer. Rev Physiol Biochem Pharmacol 2020; 183:45-101. [PMID: 32715321 DOI: 10.1007/112_2020_28] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The expression and function of many ion channels and transporters in cancer cells display major differences in comparison to those from healthy cells. These differences provide the cancer cells with advantages for tumor development. Accordingly, targeting ion channels and transporters have beneficial anticancer effects including inhibition of cancer cell proliferation, migration, invasion, metastasis, tumor vascularization, and chemotherapy resistance, as well as promoting apoptosis. Some of the molecular mechanisms associating ion channels and transporters with cancer include the participation of oxidative stress, immune response, metabolic pathways, drug synergism, as well as noncanonical functions of ion channels. This diversity of mechanisms offers an exciting possibility to suggest novel and more effective therapeutic approaches to fight cancer. Here, we review and discuss most of the current knowledge suggesting novel therapeutic approaches for cancer therapy targeting ion channels and transporters. The role and regulation of ion channels and transporters in cancer provide a plethora of exceptional opportunities in drug design, as well as novel and promising therapeutic approaches that may be used for the benefit of cancer patients.
Collapse
|
130
|
M. F. Gonçalves B, S. P. Cardoso D, U. Ferreira MJ. Overcoming Multidrug Resistance: Flavonoid and Terpenoid Nitrogen-Containing Derivatives as ABC Transporter Modulators. Molecules 2020; 25:E3364. [PMID: 32722234 PMCID: PMC7435859 DOI: 10.3390/molecules25153364] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022] Open
Abstract
Multidrug resistance (MDR) in cancer is one of the main limitations for chemotherapy success. Numerous mechanisms are behind the MDR phenomenon wherein the overexpression of the ATP-binding cassette (ABC) transporter proteins P-glycoprotein (P-gp), breast cancer resistance protein (BCRP) and multidrug resistance protein 1 (MRP1) is highlighted as a prime factor. Natural product-derived compounds are being addressed as promising ABC transporter modulators to tackle MDR. Flavonoids and terpenoids have been extensively explored in this field as mono or dual modulators of these efflux pumps. Nitrogen-bearing moieties on these scaffolds were proved to influence the modulation of ABC transporters efflux function. This review highlights the potential of semisynthetic nitrogen-containing flavonoid and terpenoid derivatives as candidates for the design of effective MDR reversers. A brief introduction concerning the major role of efflux pumps in multidrug resistance, the potential of natural product-derived compounds in MDR reversal, namely natural flavonoid and terpenoids, and the effect of the introduction of nitrogen-containing groups are provided. The main modifications that have been performed during last few years to generate flavonoid and terpenoid derivatives, bearing nitrogen moieties, such as aliphatic, aromatic and heterocycle amine, amide, and related functional groups, as well as their P-gp, MRP1 and BCRP inhibitory activities are reviewed and discussed.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2/chemistry
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- ATP-Binding Cassette Transporters/chemistry
- ATP-Binding Cassette Transporters/metabolism
- Drug Resistance, Multiple/drug effects
- Flavonoids/chemistry
- Flavonoids/pharmacology
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Multidrug Resistance-Associated Proteins/chemistry
- Multidrug Resistance-Associated Proteins/metabolism
- Neoplasm Proteins/chemistry
- Neoplasm Proteins/metabolism
- Neoplasms/drug therapy
- Neoplasms/metabolism
- Nitrogen/chemistry
- Terpenes/chemistry
- Terpenes/pharmacology
Collapse
Affiliation(s)
| | | | - Maria-José U. Ferreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (B.M.F.G.); (D.S.P.C.)
| |
Collapse
|
131
|
Gupta SK, Singh P, Ali V, Verma M. Role of membrane-embedded drug efflux ABC transporters in the cancer chemotherapy. Oncol Rev 2020; 14:448. [PMID: 32676170 PMCID: PMC7358983 DOI: 10.4081/oncol.2020.448] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
One of the major problems being faced by researchers and clinicians in leukemic treatment is the development of multidrug resistance (MDR) which restrict the action of several tyrosine kinase inhibitors (TKIs). MDR is a major obstacle to the success of cancer chemotherapy. The mechanism of MDR involves active drug efflux transport of ABC superfamily of proteins such as Pglycoprotein (P-gp/ABCB1), multidrug resistance-associated protein 2 (MRP2/ABCC2), and breast cancer resistance protein (BCRP/ABCG2) that weaken the effectiveness of chemotherapeutics and negative impact on the future of anticancer therapy. In this review, the authors aim to provide an overview of various multidrug resistance (MDR) mechanisms observed in cancer cells as well as the various strategies developed to overcome these MDR. Extensive studies have been carried out since last several years to enhance the efficacy of chemotherapy by defeating these MDR mechanisms with the use of novel anticancer drugs that could escape from the efflux reaction, MDR modulators or chemosensitizers, multifunctional nanotechnology, and RNA interference (RNAi) therapy.
Collapse
Affiliation(s)
- Sonu Kumar Gupta
- Department of Biochemistry, School of Basic & Applied Sciences, Central University of Punjab, Punjab, India
| | - Priyanka Singh
- Department of Biochemistry, School of Basic & Applied Sciences, Central University of Punjab, Punjab, India
| | - Villayat Ali
- Department of Biochemistry, School of Basic & Applied Sciences, Central University of Punjab, Punjab, India
| | - Malkhey Verma
- Department of Biochemistry, School of Basic & Applied Sciences, Central University of Punjab, Punjab, India
| |
Collapse
|
132
|
Chen T, Gu T, Cheng L, Li X, Han G, Liu Z. Porous Pt nanoparticles loaded with doxorubicin to enable synergistic Chemo-/Electrodynamic Therapy. Biomaterials 2020; 255:120202. [PMID: 32562941 DOI: 10.1016/j.biomaterials.2020.120202] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/21/2020] [Accepted: 06/09/2020] [Indexed: 12/16/2022]
Abstract
Overexpression of P-glycoprotein (P-gp), which is responsible for pumping chemotherapeutic drugs out of tumor cells, has been recognized as an important cause of drug resistance in conventional chemotherapy. Herein, porous platinum nanoparticles (pPt NPs) are developed to enable the combined electrodynamic therapy (EDT) with chemotherapy. With polyethylene glycol (PEG) coating, the obtained pPt-PEG NPs could be loaded with anticancer drug doxorubicin (DOX) by utilizing the porous structure of pPt NPs. Those pPt-PEG NPs are able to produce reactive oxygen species (ROS) by triggering water decomposition under electric field, independent of O2 and H2O2 contents in the tumor. Furthermore, the ROS generated during EDT could induce the inhibition of P-glycoprotein (P-gp), in turn enhancing the efficacy of chemotherapeutic agents by facilitating intracellular accumulation of drugs. As the results, excellent synergetic therapeutic effects were observed by combining chemotherapy with EDT using DOX-loaded pPt (DOX@pPt-PEG) NPs, as demonstrated by both in vitro and in vivo experiments. This study demonstrates a new concept of combinational cancer therapy with superior therapeutic efficacy.
Collapse
Affiliation(s)
- Tong Chen
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Tongxu Gu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Xiang Li
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
| | - Gaorong Han
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
133
|
Liu Y, Bai H, Guo K, Wang P. Hypocrellin B triggered sonodynamic therapy reverses multidrug resistance of doxorubicin-resistant SGC7901/ADR cells via down-regulation of P-gp expression. J Chemother 2020; 32:385-393. [DOI: 10.1080/1120009x.2020.1778242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yichen Liu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China
| | - Hong Bai
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China
- Medical College, Xi’an Peihua University, Xi’an, Shaanxi, China
| | - Kaili Guo
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China
| | - Pan Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China
| |
Collapse
|
134
|
Chang YT, Lin YC, Sun L, Liao WC, Wang CCN, Chou CY, Morris-Natschke SL, Lee KH, Hung CC. Wilforine resensitizes multidrug resistant cancer cells via competitive inhibition of P-glycoprotein. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 71:153239. [PMID: 32447245 DOI: 10.1016/j.phymed.2020.153239] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 04/09/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND PURPOSE Multidrug resistance (MDR) remains the main obstacle in cancer treatment and overexpression of P-glycoprotein (P-gp) is one of the most common causes of chemoresistance. The development of novel P-gp inhibitors from natural products is a prospective strategy to combat MDR cancers. Among the natural sesquiterpene compounds, sesquiterpene pyridine alkaloids exhibit various biological properties. Therefore, in the present study, we evaluated the modulatory effects of wilforine on P-gp expression and function. The molecular mechanisms and kinetic models of wilforine-mediated P-gp inhibition were further investigated. METHODS The human P-gp stable expression cells (ABCB1/Flp-InTM-293) and human cervical cancer cells (sensitive: HeLaS3; MDR: KBvin) were used. The cell viability was assessed by SRB assay. The inhibitory effect of wilforine on P-gp efflux and the underlying mechanism were evaluated by assays for calcein-AM uptake, rhodamine123 and doxorubicin efflux, ATPase activity, real-time quantitative RT-PCR, apoptosis, and cell cycle analysis. Molecular docking was performed by the docking software CDOCKER with BIOVIA Discovery Studio 4.5 (D.S. 4.5). RESULTS We found that wilforine significantly inhibited the efflux activity of P-gp in a concentration-dependent manner. Further kinetic analysis demonstrated that wilforine significantly inhibited P-gp efflux function by competitive inhibition and stimulated the basal P-gp ATPase activity. In addition, wilforine re-sensitized MDR cancer cells to chemotherapeutic drugs. The docking model indicated that wilforine was bound to residues of P-gp such as LEU884, LYS887, THR176 and ASN172. CONCLUSION These results suggest a novel future therapeutic strategy for MDR cancer using wilforine as an adjuvant treatment with chemotherapy.
Collapse
Affiliation(s)
- Ying-Tzu Chang
- Department of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan 40402, R.O.C..
| | - Yu-Chao Lin
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan, R.O.C.; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan, R.O.C..
| | - Lijuan Sun
- National & Local Joint Engineering Research Center for High-throughput Drug Screening Technology, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, Hubei University, China.
| | - Wei-Chieh Liao
- Department of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan 40402, R.O.C
| | - Charles C N Wang
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan, R.O.C..
| | - Che-Yi Chou
- Division of Nephrology, Asia University Hospital, Taichung, Taiwan, R.O.C.; Department of Post-baccalaureate Veterinary Medicine, Asia University, Taichung, Taiwan, R.O.C..
| | - Susan L Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States.
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States; Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung, Taiwan 40447, R.O.C..
| | - Chin-Chuan Hung
- Department of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan 40402, R.O.C.; Department of Pharmacy, China Medical University Hospital, Taichung, Taiwan 40447, R.O.C..
| |
Collapse
|
135
|
Oxygenated xanthones as P-glycoprotein modulators at the intestinal barrier: in vitro and docking studies. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02544-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
136
|
Kaczor A, Nové M, Kincses A, Spengler G, Szymańska E, Latacz G, Handzlik J. Search for ABCB1 Modulators Among 2-Amine-5-Arylideneimidazolones as a New Perspective to Overcome Cancer Multidrug Resistance. Molecules 2020; 25:molecules25092258. [PMID: 32403277 PMCID: PMC7249047 DOI: 10.3390/molecules25092258] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 01/03/2023] Open
Abstract
Multidrug resistance (MDR) is a severe problem in the treatment of cancer with overexpression of glycoprotein P (Pgp, ABCB1) as a reason for chemotherapy failure. A series of 14 novel 5-arylideneimidazolone derivatives containing the morpholine moiety, with respect to two different topologies (groups A and B), were designed and obtained in a three- or four-step synthesis, involving the Dimroth rearrangement. The new compounds were tested for their inhibition of the ABCB1 efflux pump in both sensitive (parental (PAR)) and ABCB1-overexpressing (MDR) T-lymphoma cancer cells in a rhodamine 123 accumulation assay. Their cytotoxic and antiproliferative effects were investigated by a thiazolyl blue tetrazolium bromide (MTT) assay. For active compounds, an insight into the mechanisms of action using either the luminescent Pgp-Glo™ Assay in vitro or docking studies to human Pgp was performed. The safety profile in vitro was examined. Structure–activity relationship (SAR) analysis was discussed. The most active compounds, representing both 2-substituted- (11) and Dimroth-rearranged 3-substituted (18) imidazolone topologies, displayed 1.38–1.46 fold stronger efflux pump inhibiting effects than reference verapamil and were significantly safer than doxorubicin in cell-based toxicity assays in the HEK-293 cell line. Results of mechanistic studies indicate that active imidazolones are substrates with increasing Pgp ATPase activity, and their dye-efflux inhibition via competitive action on the Pgp verapamil binding site was predicted in silico.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/chemistry
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- Animals
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/toxicity
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Doxorubicin/pharmacology
- Drug Resistance, Multiple/genetics
- Drug Resistance, Neoplasm/genetics
- Humans
- Imidazoles/chemical synthesis
- Imidazoles/chemistry
- Imidazoles/pharmacology
- In Vitro Techniques
- Inhibitory Concentration 50
- Lymphoma, T-Cell/enzymology
- Lymphoma, T-Cell/genetics
- Lymphoma, T-Cell/metabolism
- Mice
- Models, Molecular
- Molecular Docking Simulation
- Morpholines/chemistry
- Rhodamine 123/metabolism
- Structure-Activity Relationship
- Verapamil/pharmacology
Collapse
Affiliation(s)
- Aneta Kaczor
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland; (A.K.); (E.S.); (G.L.)
| | - Márta Nové
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary; (M.N.); (A.K.); (G.S.)
| | - Annamária Kincses
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary; (M.N.); (A.K.); (G.S.)
| | - Gabriella Spengler
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary; (M.N.); (A.K.); (G.S.)
| | - Ewa Szymańska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland; (A.K.); (E.S.); (G.L.)
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland; (A.K.); (E.S.); (G.L.)
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland; (A.K.); (E.S.); (G.L.)
- Correspondence:
| |
Collapse
|
137
|
Tikhomirov AS, Litvinova VA, Andreeva DV, Tsvetkov VB, Dezhenkova LG, Volodina YL, Kaluzhny DN, Treshalin ID, Schols D, Ramonova AA, Moisenovich MM, Shtil AA, Shchekotikhin AE. Amides of pyrrole- and thiophene-fused anthraquinone derivatives: A role of the heterocyclic core in antitumor properties. Eur J Med Chem 2020; 199:112294. [PMID: 32428792 DOI: 10.1016/j.ejmech.2020.112294] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 12/21/2022]
Abstract
Heteroarene-fused anthraquinone derivatives represent a class of perspective anticancer drug candidates capable of targeting multiple vital processes including drug resistance. Taking advantage of previously demonstrated potential of amide derivatives of heteroarene-fused anthraquinones, we herein dissected the role of the heterocyclic core in antitumor properties. A new series of naphtho[2,3-f]indole-3- and anthra[2,3-b]thiophene-3-carboxamides was synthesized via coupling the respective acids with cyclic diamines. New compounds demonstrated a submicromolar antiproliferative potency close to doxorubicin (Dox) against five tumor cell lines of various tissue origin. In contrast to Dox, the new compounds were similarly cytotoxic for HCT116 colon carcinoma cells (wild type p53) and their isogenic p53 knockout counterparts. Modification of the heterocyclic core changed the targeting properties: the best-in-series naphtho[2,3-f]indole-3-carboxamide 8 formed more affine complexes with DNA duplex than furan and thiophene analogs, a property that can be translated into a stronger inhibition of topoisomerase 1 mediated DNA unwinding. At tolerable doses the water soluble derivative 8 significantly inhibited tumor growth (up to 79%) and increased the lifespan (153%) of mice bearing P388 lymphoma transplants. Together with better solubility for parenteral administration and well tolerance by animals of the indole derivative 8 indicates prospects for further search of new antitumor drug candidates among the heteroarene-fused anthraquinones.
Collapse
Affiliation(s)
- Alexander S Tikhomirov
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russia; Mendeleyev University of Chemical Technology, 9 Miusskaya Square, Moscow, 125047, Russian Federation
| | - Valeria A Litvinova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russia
| | - Daria V Andreeva
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russia
| | - Vladimir B Tsvetkov
- Computational Oncology Group, I.M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya, 119991, Moscow, Russia; Research and Clinical Center for Physical Chemical Medicine, 1A M. Pirogovskaya Street, Moscow, 119435, Russia
| | - Lyubov G Dezhenkova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russia
| | - Yulia L Volodina
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russia; Blokhin National Medical Center of Oncology, 24 Kashirskoye Shosse, Moscow, 115478, Russia
| | - Dmitry N Kaluzhny
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, Moscow, 119991, Russia
| | - Ivan D Treshalin
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russia
| | - Dominique Schols
- Rega Institute for Medical Research, K.U. Leuven, 3000, Leuven, Belgium
| | - Alla A Ramonova
- Department of Biology, Moscow State University, 1 Leninskie Gory, Moscow, 119234, Russia
| | - Mikhail M Moisenovich
- Department of Biology, Moscow State University, 1 Leninskie Gory, Moscow, 119234, Russia
| | - Alexander A Shtil
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russia; Blokhin National Medical Center of Oncology, 24 Kashirskoye Shosse, Moscow, 115478, Russia
| | | |
Collapse
|
138
|
Jun S, Kim SW, Kim B, Chang IY, Park SJ. Oncogenic Ras downregulates mdr1b expression through generation of reactive oxygen species. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2020; 24:267-276. [PMID: 32392918 PMCID: PMC7193907 DOI: 10.4196/kjpp.2020.24.3.267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/31/2020] [Accepted: 02/06/2020] [Indexed: 11/15/2022]
Abstract
In the present study, we investigated the effect of oncogenic H-Ras on rat mdr1b expression in NIH3T3 cells. The constitutive expression of H-RasV12 was found to downregulate the mdr1b promoter activity and mdr1b mRNA expression. The doxorubicin-induced mdr1b promoter activity of the H-RasV12 expressing NIH3T3 cells was markedly lower than that of control NIH3T3 cells. Additionally, there is a positive correlation between the level of H-RasV12 expression and a sensitivity to doxorubicin toxicity. To examine the detailed mechanism of H-RasV12-mediated down-regulation of mdr1b expression, antioxidant N-acetylcysteine (NAC) and NADPH oxidase inhibitor diphenylene iodonium (DPI) were used. Pretreating cells with either NAC or DPI significantly enhanced the oncogenic H-Ras-mediated down-regulation of mdr1b expression and markedly prevented doxorubicin-induced cell death. Moreover, NAC and DPI treatment led to a decrease in ERK activity, and the ERK inhibitors PD98059 or U0126 enhanced the mdr1b-Luc activity of H-RasV12-NIH3T3 and reduced doxorubicin-induced apoptosis. These data suggest that RasV12 expression could downregulate mdr1b expression through intracellular reactive oxygen species (ROS) production, and ERK activation induced by ROS, is at least in part, contributed to the downregulation of mdr1b expression.
Collapse
Affiliation(s)
- Semo Jun
- Departments of Premedical Sciences, College of Medicine, Chosun University, Gwangju 61452, Korea
| | - Seok Won Kim
- Departments of Neurosurgery, College of Medicine, Chosun University, Gwangju 61452, Korea
| | - Byeol Kim
- Departments of Premedical Sciences, College of Medicine, Chosun University, Gwangju 61452, Korea
| | - In-Youb Chang
- Departments of Anatomy, College of Medicine, Chosun University, Gwangju 61452, Korea
| | - Seon-Joo Park
- Departments of Premedical Sciences, College of Medicine, Chosun University, Gwangju 61452, Korea
| |
Collapse
|
139
|
Gil-Martins E, Barbosa DJ, Silva V, Remião F, Silva R. Dysfunction of ABC transporters at the blood-brain barrier: Role in neurological disorders. Pharmacol Ther 2020; 213:107554. [PMID: 32320731 DOI: 10.1016/j.pharmthera.2020.107554] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/07/2020] [Indexed: 12/14/2022]
Abstract
ABC (ATP-binding cassette) transporters represent one of the largest and most diverse superfamily of proteins in living species, playing an important role in many biological processes such as cell homeostasis, cell signaling, drug metabolism and nutrient uptake. Moreover, using the energy generated from ATP hydrolysis, they mediate the efflux of endogenous and exogenous substrates from inside the cells, thereby reducing their intracellular accumulation. At present, 48 ABC transporters have been identified in humans, which were classified into 7 different subfamilies (A to G) according to their phylogenetic analysis. Nevertheless, the most studied members with importance in drug therapeutic efficacy and toxicity include P-glycoprotein (P-gp), a member of the ABCB subfamily, the multidrug-associated proteins (MPRs), members of the ABCC subfamily, and breast cancer resistance protein (BCRP), a member of the ABCG subfamily. They exhibit ubiquitous expression throughout the human body, with a special relevance in barrier tissues like the blood-brain barrier (BBB). At this level, they play a physiological function in tissue protection by reducing or limiting the brain accumulation of neurotoxins. Furthermore, dysfunction of ABC transporters, at expression and/or activity level, has been associated with many neurological diseases, including epilepsy, multiple sclerosis, Alzheimer's disease, and amyotrophic lateral sclerosis. Additionally, these transporters are strikingly associated with the pharmacoresistance to central nervous system (CNS) acting drugs, because they contribute to the decrease in drug bioavailability. This article reviews the signaling pathways that regulate the expression and activity of P-gp, BCRP and MRPs subfamilies of transporters, with particular attention at the BBB level, and their mis-regulation in neurological disorders.
Collapse
Affiliation(s)
- Eva Gil-Martins
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Daniel José Barbosa
- Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.
| | - Vera Silva
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Fernando Remião
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Renata Silva
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
140
|
Costa KMDA, Valente RC, Silva JMCDA, Paiva LSDE, Rumjanek VM. Glucocorticoid susceptibility and in vivo ABCB1 activity differ in murine B cell subsets. AN ACAD BRAS CIENC 2020; 90:3081-3097. [PMID: 30304236 DOI: 10.1590/0001-3765201820180364] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/22/2018] [Indexed: 01/09/2023] Open
Abstract
Glucocorticoids are produced and released by the adrenal gland and become elevated in response to stress. Although glucocorticoids are well known for their immunosuppressive effects, less is known about their effects on B cells. ABCB1 is an efflux pump expressed in both cancer and normal cells, modulating the gradient of various metabolites, including hydrocortisone. Our goal was to evaluate the effect of this glucocorticoid on murine B cell differentiation and whether sensitivity to hydrocortisone could be related to ABCB1 activity in vivo. C57BL/6 mice received one or three consecutive i.p. injections of hydrocortisone (70, 140 and 200 mg/kg/day). ABCB1 activity was evaluated via the rhodamine-123 transport and inhibited by cyclosporin A in hydrocortisone-treated and control mice. Cells from bone marrow, spleen and blood were counted, incubated with antibodies and analyzed by flow cytometry. A single hydrocortisone injection did not alter the number of bone marrow subsets. Conversely, three daily injections were able to reduce the cell number of most bone marrow subsets, excepting c-kit-sca-1+ and mature B cells. This treatment reduced marginal zone, follicular and transitional B cells, though splenic subsets were more resistant than bone marrow B cells. Recirculating follicular B cells in the blood were resistant to hydrocortisone. With the exception of follicular B cells, all subpopulations exhibited ABCB1 activity. However, hydrocortisone treatment did not affect ABCB1 activity in most subsets analyzed. Results suggest that hydrocortisone is able to regulate B cell lymphopoiesis although ABCB1 activity is not related to the susceptibility to that glucocorticoid in B cell subsets.
Collapse
Affiliation(s)
- Kelli M DA Costa
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Sala H2-03, Ilha do Fundão, 21941-902 Rio de Janeiro, RJ, Brazil.,Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Sala C1-42, 21941-902 Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| | - Raphael C Valente
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Sala H2-03, Ilha do Fundão, 21941-902 Rio de Janeiro, RJ, Brazil.,Faculdade de Ciências Médicas, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade do Estado do Rio de Janeiro, Av. Prof. Manuel de Abreu 444, 3º andar, Vila Isabel, 20550-170 Rio de Janeiro, RJ, Brazil
| | - Joyle M C DA Silva
- Instituto de Biologia, Departamento de Imunobiologia, Universidade Federal Fluminense, Outeiro de São João Batista, s/n, Campus do Valonguinho, Prédio Núcleo de Animais de Laboratório, 2º andar, Laboratório de Imunorregulacão, 24020-141 Niterói, RJ, Brazil
| | - Luciana S DE Paiva
- Instituto de Biologia, Departamento de Imunobiologia, Universidade Federal Fluminense, Outeiro de São João Batista, s/n, Campus do Valonguinho, Prédio Núcleo de Animais de Laboratório, 2º andar, Laboratório de Imunorregulacão, 24020-141 Niterói, RJ, Brazil
| | - Vivian M Rumjanek
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Sala H2-03, Ilha do Fundão, 21941-902 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
141
|
Efficient synergistic combination effect of Quercetin with Curcumin on breast cancer cell apoptosis through their loading into Apo ferritin cavity. Colloids Surf B Biointerfaces 2020; 191:110982. [PMID: 32220813 DOI: 10.1016/j.colsurfb.2020.110982] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/24/2020] [Accepted: 03/18/2020] [Indexed: 12/13/2022]
Abstract
Combination of natural agents has received a great attention in cancer treatment because of synergistically increased apoptotic effect on cancer cell lines by triggering several apoptotic signaling pathways. However, the hydrophobic nature, poor bioavailability and low cellular uptake of most natural agents limit their therapeutic effectiveness. The purpose of this study was to design Apoferritin nanoparticles loaded with Quercetin and Curcumin (Que-Cur-HoS-Apo NPs) and to test their synergistic antitumor properties on a breast cancer cell line (MCF7). The physico-chemical characterization of the Que-Cur-HoS-Apo NPs by Size Exclusion Chromatography (FPLC) and Dynamic Light Scattering (DLS) confirmed the encapsulation of the compounds in the protein cage with narrow size distribution in the range 17.4 ± 1.2 nm. Cell viability study indicated that Que-Cur-HoS-Apo NPs were able to exert a more pronounced effect at lower dose on the MCF7 cell line when compared to the free combination of the drugs. The Que-Cur-HoS-Apo system allowed cellular uptake of natural agents thus triggering enhanced apoptosis. These effects were confirmed by Annexin-V/7-AAD Staining Assay and intracellular Reactive Oxygen Species (ROS) quantitative detection. These results suggest the potential of Que-Cur-HoS-Apo NPs as a promising anti-cancer agent in breast cancer therapy and pave the way to examine Que-Cur-HoS-Apo NPs effect in vivo.
Collapse
|
142
|
Robinson K, Tiriveedhi V. Perplexing Role of P-Glycoprotein in Tumor Microenvironment. Front Oncol 2020; 10:265. [PMID: 32195185 PMCID: PMC7066112 DOI: 10.3389/fonc.2020.00265] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/17/2020] [Indexed: 12/22/2022] Open
Abstract
Development of multidrug resistance (MDR) still remains a major obstacle to the long-term success of cancer therapy. P-glycoprotein (P-gp) is a well-identified membrane transporter with capability to efflux drug molecules out of the cancer cell leading to reduced efficiency of chemotherapy. Cancer cells upregulate P-gp expression as an adaptive response to evade chemotherapy mediated cell death. While several P-gp inhibitors have been discovered by in silico and pre-clinical studies, very few have successfully passed all phases of the clinical trials. Studies show that application of P-gp inhibitors in cancer therapy regimen following development of MDR achieved limited beneficial outcomes. While, the non-specific substrate binding to P-gp has made the drug-design a challenge, a bigger perplexing challenge comes from its role in tumor immunology. Expression of P-gp was noted immune cell phenotypes with apparently antagonistic functionality. Both pro-tumor MΦ2-macrophages and, anti-tumor NK-cell and Th17/CD4+T cell subsets have shown enhanced expression of P-gp. While drug based inhibition of P-gp in pro-tumor immune cell phenotypes could promote tumor elimination, however, it would not be a rational choice to exert inhibition of P-gp on anti-tumor immune cell phenotypes. This mutually exclusive paradigm of P-gp functionality requires a more comprehensive and detailed understanding of its role in tumor microenvironment with active interplay of cancer and immune cells in the tumor mileu. In this review, we focus on the current understanding of the role of P-gp in cancer cells and immune cells and finally attempt to highlight some caveats in the current understanding of its role in comprehensive tumor microenvironment along with challenges in the development of P-gp inhibitors toward anti-cancer therapy.
Collapse
Affiliation(s)
- Kianna Robinson
- Department of Biological Sciences, Tennessee State University, Nashville, TN, United States
| | - Venkataswarup Tiriveedhi
- Department of Biological Sciences, Tennessee State University, Nashville, TN, United States.,Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
143
|
Jiang T, Zhang C, Sun W, Cao X, Choi G, Choy JH, Shi X, Guo R. Doxorubicin Encapsulated in TPGS-Modified 2D-Nanodisks Overcomes Multidrug Resistance. Chemistry 2020; 26:2470-2477. [PMID: 31912555 DOI: 10.1002/chem.201905097] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Indexed: 01/06/2025]
Abstract
Multidrug resistance (MDR) is regarded as a main obstacle for effective chemotherapy, and P-glycoprotein (P-gp)-mediated drug efflux has been demonstrated to be the key factor responsible for MDR. In this study, a novel pH-responsive hybrid drug delivery system was developed by conjugating d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS), a kind of P-gp inhibitor, on the surface of laponite nanodisks to overcome MDR. The prepared LM-TPGS display excellent colloidal stability, a high encapsulation efficiency of doxorubicin (DOX), and a pH-responsive drug release profile. In vitro experiments verified that LM-TPGS/DOX could exhibit significantly enhanced therapeutic efficacy in treating DOX-resistant breast cancer cells (MCF-7/ADR) through inhibiting the activity of P-gp-mediated drug efflux and effectively accumulating DOX within cancer cells. In vivo results revealed that LM-TPGS/DOX outstandingly suppressed MCF-7/ADR tumors with low side effects. Therefore, the high drug payload, enhanced inhibition efficacy to drug-resistant cells, and low side effects make the LM-TPGS/DOX a promising nanoplatform to reverse MDR for effective chemotherapy.
Collapse
Affiliation(s)
- Tingting Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Changchang Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Wenjie Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Xueyan Cao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Goeun Choi
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
| | - Jin-Ho Choy
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Rui Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
144
|
García-Varela L, Vállez García D, Rodríguez-Pérez M, van Waarde A, Sijbesma JWA, Schildt A, Kwizera C, Aguiar P, Sobrino T, Dierckx RAJO, Elsinga PH, Luurtsema G. Test-Retest Repeatability of [ 18F]MC225-PET in Rodents: A Tracer for Imaging of P-gp Function. ACS Chem Neurosci 2020; 11:648-658. [PMID: 31961646 PMCID: PMC7034080 DOI: 10.1021/acschemneuro.9b00682] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
![]()
In
longitudinal PET studies, animals are repeatedly anesthetized
which may affect the repeatability of PET measurements. The aim of
this study was to assess the effect of anesthesia on the P-gp function
as well as the reproducibility of [18F]MC225 PET scans.
Thus, dynamic PET scans with blood sampling were conducted in 13 Wistar
rats. Seven animals were exposed to isoflurane anesthesia 1 week before
the PET scan (“Anesthesia-exposed” PET). A second group
of six animals was used to evaluate the reproducibility of measurements
of P-gp function at the blood–brain barrier (BBB) with [18F]MC225. In this group, two PET scans were made with a 1
week interval (“Test” and “Retest” PET).
Pharmacokinetic parameters were calculated using compartmental models
and metabolite-corrected plasma as an input function. “Anesthesia-exposed”
animals showed a 28% decrease in whole-brain volume of distribution
(VT) (p < 0.001) compared
to “Test”, where the animals were not previously anesthetized.
The VT at “Retest” also
decreased (19%) compared to “Test” (p < 0.001). The k2 values in whole-brain
were significantly increased by 18% in “Anesthesia-exposed”
(p = 0.005) and by 15% in “Retest”
(p = 0.008) compared to “Test”. However,
no significant differences were found in the influx rate constant K1, which is considered as the best parameter
to measure the P-gp function. Moreover, Western Blot analysis did
not find significant differences in the P-gp expression of animals
not pre-exposed to anesthesia (“Test”) or pre-exposed
animals (“Retest”). To conclude, anesthesia may affect
the brain distribution of [18F]MC225 but it does not affect
the P-gp expression or function.
Collapse
Affiliation(s)
- Lara García-Varela
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O.
Box 30001, 9713 GZ Groningen, The Netherlands
| | - David Vállez García
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O.
Box 30001, 9713 GZ Groningen, The Netherlands
| | - Manuel Rodríguez-Pérez
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela 15706, Spain
| | - Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O.
Box 30001, 9713 GZ Groningen, The Netherlands
| | - Jürgen W. A. Sijbesma
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O.
Box 30001, 9713 GZ Groningen, The Netherlands
| | - Anna Schildt
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O.
Box 30001, 9713 GZ Groningen, The Netherlands
| | - Chantal Kwizera
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O.
Box 30001, 9713 GZ Groningen, The Netherlands
| | - Pablo Aguiar
- Department of Nuclear Medicine and Molecular Imaging Group, Clinical University Hospital, IDIS Health Research Institute, Santiago de Compostela 15706, Spain
| | - Tomás Sobrino
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela 15706, Spain
| | - Rudi A. J. O. Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O.
Box 30001, 9713 GZ Groningen, The Netherlands
| | - Philip H. Elsinga
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O.
Box 30001, 9713 GZ Groningen, The Netherlands
| | - Gert Luurtsema
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O.
Box 30001, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
145
|
Dong J, Qin Z, Zhang WD, Cheng G, Yehuda AG, Ashby CR, Chen ZS, Cheng XD, Qin JJ. Medicinal chemistry strategies to discover P-glycoprotein inhibitors: An update. Drug Resist Updat 2020; 49:100681. [PMID: 32014648 DOI: 10.1016/j.drup.2020.100681] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/13/2020] [Accepted: 01/16/2020] [Indexed: 12/16/2022]
Abstract
The presence of multidrug resistance (MDR) in malignant tumors is one of the primary causes of treatment failure in cancer chemotherapy. The overexpression of the ATP binding cassette (ABC) transporter, P-glycoprotein (P-gp), which significantly increases the efflux of certain anticancer drugs from tumor cells, produces MDR. Therefore, inhibition of P-gp may represent a viable therapeutic strategy to overcome cancer MDR. Over the past 4 decades, many compounds with P-gp inhibitory efficacy (referred to as first- and second-generation P-gp inhibitors) have been identified or synthesized. However, these compounds were not successful in clinical trials due to a lack of efficacy and/or untoward toxicity. Subsequently, third- and fourth-generation P-gp inhibitors were developed but dedicated clinical trials did not indicate a significant therapeutic effect. In recent years, an extraordinary array of highly potent, selective, and low-toxicity P-gp inhibitors have been reported. Herein, we provide a comprehensive review of the synthetic and natural products that have specific inhibitory activity on P-gp drug efflux as well as promising chemosensitizing efficacy in MDR cancer cells. The present review focuses primarily on the structural features, design strategies, and structure-activity relationships (SAR) of these compounds.
Collapse
Affiliation(s)
- Jinyun Dong
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, 310022, China; College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zuodong Qin
- Research Center of Biochemical Engineering Technology, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
| | - Wei-Dong Zhang
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Gang Cheng
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Assaraf G Yehuda
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Charles R Ashby
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| | - Xiang-Dong Cheng
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, 310022, China.
| | - Jiang-Jiang Qin
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, 310022, China; College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
146
|
Quan X, Du H, Xu J, Hou X, Gong X, Wu Y, Zhou Y, Jiang J, Lu L, Yuan S, Yang X, Shi L, Sun L. Novel Quinoline Compound Derivatives of NSC23925 as Potent Reversal Agents Against P-Glycoprotein-Mediated Multidrug Resistance. Front Chem 2020; 7:820. [PMID: 31921759 PMCID: PMC6931887 DOI: 10.3389/fchem.2019.00820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 11/12/2019] [Indexed: 12/02/2022] Open
Abstract
Multidrug resistance is a serious problem and a common cause of cancer treatment failure, leading to patient death. Although numerous reversal resistance inhibitors have been evaluated in preclinical or clinical trials, efficient and low-toxicity reversal agents have not been identified. In this study, a series of novel quinoline compound derivatives from NSC23925 were designed to inhibit P-glycoprotein (P-gp). Among them, YS-7a showed a stronger inhibitory effect against P-gp than verapamil, as a positive control, when co-incubated with chemotherapy drugs at minimally cytotoxic concentrations. YS-7a suppressed the P-gp transport function without affecting the expression of P-gp but stimulated the ATPase activity of P-gp in a dose-dependent manner. Next, molecular docking was used to predict the six most probable binding sites, namely, SER270, VAL273, VAL274, ILE354, VAL357, and PHE390. Moreover, YS-7a had no effect on cytochrome P450 3A4 activity and showed little toxicity to normal cells. In addition, combined treatment of YS-7a with vincristine showed a better inhibitory effect than the positive control verapamil in vivo without a negative effect on mouse weight. Overall, our results showed that YS-7a could reverse cancer multidrug resistance through the inhibition of P-gp transport function in vitro and in vivo, suggesting that YS-7a may be a novel therapeutic agent.
Collapse
Affiliation(s)
- Xingping Quan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Hongzhi Du
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Jingjing Xu
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Xiaoying Hou
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Xiaofeng Gong
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Yao Wu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Yuqi Zhou
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Jingwei Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Ligong Lu
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Shengtao Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Xiangyu Yang
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Lei Shi
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Li Sun
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
147
|
Cseke A, Schwarz T, Jain S, Decker S, Vogl K, Urban E, Ecker GF. Propafenone analogue with additional H-bond acceptor group shows increased inhibitory activity on P-glycoprotein. Arch Pharm (Weinheim) 2020; 353:e1900269. [PMID: 31917466 DOI: 10.1002/ardp.201900269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/21/2019] [Accepted: 12/08/2019] [Indexed: 11/10/2022]
Abstract
P-glycoprotein (P-gp) is an ATP-dependent efflux pump that has a marked impact on the absorption, distribution, and excretion of therapeutic drugs. As P-gp inhibition can result in drug-drug interactions and altered drug bioavailability, identifying molecular properties that are linked to inhibition is of great interest in drug development. In this study, we combined chemical synthesis, in vitro testing, quantitative structure-activity relationship analysis, and docking studies to investigate the role of hydrogen bond (H-bond) donor/acceptor properties in transporter-ligand interaction. In a previous work, it has been shown that propafenone analogs with a 4-hydroxy-4-piperidine moiety exhibit a generally 10-fold higher P-gp inhibitory activity than expected based on their lipophilicity. Here, we specifically expanded the data set by introducing substituents at position 4 of the 4-phenylpiperidine moiety to assess the importance of H-bond donor/acceptor features in this region. The results suggest that indeed an H-bond acceptor, such as hydroxy and methoxy, increases the affinity by forming a H-bond with Tyr310.
Collapse
Affiliation(s)
- Anna Cseke
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Theresa Schwarz
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Sankalp Jain
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria.,National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Simon Decker
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Kerstin Vogl
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Ernst Urban
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Gerhard F Ecker
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| |
Collapse
|
148
|
Caffeic Acid Attenuates Multi-Drug Resistance in Cancer Cells by Inhibiting Efflux Function of Human P-glycoprotein. Molecules 2020; 25:molecules25020247. [PMID: 31936160 PMCID: PMC7024235 DOI: 10.3390/molecules25020247] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 01/26/2023] Open
Abstract
: Multidrug resistance (MDR) is a complicated ever-changing problem in cancer treatment, and P-glycoprotein (P-gp), a drug efflux pump, is regarded as the major cause. In the way of developing P-gp inhibitors, natural products such as phenolic acids have gotten a lot of attention recently. The aim of the present study was to investigate the modulating effects and mechanisms of caffeic acid on human P-gp, as well as the attenuating ability on cancer MDR. Calcein-AM, rhodamine123, and doxorubicin were used to analyze the interaction between caffeic acid and P-gp, and the ATPase activity of P-gp was evaluated as well. Resistance reversing effects were revealed by SRB and cell cycle assay. The results indicated that caffeic acid uncompetitively inhibited rhodamine123 efflux and competitively inhibited doxorubicin efflux. In terms of P-gp ATPase activity, caffeic acid exhibited stimulation in both basal and verapamil-stimulated activity. The combination of chemo drugs and caffeic acid resulted in decreased IC50 in ABCB1/Flp-InTM-293 and KB/VIN, indicating that the resistance was reversed. Results of molecular docking suggested that caffeic acid bound to P-gp through GLU74 and TRY117 residues. The present study demonstrated that caffeic acid is a promising candidate for P-gp inhibition and cancer MDR attenuation.
Collapse
|
149
|
Rocha-Pereira C, Ghanem CI, Silva R, Casanova AG, Duarte-Araújo M, Gonçalves-Monteiro S, Sousa E, Bastos MDL, Remião F. P-glycoprotein activation by 1-(propan-2-ylamino)-4-propoxy-9H-thioxanthen-9-one (TX5) in rat distal ileum: ex vivo and in vivo studies. Toxicol Appl Pharmacol 2020; 386:114832. [PMID: 31756430 DOI: 10.1016/j.taap.2019.114832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/14/2019] [Accepted: 11/16/2019] [Indexed: 12/30/2022]
Abstract
In vitro studies showed that 1-(propan-2-ylamino)-4-propoxy-9H-thioxanthen-9-one (TX5) increases P-glycoprotein (P-gp) expression and activity in Caco-2 cells, preventing xenobiotic toxicity. The present study aimed at investigating TX5 effects on P-gp expression/activity using Wistar Han rats: a) in vivo, evaluating intestinal P-gp activity; b) ex vivo, evaluating P-gp expression in ileum brush border membranes (BBM) and P-gp activity in everted intestinal sacs; c) ex vivo, evaluating P-gp activity in everted intestinal sacs of the distal and proximal ileum. TX5 (30 mg/kg, b.w.), gavage, activated P-gp in vivo, given the significant decrease in the AUC of digoxin (0.25 mg/kg, b.w.). The efflux of rhodamine 123 (300 μM), a P-gp fluorescent substrate, significantly increased in TX5-treated everted sacs from the distal portion of the rat ileum, when P-gp activity was evaluated in the presence of TX5 (20 μM), an effect abolished by the P-gp inhibitor verapamil (100 μM). No increases on P-gp expression or activity were found in TX5-treated BBM of the distal ileum and everted distal sacs, respectively, 24 h after TX5 (10 mg/kg, b.w.) administration. In vivo, no differences were found on digoxin portal concentration between control (digoxin 0.025 mg/kg, b.w., intraduodenal) and TX5-treated (digoxin+TX5 20 μM, intraduodenal) rats. The observed discrepancies in digoxin results can be related to differences in TX5 dose administered and used methodologies. Thus, the results show that TX5 activates P-gp at the distal portion of the rat ileum, and, at the higher dose tested (30 mg/kg, b.w.), seems to modulate in vivo the AUC of P-gp substrates.
Collapse
Affiliation(s)
- Carolina Rocha-Pereira
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Carolina I Ghanem
- Instituto de Investigaciones Farmacológicas (ININFA), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina.
| | - Renata Silva
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Alfredo G Casanova
- Unidad de Toxicología, Departamento de Fisiología y Farmacología, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain.
| | - Margarida Duarte-Araújo
- LAQV/REQUIMTE, Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Salomé Gonçalves-Monteiro
- LAQV/REQUIMTE, Laboratório de Farmacologia, Departamento de Ciências do Medicamento, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Emília Sousa
- CIIMAR, Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Maria de Lourdes Bastos
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Fernando Remião
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
150
|
Zhong XC, Xu WH, Wang ZT, Guo WW, Chen JJ, Guo NN, Wang TT, Lin MT, Zhang ZT, Lu YY, Yang QY, Han M, Xu DH, Gao JQ. Doxorubicin derivative loaded acetal-PEG-PCCL micelles for overcoming multidrug resistance in MCF-7/ADR cells. Drug Dev Ind Pharm 2019; 45:1556-1564. [PMID: 31271317 DOI: 10.1080/03639045.2019.1640721] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Objective: This study was aimed to develop DOX-TPP loaded acetal-PEG-PCCL micelles to improve the clinical efficacy of drug resistance tumor. Significance: Chemotherapy is one of the main treatments for breast cancer but is plagued by multidrug resistance (MDR). DOX-TPP-loaded micelles can enhance the specific concentration of drugs in the tumor and improve the efficacy and overcome MDR. Methods: In this study, DOX-TPP-loaded micelles based on acetal-PEG-PCCL were prepared and their physicochemical properties were characterized. The cellular uptake and ability to induce apoptosis of the micelles was confirmed by flow cytometry in MCF-7/ADR cells. In addition, cytotoxicity of the micelles was studied in MCF-7 cells and MCF-7/ADR cells. Confocal is used to study the subcellular distribution of DOX. Free DOX-TPP or DOX-TPP-loaded acetal-PEG-PCCL micelles were administered via intravenous injection in the tail vain for the biodistribution study in vivo. Results: The diameter of micelles was about 102.4 nm and their drug-loading efficiency is 61.8%. The structural characterization was confirmed by 1H NMR. The micelles exhibited better antitumor efficacy compared to free doxorubicin in MCF-7/ADR cells by MTT assay. The apoptotic rate and the cellular uptake of micelles were significantly higher than free DOX and DOX-TPP. Micelles can efficiently deliver mitochondria-targeting DOX-TPP to tumor cells. The result of bio-distribution showed that the micelles had stronger tumor infiltration ability than free drugs. Conclusions: In this study, mitochondriotropic DOX-TPP was conjugated to the nanocarrier acetal-PEG-PCCL via ionic interaction to form a polymer, which spontaneously formed spherical micelles. The cytotoxicity and cellular uptake of the micelles are superior to free DOX and exhibit mitochondrial targeting and passive tumor targeting, indicating that they have potential prospects.
Collapse
Affiliation(s)
- Xin-Cheng Zhong
- a Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China
| | - Wen-Hong Xu
- b Department of Radiation Oncology, Ministry of Education Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine , Zhejiang University , Hangzhou , People's Republic of China
| | - Zi-Ting Wang
- a Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China
| | - Wang-Wei Guo
- a Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China
| | - Jie-Jian Chen
- b Department of Radiation Oncology, Ministry of Education Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine , Zhejiang University , Hangzhou , People's Republic of China
| | - Ning-Ning Guo
- a Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China
| | - Tian-Tian Wang
- a Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China
| | - Meng-Ting Lin
- a Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China
| | - Zhen-Tao Zhang
- a Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China
| | - Yi-Ying Lu
- a Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China
| | - Qi-Yao Yang
- a Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China
| | - Min Han
- a Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China.,c Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China
| | - Dong-Hang Xu
- d Department of Pharmacy, The 2nd Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , China
| | - Jian-Qing Gao
- a Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China.,c Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China
| |
Collapse
|