101
|
Corujo-Simon E, Radley AH, Nichols J. Evidence implicating sequential commitment of the founder lineages in the human blastocyst by order of hypoblast gene activation. Development 2023; 150:dev201522. [PMID: 37102672 PMCID: PMC10233721 DOI: 10.1242/dev.201522] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/19/2023] [Indexed: 04/28/2023]
Abstract
Successful human pregnancy depends upon rapid establishment of three founder lineages: the trophectoderm, epiblast and hypoblast, which together form the blastocyst. Each plays an essential role in preparing the embryo for implantation and subsequent development. Several models have been proposed to define the lineage segregation. One suggests that all lineages specify simultaneously; another favours the differentiation of the trophectoderm before separation of the epiblast and hypoblast, either via differentiation of the hypoblast from the established epiblast, or production of both tissues from the inner cell mass precursor. To begin to resolve this discrepancy and thereby understand the sequential process for production of viable human embryos, we investigated the expression order of genes associated with emergence of hypoblast. Based upon published data and immunofluorescence analysis for candidate genes, we present a basic blueprint for human hypoblast differentiation, lending support to the proposed model of sequential segregation of the founder lineages of the human blastocyst. The first characterised marker, specific initially to the early inner cell mass, and subsequently identifying presumptive hypoblast, is PDGFRA, followed by SOX17, FOXA2 and GATA4 in sequence as the hypoblast becomes committed.
Collapse
Affiliation(s)
- Elena Corujo-Simon
- Wellcome Trust – MRC Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Arthur H. Radley
- Wellcome Trust – MRC Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Jennifer Nichols
- Wellcome Trust – MRC Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 3EG, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| |
Collapse
|
102
|
Bi C, Wang L, Fan Y, Yuan B, Alsolami S, Zhang Y, Zhang PY, Huang Y, Yu Y, Izpisua Belmonte J, Li M. Quantitative haplotype-resolved analysis of mitochondrial DNA heteroplasmy in Human single oocytes, blastoids, and pluripotent stem cells. Nucleic Acids Res 2023; 51:3793-3805. [PMID: 37014011 PMCID: PMC10164563 DOI: 10.1093/nar/gkad209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 04/05/2023] Open
Abstract
Maternal mitochondria are the sole source of mtDNA for every cell of the offspring. Heteroplasmic mtDNA mutations inherited from the oocyte are a common cause of metabolic diseases and associated with late-onset diseases. However, the origin and dynamics of mtDNA heteroplasmy remain unclear. We used our individual Mitochondrial Genome sequencing (iMiGseq) technology to study mtDNA heterogeneity, quantitate single nucleotide variants (SNVs) and large structural variants (SVs), track heteroplasmy dynamics, and analyze genetic linkage between variants at the individual mtDNA molecule level in single oocytes and human blastoids. Our study presented the first single-mtDNA analysis of the comprehensive heteroplasmy landscape in single human oocytes. Unappreciated levels of rare heteroplasmic variants well below the detection limit of conventional methods were identified in healthy human oocytes, of which many are reported to be deleterious and associated with mitochondrial disease and cancer. Quantitative genetic linkage analysis revealed dramatic shifts of variant frequency and clonal expansions of large SVs during oogenesis in single-donor oocytes. iMiGseq of a single human blastoid suggested stable heteroplasmy levels during early lineage differentiation of naïve pluripotent stem cells. Therefore, our data provided new insights of mtDNA genetics and laid a foundation for understanding mtDNA heteroplasmy at early stages of life.
Collapse
Affiliation(s)
- Chongwei Bi
- Bioscience program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Lin Wang
- Bioscience program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Yong Fan
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, 510150 Guangzhou, China
| | - Baolei Yuan
- Bioscience program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Samhan Alsolami
- Bioscience program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Yingzi Zhang
- Bioscience program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Pu-Yao Zhang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing100191, China
| | - Yanyi Huang
- Beijing Advanced Innovation Center for Genomics (ICG), Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, College of Chemistry, College of Engineering, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yang Yu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing100191, China
- Stem Cell Research Center, Peking University Third Hospital, Beijing100191, China
| | - Juan Carlos Izpisua Belmonte
- Bioscience program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Altos Labs, Inc., San Diego, CA92121, USA
| | - Mo Li
- Bioscience program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Bioengineering program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Guangzhou, Saudi Arabia
| |
Collapse
|
103
|
Pinzón-Arteaga CA, Wang Y, Wei Y, Ribeiro Orsi AE, Li L, Scatolin G, Liu L, Sakurai M, Ye J, Hao Ming, Yu L, Li B, Jiang Z, Wu J. Bovine blastocyst-like structures derived from stem cell cultures. Cell Stem Cell 2023; 30:611-616.e7. [PMID: 37146582 PMCID: PMC10230549 DOI: 10.1016/j.stem.2023.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/23/2023] [Accepted: 04/05/2023] [Indexed: 05/07/2023]
Abstract
Understanding the mechanisms of blastocyst formation and implantation is critical for improving farm animal reproduction but is hampered by a limited supply of embryos. Here, we developed an efficient method to generate bovine blastocyst-like structures (termed blastoids) via assembling bovine trophoblast stem cells and expanded potential stem cells. Bovine blastoids resemble blastocysts in morphology, cell composition, single-cell transcriptomes, in vitro growth, and the ability to elicit maternal recognition of pregnancy following transfer to recipient cows. Bovine blastoids represent an accessible in vitro model for studying embryogenesis and improving reproductive efficiency in livestock species.
Collapse
Affiliation(s)
- Carlos A Pinzón-Arteaga
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yinjuan Wang
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA 70810, USA
| | - Yulei Wei
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China, Agricultural University, Beijing 100193, China
| | - Ana E Ribeiro Orsi
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Leijie Li
- SJTU-Yale Joint Center for Biostatistics and Data Science, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Giovanna Scatolin
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA 70810, USA; Department of Animal Sciences, Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Lizhong Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Masahiro Sakurai
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jianfeng Ye
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hao Ming
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA 70810, USA
| | - Leqian Yu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Bo Li
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zongliang Jiang
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA 70810, USA; Department of Animal Sciences, Genetics Institute, University of Florida, Gainesville, FL 32610, USA; Genetics Institute, University of Florida, Gainesville, FL 32610, USA.
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
104
|
Pennarossa G, Arcuri S, De Iorio T, Ledda S, Gandolfi F, Brevini TAL. Combination of epigenetic erasing and mechanical cues to generate human epiBlastoids from adult dermal fibroblasts. J Assist Reprod Genet 2023; 40:1015-1027. [PMID: 36933093 PMCID: PMC10024007 DOI: 10.1007/s10815-023-02773-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/09/2023] [Indexed: 03/19/2023] Open
Abstract
PURPOSE This study is to develop a new protocol that combines the use of epigenetic cues and mechanical stimuli to assemble 3D spherical structures, arbitrarily defined "epiBlastoids," whose phenotype is remarkably similar to natural embryos. METHODS A 3-step approach is used to generate epiBlastoids. In the first step, adult dermal fibroblasts are converted into trophoblast (TR)-like cells, combining the use of 5-azacytidine, to erase the original phenotype, with an ad hoc induction protocol, to drive cells towards TR lineage. In the second step, epigenetic erasing is applied once again, in combination with mechanosensing-related cues, to generate inner cell mass (ICM)-like organoids. Specifically, erased cells are encapsulated into micro-bioreactors to promote 3D cell rearrangement and boost pluripotency. In the third step, TR-like cells are co-cultured with ICM-like spheroids in the same micro-bioreactors. Subsequently, the newly generated embryoids are transferred to microwells to favor epiBlastoid formation. RESULTS Adult dermal fibroblasts are successfully readdressed towards TR lineage. Cells subjected to epigenetic erasing and encapsulated into micro-bioreactors rearrange in 3D ICM-like structures. Co-culture of TR-like cells and ICM-like spheroids into micro-bioreactors and microwells induces the formation of single structures with uniform shape reminiscent in vivo embryos. CDX2+ cells localized in the out layer of the spheroids, while OCT4+ cells in the inner of the structures. TROP2+ cells display YAP nuclear accumulation and actively transcribed for mature TR markers, while TROP2- cells showed YAP cytoplasmic compartmentalization and expressed pluripotency-related genes. CONCLUSION We describe the generation of epiBlastoids that may find useful application in the assisted reproduction field.
Collapse
Affiliation(s)
- Georgia Pennarossa
- Department of Veterinary Medicine and Animal Science, Center for Stem Cell Research, Laboratory of Biomedical Embryology and Tissue Engineering, Università Degli Studi Di Milano, 26900, Lodi, Italy
| | - Sharon Arcuri
- Department of Veterinary Medicine and Animal Science, Center for Stem Cell Research, Laboratory of Biomedical Embryology and Tissue Engineering, Università Degli Studi Di Milano, 26900, Lodi, Italy
| | - Teresina De Iorio
- Department of Veterinary Medicine and Animal Science, Center for Stem Cell Research, Laboratory of Biomedical Embryology and Tissue Engineering, Università Degli Studi Di Milano, 26900, Lodi, Italy
| | - Sergio Ledda
- Department of Veterinary Medicine, University of Sassari, 07100, Sassari, Italy
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, 20133, Milan, Italy
| | - Tiziana A L Brevini
- Department of Veterinary Medicine and Animal Science, Center for Stem Cell Research, Laboratory of Biomedical Embryology and Tissue Engineering, Università Degli Studi Di Milano, 26900, Lodi, Italy.
| |
Collapse
|
105
|
Heidari Khoei H, Javali A, Kagawa H, Sommer TM, Sestini G, David L, Slovakova J, Novatchkova M, Scholte Op Reimer Y, Rivron N. Generating human blastoids modeling blastocyst-stage embryos and implantation. Nat Protoc 2023; 18:1584-1620. [PMID: 36792779 PMCID: PMC7617227 DOI: 10.1038/s41596-023-00802-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 12/08/2022] [Indexed: 02/17/2023]
Abstract
Human early development sets the stage for embryonic and adult life but remains difficult to investigate. A solution came from the ability of stem cells to organize into structures resembling preimplantation embryos-blastocysts-that we termed blastoids. This embryo model is available in unlimited numbers and could thus support scientific and medical advances. However, its predictive power depends on how faithfully it recapitulates the blastocyst. Here, we describe how we formed human blastoids that (1) efficiently achieve the morphology of the blastocyst and (2) form lineages according to the pace and sequence of blastocyst development, (3) ultimately forming cells that transcriptionally reflect the blastocyst (preimplantation stage). We employ three different commercially available 96- and 24-well microwell plates with results similar to our custom-made ones, and show that blastoids form in clinical in vitro fertilization medium and can be cryopreserved for shipping. Finally, we explain how blastoids replicate the directional process of implantation into endometrial organoids, specifically when these are hormonally stimulated. It takes 4 d for human blastoids to form and 10 d to prepare the endometrial implantation assay, and we have cultured blastoids up to 6 d (time-equivalent of day 13). On the basis of our experience, we anticipate that a person with ~1 year of human pluripotent stem cell culture experience and of organoid culture should be able to perform the protocol. Altogether, blastoids offer an opportunity to establish scientific and biomedical discovery programs for early pregnancy, and an ethical alternative to the use of embryos.
Collapse
Affiliation(s)
- Heidar Heidari Khoei
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Alok Javali
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Harunobu Kagawa
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Theresa Maria Sommer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Giovanni Sestini
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Laurent David
- Université de Nantes, CHU Nantes, Inserm, CR2TI, UMR 1064, Nantes, France
- Université de Nantes, CHU Nantes, Inserm, CNRS, BioCore, Nantes, France
| | - Jana Slovakova
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), IMBA Stem Cell Core Facility (ISCCF), Vienna BioCenter (VBC), Vienna, Austria
| | - Maria Novatchkova
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Yvonne Scholte Op Reimer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Nicolas Rivron
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria.
| |
Collapse
|
106
|
Haider S, Beristain AG. Human organoid systems in modeling reproductive tissue development, function, and disease. Hum Reprod 2023:7147082. [PMID: 37119533 DOI: 10.1093/humrep/dead085] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/12/2023] [Indexed: 05/01/2023] Open
Abstract
Research focused on human reproductive biology has primarily relied upon clinical samples affording mainly descriptive studies with limited implementation of functional or mechanistic understanding. More importantly, restricted access to human embryonic material has necessitated the use of animals, primarily rats and mice, and short-term primary cell cultures derived from human patient material. While reproductive developmental processes are generally conserved across mammals, specific features unique to human reproduction have resulted in the development of human-based in vitro systems designed to retain or recapitulate key molecular and cellular processes important in humans. Of note, major advances in 3D epithelial stem cell-based systems modeling human reproductive organ development have been made. These cultures, broadly referred to as organoids, enable research aimed at understanding cellular hierarchies and processes controlling cellular differentiation and function. Moreover, organoids allow the pre-clinical testing of pharmacological substances, both from safety and efficacy standpoints, and hold large potential in driving aspects of personalized medicine that were previously not possible with traditional models. In this mini-review, we focus on summarizing the current state of regenerative organoid culture systems of the female and male reproductive tracts that model organ development, maintenance, and function. Specifically, we will introduce stem cell-based organoid models of the ovary/fallopian tube, endometrium, cervix, prostate gland, and testes. We will also describe organoid systems of the pre-implanting blastocyst and trophoblast, as the blastocyst and its extraembryonic trophectoderm are central to fetal, maternal, and overall pregnancy health. We describe the foundational studies leading to their development and outline the utility as well as specific limitations that are unique and common to many of these in vitro platforms.
Collapse
Affiliation(s)
- Sandra Haider
- Department of Obstetrics & Gynecology, Medical University of Vienna, Vienna, Austria
| | - Alexander G Beristain
- The British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
107
|
Zhou J, Hu J, Wang Y, Gao S. Induction and application of human naive pluripotency. Cell Rep 2023; 42:112379. [PMID: 37043354 DOI: 10.1016/j.celrep.2023.112379] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 12/18/2022] [Accepted: 03/26/2023] [Indexed: 04/13/2023] Open
Abstract
Over the past few decades, many attempts have been made to capture different states of pluripotency in vitro. Naive and primed pluripotent stem cells, corresponding to the pluripotency states of pre- and post-implantation epiblasts, respectively, have been well characterized in mice and can be interconverted in vitro. Here, we summarize the recently reported strategies to generate human naive pluripotent stem cells in vitro. We discuss their applications in studies of regulatory mechanisms involved in early developmental processes, including identification of molecular features, X chromosome inactivation modeling, transposable elements regulation, metabolic characteristics, and cell fate regulation, as well as potential for extraembryonic differentiation and blastoid construction for embryogenesis modeling. We further discuss the naive pluripotency-related research, including 8C-like cell establishment and disease modeling. We also highlight limitations of current naive pluripotency studies, such as imperfect culture conditions and inadequate responsiveness to differentiation signals.
Collapse
Affiliation(s)
- Jianfeng Zhou
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Jindian Hu
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Yixuan Wang
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China.
| | - Shaorong Gao
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China.
| |
Collapse
|
108
|
Ávila-González D, Gidi-Grenat MÁ, García-López G, Martínez-Juárez A, Molina-Hernández A, Portillo W, Díaz-Martínez NE, Díaz NF. Pluripotent Stem Cells as a Model for Human Embryogenesis. Cells 2023; 12:1192. [PMID: 37190101 PMCID: PMC10136597 DOI: 10.3390/cells12081192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Pluripotent stem cells (PSCs; embryonic stem cells and induced pluripotent stem cells) can recapitulate critical aspects of the early stages of embryonic development; therefore, they became a powerful tool for the in vitro study of molecular mechanisms that underlie blastocyst formation, implantation, the spectrum of pluripotency and the beginning of gastrulation, among other processes. Traditionally, PSCs were studied in 2D cultures or monolayers, without considering the spatial organization of a developing embryo. However, recent research demonstrated that PSCs can form 3D structures that simulate the blastocyst and gastrula stages and other events, such as amniotic cavity formation or somitogenesis. This breakthrough provides an unparalleled opportunity to study human embryogenesis by examining the interactions, cytoarchitecture and spatial organization among multiple cell lineages, which have long remained a mystery due to the limitations of studying in utero human embryos. In this review, we will provide an overview of how experimental embryology currently utilizes models such as blastoids, gastruloids and other 3D aggregates derived from PSCs to advance our understanding of the intricate processes involved in human embryo development.
Collapse
Affiliation(s)
- Daniela Ávila-González
- Laboratorio de Reprogramación Celular y Bioingeniería de Tejidos, Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara 44270, Mexico
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Ciudad de México 11000, Mexico
| | - Mikel Ángel Gidi-Grenat
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Ciudad de México 11000, Mexico
| | - Guadalupe García-López
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Ciudad de México 11000, Mexico
| | - Alejandro Martínez-Juárez
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Ciudad de México 11000, Mexico
| | - Anayansi Molina-Hernández
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Ciudad de México 11000, Mexico
| | - Wendy Portillo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico
| | - Néstor Emmanuel Díaz-Martínez
- Laboratorio de Reprogramación Celular y Bioingeniería de Tejidos, Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara 44270, Mexico
| | - Néstor Fabián Díaz
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Ciudad de México 11000, Mexico
| |
Collapse
|
109
|
Li J, Zhu Q, Cao J, Liu Y, Lu Y, Sun Y, Li Q, Huang Y, Shang S, Bian X, Li C, Zhang L, Wang Y, Nie Y, Fu J, Li W, Mazid MA, Jiang Y, Jia W, Wang X, Sun Y, Esteban MA, Sun Q, Zhou F, Liu Z. Cynomolgus monkey embryo model captures gastrulation and early pregnancy. Cell Stem Cell 2023; 30:362-377.e7. [PMID: 37028403 DOI: 10.1016/j.stem.2023.03.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/18/2023] [Accepted: 03/16/2023] [Indexed: 04/09/2023]
Abstract
Human stem cell-derived blastoids display similar morphology and cell lineages to normal blastocysts. However, the ability to investigate their developmental potential is limited. Here, we construct cynomolgus monkey blastoids resembling blastocysts in morphology and transcriptomics using naive ESCs. These blastoids develop to embryonic disk with the structures of yolk sac, chorionic cavity, amnion cavity, primitive streak, and connecting stalk along the rostral-caudal axis through prolonged in vitro culture (IVC). Primordial germ cells, gastrulating cells, visceral endoderm/yolk sac endoderm, three germ layers, and hemato-endothelial progenitors in IVC cynomolgus monkey blastoids were observed by single-cell transcriptomics or immunostaining. Moreover, transferring cynomolgus monkey blastoids to surrogates achieves pregnancies, as indicated by progesterone levels and presence of early gestation sacs. Our results reveal the capacity of in vitro gastrulation and in vivo early pregnancy of cynomolgus monkey blastoids, providing a useful system to dissect primate embryonic development without the same ethical concerns and access challenges in human embryo study.
Collapse
Affiliation(s)
- Jie Li
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Qingyuan Zhu
- Haihe Laboratory of Cell Ecosystem, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jing Cao
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shanxi, China
| | - Ying Liu
- Haihe Laboratory of Cell Ecosystem, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yong Lu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Yining Sun
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Qian Li
- Haihe Laboratory of Cell Ecosystem, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yiming Huang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Shenshen Shang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China; College of Agriculture, Henan University of Science and Technology, Luoyang 471023, Henan, China
| | - Xinyan Bian
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Chunyang Li
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Liansheng Zhang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Yan Wang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Yanhong Nie
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Jiqiang Fu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Wenjuan Li
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Md Abdul Mazid
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yu Jiang
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Wenqi Jia
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaolong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shanxi, China
| | - Yidi Sun
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Miguel A Esteban
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qiang Sun
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China; University of Chinese Academy of Sciences, 100049 Beijing, China.
| | - Fan Zhou
- Haihe Laboratory of Cell Ecosystem, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Zhen Liu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China; University of Chinese Academy of Sciences, 100049 Beijing, China.
| |
Collapse
|
110
|
Abstract
Li et al.1 report on the generation of cynomolgus monkey models of blastocyst-stage embryos (called "blastoids") using naive cynomolgus embryonic stem cells. These blastoids recapitulate gastrulation in vitro and induce early pregnancy responses when transferred into cynomolgus monkey surrogates, prompting consideration of the policy implications for human blastoid research.
Collapse
|
111
|
Abstract
Although differential transcription drives the development of multicellular organisms, the ultimate readout of a protein-coding gene is ribosome-dependent mRNA translation. Ribosomes were once thought of as uniform molecular machines, but emerging evidence indicates that the complexity and diversity of ribosome biogenesis and function should be given a fresh look in the context of development. This Review begins with a discussion of different developmental disorders that have been linked with perturbations in ribosome production and function. We then highlight recent studies that reveal how different cells and tissues exhibit variable levels of ribosome production and protein synthesis, and how changes in protein synthesis capacity can influence specific cell fate decisions. We finish by touching upon ribosome heterogeneity in stress responses and development. These discussions highlight the importance of considering both ribosome levels and functional specialization in the context of development and disease.
Collapse
Affiliation(s)
- Chunyang Ni
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Michael Buszczak
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| |
Collapse
|
112
|
Zhong K, Luo YX, Li D, Min ZY, Fan Y, Yu Y. Generation of blastoids from human parthenogenetic stem cells. LIFE MEDICINE 2023; 2:lnad006. [PMID: 39872951 PMCID: PMC11748981 DOI: 10.1093/lifemedi/lnad006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/17/2023] [Indexed: 01/30/2025]
Abstract
Parthenogenetic embryos derive their genomes entirely from the maternal genome and lack paternal imprint patterns. Many achievements have been made in the study of genomic imprinting using human parthenogenetic embryonic stem cells (hPg-ESCs). However, due to developmental defects and ethical limits, a comprehensive understanding of parthenogenetic embryonic development is still lacking. Here, we generated parthenogenetic blastoids (hPg-EPSCs blastoids) from hPg-ESC-derived extended pluripotent stem cells (hPg-EPSCs) using our previously published two-step induction protocol. Morphology, specific marker expression and single-cell transcriptome analysis showed that hPg-EPSCs blastoids contain crucial cell lineages similar to blastoids (hBp-EPSCs blastoids) generated from human biparental EPSCs (hBp-EPSCs). Single-cell RNA-seq compared the expression of genes related to imprinting and X chromosome inactivation in hPg-EPSCs blastoids and hBp-EPSCs blastoids. In conclusion, we generated parthenogenetic blastoids, which will potentially promote the study of genomic imprinting in embryonic development and uncover the influence of parental origin bias on human development and pathological mechanisms.
Collapse
Affiliation(s)
- Ke Zhong
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
- Department of Obstetrics and Gynecology, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Yu-Xin Luo
- Department of Obstetrics and Gynecology, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China
| | - Dan Li
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Zhe-Ying Min
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Yong Fan
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Yang Yu
- Department of Obstetrics and Gynecology, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
113
|
Burgaud M, Bretin B, Reignier A, De Vos J, David L. [New models to study human embryonic development]. Med Sci (Paris) 2023; 39:129-136. [PMID: 36799747 DOI: 10.1051/medsci/2023018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Since 2021, assisted reproductive technologies (ART) are available to infertile couples, but also to single women and female couples. The process of in vitro fertilization (IVF) has allowed to cross the threshold of 5 million births worldwide, between 1978 and 2013. However, the failure rate per each IVF cycle is estimated to be around 75%. Therefore, there is a need to better understand human embryonic development in order to improve the success rate of IVF. Study models have evolved significantly in recent years: development of embryo culture, sequencing of the transcriptome of individualized cells, discovery of culture conditions for naive pluripotent stem cells and generation of blastoids. Here, we review these recent advances in human embryo modeling that establish a new knowledge base for improving ART.
Collapse
Affiliation(s)
- Mathilde Burgaud
- Nantes université, CHU Nantes, Inserm, CR2TI, F-44000 Nantes, France
| | - Betty Bretin
- Nantes université, CHU Nantes, Inserm, CR2TI, F-44000 Nantes, France
| | - Arnaud Reignier
- Nantes université, CHU Nantes, Inserm, CR2TI, F-44000 Nantes, France - CHU Nantes, Service de biologie de la reproduction, F-44000 Nantes, France
| | - John De Vos
- IRMB, Univ Montpellier, Inserm, CHU Montpellier, Montpellier, France
| | - Laurent David
- Nantes université, CHU Nantes, Inserm, CR2TI, F-44000 Nantes, France - Nantes université, CHU Nantes, Inserm, CNRS, BioCore, F-44000 Nantes, France
| |
Collapse
|
114
|
Maskalenka K, Alagöz G, Krueger F, Wright J, Rostovskaya M, Nakhuda A, Bendall A, Krueger C, Walker S, Scally A, Rugg-Gunn PJ. NANOGP1, a tandem duplicate of NANOG, exhibits partial functional conservation in human naïve pluripotent stem cells. Development 2023; 150:286291. [PMID: 36621005 PMCID: PMC10110494 DOI: 10.1242/dev.201155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/16/2022] [Indexed: 01/10/2023]
Abstract
Gene duplication events can drive evolution by providing genetic material for new gene functions, and they create opportunities for diverse developmental strategies to emerge between species. To study the contribution of duplicated genes to human early development, we examined the evolution and function of NANOGP1, a tandem duplicate of the transcription factor NANOG. We found that NANOGP1 and NANOG have overlapping but distinct expression profiles, with high NANOGP1 expression restricted to early epiblast cells and naïve-state pluripotent stem cells. Sequence analysis and epitope-tagging revealed that NANOGP1 is protein coding with an intact homeobox domain. The duplication that created NANOGP1 occurred earlier in primate evolution than previously thought and has been retained only in great apes, whereas Old World monkeys have disabled the gene in different ways, including homeodomain point mutations. NANOGP1 is a strong inducer of naïve pluripotency; however, unlike NANOG, it is not required to maintain the undifferentiated status of human naïve pluripotent cells. By retaining expression, sequence and partial functional conservation with its ancestral copy, NANOGP1 exemplifies how gene duplication and subfunctionalisation can contribute to transcription factor activity in human pluripotency and development.
Collapse
Affiliation(s)
| | - Gökberk Alagöz
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Felix Krueger
- Bioinformatics Group, Babraham Institute, Cambridge CB22 3AT, UK
| | - Joshua Wright
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | | | - Asif Nakhuda
- Gene Targeting Facility, Babraham Institute, Cambridge CB22 3AT, UK
| | - Adam Bendall
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Christel Krueger
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Simon Walker
- Imaging Facility, Babraham Institute, Cambridge CB22 3AT, UK
| | - Aylwyn Scally
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Peter J Rugg-Gunn
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| |
Collapse
|
115
|
Radley A, Corujo-Simon E, Nichols J, Smith A, Dunn SJ. Entropy sorting of single-cell RNA sequencing data reveals the inner cell mass in the human pre-implantation embryo. Stem Cell Reports 2023; 18:47-63. [PMID: 36240776 PMCID: PMC9859930 DOI: 10.1016/j.stemcr.2022.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/05/2022] Open
Abstract
A major challenge in single-cell gene expression analysis is to discern meaningful cellular heterogeneity from technical or biological noise. To address this challenge, we present entropy sorting (ES), a mathematical framework that distinguishes genes indicative of cell identity. ES achieves this in an unsupervised manner by quantifying if observed correlations between features are more likely to have occurred due to random chance versus a dependent relationship, without the need for any user-defined significance threshold. On synthetic data, we demonstrate the removal of noisy signals to reveal a higher resolution of gene expression patterns than commonly used feature selection methods. We then apply ES to human pre-implantation embryo single-cell RNA sequencing (scRNA-seq) data. Previous studies failed to unambiguously identify early inner cell mass (ICM), suggesting that the human embryo may diverge from the mouse paradigm. In contrast, ES resolves the ICM and reveals sequential lineage bifurcations as in the classical model. ES thus provides a powerful approach for maximizing information extraction from high-dimensional datasets such as scRNA-seq data.
Collapse
Affiliation(s)
- Arthur Radley
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| | - Elena Corujo-Simon
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Jennifer Nichols
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Austin Smith
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.
| | - Sara-Jane Dunn
- Microsoft Research, 21 Station Road, Cambridge CB1 2FB, UK.
| |
Collapse
|
116
|
Cockerell A, Wright L, Dattani A, Guo G, Smith A, Tsaneva-Atanasova K, Richards DM. Biophysical models of early mammalian embryogenesis. Stem Cell Reports 2023; 18:26-46. [PMID: 36630902 PMCID: PMC9860129 DOI: 10.1016/j.stemcr.2022.11.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 11/02/2022] [Accepted: 11/24/2022] [Indexed: 01/12/2023] Open
Abstract
Embryo development is a critical and fascinating stage in the life cycle of many organisms. Despite decades of research, the earliest stages of mammalian embryogenesis are still poorly understood, caused by a scarcity of high-resolution spatial and temporal data, the use of only a few model organisms, and a paucity of truly multidisciplinary approaches that combine biological research with biophysical modeling and computational simulation. Here, we explain the theoretical frameworks and biophysical processes that are best suited to modeling the early mammalian embryo, review a comprehensive list of previous models, and discuss the most promising avenues for future work.
Collapse
Affiliation(s)
- Alaina Cockerell
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Liam Wright
- Department of Mathematics, University of Exeter, North Park Road, Exeter EX4 4QF, UK
| | - Anish Dattani
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Ge Guo
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Austin Smith
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Krasimira Tsaneva-Atanasova
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK; Department of Mathematics, University of Exeter, North Park Road, Exeter EX4 4QF, UK; EPSRC Hub for Quantitative Modelling in Healthcare, University of Exeter, Exeter EX4 4QJ, UK; Department of Bioinformatics and Mathematical Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 105 Acad. G. Bonchev Street, 1113 Sofia, Bulgaria
| | - David M Richards
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK; Department of Physics and Astronomy, University of Exeter, North Park Road, Exeter EX4 4QL, UK.
| |
Collapse
|
117
|
Zhu Q, Ge J, Liu Y, Xu JW, Yan S, Zhou F. Decoding anterior-posterior axis emergence among mouse, monkey, and human embryos. Dev Cell 2023; 58:63-79.e4. [PMID: 36626872 DOI: 10.1016/j.devcel.2022.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 08/23/2022] [Accepted: 12/07/2022] [Indexed: 01/11/2023]
Abstract
Anterior-posterior axis formation regulated by the distal visceral endoderm (DVE) and anterior visceral endoderm (AVE) is essential for peri-implantation embryogenesis. However, the principles of the origin and specialization of DVE and AVE remain elusive. Here, with single-cell transcriptome analysis and pseudotime prediction, we show that DVE and AVE independently originate from the specialized primary endoderm in mouse blastocysts. Along distinct developmental paths, these two lineages, respectively, undergo four representative states with stage-specific transcriptional patterns around implantation. Further comparative analysis shows that AVE, but not DVE, is detected in human and non-human primate embryos, defining differences in polarity formation across species. Moreover, stem cell-assembled human blastoids lack DVE or AVE precursors, implying that additional induction of stem cells with DVE/AVE potential could promote the current embryo-like models and their post-implantation growth. Our work provides insight into understanding of embryonic polarity formation and early mammalian development.
Collapse
Affiliation(s)
- Qingyuan Zhu
- Haihe Laboratory of Cell Ecosystem, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jitao Ge
- Haihe Laboratory of Cell Ecosystem, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ying Liu
- Haihe Laboratory of Cell Ecosystem, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jia-Wen Xu
- Haihe Laboratory of Cell Ecosystem, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shengyi Yan
- Haihe Laboratory of Cell Ecosystem, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Fan Zhou
- Haihe Laboratory of Cell Ecosystem, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
118
|
Wu B, Yang Z, Liu Y, Li J, Chen C, Li X, Bao S. A chemically defined system supports two distinct types of stem cell from a single blastocyst and their self-assembly to generate blastoid. Cell Prolif 2023:e13396. [PMID: 36593753 DOI: 10.1111/cpr.13396] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 01/04/2023] Open
Abstract
The pluripotent stem cells exist in a narrow window during early development and its derivation depends on intrinsic and extrinsic growth signalling in vitro. It has remained challenging to derive two or three distinct cell lines that are representative of blastocyst-stage lineages from one preimplantation embryo simultaneously in a chemical defined condition. Therefore, it is desirable to establish a system by manipulating extrinsic signalling in culture to derive multiple types of stem cells from a single blastocyst. This study used a defined medium containing Activin A, WNT activator and LIF (ACL medium), enabling establishment of ACL-ESCs and ACL-XEN cells from one blastocyst. ACL-blastoids were generated by suspending ACL-ESCs and ACL-XEN cells with ACL-blastoid medium in three-dimensional culture system. Lineage markers expression of ACL-blastoids were performed by immunofluorescence. Our results indicate that ACL-ESCs and ACL-XEN cells derived from one blastocyst represent ICM and PrE lineages. Importantly, we obtained ACL-blastoid from ACL-ESCs and ACL-XEN cells self-aggregation, partially recapitulating early development and initiation of early implantation events. This study would not only provide ACL culture system for derivation and maintenance of two types of cell lines corresponding to ICM as well as PrE, but also reconstruct blastoids with them to deepen our understanding of early embryogenesis and widen insights into translational application of stem cells.
Collapse
Affiliation(s)
- Baojiang Wu
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China.,Research Centre for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Zhiqing Yang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China.,Research Centre for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yijie Liu
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China.,Research Centre for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Jianwen Li
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China.,Research Centre for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Chen Chen
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China.,Research Centre for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xihe Li
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China.,Research Centre for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China.,Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot, China
| | - Siqin Bao
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China.,Research Centre for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
119
|
Amel A, Rossouw S, Goolam M. Gastruloids: A Novel System for Disease Modelling and Drug Testing. Stem Cell Rev Rep 2023; 19:104-113. [PMID: 36308705 DOI: 10.1007/s12015-022-10462-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2022] [Indexed: 01/29/2023]
Abstract
By virtue of its inaccessible nature, mammalian implantation stage development has remained one of the most enigmatic and hard to investigate periods of embryogenesis. Derived from pluripotent stem cells, gastruloids recapitulate key aspects of gastrula-stage embryos and have emerged as a powerful in vitro tool to study the architectural features of early post-implantation embryos. While the majority of the work in this emerging field has focused on the use of gastruloids to model embryogenesis, their tractable nature and suitability for high-throughput scaling, has presented an unprecedented opportunity to investigate both developmental and environmental aberrations to the embryo as they occur in vitro. This review summarises the recent developments in the use of gastruloids to model congenital anomalies, their usage in teratogenicity testing, and the current limitations of this emerging field.
Collapse
Affiliation(s)
- Atoosa Amel
- Department of Human Biology, University of Cape Town, 7925, Cape Town, South Africa
| | - Simoné Rossouw
- Department of Human Biology, University of Cape Town, 7925, Cape Town, South Africa
| | - Mubeen Goolam
- Department of Human Biology, University of Cape Town, 7925, Cape Town, South Africa. .,UCT Neuroscience Institute, Cape Town, South Africa.
| |
Collapse
|
120
|
Matsumoto S, Okamura E, Muto M, Ema M. Similarities and differences in placental development between humans and cynomolgus monkeys. Reprod Med Biol 2023; 22:e12522. [PMID: 37377753 PMCID: PMC10292683 DOI: 10.1002/rmb2.12522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Background The placenta is an extraembryonic organ, which is essential to maintain a normal pregnancy. However, placental development in humans is poorly understood because of technical and ethical reasons. Methods We analyzed the anatomical localization of each trophoblastic subtype in the cynomolgus monkey placenta by immunohistochemistry in the early second trimester. Histological differences among the mouse, cynomolgus monkey, and human placenta were compared. The PubMed database was used to search for studies on placentation in rodents and primates. Main findings The anatomical structures and subtypes of the placenta in cynomolgus monkeys are highly similar to those in humans, with the exception of fewer interstitial extravillous trophoblasts in cynomolgus monkeys. Conclusion The cynomolgus monkey appears to be a good animal model to investigate human placentation.
Collapse
Affiliation(s)
- Shoma Matsumoto
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life ScienceShiga University of Medical ScienceOtsuJapan
| | - Eiichi Okamura
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life ScienceShiga University of Medical ScienceOtsuJapan
| | - Masanaga Muto
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life ScienceShiga University of Medical ScienceOtsuJapan
| | - Masatsugu Ema
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life ScienceShiga University of Medical ScienceOtsuJapan
- Institute for the Advanced Study of Human Biology (WPI‐ASHBi)Kyoto UniversityKyotoJapan
| |
Collapse
|
121
|
Cesare E, Urciuolo A, Stuart HT, Torchio E, Gesualdo A, Laterza C, Gagliano O, Martewicz S, Cui M, Manfredi A, Di Filippo L, Sabatelli P, Squarzoni S, Zorzan I, Betto RM, Martello G, Cacchiarelli D, Luni C, Elvassore N. 3D ECM-rich environment sustains the identity of naive human iPSCs. Cell Stem Cell 2022; 29:1703-1717.e7. [PMID: 36459970 DOI: 10.1016/j.stem.2022.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/07/2022] [Accepted: 11/09/2022] [Indexed: 12/03/2022]
Abstract
The establishment of in vitro naive human pluripotent stem cell cultures opened new perspectives for the study of early events in human development. The role of several transcription factors and signaling pathways have been characterized during maintenance of human naive pluripotency. However, little is known about the role exerted by the extracellular matrix (ECM) and its three-dimensional (3D) organization. Here, using an unbiased and integrated approach combining microfluidic cultures with transcriptional, proteomic, and secretome analyses, we found that naive, but not primed, hiPSC colonies are characterized by a self-organized ECM-rich microenvironment. Based on this, we developed a 3D culture system that supports robust long-term feeder-free self-renewal of naive hiPSCs and also allows direct and timely developmental morphogenesis simply by modulating the signaling environment. Our study opens new perspectives for future applications of naive hiPSCs to study critical stages of human development in 3D starting from a single cell.
Collapse
Affiliation(s)
- Elisa Cesare
- Department of Industrial Engineering, University of Padova, 6/a Via Gradenigo, Padova 35131, Italy; Veneto Institute of Molecular Medicine, 2 Via Orus, Padova 35131, Italy
| | - Anna Urciuolo
- University College London Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK; Institute of Pediatric Research IRP, Corso Stati Uniti, Padova 35127, Italy; Department of Molecular Medicine, University of Padova, Via G. Colombo 3, 35131 Padova, Italy
| | - Hannah T Stuart
- Department of Industrial Engineering, University of Padova, 6/a Via Gradenigo, Padova 35131, Italy; Veneto Institute of Molecular Medicine, 2 Via Orus, Padova 35131, Italy; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-BioCenter 1, 1030 Vienna, Austria
| | - Erika Torchio
- Veneto Institute of Molecular Medicine, 2 Via Orus, Padova 35131, Italy
| | - Alessia Gesualdo
- Department of Industrial Engineering, University of Padova, 6/a Via Gradenigo, Padova 35131, Italy
| | - Cecilia Laterza
- Department of Industrial Engineering, University of Padova, 6/a Via Gradenigo, Padova 35131, Italy; Veneto Institute of Molecular Medicine, 2 Via Orus, Padova 35131, Italy
| | - Onelia Gagliano
- Department of Industrial Engineering, University of Padova, 6/a Via Gradenigo, Padova 35131, Italy; Veneto Institute of Molecular Medicine, 2 Via Orus, Padova 35131, Italy
| | - Sebastian Martewicz
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Meihua Cui
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Anna Manfredi
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy; Next Generation Diagnostic srl, Pozzuoli, Italy
| | - Lucio Di Filippo
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy; Next Generation Diagnostic srl, Pozzuoli, Italy
| | - Patrizia Sabatelli
- CNR - Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza" - Unit of Bologna, Bologna, Italy; IRCCS-Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Stefano Squarzoni
- CNR - Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza" - Unit of Bologna, Bologna, Italy; IRCCS-Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Irene Zorzan
- Epigenetics Programme, Babraham Institute, CB22 3AT Cambridge, UK
| | - Riccardo M Betto
- Department of Molecular Medicine, University of Padova, Via G. Colombo 3, 35131 Padova, Italy
| | - Graziano Martello
- Department of Biology, University of Padova, Via G. Colombo 3, Padova 35131, Italy
| | - Davide Cacchiarelli
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy; Department of Translational Medicine, University of Naples "Federico II", Naples, Italy; School for Advanced Studies, Genomics and Experimental Medicine Program, University of Naples "Federico II", Naples, Italy
| | - Camilla Luni
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China; Department of Civil, Chemical, Environmental, and Materials Engineering (DICAM), University of Bologna, Via Terracini 28, Bologna 40131, Italy
| | - Nicola Elvassore
- Department of Industrial Engineering, University of Padova, 6/a Via Gradenigo, Padova 35131, Italy; Veneto Institute of Molecular Medicine, 2 Via Orus, Padova 35131, Italy; University College London Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK.
| |
Collapse
|
122
|
Wang X, Hu G. Human embryos in a dish – modeling early embryonic development with pluripotent stem cells. CELL REGENERATION 2022; 11:4. [PMID: 35029775 PMCID: PMC8760366 DOI: 10.1186/s13619-022-00107-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Accepted: 01/06/2022] [Indexed: 11/10/2022]
Abstract
Stem cell-based embryo models present new opportunities to study early embryonic development. In a recent study, Kagawa et al. identified an approach to create human pluripotent stem cell-based blastoids that resemble the human blastocysts. These blastoids efficiently generated analogs of the EPI, TE, PrE lineages with transcriptomes highly similar to those found in vivo. Furthermore, the formation of these lineages followed the same sequence and pace of blastocyst development, and was also dependent on the same pathways required for lineage specification. Finally, the blastoids were capable of attaching to stimulated endometrial cells to mimic the process of implantation. While more comprehensive analysis is needed to confirm its validity and usefulness, this new blastoid system presents the latest development in the attempt to model early human embryogenesis in vitro.
Collapse
|
123
|
Castel G, David L. Induction of human trophoblast stem cells. Nat Protoc 2022; 17:2760-2783. [PMID: 36241723 DOI: 10.1038/s41596-022-00744-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 06/22/2022] [Indexed: 02/07/2023]
Abstract
Cell reprogramming has allowed unprecedented access to human development, from virtually any genome. However, reprogramming yields pluripotent stem cells that can differentiate into all cells that form a fetus, but not extraembryonic annexes. Therefore, a cellular model allowing study of placental development from a broad genomic repertoire is lacking. Here, we describe an optimized protocol to reprogram somatic cells into human induced trophoblast stem cells (hiTSCs) and convert pluripotent stem cells into human converted TSCs (hcTSCs). This protocol enables much-needed genome-specific placental disease modeling. We also detail extravillous trophoblast and syncytiotrophoblast differentiation protocols from hiTSCs and hcTSCs, a necessary step to validate these cells. In total, this protocol takes 4 months and requires advanced cell culture skills, comparable to those necessary for somatic cell reprogramming into human induced pluripotent stem cells.
Collapse
Affiliation(s)
- Gaël Castel
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Laurent David
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France.
- Nantes Université, CHU Nantes, INSERM, CNRS, BioCore, Nantes, France.
| |
Collapse
|
124
|
Human Maternal-Fetal Interface Cellular Models to Assess Antiviral Drug Toxicity during Pregnancy. REPRODUCTIVE MEDICINE 2022. [DOI: 10.3390/reprodmed3040024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Pregnancy is a period of elevated risk for viral disease severity, resulting in serious health consequences for both the mother and the fetus; yet antiviral drugs lack comprehensive safety and efficacy data for use among pregnant women. In fact, pregnant women are systematically excluded from therapeutic clinical trials to prevent potential fetal harm. Current FDA-recommended reproductive toxicity assessments are studied using small animals which often do not accurately predict the human toxicological profiles of drug candidates. Here, we review the potential of human maternal-fetal interface cellular models in reproductive toxicity assessment of antiviral drugs. We specifically focus on the 2- and 3-dimensional maternal placental models of different gestational stages and those of fetal embryogenesis and organ development. Screening of drug candidates in physiologically relevant human maternal-fetal cellular models will be beneficial to prioritize selection of safe antiviral therapeutics for clinical trials in pregnant women.
Collapse
|
125
|
Karvas RM, David L, Theunissen TW. Accessing the human trophoblast stem cell state from pluripotent and somatic cells. Cell Mol Life Sci 2022; 79:604. [PMID: 36434136 PMCID: PMC9702929 DOI: 10.1007/s00018-022-04549-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/26/2022]
Abstract
Trophoblasts are specialized epithelial cells that perform critical functions during blastocyst implantation and mediate maternal-fetal communication during pregnancy. However, our understanding of human trophoblast biology remains limited since access to first-trimester placental tissue is scarce, especially between the first and fourth weeks of development. Moreover, animal models inadequately recapitulate unique aspects of human placental physiology. In the mouse system, the isolation of self-renewing trophoblast stem cells has provided a valuable in vitro model system of placental development, but the derivation of analogous human trophoblast stem cells (hTSCs) has remained elusive until recently. Building on a landmark study reporting the isolation of bona fide hTSCs from blastocysts and first-trimester placental tissues in 2018, several groups have developed methods to derive hTSCs from pluripotent and somatic cell sources. Here we review the biological and molecular properties that define authentic hTSCs, the trophoblast potential of distinct pluripotent states, and methods for inducing hTSCs in somatic cells by direct reprogramming. The generation of hTSCs from pluripotent and somatic cells presents exciting opportunities to elucidate the molecular mechanisms of human placental development and the etiology of pregnancy-related diseases.
Collapse
Affiliation(s)
- Rowan M Karvas
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Laurent David
- Nantes Université, CHU Nantes, INSERM, CR2TI, UMR 1064, 44000, Nantes, France.
- Nantes Université, CHU Nantes, INSERM, CNRS, Biocore, US 016, UAR 3556, 44000, Nantes, France.
| | - Thorold W Theunissen
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
126
|
Kunitomi A, Hirohata R, Arreola V, Osawa M, Kato TM, Nomura M, Kawaguchi J, Hara H, Kusano K, Takashima Y, Takahashi K, Fukuda K, Takasu N, Yamanaka S. Improved Sendai viral system for reprogramming to naive pluripotency. CELL REPORTS METHODS 2022; 2:100317. [PMID: 36447645 PMCID: PMC9701587 DOI: 10.1016/j.crmeth.2022.100317] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/07/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Naive human induced pluripotent stem cells (iPSCs) can be generated by reprogramming somatic cells with Sendai virus (SeV) vectors. However, only dermal fibroblasts have been successfully reprogrammed this way, and the process requires culture on feeder cells. Moreover, SeV vectors are highly persistent and inhibit subsequent differentiation of iPSCs. Here, we report a modified SeV vector system to generate transgene-free naive human iPSCs with superior differentiation potential. The modified method can be applied not only to fibroblasts but also to other somatic cell types. SeV vectors disappear quickly at early passages, and this approach enables the generation of naive iPSCs in a feeder-free culture. The naive iPSCs generated by this method show better differentiation to trilineage and extra-embryonic trophectoderm than those derived by conventional methods. This method can expand the application of iPSCs to research on early human development and regenerative medicine.
Collapse
Affiliation(s)
- Akira Kunitomi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Ryoko Hirohata
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
- CiRA Foundation, Kyoto 606-8397, Japan
| | - Vanessa Arreola
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Mitsujiro Osawa
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Tomoaki M. Kato
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
- CiRA Foundation, Kyoto 606-8397, Japan
| | - Masaki Nomura
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
- CiRA Foundation, Kyoto 606-8397, Japan
| | | | - Hiroto Hara
- ID Pharma Co., Ltd., Ibaraki 300-2611, Japan
| | | | - Yasuhiro Takashima
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Kazutoshi Takahashi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Naoko Takasu
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
- CiRA Foundation, Kyoto 606-8397, Japan
| | - Shinya Yamanaka
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
- CiRA Foundation, Kyoto 606-8397, Japan
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
127
|
Cox BJ, Naismith K. Here and there a trophoblast, a transcriptional evaluation of trophoblast cell models. Cell Mol Life Sci 2022; 79:584. [PMID: 36346530 PMCID: PMC11803051 DOI: 10.1007/s00018-022-04589-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 09/23/2022] [Accepted: 10/06/2022] [Indexed: 11/10/2022]
Abstract
A recent explosion of methods to produce human trophoblast and stem cells (hTSCs) is fuelling a renewed interest in this tissue. The trophoblast is critical to reproduction by facilitating implantation, maternal physiological adaptations to pregnancy and the growth of the fetus through transport of nutrients between the mother and fetus. More broadly, the trophoblast has phenotypic properties that make it of interest to other fields. Its angiogenic and invasive properties are similar to tumours and could identify novel drug targets, and its ability to regulate immunological tolerance of the allogenic fetus could lead to improvements in transplantations. Within this review, we integrate and assess transcriptomic data of cell-based models of hTSC alongside in vivo samples to identify the utility and applicability of these models. We also integrate single-cell RNA sequencing data sets of human blastoids, stem cells and embryos to identify how these models may recapitulate early trophoblast development.
Collapse
Affiliation(s)
- Brian J Cox
- Department of Physiology, University of Toronto, 1 King's College Circle, MS 3360, Toronto, ON, M6J2J2, Canada.
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada.
| | - Kendra Naismith
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
128
|
Sozen B, Conkar D, Veenvliet JV. Carnegie in 4D? Stem-cell-based models of human embryo development. Semin Cell Dev Biol 2022; 131:44-57. [PMID: 35701286 DOI: 10.1016/j.semcdb.2022.05.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/14/2022]
Abstract
How cells build embryos is still a major mystery. Many unresolved questions require the study of the processes that pattern and shape the embryo in live specimens, in toto, across spatial and temporal scales. In mammalian embryogenesis, this remains a major challenge as the embryo develops in utero, precluding easy accessibility. For human embryos, technical, ethical and legal limitations further hamper the in-depth investigation of embryogenesis, especially beyond gastrulation stages. This has resulted in an over-reliance on model organisms, particularly mice, to understand mammalian development. However, recent efforts show critical differences between rodent and primate embryos, including timing, architecture and transcriptional regulation. Thus, a human-centric understanding of embryogenesis is much needed. To empower this, novel in vitro approaches, which coax human pluripotent stem cells to form embryonic organoids that model embryo development, are pivotal. Here, we summarize these emergent technologies that recapitulate aspects of human development "in a dish". We show how these technologies can provide insights into the molecular, cellular and morphogenetic processes that fuel the formation of a fully formed fetus, and discuss the potential of these platforms to revolutionize our understanding of human development in health and disease. Despite their clear promise, we caution against over-interpreting the extent to which these in vitro platforms model the natural embryo. In particular, we discuss how fate, form and function - a tightly coupled trinity in vivo, can be disconnected in vitro. Finally, we propose how careful benchmarking of existing models, in combination with rational protocol design based on an increased understanding of in vivo developmental dynamics and insights from mouse in vitro models of embryo development, will help guide the establishment of better models of human embryo development.
Collapse
Affiliation(s)
- Berna Sozen
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, 06510, USA; Yale Stem Cell Center, Yale University, New Haven, CT 06520, USA.
| | - Deniz Conkar
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Jesse V Veenvliet
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany; Cluster of Excellence Physics of Life, Technische Universität Dresden, 01307 Dresden, Germany.
| |
Collapse
|
129
|
Zhang Y, An C, Yu Y, Lin J, Jin L, Li C, Tan T, Yu Y, Fan Y. Epidermal growth factor induces a trophectoderm lineage transcriptome resembling that of human embryos during reconstruction of blastoids from extended pluripotent stem cells. Cell Prolif 2022; 55:e13317. [PMID: 35880490 PMCID: PMC9628219 DOI: 10.1111/cpr.13317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES This study aims to optimize the human extended pluripotent stem cell (EPSC) to trophectoderm (TE)-like cell induction with addition of EGF and improve the quality of the reconstructing blastoids. MATERIALS AND METHODS TE-like cells were differentiated from human EPSCs. RNA-seq data analysis was performed to compare with TE-like cells from multiple human pluripotent stem cells (hPSCs) and embryos. A small-scale compound selection was performed for optimizing the TE-like cell induction and the efficiency was characterized using TE-lineage markers expression by immunofluorescence stanning. Blastoids were generated by using the optimized TE-like cells and the undifferentiated human EPSCs through three-dimensional culture system. Single-cell RNA sequencing was performed to investigate the lineage segregation of the optimized blastoids to human blastocysts. RESULTS TE-like cells derived from human EPSCs exhibited similar transcriptome with TE cells from embryos. Additionally, TE-like cells from multiple naive hPSCs exhibited heterogeneous gene expression patterns and signalling pathways because of the incomplete silencing of naive-specific genes and loss of imprinting. Furthermore, with the addition of EGF, TE-like cells derived from human EPSCs enhanced the TE lineage-related signalling pathways and exhibited more similar transcriptome to human embryos. Through resembling with undifferentiated human EPSCs, we elevated the quality and efficiency of reconstructing blastoids and separated more lineage cells with precise temporal and spatial expression, especially the PE lineage. CONCLUSION Addition of EGF enhanced TE lineage differentiation and human blastoids reconstruction. The optimized blastoids could be used as a blastocyst model for simulating early embryonic development.
Collapse
Affiliation(s)
- Yingying Zhang
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education InstitutesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Chenrui An
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education InstitutesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Yanhong Yu
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education InstitutesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Jiajing Lin
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education InstitutesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Long Jin
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education InstitutesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Chaohui Li
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education InstitutesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Tao Tan
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingChina
| | - Yang Yu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and GynecologyPeking University Third HospitalBeijingChina
| | - Yong Fan
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education InstitutesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
130
|
Moris N, Shahbazi M. Unravelling the mysteries of human embryogenesis. Semin Cell Dev Biol 2022; 131:1-3. [PMID: 35753909 DOI: 10.1016/j.semcdb.2022.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Naomi Moris
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| | - Marta Shahbazi
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
131
|
Xue Y, Shang L. Are we ready for the revision of the 14-day rule? Implications from Chinese legislations guiding human embryo and embryoid research. Front Cell Dev Biol 2022; 10:1016988. [PMID: 36353513 PMCID: PMC9637635 DOI: 10.3389/fcell.2022.1016988] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/07/2022] [Indexed: 01/06/2024] Open
Abstract
The ISSCR recently released new guidelines that relaxed the 14-day rule taking away the tough barrier, and this has rekindled relevant ethical controversies and posed a fresh set of challenges to each nation's legislations and policies directly or indirectly. To understand its broad implications and the variation and impact of China's relevant national policies, we reviewed and evaluated Chinese laws, administrative regulations, departmental rules, and normative documents on fundamental and preclinical research involving human embryos from 1985 to 2022 in this paper. We have historically examined whether these regulations, including a 14-day rule, had restrictions on human embryo research, and whether and how these policies affected human embryo and embryoid research in China. We also discussed and assessed the backdrop in which China has endeavored to handle such as the need for expanding debates among justice practice, academia, and the public, and the shifting external environment influenced by fast-developing science and technology and people's culture and religions. In general, Chinese society commonly opposes giving embryos or fetuses the legal status of humans, presumably due to the Chinese public not seeming to have any strong religious beliefs regarding the embryo. On this basis, they do not strongly oppose the potential expansion of the 14-day rule. After the guidelines to strengthen governance over ethics in science, and technology were released by the Chinese government in 2022, Chinese policymakers have incorporated bioethics into the national strategic goals using a "People-Centered" approach to develop and promote an ecological civilization. Specifically, China follows the "precautionary principle" based on ethical priority as it believes that if scientific research carries any potential technological and moral risks on which no social ethical consensus has been attained, there would be a need to impose oversight for prevention and precaution. At the same time, China has adopted a hybrid legislative model of legislation and ethical regulations with criminal, civil and administrative sanctions and a 14-day limit specified within its national hESCs guidelines. This would certainly be a useful example for other countries to use when considering the possibility of developing a comprehensive, credible and sustainable regulatory framework.
Collapse
Affiliation(s)
- Yang Xue
- Law School, Tianjin University, Tianjin, China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China
| | - Lijun Shang
- School of Human Sciences, London Metropolitan University, London, United Kingdom
- Biological Security Center, London Metropolitan University, London, United Kingdom
| |
Collapse
|
132
|
Niethammer M, Burgdorf T, Wistorf E, Schönfelder G, Kleinsorge M. In vitro models of human development and their potential application in developmental toxicity testing. Development 2022; 149:276688. [DOI: 10.1242/dev.200933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Recent publications describe the development of in vitro models of human development, for which applications in developmental toxicity testing can be envisaged. To date, these regulatory assessments have exclusively been performed in animal studies, the relevance of which to adverse reactions in humans may be questioned. Recently developed cell culture-based models of embryo-fetal development, however, do not yet exhibit sufficient levels of standardisation and reproducibility. Here, the advantages and shortcomings of both in vivo and in vitro developmental toxicity testing are addressed, as well as the possibility of integrated testing strategies as a viable option in the near future.
Collapse
Affiliation(s)
- Mirjam Niethammer
- German Federal Institute for Risk Assessment, German Centre for the Protection of Laboratory Animals (Bf3R) 1 , 10589 Berlin , Germany
| | - Tanja Burgdorf
- German Federal Institute for Risk Assessment, German Centre for the Protection of Laboratory Animals (Bf3R) 1 , 10589 Berlin , Germany
| | - Elisa Wistorf
- German Federal Institute for Risk Assessment, German Centre for the Protection of Laboratory Animals (Bf3R) 1 , 10589 Berlin , Germany
| | - Gilbert Schönfelder
- German Federal Institute for Risk Assessment, German Centre for the Protection of Laboratory Animals (Bf3R) 1 , 10589 Berlin , Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health 2 , 10117 Berlin , Germany
| | - Mandy Kleinsorge
- German Federal Institute for Risk Assessment, German Centre for the Protection of Laboratory Animals (Bf3R) 1 , 10589 Berlin , Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin 3 , 10178 Berlin , Germany
| |
Collapse
|
133
|
Abstract
The complex process by which a single-celled zygote develops into a viable embryo is nothing short of a miraculous wonder of the natural world. Elucidating how this process is orchestrated in humans has long eluded the grasp of scientists due to ethical and practical limitations. Thankfully, pluripotent stem cells that resemble early developmental cell types possess the ability to mimic specific embryonic events. As such, murine and human stem cells have been leveraged by scientists to create in vitro models that aim to recapitulate different stages of early mammalian development. Here, we examine the wide variety of stem cell-based embryo models that have been developed to recapitulate and study embryonic events, from pre-implantation development through to early organogenesis. We discuss the applications of these models, key considerations regarding their importance within the field, and how such models are expected to grow and evolve to achieve exciting new milestones in the future.
Collapse
Affiliation(s)
- Aidan H. Terhune
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jeyoon Bok
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shiyu Sun
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
134
|
Giorgetti A, Gu Y, Suzuki K, Li M. Editorial: Developmental models 2.0. Front Cell Dev Biol 2022; 10:1055139. [PMID: 36313545 PMCID: PMC9597865 DOI: 10.3389/fcell.2022.1055139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Alessandra Giorgetti
- Regenerative Medicine Program, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Barcelona University, Barcelona, Spain
| | - Ying Gu
- BGI-Shenzhen, Shenzhen, China
| | - Keiichiro Suzuki
- Institute for Advanced Co-Creation Studies, Osaka University, Suita, Japan
- Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
- Graduate School of Frontier Bioscience, Osaka University, Suita, Japan
| | - Mo Li
- Bioscience Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
135
|
Bao M, Cornwall-Scoones J, Zernicka-Goetz M. Stem-cell-based human and mouse embryo models. Curr Opin Genet Dev 2022; 76:101970. [PMID: 35988317 PMCID: PMC10309046 DOI: 10.1016/j.gde.2022.101970] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 11/26/2022]
Abstract
Synthetic embryology aims to develop embryo-like structures from stem cells to provide new insight into early stages of mammalian development. Recent advances in synthetic embryology have highlighted the remarkable capacity of stem cells to self-organize under certain biochemical or biophysical stimulations, generating structures that recapitulate the fate and form of early mouse/human embryos, in which symmetry breaking, pattern formation, or proper morphogenesis can be observed spontaneously. Here we review recent progress on the design principles for different types of embryoids and discuss the impact of different biochemical and biophysical factors on the process of stem-cell self-organization. We also offer our thoughts about the principal future challenges.
Collapse
Affiliation(s)
- Min Bao
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 E. California Boulevard, Pasadena, CA 91125, USA; Mammalian Embryo and Stem Cell Group, Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK. https://twitter.com/@Min_Bao_
| | - Jake Cornwall-Scoones
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 E. California Boulevard, Pasadena, CA 91125, USA; The Francis Crick Institute, London NW1 1AT, UK. https://twitter.com/@jake_cs_
| | - Magdalena Zernicka-Goetz
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 E. California Boulevard, Pasadena, CA 91125, USA; Mammalian Embryo and Stem Cell Group, Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK.
| |
Collapse
|
136
|
Alarcon VB, Marikawa Y. Trophectoderm formation: regulation of morphogenesis and gene expressions by RHO, ROCK, cell polarity, and HIPPO signaling. Reproduction 2022; 164:R75-R86. [PMID: 35900353 PMCID: PMC9398960 DOI: 10.1530/rep-21-0478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 07/14/2022] [Indexed: 11/08/2022]
Abstract
In brief Trophectoderm is the first tissue to differentiate in the early mammalian embryo and is essential for hatching, implantation, and placentation. This review article discusses the roles of Ras homolog family members (RHO) and RHO-associated coiled-coil containing protein kinases (ROCK) in the molecular and cellular regulation of trophectoderm formation. Abstract The trophectoderm (TE) is the first tissue to differentiate during the preimplantation development of placental mammals. It constitutes the outer epithelial layer of the blastocyst and is responsible for hatching, uterine attachment, and placentation. Thus, its formation is the key initial step that enables the viviparity of mammals. Here, we first describe the general features of TE formation at the morphological and molecular levels. Prospective TE cells form an epithelial layer enclosing an expanding fluid-filled cavity by establishing the apical-basal cell polarity, intercellular junctions, microlumen, and osmotic gradient. A unique set of genes is expressed in TE that encode the transcription factors essential for the development of trophoblasts of the placenta upon implantation. TE-specific gene expressions are driven by the inhibition of HIPPO signaling, which is dependent on the prior establishment of the apical-basal polarity. We then discuss the specific roles of RHO and ROCK as essential regulators of TE formation. RHO and ROCK modulate the actomyosin cytoskeleton, apical-basal polarity, intercellular junctions, and HIPPO signaling, thereby orchestrating the epithelialization and gene expressions in TE. Knowledge of the molecular mechanisms underlying TE formation is crucial for assisted reproductive technologies in human and farm animals, as it provides foundation to help improve procedures for embryo handling and selection to achieve better reproductive outcomes.
Collapse
Affiliation(s)
- Vernadeth B. Alarcon
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, University of Hawaii John A. Burns School of Medicine, Honolulu, HI 96813, USA
| | - Yusuke Marikawa
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, University of Hawaii John A. Burns School of Medicine, Honolulu, HI 96813, USA
| |
Collapse
|
137
|
Wen L, Tang F. Organoid research on human early development and beyond. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:512-523. [PMID: 37724162 PMCID: PMC10471100 DOI: 10.1515/mr-2022-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/03/2022] [Indexed: 09/20/2023]
Abstract
The organoid field has been developing rapidly during the last decade. Organoids for human pre-, peri- and post-implantation development have opened an avenue to study these biological processes in vitro, which have been hampered by lack of accessible research models for long term. The technologies of four fields, single cell omics sequencing, genome editing and lineage tracing, microfluidics and tissue engineering, have fueled the rapid development of the organoid field. In this review, we will discuss the organoid research on human early development as well as future directions of the organoid field combining with other powerful technologies.
Collapse
Affiliation(s)
- Lu Wen
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing, P. R. China
| | - Fuchou Tang
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing, P. R. China
| |
Collapse
|
138
|
Zheng Y, Yan RZ, Sun S, Kobayashi M, Xiang L, Yang R, Goedel A, Kang Y, Xue X, Esfahani SN, Liu Y, Resto Irizarry AM, Wu W, Li Y, Ji W, Niu Y, Chien KR, Li T, Shioda T, Fu J. Single-cell analysis of embryoids reveals lineage diversification roadmaps of early human development. Cell Stem Cell 2022; 29:1402-1419.e8. [PMID: 36055194 PMCID: PMC9499422 DOI: 10.1016/j.stem.2022.08.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 06/08/2022] [Accepted: 08/11/2022] [Indexed: 01/03/2023]
Abstract
Despite its clinical and fundamental importance, our understanding of early human development remains limited. Stem cell-derived, embryo-like structures (or embryoids) allowing studies of early development without using natural embryos can potentially help fill the knowledge gap of human development. Herein, transcriptome at the single-cell level of a human embryoid model was profiled at different time points. Molecular maps of lineage diversifications from the pluripotent human epiblast toward the amniotic ectoderm, primitive streak/mesoderm, and primordial germ cells were constructed and compared with in vivo primate data. The comparative transcriptome analyses reveal a critical role of NODAL signaling in human mesoderm and primordial germ cell specification, which is further functionally validated. Through comparative transcriptome analyses and validations with human blastocysts and in vitro cultured cynomolgus embryos, we further proposed stringent criteria for distinguishing between human blastocyst trophectoderm and early amniotic ectoderm cells.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Robin Zhexuan Yan
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shiyu Sun
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mutsumi Kobayashi
- Massachusetts General Hospital Center for Cancer Research, Charlestown, MA 02129, USA
| | - Lifeng Xiang
- Department of Reproductive Medicine, the First People's Hospital of Yunnan Province, Kunming, China
| | - Ran Yang
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Alexander Goedel
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Yu Kang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Xufeng Xue
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sajedeh Nasr Esfahani
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yue Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Weisheng Wu
- BRCF Bioinformatics Core, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yunxiu Li
- Department of Reproductive Medicine, the First People's Hospital of Yunnan Province, Kunming, China
| | - Weizhi Ji
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Yuyu Niu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Kenneth R Chien
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Tianqing Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Toshihiro Shioda
- Massachusetts General Hospital Center for Cancer Research, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
139
|
Pham TXA, Panda A, Kagawa H, To SK, Ertekin C, Georgolopoulos G, van Knippenberg SSFA, Allsop RN, Bruneau A, Chui JSH, Vanheer L, Janiszewski A, Chappell J, Oberhuemer M, Tchinda RS, Talon I, Khodeer S, Rossant J, Lluis F, David L, Rivron N, Balaton BP, Pasque V. Modeling human extraembryonic mesoderm cells using naive pluripotent stem cells. Cell Stem Cell 2022; 29:1346-1365.e10. [PMID: 36055191 PMCID: PMC9438972 DOI: 10.1016/j.stem.2022.08.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/08/2022] [Accepted: 08/05/2022] [Indexed: 12/31/2022]
Abstract
A hallmark of primate postimplantation embryogenesis is the specification of extraembryonic mesoderm (EXM) before gastrulation, in contrast to rodents where this tissue is formed only after gastrulation. Here, we discover that naive human pluripotent stem cells (hPSCs) are competent to differentiate into EXM cells (EXMCs). EXMCs are specified by inhibition of Nodal signaling and GSK3B, are maintained by mTOR and BMP4 signaling activity, and their transcriptome and epigenome closely resemble that of human and monkey embryo EXM. EXMCs are mesenchymal, can arise from an epiblast intermediate, and are capable of self-renewal. Thus, EXMCs arising via primate-specific specification between implantation and gastrulation can be modeled in vitro. We also find that most of the rare off-target cells within human blastoids formed by triple inhibition (Kagawa et al., 2021) correspond to EXMCs. Our study impacts our ability to model and study the molecular mechanisms of early human embryogenesis and related defects.
Collapse
Affiliation(s)
- Thi Xuan Ai Pham
- Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Institute for Single-cell Omics (LISCO), KU Leuven-University of Leuven, 3000 Leuven, Belgium
| | - Amitesh Panda
- Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Institute for Single-cell Omics (LISCO), KU Leuven-University of Leuven, 3000 Leuven, Belgium
| | - Harunobu Kagawa
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - San Kit To
- Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Institute for Single-cell Omics (LISCO), KU Leuven-University of Leuven, 3000 Leuven, Belgium
| | - Cankat Ertekin
- Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Institute for Single-cell Omics (LISCO), KU Leuven-University of Leuven, 3000 Leuven, Belgium
| | - Grigorios Georgolopoulos
- Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Institute for Single-cell Omics (LISCO), KU Leuven-University of Leuven, 3000 Leuven, Belgium
| | - Sam S F A van Knippenberg
- Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Institute for Single-cell Omics (LISCO), KU Leuven-University of Leuven, 3000 Leuven, Belgium
| | - Ryan Nicolaas Allsop
- Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Institute for Single-cell Omics (LISCO), KU Leuven-University of Leuven, 3000 Leuven, Belgium
| | - Alexandre Bruneau
- Nantes Université, CHU Nantes, Inserm, CR2TI, UMR 1064, F-44000, Nantes, France
| | - Jonathan Sai-Hong Chui
- Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Institute for Single-cell Omics (LISCO), KU Leuven-University of Leuven, 3000 Leuven, Belgium
| | - Lotte Vanheer
- Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Institute for Single-cell Omics (LISCO), KU Leuven-University of Leuven, 3000 Leuven, Belgium
| | - Adrian Janiszewski
- Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Institute for Single-cell Omics (LISCO), KU Leuven-University of Leuven, 3000 Leuven, Belgium
| | - Joel Chappell
- Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Institute for Single-cell Omics (LISCO), KU Leuven-University of Leuven, 3000 Leuven, Belgium
| | - Michael Oberhuemer
- Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Institute for Single-cell Omics (LISCO), KU Leuven-University of Leuven, 3000 Leuven, Belgium
| | - Raissa Songwa Tchinda
- Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Institute for Single-cell Omics (LISCO), KU Leuven-University of Leuven, 3000 Leuven, Belgium
| | - Irene Talon
- Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Institute for Single-cell Omics (LISCO), KU Leuven-University of Leuven, 3000 Leuven, Belgium
| | - Sherif Khodeer
- Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Institute for Single-cell Omics (LISCO), KU Leuven-University of Leuven, 3000 Leuven, Belgium
| | - Janet Rossant
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON M5V 0B1, Canada
| | - Frederic Lluis
- Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Institute for Single-cell Omics (LISCO), KU Leuven-University of Leuven, 3000 Leuven, Belgium
| | - Laurent David
- Nantes Université, CHU Nantes, Inserm, CR2TI, UMR 1064, F-44000, Nantes, France; Nantes Université, CHU Nantes, Inserm, CNRS, BioCore, F-44000 Nantes, France
| | - Nicolas Rivron
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Bradley Philip Balaton
- Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Institute for Single-cell Omics (LISCO), KU Leuven-University of Leuven, 3000 Leuven, Belgium.
| | - Vincent Pasque
- Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Institute for Single-cell Omics (LISCO), KU Leuven-University of Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
140
|
Sharma K, Uraji J, Ammar OF, Ali ZE, Liperis G, Modi D, Ojosnegros S, Shahbazi MN, Fraire-Zamora JJ. #ESHREjc report: renewing the old: novel stem cell research for unsolved ART problems. Hum Reprod 2022; 37:2224-2227. [PMID: 35881064 DOI: 10.1093/humrep/deac163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Indexed: 11/15/2022] Open
Affiliation(s)
- Kashish Sharma
- ART Fertility Clinics LLC, Abu Dhabi, United Arab Emirates
| | - Julia Uraji
- IVF Laboratory, MVZ TFP Düsseldorf, Düsseldorf, Germany
| | - Omar Farhan Ammar
- Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Zoya E Ali
- Research & Development Department, Hertility Health Limited, London, UK
| | - George Liperis
- Westmead Fertility Centre, Institute of Reproductive Medicine, University of Sydney, Westmead, NSW, Australia
| | - Deepak Modi
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Samuel Ojosnegros
- Bioengineering in Reproductive Health, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | | | | |
Collapse
|
141
|
De Los Angeles A, Regenberg A, Mascetti V, Benvenisty N, Church G, Deng H, Izpisua Belmonte JC, Ji W, Koplin J, Loh YH, Niu Y, Pei D, Pera M, Pho N, Pinzon-Arteaga C, Saitou M, Silva JCR, Tao T, Trounson A, Warrier T, Zambidis ET. Why it is important to study human-monkey embryonic chimeras in a dish. Nat Methods 2022; 19:914-919. [PMID: 35879609 PMCID: PMC9780756 DOI: 10.1038/s41592-022-01571-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The study of human–animal chimeras is fraught with technical and ethical challenges. In this Comment, we discuss the importance and future of human–monkey chimera research within the context of current scientific and regulatory obstacles.
Collapse
Affiliation(s)
| | - Alan Regenberg
- Johns Hopkins Berman Institute of Bioethics, Johns Hopkins University, Baltimore, MD, USA
| | - Victoria Mascetti
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Nissim Benvenisty
- The Azrieli Center for Stem Cells and Genetic Research, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - George Church
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Hongkui Deng
- College of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | | | - Weizhi Ji
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Julian Koplin
- Melbourne Law School, University of Melbourne, Melbourne, Victoria, Australia
- Biomedical Ethics Research Group, Mudoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Yuin-Han Loh
- Epigenetics and Cell Fates Laboratory, A*STAR Institute of Molecular and Cell Biology, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yuyu Niu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Duanqing Pei
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | | | - Nam Pho
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Carlos Pinzon-Arteaga
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mitinori Saitou
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Jose C R Silva
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Tan Tao
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Alan Trounson
- Monash University, Clayton, Victoria, Australia
- Australian Regenerative Medicine Institute, Clayton, Victoria, Australia
| | - Tushar Warrier
- Epigenetics and Cell Fates Laboratory, A*STAR Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Elias T Zambidis
- Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
142
|
Arias AM, Marikawa Y, Moris N. Gastruloids: Pluripotent stem cell models of mammalian gastrulation and embryo engineering. Dev Biol 2022; 488:35-46. [PMID: 35537519 PMCID: PMC9477185 DOI: 10.1016/j.ydbio.2022.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 12/12/2022]
Abstract
Gastrulation is a fundamental and critical process of animal development whereby the mass of cells that results from the proliferation of the zygote transforms itself into a recognizable outline of an organism. The last few years have seen the emergence of a number of experimental models of early mammalian embryogenesis based on Embryonic Stem (ES) cells. One of this is the Gastruloid model. Gastruloids are aggregates of defined numbers of ES cells that, under defined culture conditions, undergo controlled proliferation, symmetry breaking, and the specification of all three germ layers characteristic of vertebrate embryos, and their derivatives. However, they lack brain structures and, surprisingly, reveal a disconnect between cell type specific gene expression and tissue morphogenesis, for example during somitogenesis. Gastruloids have been derived from mouse and human ES cells and several variations of the original model have emerged that reveal a hereto unknown modularity of mammalian embryos. We discuss the organization and development of gastruloids in the context of the embryonic stages that they represent, pointing out similarities and differences between the two. We also point out their potential as a reproducible, scalable and searchable experimental system and highlight some questions posed by the current menagerie of gastruloids.
Collapse
Affiliation(s)
- Alfonso Martinez Arias
- Systems Bioengineering, MELIS, Universidad Pompeu Fabra, Doctor Aiguader, 88, ICREA, Pag Lluis Companys 23, Barcelona, Spain.
| | - Yusuke Marikawa
- Institute for Biogenesis Research, University of Hawaii John A. Burns School of Medicine, Honolulu, HI, 96813, USA
| | - Naomi Moris
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| |
Collapse
|
143
|
Roberts RM, Ezashi T, Temple J, Owen JR, Soncin F, Parast MM. The role of BMP4 signaling in trophoblast emergence from pluripotency. Cell Mol Life Sci 2022; 79:447. [PMID: 35877048 PMCID: PMC10243463 DOI: 10.1007/s00018-022-04478-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/24/2022] [Accepted: 07/06/2022] [Indexed: 11/03/2022]
Abstract
The Bone Morphogenetic Protein (BMP) signaling pathway has established roles in early embryonic morphogenesis, particularly in the epiblast. More recently, however, it has also been implicated in development of extraembryonic lineages, including trophectoderm (TE), in both mouse and human. In this review, we will provide an overview of this signaling pathway, with a focus on BMP4, and its role in emergence and development of TE in both early mouse and human embryogenesis. Subsequently, we will build on these in vivo data and discuss the utility of BMP4-based protocols for in vitro conversion of primed vs. naïve pluripotent stem cells (PSC) into trophoblast, and specifically into trophoblast stem cells (TSC). PSC-derived TSC could provide an abundant, reproducible, and ethically acceptable source of cells for modeling placental development.
Collapse
Affiliation(s)
- R Michael Roberts
- Division of Animal Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Toshihiko Ezashi
- Division of Animal Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Colorado Center for Reproductive Medicine, 10290 Ridgegate Circle, Lone Tree, CO, 80124, USA
| | - Jasmine Temple
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
| | - Joseph R Owen
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Francesca Soncin
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
| | - Mana M Parast
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA.
| |
Collapse
|
144
|
Chen Y, Siriwardena D, Penfold C, Pavlinek A, Boroviak TE. An integrated atlas of human placental development delineates essential regulators of trophoblast stem cells. Development 2022; 149:275917. [PMID: 35792865 PMCID: PMC9340556 DOI: 10.1242/dev.200171] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 05/12/2022] [Indexed: 12/21/2022]
Abstract
The trophoblast lineage safeguards fetal development by mediating embryo implantation, immune tolerance, nutritional supply and gas exchange. Human trophoblast stem cells (hTSCs) provide a platform to study lineage specification of placental tissues; however, the regulatory network controlling self-renewal remains elusive. Here, we present a single-cell atlas of human trophoblast development from zygote to mid-gestation together with single-cell profiling of hTSCs. We determine the transcriptional networks of trophoblast lineages in vivo and leverage probabilistic modelling to identify a role for MAPK signalling in trophoblast differentiation. Placenta- and blastoid-derived hTSCs consistently map between late trophectoderm and early cytotrophoblast, in contrast to blastoid-trophoblast, which correspond to trophectoderm. We functionally assess the requirement of the predicted cytotrophoblast network in an siRNA-screen and reveal 15 essential regulators for hTSC self-renewal, including MAZ, NFE2L3, TFAP2C, NR2F2 and CTNNB1. Our human trophoblast atlas provides a powerful analytical resource to delineate trophoblast cell fate acquisition, to elucidate transcription factors required for hTSC self-renewal and to gauge the developmental stage of in vitro cultured cells.
Collapse
Affiliation(s)
- Yutong Chen
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK.,Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK.,Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Dylan Siriwardena
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK.,Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK.,Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Christopher Penfold
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK.,Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK.,Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | | | - Thorsten E Boroviak
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK.,Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK.,Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| |
Collapse
|
145
|
Yu X, Liang S, Chen M, Yu H, Li R, Qu Y, Kong X, Guo R, Zheng R, Izsvák Z, Sun C, Yang M, Wang J. Recapitulating early human development with 8C-like cells. Cell Rep 2022; 39:110994. [PMID: 35732112 DOI: 10.1016/j.celrep.2022.110994] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/21/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022] Open
Abstract
In human embryos, major zygotic genome activation (ZGA) initiates at the eight-cell (8C) stage. Abnormal ZGA leads to developmental defects and even contributes to the failure of human blastocyst formation or implantation. An in vitro cell model mimicking human 8C blastomeres would be invaluable to understanding the mechanisms regulating key biological events during early human development. Using the non-canonical promoter of LEUTX that putatively regulates human ZGA, we developed an 8C::mCherry reporter, which specifically marks the 8C state, to isolate rare 8C-like cells (8CLCs) from human preimplantation epiblast-like stem cells. The 8CLCs express a panel of human ZGA genes and have a unique transcriptome resembling that of the human 8C embryo. Using the 8C::mCherry reporter, we further optimize the chemical-based culture condition to increase and maintain the 8CLC population. Functionally, 8CLCs can self-organize to form blastocyst-like structures. The discovery and maintenance of 8CLCs provide an opportunity to recapitulate early human development.
Collapse
Affiliation(s)
- Xiu Yu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Shiqi Liang
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Manqi Chen
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Hanwen Yu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Ruiqi Li
- Department of Obstetrics and Gynaecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yuliang Qu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Xuhui Kong
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Ruirui Guo
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Rongyan Zheng
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Zsuzsanna Izsvák
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Chuanbo Sun
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China.
| | - Mingzhu Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| | - Jichang Wang
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
146
|
Jiang H, Du M, Li Y, Zhou T, Lei J, Liang H, Zhong Z, Al-Lamki RS, Jiang M, Yang J. ID proteins promote the survival and primed-to-naive transition of human embryonic stem cells through TCF3-mediated transcription. Cell Death Dis 2022; 13:549. [PMID: 35701409 PMCID: PMC9198052 DOI: 10.1038/s41419-022-04958-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/05/2022] [Accepted: 05/16/2022] [Indexed: 01/21/2023]
Abstract
Inhibition of DNA binding proteins 1 and 3 (ID1 and ID3) are important downstream targets of BMP signalling that are necessary for embryonic development. However, their specific roles in regulating the pluripotency of human embryonic stem cells (hESCs) remain unclear. Here, we examined the roles of ID1 and ID3 in primed and naive-like hESCs and showed that ID1 and ID3 knockout lines (IDs KO) exhibited decreased survival in both primed and naive-like state. IDs KO lines in the primed state also tended to undergo pluripotent dissolution and ectodermal differentiation. IDs KO impeded the primed-to-naive transition (PNT) of hESCs, and overexpression of ID1 in primed hESCs promoted PNT. Furthermore, single-cell RNA sequencing demonstrated that ID1 and ID3 regulated the survival and pluripotency of hESCs through the AKT signalling pathway. Finally, we showed that TCF3 mediated transcriptional inhibition of MCL1 promotes AKT phosphorylation, which was confirmed by TCF3 knockdown in KO lines. Our study suggests that IDs/TCF3 acts through AKT signalling to promote survival and maintain pluripotency of both primed and naive-like hESCs.
Collapse
Affiliation(s)
- Haibin Jiang
- grid.506261.60000 0001 0706 7839Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China ,grid.13402.340000 0004 1759 700XDepartment of Physiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Mingxia Du
- grid.506261.60000 0001 0706 7839Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yaning Li
- grid.13402.340000 0004 1759 700XDepartment of Physiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tengfei Zhou
- grid.414906.e0000 0004 1808 0918Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang China
| | - Jia Lei
- grid.13402.340000 0004 1759 700XDepartment of Physiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hongqing Liang
- grid.13402.340000 0004 1759 700XDivision of Human Reproduction and Developmental Genetics, Women’s Hospital and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang China
| | - Zhen Zhong
- grid.13402.340000 0004 1759 700XDepartment of human anatomy and histoembryology, Zhejiang University School of Medicine, Hangzhou, Zhejiang China
| | - Rafia S. Al-Lamki
- grid.5335.00000000121885934Department of Medicine, National Institute of Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Ming Jiang
- grid.13402.340000 0004 1759 700XDepartment of Gastroenterology of The Children’s Hospital, Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang China
| | - Jun Yang
- grid.13402.340000 0004 1759 700XDepartment of Physiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
147
|
Nikitina TV, Lebedev IN. Stem Cell-Based Trophoblast Models to Unravel the Genetic Causes of Human Miscarriages. Cells 2022; 11:1923. [PMID: 35741051 PMCID: PMC9221414 DOI: 10.3390/cells11121923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 02/01/2023] Open
Abstract
Miscarriage affects approximately 15% of clinically recognized pregnancies, and 1-3% of couples experience pregnancy loss recurrently. Approximately 50-60% of miscarriages result from chromosomal abnormalities, whereas up to 60% of euploid recurrent abortions harbor variants in candidate genes. The growing number of detected genetic variants requires an investigation into their role in adverse pregnancy outcomes. Since placental defects are the main cause of first-trimester miscarriages, the purpose of this review is to provide a survey of state-of-the-art human in vitro trophoblast models that can be used for the functional assessment of specific abnormalities/variants implicated in pregnancy loss. Since 2018, when primary human trophoblast stem cells were first derived, there has been rapid growth in models of trophoblast lineage. It has been found that a proper balance between self-renewal and differentiation in trophoblast progenitors is crucial for the maintenance of pregnancy. Different responses to aneuploidy have been shown in human embryonic and extra-embryonic lineages. Stem cell-based models provide a powerful tool to explore the effect of a specific aneuploidy/variant on the fetus through placental development, which is important, from a clinical point of view, for deciding on the suitability of embryos for transfer after preimplantation genetic testing for aneuploidy.
Collapse
Affiliation(s)
- Tatiana V. Nikitina
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, 634050 Tomsk, Russia;
| | | |
Collapse
|
148
|
Lendahl U. 100 plus years of stem cell research-20 years of ISSCR. Stem Cell Reports 2022; 17:1248-1267. [PMID: 35705014 PMCID: PMC9213821 DOI: 10.1016/j.stemcr.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/25/2022] [Accepted: 04/05/2022] [Indexed: 11/25/2022] Open
Abstract
The International Society for Stem Cell Research (ISSCR) celebrates its 20th anniversary in 2022. This review looks back at some of the key developments in stem cell research as well as the evolution of the ISSCR as part of that field. Important discoveries from stem cell research are described, and how the improved understanding of basic stem cell biology translates into new clinical therapies and insights into disease mechanisms is discussed. Finally, the birth and growth of ISSCR into a leading stem cell society and a respected voice for ethics, advocacy, education and policy in stem cell research are described.
Collapse
Affiliation(s)
- Urban Lendahl
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|
149
|
Diamante L, Martello G. Metabolic regulation in pluripotent stem cells. Curr Opin Genet Dev 2022; 75:101923. [PMID: 35691147 DOI: 10.1016/j.gde.2022.101923] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 11/03/2022]
Abstract
Pluripotent stem cells (PSCs) have the capacity to give rise to all cell types of the adult body and to expand rapidly while retaining genome integrity, representing a perfect tool for regenerative medicine. PSCs are obtained from preimplantation embryos as embryonic stem cells (ESCs), or by reprogramming of somatic cells as induced pluripotent stem cells (iPSCs). Understanding the metabolic requirements of PSCs is instrumental for their efficient generation, expansion and differentiation. PSCs reshape their metabolic profile during developmental progression. Fatty acid oxidation is strictly required for energy production in naive PSCs, but becomes dispensable in more advanced, or primed, PSCs. Other metabolites directly affect proliferation, differentiation or the epigenetic profile of PSCs, showing how metabolism plays an instructive role on PSC behaviour. Developmental progression of pluripotent cells can be paused, both in vitro and in vivo, in response to hormonal and metabolic alterations. Such reversible pausing has been recently linked to mammalian target of rapamycin activity, lipid metabolism and mitochondrial activity. Finally, metabolism is not simply regulated by exogenous stimuli or nutrient availability in PSCs, as key pluripotency regulators, such as Oct4, Stat3 and Tfcp2l1, actively shape the metabolic profile of PSCs.
Collapse
Affiliation(s)
- Linda Diamante
- Department of Molecular Medicine, Medical School, University of Padua, Padua, Italy
| | | |
Collapse
|
150
|
Gauster M, Moser G, Wernitznig S, Kupper N, Huppertz B. Early human trophoblast development: from morphology to function. Cell Mol Life Sci 2022; 79:345. [PMID: 35661923 PMCID: PMC9167809 DOI: 10.1007/s00018-022-04377-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/13/2022] [Accepted: 05/13/2022] [Indexed: 12/18/2022]
Abstract
Human pregnancy depends on the proper development of the embryo prior to implantation and the implantation of the embryo into the uterine wall. During the pre-implantation phase, formation of the morula is followed by internalization of blastomeres that differentiate into the pluripotent inner cell mass lineage, while the cells on the surface undergo polarization and differentiate into the trophectoderm of the blastocyst. The trophectoderm mediates apposition and adhesion of the blastocyst to the uterine epithelium. These processes lead to a stable contact between embryonic and maternal tissues, resulting in the formation of a new organ, the placenta. During implantation, the trophectoderm cells start to differentiate and form the basis for multiple specialized trophoblast subpopulations, all of which fulfilling specific key functions in placentation. They either differentiate into polar cells serving typical epithelial functions, or into apolar invasive cells that adapt the uterine wall to progressing pregnancy. The composition of these trophoblast subpopulations is crucial for human placenta development and alterations are suggested to result in placenta-associated pregnancy pathologies. This review article focuses on what is known about very early processes in human reproduction and emphasizes on morphological and functional aspects of early trophoblast differentiation and subpopulations.
Collapse
Affiliation(s)
- Martin Gauster
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Gerit Moser
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Stefan Wernitznig
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Nadja Kupper
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Berthold Huppertz
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria.
| |
Collapse
|