101
|
Abstract
Improved stem cell-derived pancreatic islet (SC-islet) differentiation protocols robustly generate insulin-secreting β cells from patient induced pluripotent stem cells (iPSCs). These advances are enabling in vitro disease modeling studies and the development of an autologous diabetes cell replacement therapy. SC-islet technology elucidates key features of human pancreas development and diabetes disease progression through the generation of pancreatic progenitors, endocrine progenitors, and β cells derived from diabetic and nondiabetic iPSCs. Combining disease modeling with gene editing and next-generation sequencing reveals the impact of diabetes-causing mutations and diabetic phenotypes on multiple islet cell types. In addition, the supply of SC-islets, containing β and other islet cell types, is unlimited, presenting an opportunity for personalized medicine and overcoming several disadvantages posed by donor islets. This review highlights relevant studies involving iPSC-β cells and progenitors, encompassing new conclusions involving cells from patients with diabetes and the therapeutic potential of iPSC-β cells. Improved differentiation protocols generate pancreatic islet from patient stem cells Diabetic stem cell-derived islet studies identified key markers for cell function Gene editing aims to address unmet needs for stem cell therapy field Stem cell-derived islets are a promising source for diabetes stem cell therapy
Collapse
|
102
|
Migliorini A, Nostro MC, Sneddon JB. Human pluripotent stem cell-derived insulin-producing cells: A regenerative medicine perspective. Cell Metab 2021; 33:721-731. [PMID: 33826915 PMCID: PMC8117263 DOI: 10.1016/j.cmet.2021.03.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tremendous progress has been made over the last two decades in the field of pancreatic beta cell replacement therapy as a curative measure for diabetes. Transplantation studies have demonstrated therapeutic efficacy, and cGMP-grade cell products are currently being deployed for the first time in human clinical trials. In this perspective, we discuss current challenges surrounding the generation, delivery, and engraftment of stem cell-derived islet-like cells, along with strategies to induce durable tolerance to grafted cells, with an eye toward a functional cellular-based therapy enabling insulin independence for patients with diabetes.
Collapse
Affiliation(s)
- Adriana Migliorini
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Maria Cristina Nostro
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Toronto General Hospital, Ajmera Transplant Centre, University Health Network, Toronto, ON M5G 1L7, Canada.
| | - Julie B Sneddon
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
103
|
Continuous Inhibition of Sonic Hedgehog Signaling Leads to Differentiation of Human-Induced Pluripotent Stem Cells into Functional Insulin-Producing β Cells. Stem Cells Int 2021. [DOI: 10.1155/2021/6681257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Human-induced pluripotent stem cell- (iPSC-) derived insulin-producing cells (IPCs) can be used for islet cell transplantation into type 1 diabetic patients and as patient-specific cells for the development of novel antidiabetic drugs. However, a method is needed to generate functional IPCs from iPSCs and simplify the protocol. We compared combinations of small molecules that could induce the differentiation of cells into a definitive endoderm and preferentially into islet precursor cells. When generated using an optimal combination of small molecules, IPCs secreted insulin in response to glucose stimulation. We constructed spheroid IPCs and optimized the culture and maturation conditions. Quantitative PCR revealed that the expression of definitive endoderm-specific markers differed depending on the combination of the small molecules. The small molecule, N-[(3,5-dimethyl-1-phenyl-1H-pyrazol-4-yl)methylene]-4-(phenylmethyl)-1-piperazinamine, induced the differentiation of cells into functional IPCs by inhibiting Sonic hedgehog signaling. Images of the 2D culture showed that IPCs formed spheroids from day 5 and continuously secreted insulin. We developed a simple differentiation method using small molecules that produced functional IPCs that responded to glucose stimulation within a relatively short period. We posit that this method along with further refinement of the differentiation process can be applied to culture IPCs that can be used in clinical trials.
Collapse
|
104
|
Haellman V, Saxena P, Jiang Y, Fussenegger M. Rational design and optimization of synthetic gene switches for controlling cell-fate decisions in pluripotent stem cells. Metab Eng 2021; 65:99-110. [PMID: 33744461 DOI: 10.1016/j.ymben.2021.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/25/2021] [Accepted: 03/09/2021] [Indexed: 11/26/2022]
Abstract
Advances in synthetic biology have enabled robust control of cell behavior by using tunable genetic circuits to regulate gene expression in a ligand-dependent manner. Such circuits can be used to direct the differentiation of pluripotent stem cells (PSCs) towards desired cell types, but rational design of synthetic gene circuits in PSCs is challenging due to the variable intracellular environment. Here, we provide a framework for implementing synthetic gene switches in PSCs based on combinations of tunable transcriptional, structural, and posttranslational elements that can be engineered as required, using the vanillic acid-controlled transcriptional activator (VanA) as a model system. We further show that the VanA system can be multiplexed with the well-established reverse tetracycline-controlled transcriptional activator (rtTA) system to enable independent control of the expression of different transcription factors in human induced PSCs in order to enhance lineage specification towards early pancreatic progenitors. This work represents a first step towards standardizing the design and construction of synthetic gene switches for building robust gene-regulatory networks to guide stem cell differentiation towards a desired cell fate.
Collapse
Affiliation(s)
- Viktor Haellman
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH, 4058, Basel, Switzerland
| | - Pratik Saxena
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH, 4058, Basel, Switzerland
| | - Yanrui Jiang
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH, 4058, Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH, 4058, Basel, Switzerland; Faculty of Science, University of Basel, Mattenstrasse 26, CH, 4058, Basel, Switzerland.
| |
Collapse
|
105
|
Zhang X, Ma Z, Song E, Xu T. Islet organoid as a promising model for diabetes. Protein Cell 2021; 13:239-257. [PMID: 33751396 PMCID: PMC7943334 DOI: 10.1007/s13238-021-00831-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
Studies on diabetes have long been hampered by a lack of authentic disease models that, ideally, should be unlimited and able to recapitulate the abnormalities involved in the development, structure, and function of human pancreatic islets under pathological conditions. Stem cell-based islet organoids faithfully recapitulate islet development in vitro and provide large amounts of three-dimensional functional islet biomimetic materials with a morphological structure and cellular composition similar to those of native islets. Thus, islet organoids hold great promise for modeling islet development and function, deciphering the mechanisms underlying the onset of diabetes, providing an in vitro human organ model for infection of viruses such as SARS-CoV-2, and contributing to drug screening and autologous islet transplantation. However, the currently established islet organoids are generally immature compared with native islets, and further efforts should be made to improve the heterogeneity and functionality of islet organoids, making it an authentic and informative disease model for diabetes. Here, we review the advances and challenges in the generation of islet organoids, focusing on human pluripotent stem cell-derived islet organoids, and the potential applications of islet organoids as disease models and regenerative therapies for diabetes.
Collapse
Affiliation(s)
- Xiaofei Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhuo Ma
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Eli Song
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Tao Xu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China. .,Guangzhou Regenerative Medicine and Health Guangdong Laboratory (Bioland Laboratory), Guangzhou, 510005, China.
| |
Collapse
|
106
|
Generation of high yield insulin-producing cells (IPCs) from various sources of stem cells. VITAMINS AND HORMONES 2021; 116:235-268. [PMID: 33752820 DOI: 10.1016/bs.vh.2021.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Type 1 diabetes mellitus occurs when beta cell mass is reduced to less than 20% of the normal level due to immune system destruction of beta cell resulting in an inability to secrete enough insulin. The prevalence of diabetes is expanding according to the American Diabetes Association and the World Health Organization (WHO), foretold to exceed 350 million by 2030. The current treatment does not cure many of the serious complications associated with the disease such as neuropathy, nephropathy, dyslipidemia, retinopathy and cardiovascular disease. Whole pancreas or isolated pancreatic islet transplantation as an alternative therapy can prevent or reduce some of the complications of diabetes. However, the shortage of matched organ or islets cells donor and alloimmune responses limit this therapeutic strategy. Recently, several reports have raised extremely promising results to use different sources of stem cells to differentiate insulin-producing cells and focus on the expansion of these alternative sources. Stem cells, due to their potential for multiple differentiation and self-renewal can differentiate into all cell types, including insulin-producing cells (IPCs). Generation of new beta cells can be achieved from various stem cell sources, including embryonic stem cells (ESCs), adult stem cells, such as mesenchymal stem cells (MSCs) and induced pluripotent stem cells (iPSCs). Thus, this chapter discusses on the assistance of cellular reprogramming of various stem cells as candidates for the generation of IPCs using transcription factors/miRNA, cytokines/small molecules and tissue engineering.
Collapse
|
107
|
Abdelalim EM. Modeling different types of diabetes using human pluripotent stem cells. Cell Mol Life Sci 2021; 78:2459-2483. [PMID: 33242105 PMCID: PMC11072720 DOI: 10.1007/s00018-020-03710-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/19/2020] [Accepted: 11/11/2020] [Indexed: 12/22/2022]
Abstract
Diabetes mellitus (DM) is a metabolic disease characterized by chronic hyperglycemia as a result of progressive loss of pancreatic β cells, which could lead to several debilitating complications. Different paths, triggered by several genetic and environmental factors, lead to the loss of pancreatic β cells and/or function. Understanding these many paths to β cell damage or dysfunction could help in identifying therapeutic approaches specific for each path. Most of our knowledge about diabetes pathophysiology has been obtained from studies on animal models, which do not fully recapitulate human diabetes phenotypes. Currently, human pluripotent stem cell (hPSC) technology is a powerful tool for generating in vitro human models, which could provide key information about the disease pathogenesis and provide cells for personalized therapies. The recent progress in generating functional hPSC-derived β cells in combination with the rapid development in genomic and genome-editing technologies offer multiple options to understand the cellular and molecular mechanisms underlying the development of different types of diabetes. Recently, several in vitro hPSC-based strategies have been used for studying monogenic and polygenic forms of diabetes. This review summarizes the current knowledge about different hPSC-based diabetes models and how these models improved our current understanding of the pathophysiology of distinct forms of diabetes. Also, it highlights the progress in generating functional β cells in vitro, and discusses the current challenges and future perspectives related to the use of the in vitro hPSC-based strategies.
Collapse
Affiliation(s)
- Essam M Abdelalim
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar.
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Education City, Doha, Qatar.
| |
Collapse
|
108
|
Lithovius V, Saarimäki-Vire J, Balboa D, Ibrahim H, Montaser H, Barsby T, Otonkoski T. SUR1-mutant iPS cell-derived islets recapitulate the pathophysiology of congenital hyperinsulinism. Diabetologia 2021; 64:630-640. [PMID: 33404684 DOI: 10.1007/s00125-020-05346-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/13/2020] [Indexed: 12/27/2022]
Abstract
AIMS/HYPOTHESIS Congenital hyperinsulinism caused by mutations in the KATP-channel-encoding genes (KATPHI) is a potentially life-threatening disorder of the pancreatic beta cells. No optimal medical treatment is available for patients with diazoxide-unresponsive diffuse KATPHI. Therefore, we aimed to create a model of KATPHI using patient induced pluripotent stem cell (iPSC)-derived islets. METHODS We derived iPSCs from a patient carrying a homozygous ABCC8V187D mutation, which inactivates the sulfonylurea receptor 1 (SUR1) subunit of the KATP-channel. CRISPR-Cas9 mutation-corrected iPSCs were used as controls. Both were differentiated to stem cell-derived islet-like clusters (SC-islets) and implanted into NOD-SCID gamma mice. RESULTS SUR1-mutant and -corrected iPSC lines both differentiated towards the endocrine lineage, but SUR1-mutant stem cells generated 32% more beta-like cells (SC-beta cells) (64.6% vs 49.0%, p = 0.02) and 26% fewer alpha-like cells (16.1% vs 21.8% p = 0.01). SUR1-mutant SC-beta cells were 61% more proliferative (1.23% vs 0.76%, p = 0.006), and this phenotype could be induced in SUR1-corrected cells with pharmacological KATP-channel inactivation. The SUR1-mutant SC-islets secreted 3.2-fold more insulin in low glucose conditions (0.0174% vs 0.0054%/min, p = 0.0021) and did not respond to KATP-channel-acting drugs in vitro. Mice carrying grafts of SUR1-mutant SC-islets presented with 38% lower fasting blood glucose (4.8 vs 7.7 mmol/l, p = 0.009) and their grafts failed to efficiently shut down insulin secretion during induced hypoglycaemia. Explanted SUR1-mutant grafts displayed an increase in SC-beta cell proportion and SC-beta cell nucleomegaly, which was independent of proliferation. CONCLUSIONS/INTERPRETATION We have created a model recapitulating the known pathophysiology of KATPHI both in vitro and in vivo. We have also identified a novel role for KATP-channel activity during human islet development. This model will enable further studies for the improved understanding and clinical management of KATPHI without the need for primary patient tissue.
Collapse
Affiliation(s)
- Väinö Lithovius
- Stem Cells and Metabolism Research Program in the Faculty of Medicine of the University of Helsinki, Helsinki, Finland.
| | - Jonna Saarimäki-Vire
- Stem Cells and Metabolism Research Program in the Faculty of Medicine of the University of Helsinki, Helsinki, Finland
| | - Diego Balboa
- Stem Cells and Metabolism Research Program in the Faculty of Medicine of the University of Helsinki, Helsinki, Finland
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Hazem Ibrahim
- Stem Cells and Metabolism Research Program in the Faculty of Medicine of the University of Helsinki, Helsinki, Finland
| | - Hossam Montaser
- Stem Cells and Metabolism Research Program in the Faculty of Medicine of the University of Helsinki, Helsinki, Finland
| | - Tom Barsby
- Stem Cells and Metabolism Research Program in the Faculty of Medicine of the University of Helsinki, Helsinki, Finland
| | - Timo Otonkoski
- Stem Cells and Metabolism Research Program in the Faculty of Medicine of the University of Helsinki, Helsinki, Finland.
| |
Collapse
|
109
|
Oakie A, Nostro MC. Harnessing Proliferation for the Expansion of Stem Cell-Derived Pancreatic Cells: Advantages and Limitations. Front Endocrinol (Lausanne) 2021; 12:636182. [PMID: 33716986 PMCID: PMC7947602 DOI: 10.3389/fendo.2021.636182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/20/2021] [Indexed: 12/13/2022] Open
Abstract
Restoring the number of glucose-responsive β-cells in patients living with diabetes is critical for achieving normoglycemia since functional β-cells are lost during the progression of both type 1 and 2 diabetes. Stem cell-derived β-cell replacement therapies offer an unprecedented opportunity to replace the lost β-cell mass, yet differentiation efficiencies and the final yield of insulin-expressing β-like cells are low when using established protocols. Driving cellular proliferation at targeted points during stem cell-derived pancreatic progenitor to β-like cell differentiation can serve as unique means to expand the final cell therapeutic product needed to restore insulin levels. Numerous studies have examined the effects of β-cell replication upon functionality, using primary islets in vitro and mouse models in vivo, yet studies that focus on proliferation in stem cell-derived pancreatic models are only just emerging in the field. This mini review will discuss the current literature on cell proliferation in pancreatic cells, with a focus on the proliferative state of stem cell-derived pancreatic progenitors and β-like cells during their differentiation and maturation. The benefits of inducing proliferation to increase the final number of β-like cells will be compared against limitations associated with driving replication, such as the blunted capacity of proliferating β-like cells to maintain optimal β-cell function. Potential strategies that may bypass the challenges induced by the up-regulation of cell cycle-associated factors during β-cell differentiation will be proposed.
Collapse
Affiliation(s)
- Amanda Oakie
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Maria Cristina Nostro
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
110
|
Bourgeois S, Sawatani T, Van Mulders A, De Leu N, Heremans Y, Heimberg H, Cnop M, Staels W. Towards a Functional Cure for Diabetes Using Stem Cell-Derived Beta Cells: Are We There Yet? Cells 2021; 10:cells10010191. [PMID: 33477961 PMCID: PMC7835995 DOI: 10.3390/cells10010191] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/12/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus is a pandemic metabolic disorder that results from either the autoimmune destruction or the dysfunction of insulin-producing pancreatic beta cells. A promising cure is beta cell replacement through the transplantation of islets of Langerhans. However, donor shortage hinders the widespread implementation of this therapy. Human pluripotent stem cells, including embryonic stem cells and induced pluripotent stem cells, represent an attractive alternative beta cell source for transplantation. Although major advances over the past two decades have led to the generation of stem cell-derived beta-like cells that share many features with genuine beta cells, producing fully mature beta cells remains challenging. Here, we review the current status of beta cell differentiation protocols and highlight specific challenges that are associated with producing mature beta cells. We address the challenges and opportunities that are offered by monogenic forms of diabetes. Finally, we discuss the remaining hurdles for clinical application of stem cell-derived beta cells and the status of ongoing clinical trials.
Collapse
Affiliation(s)
- Stephanie Bourgeois
- Beta Cell Neogenesis (BENE) Research Group, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium; (S.B.); (A.V.M.); (N.D.L.); (Y.H.); (H.H.)
| | - Toshiaki Sawatani
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, 1070 Brussels, Belgium; (T.S.); (M.C.)
| | - Annelore Van Mulders
- Beta Cell Neogenesis (BENE) Research Group, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium; (S.B.); (A.V.M.); (N.D.L.); (Y.H.); (H.H.)
| | - Nico De Leu
- Beta Cell Neogenesis (BENE) Research Group, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium; (S.B.); (A.V.M.); (N.D.L.); (Y.H.); (H.H.)
- Department of Endocrinology, University Hospital Brussels, 1090 Brussels, Belgium
- Department of Endocrinology, ASZ Aalst, 9300 Aalst, Belgium
| | - Yves Heremans
- Beta Cell Neogenesis (BENE) Research Group, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium; (S.B.); (A.V.M.); (N.D.L.); (Y.H.); (H.H.)
| | - Harry Heimberg
- Beta Cell Neogenesis (BENE) Research Group, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium; (S.B.); (A.V.M.); (N.D.L.); (Y.H.); (H.H.)
| | - Miriam Cnop
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, 1070 Brussels, Belgium; (T.S.); (M.C.)
- Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Willem Staels
- Beta Cell Neogenesis (BENE) Research Group, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium; (S.B.); (A.V.M.); (N.D.L.); (Y.H.); (H.H.)
- Service of Pediatric Endocrinology, Department of Pediatrics, KidZ Health Castle, Universitair Ziekenhuis Brussel (UZ Brussel), 1090 Brussels, Belgium
- Correspondence: ; Tel.: +32-0-24774473
| |
Collapse
|
111
|
Yabe SG, Fukuda S, Nishida J, Takeda F, Nashiro K, Okochi H. Efficient induction of pancreatic alpha cells from human induced pluripotent stem cells by controlling the timing for BMP antagonism and activation of retinoic acid signaling. PLoS One 2021; 16:e0245204. [PMID: 33428669 PMCID: PMC7799802 DOI: 10.1371/journal.pone.0245204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 12/23/2020] [Indexed: 01/15/2023] Open
Abstract
Diabetes mellitus is caused by breakdown of blood glucose homeostasis, which is maintained by an exquisite balance between insulin and glucagon produced respectively by pancreatic beta cells and alpha cells. However, little is known about the mechanism of inducing glucagon secretion from human alpha cells. Many methods for generating pancreatic beta cells from human pluripotent stem cells (hPSCs) have been reported, but only two papers have reported generation of pancreatic alpha cells from hPSCs. Because NKX6.1 has been suggested as a very important gene for determining cell fate between pancreatic beta and alpha cells, we searched for the factors affecting expression of NKX6.1 in our beta cell differentiation protocols. We found that BMP antagonism and activation of retinoic acid signaling at stage 2 (from definitive endoderm to primitive gut tube) effectively suppressed NKX6.1 expression at later stages. Using two different hPSCs lines, treatment with BMP signaling inhibitor (LDN193189) and retinoic acid agonist (EC23) at Stage 2 reduced NKX6.1 expression and allowed differentiation of almost all cells into pancreatic alpha cells in vivo after transplantation under a kidney capsule. Our study demonstrated that the cell fate of pancreatic cells can be controlled by adjusting the expression level of NKX6.1 with proper timing of BMP antagonism and activation of retinoic acid signaling during the pancreatic differentiation process. Our method is useful for efficient induction of pancreatic alpha cells from hPSCs.
Collapse
Affiliation(s)
- Shigeharu G Yabe
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Satsuki Fukuda
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Junko Nishida
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Fujie Takeda
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kiyoko Nashiro
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hitoshi Okochi
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
112
|
Sim EZ, Shiraki N, Kume S. Recent progress in pancreatic islet cell therapy. Inflamm Regen 2021; 41:1. [PMID: 33402224 PMCID: PMC7784351 DOI: 10.1186/s41232-020-00152-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/15/2020] [Indexed: 01/10/2023] Open
Abstract
Human pluripotent stem cells (PSCs), including human embryonic stem cells and induced pluripotent stem cells, are promising cell sources in regenerating pancreatic islets through in vitro directed differentiation. Recent progress in this research field has made it possible to generate glucose-responsive pancreatic islet cells from PSCs. Single-cell RNA sequencing techniques have been applied to analyze PSC-derived endocrine beta-cells, which are then compared with human islets. This has led to the identification of novel signaling pathways and molecules involved in lineage commitment during pancreatic differentiation and maturation processes. Single-cell transcriptomics are also used to construct a detailed map of in vivo endocrine differentiation of developing mouse embryos to study pancreatic islet development. Mimicking those occurring in vivo, it was reported that differentiating PSCs can generate similar islet cell structures, while metabolomics analysis highlighted key components involved in PSC-derived pancreatic islet cell function, providing information for the improvement of in vitro pancreatic maturation procedures. In addition, cell transplantation into diabetic animal models, together with the cell delivery system, is studied to ensure the therapeutic potentials of PSC-derived pancreatic islet cells. Combined with gene-editing technology, the engineered mutation-corrected PSC lines originated from diabetes patients could be differentiated into functional pancreatic islet cells, suggesting possible autologous cell therapy in the future. These PSC-derived pancreatic islet cells are a potential tool for studies of disease modeling and drug testing. Herein, we outlined the directed differentiation procedures of PSC-derived pancreatic islet cells, novel findings through transcriptome and metabolome studies, and recent progress in disease modeling.
Collapse
Affiliation(s)
- Erinn Zixuan Sim
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Nobuaki Shiraki
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Shoen Kume
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan.
| |
Collapse
|
113
|
Helman A, Melton DA. A Stem Cell Approach to Cure Type 1 Diabetes. Cold Spring Harb Perspect Biol 2021; 13:cshperspect.a035741. [PMID: 32122884 PMCID: PMC7778150 DOI: 10.1101/cshperspect.a035741] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Treatment of type 1 diabetes with insulin injection is expensive, complicated, and insufficient. While cadaveric islet transplantations coupled with immunosuppressants can cure diabetes, the scarcity of acceptable islets is problematic. Developmental research on pancreas formation has informed in vitro differentiation of human pluripotent stem cells into functional islets. Although generating β cells from stem cells offers a potential cure for type 1 diabetes, several challenges remain, including protecting the cells from the immune system.
Collapse
|
114
|
Balboa D, Iworima DG, Kieffer TJ. Human Pluripotent Stem Cells to Model Islet Defects in Diabetes. Front Endocrinol (Lausanne) 2021; 12:642152. [PMID: 33828531 PMCID: PMC8020750 DOI: 10.3389/fendo.2021.642152] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
Diabetes mellitus is characterized by elevated levels of blood glucose and is ultimately caused by insufficient insulin production from pancreatic beta cells. Different research models have been utilized to unravel the molecular mechanisms leading to the onset of diabetes. The generation of pancreatic endocrine cells from human pluripotent stem cells constitutes an approach to study genetic defects leading to impaired beta cell development and function. Here, we review the recent progress in generating and characterizing functional stem cell-derived beta cells. We summarize the diabetes disease modeling possibilities that stem cells offer and the challenges that lie ahead to further improve these models.
Collapse
Affiliation(s)
- Diego Balboa
- Regulatory Genomics and Diabetes, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- *Correspondence: Diego Balboa,
| | - Diepiriye G. Iworima
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Timothy J. Kieffer
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
115
|
Generation of Functional Insulin-Producing Cells from Mouse Embryonic Stem Cells Through Protein Transduction of Transcription Factors. Methods Mol Biol 2020. [PMID: 33336272 DOI: 10.1007/978-1-0716-0943-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
In this chapter, we describe a simple and unique method for the differentiation of mouse embryonic stem cells into insulin-producing cells. In addition to cytokines and growth factors, key transcription factors for pancreatic development are applied in this method through protein transduction technology. Furthermore, a combination of nanofiber plates and laminin coatings improves the yield of differentiated cells. The insulin-producing cells derived through this method express marker genes of mature β-cells and have an ability to secrete insulin; therefore, these cells are useful for fundamental studies on pancreatic development, drug development, and regenerative medicine for diabetes.
Collapse
|
116
|
Arroyave F, Montaño D, Lizcano F. Diabetes Mellitus Is a Chronic Disease that Can Benefit from Therapy with Induced Pluripotent Stem Cells. Int J Mol Sci 2020; 21:ijms21228685. [PMID: 33217903 PMCID: PMC7698772 DOI: 10.3390/ijms21228685] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/20/2020] [Accepted: 10/31/2020] [Indexed: 12/17/2022] Open
Abstract
Diabetes mellitus (DM) is one of the main causes of morbidity and mortality, with an increasing incidence worldwide. The impact of DM on public health in developing countries has triggered alarm due to the exaggerated costs of the treatment and monitoring of patients with this disease. Considerable efforts have been made to try to prevent the onset and reduce the complications of DM. However, because insulin-producing pancreatic β-cells progressively deteriorate, many people must receive insulin through subcutaneous injection. Additionally, current therapies do not have consistent results regarding the prevention of chronic complications. Leveraging the approval of real-time continuous glucose monitors and sophisticated algorithms that partially automate insulin infusion pumps has improved glycemic control, decreasing the burden of diabetes management. However, these advances are facing physiologic barriers. New findings in molecular and cellular biology have produced an extraordinary advancement in tissue development for the treatment of DM. Obtaining pancreatic β-cells from somatic cells is a great resource that currently exists for patients with DM. Although this therapeutic option has great prospects for patients, some challenges remain for this therapeutic plan to be used clinically. The purpose of this review is to describe the new techniques in cell biology and regenerative medicine as possible treatments for DM. In particular, this review highlights the origin of induced pluripotent cells (iPSCs) and how they have begun to emerge as a regenerative treatment that may mitigate the pathology of this disease.
Collapse
Affiliation(s)
- Felipe Arroyave
- Doctoral Program in Biosciences, Universidad de La Sabana, Chía 250008, CU, Colombia;
| | - Diana Montaño
- Center of Biomedical Investigation (CIBUS), Universidad de La Sabana, Chía 250008, CU, Colombia;
| | - Fernando Lizcano
- Doctoral Program in Biosciences, Universidad de La Sabana, Chía 250008, CU, Colombia;
- Center of Biomedical Investigation (CIBUS), Universidad de La Sabana, Chía 250008, CU, Colombia;
- Correspondence: ; Tel.: +57-3144120052 or +57-18615555 (ext. 23906)
| |
Collapse
|
117
|
Insulin/Glucose-Responsive Cells Derived from Induced Pluripotent Stem Cells: Disease Modeling and Treatment of Diabetes. Cells 2020; 9:cells9112465. [PMID: 33198288 PMCID: PMC7696367 DOI: 10.3390/cells9112465] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 12/21/2022] Open
Abstract
Type 2 diabetes, characterized by dysfunction of pancreatic β-cells and insulin resistance in peripheral organs, accounts for more than 90% of all diabetes. Despite current developments of new drugs and strategies to prevent/treat diabetes, there is no ideal therapy targeting all aspects of the disease. Restoration, however, of insulin-producing β-cells, as well as insulin-responsive cells, would be a logical strategy for the treatment of diabetes. In recent years, generation of transplantable cells derived from stem cells in vitro has emerged as an important research area. Pluripotent stem cells, either embryonic or induced, are alternative and feasible sources of insulin-secreting and glucose-responsive cells. This notwithstanding, consistent generation of robust glucose/insulin-responsive cells remains challenging. In this review, we describe basic concepts of the generation of induced pluripotent stem cells and subsequent differentiation of these into pancreatic β-like cells, myotubes, as well as adipocyte- and hepatocyte-like cells. Use of these for modeling of human disease is now feasible, while development of replacement therapies requires continued efforts.
Collapse
|
118
|
Kimura A, Toyoda T, Iwasaki M, Hirama R, Osafune K. Combined Omics Approaches Reveal the Roles of Non-canonical WNT7B Signaling and YY1 in the Proliferation of Human Pancreatic Progenitor Cells. Cell Chem Biol 2020; 27:1561-1572.e7. [PMID: 33125912 DOI: 10.1016/j.chembiol.2020.08.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/18/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023]
Abstract
The proliferation of human pancreatic progenitor cells (PPCs) is critical for developing cell therapies for diabetes. Here, using transcriptome analysis combined with small interfering RNA (siRNA) screening, we revealed that WNT7B is a downstream growth factor of AT7867, a compound known to promote the proliferation of PPCs generated from human pluripotent stem cells. Feeder cell lines stably expressing mouse Wnt7a or Wnt7b, but not other Wnts, enhanced PPC proliferation in the absence of AT7867. Importantly, Wnt7a/b ligands did not activate the canonical Wnt pathway, and PPC proliferation depended on the non-canonical Wnt/PKC pathway. A comparison of the phosphoproteome in response to AT7867 or a newly synthesized AT7867 derivative uncovered the function of YY1 as a transcriptional regulator of WNT7B. Overall, our data highlight unknown roles of non-canonical WNT7B/PKC signaling and YY1 in human PPC proliferation and will contribute to the stable supply of a cell source for pancreatic disease modeling and therapeutic applications.
Collapse
Affiliation(s)
- Azuma Kimura
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Taro Toyoda
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Mio Iwasaki
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Ryusuke Hirama
- Research Institute for Bioscience Products and Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Kanagawa 210-8681, Japan
| | - Kenji Osafune
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan.
| |
Collapse
|
119
|
Aigha II, Abdelalim EM. NKX6.1 transcription factor: a crucial regulator of pancreatic β cell development, identity, and proliferation. Stem Cell Res Ther 2020; 11:459. [PMID: 33121533 PMCID: PMC7597038 DOI: 10.1186/s13287-020-01977-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
Understanding the biology underlying the mechanisms and pathways regulating pancreatic β cell development is necessary to understand the pathology of diabetes mellitus (DM), which is characterized by the progressive reduction in insulin-producing β cell mass. Pluripotent stem cells (PSCs) can potentially offer an unlimited supply of functional β cells for cellular therapy and disease modeling of DM. Homeobox protein NKX6.1 is a transcription factor (TF) that plays a critical role in pancreatic β cell function and proliferation. In human pancreatic islet, NKX6.1 expression is exclusive to β cells and is undetectable in other islet cells. Several reports showed that activation of NKX6.1 in PSC-derived pancreatic progenitors (MPCs), expressing PDX1 (PDX1+/NKX6.1+), warrants their future commitment to monohormonal β cells. However, further differentiation of MPCs lacking NKX6.1 expression (PDX1+/NKX6.1−) results in an undesirable generation of non-functional polyhormonal β cells. The importance of NKX6.1 as a crucial regulator in MPC specification into functional β cells directs attentions to further investigating its mechanism and enhancing NKX6.1 expression as a means to increase β cell function and mass. Here, we shed light on the role of NKX6.1 during pancreatic β cell development and in directing the MPCs to functional monohormonal lineage. Furthermore, we address the transcriptional mechanisms and targets of NKX6.1 as well as its association with diabetes.
Collapse
Affiliation(s)
- Idil I Aigha
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar.,Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Essam M Abdelalim
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar. .,Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar.
| |
Collapse
|
120
|
Li X, Yang KY, Chan VW, Leung KT, Zhang XB, Wong AS, Chong CCN, Wang CC, Ku M, Lui KO. Single-Cell RNA-Seq Reveals that CD9 Is a Negative Marker of Glucose-Responsive Pancreatic β-like Cells Derived from Human Pluripotent Stem Cells. Stem Cell Reports 2020; 15:1111-1126. [PMID: 33096048 PMCID: PMC7663789 DOI: 10.1016/j.stemcr.2020.09.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/21/2022] Open
Abstract
To date, it remains unclear if there are specific cell-surface markers for purifying glucose-responsive pancreatic β-like cells derived from human pluripotent stem cells (hPSCs). In searching for this, we generated an efficient protocol for differentiating β-like cells from human embryonic stem cells. We performed single-cell RNA sequencing and found that CD9 is a negative cell-surface marker of β-like cells, as most INS+ cells are CD9−. We purified β-like cells for spontaneous formation of islet-like organoids against CD9, and found significantly more NKX6.1+MAFA+C-PEPTIDE+ β-like cells in the CD9− than in the CD9+ population. CD9− cells also demonstrate better glucose responsiveness than CD9+ cells. In humans, we observe more CD9+C-PEPTIDE+ β cells in the fetal than in the adult cadaveric islets and more Ki67+ proliferating cells among CD9+ fetal β cells. Taken together, our experiments show that CD9 is a cell-surface marker for negative enrichment of glucose-responsive β-like cells differentiated from hPSCs. scRNA-seq reveals the heterogeneity of hPSC-derived β-like cells CD9 is preferentially expressed by immature and proliferating human β cells CD9 may not have a functional role in human β-like cell differentiation CD9 is a negative cell-surface marker for enrichment of GSIS+ human β-like cells
Collapse
Affiliation(s)
- Xisheng Li
- Department of Chemical Pathology; Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Kevin Y Yang
- Department of Chemical Pathology; Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Vicken W Chan
- Department of Chemical Pathology; Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Kam Tong Leung
- Department of Paediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiao-Bing Zhang
- Department of Medicine, Loma Linda University, Loma Linda, CA, U.S.A
| | - Alan S Wong
- School of Biomedical Sciences and Department of Electrical Engineering, University of Hong Kong, Hong Kong, China
| | - Charing C N Chong
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Manching Ku
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kathy O Lui
- Department of Chemical Pathology; Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
121
|
Tran R, Moraes C, Hoesli CA. Developmentally-Inspired Biomimetic Culture Models to Produce Functional Islet-Like Cells From Pluripotent Precursors. Front Bioeng Biotechnol 2020; 8:583970. [PMID: 33117786 PMCID: PMC7576674 DOI: 10.3389/fbioe.2020.583970] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/08/2020] [Indexed: 12/28/2022] Open
Abstract
Insulin-producing beta cells sourced from pluripotent stem cells hold great potential as a virtually unlimited cell source to treat diabetes. Directed pancreatic differentiation protocols aim to mimic various stimuli present during embryonic development through sequential changes of in vitro culture conditions. This is commonly accomplished by the timed addition of soluble signaling factors, in conjunction with cell-handling steps such as the formation of 3D cell aggregates. Interestingly, when stem cells at the pancreatic progenitor stage are transplanted, they form functional insulin-producing cells, suggesting that in vivo microenvironmental cues promote beta cell specification. Among these cues, biophysical stimuli have only recently emerged in the context of optimizing pancreatic differentiation protocols. This review focuses on studies of cell–microenvironment interactions and their impact on differentiating pancreatic cells when considering cell signaling, cell–cell and cell–ECM interactions. We highlight the development of in vitro cell culture models that allow systematic studies of pancreatic cell mechanobiology in response to extracellular matrix proteins, biomechanical effects, soluble factor modulation of biomechanics, substrate stiffness, fluid flow and topography. Finally, we explore how these new mechanical insights could lead to novel pancreatic differentiation protocols that improve efficiency, maturity, and throughput.
Collapse
Affiliation(s)
- Raymond Tran
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada
| | - Christopher Moraes
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada.,Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Corinne A Hoesli
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada.,Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| |
Collapse
|
122
|
Davis JC, Helman A, Rivera-Feliciano J, Langston CM, Engquist EN, Melton DA. Live Cell Monitoring and Enrichment of Stem Cell-Derived β Cells Using Intracellular Zinc Content as a Population Marker. ACTA ACUST UNITED AC 2020; 51:e99. [PMID: 31756031 PMCID: PMC6876704 DOI: 10.1002/cpsc.99] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Our laboratory and others have developed protocols to generate glucose‐responsive stem cell–derived β cells in vitro. The cells resulting from these protocols could supplement or replace the use of human cadaveric islets for cell‐based therapy for diabetes. The combination of an unlimited supply of pluripotent stem cell–derived β cells and gene‐editing approaches will facilitate numerous in vitro studies not possible with cadaveric islets. Here, we describe a protocol for fluorescent labeling and isolation of stem cell–derived β cells. This purification of SC‐β cells is based on intracellular zinc content and is a simple method to complement other approaches for generating and assaying these cells. © 2019 The Authors. Basic Protocol: Fluorescent labeling and isolation of stem cell‐derived β cells
Collapse
Affiliation(s)
- Jeffrey C Davis
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts.,Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts
| | - Aharon Helman
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts.,Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts
| | - José Rivera-Feliciano
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts.,Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts
| | - Christine M Langston
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts.,Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts
| | - Elise N Engquist
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts.,Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts
| | - Douglas A Melton
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts.,Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts.,Howard Hughes Medical Institute, Chevy Chase, Maryland
| |
Collapse
|
123
|
Dettmer R, Cirksena K, Münchhoff J, Kresse J, Diekmann U, Niwolik I, Buettner FFR, Naujok O. FGF2 Inhibits Early Pancreatic Lineage Specification during Differentiation of Human Embryonic Stem Cells. Cells 2020; 9:cells9091927. [PMID: 32825270 PMCID: PMC7565644 DOI: 10.3390/cells9091927] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 02/07/2023] Open
Abstract
Growth factors are important regulators during organ development. For many vertebrates (but not humans) it is known how they contribute to the formation and expansion of PDX1-positive cells during pancreas organogenesis. Here, the effects of the fibroblast growth factors FGF2, FGF7, FGF10, and epidermal growth factor (EGF) on pancreas development in humans were assessed by using human pluripotent stem cells (hPSCs). During this, FGF2 was identified as a potent anti-pancreatic factor whereas FGF7, FGF10, and EGF increased the cell mass while retaining PDX1-positivity. FGF2 increased the expression of the anti-pancreatic factor sonic hedgehog (SHH) while suppressing PDX1 in a dose-dependent manner. Differentiating cells secreted SHH to the medium and we interrogated the cells’ secretome during differentiation to globally examine the composition of secreted signaling factors. Members of the TGF-beta-, Wnt-, and FGF-pathways were detected. FGF17 showed a suppressive anti-pancreatic effect comparable to FGF2. By inhibition of specific branches of FGF-receptor signaling, we allocated the SHH-induction by FGF2 to MEK/ERK-signaling and the anti-pancreatic effect of FGF2 to the receptor variant FGFR1c or 3c. Altogether, we report findings on the paracrine activity of differentiating hPSCs during generation of pancreatic progenitors. These observations suggest a different role for FGF2 in humans compared to animal models of pancreas organogenesis.
Collapse
|
124
|
Velazco-Cruz L, Goedegebuure MM, Millman JR. Advances Toward Engineering Functionally Mature Human Pluripotent Stem Cell-Derived β Cells. Front Bioeng Biotechnol 2020; 8:786. [PMID: 32733873 PMCID: PMC7363766 DOI: 10.3389/fbioe.2020.00786] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/22/2020] [Indexed: 12/31/2022] Open
Abstract
Human stem cell-derived β (SC-β) cells have the potential to revolutionize diabetes treatment through disease modeling, drug screening, and cellular therapy. SC-β cells are likely to represent an early clinical translation of differentiated human pluripotent stem cells (hPSC). In 2014, two groups generated the first in vitro-differentiated glucose-responsive SC-β cells, but their functional maturation at the time was low. This review will discuss recent advances in the engineering of SC-β cells to understand and improve SC-β cell differentiation and functional maturation, particularly new differentiation strategies achieving dynamic glucose-responsive insulin secretion with rapid correction to normoglycemia when transplanted into diabetic mice.
Collapse
Affiliation(s)
- Leonardo Velazco-Cruz
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO, United States
| | - Madeleine M Goedegebuure
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO, United States.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Jeffrey R Millman
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO, United States.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
125
|
Chen S, Du K, Zou C. Current progress in stem cell therapy for type 1 diabetes mellitus. Stem Cell Res Ther 2020; 11:275. [PMID: 32641151 PMCID: PMC7346484 DOI: 10.1186/s13287-020-01793-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/19/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023] Open
Abstract
Type 1 diabetes mellitus (T1DM) is the most common chronic autoimmune disease in young patients and is characterized by the loss of pancreatic β cells; as a result, the body becomes insulin deficient and hyperglycemic. Administration or injection of exogenous insulin cannot mimic the endogenous insulin secreted by a healthy pancreas. Pancreas and islet transplantation have emerged as promising treatments for reconstructing the normal regulation of blood glucose in T1DM patients. However, a critical shortage of pancreases and islets derived from human organ donors, complications associated with transplantations, high cost, and limited procedural availability remain bottlenecks in the widespread application of these strategies. Attempts have been directed to accommodate the increasing population of patients with T1DM. Stem cell therapy holds great potential for curing patients with T1DM. With the advent of research on stem cell therapy for various diseases, breakthroughs in stem cell-based therapy for T1DM have been reported. However, many unsolved issues need to be addressed before stem cell therapy will be clinically feasible for diabetic patients. In this review, we discuss the current research advances in strategies to obtain insulin-producing cells (IPCs) from different precursor cells and in stem cell-based therapies for diabetes.
Collapse
Affiliation(s)
- Shuai Chen
- Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Center for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Kechen Du
- Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Center for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Chunlin Zou
- Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Center for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
126
|
Kishore S, De Franco E, Cardenas-Diaz FL, Letourneau-Freiberg LR, Sanyoura M, Osorio-Quintero C, French DL, Greeley SAW, Hattersley AT, Gadue P. A Non-Coding Disease Modifier of Pancreatic Agenesis Identified by Genetic Correction in a Patient-Derived iPSC Line. Cell Stem Cell 2020; 27:137-146.e6. [PMID: 32442395 PMCID: PMC7335348 DOI: 10.1016/j.stem.2020.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 12/17/2019] [Accepted: 04/30/2020] [Indexed: 12/27/2022]
Abstract
GATA6 is a critical regulator of pancreatic development, with heterozygous mutations in this transcription factor being the most common cause of pancreatic agenesis. To study the variability in disease phenotype among individuals harboring these mutations, a patient-induced pluripotent stem cell model was used. Interestingly, GATA6 protein expression remained depressed in pancreatic progenitor cells even after correction of the coding mutation. Screening the regulatory regions of the GATA6 gene in these patient cells and 32 additional agenesis patients revealed a higher minor allele frequency of a SNP 3' of the GATA6 coding sequence. Introduction of this minor allele SNP by genome editing confirmed its functionality in depressing GATA6 expression and the efficiency of pancreas differentiation. This work highlights a possible genetic modifier contributing to pancreatic agenesis and demonstrates the usefulness of using patient-induced pluripotent stem cells for targeted discovery and validation of non-coding gene variants affecting gene expression and disease penetrance.
Collapse
Affiliation(s)
- Siddharth Kishore
- Department of Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elisa De Franco
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter EX2 5DW, UK
| | - Fabian L Cardenas-Diaz
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Lisa R Letourneau-Freiberg
- Kovler Diabetes Center and the Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, University of Chicago Medicine, Chicago, IL, USA
| | - May Sanyoura
- Kovler Diabetes Center and the Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, University of Chicago Medicine, Chicago, IL, USA
| | - Catherine Osorio-Quintero
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Deborah L French
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Siri Atma W Greeley
- Kovler Diabetes Center and the Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, University of Chicago Medicine, Chicago, IL, USA
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter EX2 5DW, UK
| | - Paul Gadue
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
127
|
Carpenedo RL, Kwon SY, Tanner RM, Yockell-Lelièvre J, Choey C, Doré C, Ho M, Stewart DJ, Perkins TJ, Stanford WL. Transcriptomically Guided Mesendoderm Induction of Human Pluripotent Stem Cells Using a Systematically Defined Culture Scheme. Stem Cell Reports 2020; 13:1111-1125. [PMID: 31813826 PMCID: PMC6915803 DOI: 10.1016/j.stemcr.2019.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 11/03/2019] [Accepted: 11/05/2019] [Indexed: 01/11/2023] Open
Abstract
Human pluripotent stem cells (hPSCs) are an essential cell source in tissue engineering, studies of development, and disease modeling. Efficient, broadly amenable protocols for rapid lineage induction of hPSCs are of great interest in the stem cell biology field. We describe a simple, robust method for differentiation of hPSCs into mesendoderm in defined conditions utilizing single-cell seeding (SCS) and BMP4 and Activin A (BA) treatment. BA treatment was readily incorporated into existing protocols for chondrogenic and endothelial progenitor cell differentiation, while fine-tuning of BA conditions facilitated definitive endoderm commitment. After prolonged differentiation in vitro or in vivo, BA pretreatment resulted in higher mesoderm and endoderm levels at the expense of ectoderm formation. These data demonstrate that SCS with BA treatment is a powerful method for induction of mesendoderm that can be adapted for use in mesoderm and endoderm differentiation. Single-cell seeding with BMP4/Activin A treatment supports hPSC mesendoderm induction The mesendoderm protocol is amenable to mesoderm and endoderm lineage differentiation Mesoderm/endoderm formation was enhanced in basal conditions in vitro and in vivo
Collapse
Affiliation(s)
- Richard L Carpenedo
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Ottawa Institute of Systems Biology, Ottawa, ON, Canada.
| | - Sarah Y Kwon
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - R Matthew Tanner
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Ottawa Institute of Systems Biology, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Julien Yockell-Lelièvre
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Chandarong Choey
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Carole Doré
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Mirabelle Ho
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Duncan J Stewart
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Theodore J Perkins
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Ottawa Bioinformatics Core Facility, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - William L Stanford
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Ottawa Institute of Systems Biology, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
128
|
Bi H, Karanth SS, Ye K, Stein R, Jin S. Decellularized Tissue Matrix Enhances Self-Assembly of Islet Organoids from Pluripotent Stem Cell Differentiation. ACS Biomater Sci Eng 2020; 6:4155-4165. [PMID: 33463310 DOI: 10.1021/acsbiomaterials.0c00088] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Regenerating human islet organoids from stem cells remains a significant challenge because of our limited knowledge on cues essential for developing the endocrine organoids in vitro. In this study, we discovered that a natural material prepared from a decellularized rat pancreatic extracellular matrix (dpECM) induces the self-assembly of human islet organoids during induced pluripotent stem cell (iPSC) pancreatic differentiation. For the first time, we demonstrated that the iPSC-derived islet organoids formed in the presence of the dpECM are capable of glucose-responsive secretion of both insulin and glucagon, two major hormones that maintain blood glucose homeostasis. The characterization of the organoids revealed that the organoids consisted of all major endocrine cell types, including α, β, δ, and pancreatic polypeptide cells, that were assembled into a tissue architecture similar to that of human islets. The exposure of iPSCs to the dpECM during differentiation resulted in considerably elevated expression of key pancreatic transcription factors such as PDX-1, MAFA, and NKX6.1 and the production of all major hormones, including insulin, glucagon, somatostatin, and pancreatic polypeptide from stem cell-derived organoids. This study highlights the importance of natural, bioactive biomaterials for building microenvironments crucial to regenerating islet organoids from stem cells.
Collapse
Affiliation(s)
- Huanjing Bi
- Department of Biomedical Engineering, Binghamton University, State University of New York (SUNY), Binghamton, New York 13902, United States
| | - Soujanya S Karanth
- Department of Biomedical Engineering, Binghamton University, State University of New York (SUNY), Binghamton, New York 13902, United States
| | - Kaiming Ye
- Department of Biomedical Engineering, Binghamton University, State University of New York (SUNY), Binghamton, New York 13902, United States.,Center of Biomanufacturing for Regenerative Medicine, Binghamton University, State University of New York (SUNY), Binghamton, New York 13902, United States
| | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Sha Jin
- Department of Biomedical Engineering, Binghamton University, State University of New York (SUNY), Binghamton, New York 13902, United States.,Center of Biomanufacturing for Regenerative Medicine, Binghamton University, State University of New York (SUNY), Binghamton, New York 13902, United States
| |
Collapse
|
129
|
Godoy-Parejo C, Deng C, Zhang Y, Liu W, Chen G. Roles of vitamins in stem cells. Cell Mol Life Sci 2020; 77:1771-1791. [PMID: 31676963 PMCID: PMC11104807 DOI: 10.1007/s00018-019-03352-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/12/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022]
Abstract
Stem cells can differentiate to diverse cell types in our body, and they hold great promises in both basic research and clinical therapies. For specific stem cell types, distinctive nutritional and signaling components are required to maintain the proliferation capacity and differentiation potential in cell culture. Various vitamins play essential roles in stem cell culture to modulate cell survival, proliferation and differentiation. Besides their common nutritional functions, specific vitamins are recently shown to modulate signal transduction and epigenetics. In this article, we will first review classical vitamin functions in both somatic and stem cell cultures. We will then focus on how stem cells could be modulated by vitamins beyond their nutritional roles. We believe that a better understanding of vitamin functions will significantly benefit stem cell research, and help realize their potentials in regenerative medicine.
Collapse
Affiliation(s)
- Carlos Godoy-Parejo
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Chunhao Deng
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Yumeng Zhang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Weiwei Liu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
- Bioimaging and Stem Cell Core Facility, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Guokai Chen
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China.
- Bioimaging and Stem Cell Core Facility, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China.
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China.
| |
Collapse
|
130
|
Lorberbaum DS, Docherty FM, Sussel L. Animal Models of Pancreas Development, Developmental Disorders, and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1236:65-85. [PMID: 32304069 DOI: 10.1007/978-981-15-2389-2_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The pancreas is a glandular organ responsible for diverse homeostatic functions, including hormone production from the endocrine islet cells to regulate blood sugar levels and enzyme secretion from the exocrine acinar cells to facilitate food digestion. These pancreatic functions are essential for life; therefore, preserving pancreatic function is of utmost importance. Pancreas dysfunction can arise either from developmental disorders or adult onset disease, both of which are caused by defects in shared molecular pathways. In this chapter, we discuss what is known about the molecular mechanisms controlling pancreas development, how disruption of these mechanisms can lead to developmental defects and disease, and how essential pancreas functions can be modeled using human pluripotent stem cells. At the core of understanding of these molecular processes are animal model studies that continue to be essential for elucidating the mechanisms underlying human pancreatic functions and diseases.
Collapse
Affiliation(s)
- David S Lorberbaum
- Barbara Davis Center, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Fiona M Docherty
- Barbara Davis Center, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Lori Sussel
- Barbara Davis Center, University of Colorado Anschutz Medical Center, Aurora, CO, USA.
| |
Collapse
|
131
|
Mimicking nature-made beta cells: recent advances towards stem cell-derived islets. Curr Opin Organ Transplant 2020; 24:574-581. [PMID: 31433306 DOI: 10.1097/mot.0000000000000687] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Stem cell-derived islets are likely to be useful as a future treatment for diabetes. However, the field has been limited in the ability to generate β-like cells with both phenotypic maturation and functional glucose-stimulated insulin secretion that is similar to primary human islets. The field must also establish a reliable method of delivering the cells to patients while promoting rapid in-vivo engraftment and function. Overcoming these barriers to β cell differentiation and transplantation will be key to bring this therapy to the clinic. RECENT FINDINGS The ability to generate stem cell-derived β-like cells capable of dynamic glucose-responsive insulin secretion, as well as β-like cells expressing key maturation genes has recently been demonstrated by several groups. Other groups have explored the potential of vascularized subcutaneous transplant sites, as well as endothelial cell co-transplant to support β cell survival and function following transplantation. SUMMARY The generation of stem cell-derived islets with dynamic glucose-responsive insulin secretion has brought the field closer to clinical translation, but there is still need for improving insulin content and secretory capacity, as well as understanding the factors affecting variable consistency and heterogeneity of the islet-like clusters. Other questions remain regarding how to address safety, immunogenicity and transplantation site moving forward.
Collapse
|
132
|
Hogrebe NJ, Augsornworawat P, Maxwell KG, Velazco-Cruz L, Millman JR. Targeting the cytoskeleton to direct pancreatic differentiation of human pluripotent stem cells. Nat Biotechnol 2020; 38:460-470. [PMID: 32094658 PMCID: PMC7274216 DOI: 10.1038/s41587-020-0430-6] [Citation(s) in RCA: 243] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 01/09/2020] [Indexed: 12/31/2022]
Abstract
Generation of pancreatic β cells from human pluripotent stem cells (hPSCs) holds promise as a cell replacement therapy for diabetes. In this study, we establish a link between the state of the actin cytoskeleton and the expression of pancreatic transcription factors that drive pancreatic lineage specification. Bulk and single-cell RNA sequencing demonstrated that different degrees of actin polymerization biased cells toward various endodermal lineages and that conditions favoring a polymerized cytoskeleton strongly inhibited neurogenin 3-induced endocrine differentiation. Using latrunculin A to depolymerize the cytoskeleton during endocrine induction, we developed a two-dimensional differentiation protocol for generating human pluripotent stem-cell-derived β (SC-β) cells with improved in vitro and in vivo function. SC-β cells differentiated from four hPSC lines exhibited first- and second-phase dynamic glucose-stimulated insulin secretion. Transplantation of islet-sized aggregates of these cells rapidly reversed severe preexisting diabetes in mice at a rate close to that of human islets and maintained normoglycemia for at least 9 months.
Collapse
Affiliation(s)
- Nathaniel J Hogrebe
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Punn Augsornworawat
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Kristina G Maxwell
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Leonardo Velazco-Cruz
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Jeffrey R Millman
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
133
|
Mochida T, Ueno H, Tsubooka-Yamazoe N, Hiyoshi H, Ito R, Matsumoto H, Toyoda T. Insulin-Deficient Diabetic Condition Upregulates the Insulin-Secreting Capacity of Human Induced Pluripotent Stem Cell-Derived Pancreatic Endocrine Progenitor Cells After Implantation in Mice. Diabetes 2020; 69:634-646. [PMID: 32005704 DOI: 10.2337/db19-0728] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/23/2020] [Indexed: 11/13/2022]
Abstract
The host environment is a crucial factor for considering the transplant of stem cell-derived immature pancreatic cells in patients with type 1 diabetes. Here, we investigated the effect of insulin (INS)-deficient diabetes on the fate of immature pancreatic endocrine cell grafts and the underlying mechanisms. Human induced pluripotent stem cell-derived pancreatic endocrine progenitor cells (EPCs), which contained a high proportion of chromogranin A+ NK6 homeobox 1+ cells and very few INS+ cells, were used. When the EPCs were implanted under the kidney capsule in immunodeficient mice, INS-deficient diabetes accelerated increase in plasma human C-peptide, a marker of graft-derived INS secretion. The acceleration was suppressed by INS infusion but not affected by partial attenuation of hyperglycemia by dapagliflozin, an INS-independent glucose-lowering agent. Immunohistochemical analyses indicated that the grafts from diabetic mice contained more endocrine cells including proliferative INS-producing cells compared with that from nondiabetic mice, despite no difference in whole graft mass between the two groups. These data suggest that INS-deficient diabetes upregulates the INS-secreting capacity of EPC grafts by increasing the number of endocrine cells including INS-producing cells without changing the graft mass. These findings provide useful insights into postoperative diabetic care for cell therapy using stem cell-derived pancreatic cells.
Collapse
Affiliation(s)
- Taisuke Mochida
- T-CiRA Discovery, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
- Takeda-CiRA Joint Program for iPS Cell Applications (T-CiRA), Fujisawa, Kanagawa, Japan
| | - Hikaru Ueno
- T-CiRA Discovery, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
- Takeda-CiRA Joint Program for iPS Cell Applications (T-CiRA), Fujisawa, Kanagawa, Japan
| | - Noriko Tsubooka-Yamazoe
- T-CiRA Discovery, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
- Takeda-CiRA Joint Program for iPS Cell Applications (T-CiRA), Fujisawa, Kanagawa, Japan
| | - Hideyuki Hiyoshi
- T-CiRA Discovery, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
- Takeda-CiRA Joint Program for iPS Cell Applications (T-CiRA), Fujisawa, Kanagawa, Japan
| | - Ryo Ito
- T-CiRA Discovery, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
- Takeda-CiRA Joint Program for iPS Cell Applications (T-CiRA), Fujisawa, Kanagawa, Japan
| | - Hirokazu Matsumoto
- T-CiRA Discovery, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
- Takeda-CiRA Joint Program for iPS Cell Applications (T-CiRA), Fujisawa, Kanagawa, Japan
| | - Taro Toyoda
- Takeda-CiRA Joint Program for iPS Cell Applications (T-CiRA), Fujisawa, Kanagawa, Japan
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| |
Collapse
|
134
|
Krentz NAJ, Gloyn AL. Insights into pancreatic islet cell dysfunction from type 2 diabetes mellitus genetics. Nat Rev Endocrinol 2020; 16:202-212. [PMID: 32099086 DOI: 10.1038/s41574-020-0325-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/17/2020] [Indexed: 12/30/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is an increasingly prevalent multifactorial disease that has both genetic and environmental risk factors, resulting in impaired glucose homeostasis. Genome-wide association studies (GWAS) have identified over 400 genetic signals that are associated with altered risk of T2DM. Human physiology and epigenomic data support a central role for the pancreatic islet in the pathogenesis of T2DM. This Review focuses on the promises and challenges of moving from genetic associations to molecular mechanisms and highlights efforts to identify the causal variant and effector transcripts at T2DM GWAS susceptibility loci. In addition, we examine current human models that are used to study both β-cell development and function, including EndoC-β cell lines and human induced pluripotent stem cell-derived β-like cells. We use examples of four T2DM susceptibility loci (CDKAL1, MTNR1B, SLC30A8 and PAM) to emphasize how a holistic approach involving genetics, physiology, and cellular and developmental biology can disentangle disease mechanisms at T2DM GWAS signals.
Collapse
Affiliation(s)
- Nicole A J Krentz
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
| | - Anna L Gloyn
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
- NIHR Oxford Biomedical Research Centre, Churchill Hospital, Oxford, UK.
- Stanford Diabetes Research Centre, Stanford University, Stanford, CA, USA.
| |
Collapse
|
135
|
Thakur G, Lee HJ, Jeon RH, Lee SL, Rho GJ. Small Molecule-Induced Pancreatic β-Like Cell Development: Mechanistic Approaches and Available Strategies. Int J Mol Sci 2020; 21:E2388. [PMID: 32235681 PMCID: PMC7178115 DOI: 10.3390/ijms21072388] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetes is a metabolic disease which affects not only glucose metabolism but also lipid and protein metabolism. It encompasses two major types: type 1 and 2 diabetes. Despite the different etiologies of type 1 and 2 diabetes mellitus (T1DM and T2DM, respectively), the defining features of the two forms are insulin deficiency and resistance, respectively. Stem cell therapy is an efficient method for the treatment of diabetes, which can be achieved by differentiating pancreatic β-like cells. The consistent generation of glucose-responsive insulin releasing cells remains challenging. In this review article, we present basic concepts of pancreatic organogenesis, which intermittently provides a basis for engineering differentiation procedures, mainly based on the use of small molecules. Small molecules are more auspicious than any other growth factors, as they have unique, valuable properties like cell-permeability, as well as a nonimmunogenic nature; furthermore, they offer immense benefits in terms of generating efficient functional beta-like cells. We also summarize advances in the generation of stem cell-derived pancreatic cell lineages, especially endocrine β-like cells or islet organoids. The successful induction of stem cells depends on the quantity and quality of available stem cells and the efficient use of small molecules.
Collapse
Affiliation(s)
- Gitika Thakur
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (G.T.); (H.-J.L.); (S.-L.L.)
| | - Hyeon-Jeong Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (G.T.); (H.-J.L.); (S.-L.L.)
| | - Ryoung-Hoon Jeon
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA;
| | - Sung-Lim Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (G.T.); (H.-J.L.); (S.-L.L.)
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (G.T.); (H.-J.L.); (S.-L.L.)
| |
Collapse
|
136
|
Mattis KK, Gloyn AL. From Genetic Association to Molecular Mechanisms for Islet-cell Dysfunction in Type 2 Diabetes. J Mol Biol 2020; 432:1551-1578. [PMID: 31945378 DOI: 10.1016/j.jmb.2019.12.045] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/15/2019] [Accepted: 12/17/2019] [Indexed: 12/30/2022]
Abstract
Genome-wide association studies (GWAS) have identified over 400 signals robustly associated with risk for type 2 diabetes (T2D). At the vast majority of these loci, the lead single nucleotide polymorphisms (SNPs) reside in noncoding regions of the genome, which hampers biological inference and translation of genetic discoveries into disease mechanisms. The study of these T2D risk variants in normoglycemic individuals has revealed that a significant proportion are exerting their disease risk through islet-cell dysfunction. The central role of the islet is also demonstrated by numerous studies, which have shown an enrichment of these signals in islet-specific epigenomic annotations. In recent years the emergence of authentic human beta-cell lines, and advances in genome-editing technologies coupled with improved protocols differentiating human pluripotent stem cells into beta-like cells has opened up new opportunities for T2D disease modeling. Here we review the current understanding on the genetic basis of T2D focusing on approaches, which have facilitated the identification of causal variants and their effector transcripts in human islets. We will present examples of functional studies based on animal and conventional cellular systems and highlight the potential of novel stem cell-based T2D disease models.
Collapse
Affiliation(s)
- Katia K Mattis
- Oxford Centre for Diabetes Endocrinology & Metabolism, University of Oxford, UK
| | - Anna L Gloyn
- Oxford Centre for Diabetes Endocrinology & Metabolism, University of Oxford, UK; Wellcome Trust Centre for Human Genetics, University of Oxford, UK; National Institute of Health Research, Biomedical Research Centre, Churchill Hospital, Headington, Oxford, UK.
| |
Collapse
|
137
|
Tran R, Moraes C, Hoesli CA. Controlled clustering enhances PDX1 and NKX6.1 expression in pancreatic endoderm cells derived from pluripotent stem cells. Sci Rep 2020; 10:1190. [PMID: 31988329 PMCID: PMC6985188 DOI: 10.1038/s41598-020-57787-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 01/07/2020] [Indexed: 01/26/2023] Open
Abstract
Pluripotent stem cell (PSC)-derived insulin-producing cells are a promising cell source for diabetes cellular therapy. However, the efficiency of the multi-step process required to differentiate PSCs towards pancreatic beta cells is variable between cell lines, batches and even within cultures. In adherent pancreatic differentiation protocols, we observed spontaneous local clustering of cells expressing elevated nuclear expression of pancreatic endocrine transcription factors, PDX1 and NKX6.1. Since aggregation has previously been shown to promote downstream differentiation, this local clustering may contribute to the variability in differentiation efficiencies observed within and between cultures. We therefore hypothesized that controlling and directing the spontaneous clustering process would lead to more efficient and consistent induction of pancreatic endocrine fate. Micropatterning cells in adherent microwells prompted clustering, local cell density increases, and increased nuclear accumulation of PDX1 and NKX6.1. Improved differentiation profiles were associated with distinct filamentous actin architectures, suggesting a previously overlooked role for cell-driven morphogenetic changes in supporting pancreatic differentiation. This work demonstrates that confined differentiation in cell-adhesive micropatterns may provide a facile, scalable, and more reproducible manufacturing route to drive morphogenesis and produce well-differentiated pancreatic cell clusters.
Collapse
Affiliation(s)
- Raymond Tran
- Department of Chemical Engineering, McGill University, 3610 rue University, Montreal, QC, Canada
| | - Christopher Moraes
- Department of Chemical Engineering, McGill University, 3610 rue University, Montreal, QC, Canada. .,Department of Biomedical Engineering, McGill University, 3775 rue University, Montreal, QC, Canada. .,Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, QC, Canada.
| | - Corinne A Hoesli
- Department of Chemical Engineering, McGill University, 3610 rue University, Montreal, QC, Canada. .,Department of Biomedical Engineering, McGill University, 3775 rue University, Montreal, QC, Canada.
| |
Collapse
|
138
|
Memon B, Abdelalim EM. Stem Cell Therapy for Diabetes: Beta Cells versus Pancreatic Progenitors. Cells 2020; 9:cells9020283. [PMID: 31979403 PMCID: PMC7072676 DOI: 10.3390/cells9020283] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/16/2022] Open
Abstract
Diabetes mellitus (DM) is one of the most prevalent metabolic disorders. In order to replace the function of the destroyed pancreatic beta cells in diabetes, islet transplantation is the most widely practiced treatment. However, it has several limitations. As an alternative approach, human pluripotent stem cells (hPSCs) can provide an unlimited source of pancreatic cells that have the ability to secrete insulin in response to a high blood glucose level. However, the determination of the appropriate pancreatic lineage candidate for the purpose of cell therapy for the treatment of diabetes is still debated. While hPSC-derived beta cells are perceived as the ultimate candidate, their efficiency needs further improvement in order to obtain a sufficient number of glucose responsive beta cells for transplantation therapy. On the other hand, hPSC-derived pancreatic progenitors can be efficiently generated in vitro and can further mature into glucose responsive beta cells in vivo after transplantation. Herein, we discuss the advantages and predicted challenges associated with the use of each of the two pancreatic lineage products for diabetes cell therapy. Furthermore, we address the co-generation of functionally relevant islet cell subpopulations and structural properties contributing to the glucose responsiveness of beta cells, as well as the available encapsulation technology for these cells.
Collapse
Affiliation(s)
- Bushra Memon
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, P.O。 Box 34110 Doha, Qatar;
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), P.O. Box 34110 Doha, Qatar
| | - Essam M. Abdelalim
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, P.O。 Box 34110 Doha, Qatar;
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), P.O. Box 34110 Doha, Qatar
- Correspondence: ; Tel.: +97-44-4546-432; Fax: +97-44-4541-770
| |
Collapse
|
139
|
Wesolowska-Andersen A, Jensen RR, Alcántara MP, Beer NL, Duff C, Nylander V, Gosden M, Witty L, Bowden R, McCarthy MI, Hansson M, Gloyn AL, Honore C. Analysis of Differentiation Protocols Defines a Common Pancreatic Progenitor Molecular Signature and Guides Refinement of Endocrine Differentiation. Stem Cell Reports 2019; 14:138-153. [PMID: 31883919 PMCID: PMC6962645 DOI: 10.1016/j.stemcr.2019.11.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 11/29/2019] [Accepted: 11/29/2019] [Indexed: 12/30/2022] Open
Abstract
Several distinct differentiation protocols for deriving pancreatic progenitors (PPs) from human pluripotent stem cells have been described, but it remains to be shown how similar the PPs are across protocols and how well they resemble their in vivo counterparts. Here, we evaluated three differentiation protocols, performed RNA and assay for transposase-accessible chromatin using sequencing on isolated PPs derived with these, and compared them with fetal human pancreas populations. This enabled us to define a shared transcriptional and epigenomic signature of the PPs, including several genes not previously implicated in pancreas development. Furthermore, we identified a significant and previously unappreciated cross-protocol variation of the PPs through multi-omics analysis and demonstrate how such information can be applied to refine differentiation protocols for derivation of insulin-producing beta-like cells. Together, our study highlights the importance of a detailed characterization of defined cell populations derived from distinct differentiation protocols and provides a valuable resource for exploring human pancreatic development.
Collapse
Affiliation(s)
| | | | | | - Nicola L. Beer
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, OX3 7LE Oxford, UK
| | - Claire Duff
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, OX3 7LE Oxford, UK
| | - Vibe Nylander
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, OX3 7LE Oxford, UK
| | - Matthew Gosden
- The MRC Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, UK
| | - Lorna Witty
- Wellcome Centre Human Genetics, University of Oxford, OX3 7BN Oxford, UK
| | - Rory Bowden
- Wellcome Centre Human Genetics, University of Oxford, OX3 7BN Oxford, UK
| | - Mark I. McCarthy
- Wellcome Centre Human Genetics, University of Oxford, OX3 7BN Oxford, UK,Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, OX3 7LE Oxford, UK,NIHR Oxford Biomedical Research Centre, Churchill Hospital, OX3 7LE Oxford, UK
| | | | - Anna L. Gloyn
- Wellcome Centre Human Genetics, University of Oxford, OX3 7BN Oxford, UK,Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, OX3 7LE Oxford, UK,NIHR Oxford Biomedical Research Centre, Churchill Hospital, OX3 7LE Oxford, UK
| | - Christian Honore
- Stem Cell R&D, Novo Nordisk A/S, 2760 Måløv, Denmark,Corresponding author
| |
Collapse
|
140
|
Tan M, Jiang L, Li Y, Jiang W. Dual Inhibition of BMP and WNT Signals Promotes Pancreatic Differentiation from Human Pluripotent Stem Cells. Stem Cells Int 2019; 2019:5026793. [PMID: 31885612 PMCID: PMC6914911 DOI: 10.1155/2019/5026793] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/01/2019] [Accepted: 11/04/2019] [Indexed: 11/29/2022] Open
Abstract
Pathological or functional loss of pancreatic beta cells is the cause of diabetes. Understanding how signaling pathways regulate pancreatic lineage and searching for combinations of signal modulators to promote pancreatic differentiation will definitely facilitate the robust generation of functional beta cells for curing hyperglycemia. In this study, we first tested the effect of several potent BMP inhibitors on pancreatic differentiation using human embryonic stem cells. Next, we examined the endodermal lineage bias upon potent BMP inhibitor treatment and further checked the crosstalk between signal pathways governing endodermal lineage determination. Furthermore, we improved current pancreatic differentiation system based on the signaling pathway study. Finally, we used human-induced pluripotent stem cells to validate our finding. We found BMP inhibitors indeed not only blocked hepatic lineage but also impeded intestinal lineage from human definitive endoderm unexpectedly. Signaling pathway analysis indicated potent BMP inhibitor resulted in the decrease of WNT signal activity and inhibition of WNT could contribute to the improved pancreatic differentiation. Herein, we combined the dual inhibition of BMP and WNT signaling and greatly enhanced human pancreatic progenitor differentiation as well as beta cell generation from both embryonic stem cells and induced pluripotent stem cells. Conclusively, our present work identified the crosstalk between the BMP and WNT signal pathways during human endoderm patterning and pancreas specification, and provided an improved in vitro pancreatic directed differentiation protocol from human pluripotent stem cells.
Collapse
Affiliation(s)
- Mengtian Tan
- Department of Biological Repositories, Zhongnan Hospital & Medical Research Institute, Wuhan University, Wuhan 430071, China
- Affiliated Hospital of Hebei University of Engineering, Handan 056038, China
| | - Lai Jiang
- Department of Biological Repositories, Zhongnan Hospital & Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Yinglei Li
- Department of Biological Repositories, Zhongnan Hospital & Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Wei Jiang
- Department of Biological Repositories, Zhongnan Hospital & Medical Research Institute, Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| |
Collapse
|
141
|
Hackland J. Top-Down Inhibition (TDi) and Baseline Activation (BLa): Controlling Signal Transduction When Endogenous Cytokines are Ruining Your Differentiation. ACTA ACUST UNITED AC 2019; 51:e98. [PMID: 31756052 DOI: 10.1002/cpsc.98] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the 20 years since the first human pluripotent stem cell (hPSC) lines were established, there have been a plethora of protocols developed that allow us to generate a wide range of human cell types in vitro. Efforts to achieve a greater degree of specificity and efficiency in generating desired cell types have resulted in increasingly complex approaches. The magnitude and timing of signals has become key, and the concept of a "fully defined" system is a forever sought-after goal with shifting goalposts. This overview discusses two related approaches that can be used to deliver a tightly regulated, intermediate-strength signal, and which can also manage the impact of endogenous signaling variation and enable a switch away from bovine serum albumin-containing medium to a better-defined system without suffering a subsequent loss of robustness or efficiency. The approaches, referred to as top-down inhibition and baseline activation, were developed to deliver intermediate levels of BMP and WNT signaling during neural crest induction from hPSC, but could be applied to a variety of other signals and differentiation systems. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- James Hackland
- Developmental Biology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
142
|
Mariniello K, Ruiz-Babot G, McGaugh EC, Nicholson JG, Gualtieri A, Gaston-Massuet C, Nostro MC, Guasti L. Stem Cells, Self-Renewal, and Lineage Commitment in the Endocrine System. Front Endocrinol (Lausanne) 2019; 10:772. [PMID: 31781041 PMCID: PMC6856655 DOI: 10.3389/fendo.2019.00772] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/23/2019] [Indexed: 12/15/2022] Open
Abstract
The endocrine system coordinates a wide array of body functions mainly through secretion of hormones and their actions on target tissues. Over the last decades, a collective effort between developmental biologists, geneticists, and stem cell biologists has generated a wealth of knowledge related to the contribution of stem/progenitor cells to both organogenesis and self-renewal of endocrine organs. This review provides an up-to-date and comprehensive overview of the role of tissue stem cells in the development and self-renewal of endocrine organs. Pathways governing crucial steps in both development and stemness maintenance, and that are known to be frequently altered in a wide array of endocrine disorders, including cancer, are also described. Crucially, this plethora of information is being channeled into the development of potential new cell-based treatment modalities for endocrine-related illnesses, some of which have made it through clinical trials.
Collapse
Affiliation(s)
- Katia Mariniello
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Gerard Ruiz-Babot
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, United States
- Harvard Stem Cell Institute, Cambridge, MA, United States
| | - Emily C. McGaugh
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - James G. Nicholson
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Angelica Gualtieri
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Carles Gaston-Massuet
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Maria Cristina Nostro
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Leonardo Guasti
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
143
|
Salinno C, Cota P, Bastidas-Ponce A, Tarquis-Medina M, Lickert H, Bakhti M. β-Cell Maturation and Identity in Health and Disease. Int J Mol Sci 2019; 20:E5417. [PMID: 31671683 PMCID: PMC6861993 DOI: 10.3390/ijms20215417] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/28/2019] [Accepted: 10/28/2019] [Indexed: 12/15/2022] Open
Abstract
The exponential increase of patients with diabetes mellitus urges for novel therapeutic strategies to reduce the socioeconomic burden of this disease. The loss or dysfunction of insulin-producing β-cells, in patients with type 1 and type 2 diabetes respectively, put these cells at the center of the disease initiation and progression. Therefore, major efforts have been taken to restore the β-cell mass by cell-replacement or regeneration approaches. Implementing novel therapies requires deciphering the developmental mechanisms that generate β-cells and determine the acquisition of their physiological phenotype. In this review, we summarize the current understanding of the mechanisms that coordinate the postnatal maturation of β-cells and define their functional identity. Furthermore, we discuss different routes by which β-cells lose their features and functionality in type 1 and 2 diabetic conditions. We then focus on potential mechanisms to restore the functionality of those β-cell populations that have lost their functional phenotype. Finally, we discuss the recent progress and remaining challenges facing the generation of functional mature β-cells from stem cells for cell-replacement therapy for diabetes treatment.
Collapse
Affiliation(s)
- Ciro Salinno
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.
- German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany.
- Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.
- School of Medicine, Technical University of Munich, 81675Munich, Germany.
| | - Perla Cota
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.
- German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany.
- Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.
- School of Medicine, Technical University of Munich, 81675Munich, Germany.
| | - Aimée Bastidas-Ponce
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.
- German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany.
- Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.
- School of Medicine, Technical University of Munich, 81675Munich, Germany.
| | - Marta Tarquis-Medina
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.
- German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany.
- Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.
- School of Medicine, Technical University of Munich, 81675Munich, Germany.
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.
- German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany.
- Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.
- School of Medicine, Technical University of Munich, 81675Munich, Germany.
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.
- German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany.
- Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.
| |
Collapse
|
144
|
Tewary M, Dziedzicka D, Ostblom J, Prochazka L, Shakiba N, Heydari T, Aguilar-Hidalgo D, Woodford C, Piccinini E, Becerra-Alonso D, Vickers A, Louis B, Rahman N, Danovi D, Geens M, Watt FM, Zandstra PW. High-throughput micropatterning platform reveals Nodal-dependent bisection of peri-gastrulation-associated versus preneurulation-associated fate patterning. PLoS Biol 2019; 17:e3000081. [PMID: 31634368 PMCID: PMC6822778 DOI: 10.1371/journal.pbio.3000081] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 10/31/2019] [Accepted: 09/25/2019] [Indexed: 12/22/2022] Open
Abstract
In vitro models of postimplantation human development are valuable to the fields of regenerative medicine and developmental biology. Here, we report characterization of a robust in vitro platform that enabled high-content screening of multiple human pluripotent stem cell (hPSC) lines for their ability to undergo peri-gastrulation-like fate patterning upon bone morphogenetic protein 4 (BMP4) treatment of geometrically confined colonies and observed significant heterogeneity in their differentiation propensities along a gastrulation associable and neuralization associable axis. This cell line-associated heterogeneity was found to be attributable to endogenous Nodal expression, with up-regulation of Nodal correlated with expression of a gastrulation-associated gene profile, and Nodal down-regulation correlated with a preneurulation-associated gene profile expression. We harness this knowledge to establish a platform of preneurulation-like fate patterning in geometrically confined hPSC colonies in which fates arise because of a BMPs signalling gradient conveying positional information. Our work identifies a Nodal signalling-dependent switch in peri-gastrulation versus preneurulation-associated fate patterning in hPSC cells, provides a technology to robustly assay hPSC differentiation outcomes, and suggests conserved mechanisms of organized fate specification in differentiating epiblast and ectodermal tissues.
Collapse
Affiliation(s)
- Mukul Tewary
- Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto, Ontario, Canada
- Collaborative Program in Developmental Biology, University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Centre for Stem Cells & Regenerative Medicine, King's College London, London, United Kingdom
| | - Dominika Dziedzicka
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Joel Ostblom
- Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Laura Prochazka
- Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Nika Shakiba
- Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Tiam Heydari
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Daniel Aguilar-Hidalgo
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Curtis Woodford
- Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Elia Piccinini
- Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - David Becerra-Alonso
- Department of Quantitative Methods, Universidad Loyola Andalucia, Sevilla, Spain
| | - Alice Vickers
- Centre for Stem Cells & Regenerative Medicine, King's College London, London, United Kingdom
| | - Blaise Louis
- Centre for Stem Cells & Regenerative Medicine, King's College London, London, United Kingdom
| | - Nafees Rahman
- Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Davide Danovi
- Centre for Stem Cells & Regenerative Medicine, King's College London, London, United Kingdom
| | - Mieke Geens
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Fiona M. Watt
- Centre for Stem Cells & Regenerative Medicine, King's College London, London, United Kingdom
| | - Peter W. Zandstra
- Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto, Ontario, Canada
- Collaborative Program in Developmental Biology, University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
145
|
Yang W, Lampe PD, Kensel-Hammes P, Hesson J, Ware CB, Crisa L, Cirulli V. Connexin 43 Functions as a Positive Regulator of Stem Cell Differentiation into Definitive Endoderm and Pancreatic Progenitors. iScience 2019; 19:450-460. [PMID: 31430690 PMCID: PMC6708988 DOI: 10.1016/j.isci.2019.07.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 05/04/2019] [Accepted: 07/18/2019] [Indexed: 01/05/2023] Open
Abstract
Efficient stem cell differentiation into pancreatic islet cells is of critical importance for the development of cell replacement therapies for diabetes. Here, we identify the expression pattern of connexin 43 (Cx43), a gap junction (GJ) channel protein, in human embryonic stem cell (hESC)-derived definitive endoderm (DE) and primitive gut tube cells, representing early lineages for posterior foregut (PF), pancreatic progenitors (PP), pancreatic endocrine progenitors (PE), and islet cells. As the function of GJ channels is dependent on their gating status, we tested the impact of supplementing hESC-derived PP cell cultures with AAP10, a peptide that promotes Cx43 GJ channel opening. We found that this treatment promotes the expression of DE markers FoxA2 and Sox17, leads to a more efficient derivation of DE, and improves the yield of PF, PP, and PE cells. These results demonstrate a functional involvement of GJ channels in the differentiation of embryonic stem cells into pancreatic cell lineages.
Collapse
Affiliation(s)
- Wendy Yang
- Department of Medicine, UW Diabetes Institute, University of Washington, 850 Republican Street, S475, Seattle, WA 98109, USA
| | - Paul D Lampe
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Patricia Kensel-Hammes
- Department of Medicine, UW Diabetes Institute, University of Washington, 850 Republican Street, S475, Seattle, WA 98109, USA
| | - Jennifer Hesson
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, S480, Seattle, WA 98109, USA
| | - Carol B Ware
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, S480, Seattle, WA 98109, USA
| | - Laura Crisa
- Department of Medicine, UW Diabetes Institute, University of Washington, 850 Republican Street, S475, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, S480, Seattle, WA 98109, USA; Department of Pharmacology, University of Washington, Seattle, WA, USA.
| | - Vincenzo Cirulli
- Department of Medicine, UW Diabetes Institute, University of Washington, 850 Republican Street, S475, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, S480, Seattle, WA 98109, USA; Department of Pharmacology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
146
|
Human Pluripotent Stem Cell-Derived Endoderm for Modeling Development and Clinical Applications. Cell Stem Cell 2019; 22:485-499. [PMID: 29625066 DOI: 10.1016/j.stem.2018.03.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The liver, lung, pancreas, and digestive tract all originate from the endoderm germ layer, and these vital organs are subject to many life-threatening diseases affecting millions of patients. However, primary cells from endodermal organs are often difficult to grow in vitro. Human pluripotent stem cells thus hold great promise for generating endoderm cells and their derivatives as tools for the development of new therapeutics against a variety of global healthcare challenges. Here we describe recent advances in methods for generating endodermal cell types from human pluripotent stem cells and their use for disease modeling and cell-based therapy.
Collapse
|
147
|
Metabolic-Epigenetic Axis in Pluripotent State Transitions. EPIGENOMES 2019; 3:epigenomes3030013. [PMID: 34968225 PMCID: PMC8594706 DOI: 10.3390/epigenomes3030013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/26/2019] [Accepted: 07/28/2019] [Indexed: 12/18/2022] Open
Abstract
Cell state transition (CST) occurs during embryo development and in adult life in response to different stimuli and is associated with extensive epigenetic remodeling. Beyond growth factors and signaling pathways, increasing evidence point to a crucial role of metabolic signals in this process. Indeed, since several epigenetic enzymes are sensitive to availability of specific metabolites, fluctuations in their levels may induce the epigenetic changes associated with CST. Here we analyze how fluctuations in metabolites availability influence DNA/chromatin modifications associated with pluripotent stem cell (PSC) transitions. We discuss current studies and focus on the effects of metabolites in the context of naïve to primed transition, PSC differentiation and reprogramming of somatic cells to induced pluripotent stem cells (iPSCs), analyzing their mechanism of action and the causal correlation between metabolites availability and epigenetic alteration.
Collapse
|
148
|
Kaitsuka T, Kojima R, Kawabe M, Noguchi H, Shiraki N, Kume S, Tomizawa K. A culture substratum with net-like polyamide fibers promotes the differentiation of mouse and human pluripotent stem cells to insulin-producing cells. ACTA ACUST UNITED AC 2019; 14:045019. [PMID: 31151115 DOI: 10.1088/1748-605x/ab261c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Insulin-producing and -secreting cells derived from mouse pluripotent stem cells (PSCs) are useful for pancreatic development research and evaluating drugs that may induce insulin secretion. Previously, we have established a differentiation protocol to derive insulin-secreting cells from mouse embryonic stem cells (ESCs) using a combination of growth factors, recombinant proteins, and a culture substratum with net-like fibers. However, it has not been tested which materials and diameters of these fibers are more effective for the differentiation. Therefore, the present study aimed to produce net-like culture substratum formed from polyamide (PA) and polyacrylonitrile (PAN) fibers. Substrata were delineated into PA100, 300, 600, PAN100, 300, and 600 groups based on fiber diameters. The differentiation efficiencies of mouse ESCs cultured on the substrata were then examined by insulin 1 (Ins1) expression. Expression was found to be highest in PA300 differentiated cells, indicating the potential to produce high levels of insulin. To understand any differences in substratum properties, the adsorption capacities of laminin were measured, revealing that PA300 had the highest for it. We next examined the stage of differentiation affected by incubation with PA300. This showed that Sox17- and Pdx1-GFP-positive cells increased during the first step of differentiation. To show the production of insulin without absorption from the medium, we confirmed the expression of insulin C-peptide after differentiation. Finally, we tested the effects of PA300 on the differentiation of human-induced PSC, and found more Sox17-positive cells with the PA300 substratum at the definitive endoderm stage. Furthermore, these cells expressed insulin C-peptide and had glucose-responsive C-peptide secretion. In summary, our study identified and validated a novel substratum which is suitable for pancreatic differentiation of mouse and human PSCs.
Collapse
Affiliation(s)
- Taku Kaitsuka
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | | | | | | | | | | | | |
Collapse
|
149
|
Shultz LD, Keck J, Burzenski L, Jangalwe S, Vaidya S, Greiner DL, Brehm MA. Humanized mouse models of immunological diseases and precision medicine. Mamm Genome 2019; 30:123-142. [PMID: 30847553 PMCID: PMC6610695 DOI: 10.1007/s00335-019-09796-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/02/2019] [Indexed: 12/25/2022]
Abstract
With the increase in knowledge resulting from the sequencing of the human genome, the genetic basis for the underlying differences in individuals, their diseases, and how they respond to therapies is starting to be understood. This has formed the foundation for the era of precision medicine in many human diseases that is beginning to be implemented in the clinic, particularly in cancer. However, preclinical testing of therapeutic approaches based on individual biology will need to be validated in animal models prior to translation into patients. Although animal models, particularly murine models, have provided significant information on the basic biology underlying immune responses in various diseases and the response to therapy, murine and human immune systems differ markedly. These fundamental differences may be the underlying reason why many of the positive therapeutic responses observed in mice have not translated directly into the clinic. There is a critical need for preclinical animal models in which human immune responses can be investigated. For this, many investigators are using humanized mice, i.e., immunodeficient mice engrafted with functional human cells, tissues, and immune systems. We will briefly review the history of humanized mice, the remaining limitations, approaches to overcome them and how humanized mouse models are being used as a preclinical bridge in precision medicine for evaluation of human therapies prior to their implementation in the clinic.
Collapse
Affiliation(s)
- Leonard D Shultz
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA.
| | - James Keck
- The Jackson Laboratory, 1650 Santa Ana Avenue, Sacramento, CA, 95838, USA
| | - Lisa Burzenski
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Sonal Jangalwe
- Diabetes Center of Excellence, The University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| | - Shantashri Vaidya
- Diabetes Center of Excellence, The University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| | - Dale L Greiner
- Diabetes Center of Excellence, The University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| | - Michael A Brehm
- Diabetes Center of Excellence, The University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| |
Collapse
|
150
|
Genome-scale screens identify JNK-JUN signaling as a barrier for pluripotency exit and endoderm differentiation. Nat Genet 2019; 51:999-1010. [PMID: 31110351 PMCID: PMC6545159 DOI: 10.1038/s41588-019-0408-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 04/01/2019] [Indexed: 12/21/2022]
Abstract
Human embryonic and induced pluripotent stem cells (hESCs/hiPSCs) hold great promise for cell-based therapies and drug discovery. However, homogeneous differentiation remains a major challenge, highlighting the need for understanding developmental mechanisms. We performed genome-scale CRISPR screens to uncover regulators of definitive endoderm (DE) differentiation, which unexpectedly uncovered five JNK/JUN family genes as key barriers of DE differentiation. The JNK/JUN pathway does not act through directly inhibiting the DE enhancers. Instead JUN co-occupies ESC enhancers with OCT4, NANOG and SMAD2/3, and specifically inhibits the exit from the pluripotent state by impeding the decommissioning of ESC enhancers and inhibiting the reconfiguration of SMAD2/3 chromatin binding from ESC to DE enhancers. Therefore, the JNK/JUN pathway safeguards pluripotency from precocious DE differentiation. Direct pharmacological inhibition of JNK significantly improves the efficiencies of generating DE and DE-derived pancreatic and lung progenitor cells, highlighting the potential of harnessing the knowledge from developmental studies for regenerative medicine.
Collapse
|