101
|
El-Salhy M, Patcharatrakul T, Hatlebakk JG, Hausken T, Gilja OH, Gonlachanvit S. Enteroendocrine, Musashi 1 and neurogenin 3 cells in the large intestine of Thai and Norwegian patients with irritable bowel syndrome. Scand J Gastroenterol 2017; 52:1331-1339. [PMID: 28853300 DOI: 10.1080/00365521.2017.1371793] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVES The prevalence, gender distribution and clinical presentation of IBS differ between Asian and Western countries. This study aimed at studying and comparing enteroendocrine, Musashi 1 (Msi 1) and neurogenin 3 (neurog 3) cells in Thai and Norwegian IBS patients. MATERIAL AND METHODS Thirty Thai and 61 Norwegian IBS patients as well as 20 Thai and 24 Norwegian controls were included. Biopsy samples were taken from each of the sigmoid colon and the rectum during a standard colonoscopy. The samples were immunostained for serotonin, peptide YY, oxyntomodulin, pancreatic polypeptide, somatostatin, Msi 1 and neurog 3. The densities of immunoreactive cells were determined with computerized image analysis. RESULTS The densities of several enteroendocrine cell types were altered in both the colon and rectum of both Thai and Norwegian IBS patients. Some of these changes were similar in Thai and Norwegian IBS patients, while others differed. CONCLUSIONS The findings of abnormal densities of the enteroendocrine cells in Thai patients support the notion that enteroendocrine cells are involved in the pathophysiology of IBS. The present observations highlight that IBS differs in Asian and Western countries, and show that the changes in large-intestine enteroendocrine cells in Thai and Norwegian IBS patients might be caused by different mechanisms.
Collapse
Affiliation(s)
- Magdy El-Salhy
- a Department of Medicine, Section for Gastroenterology , Stord Helse-Fonna Hospital , Stord , Norway.,b Department of Clinical Medicine , University of Bergen , Bergen , Norway.,c Department of Medicine, National Centre for Functional Gastrointestinal Disorders , Haukeland University Hospital , Bergen , Norway
| | - Tanisa Patcharatrakul
- d Department of Medicine, GI Motility Research Unit, Division of Gastroenterology, Faculty of Medicine , Chulalongkorn University , Bangkok , Thailand.,e King Chulalongkorn Memorial Hospital, Thai Red Cross Society , Bangkok , Thailand
| | - Jan Gunnar Hatlebakk
- b Department of Clinical Medicine , University of Bergen , Bergen , Norway.,c Department of Medicine, National Centre for Functional Gastrointestinal Disorders , Haukeland University Hospital , Bergen , Norway
| | - Trygve Hausken
- b Department of Clinical Medicine , University of Bergen , Bergen , Norway.,c Department of Medicine, National Centre for Functional Gastrointestinal Disorders , Haukeland University Hospital , Bergen , Norway.,e King Chulalongkorn Memorial Hospital, Thai Red Cross Society , Bangkok , Thailand
| | - Odd Helge Gilja
- b Department of Clinical Medicine , University of Bergen , Bergen , Norway.,c Department of Medicine, National Centre for Functional Gastrointestinal Disorders , Haukeland University Hospital , Bergen , Norway.,f Department of Medicine , National Centre for Ultrasound in Gastroenterology, Haukeland University Hospital , Bergen , Norway
| | - Sutep Gonlachanvit
- d Department of Medicine, GI Motility Research Unit, Division of Gastroenterology, Faculty of Medicine , Chulalongkorn University , Bangkok , Thailand.,e King Chulalongkorn Memorial Hospital, Thai Red Cross Society , Bangkok , Thailand
| |
Collapse
|
102
|
DNA damage response protein TOPBP1 regulates X chromosome silencing in the mammalian germ line. Proc Natl Acad Sci U S A 2017; 114:12536-12541. [PMID: 29114052 DOI: 10.1073/pnas.1712530114] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Meiotic synapsis and recombination between homologs permits the formation of cross-overs that are essential for generating chromosomally balanced sperm and eggs. In mammals, surveillance mechanisms eliminate meiotic cells with defective synapsis, thereby minimizing transmission of aneuploidy. One such surveillance mechanism is meiotic silencing, the inactivation of genes located on asynapsed chromosomes, via ATR-dependent serine-139 phosphorylation of histone H2AFX (γH2AFX). Stimulation of ATR activity requires direct interaction with an ATR activation domain (AAD)-containing partner. However, which partner facilitates the meiotic silencing properties of ATR is unknown. Focusing on the best-characterized example of meiotic silencing, meiotic sex chromosome inactivation, we reveal this AAD-containing partner to be the DNA damage and checkpoint protein TOPBP1. Conditional TOPBP1 deletion during pachynema causes germ cell elimination associated with defective X chromosome gene silencing and sex chromosome condensation. TOPBP1 is essential for localization to the X chromosome of silencing "sensors," including BRCA1, and effectors, including ATR, γH2AFX, and canonical repressive histone marks. We present evidence that persistent DNA double-strand breaks act as silencing initiation sites. Our study identifies TOPBP1 as a critical factor in meiotic sex chromosome silencing.
Collapse
|
103
|
Dempsey PJ. Role of ADAM10 in intestinal crypt homeostasis and tumorigenesis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2017; 1864:2228-2239. [PMID: 28739265 PMCID: PMC5632589 DOI: 10.1016/j.bbamcr.2017.07.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 12/17/2022]
Abstract
A disintegrin and metalloproteinases (ADAMs) are a family of mSultidomain, membrane-anchored proteases that regulate diverse cellular functions, including cell adhesion, migration, proteolysis and other cell signaling events. Catalytically-active ADAMs act as ectodomain sheddases that proteolytically cleave type I and type II transmembrane proteins and some GPI-anchored proteins from the cellular surface. ADAMs can also modulate other cellular signaling events through a process known as regulated intramembrane proteolysis (RIP). Through their proteolytic activity, ADAMs can rapidly modulate key cell signaling pathways in response to changes in the extracellular environment (e.g. inflammation) and play a central role in coordinating intercellular communication. Dysregulation of these processes through aberrant expression, or sustained ADAM activity, is linked to chronic inflammation, inflammation-associated cancer and tumorigenesis. ADAM10 was the first disintegrin-metalloproteinase demonstrated to have proteolytic activity and is the prototypic ADAM associated with RIP activity (e.g. sequential Notch receptor processing). ADAM10 is abundantly expressed throughout the gastrointestinal tract and during normal intestinal homeostasis ADAM10 regulates many cellular processes associated with intestinal development, cell fate specification and maintenance of intestinal stem cell/progenitor populations. In addition, several signaling pathways that undergo ectodomain shedding by ADAM10 (e.g. Notch, EGFR/ErbB, IL-6/sIL-6R) help control intestinal injury/regenerative responses and may drive intestinal inflammation and colon cancer initiation and progression. Here, I review some of the proposed functions of ADAM10 associated with intestinal crypt homeostasis and tumorigenesis within the gastrointestinal tract in vivo. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John.
Collapse
Affiliation(s)
- Peter J Dempsey
- Graduate Program in Cell Biology, Stem Cells, and Development Program, University of Colorado Medical School, Aurora, CO 80045, United States; Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Colorado Medical School, Aurora, CO 80045, United States.
| |
Collapse
|
104
|
EGFR signalling controls cellular fate and pancreatic organogenesis by regulating apicobasal polarity. Nat Cell Biol 2017; 19:1313-1325. [PMID: 29058721 DOI: 10.1038/ncb3628] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 09/14/2017] [Indexed: 02/08/2023]
Abstract
Apicobasal polarity is known to affect epithelial morphogenesis and cell differentiation, but it remains unknown how these processes are mechanistically orchestrated. We find that ligand-specific EGFR signalling via PI(3)K and Rac1 autonomously modulates apicobasal polarity to enforce the sequential control of morphogenesis and cell differentiation. Initially, EGF controls pancreatic tubulogenesis by negatively regulating apical polarity induction. Subsequently, betacellulin, working via inhibition of atypical protein kinase C (aPKC), causes apical domain constriction within neurogenin3+ endocrine progenitors, which results in reduced Notch signalling, increased neurogenin3 expression, and β-cell differentiation. Notably, the ligand-specific EGFR output is not driven at the ligand level, but seems to have evolved in response to stage-specific epithelial influences. The EGFR-mediated control of β-cell differentiation via apical polarity is also conserved in human neurogenin3+ cells. We provide insight into how ligand-specific EGFR signalling coordinates epithelial morphogenesis and cell differentiation via apical polarity dynamics.
Collapse
|
105
|
Late-stage differentiation of embryonic pancreatic β-cells requires Jarid2. Sci Rep 2017; 7:11643. [PMID: 28912479 PMCID: PMC5599523 DOI: 10.1038/s41598-017-11691-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 08/24/2017] [Indexed: 02/04/2023] Open
Abstract
Jarid2 is a component of the Polycomb Repressor complex 2 (PRC2), which is responsible for genome-wide H3K27me3 deposition, in embryonic stem cells. However, Jarid2 has also been shown to exert pleiotropic PRC2-independent actions during embryogenesis. Here, we have investigated the role of Jarid2 during pancreas development. Conditional ablation of Jarid2 in pancreatic progenitors results in reduced endocrine cell area at birth due to impaired endocrine cell differentiation and reduced prenatal proliferation. Inactivation of Jarid2 in endocrine progenitors demonstrates that Jarid2 functions after endocrine specification. Furthermore, genome-wide expression analysis reveals that Jarid2 is required for the complete activation of the insulin-producing β-cell differentiation program. Jarid2-deficient pancreases exhibit impaired deposition of RNAPII-Ser5P, the initiating form of RNAPII, but no changes in H3K27me3, at the promoters of affected endocrine genes. Thus, our study identifies Jarid2 as a fine-tuner of gene expression during late stages of pancreatic endocrine cell development. These findings are relevant for generation of transplantable stem cell-derived β-cells.
Collapse
|
106
|
El-Salhy M, Gilja OH. Abnormalities in ileal stem, neurogenin 3, and enteroendocrine cells in patients with irritable bowel syndrome. BMC Gastroenterol 2017; 17:90. [PMID: 28764761 PMCID: PMC5539900 DOI: 10.1186/s12876-017-0643-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 06/29/2017] [Indexed: 12/15/2022] Open
Abstract
Background This study examined whether the densities of stem- and enteroendocrine cell progenitors are abnormal in the ileum of patients with irritable bowel syndrome (IBS), and whether any abnormalities in ileal enteroendocrine cells are correlated with abnormalities in stem cells and enteroendocrine cell progenitors. Methods One hundred and one IBS patients covering all IBS subtypes were recruited, and 39 non-IBS subjects were included as a control group. The patients and controls underwent standard colonoscopies, during which biopsy specimens were obtained from the ileum. The biopsy specimens were stained with hematoxylin-eosin and immunostained for Musashi-1 (Msi-1), neurogenin 3 (NEUROG3), chromogranin A (CgA), serotonin, peptide YY (PYY), oxyntomodulin (enteroglucagon), pancreatic polypeptide, and somatostatin. The immunoreactive cells were quantified by computerized image analysis. Results The densities of Msi-1, NEUROG3, CgA, and serotonin cells were reduced in all IBS patients and in patients with diarrhea-predominant IBS (IBS-D), mixed-diarrhea-and-constipation IBS (IBS-M), and constipation-predominant (IBS-C) relative to the control subjects. While the PYY cell density was increased in IBS-C relative to controls, it did not differ between control subjects and IBS-D and IBS-M patients. The densities of Msi-1 and NEUROG3 cells were strongly correlated with that of CgA cells. Conclusions The abnormalities in the ileal enteroendocrine cells appear to be caused by two mechanisms: (1) decreases in the clonogenic activity of the stem cells and in the endocrine-cell progenitors differentiating into enteroendocrine cells, and (2) switching on the expression of PYY and switching off the expression of certain other hormones in other types of the enteroendocrine cells.
Collapse
Affiliation(s)
- Magdy El-Salhy
- Section for Gastroenterology, Department of Medicine, Stord Helse-Fonna Hospital, Box 4000, 54 09 Stord, Stord, Norway. .,Section for Gastroenterology, Department of Clinical Medicine, University of Bergen, Bergen, Norway. .,National Centre for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, Bergen, Norway.
| | - Odd Helge Gilja
- Section for Gastroenterology, Department of Clinical Medicine, University of Bergen, Bergen, Norway.,National Centre for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, Bergen, Norway.,National Centre for Ultrasound in Gastroenterology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
107
|
Germán-Díaz M, Rodriguez-Gil Y, Cruz-Rojo J, Charbit-Henrion F, Cerf-Bensussan N, Manzanares-López Manzanares J, Moreno-Villares JM. A New Case of Congenital Malabsorptive Diarrhea and Diabetes Secondary to Mutant Neurogenin-3. Pediatrics 2017; 140:peds.2016-2210. [PMID: 28724572 DOI: 10.1542/peds.2016-2210] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/12/2017] [Indexed: 11/24/2022] Open
Abstract
Congenital diarrheal disorders are a group of rare enteropathies that often present with life-threatening diarrhea in the first weeks of life. Enteric anendocrinosis, characterized by a lack of intestinal enteroendocrine cells due to recessively inherited mutations in the Neurogenin-3 (NEUROG3) gene, has been described as a cause of congenital malabsorptive diarrhea. Diabetes mellitus also is typically associated with NEUROG3 mutations, be it early onset or a later presentation. Here we report a case of a 16-year-old male patient with severe malabsorptive diarrhea from birth, who was parenteral nutrition dependent and who developed diabetes mellitus at 11 years old. To the best of our knowledge, only 9 cases of recessively inherited NEUROG3 mutations have been reported in the literature to date. Our patient presents with several remarkable differences compared with previously published cases. This report can contribute by deepening our knowledge on new aspects of such an extremely rare disease.
Collapse
Affiliation(s)
| | | | | | - Fabienne Charbit-Henrion
- INSERM, UMR 1163, Laboratory of Intestinal Immunity, Paris, France.,Université Paris Descartes-Sorbonne Paris Cité and Institut Imagine, Paris, France.,Department of Pediatric Gastroenterology, Hôpital Necker-Enfants Malades, Paris, France; and.,GENIUS group (GENetically ImmUne mediated enteropathieS) from ESPGHAN (European Society for Paediatric Gastroenterology, Hepatology, and Nutrition)
| | - Nadine Cerf-Bensussan
- INSERM, UMR 1163, Laboratory of Intestinal Immunity, Paris, France.,Université Paris Descartes-Sorbonne Paris Cité and Institut Imagine, Paris, France.,GENIUS group (GENetically ImmUne mediated enteropathieS) from ESPGHAN (European Society for Paediatric Gastroenterology, Hepatology, and Nutrition)
| | | | | |
Collapse
|
108
|
El-Salhy M, Solomon T, Hausken T, Gilja OH, Hatlebakk JG. Gastrointestinal neuroendocrine peptides/amines in inflammatory bowel disease. World J Gastroenterol 2017; 23:5068-5085. [PMID: 28811704 PMCID: PMC5537176 DOI: 10.3748/wjg.v23.i28.5068] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/15/2017] [Accepted: 07/12/2017] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic recurrent condition whose etiology is unknown, and it includes ulcerative colitis, Crohn’s disease, and microscopic colitis. These three diseases differ in clinical manifestations, courses, and prognoses. IBD reduces the patients’ quality of life and is an economic burden to both the patients and society. Interactions between the gastrointestinal (GI) neuroendocrine peptides/amines (NEPA) and the immune system are believed to play an important role in the pathophysiology of IBD. Moreover, the interaction between GI NEPA and intestinal microbiota appears to play also a pivotal role in the pathophysiology of IBD. This review summarizes the available data on GI NEPA in IBD, and speculates on their possible role in the pathophysiology and the potential use of this information when developing treatments. GI NEPA serotonin, the neuropeptide Y family, and substance P are proinflammatory, while the chromogranin/secretogranin family, vasoactive intestinal peptide, somatostatin, and ghrelin are anti-inflammatory. Several innate and adaptive immune cells express these NEPA and/or have receptors to them. The GI NEPA are affected in patients with IBD and in animal models of human IBD. The GI NEPA are potentially useful for the diagnosis and follow-up of the activity of IBD, and are candidate targets for treatments of this disease.
Collapse
|
109
|
Hartenstein V, Takashima S, Hartenstein P, Asanad S, Asanad K. bHLH proneural genes as cell fate determinants of entero-endocrine cells, an evolutionarily conserved lineage sharing a common root with sensory neurons. Dev Biol 2017; 431:36-47. [PMID: 28751238 DOI: 10.1016/j.ydbio.2017.07.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 07/14/2017] [Accepted: 07/23/2017] [Indexed: 01/02/2023]
Abstract
Entero-endocrine cells involved in the regulation of digestive function form a large and diverse cell population within the intestinal epithelium of all animals. Together with absorptive enterocytes and secretory gland cells, entero-endocrine cells are generated by the embryonic endoderm and, in the mature animal, from a pool of endoderm derived, self-renewing stem cells. Entero-endocrine cells share many structural/functional and developmental properties with sensory neurons, which hints at the possibility of an ancient evolutionary relationship between these two cell types. We will survey in this article recent findings that emphasize the similarities between entero-endocrine cells and sensory neurons in vertebrates and insects, for which a substantial volume of data pertaining to the entero-endocrine system has been compiled. We will then report new findings that shed light on the specification and morphogenesis of entero-endocrine cells in Drosophila. In this system, presumptive intestinal stem cells (pISCs), generated during early metamorphosis, undergo several rounds of mitosis that produce the endocrine cells and stem cells (ISCs) with which the fly is born. Clonal analysis demonstrated that individual pISCs can give rise to endocrine cells expressing different types of peptides. Immature endocrine cells start out as unpolarized cells located basally of the gut epithelium; they each extend an apical process into the epithelium which establishes a junctional complex and apical membrane specializations contacting the lumen of the gut. Finally, we show that the Drosophila homolog of ngn3, a bHLH gene that defines the entero-endocrine lineage in mammals, is expressed and required for the differentiation of this cell type in the fly gut.
Collapse
Affiliation(s)
- Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095-1606, USA.
| | - Shigeo Takashima
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095-1606, USA
| | - Parvana Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095-1606, USA
| | - Samuel Asanad
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095-1606, USA
| | - Kian Asanad
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095-1606, USA
| |
Collapse
|
110
|
Yan KS, Gevaert O, Zheng GXY, Anchang B, Probert CS, Larkin KA, Davies PS, Cheng ZF, Kaddis JS, Han A, Roelf K, Calderon RI, Cynn E, Hu X, Mandleywala K, Wilhelmy J, Grimes SM, Corney DC, Boutet SC, Terry JM, Belgrader P, Ziraldo SB, Mikkelsen TS, Wang F, von Furstenberg RJ, Smith NR, Chandrakesan P, May R, Chrissy MAS, Jain R, Cartwright CA, Niland JC, Hong YK, Carrington J, Breault DT, Epstein J, Houchen CW, Lynch JP, Martin MG, Plevritis SK, Curtis C, Ji HP, Li L, Henning SJ, Wong MH, Kuo CJ. Intestinal Enteroendocrine Lineage Cells Possess Homeostatic and Injury-Inducible Stem Cell Activity. Cell Stem Cell 2017; 21:78-90.e6. [PMID: 28686870 PMCID: PMC5642297 DOI: 10.1016/j.stem.2017.06.014] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 04/17/2017] [Accepted: 06/20/2017] [Indexed: 12/22/2022]
Abstract
Several cell populations have been reported to possess intestinal stem cell (ISC) activity during homeostasis and injury-induced regeneration. Here, we explored inter-relationships between putative mouse ISC populations by comparative RNA-sequencing (RNA-seq). The transcriptomes of multiple cycling ISC populations closely resembled Lgr5+ ISCs, the most well-defined ISC pool, but Bmi1-GFP+ cells were distinct and enriched for enteroendocrine (EE) markers, including Prox1. Prox1-GFP+ cells exhibited sustained clonogenic growth in vitro, and lineage-tracing of Prox1+ cells revealed long-lived clones during homeostasis and after radiation-induced injury in vivo. Single-cell mRNA-seq revealed two subsets of Prox1-GFP+ cells, one of which resembled mature EE cells while the other displayed low-level EE gene expression but co-expressed tuft cell markers, Lgr5 and Ascl2, reminiscent of label-retaining secretory progenitors. Our data suggest that the EE lineage, including mature EE cells, comprises a reservoir of homeostatic and injury-inducible ISCs, extending our understanding of cellular plasticity and stemness.
Collapse
Affiliation(s)
- Kelley S Yan
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Columbia Center for Human Development, Columbia Stem Cell Initiative, Department of Medicine, Division of Digestive and Liver Diseases, Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Olivier Gevaert
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Benedict Anchang
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Christopher S Probert
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kathryn A Larkin
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Paige S Davies
- Oregon Health & Science University, Department of Cell, Developmental and Cancer Biology, Portland, OR 97239, USA
| | - Zhuan-Fen Cheng
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - John S Kaddis
- Department of Diabetes and Cancer Discovery Science, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Arnold Han
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Columbia Center for Translational Immunology, Department of Medicine, Division of Digestive and Liver Diseases, Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Kelly Roelf
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ruben I Calderon
- Columbia Center for Human Development, Columbia Stem Cell Initiative, Department of Medicine, Division of Digestive and Liver Diseases, Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Esther Cynn
- Columbia Center for Human Development, Columbia Stem Cell Initiative, Department of Medicine, Division of Digestive and Liver Diseases, Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Xiaoyi Hu
- Columbia Center for Human Development, Columbia Stem Cell Initiative, Department of Medicine, Division of Digestive and Liver Diseases, Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Komal Mandleywala
- Columbia Center for Human Development, Columbia Stem Cell Initiative, Department of Medicine, Division of Digestive and Liver Diseases, Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Julie Wilhelmy
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sue M Grimes
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David C Corney
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | - Fengchao Wang
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | - Nicholas R Smith
- Oregon Health & Science University, Department of Cell, Developmental and Cancer Biology, Portland, OR 97239, USA
| | - Parthasarathy Chandrakesan
- Department of Internal Medicine, Division of Digestive Diseases and Nutrition, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Randal May
- Department of Internal Medicine, Division of Digestive Diseases and Nutrition, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Mary Ann S Chrissy
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rajan Jain
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Joyce C Niland
- Department of Diabetes and Cancer Discovery Science, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Young-Kwon Hong
- Departments of Surgery and of Biochemistry & Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jill Carrington
- National Institutes of Health, Division of Digestive Diseases and Nutrition, NIDDK, Bethesda, MD 20892, USA
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Jonathan Epstein
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Courtney W Houchen
- Department of Internal Medicine, Division of Digestive Diseases and Nutrition, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - John P Lynch
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Martin G Martin
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Mattel Children's Hospital and the David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sylvia K Plevritis
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Christina Curtis
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hanlee P Ji
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Linheng Li
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Susan J Henning
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Melissa H Wong
- Oregon Health & Science University, Department of Cell, Developmental and Cancer Biology, Portland, OR 97239, USA
| | - Calvin J Kuo
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
111
|
Al-Khawaga S, Memon B, Butler AE, Taheri S, Abou-Samra AB, Abdelalim EM. Pathways governing development of stem cell-derived pancreatic β cells: lessons from embryogenesis. Biol Rev Camb Philos Soc 2017. [DOI: 10.1111/brv.12349] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sara Al-Khawaga
- Diabetes Research Center, Qatar Biomedical Research Institute; Hamad Bin Khalifa University, Qatar Foundation, Education City; Doha Qatar
| | - Bushra Memon
- Diabetes Research Center, Qatar Biomedical Research Institute; Hamad Bin Khalifa University, Qatar Foundation, Education City; Doha Qatar
| | - Alexandra E. Butler
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine; University of California; Los Angeles CA 90095 U.S.A
| | - Shahrad Taheri
- Department of Medicine; Weill Cornell Medicine in Qatar, Qatar Foundation, Education City, PO BOX 24144; Doha Qatar
- Department of Medicine; Qatar Metabolic Institute, Hamad Medical Corporation; Doha Qatar
| | - Abdul B. Abou-Samra
- Department of Medicine; Weill Cornell Medicine in Qatar, Qatar Foundation, Education City, PO BOX 24144; Doha Qatar
- Department of Medicine; Qatar Metabolic Institute, Hamad Medical Corporation; Doha Qatar
| | - Essam M. Abdelalim
- Diabetes Research Center, Qatar Biomedical Research Institute; Hamad Bin Khalifa University, Qatar Foundation, Education City; Doha Qatar
| |
Collapse
|
112
|
Rodnoi P, Rajkumar M, Moin ASM, Georgia SK, Butler AE, Dhawan S. Neuropeptide Y expression marks partially differentiated β cells in mice and humans. JCI Insight 2017; 2:94005. [PMID: 28614797 DOI: 10.1172/jci.insight.94005] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/10/2017] [Indexed: 12/27/2022] Open
Abstract
β Cells are formed in embryonic life by differentiation of endocrine progenitors and expand by replication during neonatal life, followed by transition into functional maturity. In this study, we addressed the potential contribution of neuropeptide Y (NPY) in pancreatic β cell development and maturation. We show that NPY expression is restricted from the progenitor populations during pancreatic development and marks functionally immature β cells in fetal and neonatal mice and humans. NPY expression is epigenetically downregulated in β cells upon maturation. Neonatal β cells that express NPY are more replicative, and knockdown of NPY expression in neonatal mouse islets reduces replication and enhances insulin secretion in response to high glucose. These data show that NPY expression likely promotes replication and contributes to impaired glucose responsiveness in neonatal β cells. We show that NPY expression reemerges in β cells in mice fed with high-fat diet as well as in diabetes in mice and humans, establishing a potential new mechanism to explain impaired β cell maturity in diabetes. Together, these studies highlight the contribution of NPY in the regulation of β cell differentiation and have potential applications for β cell supplementation for diabetes therapy.
Collapse
Affiliation(s)
- Pope Rodnoi
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Mohan Rajkumar
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Abu Saleh Md Moin
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Senta K Georgia
- Children's Hospital Los Angeles (CHLA), Keck School of Medicine, University of Southern California (USC), Los Angeles, California, USA
| | - Alexandra E Butler
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Sangeeta Dhawan
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| |
Collapse
|
113
|
Serafimidis I, Rodriguez-Aznar E, Lesche M, Yoshioka K, Takuwa Y, Dahl A, Pan D, Gavalas A. Pancreas lineage allocation and specification are regulated by sphingosine-1-phosphate signalling. PLoS Biol 2017; 15:e2000949. [PMID: 28248965 PMCID: PMC5331964 DOI: 10.1371/journal.pbio.2000949] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 02/01/2017] [Indexed: 12/12/2022] Open
Abstract
During development, progenitor expansion, lineage allocation, and implementation of differentiation programs need to be tightly coordinated so that different cell types are generated in the correct numbers for appropriate tissue size and function. Pancreatic dysfunction results in some of the most debilitating and fatal diseases, including pancreatic cancer and diabetes. Several transcription factors regulating pancreas lineage specification have been identified, and Notch signalling has been implicated in lineage allocation, but it remains unclear how these processes are coordinated. Using a combination of genetic approaches, organotypic cultures of embryonic pancreata, and genomics, we found that sphingosine-1-phosphate (S1p), signalling through the G protein coupled receptor (GPCR) S1pr2, plays a key role in pancreas development linking lineage allocation and specification. S1pr2 signalling promotes progenitor survival as well as acinar and endocrine specification. S1pr2-mediated stabilisation of the yes-associated protein (YAP) is essential for endocrine specification, thus linking a regulator of progenitor growth with specification. YAP stabilisation and endocrine cell specification rely on Gαi subunits, revealing an unexpected specificity of selected GPCR intracellular signalling components. Finally, we found that S1pr2 signalling posttranscriptionally attenuates Notch signalling levels, thus regulating lineage allocation. Both S1pr2-mediated YAP stabilisation and Notch attenuation are necessary for the specification of the endocrine lineage. These findings identify S1p signalling as a novel key pathway coordinating cell survival, lineage allocation, and specification and linking these processes by regulating YAP levels and Notch signalling. Understanding lineage allocation and specification in the pancreas will shed light in the origins of pancreatic diseases and may suggest novel therapeutic approaches.
Collapse
Affiliation(s)
- Ioannis Serafimidis
- Developmental Biology Laboratory, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Eva Rodriguez-Aznar
- Paul Langerhans Institute Dresden of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of TU Dresden, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Centre for Diabetes Research (DZD), Germany
| | - Mathias Lesche
- Deep Sequencing Group SFB655, DFG-Center for Regenerative Therapies Dresden (CRTD), Biotechnology Center (BioZ), Technische Universität Dresden, Dresden, Germany
| | - Kazuaki Yoshioka
- Department of Physiology, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
| | - Yoh Takuwa
- Department of Physiology, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
| | - Andreas Dahl
- Deep Sequencing Group SFB655, DFG-Center for Regenerative Therapies Dresden (CRTD), Biotechnology Center (BioZ), Technische Universität Dresden, Dresden, Germany
| | - Duojia Pan
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Anthony Gavalas
- Paul Langerhans Institute Dresden of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of TU Dresden, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Centre for Diabetes Research (DZD), Germany
- DFG-Center for Regenerative Therapies Dresden (CRTD), Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
114
|
Churchill AJ, Gutiérrez GD, Singer RA, Lorberbaum DS, Fischer KA, Sussel L. Genetic evidence that Nkx2.2 acts primarily downstream of Neurog3 in pancreatic endocrine lineage development. eLife 2017; 6:e20010. [PMID: 28071588 PMCID: PMC5224921 DOI: 10.7554/elife.20010] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 12/21/2016] [Indexed: 02/06/2023] Open
Abstract
Many pancreatic transcription factors that are essential for islet cell differentiation have been well characterized; however, because they are often expressed in several different cell populations, their functional hierarchy remains unclear. To parse out the spatiotemporal regulation of islet cell differentiation, we used a Neurog3-Cre allele to ablate Nkx2.2, one of the earliest and most broadly expressed islet transcription factors, specifically in the Neurog3+ endocrine progenitor lineage (Nkx2.2△endo). Remarkably, many essential components of the β cell transcriptional network that were down-regulated in the Nkx2.2KO mice, were maintained in the Nkx2.2△endo mice - yet the Nkx2.2△endo mice displayed defective β cell differentiation and recapitulated the Nkx2.2KO phenotype. This suggests that Nkx2.2 is not only required in the early pancreatic progenitors, but has additional essential activities within the endocrine progenitor population. Consistently, we demonstrate Nkx2.2 functions as an integral component of a modular regulatory program to correctly specify pancreatic islet cell fates.
Collapse
Affiliation(s)
- Angela J Churchill
- Naomi Berrie Diabetes Institute, Columbia University Medical School, New York, Columbia
- Department of Genetics and Development, Columbia University Medical School, New York, Columbia
- Genetics and Development Doctoral Program, Columbia University Medical School, New York, Columbia
| | - Giselle Dominguez Gutiérrez
- Naomi Berrie Diabetes Institute, Columbia University Medical School, New York, Columbia
- Department of Genetics and Development, Columbia University Medical School, New York, Columbia
- Nutritional and Metabolic Biology Doctoral Program, Columbia University Medical School, New York, Columbia
| | - Ruth A Singer
- Naomi Berrie Diabetes Institute, Columbia University Medical School, New York, Columbia
- Department of Genetics and Development, Columbia University Medical School, New York, Columbia
- The Integrated Graduate Program in Cellular, Molecular and Biomedical Studies, Columbia University Medical School, New York, Columbia
| | | | - Kevin A Fischer
- Barbara Davis Center, University of Colorado, Denver, United States
| | - Lori Sussel
- Naomi Berrie Diabetes Institute, Columbia University Medical School, New York, Columbia
- Department of Genetics and Development, Columbia University Medical School, New York, Columbia
- Genetics and Development Doctoral Program, Columbia University Medical School, New York, Columbia
- Nutritional and Metabolic Biology Doctoral Program, Columbia University Medical School, New York, Columbia
- The Integrated Graduate Program in Cellular, Molecular and Biomedical Studies, Columbia University Medical School, New York, Columbia
- Barbara Davis Center, University of Colorado, Denver, United States
| |
Collapse
|
115
|
Abstract
The zebrafish pancreas shares its basic organization and cell types with the mammalian pancreas. In addition, the developmental pathways that lead to the establishment of the pancreatic islets of Langherhans are generally conserved from fish to mammals. Zebrafish provides a powerful tool to probe the mechanisms controlling establishment of the pancreatic endocrine cell types from early embryonic progenitor cells, as well as the regeneration of endocrine cells after damage. This knowledge is, in turn, applicable to refining protocols to generate renewable sources of human pancreatic islet cells that are critical for regulation of blood sugar levels. Here, we review how previous and ongoing studies in zebrafish and beyond are influencing the understanding of molecular mechanisms underlying various forms of diabetes and efforts to develop cell-based approaches to cure this increasingly widespread disease.
Collapse
|
116
|
Bechard ME, Bankaitis ED, Hipkens SB, Ustione A, Piston DW, Yang YP, Magnuson MA, Wright CVE. Precommitment low-level Neurog3 expression defines a long-lived mitotic endocrine-biased progenitor pool that drives production of endocrine-committed cells. Genes Dev 2016; 30:1852-65. [PMID: 27585590 PMCID: PMC5024683 DOI: 10.1101/gad.284729.116] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/03/2016] [Indexed: 12/22/2022]
Abstract
Bechard et al. show that a cell population defined as Neurog3 transcriptionally active and Sox9+ and often containing nonimmunodetectable Neurog3 protein has a relatively high mitotic index and prolonged epithelial residency. They propose that this endocrine-biased mitotic progenitor state is functionally separated from a pro-ductal pool and endows them with long-term capacity to make endocrine fate-directed progeny. The current model for endocrine cell specification in the pancreas invokes high-level production of the transcription factor Neurogenin 3 (Neurog3) in Sox9+ bipotent epithelial cells as the trigger for endocrine commitment, cell cycle exit, and rapid delamination toward proto-islet clusters. This model posits a transient Neurog3 expression state and short epithelial residence period. We show, however, that a Neurog3TA.LO cell population, defined as Neurog3 transcriptionally active and Sox9+ and often containing nonimmunodetectable Neurog3 protein, has a relatively high mitotic index and prolonged epithelial residency. We propose that this endocrine-biased mitotic progenitor state is functionally separated from a pro-ductal pool and endows them with long-term capacity to make endocrine fate-directed progeny. A novel BAC transgenic Neurog3 reporter detected two types of mitotic behavior in Sox9+Neurog3TA.LO progenitors, associated with progenitor pool maintenance or derivation of endocrine-committed Neurog3HI cells, respectively. Moreover, limiting Neurog3 expression dramatically increased the proportional representation of Sox9+Neurog3TA.LO progenitors, with a doubling of its mitotic index relative to normal Neurog3 expression, suggesting that low Neurog3 expression is a defining feature of this cycling endocrine-biased state. We propose that Sox9+Neurog3TA.LO endocrine-biased progenitors feed production of Neurog3HI endocrine-committed cells during pancreas organogenesis.
Collapse
Affiliation(s)
- Matthew E Bechard
- Vanderbilt University Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Eric D Bankaitis
- Vanderbilt University Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Susan B Hipkens
- Vanderbilt University Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Alessandro Ustione
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - David W Piston
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Yu-Ping Yang
- Vanderbilt University Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Mark A Magnuson
- Vanderbilt University Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Christopher V E Wright
- Vanderbilt University Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| |
Collapse
|
117
|
Dempsey PJ. Are Facultative Reserve ISCs the Cellular Origin of Familial Small Intestinal Neuroendocrine Tumors? Gastroenterology 2016; 151:27-9. [PMID: 27237596 DOI: 10.1053/j.gastro.2016.05.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Peter J Dempsey
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, University of Colorado Medical School, Aurora, Colorado.
| |
Collapse
|
118
|
Sei Y, Feng J, Zhao X, Forbes J, Tang D, Nagashima K, Hanson J, Quezado MM, Hughes MS, Wank SA. Polyclonal Crypt Genesis and Development of Familial Small Intestinal Neuroendocrine Tumors. Gastroenterology 2016; 151:140-51. [PMID: 27003604 PMCID: PMC5578471 DOI: 10.1053/j.gastro.2016.03.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 01/17/2023]
Abstract
BACKGROUND & AIMS Small intestinal neuroendocrine tumors (SI-NETs) are serotonin-secreting well-differentiated neuroendocrine tumors believed to originate from enterochromaffin (EC) cells. Intestinal stem cell (ISC) are believed to contribute to the formation of SI-NETs, although little is known about tumor formation or development. We investigated the relationship between EC cells, ISCs, and SI-NETs. METHODS We analyzed jejuno-ileal tissue specimens from 14 patients with familial SI-NETs enrolled in the Natural History of Familial Carcinoid Tumor study at the National Institutes of Health from January 2009 to December 2014. Frozen and paraffin-embedded tumor tissues of different stages and isolated crypts were analyzed by in situ hybridization and immunohistochemistry. Tumor clonality was assessed by analyses of mitochondrial DNA. RESULTS We identified multifocal aberrant crypt-containing endocrine cell clusters (ACECs) that contain crypt EC cell microtumors in patients with familial SI-NETs. RNA in situ hybridization revealed expression of the EC cell and reserve stem cell genes TPH1, BMI1, HOPX, and LGR5(low), in the ACECs and more advanced extraepithelial tumor nests. This expression pattern resembled that of reserve EC cells that express reserve ISC genes; most reside at the +4 position in normal crypts. The presence of multifocal ACECs from separate tumors and in the macroscopic tumor-free mucosa indicated widespread, independent, multifocal tumorigenesis. Analyses of mitochondrial DNA confirmed the independent origin of the ACECs. CONCLUSIONS Familial SI-NETs originate from a subset of EC cells (reserve EC cells that express reserve ISC genes) via multifocal and polyclonal processes. Increasing our understanding of the role of these reserve EC cells in the genesis of multifocal SI-NETs could improve diagnostic and therapeutic strategies for this otherwise intractable disease.
Collapse
Affiliation(s)
- Yoshitatsu Sei
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-1804
| | - Jianying Feng
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-1804
| | - Xilin Zhao
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-1804
| | - Joanne Forbes
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-1804
| | - Derek Tang
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-1804
| | - Kunio Nagashima
- Electron Microscopy Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701
| | - Jeffrey Hanson
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health
| | - Martha M. Quezado
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health
| | - Marybeth S. Hughes
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-1804
| | - Stephen A. Wank
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-1804,To whom correspondence should be addressed. Stephen A. Wank, M.D., Address: DDB/NIDDK/NIH, 10/9C-101, Bethesda, MD 20892, , Phone: (301) 402-3704
| |
Collapse
|
119
|
Demitrack ES, Samuelson LC. Notch regulation of gastrointestinal stem cells. J Physiol 2016; 594:4791-803. [PMID: 26848053 DOI: 10.1113/jp271667] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/19/2016] [Indexed: 12/11/2022] Open
Abstract
The gastrointestinal (GI) tract epithelium is continuously replenished by actively cycling stem and progenitor cells. These cell compartments are regulated to balance proliferation and stem cell renewal with differentiation into the various mature cell types to maintain tissue homeostasis. In this topical review we focus on the role of the Notch signalling pathway to regulate GI stem cell function in adult small intestine and stomach. We first present the current view of stem and progenitor cell populations in these tissues and then summarize the studies that have established the Notch pathway as a key regulator of gastric and intestinal stem cell function. Notch signalling has been shown to be a niche factor required for maintenance of GI stem cells in both tissues. In addition, Notch has been described to regulate epithelial cell differentiation. Recent studies have revealed key similarities and differences in how Notch regulates stem cell function in the stomach compared to intestine. We summarize the literature regarding Notch regulation of GI stem cell proliferation and differentiation, highlighting tissue-specific functions to compare and contrast Notch in the stomach and intestine.
Collapse
Affiliation(s)
- Elise S Demitrack
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Linda C Samuelson
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.,Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| |
Collapse
|
120
|
Hao XX, Chen SR, Tang JX, Li J, Cheng JM, Jin C, Wang XX, Liu YX. Selective deletion of Smad4 in postnatal germ cells does not affect spermatogenesis or fertility in mice. Mol Reprod Dev 2016; 83:615-23. [PMID: 27265621 DOI: 10.1002/mrd.22664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/02/2016] [Indexed: 12/27/2022]
Abstract
SMAD4 is the central component of canonical signaling in the transforming growth factor beta (TGFβ) superfamily. Loss of Smad4 in Sertoli cells affects the expansion of the fetal testis cords, whereas selective deletion of Smad4 in Leydig cells alone does not appreciably alter fetal or adult testis development. Loss of Smad4 in Sertoli and Leydig cells, on the other hand, leads to testicular dysgenesis, and tumor formation in mice. Within the murine testes, Smad4 is also expressed in germ cells of the seminiferous tubules. We therefore, crossed Ngn3-Cre or Stra8-Cre transgenic mice with Smad4-flox mice to generate conditional knockout animals in which Smad4 was specifically deleted in postnatal germ cells to further uncover cell type-specific requirement of Smad4. Unexpectedly, these germ-cell-knockout mice were fertile and did not exhibit any detectable abnormalities in spermatogenesis, indicating that Smad4 is not required for the production of sperm; instead, these data indicate a cell type-specific requirement of Smad4 primarily during testis development. Mol. Reprod. Dev. 83: 615-623, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiao-Xia Hao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Su-Ren Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ji-Xin Tang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jian Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jin-Mei Cheng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Jin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiu-Xia Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
121
|
Gross S, Garofalo DC, Balderes DA, Mastracci TL, Dias JM, Perlmann T, Ericson J, Sussel L. The novel enterochromaffin marker Lmx1a regulates serotonin biosynthesis in enteroendocrine cell lineages downstream of Nkx2.2. Development 2016; 143:2616-28. [PMID: 27287799 DOI: 10.1242/dev.130682] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 05/26/2016] [Indexed: 12/17/2022]
Abstract
Intestinal hormone-producing cells represent the largest endocrine system in the body, but remarkably little is known about enteroendocrine cell type specification in the embryo and adult. We analyzed stage- and cell type-specific deletions of Nkx2.2 and its functional domains in order to characterize its role in the development and maintenance of enteroendocrine cell lineages in the mouse duodenum and colon. Although Nkx2.2 regulates enteroendocrine cell specification in the duodenum at all stages examined, it controls the differentiation of progressively fewer enteroendocrine cell populations when deleted from Ngn3(+) progenitor cells or in the adult duodenum. During embryonic development Nkx2.2 regulates all enteroendocrine cell types, except gastrin and preproglucagon. In developing Ngn3(+) enteroendocrine progenitor cells, Nkx2.2 is not required for the specification of neuropeptide Y and vasoactive intestinal polypeptide, indicating that a subset of these cell populations derive from an Nkx2.2-independent lineage. In adult duodenum, Nkx2.2 becomes dispensable for cholecystokinin and secretin production. In all stages and Nkx2.2 mutant conditions, serotonin-producing enterochromaffin cells were the most severely reduced enteroendocrine lineage in the duodenum and colon. We determined that the transcription factor Lmx1a is expressed in enterochromaffin cells and functions downstream of Nkx2.2. Lmx1a-deficient mice have reduced expression of Tph1, the rate-limiting enzyme for serotonin biosynthesis. These data clarify the function of Nkx2.2 in the specification and homeostatic maintenance of enteroendocrine populations, and identify Lmx1a as a novel enterochromaffin cell marker that is also essential for the production of the serotonin biosynthetic enzyme Tph1.
Collapse
Affiliation(s)
- Stefanie Gross
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, USA
| | - Diana C Garofalo
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, USA
| | - Dina A Balderes
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, USA
| | - Teresa L Mastracci
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, USA
| | - José M Dias
- Department of Cell and Molecular Biology, Karolinska Institute, von Eulers v. 3, 171 77, Stockholm, Sweden
| | - Thomas Perlmann
- Department of Cell and Molecular Biology, Karolinska Institute, von Eulers v. 3, 171 77, Stockholm, Sweden Ludwig Institute for Cancer Research, Stockholm Branch, Nobels v. 3, 171 77, Stockholm, Sweden
| | - Johan Ericson
- Department of Cell and Molecular Biology, Karolinska Institute, von Eulers v. 3, 171 77, Stockholm, Sweden
| | - Lori Sussel
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
122
|
Ünlüsoy Aksu A, Eğritaş Gürkan Ö, Sarı S, Demirtaş Z, Türkyılmaz C, Poyraz A, Dalgıç B. Mutant neurogenin-3 in a Turkish boy with congenital malabsorptive diarrhea. Pediatr Int 2016; 58:379-382. [PMID: 26541772 DOI: 10.1111/ped.12783] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/25/2015] [Accepted: 07/30/2015] [Indexed: 12/01/2022]
Abstract
Congenital diarrheal disorders are caused by disruption in nutrient digestion, absorption, or transport, enterocyte development and functioning, or enteroendocrine functioning. Many additional rare forms of congenital diarrhea are expected to be linked to genes associated with appropriate intestinal fluid and electrolyte balance. Neurogenin-3 mutation, a very rare form of congenital diarrhea, disrupts enteroendocrine cell differentiation and is characterized by malabsorption and the absence of pancreatic islet cells. Diabetes mellitus is typically associated with malabsorptive diarrhea at early onset or at later presentation in neurogenin-3 mutation. Here, we describe the case of an infant with homozygous neurogenin-3 mutation who had severe malabsorptive diarrhea and episodes of hyperchloremic metabolic acidosis after birth. Remarkably, cholestyramine was effective at reducing stool volume and frequency and improved the consistency of the stools; diabetes was not present in this patient.
Collapse
Affiliation(s)
- Aysel Ünlüsoy Aksu
- Department of Pediatric Gastroenterology, Gazi University Medical School, Ankara, Turkey
| | - Ödül Eğritaş Gürkan
- Department of Pediatric Gastroenterology, Gazi University Medical School, Ankara, Turkey
| | - Sinan Sarı
- Department of Pediatric Gastroenterology, Gazi University Medical School, Ankara, Turkey
| | - Zeliha Demirtaş
- Department of Pediatric Gastroenterology, Gazi University Medical School, Ankara, Turkey
| | | | - Aylar Poyraz
- Department of Pathology, Gazi University Medical School, Ankara, Turkey
| | - Buket Dalgıç
- Department of Pediatric Gastroenterology, Gazi University Medical School, Ankara, Turkey
| |
Collapse
|
123
|
Pan FC, Brissova M, Powers AC, Pfaff S, Wright CVE. Inactivating the permanent neonatal diabetes gene Mnx1 switches insulin-producing β-cells to a δ-like fate and reveals a facultative proliferative capacity in aged β-cells. Development 2016; 142:3637-48. [PMID: 26534984 DOI: 10.1242/dev.126011] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Homozygous Mnx1 mutation causes permanent neonatal diabetes in humans, but via unknown mechanisms. Our systematic and longitudinal analysis of Mnx1 function during murine pancreas organogenesis and into the adult uncovered novel stage-specific roles for Mnx1 in endocrine lineage allocation and β-cell fate maintenance. Inactivation in the endocrine-progenitor stage shows that Mnx1 promotes β-cell while suppressing δ-cell differentiation programs, and is crucial for postnatal β-cell fate maintenance. Inactivating Mnx1 in embryonic β-cells (Mnx1(Δbeta)) caused β-to-δ-like cell transdifferentiation, which was delayed until postnatal stages. In the latter context, β-cells escaping Mnx1 inactivation unexpectedly upregulated Mnx1 expression and underwent an age-independent persistent proliferation. Escaper β-cells restored, but then eventually surpassed, the normal pancreatic β-cell mass, leading to islet hyperplasia in aged mice. In vitro analysis of islets isolated from Mnx1(Δbeta) mice showed higher insulin secretory activity and greater insulin mRNA content than in wild-type islets. Mnx1(Δbeta) mice also showed a much faster return to euglycemia after β-cell ablation, suggesting that the new β-cells derived from the escaper population are functional. Our findings identify Mnx1 as an important factor in β-cell differentiation and proliferation, with the potential for targeting to increase the number of endogenous β-cells for diabetes therapy.
Collapse
Affiliation(s)
- Fong Cheng Pan
- Vanderbilt University Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Marcela Brissova
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Alvin C Powers
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA VA Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - Samuel Pfaff
- Gene Expression Laboratory, The Salk Institute, La Jolla, CA 92037, USA
| | - Christopher V E Wright
- Vanderbilt University Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
124
|
Paul L, Walker EM, Drosos Y, Cyphert HA, Neale G, Stein R, South J, Grosveld G, Herrera PL, Sosa-Pineda B. Lack of Prox1 Downregulation Disrupts the Expansion and Maturation of Postnatal Murine β-Cells. Diabetes 2016; 65:687-98. [PMID: 26631740 PMCID: PMC4764148 DOI: 10.2337/db15-0713] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 11/20/2015] [Indexed: 12/18/2022]
Abstract
Transcription factor expression fluctuates during β-cell ontogeny, and disruptions in this pattern can affect the development or function of those cells. Here we uncovered that murine endocrine pancreatic progenitors express high levels of the homeodomain transcription factor Prox1, whereas both immature and mature β-cells scarcely express this protein. We also investigated if sustained Prox1 expression is incompatible with β-cell development or maintenance using transgenic mouse approaches. We discovered that Prox1 upregulation in mature β-cells has no functional consequences; in contrast, Prox1 overexpression in immature β-cells promotes acute fasting hyperglycemia. Using a combination of immunostaining and quantitative and comparative gene expression analyses, we determined that Prox1 upregulation reduces proliferation, impairs maturation, and enables apoptosis in postnatal β-cells. Also, we uncovered substantial deficiency in β-cells that overexpress Prox1 of the key regulator of β-cell maturation MafA, several MafA downstream targets required for glucose-stimulated insulin secretion, and genes encoding important components of FGF signaling. Moreover, knocking down PROX1 in human EndoC-βH1 β-cells caused increased expression of many of these same gene products. These and other results in our study indicate that reducing the expression of Prox1 is beneficial for the expansion and maturation of postnatal β-cells.
Collapse
Affiliation(s)
- Leena Paul
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN
| | - Emily M Walker
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, Nashville, TN
| | - Yiannis Drosos
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN
| | - Holly A Cyphert
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, Nashville, TN
| | - Geoffrey Neale
- Hartwell Center for Bioinformatics & Biotechnology, St. Jude Children's Research Hospital, Memphis, TN
| | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, Nashville, TN
| | - Jack South
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN
| | - Gerard Grosveld
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN
| | - Pedro L Herrera
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Beatriz Sosa-Pineda
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
125
|
Ariyachet C, Tovaglieri A, Xiang G, Lu J, Shah MS, Richmond CA, Verbeke C, Melton DA, Stanger BZ, Mooney D, Shivdasani RA, Mahony S, Xia Q, Breault DT, Zhou Q. Reprogrammed Stomach Tissue as a Renewable Source of Functional β Cells for Blood Glucose Regulation. Cell Stem Cell 2016; 18:410-21. [PMID: 26908146 DOI: 10.1016/j.stem.2016.01.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 10/05/2015] [Accepted: 01/08/2016] [Indexed: 12/12/2022]
Abstract
The gastrointestinal (GI) epithelium is a highly regenerative tissue with the potential to provide a renewable source of insulin(+) cells after undergoing cellular reprogramming. Here, we show that cells of the antral stomach have a previously unappreciated propensity for conversion into functional insulin-secreting cells. Native antral endocrine cells share a surprising degree of transcriptional similarity with pancreatic β cells, and expression of β cell reprogramming factors in vivo converts antral cells efficiently into insulin(+) cells with close molecular and functional similarity to β cells. Induced GI insulin(+) cells can suppress hyperglycemia in a diabetic mouse model for at least 6 months and regenerate rapidly after ablation. Reprogramming of antral stomach cells assembled into bioengineered mini-organs in vitro yielded transplantable units that also suppressed hyperglycemia in diabetic mice, highlighting the potential for development of engineered stomach tissues as a renewable source of functional β cells for glycemic control.
Collapse
Affiliation(s)
- Chaiyaboot Ariyachet
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Alessio Tovaglieri
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Guanjue Xiang
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Jiaqi Lu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, Peking University School of Pharmaceutical Sciences, Beijing 100191, China
| | - Manasvi S Shah
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Camilla A Richmond
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Catia Verbeke
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Douglas A Melton
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Ben Z Stanger
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David Mooney
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Ramesh A Shivdasani
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Shaun Mahony
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Qing Xia
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, Peking University School of Pharmaceutical Sciences, Beijing 100191, China
| | - David T Breault
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Qiao Zhou
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
126
|
Wnt9a deficiency discloses a repressive role of Tcf7l2 on endocrine differentiation in the embryonic pancreas. Sci Rep 2016; 6:19223. [PMID: 26771085 PMCID: PMC4725895 DOI: 10.1038/srep19223] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/09/2015] [Indexed: 12/16/2022] Open
Abstract
Transcriptional and signaling networks establish complex cross-regulatory interactions that drive cellular differentiation during development. Using microarrays we identified the gene encoding the ligand Wnt9a as a candidate target of Neurogenin3, a basic helix-loop-helix transcription factor that functions as a master regulator of pancreatic endocrine differentiation. Here we show that Wnt9a is expressed in the embryonic pancreas and that its deficiency enhances activation of the endocrine transcriptional program and increases the number of endocrine cells at birth. We identify the gene encoding the endocrine transcription factor Nkx2-2 as one of the most upregulated genes in Wnt9a-ablated pancreases and associate its activation to reduced expression of the Wnt effector Tcf7l2. Accordingly, in vitro studies confirm that Tcf7l2 represses activation of Nkx2-2 by Neurogenin3 and inhibits Nkx2-2 expression in differentiated β-cells. Further, we report that Tcf7l2 protein levels decline upon initiation of endocrine differentiation in vivo, disclosing the downregulation of this factor in the developing endocrine compartment. These findings highlight the notion that modulation of signalling cues by lineage-promoting factors is pivotal for controlling differentiation programs.
Collapse
|
127
|
Conrad E, Dai C, Spaeth J, Guo M, Cyphert HA, Scoville D, Carroll J, Yu WM, Goodrich LV, Harlan DM, Grove KL, Roberts CT, Powers AC, Gu G, Stein R. The MAFB transcription factor impacts islet α-cell function in rodents and represents a unique signature of primate islet β-cells. Am J Physiol Endocrinol Metab 2016; 310:E91-E102. [PMID: 26554594 PMCID: PMC4675799 DOI: 10.1152/ajpendo.00285.2015] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 10/21/2015] [Indexed: 12/11/2022]
Abstract
Analysis of MafB(-/-) mice has suggested that the MAFB transcription factor was essential to islet α- and β-cell formation during development, although the postnatal physiological impact could not be studied here because these mutants died due to problems in neural development. Pancreas-wide mutant mice were generated to compare the postnatal significance of MafB (MafB(Δpanc)) and MafA/B (MafAB(Δpanc)) with deficiencies associated with the related β-cell-enriched MafA mutant (MafA(Δpanc)). Insulin(+) cell production and β-cell activity were merely delayed in MafB(Δpanc) islets until MafA was comprehensively expressed in this cell population. We propose that MafA compensates for the absence of MafB in MafB(Δpanc) mice, which is supported by the death of MafAB(Δpanc) mice soon after birth from hyperglycemia. However, glucose-induced glucagon secretion was compromised in adult MafB(Δpanc) islet α-cells. Based upon these results, we conclude that MafB is only essential to islet α-cell activity and not β-cell. Interestingly, a notable difference between mice and humans is that MAFB is coexpressed with MAFA in adult human islet β-cells. Here, we show that nonhuman primate (NHP) islet α- and β-cells also produce MAFB, implying that MAFB represents a unique signature and likely important regulator of the primate islet β-cell.
Collapse
Affiliation(s)
- Elizabeth Conrad
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Chunhua Dai
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Jason Spaeth
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Min Guo
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Holly A Cyphert
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - David Scoville
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Julie Carroll
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon
| | - Wei-Ming Yu
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts
| | - Lisa V Goodrich
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts
| | - David M Harlan
- Department of Medicine, University of Massachusetts, Worcester, Massachusetts
| | - Kevin L Grove
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon
| | - Charles T Roberts
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon
| | - Alvin C Powers
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee; Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee; Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee; and
| | - Guoqiang Gu
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee;
| |
Collapse
|
128
|
Kong B, Cheng T, Qian C, Wu W, Steiger K, Cao J, Schlitter AM, Regel I, Raulefs S, Friess H, Erkan M, Esposito I, Kleeff J, Michalski CW. Pancreas-specific activation of mTOR and loss of p53 induce tumors reminiscent of acinar cell carcinoma. Mol Cancer 2015; 14:212. [PMID: 26683340 PMCID: PMC4683950 DOI: 10.1186/s12943-015-0483-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 12/10/2015] [Indexed: 12/20/2022] Open
Abstract
Background Pancreatic acinar cell carcinoma (ACC) is a rare tumor entity with an unfavorable prognosis. Recent whole-exome sequencing identified p53 mutations in a subset of human ACC. Activation of the mammalian target of rapamycin (mTOR) pathway is associated with various pancreatic neoplasms. We thus aimed at analyzing whether activation of mTOR with a concomitant loss of p53 may initiate ACC. Methods We generated transgenic mouse models in which mTOR was hyperactivated through pancreas-specific, homozygous tuberous sclerosis 1 (Tsc1) deficiency, with or without deletion of p53 (Tsc1-/- and Tsc1-/-; p53-/-). Activity of mTOR signaling was investigated using mouse tissues and isolated murine cell lines. Human ACC specimens were used to corroborate the findings from the transgenic mouse models. Results Hyperactive mTOR signaling in Tsc1-/- mice was not oncogenic but rather induced a near-complete loss of the pancreatic acinar compartment. Acinar cells were lost as a result of apoptosis which was associated with p53 activation. Concomitantly, ductal cells were enriched. Ablation of p53 in Tsc1-deficient mice prevented acinar cell death but promoted formation of acinar cells with severe nuclear abnormalities. One out of seven Tsc1-/-; p53-/- animals developed pancreatic tumors showing a distinctive tumor morphology, reminiscent of human ACC. Hyperactive mTOR signaling was also detected in a subset of human ACC. Conclusion Hyperactive mTOR signaling combined with loss of p53 in mice induces tumors similar to human ACC. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0483-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bo Kong
- Department of Surgery, Technische Universität München (TUM), Munich, Germany
| | - Tao Cheng
- Department of Surgery, Technische Universität München (TUM), Munich, Germany
| | - Chengjia Qian
- Department of Surgery, Technische Universität München (TUM), Munich, Germany
| | - Weiwei Wu
- Department of Surgery, Technische Universität München (TUM), Munich, Germany
| | | | - Jing Cao
- Department of Surgery, Technische Universität München (TUM), Munich, Germany
| | | | - Ivonne Regel
- Department of Surgery, Technische Universität München (TUM), Munich, Germany
| | - Susanne Raulefs
- Department of Surgery, Technische Universität München (TUM), Munich, Germany
| | - Helmut Friess
- Department of Surgery, Technische Universität München (TUM), Munich, Germany
| | - Mert Erkan
- Department of Surgery, Technische Universität München (TUM), Munich, Germany.,Department of Surgery, Koc School of Medicine, Istanbul, Turkey
| | - Irene Esposito
- Institute of Pathology, TUM, Munich, Germany.,Institute of Pathology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Jörg Kleeff
- Department of Surgery, Technische Universität München (TUM), Munich, Germany.,Royal Liverpool and Broadgreen University Hospitals, Liverpool, UK
| | - Christoph W Michalski
- Department of Surgery, University of Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany.
| |
Collapse
|
129
|
Gross S, Balderes D, Liu J, Asfaha S, Gu G, Wang TC, Sussel L. Nkx2.2 is expressed in a subset of enteroendocrine cells with expanded lineage potential. Am J Physiol Gastrointest Liver Physiol 2015; 309:G975-87. [PMID: 26492922 PMCID: PMC4683302 DOI: 10.1152/ajpgi.00244.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/19/2015] [Indexed: 01/31/2023]
Abstract
There are two major stem cell populations in the intestinal crypt region that express either Bmi1 or Lgr5; however, it has been shown that other populations in the crypt can regain stemness. In this study, we demonstrate that the transcription factor NK2 homeobox 2 (Nkx2.2) is expressed in enteroendocrine cells located in the villus and crypt of the intestinal epithelium and is coexpressed with the stem cell markers Bmi1 and Lgr5 in a subset of crypt cells. To determine whether Nkx2.2-expressing enteroendocrine cells display cellular plasticity and stem cell potential, we performed genetic lineage tracing of the Nkx2.2-expressing population using Nkx2.2(Cre/+);R26RTomato mice. These studies demonstrated that Nkx2.2+ cells are able to give rise to all intestinal epithelial cell types in basal conditions. The proliferative capacity of Nkx2.2-expressing cells was also demonstrated in vitro using crypt organoid cultures. Injuring the intestine with irradiation, systemic inflammation, and colitis did not enhance the lineage potential of Nkx2.2-expressing cells. These findings demonstrate that a rare mature enteroendocrine cell subpopulation that is demarcated by Nkx2.2 expression display stem cell properties during normal intestinal epithelial homeostasis, but is not easily activated upon injury.
Collapse
Affiliation(s)
- Stefanie Gross
- Department of Genetics and Development, Columbia University Medical Center, New York, New York
| | - Dina Balderes
- Department of Genetics and Development, Columbia University Medical Center, New York, New York
| | - Jing Liu
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Samuel Asfaha
- Department of Digestive and Liver Diseases, Columbia University Medical Center, New York, New York; and
| | - Guoqiang Gu
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Timothy C Wang
- Department of Digestive and Liver Diseases, Columbia University Medical Center, New York, New York; and Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Lori Sussel
- Department of Genetics and Development, Columbia University Medical Center, New York, New York;
| |
Collapse
|
130
|
Adler CE, Sánchez Alvarado A. Types or States? Cellular Dynamics and Regenerative Potential. Trends Cell Biol 2015; 25:687-696. [PMID: 26437587 DOI: 10.1016/j.tcb.2015.07.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/13/2015] [Accepted: 07/29/2015] [Indexed: 01/31/2023]
Abstract
Many of our organs can maintain and repair themselves during homeostasis and injury, as a result of the action of tissue-specific, multipotent stem cells. However, recent evidence from mammalian systems suggests that injury stimulates dramatic plasticity, or transient changes in cell potential, in both stem cells and more differentiated cells. Planarian flatworms possess abundant stem cells, making them an exceptional model for understanding the cellular behavior underlying homeostasis and regeneration. Recent discoveries of cell lineages and regeneration-specific events provide an initial framework for unraveling the complex cellular contributions to regeneration. In this review, we discuss the concept of cellular plasticity in the context of planarian regeneration, and consider the possibility that pluripotency may be a transient, probabilistic state exhibited by stem cells.
Collapse
Affiliation(s)
- Carolyn E Adler
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA; Current address: Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | - Alejandro Sánchez Alvarado
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA; Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815-6789, USA.
| |
Collapse
|
131
|
El-Salhy M, Hatlebakk JG, Hausken T. Reduction in duodenal endocrine cells in irritable bowel syndrome is associated with stem cell abnormalities. World J Gastroenterol 2015; 21:9577-9587. [PMID: 26327765 PMCID: PMC4548118 DOI: 10.3748/wjg.v21.i32.9577] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/09/2015] [Accepted: 04/03/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine whether the decreased density of duodenal endocrine cells in irritable bowel syndrome (IBS) is associated with abnormalities in stem cell differentiation.
METHODS: The study sample comprised 203 patients with IBS (180 females and 23 males with a mean age of 36 years) and a control group of 86 healthy subjects without gastrointestinal complaints (77 females and 9 males with a mean age of 38 years). The patients included 80 with mostly diarrhoea (IBS-D), 47 with both diarrhoea and constipation (IBS-M), and 76 with mostly constipation (IBS-C). Both the patients and controls underwent gastroscopy and four biopsy samples were taken from the descending part of the duodenum, proximal to the papilla of Vater. The biopsy samples were sectioned and immunostained for Musashi 1 (Msi-1), neurogenin 3 (NEUROG3), secretin, cholecystokinin (CCK), gastric inhibitory peptide (GIP), somatostatin and serotonin. Immunostaining was performed with an ultraView Universal DAB Detection Kit (v1.02.0018, Venata Medical Systems, Basal, Switzerland) using the BenchMark Ultra immunohistochemistry/in situ hybridization staining module (Venata Medical Systems). Endocrine cell densities were quantified by computerized image analysis using the Olympus cellSens imaging program.
RESULTS: The densities of Msi-1 and NEUROG3 cells were significantly lower in IBS patients, regardless of the subtype, than in the controls (77 ± 17 vs 8 ± 2; P = 0.0001, and 351 ± 33 vs 103 ± 22; P = 0.00002, respectively). Furthermore, the densities of secretin, and CCK cells were significantly lower in patients with diarrhoea as the predominant IBS symptom (IBS-D) than in the controls (161 ± 11 vs 88 ± 8; P = 0.00007, and 325 ± 41 vs 118 ± 10; P = 0.00006, respectively), but not in patients with constipation as the predominant IBS symptom (IBS-C) or those with both diarrhoea and constipation (IBS-M). The GIP cell density was significantly reduced in both IBS-D (152 ± 12 vs 82 ± 7; P = 0.00003), and IBS-C (152 ± 12 vs 107 ± 8; P = 0.01), but not in IBS-M. The densities of somatostatin cells in the controls and the IBS-total, IBS-D, IBS-M and IBS-C patients were 81 ± 8, 28 ± 3, 20 ± 4, 37 ± 5 and 28 ± 4 cells/mm2 epithelium, respectively. The density of somatostatin cells was lower in IBS-total, IBS-D, IBS-M and IBS-C patients than in the controls (P = 0.00009, 0.00006, 0.009 and 0.00008, respectively). The density of serotonin cells did not differ between IBS patients and controls.
CONCLUSION: The reduction in duodenal endocrine cells in IBS patients found in this study is probably attributable to the reduction in cells expressing Msi-1 and NEUROG3.
Collapse
|
132
|
Raum JC, Soleimanpour SA, Groff DN, Coré N, Fasano L, Garratt AN, Dai C, Powers AC, Stoffers DA. Tshz1 Regulates Pancreatic β-Cell Maturation. Diabetes 2015; 64:2905-14. [PMID: 25918232 PMCID: PMC4512227 DOI: 10.2337/db14-1443] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 04/08/2015] [Indexed: 01/09/2023]
Abstract
The homeodomain transcription factor Pdx1 controls pancreas organogenesis, specification of endocrine pancreas progenitors, and the postnatal growth and function of pancreatic β-cells. Pdx1 expression in human-derived stem cells is used as a marker for induced pancreatic precursor cells. Unfortunately, the differentiation efficiency of human pancreatic progenitors into functional β-cells is poor. In order to gain insight into the genes that Pdx1 regulates during differentiation, we performed Pdx1 chromatin immunoprecipitation followed by high-throughput sequencing of embryonic day (e) 13.5 and 15.5 mouse pancreata. From this, we identified the transcription factor Teashirt zinc finger 1 (Tshz1) as a direct Pdx1 target. Tshz1 is expressed in developing and adult insulin- and glucagon-positive cells. Endocrine cells are properly specified in Tshz1-null embryos, but critical regulators of β-cell (Pdx1 and Nkx6.1) and α-cell (MafB and Arx) formation and function are downregulated. Adult Tshz1(+/-) mice display glucose intolerance due to defects in glucose-stimulated insulin secretion associated with reduced Pdx1 and Clec16a expression in Tshz1(+/-) islets. Lastly, we demonstrate that TSHZ1 levels are reduced in human islets of donors with type 2 diabetes. Thus, we position Tshz1 in the transcriptional network of maturing β-cells and suggest that its dysregulation could contribute to the islet phenotype of human type 2 diabetes.
Collapse
Affiliation(s)
- Jeffrey C Raum
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Scott A Soleimanpour
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - David N Groff
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Nathalie Coré
- Institut de Biologie du Développement de Marseille, UMR 7288, Aix-Marseille Université, CNRS, Marseille, France
| | - Laurent Fasano
- Institut de Biologie du Développement de Marseille, UMR 7288, Aix-Marseille Université, CNRS, Marseille, France
| | - Alistair N Garratt
- Institute of Cell Biology and Neurobiology, Center for Anatomy, Charité University Hospital Berlin, Berlin, Germany
| | - Chunhua Dai
- Division of Diabetes, Endocrinology & Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Alvin C Powers
- Division of Diabetes, Endocrinology & Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN VA Tennessee Valley Healthcare System, Nashville, TN
| | - Doris A Stoffers
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
133
|
Talchai SC, Accili D. Legacy Effect of Foxo1 in Pancreatic Endocrine Progenitors on Adult β-Cell Mass and Function. Diabetes 2015; 64:2868-79. [PMID: 25784544 PMCID: PMC4512230 DOI: 10.2337/db14-1696] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 03/04/2015] [Indexed: 01/02/2023]
Abstract
β-Cell dysfunction in diabetes results from abnormalities of insulin production, secretion, and cell number. These abnormalities may partly arise from altered developmental programming of β-cells. Foxo1 is important to maintain adult β-cells, but little is known about its role in pancreatic progenitor cells as determinants of future β-cell function. We addressed this question by generating an allelic series of somatic Foxo1 knockouts at different stages of pancreatic development in mice. Surprisingly, ablation of Foxo1 in pancreatic progenitors resulted in delayed appearance of Neurogenin3(+) progenitors and their persistence into adulthood as a self-replicating pool, causing a fourfold increase of β-cell mass. Similarly, Foxo1 ablation in endocrine progenitors increased their numbers, extended their survival, and expanded β-cell mass. In contrast, ablation of Foxo1 in terminally differentiated β-cells did not increase β-cell mass nor did it affect Neurogenin3 expression. Despite the increased β-cell mass, islets from mice lacking Foxo1 in pancreatic or endocrine progenitors responded poorly to glucose, resulting in glucose intolerance. We conclude that Foxo1 integrates cues that determine developmental timing, pool size, and functional features of endocrine progenitor cells, resulting in a legacy effect on adult β-cell mass and function. Our results illustrate how developmental programming predisposes to β-cell dysfunction in adults and raise questions on the desirability of increasing β-cell mass for therapeutic purposes in type 2 diabetes.
Collapse
Affiliation(s)
- Shivatra Chutima Talchai
- Department of Medicine and Naomi Berrie Diabetes Center, Columbia University, New York, NY Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Domenico Accili
- Department of Medicine and Naomi Berrie Diabetes Center, Columbia University, New York, NY
| |
Collapse
|
134
|
Mills JC, Sansom OJ. Reserve stem cells: Differentiated cells reprogram to fuel repair, metaplasia, and neoplasia in the adult gastrointestinal tract. Sci Signal 2015; 8:re8. [PMID: 26175494 PMCID: PMC4858190 DOI: 10.1126/scisignal.aaa7540] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It has long been known that differentiated cells can switch fates, especially in vitro, but only recently has there been a critical mass of publications describing the mechanisms adult, postmitotic cells use in vivo to reverse their differentiation state. We propose that this sort of cellular reprogramming is a fundamental cellular process akin to apoptosis or mitosis. Because reprogramming can invoke regenerative cells from mature cells, it is critical to the long-term maintenance of tissues like the pancreas, which encounter large insults during adulthood but lack constitutively active adult stem cells to repair the damage. However, even in tissues with adult stem cells, like the stomach and intestine, reprogramming may allow mature cells to serve as reserve ("quiescent") stem cells when normal stem cells are compromised. We propose that the potential downside to reprogramming is that it increases risk for cancers that occur late in adulthood. Mature, long-lived cells may have years of exposure to mutagens. Mutations that affect the physiological function of differentiated, postmitotic cells may lead to apoptosis, but mutations in genes that govern proliferation might not be selected against. Hence, reprogramming with reentry into the cell cycle might unmask those mutations, causing an irreversible progenitor-like, proliferative state. We review recent evidence showing that reprogramming fuels irreversible metaplastic and precancerous proliferation in the stomach and pancreas. Finally, we illustrate how we think reprogrammed differentiated cells are likely candidates as cells of origin for cancers of the intestine.
Collapse
Affiliation(s)
- Jason C Mills
- Division of Gastroenterology, Departments of Medicine, Pathology & Immunology, and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK.
| |
Collapse
|
135
|
Xu EE, Krentz NAJ, Tan S, Chow SZ, Tang M, Nian C, Lynn FC. SOX4 cooperates with neurogenin 3 to regulate endocrine pancreas formation in mouse models. Diabetologia 2015; 58:1013-23. [PMID: 25652387 DOI: 10.1007/s00125-015-3507-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 01/09/2015] [Indexed: 10/24/2022]
Abstract
AIMS/HYPOTHESIS The sex-determining region Y (SRY)-related high mobility group (HMG) box (SOX) family of transcription factors is essential for normal organismal development. Despite the longstanding knowledge that many SOX family members are expressed during pancreas development, a role for many of these factors in the establishment of insulin-producing beta cell fate remains to be determined. The aim of this study is to elucidate the role of SOX4 during beta cell development. METHODS We used pancreas and endocrine progenitor mouse knockouts of Sox4 to uncover the roles of SOX4 during pancreas development. Lineage tracing and in vitro models were used to determine how SOX4 regulates beta cell formation and understand the fate of Sox4-null endocrine lineage cells. RESULTS This study demonstrates a progenitor cell-autonomous role for SOX4 in regulating the genesis of beta cells and shows that it is required at multiple stages of the process. SOX4 deletion in the multipotent pancreatic progenitors resulted in impaired endocrine progenitor cell differentiation. Deletion of SOX4 later in the Neurog3-expressing cells also caused reductions in beta cells. Lineage studies showed loss of Sox4 in endocrine progenitors resulted in a block in terminal islet cell differentiation that was attributed to reduction in the production of key beta cell specification factors. CONCLUSIONS/INTERPRETATION These results demonstrate that SOX4 is essential for normal endocrine pancreas development both concomitant with, and downstream of, the endocrine fate decision. In conclusion, these studies position Sox4 temporally in the endocrine differentiation programme and provide a new target for improving in vitro differentiation of glucose-responsive pancreatic beta cells.
Collapse
Affiliation(s)
- Eric E Xu
- Diabetes Research Program, Child and Family Research Institute, A4-184, 950 West 28 Ave, Vancouver, BC, V5Z 4H4, Canada
| | | | | | | | | | | | | |
Collapse
|
136
|
Heinrich C, Spagnoli FM, Berninger B. In vivo reprogramming for tissue repair. Nat Cell Biol 2015; 17:204-11. [PMID: 25720960 DOI: 10.1038/ncb3108] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Vital organs such as the pancreas and the brain lack the capacity for effective regeneration. To overcome this limitation, an emerging strategy consists of converting resident tissue-specific cells into the cell types that are lost due to disease by a process called in vivo lineage reprogramming. Here we discuss recent breakthroughs in regenerating pancreatic β-cells and neurons from various cell types, and highlight fundamental challenges that need to be overcome for the translation of in vivo lineage reprogramming into therapy.
Collapse
Affiliation(s)
- Christophe Heinrich
- INSERM U836, F-38000 Grenoble, France and Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France
| | | | - Benedikt Berninger
- Institute of Physiological Chemistry and the Focus Program Translational Neuroscience, University Medical Center of the Johannes Gutenberg University Mainz, D-55128 Mainz, Germany, and Physiological Genomics, Institute of Physiology, Ludwig Maximilians University Munich, D-80336 Munich, Germany
| |
Collapse
|
137
|
Lara-Ramírez R, Patthey C, Shimeld SM. Characterization of twoneurogeningenes from the brook lampreylampetra planeriand their expression in the lamprey nervous system. Dev Dyn 2015; 244:1096-1108. [DOI: 10.1002/dvdy.24273] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 01/29/2015] [Accepted: 02/16/2015] [Indexed: 11/10/2022] Open
Affiliation(s)
- Ricardo Lara-Ramírez
- Department of Zoology; The Tinbergen Building, University of Oxford; South Parks Road Oxford United Kingdom
| | - Cédric Patthey
- Department of Zoology; The Tinbergen Building, University of Oxford; South Parks Road Oxford United Kingdom
- Umeå Centre for Molecular Medicine, Umeå University; Umeå Sweden
| | - Sebastian M. Shimeld
- Department of Zoology; The Tinbergen Building, University of Oxford; South Parks Road Oxford United Kingdom
| |
Collapse
|
138
|
Lemaire LA, Goulley J, Kim YH, Carat S, Jacquemin P, Rougemont J, Constam DB, Grapin-Botton A. Bicaudal C1 promotes pancreatic NEUROG3+ endocrine progenitor differentiation and ductal morphogenesis. Development 2015; 142:858-70. [PMID: 25715394 DOI: 10.1242/dev.114611] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In human, mutations in bicaudal C1 (BICC1), an RNA binding protein, have been identified in patients with kidney dysplasia. Deletion of Bicc1 in mouse leads to left-right asymmetry randomization and renal cysts. Here, we show that BICC1 is also expressed in both the pancreatic progenitor cells that line the ducts during development, and in the ducts after birth, but not in differentiated endocrine or acinar cells. Genetic inactivation of Bicc1 leads to ductal cell over-proliferation and cyst formation. Transcriptome comparison between WT and Bicc1 KO pancreata, before the phenotype onset, reveals that PKD2 functions downstream of BICC1 in preventing cyst formation in the pancreas. Moreover, the analysis highlights immune cell infiltration and stromal reaction developing early in the pancreas of Bicc1 knockout mice. In addition to these functions in duct morphogenesis, BICC1 regulates NEUROG3(+) endocrine progenitor production. Its deletion leads to a late but sustained endocrine progenitor decrease, resulting in a 50% reduction of endocrine cells. We show that BICC1 functions downstream of ONECUT1 in the pathway controlling both NEUROG3(+) endocrine cell production and ductal morphogenesis, and suggest a new candidate gene for syndromes associating kidney dysplasia with pancreatic disorders, including diabetes.
Collapse
Affiliation(s)
- Laurence A Lemaire
- DanStem, University of Copenhagen, 3B Blegdamsvej, Copenhagen N DK-2200, Denmark ISREC, Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Joan Goulley
- ISREC, Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Yung Hae Kim
- DanStem, University of Copenhagen, 3B Blegdamsvej, Copenhagen N DK-2200, Denmark ISREC, Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Solenne Carat
- BBCF, Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Patrick Jacquemin
- de Duve Institute, Université catholique de Louvain, Brussels B-1200, Belgium
| | - Jacques Rougemont
- BBCF, Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Daniel B Constam
- ISREC, Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Anne Grapin-Botton
- DanStem, University of Copenhagen, 3B Blegdamsvej, Copenhagen N DK-2200, Denmark ISREC, Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| |
Collapse
|
139
|
Dalgin G, Prince VE. Differential levels of Neurod establish zebrafish endocrine pancreas cell fates. Dev Biol 2015; 402:81-97. [PMID: 25797153 DOI: 10.1016/j.ydbio.2015.03.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 03/02/2015] [Accepted: 03/10/2015] [Indexed: 11/27/2022]
Abstract
During development a network of transcription factors functions to differentiate foregut cells into pancreatic endocrine cells. Differentiation of appropriate numbers of each hormone-expressing endocrine cell type is essential for the normal development of the pancreas and ultimately for effective maintenance of blood glucose levels. A fuller understanding of the details of endocrine cell differentiation may contribute to development of cell replacement therapies to treat diabetes. In this study, by using morpholino and gRNA/Cas9 mediated knockdown we establish that differential levels of the basic-helix loop helix (bHLH) transcription factor Neurod are required for the differentiation of distinct endocrine cell types in developing zebrafish. While Neurod plays a role in the differentiation of all endocrine cells, we find that differentiation of glucagon-expressing alpha cells is disrupted by a minor reduction in Neurod levels, whereas differentiation of insulin-expressing beta cells is less sensitive to Neurod depletion. The endocrine cells that arise during embryonic stages to produce the primary islet, and those that arise subsequently during larval stages from the intra-pancreatic duct (IPD) to ultimately contribute to the secondary islets, show similar dependence on differential Neurod levels. Intriguingly, Neurod-deficiency triggers premature formation of endocrine precursors from the IPD during early larval stages. However, the Neurod-deficient endocrine precursors fail to differentiate appropriately, and the larvae are unable to maintain normal glucose levels. In summary, differential levels of Neurod are required to generate endocrine pancreas subtypes from precursors during both embryonic and larval stages, and Neurod function is in turn critical to endocrine function.
Collapse
Affiliation(s)
- Gökhan Dalgin
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA.
| | - Victoria E Prince
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
140
|
Ding L, Han L, Li Y, Zhao J, He P, Zhang W. Neurogenin 3-directed cre deletion of Tsc1 gene causes pancreatic acinar carcinoma. Neoplasia 2014; 16:909-17. [PMID: 25425965 PMCID: PMC4240920 DOI: 10.1016/j.neo.2014.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 08/16/2014] [Accepted: 08/20/2014] [Indexed: 02/01/2023] Open
Abstract
The role of tuberous sclerosis complex (TSC) in the pathogenesis of pancreatic cancers remains largely unknown. The present study shows that neurogenin 3 directed Cre deletion of Tsc1 gene induces the development of pancreatic acinar carcinoma. By cross-breeding the Neurog3-cre mice with Tsc1 (loxp/loxp) mice, we generated the Neurog3-Tsc1-/- transgenic mice in which Tsc1 gene is deleted and mTOR signaling activated in the pancreatic progenitor cells. All Neurog3-Tsc1-/- mice developed notable adenocarcinoma-like lesions in pancreas starting from the age of 100 days old. The tumor lesions are composed of cells with morphological and molecular resemblance to acinar cells. Metastasis of neoplasm to liver and lung was detected in 5% of animals. Inhibition of mTOR signaling by rapamycin significantly attenuated the growth of the neoplasm. Relapse of the neoplasm occurred within 14 days upon cessation of rapamycin treatment. Our studies indicate that activation of mTOR signaling in the pancreatic progenitor cells may trigger the development of acinar carcinoma. Thus, mTOR may serve as a potential target for treatment of pancreatic acinar carcinoma.
Collapse
Affiliation(s)
- Li Ding
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China
| | - Lingling Han
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China
| | - Yin Li
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China
| | - Jing Zhao
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China
| | - Ping He
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Weizhen Zhang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China ; Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI 48109-0346
| |
Collapse
|
141
|
Zhang J, McKenna LB, Bogue CW, Kaestner KH. The diabetes gene Hhex maintains δ-cell differentiation and islet function. Genes Dev 2014; 28:829-34. [PMID: 24736842 PMCID: PMC4003275 DOI: 10.1101/gad.235499.113] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The homeodomain transcription factor HHEX (hematopoietically expressed homeobox) has been linked to type 2 diabetes mellitus in genome-wide association studies. Zhang et al. discover that Hhex is selectively expressed in the somatostatin-secreting δ cell of the adult pancreas. Hhex was required for δ-cell differentiation, and the reduced somatostatin levels in Hhex-deficient islets caused disrupted paracrine inhibition of insulin release from δ cells. This study identifies Hhex as the first transcriptional regulator specifically required for islet δ cells and suggests compromised paracrine control as a contributor to type 2 diabetes. The homeodomain transcription factor HHEX (hematopoietically expressed homeobox) has been repeatedly linked to type 2 diabetes mellitus (T2DM) using genome-wide association studies. We report here that within the adult endocrine pancreas, Hhex is selectively expressed in the somatostatin-secreting δ cell. Using two mouse models with Hhex deficiency in the endocrine pancreas, we show that Hhex is required for δ-cell differentiation. Decreased somatostatin levels in Hhex-deficient islets cause disrupted paracrine inhibition of insulin release from β cells. These findings identify Hhex as the first transcriptional regulator specifically required for islet δ cells and suggest compromised paracrine control as a contributor to T2DM.
Collapse
Affiliation(s)
- Jia Zhang
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
142
|
Baumgartner BK, Cash G, Hansen H, Ostler S, Murtaugh LC. Distinct requirements for beta-catenin in pancreatic epithelial growth and patterning. Dev Biol 2014; 391:89-98. [PMID: 24721715 DOI: 10.1016/j.ydbio.2014.03.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 03/26/2014] [Accepted: 03/27/2014] [Indexed: 10/25/2022]
Abstract
Pancreatic exocrine and endocrine lineages arise from multipotent pancreatic progenitor cells (MPCs). Exploiting the mechanisms that govern expansion and differentiation of these cells could enhance efforts to generate β-cells from stem cells. Although our prior work indicates that the canonical Wnt signaling component β-catenin is required qualitatively for exocrine acinar but not endocrine development, precisely how this requirement plays out at the level of MPCs and their lineage-restricted progeny is unknown. In addition, the contribution of β-catenin function to β-cell development remains controversial. To resolve the potential roles of β-catenin in development of MPCs and β-cells, we generated pancreas- and pre-endocrine-specific β-catenin knockout mice. Pancreas-specific loss of β-catenin produced not only a dramatic reduction in acinar cell numbers, but also a significant reduction in β-cell mass. The loss of β-cells is due not to a defect in the differentiation of endocrine precursors, but instead correlates with an early and specific loss of MPCs. In turn, this reflects a novel role for β-catenin in maintaining proximal-distal patterning of the early epithelium, such that distal MPCs resort to a proximal, endocrine-competent "trunk" fate when β-catenin is deleted. Moreover, β-catenin maintains proximal-distal patterning, in part, by inhibiting Notch signaling. Subsequently, β-catenin is required for proliferation of both distal and proximal cells, driving overall organ growth. In distinguishing two distinct roles for β-catenin along the route of β-cell development, we suggest that temporally appropriate positive and negative manipulation of this molecule could enhance expansion and differentiation of stem cell-derived MPCs.
Collapse
Affiliation(s)
- Brett K Baumgartner
- University of Utah, Department of Human Genetics, 15 N. 2030 E. Rm 2100, Salt Lake City, UT 84112, USA
| | - Gabriela Cash
- University of Utah, Department of Human Genetics, 15 N. 2030 E. Rm 2100, Salt Lake City, UT 84112, USA
| | - Hillary Hansen
- University of Utah, Department of Human Genetics, 15 N. 2030 E. Rm 2100, Salt Lake City, UT 84112, USA
| | - Shawn Ostler
- University of Utah, Department of Human Genetics, 15 N. 2030 E. Rm 2100, Salt Lake City, UT 84112, USA
| | - L Charles Murtaugh
- University of Utah, Department of Human Genetics, 15 N. 2030 E. Rm 2100, Salt Lake City, UT 84112, USA.
| |
Collapse
|
143
|
De novo formation of insulin-producing "neo-β cell islets" from intestinal crypts. Cell Rep 2014; 6:1046-1058. [PMID: 24613355 PMCID: PMC4245054 DOI: 10.1016/j.celrep.2014.02.013] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 12/13/2013] [Accepted: 02/10/2014] [Indexed: 02/06/2023] Open
Abstract
The ability to interconvert terminally differentiated cells could serve as a powerful tool for cell-based treatment of degenerative diseases, including diabetes mellitus. To determine which, if any, adult tissues are competent to activate an islet β cell program, we performed an in vivo screen by expressing three β cell “reprogramming factors” in a wide spectrum of tissues. We report that transient intestinal expression of these factors—Pdx1, MafA, and Ngn3 (PMN)—promotes rapid conversion of intestinal crypt cells into endocrine cells, which coalesce into “neoislets” below the crypt base. Neoislet cells express insulin and show ultrastructural features of β cells. Importantly, intestinal neoislets are glucose-responsive and able to ameliorate hyperglycemia in diabetic mice. Moreover, PMN expression in human intestinal “organoids” stimulates the conversion of intestinal epithelial cells into β-like cells. Our results thus demonstrate that the intestine is an accessible and abundant source of functional insulin-producing cells.
Collapse
|
144
|
Carulli AJ, Samuelson LC, Schnell S. Unraveling intestinal stem cell behavior with models of crypt dynamics. Integr Biol (Camb) 2014; 6:243-57. [PMID: 24480852 PMCID: PMC4007491 DOI: 10.1039/c3ib40163d] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The definition, regulation and function of intestinal stem cells (ISCs) has been hotly debated. Recent discoveries have started to clarify the nature of ISCs, but many questions remain. This review discusses the current advances and controversies of ISC biology as well as theoretical compartmental models that have been coupled with in vivo experimentation to investigate the mechanisms of ISC dynamics during homeostasis, tumorigenesis, repair and development. We conclude our review by discussing the key lingering questions in the field and proposing how many of these questions can be addressed using both compartmental models and experimental techniques.
Collapse
Affiliation(s)
- Alexis J. Carulli
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| | - Linda C. Samuelson
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| | - Santiago Schnell
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
- Department for Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
145
|
Li HJ, Johnston B, Aiello D, Caffrey DR, Giel-Moloney M, Rindi G, Leiter AB. Distinct cellular origins for serotonin-expressing and enterochromaffin-like cells in the gastric corpus. Gastroenterology 2014; 146:754-764.e3. [PMID: 24316261 PMCID: PMC3943955 DOI: 10.1053/j.gastro.2013.11.048] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/12/2013] [Accepted: 11/24/2013] [Indexed: 02/05/2023]
Abstract
BACKGROUND & AIMS The alimentary tract contains a diffuse endocrine system comprising enteroendocrine cells that secrete peptides or biogenic amines to regulate digestion, insulin secretion, food intake, and energy homeostasis. Lineage analysis in the stomach revealed that a significant fraction of endocrine cells in the gastric corpus did not arise from Neurogenin3 (Neurog3)-expressing cells, unlike enteroendocrine cells elsewhere in the digestive tract. We aimed to isolate enriched serotonin-secreting and enterochromaffin-like (ECL) cells from the stomach and to clarify their cellular origin. METHODS We used Neurogenic differentiation 1 (NeuroD1) and Neurog3 lineage analysis and examined the differentiation of serotonin-producing and ECL cells in stomach tissues of NeuroD1-cre;ROSA(tdTom), tryptophan hydroxylase 1 (Tph1)-cyan fluorescent protein (CFP), c-Kit(wsh/wsh), and Neurog3Cre;ROSA(tdTom) mice by immunohistochemistry. We used fluorescence-activated cell sorting to isolate each cell type for gene expression analysis. We also performed RNA sequencing analysis of ECL cells. RESULTS Neither serotonin-secreting nor ECL cells of the corpus arose from cells expressing NeuroD1. Serotonin-secreting cells expressed a number of mast cell genes but not genes associated with endocrine differentiation; they did not develop in c-Kit(wsh/wsh) mice and were labeled with transplanted bone marrow cells. RNA sequencing analysis of ECL cells revealed high expression levels of many genes common to endocrine cells, including transcription factors, hormones, ion channels, and solute transporters but not markers of bone marrow cells. CONCLUSIONS Serotonin-expressing cells of the gastric corpus of mice appear to be bone marrow-derived mucosal mast cells. Gene expression analysis of ECL cells indicated that they are endocrine cells of epithelial origin that do not express the same transcription factors as their intestinal enteroendocrine cell counterparts.
Collapse
Affiliation(s)
- Hui Joyce Li
- Division of Gastroenterology, Department of Medicine, University of
Massachusetts Medical School, Worcester, MA 01605
| | - Brian Johnston
- Division of Gastroenterology, Department of Medicine, University of
Massachusetts Medical School, Worcester, MA 01605
| | - Daniel Aiello
- Department of Medicine, University of Massachusetts Medical School,
Worcester, MA 01605
| | - Daniel R Caffrey
- Department of Medicine, University of Massachusetts Medical School,
Worcester, MA 01605
| | | | | | - Andrew B. Leiter
- Division of Gastroenterology, Department of Medicine, University of
Massachusetts Medical School, Worcester, MA 01605,Department of Medicine, University of Massachusetts Medical School,
Worcester, MA 01605
| |
Collapse
|
146
|
Impact of high-fat feeding on basic helix-loop-helix transcription factors controlling enteroendocrine cell differentiation. Int J Obes (Lond) 2014; 38:1440-8. [PMID: 24480860 DOI: 10.1038/ijo.2014.20] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 12/03/2013] [Accepted: 01/17/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND OBJECTIVES Gut hormones secreted by enteroendocrine cells (EECs) play a major role in energy regulation. Differentiation of EEC is controlled by the expression of basic helix-loop-helix (bHLH) transcription factors. High-fat (HF) feeding alters gut hormone levels; however, the impact of HF feeding on bHLH transcription factors in mediating EEC differentiation and subsequent gut hormone secretion and expression is not known. METHODS Outbred Sprague-Dawley rats were maintained on chow or HF diet for 12 weeks. Gene and protein expression of intestinal bHLH transcription factors, combined with immunofluorescence studies, were analyzed for both groups in the small intestine and colon. Gut permeability, intestinal lipid and carbohydrate transporters as well as circulating levels and intestinal protein expression of gut peptides were determined. RESULTS We showed that HF feeding resulted in hyperphagia and increased adiposity. HF-fed animals exhibited decreased expression of bHLH transcription factors controlling EEC differentiation (MATH1, NGN3, NEUROD1) and increased expression of bHLH factors modulating enterocyte expression. Furthermore, HF-fed animals had decreased number of total EECs and L-cells. This was accompanied by increased gut permeability and expression of lipid and carbohydrate transporters, and a decrease in circulating and intestinal gut hormone levels. CONCLUSIONS Taken together, our results demonstrate that HF feeding caused decreased secretory lineage (that is, EECs) differentiation through downregulation of bHLH transcription factors, resulting in reduced EEC number and gut hormone levels. Thus, impaired EEC differentiation pathways by HF feeding may promote hyperphagia and subsequent obesity.
Collapse
|
147
|
El-Gohary Y, Tulachan S, Wiersch J, Guo P, Welsh C, Prasadan K, Paredes J, Shiota C, Xiao X, Wada Y, Diaz M, Gittes G. A smad signaling network regulates islet cell proliferation. Diabetes 2014; 63:224-36. [PMID: 24089514 PMCID: PMC3868054 DOI: 10.2337/db13-0432] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Pancreatic β-cell loss and dysfunction are critical components of all types of diabetes. Human and rodent β-cells are able to proliferate, and this proliferation is an important defense against the evolution and progression of diabetes. Transforming growth factor-β (TGF-β) signaling has been shown to affect β-cell development, proliferation, and function, but β-cell proliferation is thought to be the only source of new β-cells in the adult. Recently, β-cell dedifferentiation has been shown to be an important contributory mechanism to β-cell failure. In this study, we tie together these two pathways by showing that a network of intracellular TGF-β regulators, smads 7, 2, and 3, control β-cell proliferation after β-cell loss, and specifically, smad7 is necessary for that β-cell proliferation. Importantly, this smad7-mediated proliferation appears to entail passing through a transient, nonpathologic dedifferentiation of β-cells to a pancreatic polypeptide-fold hormone-positive state. TGF-β receptor II appears to be a receptor important for controlling the status of the smad network in β-cells. These studies should help our understanding of properly regulated β-cell replication.
Collapse
Affiliation(s)
- Yousef El-Gohary
- Division of Pediatric Surgery, Department of Surgery, Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | - Sidhartha Tulachan
- Department of Internal Medicine, St. Elizabeth Health Center, Youngstown, OH
| | - John Wiersch
- Division of Pediatric Surgery, Department of Surgery, Children’s Hospital of Pittsburgh, Pittsburgh, PA
- Department of Surgery, School of Medicine, University of Texas Health Sciences Center at San Antonio, San Antonio, TX
| | - Ping Guo
- Division of Pediatric Surgery, Department of Surgery, Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | - Carey Welsh
- Division of Neonatology, Department of Pediatrics, Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | - Krishna Prasadan
- Division of Pediatric Surgery, Department of Surgery, Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | - Jose Paredes
- Division of Pediatric Surgery, Department of Surgery, Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | - Chiyo Shiota
- Division of Pediatric Surgery, Department of Surgery, Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | - Xiangwei Xiao
- Division of Pediatric Surgery, Department of Surgery, Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | - Yoko Wada
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Marilyn Diaz
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC
| | - George Gittes
- Division of Pediatric Surgery, Department of Surgery, Children’s Hospital of Pittsburgh, Pittsburgh, PA
- Corresponding author: George Gittes,
| |
Collapse
|
148
|
He KH, Juhl K, Karadimos M, El Khattabi I, Fitzpatrick C, Bonner-Weir S, Sharma A. Differentiation of pancreatic endocrine progenitors reversibly blocked by premature induction of MafA. Dev Biol 2013; 385:2-12. [PMID: 24183936 DOI: 10.1016/j.ydbio.2013.10.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 10/22/2013] [Accepted: 10/23/2013] [Indexed: 12/12/2022]
Abstract
Specification and maturation of insulin(+) cells accompanies a transition in expression of Maf family of transcription factors. In development, MafA is expressed after specification of insulin(+) cells that are expressing another Maf factor, MafB; after birth, these insulin(+) MafA(+) cells stop MafB expression and gain glucose responsiveness. Current differentiation protocols for deriving insulin-producing β-cells from stem cells result in β-cells lacking both MafA expression and glucose-stimulated insulin secretion. So driving expression of MafA, a β-cell maturation factor in endocrine precursors could potentially generate glucose-responsive MafA(+) β cells. Using inducible transgenic mice, we characterized the final stages of β-cell differentiation and maturation with MafA pause/release experiments. We found that forcing MafA transgene expression, out of its normal developmental context, in Ngn3(+) endocrine progenitors blocked endocrine differentiation and prevented the formation of hormone(+) cells. However, this arrest was reversible such that with stopping the transgene expression, the cells resumed their differentiation to hormone(+) cells, including α-cells, indicating that the block likely occurred after progenitors had committed to a specific hormonal fate. Interestingly, this delayed resumption of endocrine differentiation resulted in a greater proportion of immature insulin(+)MafB(+) cells at P5, demonstrating that during maturation the inhibition of MafB in β-cell transitioning from insulin(+)MafB(+) to insulin(+)MafB(-) stage is regulated by cell-autonomous mechanisms. These results demonstrate the importance of proper context of initiating MafA expression on the endocrine differentiation and suggest that generating mature Insulin(+)MafA(+) β-cells will require the induction of MafA in a narrow temporal window to achieve normal endocrine differentiation.
Collapse
Affiliation(s)
- KaiHui Hu He
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, United States
| | - Kirstine Juhl
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, United States
| | - Michael Karadimos
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, United States
| | - Ilham El Khattabi
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, United States
| | - Connor Fitzpatrick
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, United States
| | - Susan Bonner-Weir
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, United States
| | - Arun Sharma
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, United States
| |
Collapse
|
149
|
Sayar E, Islek A, Yilmaz A, Akcam M, Flanagan SE, Artan R. Extremely rare cause of congenital diarrhea: enteric anendocrinosis. Pediatr Int 2013; 55:661-3. [PMID: 24134759 DOI: 10.1111/ped.12169] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 02/14/2013] [Accepted: 03/12/2013] [Indexed: 12/01/2022]
Abstract
Congenital diarrheal disorders consist of a variety of chronic enteropathies. There are approximately 30 different diseases that can be classified into four groups according to the mechanisms involved in pathogenesis: (i) absorption and transport of nutrients and electrolytes; (ii) enterocyte differentiation and polarization; (iii) enteroendocrine cell differentiation; and (iv) modulation of the intestinal immune response. Affected patients often present with life-threatening diarrhea, in the first few weeks of life. A new disorder, enteric anendocrinosis, which is characterized by severe malabsorptive diarrhea and a lack of intestinal enteroendocrine cells has recently been described in six patients with recessively inherited mutations in the Neurogenin-3 gene. In this report we describe a seventh case with a review of the literature.
Collapse
Affiliation(s)
- Ersin Sayar
- Department of Pediatric Gastroenterology, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | | | | | | | | | | |
Collapse
|
150
|
Yee EU, Goldsmith JD. Diarrheal Illness in the Pediatric Population: A Review of Neonatal Enteropathies and Childhood Idiopathic Inflammatory Bowel Disease. Surg Pathol Clin 2013; 6:523-543. [PMID: 26839099 DOI: 10.1016/j.path.2013.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In the clinical context of pediatric diarrheal illness, the interpretation of endoscopic mucosal biopsies varies significantly from that in adults. This review outlines these differences by first describing a host of diarrheal illnesses that are nearly exclusive to the pediatric age group. The final portion of this article describes salient pathologic differences between adult and pediatric idiopathic inflammatory bowel disease. The goal of this review is to provide a brief description of each disease process and focus on practical aspects of diagnosis that are applicable for pathologists working in general practice settings.
Collapse
Affiliation(s)
- Eric U Yee
- Department of Pathology, Harvard Medical School, Beth Israel Deaconess Medical Center, Children's Hospital Boston, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Jeffrey D Goldsmith
- Department of Pathology, Harvard Medical School, Beth Israel Deaconess Medical Center, Children's Hospital Boston, 330 Brookline Avenue, Boston, MA 02215, USA.
| |
Collapse
|