101
|
Nguyen VC, Nakamura Y, Kanehara K. Membrane lipid polyunsaturation mediated by FATTY ACID DESATURASE 2 (FAD2) is involved in endoplasmic reticulum stress tolerance in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:478-493. [PMID: 31001857 DOI: 10.1111/tpj.14338] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/19/2019] [Accepted: 03/27/2019] [Indexed: 05/22/2023]
Abstract
Unsaturation of membrane glycerolipid classes at their hydrophobic fatty acid tails critically affects the physical nature of the lipid molecule. In Arabidopsis thaliana, 7 fatty acid desaturases (FADs) differently desaturate each glycerolipid class in plastids and the endoplasmic reticulum (ER). Here, we showed that polyunsaturation of ER glycerolipids is required for the ER stress response. Through systematic screening of FAD mutants, we found that a mutant of FAD2 resulted in a hypersensitive response to tunicamycin, a chemical inducer of ER stress. FAD2 converts oleic acid to linoleic acid of the fatty acyl groups of ER-synthesized phospholipids. Our functional in vivo reporter assay revealed the ER localization and distinct tissue-specific expression patterns of FAD2. Moreover, glycerolipid profiling of both mutants and overexpressors of FAD2 under tunicamycin-induced ER stress conditions, along with phenotypic screening of the mutants of the FAD family, suggested that the ratio of monounsaturated fatty acids to polyunsaturated fatty acids, particularly 18:1 to 18:2 species, may be an important factor in allowing the ER membrane to cope with ER stress. Therefore, our results suggest that membrane lipid polyunsaturation mediated by FAD2 is involved in ER stress tolerance in Arabidopsis.
Collapse
Affiliation(s)
- Van Cam Nguyen
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei, 11529, Taiwan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Yuki Nakamura
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei, 11529, Taiwan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Kazue Kanehara
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei, 11529, Taiwan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan
- Department of Applied Science and Engineering, Muroran Institute of Technology, Muroran, Hokkaido, 050-8585, Japan
| |
Collapse
|
102
|
Zhou M, Song L, Ye S, Zeng W, Hännien H, Yu W, Suo J, Hu Y, Wu J. New sights into lipid metabolism regulation by low temperature in harvested Torreya grandis nuts. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:4226-4234. [PMID: 30790295 DOI: 10.1002/jsfa.9653] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/08/2019] [Accepted: 02/14/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Torreya grandis, a large evergreen coniferous tree with oil-rich nuts, undergoes a crucial ripening stage after harvest that results in oil accumulation, finally giving rise to the nut that is edible in roasted form. To understand lipid metabolism in T. grandis nuts during the post-harvest ripening period, the effects of low temperature on lipid content, fatty acid composition, lipid biosynthesis and degradation were investigated. RESULTS The lipid content increased during ripening at room temperature and a low temperature slowed down this increase. Linoleic acid content increased at low temperature, which was accompanied by an increase in the microsomal oleate desaturase (FAD2) activity and FAD2 expression. Furthermore, a low temperature attenuated lipid peroxidation as indicated by lower contents of malondialdehyde, hydroperoxide and total free fatty acid in T. grandis nuts during the ripening stage, as well as the down-regulation of gene expression of lipid degradation-related enzymes such as phospholipase D and lipoxygenases. CONCLUSION The findings of the present study indicate that a low temperature increased polyunsaturated fatty acid contents by increasing FAD2 biosynthesis and decreasing lipid peroxidation, thereby improving the oil yield in T. grandis nuts during the post-harvest ripening period. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Lili Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Zhejiang, People's Republic of China
- Sino-Australia Plant Cell Wall Research Centre, School of Forestry and Biotechnology, Zhejiang A&F University, Zhejiang, People's Republic of China
| | - Shan Ye
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Zhejiang, People's Republic of China
| | - Wei Zeng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Zhejiang, People's Republic of China
- Sino-Australia Plant Cell Wall Research Centre, School of Forestry and Biotechnology, Zhejiang A&F University, Zhejiang, People's Republic of China
| | - Heikki Hännien
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Zhejiang, People's Republic of China
| | - Weiwu Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Zhejiang, People's Republic of China
| | - Jinwei Suo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Zhejiang, People's Republic of China
| | - Yuanyuan Hu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Zhejiang, People's Republic of China
| | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Zhejiang, People's Republic of China
| |
Collapse
|
103
|
Kovacs T, Szalontai B, Kłodawska K, Vladkova R, Malec P, Gombos Z, Laczko-Dobos H. Photosystem I oligomerization affects lipid composition in Synechocystis sp. PCC 6803. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1384-1395. [PMID: 31228574 DOI: 10.1016/j.bbalip.2019.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/07/2019] [Accepted: 06/16/2019] [Indexed: 12/20/2022]
Abstract
In cyanobacteria, increasing growth temperature decreases lipid unsaturation and the ratio of monomer/trimer photosystem I (PSI) complexes. In the present study we applied Fourier-transform infrared (FTIR) spectroscopy and lipidomic analysis to study the effects of PSI monomer/oligomer ratio on the physical properties and lipid composition of thylakoids. To enhance the presence of monomeric PSI, a Synechocystis sp. PCC6803/ΔpsaL mutant strain (PsaL) was used which, unlike both trimeric and monomeric PSI-containing wild type (WT) cells, contain only the monomeric form. The protein-to-lipid ratio remained unchanged in the mutant but, due to an increase in the lipid disorder in its thylakoids, the gel to liquid-crystalline phase transition temperature (Tm) is lower than in the WT. In thylakoid membranes of the mutant, digalactosyldiacylglycerol (DGDG), the most abundant bilayer-forming lipid is accumulated, whereas those in the WT contain more monogalactosyldiacylglycerol (MGDG), the only non-bilayer-forming lipid in cyanobacteria. In PsaL cells, the unsaturation level of sulphoquinovosyldiacylglycerol (SQDG), a regulatory anionic lipid, has increased. It seems that merely a change in the oligomerization level of a membrane protein complex (PSI), and thus the altered protein-lipid interface, can affect the lipid composition and, in addition, the whole dynamics of the membrane. Singular value decomposition (SVD) analysis has shown that in PsaL thylakoidal protein-lipid interactions are less stable than in the WT, and proteins start losing their native secondary structure at much milder lipid packing perturbations. Conclusions drawn from this system should be generally applicable for protein-lipid interactions in biological membranes.
Collapse
Affiliation(s)
- Terezia Kovacs
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, H-6701 Szeged, Hungary.
| | - Balazs Szalontai
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, H-6701 Szeged, Hungary.
| | - Kinga Kłodawska
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland.
| | - Radka Vladkova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria.
| | - Przemysław Malec
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland.
| | - Zoltan Gombos
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, H-6701 Szeged, Hungary.
| | - Hajnalka Laczko-Dobos
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, H-6701 Szeged, Hungary.
| |
Collapse
|
104
|
Babele PK, Kumar J, Chaturvedi V. Proteomic De-Regulation in Cyanobacteria in Response to Abiotic Stresses. Front Microbiol 2019; 10:1315. [PMID: 31263458 PMCID: PMC6584798 DOI: 10.3389/fmicb.2019.01315] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 05/27/2019] [Indexed: 11/13/2022] Open
Abstract
Cyanobacteria are oxygenic photoautotrophs, exhibiting a cosmopolitan distribution in almost all possible environments and are significantly responsible for half of the global net primary productivity. They are well adapted to the diverse environments including harsh conditions by evolving a range of fascinating repertoires of unique biomolecules and secondary metabolites to support their growth and survival. These phototrophs are proved as excellent models for unraveling the mysteries of basic biochemical and physiological processes taking place in higher plants. Several known species of cyanobacteria have tremendous biotechnological applications in diverse fields such as biofuels, biopolymers, secondary metabolites and much more. Due to their potential biotechnological and commercial applications in various fields, there is an imperative need to engineer robust cyanobacteria in such a way that they can tolerate and acclimatize to ever-changing environmental conditions. Adaptations to stress are mainly governed by a precise gene regulation pathways resulting in the expression of novel protein/enzymes and metabolites. Despite the demand, till date few proteins/enzymes have been identified which play a potential role in improving tolerance against abiotic stresses. Therefore, it is utmost important to study environmental stress responses related to post-genomic investigations, including proteomic changes employing advanced proteomics, synthetic and structural biology workflows. In this respect, the study of stress proteomics offers exclusive advantages to scientists working on these aspects. Advancements on these fields could be helpful in dissecting, characterization and manipulation of physiological and metabolic systems of cyanobacteria to understand the stress induced proteomic responses. Till date, it remains ambiguous how cyanobacteria perceive changes in the ambient environment that lead to the stress-induced proteins thus metabolic deregulation. This review briefly describes the current major findings in the fields of proteome research on the cyanobacteria under various abiotic stresses. These findings may improve and advance the information on the role of different class of proteins associated with the mechanism(s) of stress mitigation in cyanobacteria under harsh environmental conditions.
Collapse
Affiliation(s)
- Piyoosh Kumar Babele
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Jay Kumar
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Venkatesh Chaturvedi
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
105
|
Saini R, Kumar S. Genome-wide identification, characterization and in-silico profiling of genes encoding FAD (fatty acid desaturase) proteins in chickpea (Cicer arietinum L.). ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.plgene.2019.100180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
106
|
Bojko M, Olchawa-Pajor M, Goss R, Schaller-Laudel S, Strzałka K, Latowski D. Diadinoxanthin de-epoxidation as important factor in the short-term stabilization of diatom photosynthetic membranes exposed to different temperatures. PLANT, CELL & ENVIRONMENT 2019; 42:1270-1286. [PMID: 30362127 DOI: 10.1111/pce.13469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 10/17/2018] [Indexed: 05/25/2023]
Abstract
The importance of diadinoxanthin (Ddx) de-epoxidation in the short-term modulation of the temperature effect on photosynthetic membranes of the diatom Phaeodactylum tricornutum was demonstrated by electron paramagnetic resonance (EPR), Laurdan fluorescence spectroscopy, and high-performance liquid chromatography. The 5-SASL spin probe employed for the EPR measurements and Laurdan provided information about the membrane area close to the polar head groups of the membrane lipids, whereas with the 16-SASL spin probe, the hydrophobic core, where the fatty acid residues are located, was probed. The obtained results indicate that Ddx de-epoxidation induces a two component mechanism in the short-term regulation of the membrane fluidity of diatom thylakoids during changing temperatures. One component has been termed the "dynamic effect" and the second the "stable effect" of Ddx de-epoxidation. The "dynamic effect" includes changes of the membrane during the time course of de-epoxidation whereas the "stable effect" is based on the rigidifying properties of Dtx. The combination of both effects results in a temporary increase of the rigidity of both peripheral and internal parts of the membrane whereas the persistent increase of the rigidity of the hydrophobic core of the membrane is solely based on the "stable effect."
Collapse
Affiliation(s)
- Monika Bojko
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Monika Olchawa-Pajor
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Reimund Goss
- Institute of Biology, University of Leipzig, Leipzig, Germany
| | | | - Kazimierz Strzałka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Dariusz Latowski
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
107
|
Lee KR, Kim KH, Kim JB, Hong SB, Jeon I, Kim HU, Lee MH, Kim JK. High accumulation of γ-linolenic acid and Stearidonic acid in transgenic Perilla (Perilla frutescens var. frutescens) seeds. BMC PLANT BIOLOGY 2019; 19:120. [PMID: 30935415 PMCID: PMC6444538 DOI: 10.1186/s12870-019-1713-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 03/12/2019] [Indexed: 05/13/2023]
Abstract
BACKGROUND Polyunsaturated fatty acids such as linoleic acid (LA) and α-linolenic acid (ALA) are abundant in vegetable oils and are important for human health. In the body, LA and ALA are respectively converted to the omega-6 fatty acid γ-linolenic acid (GLA) and the omega-3 fatty acid stearidonic acid (SDA) by Δ6 desaturase (D6DES). Currently, dietary GLA and SDA are mainly obtained from marine organisms, but given their benefits to human health, many studies have aimed to enhance their accumulation in transgenic crops. Perilla frutescens (perilla) accumulates more ALA in its seed oil compared to other oilseed crops, making it a good candidate for the production of fatty acids via the fatty acid desaturase D6DES. RESULTS In this study, we cloned the D6DES gene from Phytophthora citrophthora and confirmed its function in budding yeast. We then transformed the functional D6DES gene under the control of the seed-specific vicilin promoter into the perilla cultivar Yeobsil. The resulting transgenic perilla seeds accumulated significant levels of GLA and SDA, as well as putative C18:2Δ6,9 at minor levels. Developing seeds and leaves also accumulated GLA and SDA, although PcD6DES expression and GLA and SDA levels were much lower in leaves compared to developing seeds. GLA and SDA accumulated in both polar lipids and neutral lipids in mature perilla seeds expressing PcD6DES, especially in neutral lipids. Although the seed weight in PcD6DES perilla was 87-96% that of wild type, the total oil content per seed weight was similar between lines. The PcD6DES perilla plants contained very high content (over 45%) of both GLA and SDA in seed oil. CONCLUSIONS Thus, PcD6DES perilla plants may represent a feasible alternative to traditional marine sources for the production of omega-3 oil capsules and to evening primrose seed oil for GLA as health food. In addition, these plants can be used to create other transgenic lines harboring additional genes to produce other desirable fish-oil like oils.
Collapse
Affiliation(s)
- Kyeong-Ryeol Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Science, RDA, Jeonju, 54874 Jeollabukdo Republic of Korea
| | - Kyung-Hwan Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Science, RDA, Jeonju, 54874 Jeollabukdo Republic of Korea
| | - Jung Bong Kim
- Department of Agro-food Resources, National Institute of Agricultural Science, RDA, Wanju-gun, Jeollabukdo Republic of Korea
| | - Seung-Bum Hong
- Department of Agricultural Biology, National Institute of Agricultural Science, RDA, Wanju-gun, Jeollabukdo Republic of Korea
| | - Inhwa Jeon
- Department of Agricultural Biotechnology, National Institute of Agricultural Science, RDA, Jeonju, 54874 Jeollabukdo Republic of Korea
| | - Hyun Uk Kim
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul, 05006 Republic of Korea
| | - Myung Hee Lee
- Department of Southern Area Crop Science, National Institute of Crop Science, Miryang, Gyeongsangnamdo Republic of Korea
| | - Jae Kwang Kim
- Division of Life Sciences, Incheon National University, Incheon, Republic of Korea
| |
Collapse
|
108
|
The Desaturase Gene Family is Crucially Required for Fatty Acid Metabolism and Survival of the Brown Planthopper, Nilaparvata lugens. Int J Mol Sci 2019; 20:ijms20061369. [PMID: 30893760 PMCID: PMC6472150 DOI: 10.3390/ijms20061369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 12/16/2022] Open
Abstract
Desaturases are essentially required for unsaturated fatty acid (UFA) biosynthesis. We identified 10 genes encoding putative desaturases in the transcriptome database of the brown planthopper (BPH), Nilaparvata lugens. These include eight First Desaturase family genes, one cytochrome b5 fused desaturase gene (Nlug-Cytb5r) and one Sphingolipid Desaturase gene (Nlug-ifc). Transcript level profiling revealed significant variation in the expression patterns of these genes across tissues and developmental stages, which occur in a gene-specific manner. Interestingly, their expression was also modulated by the insect food source: the mRNA levels of Nlug-desatC and Nlug-Cytb5r were down-regulated, but the expression level of Nlug-desatA1-b and Nlug-desatA1-c were elevated in the BPH fed on the resistant rice variety Babawee as compared to the non-resistant variety Taichun Native 1 (TN1). Silencing Nlug-desatA1-b, Nlug-desatA1-c, or Nlug-Ifc reduced fatty acid composition and abundance in female BPH 1-d-old-adults compared to controls. Whereas, single knockdown of all ten desaturase genes significantly increased mortality of BPH nymphs compared with controls. Of the ten desaturase genes, knockdown of Nlug-desatA1-b and Nlug-desatA2 caused the highest mortality in BPH (91% and 97%, respectively). Our findings offer a base for expression and functional characterization of newly identified desaturase genes in BPH, and may contribute to RNA interference-based pest management strategies.
Collapse
|
109
|
Alfaqaan S, Yoshida T, Imamura H, Tsukano C, Takemoto Y, Kakizuka A. PPARα-Mediated Positive-Feedback Loop Contributes to Cold Exposure Memory. Sci Rep 2019; 9:4538. [PMID: 30872768 PMCID: PMC6418111 DOI: 10.1038/s41598-019-40633-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/20/2019] [Indexed: 12/17/2022] Open
Abstract
Fluctuations in food availability and shifts in temperature are typical environmental changes experienced by animals. These environmental shifts sometimes portend more severe changes; e.g., chilly north winds precede the onset of winter. Such telltale signs may be indicators for animals to prepare for such a shift. Here we show that HEK293A cells, cultured under starvation conditions, can “memorize” a short exposure to cold temperature (15 °C), which was evidenced by their higher survival rate compared to cells continuously grown at 37 °C. We refer to this phenomenon as “cold adaptation”. The cold-exposed cells retained high ATP levels, and addition of etomoxir, a fatty acid oxidation inhibitor, abrogated the enhanced cell survival. In our standard protocol, cold adaptation required linoleic acid (LA) supplementation along with the activity of Δ-6-desaturase (D6D), a key enzyme in LA metabolism. Moreover, supplementation with the LA metabolite arachidonic acid (AA), which is a high-affinity agonist of peroxisome proliferator-activated receptor-alpha (PPARα), was able to underpin the cold adaptation, even in the presence of a D6D inhibitor. Cold exposure with added LA or AA prompted a surge in PPARα levels, followed by the induction of D6D expression; addition of a PPARα antagonist or a D6D inhibitor abrogated both their expression, and reduced cell survival to control levels. We also found that the brief cold exposure transiently prevents PPARα degradation by inhibiting the ubiquitin proteasome system, and starvation contributes to the enhancement of PPARα activity by inhibiting mTORC1. Our results reveal an innate adaptive positive-feedback mechanism with a PPARα-D6D-AA axis that is triggered by a brief cold exposure in cells. “Cold adaptation” could have evolved to increase strength and resilience against imminent extreme cold temperatures.
Collapse
Affiliation(s)
- Soaad Alfaqaan
- Laboratory of Functional Biology, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
| | - Tomoki Yoshida
- Laboratory of Functional Biology, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
| | - Hiromi Imamura
- Laboratory of Functional Biology, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
| | - Chihiro Tsukano
- Department of Organic Chemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo-ku, Kyoto, Japan
| | - Yoshiji Takemoto
- Department of Organic Chemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo-ku, Kyoto, Japan
| | - Akira Kakizuka
- Laboratory of Functional Biology, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
110
|
Chen J, Liu H, Cai S, Zhang H. Comparative transcriptome analysis of Eogammarus possjeticus at different hydrostatic pressure and temperature exposures. Sci Rep 2019; 9:3456. [PMID: 30837550 PMCID: PMC6401005 DOI: 10.1038/s41598-019-39716-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/25/2019] [Indexed: 12/19/2022] Open
Abstract
Hydrostatic pressure is an important environmental factor affecting the vertical distribution of marine organisms. Laboratory-based studies have shown that many extant shallow-water marine benthic invertebrates can tolerate hydrostatic pressure outside their known natural distributions. However, only a few studies have focused on the molecular mechanisms of pressure acclimatisation. In the present work, we examined the pressure tolerance of the shallow-water amphipod Eogammarus possjeticus at various temperatures (5, 10, 15, and 20 °C) and hydrostatic pressures (0.1–30 MPa) for 16 h. Six of these experimental groups were used for transcriptome analysis. We found that 100% of E. possjeticus survived under 20 MPa at all temperature conditions for 16 h. Sequence assembly resulted in 138, 304 unigenes. Results of differential expression analysis revealed that 94 well-annotated genes were up-regulated under high pressure. All these findings indicated that the pressure tolerance of E. possjeticus was related to temperature. Several biological processes including energy metabolism, antioxidation, immunity, lipid metabolism, membrane-related process, genetic information processing, and DNA repair are probably involved in the acclimatisation in deep-sea environments.
Collapse
Affiliation(s)
- Jiawei Chen
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Helu Liu
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Shanya Cai
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haibin Zhang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China.
| |
Collapse
|
111
|
Jónasdóttir SH. Fatty Acid Profiles and Production in Marine Phytoplankton. Mar Drugs 2019; 17:md17030151. [PMID: 30836652 PMCID: PMC6471065 DOI: 10.3390/md17030151] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/23/2019] [Accepted: 02/26/2019] [Indexed: 01/10/2023] Open
Abstract
Microalgae are the primary producers of carbon in marine ecosystems, fixing carbon and subsequently generating various biomolecules such as carbohydrates, proteins and lipids. Most importantly, microalgae are the generators and main suppliers of ω3 polyunsaturated fatty acids (ω3PUFA) in the marine ecosystem, which have a fundamental importance for the functioning and quality of the whole marine food web. A meta-analysis of over 160 fatty acid profiles of 7 marine phytoplankton phyla reveals not only a phyla-specific, but also a highly class-specific PUFA production of marine phytoplankton. The highest EPA (Eicosapentaenoic acid; 20:5ω3) production per total fatty acids was found in 2 classes of Haptophyta and in Ochrophyta, while Dinophyta and the Haptophyte Emiliana huxleyi show the highest production of DHA (Docosahexaenoic acid; 22:6ω3). An important precursor for EPA, Stearidonic acid (SDA, 18:4ω3) is found in high proportions in Cryptophyta and the Chlorophta class Pyramimonadophyceae. Per unit of carbon, Chlorophyta and Cyanobacteria were the poorest producers of highly unsaturated fatty acids (HUFA). The remaining phyla had a similar HUFA contribution per unit of carbon but with different compositions. The nutritional and environmental effects on the phytoplankton PUFA production is summarized and shows a lowering of the PUFA content under stressful environmental conditions.
Collapse
Affiliation(s)
- Sigrún Huld Jónasdóttir
- Section for Oceans and Arctic, Technical University of Denmark, Kemitorvet, Building 202, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
112
|
Kunath S, Moosmann B. What is the rate-limiting step towards aging? Chemical reaction kinetics might reconcile contradictory observations in experimental aging research. GeroScience 2019; 42:857-866. [PMID: 30809734 DOI: 10.1007/s11357-019-00058-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 02/11/2019] [Indexed: 02/05/2023] Open
Abstract
Modern geroscience is divided as regards the validity of the free radical theory of aging. Thermodynamic arguments and observations from comparative zoology support it, whereas results from experimental manipulations in representative animal species sometimes strongly contradict it. From a comparison of the multi-step aging process with a linear metabolic pathway (glycolysis), we here argue that the identification of the rate-limiting kinetic steps of the aging cascade is essential to understand the overall flux through the cascade, i.e., the rate of aging. Examining free radical reactions as a case in point, these reactions usually occur as chain reactions with three kinetically independent steps: initiation, propagation, and termination, each of which can be rate-limiting. Revisiting the major arguments in favor and against a role of free radicals in aging, we find that the majority of arguments in favor point to radical propagation as relevant and rate-limiting, whereas almost all arguments in disfavor are based on experimental manipulations of radical initiation or radical termination which turned out to be ineffective. We conclude that the overall lack of efficacy of antioxidant supplementation (which fosters termination) and antioxidant enzyme overexpression (which inhibits initiation) in longevity studies is attributable to the fact that initiation and termination are not the rate-limiting steps of the aging cascade. The biological and evolutionary plausibility of this interpretation is discussed. In summary, radical propagation is predicted to be rate-limiting for aging and should be explored in more detail.
Collapse
Affiliation(s)
- Sascha Kunath
- Evolutionary Biochemistry and Redox Medicine, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany
| | - Bernd Moosmann
- Evolutionary Biochemistry and Redox Medicine, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany.
| |
Collapse
|
113
|
Santomartino R, Camponeschi I, Polo G, Immesi A, Rinaldi T, Mazzoni C, Brambilla L, Bianchi MM. The hypoxic transcription factor KlMga2 mediates the response to oxidative stress and influences longevity in the yeast Kluyveromyces lactis. FEMS Yeast Res 2019; 19:5365995. [DOI: 10.1093/femsyr/foz020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/26/2019] [Indexed: 12/17/2022] Open
Abstract
ABSTRACT
Hypoxia is defined as the decline of oxygen availability, depending on environmental supply and cellular consumption rate. The decrease in O2 results in reduction of available energy in facultative aerobes. The response and/or adaptation to hypoxia and other changing environmental conditions can influence the properties and functions of membranes by modifying lipid composition. In the yeast Kluyveromyces lactis, the KlMga2 gene is a hypoxic regulatory factor for lipid biosynthesis—fatty acids and sterols—and is also involved in glucose signaling, glucose catabolism and is generally important for cellular fitness.
In this work we show that, in addition to the above defects, the absence of the KlMGA2 gene caused increased resistance to oxidative stress and extended lifespan of the yeast, associated with increased expression levels of catalase and SOD genes. We propose that KlMga2 might also act as a mediator of the oxidative stress response/adaptation, thus revealing connections among hypoxia, glucose signaling, fatty acid biosynthesis and ROS metabolism in K. lactis.
Collapse
Affiliation(s)
- Rosa Santomartino
- Department Biology and Biotechnology C. Darwin, University of Roma Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Ilaria Camponeschi
- Department Biology and Biotechnology C. Darwin, University of Roma Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Germano Polo
- Department Biology and Biotechnology C. Darwin, University of Roma Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Alessio Immesi
- Department Biology and Biotechnology C. Darwin, University of Roma Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Teresa Rinaldi
- Department Biology and Biotechnology C. Darwin, University of Roma Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Cristina Mazzoni
- Department Biology and Biotechnology C. Darwin, University of Roma Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Luca Brambilla
- Department Biotechnology and Biosciences, University of Milano Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Michele M Bianchi
- Department Biology and Biotechnology C. Darwin, University of Roma Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy
| |
Collapse
|
114
|
Li-Beisson Y, Thelen JJ, Fedosejevs E, Harwood JL. The lipid biochemistry of eukaryotic algae. Prog Lipid Res 2019; 74:31-68. [PMID: 30703388 DOI: 10.1016/j.plipres.2019.01.003] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 02/06/2023]
Abstract
Algal lipid metabolism fascinates both scientists and entrepreneurs due to the large diversity of fatty acyl structures that algae produce. Algae have therefore long been studied as sources of genes for novel fatty acids; and, due to their superior biomass productivity, algae are also considered a potential feedstock for biofuels. However, a major issue in a commercially viable "algal oil-to-biofuel" industry is the high production cost, because most algal species only produce large amounts of oils after being exposed to stress conditions. Recent studies have therefore focused on the identification of factors involved in TAG metabolism, on the subcellular organization of lipid pathways, and on interactions between organelles. This has been accompanied by the development of genetic/genomic and synthetic biological tools not only for the reference green alga Chlamydomonas reinhardtii but also for Nannochloropsis spp. and Phaeodactylum tricornutum. Advances in our understanding of enzymes and regulatory proteins of acyl lipid biosynthesis and turnover are described herein with a focus on carbon and energetic aspects. We also summarize how changes in environmental factors can impact lipid metabolism and describe present and potential industrial uses of algal lipids.
Collapse
Affiliation(s)
- Yonghua Li-Beisson
- Aix-Marseille Univ, CEA, CNRS, BIAM, UMR7265, CEA Cadarache, Saint-Paul-lez Durance F-13108, France.
| | - Jay J Thelen
- Department of Biochemistry, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, MO 65211, United States.
| | - Eric Fedosejevs
- Department of Biochemistry, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, MO 65211, United States.
| | - John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK.
| |
Collapse
|
115
|
Huang S, Yu J, Li Y, Wang J, Wang X, Qi H, Xu M, Qin H, Yin Z, Mei H, Chang H, Gao H, Liu S, Zhang Z, Zhang S, Zhu R, Liu C, Wu X, Jiang H, Hu Z, Xin D, Chen Q, Qi Z. Identification of Soybean Genes Related to Soybean Seed Protein Content Based on Quantitative Trait Loci Collinearity Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:258-274. [PMID: 30525587 DOI: 10.1021/acs.jafc.8b04602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Increasing the protein content of soybean seeds through a higher ratio of glycinin is important for soybean breeding and food processing; therefore, the integration of different quantitative trait loci (QTLs) is of great significance. In this study, we investigated the collinearity of seed protein QTLs. We identified 192 collinear protein QTLs that formed six hotspot regions. The two most important regions had seed protein 36-10 and seed protein 36-20 as hub nodes. We used a chromosome segment substitution line (CSSL) population for QTL validation and identified six CSSL materials with collinear QTLs. Five materials with higher protein and glycinin contents in comparison to the recurrent parent were analyzed. A total of 13 candidate genes related to seed protein from the QTL hotspot intervals were detected, 8 of which had high expression in mature soybean seeds. These results offer a new analysis method for molecular-assisted selection (MAS) and improvement of soybean product quality.
Collapse
Affiliation(s)
- Shiyu Huang
- College of Agriculture , Northeast Agricultural University , Harbin 150030 , Heilongjiang , People's Republic of China
| | - Jingyao Yu
- College of Agriculture , Northeast Agricultural University , Harbin 150030 , Heilongjiang , People's Republic of China
| | - Yingying Li
- College of Agriculture , Northeast Agricultural University , Harbin 150030 , Heilongjiang , People's Republic of China
| | - Jingxin Wang
- College of Agriculture , Northeast Agricultural University , Harbin 150030 , Heilongjiang , People's Republic of China
| | - Xinyu Wang
- College of Agriculture , Northeast Agricultural University , Harbin 150030 , Heilongjiang , People's Republic of China
| | - Huidong Qi
- College of Agriculture , Northeast Agricultural University , Harbin 150030 , Heilongjiang , People's Republic of China
| | - Mingyue Xu
- College of Agriculture , Northeast Agricultural University , Harbin 150030 , Heilongjiang , People's Republic of China
| | - Hongtao Qin
- College of Agriculture , Northeast Agricultural University , Harbin 150030 , Heilongjiang , People's Republic of China
| | - Zhengong Yin
- College of Agriculture , Northeast Agricultural University , Harbin 150030 , Heilongjiang , People's Republic of China
| | - Hongyao Mei
- College of Agriculture , Northeast Agricultural University , Harbin 150030 , Heilongjiang , People's Republic of China
| | | | - Hongxiu Gao
- College of Agriculture , Northeast Agricultural University , Harbin 150030 , Heilongjiang , People's Republic of China
| | - Shanshan Liu
- College of Agriculture , Northeast Agricultural University , Harbin 150030 , Heilongjiang , People's Republic of China
| | - Zhenguo Zhang
- College of Agriculture , Northeast Agricultural University , Harbin 150030 , Heilongjiang , People's Republic of China
| | - Shuli Zhang
- Institute of Wuchang Rice Research , Heilongjiang Academy of Agricultural Sciences , Wuchang , Heilongjiang 150229 , People's Republic of China
| | - Rongsheng Zhu
- College of Agriculture , Northeast Agricultural University , Harbin 150030 , Heilongjiang , People's Republic of China
| | - Chunyan Liu
- College of Agriculture , Northeast Agricultural University , Harbin 150030 , Heilongjiang , People's Republic of China
| | - Xiaoxia Wu
- College of Agriculture , Northeast Agricultural University , Harbin 150030 , Heilongjiang , People's Republic of China
| | - Hongwei Jiang
- College of Agriculture , Northeast Agricultural University , Harbin 150030 , Heilongjiang , People's Republic of China
| | - Zhenbang Hu
- College of Agriculture , Northeast Agricultural University , Harbin 150030 , Heilongjiang , People's Republic of China
| | - Dawei Xin
- College of Agriculture , Northeast Agricultural University , Harbin 150030 , Heilongjiang , People's Republic of China
| | - Qingshan Chen
- College of Agriculture , Northeast Agricultural University , Harbin 150030 , Heilongjiang , People's Republic of China
| | - Zhaoming Qi
- College of Agriculture , Northeast Agricultural University , Harbin 150030 , Heilongjiang , People's Republic of China
| |
Collapse
|
116
|
Hernández ML, Sicardo MD, Alfonso M, Martínez-Rivas JM. Transcriptional Regulation of Stearoyl-Acyl Carrier Protein Desaturase Genes in Response to Abiotic Stresses Leads to Changes in the Unsaturated Fatty Acids Composition of Olive Mesocarp. FRONTIERS IN PLANT SCIENCE 2019; 10:251. [PMID: 30891055 PMCID: PMC6411816 DOI: 10.3389/fpls.2019.00251] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/15/2019] [Indexed: 05/21/2023]
Abstract
In higher plants, the stearoyl-acyl carrier protein desaturase (SAD) catalyzes the first desaturation step leading to oleic acid, which can be further desaturated to linoleic and α-linolenic acids. Therefore, SAD plays an essential role in determining the overall content of unsaturated fatty acids (UFA). We have investigated how SAD genes expression and UFA composition are regulated in olive (Olea europaea) mesocarp tissue from Picual and Arbequina cultivars in response to different abiotic stresses. The results showed that olive SAD genes are transcriptionally regulated by temperature, darkness and wounding. The increase in SAD genes expression levels observed in Picual mesocarp exposed to low temperature brought about a modification in the UFA content of microsomal membrane lipids. In addition, darkness caused the down-regulation of SAD genes transcripts, together with a decrease in the UFA content of chloroplast lipids. The differential role of olive SAD genes in the wounding response was also demonstrated. These data point out that different environmental stresses can modify the UFA composition of olive mesocarp through the transcriptional regulation of SAD genes, affecting olive oil quality.
Collapse
Affiliation(s)
- M. Luisa Hernández
- Instituto de la Grasa (IG-CSIC), Seville, Spain
- Estación Experimental de Aula Dei (EEAD-CSIC), Zaragoza, Spain
- *Correspondence: M. Luisa Hernández, ;
| | | | - Miguel Alfonso
- Estación Experimental de Aula Dei (EEAD-CSIC), Zaragoza, Spain
| | | |
Collapse
|
117
|
Zhang Q, Yu R, Sun D, Rahman MM, Xie L, Hu J, He L, Kilaru A, Niu L, Zhang Y. Comparative Transcriptome Analysis Reveals an Efficient Mechanism of α-Linolenic Acid in Tree Peony Seeds. Int J Mol Sci 2018; 20:ijms20010065. [PMID: 30586917 PMCID: PMC6337502 DOI: 10.3390/ijms20010065] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 12/14/2018] [Accepted: 12/21/2018] [Indexed: 01/29/2023] Open
Abstract
Tree peony (Paeonia section Moutan DC.) species are woody oil crops with high unsaturated fatty acid content, including α-linolenic acid (ALA/18:3; >40% of the total fatty acid). Comparative transcriptome analyses were carried out to uncover the underlying mechanisms responsible for high and low ALA content in the developing seeds of P. rockii and P. lutea, respectively. Expression analysis of acyl lipid metabolism genes revealed upregulation of select genes involved in plastidial fatty acid synthesis, acyl editing, desaturation, and triacylglycerol assembly in seeds of P. rockii relative to P. lutea. Also, in association with ALA content in seeds, transcript levels for fatty acid desaturases (SAD, FAD2, and FAD3), which encode enzymes necessary for polyunsaturated fatty acid synthesis, were higher in P. rockii compared to P. lutea. Furthermore, the overexpression of PrFAD2 and PrFAD3 in Arabidopsis increased linoleic and ALA content, respectively, and modulated the final ratio 18:2/18:3 in the seed oil. In conclusion, we identified the key steps and validated the necessary desaturases that contribute to efficient ALA synthesis in a woody oil crop. Together, these results will aid to increase essential fatty acid content in seeds of tree peonies and other crops of agronomic interest.
Collapse
Affiliation(s)
- Qingyu Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China.
| | - Rui Yu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China.
| | - Daoyang Sun
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China.
| | - Md Mahbubur Rahman
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN 37614, USA.
| | - Lihang Xie
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China.
| | - Jiayuan Hu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China.
| | - Lixia He
- Gansu Forestry Science and Technology Extend Station, Lanzhou 730046, China.
| | - Aruna Kilaru
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN 37614, USA.
| | - Lixin Niu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China.
| | - Yanlong Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
118
|
Wu P, Zhang L, Feng T, Lu W, Zhao H, Li J, Lü S. A Conserved Glycine Is Identified to be Essential for Desaturase Activity of IpFAD2s by Analyzing Natural Variants from Idesia polycarpa. Int J Mol Sci 2018; 19:E3932. [PMID: 30544564 PMCID: PMC6321622 DOI: 10.3390/ijms19123932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 12/02/2018] [Accepted: 12/05/2018] [Indexed: 11/25/2022] Open
Abstract
High amounts of polyunsaturated fatty acids (PUFAs) in vegetable oil are not desirable for biodiesel or food oil due to their lower oxidative stability. The oil from Idesia polycarpa fruit contains 65⁻80% (mol%) linoleic acid (C18:2). Therefore, development of Idesia polycarpa cultivars with low PUFAs is highly desirable for Idesia polycarpa oil quality. Fatty acid desaturase 2 (FAD2) is the key enzyme converting oleic acid (C18:1) to C18:2. We isolated four FAD2 homologs from the fruit of Idesia polycarpa. Yeast transformed with IpFAD2-1, IpFAD2-2 and IpFAD2-3 can generate appreciable amounts of hexadecadienoic acid (C16:2) and C18:2, which are not present in wild-type yeast cells, revealing that the proteins encoded by these genes have Δ12 desaturase activity. Only trace amounts of C18:2 and little C16:2 were detected in yeast cells transformed with IpFAD2-4, suggesting IpFAD2-4 displays low activity. We also analyzed the activity of several FAD2 natural variants of Idesia polycarpa in yeast and found that a highly conserved Gly376 substitution caused the markedly reduced products catalyzed by IpFAD2-3. This glycine is also essential for the activity of IpFAD2-1 and IpFAD2-2, but its replacement in other plant FAD2 proteins displays different effects on the desaturase activity, suggesting its distinct roles across plant FAD2s proteins.
Collapse
Affiliation(s)
- Pan Wu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lingling Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| | - Tao Feng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| | - Wenying Lu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Huayan Zhao
- Applied Biotechnology Center, Wuhan Institute of Bioengineering, Wuhan 430415, China.
| | - Jianzhong Li
- Tianjin Garrison hangu farm, Tianjin 300480, China.
| | - Shiyou Lü
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
119
|
Lopes-Marques M, Kabeya N, Qian Y, Ruivo R, Santos MM, Venkatesh B, Tocher DR, Castro LFC, Monroig Ó. Retention of fatty acyl desaturase 1 (fads1) in Elopomorpha and Cyclostomata provides novel insights into the evolution of long-chain polyunsaturated fatty acid biosynthesis in vertebrates. BMC Evol Biol 2018; 18:157. [PMID: 30340454 PMCID: PMC6194568 DOI: 10.1186/s12862-018-1271-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 10/02/2018] [Indexed: 12/22/2022] Open
Abstract
Background Provision of long-chain polyunsaturated fatty acids (LC-PUFA) in vertebrates occurs through the diet or via endogenous production from C18 precursors through consecutive elongations and desaturations. It has been postulated that the abundance of LC-PUFA in the marine environment has remarkably modulated the gene complement and function of Fads in marine teleosts. In vertebrates two fatty acyl desaturases, namely Fads1 and Fads2, encode ∆5 and ∆6 desaturases, respectively. To fully clarify the evolutionary history of LC-PUFA biosynthesis in vertebrates, we investigated the gene repertoire and function of Fads from species placed at key evolutionary nodes. Results We demonstrate that functional Fads1Δ5 and Fads2∆6 arose from a tandem gene duplication in the ancestor of vertebrates, since they are present in the Arctic lamprey. Additionally, we show that a similar condition was retained in ray-finned fish such as the Senegal bichir and spotted gar, with the identification of fads1 genes in these lineages. Functional characterisation of the isolated desaturases reveals the first case of a Fads1 enzyme with ∆5 desaturase activity in the Teleostei lineage, the Elopomorpha. In contrast, in Osteoglossomorpha genomes, while no fads1 was identified, two separate fads2 duplicates with ∆6 and ∆5 desaturase activities respectively were uncovered. Conclusions We conclude that, while the essential genetic components involved LC-PUFA biosynthesis evolved in the vertebrate ancestor, the full completion of the LC-PUFA biosynthesis pathway arose uniquely in gnathostomes. Electronic supplementary material The online version of this article (10.1186/s12862-018-1271-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mónica Lopes-Marques
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), U. Porto - University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal.,Laboratory of Histology and Embryology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), U.Porto - University of Porto, Rua Jorge Viterbo Ferreira 228, P 4050-313, Porto, Portugal
| | - Naoki Kabeya
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yu Qian
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK
| | - Raquel Ruivo
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), U. Porto - University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Miguel M Santos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), U. Porto - University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal.,Faculty of Sciences (FCUP), Department of Biology, U.Porto - University of Porto, Rua do Campo Alegre, P 4169-007, Porto, Portugal
| | - Byrappa Venkatesh
- Comparative Genomics Laboratory, Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore, 138673, Singapore
| | - Douglas R Tocher
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK
| | - L Filipe C Castro
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), U. Porto - University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal. .,Faculty of Sciences (FCUP), Department of Biology, U.Porto - University of Porto, Rua do Campo Alegre, P 4169-007, Porto, Portugal.
| | - Óscar Monroig
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK. .,Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Ribera de Cabanes, 12595, Castellón, Spain.
| |
Collapse
|
120
|
Dias LM, Folador ARC, Oliveira AM, Ramos RTJ, Silva A, Baraúna RA. Genomic Architecture of the Two Cold-Adapted Genera Exiguobacterium and Psychrobacter: Evidence of Functional Reduction in the Exiguobacterium antarcticum B7 Genome. Genome Biol Evol 2018; 10:731-741. [PMID: 29438502 PMCID: PMC5833320 DOI: 10.1093/gbe/evy029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2018] [Indexed: 11/12/2022] Open
Abstract
Exiguobacterium and Psychrobacter are bacterial genera with several cold-adapted species. These extremophiles are commonly isolated from the same habitats in Earth's cryosphere and have great ecological and biotechnological relevance. Thus, through comparative genomic analyses, it was possible to understand the functional diversity of these psychrotrophic and psychrophilic species and present new insights into the microbial adaptation to cold. The nucleotide identity between Exiguobacterium genomes was >90%. Three genomic islands were identified in the E. antarcticum B7 genome. These islands contained genes involved in flagella biosynthesis and chemotaxis, as well as enzymes for carotenoid biosynthesis. Clustering of cold shock proteins by Ka/Ks ratio suggests the occurrence of a positive selection over these genes. Neighbor-joining clustering of complete genomes showed that the E. sibiricum was the most closely related to E. antarcticum. A total of 92 genes were shared between Exiguobacterium and Psychrobacter. A reduction in the genomic content of E. antarcticum B7 was observed. It presented the smallest genome size of its genus and a lower number of genes because of the loss of many gene families compared with the other genomes. In our study, eight genomes of Exiguobacterium and Psychrobacter were compared and analysed. Psychrobacter showed higher genomic plasticity and E. antarcticum B7 presented a large decrease in genomic content without changing its ability to grow in cold environments.
Collapse
Affiliation(s)
- Larissa M Dias
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Adriana R C Folador
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Amanda M Oliveira
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Rommel T J Ramos
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Artur Silva
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Rafael A Baraúna
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| |
Collapse
|
121
|
Pichler H, Emmerstorfer-Augustin A. Modification of membrane lipid compositions in single-celled organisms – From basics to applications. Methods 2018; 147:50-65. [DOI: 10.1016/j.ymeth.2018.06.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/18/2018] [Accepted: 06/16/2018] [Indexed: 12/12/2022] Open
|
122
|
Yin DD, Xu WZ, Shu QY, Li SS, Wu Q, Feng CY, Gu ZY, Wang LS. Fatty acid desaturase 3 (PsFAD3) from Paeonia suffruticosa reveals high α-linolenic acid accumulation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 274:212-222. [PMID: 30080606 DOI: 10.1016/j.plantsci.2018.05.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/25/2018] [Accepted: 05/25/2018] [Indexed: 05/21/2023]
Abstract
α-linolenic acid (ALA) deficiency and a skewed ω6: ω3 fatty acid ratio in the diet are thought to be a major cause for the high incidence of cardiovascular, inflammatory, and autoimmune diseases. Recent years, tree peony (Paeonia suffruticosa Andr.) with the high proportion of ALA (more than 45% in seed oil) is widely concerned. However, the underlying accumulation mechanism of the ALA in tree peony seeds remains unknown. In this study, comparative transcriptome analysis was performed between two cultivars ('Saiguifei' and 'Jingshenhuanfa') with different ALA contents. The analysis of the metabolic enzymes associated with ALA biosynthesis and temporal accumulation patterns of unsaturated fatty acids demonstrated the importance of microsomal ω-3 fatty acid desaturase 3 (FAD3). Moreover, PsFAD3 gene was identified from tree peony seeds, which was located in endoplasmic reticulum and the expression levels of PsFAD3 were consistent with ALA accumulation patterns in seeds. Heterologous expression in Saccharomyces cerevisiae and Arabidopsis thaliana confirmed that the isolated PsFAD3 protein could catalyze ALA synthesis. These results indicated that PsFAD3 was involved in the synthesis of ALA in seeds and could be exploited by the genetic breeding of new cultivars with high ALA content in tree peony as well as other potential crops.
Collapse
Affiliation(s)
- Dan-Dan Yin
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Zhong Xu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Qing-Yan Shu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Shan-Shan Li
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Qian Wu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng-Yong Feng
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhao-Yu Gu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Liang-Sheng Wang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
123
|
Insight into Arthrospira platensis Δ9 desaturase: a key enzyme in poly-unsaturated fatty acid synthesis. Mol Biol Rep 2018; 45:1873-1879. [DOI: 10.1007/s11033-018-4333-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 08/23/2018] [Indexed: 10/28/2022]
|
124
|
Sastre DE, Saita E, Uttaro AD, de Mendoza D, Altabe SG. Structural determinant of functionality in acyl lipid desaturases. J Lipid Res 2018; 59:1871-1879. [PMID: 30087203 DOI: 10.1194/jlr.m085258] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/17/2018] [Indexed: 11/20/2022] Open
Abstract
Little is known about the structure-function relationship of membrane-bound lipid desaturases. Using a domain-swapping strategy, we found that the N terminus (comprising the two first transmembrane segments) region of Bacillus cereus DesA desaturase improves Bacillus subtilis Des activity. In addition, the replacement of the first two transmembrane domains from Bacillus licheniformis inactive open reading frame (ORF) BL02692 with the corresponding domain from DesA was sufficient to resurrect this enzyme. Unexpectedly, we were able to restore the activity of ORF BL02692 with a single substitution (Cys40Tyr) of a cysteine localized in the first transmembrane domain close to the lipid-water interface. Substitution of eight residues (Gly90, Trp104, Lys172, His228, Pro257, Leu275, Tyr282, and Leu284) by site-directed mutagenesis produced inactive variants of DesA. Homology modeling of DesA revealed that His228 is part of the metal binding center, together with the canonical His boxes. Trp104 shapes the hydrophobic tunnel, whereas Gly90 and Lys172 are probably involved in substrate binding/recognition. Pro257, Leu275, Tyr282, and Leu284 might be relevant for the structural arrangement of the active site or interaction with electron donors. This study reveals the role of the N-terminal region of Δ5 phospholipid desaturases and the individual residues necessary for the activity of this class of enzymes.
Collapse
Affiliation(s)
- Diego E Sastre
- Instituto de Biología Molecular y Celular de Rosario, Rosario, Argentina; and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Esmeralda y Ocampo, Rosario, Argentina
| | - Emilio Saita
- Instituto de Biología Molecular y Celular de Rosario, Rosario, Argentina; and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Esmeralda y Ocampo, Rosario, Argentina
| | - Antonio D Uttaro
- Instituto de Biología Molecular y Celular de Rosario, Rosario, Argentina; and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Esmeralda y Ocampo, Rosario, Argentina
| | - Diego de Mendoza
- Instituto de Biología Molecular y Celular de Rosario, Rosario, Argentina; and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Esmeralda y Ocampo, Rosario, Argentina
| | - Silvia G Altabe
- Instituto de Biología Molecular y Celular de Rosario, Rosario, Argentina; and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Esmeralda y Ocampo, Rosario, Argentina
| |
Collapse
|
125
|
Endo H, Hanawa Y, Araie H, Suzuki I, Shiraiwa Y. Overexpression of Tisochrysis lutea Akd1 identifies a key cold-induced alkenone desaturase enzyme. Sci Rep 2018; 8:11230. [PMID: 30046151 PMCID: PMC6060089 DOI: 10.1038/s41598-018-29482-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/12/2018] [Indexed: 12/28/2022] Open
Abstract
Alkenones are unusual long-chain neutral lipids that were first identified in oceanic sediments. Currently they are regarded as reliable palaeothermometers, since their unsaturation status changes depending on temperature. These molecules are synthesised by specific haptophyte algae and are stored in the lipid body as the main energy storage molecules. However, the molecular mechanisms that regulate the alkenone biosynthetic pathway, especially the low temperature-dependent desaturation reaction, have not been elucidated. Here, using an alkenone-producing haptophyte alga, Tisochrysis lutea, we show that the alkenone desaturation reaction is catalysed by a newly identified desaturase. We first isolated two candidate desaturase genes and found that one of these genes was drastically upregulated in response to cold stress. Gas chromatographic analysis revealed that the overexpression of this gene, named as Akd1 finally, increased the conversion of di-unsaturated C37-alkenone to tri-unsaturated molecule by alkenone desaturation, even at a high temperature when endogenous desaturation is efficiently suppressed. We anticipate that the Akd1 gene will be of great help for elucidating more detailed mechanisms of temperature response of alkenone desaturation, and identification of active species contributing alkenone production in metagenomic and/or metatranscriptomic studies in the field of oceanic biogeochemistry.
Collapse
Affiliation(s)
- Hirotoshi Endo
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Yutaka Hanawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Hiroya Araie
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.,College of Science and Engineering, Kanto Gakuin University, 1-50-1 Mutsuura-higashi, Kanazawa-ku, Yokohama, Kanagawa, 236-8501, Japan
| | - Iwane Suzuki
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Yoshihiro Shiraiwa
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
126
|
Peng D, Zhou B, Jiang Y, Tan X, Yuan D, Zhang L. Enhancing freezing tolerance of Brassica napus L. by overexpression of a stearoyl-acyl carrier protein desaturase gene (SAD) from Sapium sebiferum (L.) Roxb. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 272:32-41. [PMID: 29807604 DOI: 10.1016/j.plantsci.2018.03.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 03/25/2018] [Accepted: 03/28/2018] [Indexed: 05/06/2023]
Abstract
Sapium sebiferum (L.) Roxb. is an important woody oil tree and traditional herbal medicine in China. Stearoyl-acyl carrier protein desaturase (SAD) is a dehydrogenase enzyme that plays a key role in the transformation of saturated fatty acids into unsaturated fatty acids in oil; these fatty acids greatly influence the freezing tolerance of plants. However, it remains unclear whether freezing tolerance can be regulated by the expression level of SsSAD in S. sebiferum L. Our research indicated that SsSAD expression in S. sebiferum L. increased under freezing stress. To further confirm this result, we constructed a pEGAD-SsSAD vector and transformed it into B. napus L. W10 by Agrobacterium tumefaciens-mediated transformation. Transgenic plants that overexpressed the SsSAD gene exhibited significantly higher linoleic (18:2) and linolenic acid (18:3) content and advanced freezing tolerance. These results suggest that SsSAD overexpression in B. napus L. can increase the content of polyunsaturated fatty acids (PUFAs) such as linoleic (18:2) and linolenic acid (18:3), which are likely pivotal in improving freezing tolerance in B. napus L. plants. Thus, SsSAD overexpression could be useful in the production of freeze-tolerant varieties of B. napus L.
Collapse
Affiliation(s)
- Dan Peng
- College of Bioscience and Biotechnology of Central South University of Forestry and Technology, 410018, Changsha, China; Forestry Biotechnology Hunan Key Laboratories, Hunan Changsha, 410018, China
| | - Bo Zhou
- College of Bioscience and Biotechnology of Central South University of Forestry and Technology, 410018, Changsha, China; Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, 410018, Changsha, China; Collaborative Innovation Central of Cultivation and Utilization for Non-Wood Forest Tree Central South University of Forestry and Technology, 410018, Changsha, China; Forestry Biotechnology Hunan Key Laboratories, Hunan Changsha, 410018, China.
| | - Yueqiao Jiang
- College of Bioscience and Biotechnology of Central South University of Forestry and Technology, 410018, Changsha, China
| | - XiaoFeng Tan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, 410018, Changsha, China; Collaborative Innovation Central of Cultivation and Utilization for Non-Wood Forest Tree Central South University of Forestry and Technology, 410018, Changsha, China
| | - DeYi Yuan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, 410018, Changsha, China; Collaborative Innovation Central of Cultivation and Utilization for Non-Wood Forest Tree Central South University of Forestry and Technology, 410018, Changsha, China
| | - Lin Zhang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, 410018, Changsha, China; Collaborative Innovation Central of Cultivation and Utilization for Non-Wood Forest Tree Central South University of Forestry and Technology, 410018, Changsha, China
| |
Collapse
|
127
|
Shi Y, Yue X, An L. Integrated regulation triggered by a cryophyte ω-3 desaturase gene confers multiple-stress tolerance in tobacco. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2131-2148. [PMID: 29432580 PMCID: PMC6019038 DOI: 10.1093/jxb/ery050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 02/02/2018] [Indexed: 05/16/2023]
Abstract
ω-3 fatty acid desaturases (FADs) are thought to contribute to plant stress tolerance mainly through linolenic acid (C18:3)-induced membrane stabilization, but a comprehensive analysis of their roles in stress adaptation is lacking. Here, we isolated a microsomal ω-3 FAD gene (CbFAD3) from a cryophyte (Chorispora bungeana) and elucidated its functions in stress tolerance. CbFAD3, exhibiting a high identity to Arabidopsis AtFAD3, was up-regulated by abiotic stresses. Its functionality was verified by heterogonous expression in yeast. Overexpression of CbFAD3 in tobacco constitutively increased C18:3 in both leaves and roots, which maintained the membrane fluidity, and enhanced plant tolerance to cold, drought, and salt stresses. Notably, the constitutively increased C18:3 induced a sustained activation of plasma membrane Ca2+-ATPase, thereby, changing the stress-induced Ca2+ signaling. The reactive oxygen species (ROS) scavenging system, which was positively correlated with the level of C18:3, was also activated in the transgenic lines. Microarray analysis showed that CbFAD3-overexpressing plants increased the expression of stress-responsive genes, most of which are affected by C18:3, Ca2+, or ROS. Together, CbFAD3 confers tolerance to multiple stresses in tobacco through the C18:3-induced integrated regulation of membrane, Ca2+, ROS, and stress-responsive genes. This is in contrast with previous observations that simply attribute stress tolerance to membrane stabilization.
Collapse
Affiliation(s)
- Yulan Shi
- Extreme Stress Resistance and Biotechnology Laboratory, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, PR China
| | - Xiule Yue
- School of Life Sciences, Lanzhou University, Lanzhou, PR China
| | - Lizhe An
- Extreme Stress Resistance and Biotechnology Laboratory, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, PR China
- School of Life Sciences, Lanzhou University, Lanzhou, PR China
| |
Collapse
|
128
|
Garba L, Mohamad Yussoff MA, Abd Halim KB, Ishak SNH, Mohamad Ali MS, Oslan SN, Raja Abd Rahman RNZ. Homology modeling and docking studies of a Δ9-fatty acid desaturase from a Cold-tolerant Pseudomonas sp. AMS8. PeerJ 2018; 6:e4347. [PMID: 29576935 PMCID: PMC5863719 DOI: 10.7717/peerj.4347] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 01/19/2018] [Indexed: 01/02/2023] Open
Abstract
Membrane-bound fatty acid desaturases perform oxygenated desaturation reactions to insert double bonds within fatty acyl chains in regioselective and stereoselective manners. The Δ9-fatty acid desaturase strictly creates the first double bond between C9 and 10 positions of most saturated substrates. As the three-dimensional structures of the bacterial membrane fatty acid desaturases are not available, relevant information about the enzymes are derived from their amino acid sequences, site-directed mutagenesis and domain swapping in similar membrane-bound desaturases. The cold-tolerant Pseudomonas sp. AMS8 was found to produce high amount of monounsaturated fatty acids at low temperature. Subsequently, an active Δ9-fatty acid desaturase was isolated and functionally expressed in Escherichia coli. In this paper we report homology modeling and docking studies of a Δ9-fatty acid desaturase from a Cold-tolerant Pseudomonas sp. AMS8 for the first time to the best of our knowledge. Three dimensional structure of the enzyme was built using MODELLER version 9.18 using a suitable template. The protein model contained the three conserved-histidine residues typical for all membrane-bound desaturase catalytic activity. The structure was subjected to energy minimization and checked for correctness using Ramachandran plots and ERRAT, which showed a good quality model of 91.6 and 65.0%, respectively. The protein model was used to preform MD simulation and docking of palmitic acid using CHARMM36 force field in GROMACS Version 5 and Autodock tool Version 4.2, respectively. The docking simulation with the lowest binding energy, -6.8 kcal/mol had a number of residues in close contact with the docked palmitic acid namely, Ile26, Tyr95, Val179, Gly180, Pro64, Glu203, His34, His206, His71, Arg182, Thr85, Lys98 and His177. Interestingly, among the binding residues are His34, His71 and His206 from the first, second, and third conserved histidine motif, respectively, which constitute the active site of the enzyme. The results obtained are in compliance with the in vivo activity of the Δ9-fatty acid desaturase on the membrane phospholipids.
Collapse
Affiliation(s)
- Lawal Garba
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Department of Microbiology, Faculty of Science, Gombe State University, Gombe, Gombe State, Nigeria
| | - Mohamad Ariff Mohamad Yussoff
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Kuantan, Pahang Darul Makmur, Malaysia
| | - Khairul Bariyyah Abd Halim
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Kuantan, Pahang Darul Makmur, Malaysia
| | - Siti Nor Hasmah Ishak
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
129
|
Windisch HS, Fink P. The molecular basis of essential fatty acid limitation in Daphnia magna
: A transcriptomic approach. Mol Ecol 2018; 27:871-885. [DOI: 10.1111/mec.14498] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 01/20/2018] [Accepted: 01/22/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Heidrun S. Windisch
- Institute for Cell Biology and Zoology; Heinrich-Heine-University; Düsseldorf Germany
| | - Patrick Fink
- Institute for Cell Biology and Zoology; Heinrich-Heine-University; Düsseldorf Germany
- Institute for Zoology; University of Cologne; Köln Germany
| |
Collapse
|
130
|
Cold-induced metabolic conversion of haptophyte di- to tri-unsaturated C 37 alkenones used as palaeothermometer molecules. Sci Rep 2018; 8:2196. [PMID: 29396545 PMCID: PMC5797101 DOI: 10.1038/s41598-018-20741-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 01/23/2018] [Indexed: 01/08/2023] Open
Abstract
The cosmopolitan marine haptophyte alga Emiliania huxleyi accumulates very long-chain (C37-C40) alkyl ketones with two to four trans-type carbon-carbon double bonds (alkenones). These compounds are used as biomarkers of haptophytes and as palaeothermometers for estimating sea-surface temperatures in biogeochemistry. However, the biosynthetic pathway of alkenones in algal cells remains enigmatic, although it is well known that the C37 tri-unsaturated alkenone (K37:3) becomes dominant at low temperatures, either by desaturation of K37:2 or by a separate pathway involving the elongation of tri-unsaturated alkenone precursors. Here, we present experimental evidence regarding K37:3 synthesis. Using the well-known cosmopolitan alkenone producer E. huxleyi, we labelled K37:2 with 13C by incubating cells with 13C-bicarbonate in the light at 25 °C under conditions of little if any K37:3 production. After stabilisation of the 13C-K37:2 level by depleting 13C-bicarbonate from the medium, the temperature was suddenly reduced to 15 °C. The 13C-K37:2 level rapidly decreased, and the 13C-K37:3 level increased, whereas the total 13C-K37 level—namely [K37:2 + K37:3]—remained constant. These 13C-pulse-chase-like experimental results indicate that 13C-K37:2 is converted directly to 13C-K37:3 by a desaturation reaction that is promoted by a cold signal. This clear-cut experimental evidence is indicative of the existence of a cold-signal-triggered desaturation reaction in alkenone biosynthesis.
Collapse
|
131
|
Giri S, Rule DC, Dillon ME. Fatty acid composition in native bees: Associations with thermal and feeding ecology. Comp Biochem Physiol A Mol Integr Physiol 2018; 218:70-79. [PMID: 29409996 DOI: 10.1016/j.cbpa.2018.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/19/2018] [Accepted: 01/22/2018] [Indexed: 10/18/2022]
Abstract
Fatty acid (FA) composition of lipids plays a crucial role in the functioning of lipid-containing structures in organisms and may be affected by the temperature an organism experiences, as well as its diet. We compared FA composition among four bee genera: Andrena, Bombus, Megachile, and Osmia which differ in their thermal ecology and diet. Fatty acid methyl esters (FAME) were prepared by direct transesterification with KOH and analyzed using gas-liquid chromatography with a flame ionization detector. Sixteen total FAs ranging in chain length from eight to 22 carbon atoms were identified. Linear discriminant analysis separated the bees based on their FA composition. Andrena was characterized by relatively high concentrations of polyunsaturated FAs, Bombus by high monounsaturated FAs and Megachilids (Megachile and Osmia) by relatively high amounts of saturated FAs. These differences in FA composition may in part be explained by variation in the diets of these bees. Because tongue (proboscis) length may be used as a proxy for the types of flowers bees may visit for nectar and pollen, we compared FA composition among Bombus that differed in proboscis length (but have similar thermal ecology). A clear separation in FA composition within Bombus with varying proboscis lengths was found using linear discriminant analysis. Further, comparing the relationship between each genus by cluster analysis revealed aggregations by genus that were not completely separated, suggesting potential overlap in dietary acquisition of FAs.
Collapse
Affiliation(s)
- Susma Giri
- Department of Zoology and Physiology & Program in Ecology, University of Wyoming, Laramie, WY, USA
| | - Daniel C Rule
- Department of Animal Science, University of Wyoming, Laramie, WY, USA
| | - Michael E Dillon
- Department of Zoology and Physiology & Program in Ecology, University of Wyoming, Laramie, WY, USA.
| |
Collapse
|
132
|
Firdaus-Raih M, Hashim NHF, Bharudin I, Abu Bakar MF, Huang KK, Alias H, Lee BKB, Mat Isa MN, Mat-Sharani S, Sulaiman S, Tay LJ, Zolkefli R, Muhammad Noor Y, Law DSN, Abdul Rahman SH, Md-Illias R, Abu Bakar FD, Najimudin N, Abdul Murad AM, Mahadi NM. The Glaciozyma antarctica genome reveals an array of systems that provide sustained responses towards temperature variations in a persistently cold habitat. PLoS One 2018; 13:e0189947. [PMID: 29385175 PMCID: PMC5791967 DOI: 10.1371/journal.pone.0189947] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 12/05/2017] [Indexed: 01/01/2023] Open
Abstract
Extremely low temperatures present various challenges to life that include ice formation and effects on metabolic capacity. Psyhcrophilic microorganisms typically have an array of mechanisms to enable survival in cold temperatures. In this study, we sequenced and analysed the genome of a psychrophilic yeast isolated in the Antarctic region, Glaciozyma antarctica. The genome annotation identified 7857 protein coding sequences. From the genome sequence analysis we were able to identify genes that encoded for proteins known to be associated with cold survival, in addition to annotating genes that are unique to G. antarctica. For genes that are known to be involved in cold adaptation such as anti-freeze proteins (AFPs), our gene expression analysis revealed that they were differentially transcribed over time and in response to different temperatures. This indicated the presence of an array of adaptation systems that can respond to a changing but persistent cold environment. We were also able to validate the activity of all the AFPs annotated where the recombinant AFPs demonstrated anti-freeze capacity. This work is an important foundation for further collective exploration into psychrophilic microbiology where among other potential, the genes unique to this species may represent a pool of novel mechanisms for cold survival.
Collapse
Affiliation(s)
- Mohd Firdaus-Raih
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
- * E-mail:
| | - Noor Haza Fazlin Hashim
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Izwan Bharudin
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Mohd Faizal Abu Bakar
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
- Malaysia Genome Institute, Jalan Bangi Lama, Kajang, Selangor, Malaysia
| | - Kie Kyon Huang
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Halimah Alias
- Malaysia Genome Institute, Jalan Bangi Lama, Kajang, Selangor, Malaysia
| | - Bernard K. B. Lee
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Mohd Noor Mat Isa
- Malaysia Genome Institute, Jalan Bangi Lama, Kajang, Selangor, Malaysia
| | - Shuhaila Mat-Sharani
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
- Malaysia Genome Institute, Jalan Bangi Lama, Kajang, Selangor, Malaysia
| | - Suhaila Sulaiman
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Lih Jinq Tay
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Radziah Zolkefli
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Yusuf Muhammad Noor
- Malaysia Genome Institute, Jalan Bangi Lama, Kajang, Selangor, Malaysia
- Department of Biosciences Engineering, Faculty of Chemical & Natural Resources Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Douglas Sie Nguong Law
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Siti Hamidah Abdul Rahman
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Rosli Md-Illias
- Department of Biosciences Engineering, Faculty of Chemical & Natural Resources Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Farah Diba Abu Bakar
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Nazalan Najimudin
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Abdul Munir Abdul Murad
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | | |
Collapse
|
133
|
Omega-3 fatty acid desaturase gene family from two ω-3 sources, Salvia hispanica and Perilla frutescens: Cloning, characterization and expression. PLoS One 2018; 13:e0191432. [PMID: 29351555 PMCID: PMC5774782 DOI: 10.1371/journal.pone.0191432] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 01/04/2018] [Indexed: 11/19/2022] Open
Abstract
Omega-3 fatty acid desaturase (ω-3 FAD, D15D) is a key enzyme for α-linolenic acid (ALA) biosynthesis. Both chia (Salvia hispanica) and perilla (Perilla frutescens) contain high levels of ALA in seeds. In this study, the ω-3 FAD gene family was systematically and comparatively cloned from chia and perilla. Perilla FAD3, FAD7, FAD8 and chia FAD7 are encoded by single-copy (but heterozygous) genes, while chia FAD3 is encoded by 2 distinct genes. Only 1 chia FAD8 sequence was isolated. In these genes, there are 1 to 6 transcription start sites, 1 to 8 poly(A) tailing sites, and 7 introns. The 5'UTRs of PfFAD8a/b contain 1 to 2 purine-stretches and 2 pyrimidine-stretches. An alternative splice variant of ShFAD7a/b comprises a 5'UTR intron. Their encoded proteins harbor an FA_desaturase conserved domain together with 4 trans-membrane helices and 3 histidine boxes. Phylogenetic analysis validated their identity of dicot microsomal or plastidial ω-3 FAD proteins, and revealed some important evolutionary features of plant ω-3 FAD genes such as convergent evolution across different phylums, single-copy status in algae, and duplication events in certain taxa. The qRT-PCR assay showed that the ω-3 FAD genes of two species were expressed at different levels in various organs, and they also responded to multiple stress treatments. The functionality of the ShFAD3 and PfFAD3 enzymes was confirmed by yeast expression. The systemic molecular and functional features of the ω-3 FAD gene family from chia and perilla revealed in this study will facilitate their use in future studies on genetic improvement of ALA traits in oilseed crops.
Collapse
|
134
|
Chi X, Zhang Z, Chen N, Zhang X, Wang M, Chen M, Wang T, Pan L, Chen J, Yang Z, Guan X, Yu S. Isolation and functional analysis of fatty acid desaturase genes from peanut (Arachis hypogaea L.). PLoS One 2017; 12:e0189759. [PMID: 29244878 PMCID: PMC5731756 DOI: 10.1371/journal.pone.0189759] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 12/01/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Fatty acid desaturases are enzymes that introduce double bonds into fatty acyl chains. Extensive studies of fatty acid desaturases have been done in many plants. However, less is known about the diversity of this gene family in peanut (Arachis hypogaea L.), an important oilseed crop that is cultivated worldwide. RESULTS In this study, twelve novel AhFADs genes were identified and isolated from peanut. Quantitative real-time PCR analysis indicated that the transcript abundances of AhFAB2-2 and AhFAD3-1 were higher in seeds than in other tissues examined, whereas the AhADS and AhFAD7-1 transcripts were more abundant in leaves. AhFAB2-3, AhFAD3-2, AhFAD4, AhSLD-4, and AhDES genes were highly expressed in flowers, whereas AhFAD7-2, AhSLD-2, and AhSLD-3 were expressed most strongly in stems. During seed development, the expressions of AhFAB2-2, AhFAD3-1, AhFAD7-1, and AhSLD-3 gradually increased in abundance, reached a maximum expression level, and then decreased. The AhFAB2-3, AhFAD3-2, AhFAD4, AhADS, and AhDES transcript levels remained relatively high at the initial stage of seed development, but decreased thereafter. The AhSLD-4 transcript level remained relatively low at the initial stage of seed development, but showed a dramatic increase in abundance at the final stage. The AhFAD7-2 and AhSLD-2 transcript levels remained relatively high at the initial stage of seed development, but then decreased, and finally increased again. The AhFAD transcripts were differentially expressed following exposure to abiotic stresses or abscisic acid. Moreover, the functions of one AhFAD6 and four AhSLD genes were confirmed by heterologous expression in Synechococcus elongates or Saccharomyces cerevisiae. CONCLUSIONS The present study provides valuable information that improves understanding of the biological roles of FAD genes in fatty acid synthesis, and will help peanut breeders improve the quality of peanut oil via molecular design breeding.
Collapse
Affiliation(s)
- Xiaoyuan Chi
- Shandong Peanut Research Institute, Qingdao, Shandong, P. R. China
| | - Zhimeng Zhang
- Shandong Peanut Research Institute, Qingdao, Shandong, P. R. China
| | - Na Chen
- Shandong Peanut Research Institute, Qingdao, Shandong, P. R. China
| | - Xiaowen Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, P. R. China
| | - Mian Wang
- Shandong Peanut Research Institute, Qingdao, Shandong, P. R. China
| | - Mingna Chen
- Shandong Peanut Research Institute, Qingdao, Shandong, P. R. China
| | - Tong Wang
- Shandong Peanut Research Institute, Qingdao, Shandong, P. R. China
| | - Lijuan Pan
- Shandong Peanut Research Institute, Qingdao, Shandong, P. R. China
| | - Jing Chen
- Shandong Peanut Research Institute, Qingdao, Shandong, P. R. China
| | - Zhen Yang
- Shandong Peanut Research Institute, Qingdao, Shandong, P. R. China
| | - Xiangyu Guan
- School of Ocean Sciences, China University of Geosciences, Beijing, P. R. China
| | - Shanlin Yu
- Shandong Peanut Research Institute, Qingdao, Shandong, P. R. China
| |
Collapse
|
135
|
Pittera J, Jouhet J, Breton S, Garczarek L, Partensky F, Maréchal É, Nguyen NA, Doré H, Ratin M, Pitt FD, Scanlan DJ, Six C. Thermoacclimation and genome adaptation of the membrane lipidome in marine Synechococcus. Environ Microbiol 2017; 20:612-631. [PMID: 29124854 DOI: 10.1111/1462-2920.13985] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/20/2017] [Accepted: 11/02/2017] [Indexed: 12/01/2022]
Abstract
The marine cyanobacteria of the genus Synechococcus are important primary producers, displaying a wide latitudinal distribution that is underpinned by diversification into temperature ecotypes. The physiological basis underlying these ecotypes is poorly known. In many organisms, regulation of membrane fluidity is crucial for acclimating to variations in temperature. Here, we reveal the detailed composition of the membrane lipidome of the model strain Synechococcus sp. WH7803 and its response to temperature variation. Unlike freshwater strains, membranes are almost devoid of C18, mainly containing C14 and C16 chains with no more than two unsaturations. In response to cold, we observed a rarely observed process of acyl chain shortening that likely induces membrane thinning, along with specific desaturation activities. Both of these mechanisms likely regulate membrane fluidity, facilitating the maintenance of efficient photosynthetic activity. A comprehensive examination of 53 Synechococcus genomes revealed clade-specific gene sets regulating membrane lipids. In particular, the genes encoding desaturase enzymes, which is a key to the temperature stress response, appeared to be temperature ecotype-specific, with some of them originating from lateral transfers. Our study suggests that regulation of membrane fluidity has been among the important adaptation processes for the colonization of different thermal niches by marine Synechococcus.
Collapse
Affiliation(s)
- Justine Pittera
- Marine Phototrophic Prokaryotes group, Station Biologique, Place Georges Teissier, Sorbonne Universités, Université Pierre and Marie Curie (Paris 06) and Centre National de la Recherche Scientifique, UMR 7144, 29688 Roscoff cedex, CS 90074, France
| | - Juliette Jouhet
- Institut de Biosciences et Biotechnologies de Grenoble, CEA Grenoble, Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168 Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Institut National de la Recherche Agronomique, Université Grenoble Alpes, 38054 Grenoble cedex 9, France
| | - Solène Breton
- Marine Phototrophic Prokaryotes group, Station Biologique, Place Georges Teissier, Sorbonne Universités, Université Pierre and Marie Curie (Paris 06) and Centre National de la Recherche Scientifique, UMR 7144, 29688 Roscoff cedex, CS 90074, France
| | - Laurence Garczarek
- Marine Phototrophic Prokaryotes group, Station Biologique, Place Georges Teissier, Sorbonne Universités, Université Pierre and Marie Curie (Paris 06) and Centre National de la Recherche Scientifique, UMR 7144, 29688 Roscoff cedex, CS 90074, France
| | - Frédéric Partensky
- Marine Phototrophic Prokaryotes group, Station Biologique, Place Georges Teissier, Sorbonne Universités, Université Pierre and Marie Curie (Paris 06) and Centre National de la Recherche Scientifique, UMR 7144, 29688 Roscoff cedex, CS 90074, France
| | - Éric Maréchal
- Institut de Biosciences et Biotechnologies de Grenoble, CEA Grenoble, Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168 Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Institut National de la Recherche Agronomique, Université Grenoble Alpes, 38054 Grenoble cedex 9, France
| | - Ngoc A Nguyen
- Marine Phototrophic Prokaryotes group, Station Biologique, Place Georges Teissier, Sorbonne Universités, Université Pierre and Marie Curie (Paris 06) and Centre National de la Recherche Scientifique, UMR 7144, 29688 Roscoff cedex, CS 90074, France
| | - Hugo Doré
- Marine Phototrophic Prokaryotes group, Station Biologique, Place Georges Teissier, Sorbonne Universités, Université Pierre and Marie Curie (Paris 06) and Centre National de la Recherche Scientifique, UMR 7144, 29688 Roscoff cedex, CS 90074, France
| | - Morgane Ratin
- Marine Phototrophic Prokaryotes group, Station Biologique, Place Georges Teissier, Sorbonne Universités, Université Pierre and Marie Curie (Paris 06) and Centre National de la Recherche Scientifique, UMR 7144, 29688 Roscoff cedex, CS 90074, France
| | - Frances D Pitt
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - David J Scanlan
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Christophe Six
- Marine Phototrophic Prokaryotes group, Station Biologique, Place Georges Teissier, Sorbonne Universités, Université Pierre and Marie Curie (Paris 06) and Centre National de la Recherche Scientifique, UMR 7144, 29688 Roscoff cedex, CS 90074, France
| |
Collapse
|
136
|
Malcicka M, Visser B, Ellers J. An Evolutionary Perspective on Linoleic Acid Synthesis in Animals. Evol Biol 2017; 45:15-26. [PMID: 29497218 PMCID: PMC5816129 DOI: 10.1007/s11692-017-9436-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/16/2017] [Indexed: 01/20/2023]
Abstract
The diet of organisms generally provides a sufficient supply of energy and building materials for healthy growth and development, but should also contain essential nutrients. Species differ in their exogenous requirements, but it is not clear why some species are able to synthesize essential nutrients, while others are not. The unsaturated fatty acid, linoleic acid (LA; 18:2n-6) plays an important role in functions such as cell physiology, immunity, and reproduction, and is an essential nutrient in diverse organisms. LA is readily synthesized in bacteria, protozoa and plants, but it was long thought that all animals lacked the ability to synthesize LA de novo and thus required a dietary source of this fatty acid. Over the years, however, an increasing number of studies have shown active LA synthesis in animals, including insects, nematodes and pulmonates. Despite continued interest in LA metabolism, it has remained unclear why some organisms can synthesize LA while others cannot. Here, we review the mechanisms by which LA is synthesized and which biological functions LA supports in different organisms to answer the question why LA synthesis was lost and repeatedly gained during the evolution of distinct invertebrate groups. We propose several hypotheses and compile data from the available literature to identify which factors promote LA synthesis within a phylogenetic framework. We have not found a clear link between our proposed hypotheses and LA synthesis; therefore we suggest that LA synthesis may be facilitated through bifunctionality of desaturase enzymes or evolved through a combination of different selective pressures.
Collapse
Affiliation(s)
- Miriama Malcicka
- Department of Ecological Sciences, Section Animal Ecology, Vrije Universiteit, Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Bertanne Visser
- Evolutionary Ecology and Genetics Group, Biodiversity Research Centre, Earth and Life Institute, Université Catholique de Louvain, Croix du Sud 4-5, 1348 Louvain-la-Neuve, Belgium
| | - Jacintha Ellers
- Department of Ecological Sciences, Section Animal Ecology, Vrije Universiteit, Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
137
|
Machida S, Bakku RK, Suzuki I. Expression of Genes for a Flavin Adenine Dinucleotide-Binding Oxidoreductase and a Methyltransferase from Mycobacterium chlorophenolicum Is Necessary for Biosynthesis of 10-Methyl Stearic Acid from Oleic Acid in Escherichia coli. Front Microbiol 2017; 8:2061. [PMID: 29109716 PMCID: PMC5660069 DOI: 10.3389/fmicb.2017.02061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/09/2017] [Indexed: 11/15/2022] Open
Abstract
In living organisms, modified fatty acids are crucial for the functions of the cellular membranes and storage lipids where the fatty acids are esterified. Some bacteria produce a typical methyl-branched fatty acid, i.e., 10-methyl stearic acid (19:0Me10). The biosynthetic pathway of 19:0Me10 in vivo has not been demonstrated clearly yet. It had been speculated that 19:0Me10 is synthesized from oleic acid (18:1Δ9) by S-adenosyl-L-methionine-dependent methyltransfer and NADPH-dependent reduction via a methylenated intermediate, 10-methyelene octadecanoic acid. Although the recombinant methyltransferases UmaA and UfaA1 from Mycobacterium tuberculosis H37Rv synthesize 19:0Me10 from 18:1Δ9 and NADPH in vitro, these methyltransferases do not possess any domains functioning in the redox reaction. These findings may contradict the two-step biosynthetic pathway. We focused on novel S-adenosyl-L-methionine-dependent methyltransferases from Mycobacterium chlorophenolicum that are involved in 19:0Me10 synthesis and selected two candidate proteins, WP_048471942 and WP_048472121, by a comparative genomic analysis. However, the heterologous expression of these candidate genes in Escherichia coli cells did not produce 19:0Me10. We found that one of the candidate genes, WP_048472121, was collocated with another gene, WP_048472120, that encodes a protein containing a domain associated with flavin adenine dinucleotide-binding oxidoreductase activity. The co-expression of these proteins (hereafter called BfaA and BfaB, respectively) led to the biosynthesis of 19:0Me10 in E. coli cells via the methylenated intermediate.
Collapse
Affiliation(s)
- Shuntaro Machida
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Ranjith K Bakku
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Iwane Suzuki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
138
|
Dar AA, Choudhury AR, Kancharla PK, Arumugam N. The FAD2 Gene in Plants: Occurrence, Regulation, and Role. FRONTIERS IN PLANT SCIENCE 2017; 8:1789. [PMID: 29093726 PMCID: PMC5651529 DOI: 10.3389/fpls.2017.01789] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 10/02/2017] [Indexed: 05/20/2023]
Abstract
Vegetable oils rich in oleic acid are more desirable than oils rich in polyunsaturated and saturated fatty acids. The biological switch of oleic acid to linoleic acid is facilitated by fatty acid desaturase 2 enzyme that is further classified into FAD2-1, FAD2-2, FAD2-3, and FAD2-4. The genes coding these enzymes have high sequence similarity, but differ mostly in their expression patterns. The seed-type FAD2 genes had evolved independently after segregation by duplication from constitutively expressed FAD2 genes. Temperature, light and wounding effectively regulate FAD2 expression in plants. FAD2 genes are expressed differently in different tissues of the plant, and the over-expression of FAD2 modifies physiological and vegetative characteristics. The activity of FAD2 leads to an increase in the content of dienoic fatty acids, and hence increases the resistance toward cold and salt stress. The thorough study of the FAD2 gene is important for understanding the expression, regulation and mechanism that will help in improving the quality of oil and stress resistance in plants.
Collapse
Affiliation(s)
- Aejaz A. Dar
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Pondicherry, India
| | | | | | | |
Collapse
|
139
|
Murakami A, Nagao K, Juni N, Hara Y, Umeda M. An N-terminal di-proline motif is essential for fatty acid-dependent degradation of Δ9-desaturase in Drosophila. J Biol Chem 2017; 292:19976-19986. [PMID: 28972163 DOI: 10.1074/jbc.m117.801936] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/13/2017] [Indexed: 12/20/2022] Open
Abstract
The Δ9-fatty acid desaturase introduces a double bond at the Δ9 position of the acyl moiety of acyl-CoA and regulates the cellular levels of unsaturated fatty acids. However, it is unclear how Δ9-desaturase expression is regulated in response to changes in the levels of fatty acid desaturation. In this study, we found that the degradation of DESAT1, the sole Δ9-desaturase in the Drosophila cell line S2, was significantly enhanced when the amounts of unsaturated acyl chains of membrane phospholipids were increased by supplementation with unsaturated fatty acids, such as oleic and linoleic acids. In contrast, inhibition of DESAT1 activity remarkably suppressed its degradation. Of note, removal of the DESAT1 N-terminal domain abolished the responsiveness of DESAT1 degradation to the level of fatty acid unsaturation. Further truncation and amino acid replacement analyses revealed that two sequential prolines, the second and third residues of DESAT1, were responsible for the unsaturated fatty acid-dependent degradation. Although degradation of mouse stearoyl-CoA desaturase 1 (SCD1) was unaffected by changes in fatty acid unsaturation, introduction of the N-terminal sequential proline residues into SCD1 conferred responsiveness to unsaturated fatty acid-dependent degradation. Furthermore, we also found that the Ca2+-dependent cysteine protease calpain is involved in the sequential proline-dependent degradation of DESAT1. In light of these findings, we designated the sequential prolines at the second and third positions of DESAT1 as a "di-proline motif," which plays a crucial role in the regulation of Δ9-desaturase expression in response to changes in the level of cellular unsaturated fatty acids.
Collapse
Affiliation(s)
- Akira Murakami
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510
| | - Kohjiro Nagao
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510.
| | - Naoto Juni
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510
| | - Yuji Hara
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510; AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| | - Masato Umeda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510.
| |
Collapse
|
140
|
Zuo Q, Jin K, Song J, Zhang Y, Li B. Cloning, expression pattern analysis, and subcellular localization of Capra hircus SCD1 gene with production of transgenic mice. J Cell Biochem 2017; 119:2240-2247. [PMID: 28914467 DOI: 10.1002/jcb.26386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/23/2017] [Indexed: 11/07/2022]
Abstract
This study aimed to clone the Stearoyl-CoA desaturase 1 (SCD1) gene derived from Xuhuai goat (Capra hircus), and analyze the sub-cellular localization in cells and tissues. The cDNA was cloned by reverse transcription polymerase chain reaction (RT-PCR). pEGFP-SCD1 vector was constructed to detect sub-cellular localization and tissue distribution. pEGFP-SCD1 was transfected into NIH-3T3 cells using polyethylene imine (PEI) and observed under fluorescence inversion microscope system 48 h after transfection. The expression level of SCD1 was detected by RT-PCR. Testicular injection was used to produce transgenic mice with goat SCD1 gene. DNA and protein were extracted from the tail tissue of F1 mice. The expression of exogenous gene in the F1 generation was detected in both DNA and protein. The results showed that the coding sequence (CDS) fragments of C. hircus SCD1 gene was 1074 bp and encodes 360 amino acids. RT-PCR results showed that SCD1 could be expressed successfully in NIH-3T3 cells in vitro. Sub-cellular localization analysis showed that pEGFP-SCD1 fusion protein located in the cytoplasm. It can be concluded that transgenic mice with goat SCD1 expressed in sperm and tail tissue was successfully produced in the F1 mice generation.
Collapse
Affiliation(s)
- Qisheng Zuo
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Kai Jin
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jiuzhou Song
- Animal and Avian Sciences, University of Maryland, College Park, Maryland
| | - Yani Zhang
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Bichun Li
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
141
|
Guo S, Duan JA, Li Y, Wang R, Yan H, Qian D, Tang Y, Su S. Comparison of the Bioactive Components in Two Seeds of Ziziphus Species by Different Analytical Approaches Combined with Chemometrics. Front Pharmacol 2017; 8:609. [PMID: 28928663 PMCID: PMC5591821 DOI: 10.3389/fphar.2017.00609] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 08/22/2017] [Indexed: 12/15/2022] Open
Abstract
The Ziziphus species are considered to be the medicine and food dual purposes plants. Among them, the seed of Ziziphus jujuba var. spinosa (ZS) has traditionally been used as an ethnomedicine in Asian countries for thousands years. Owing to the significant benefits for human health, the demand for ZS increased year by year, and the wild resources have become increasingly scarce, which resulted in a shortage of market supply for ZS and product adulteration by substituting ZS with the seeds of Z. mauritiana Lam. (ZM). However, whether the bioactivity of ZM is similar to ZS has not been fully confirmed till now. Thus, to provide potential information for evaluating the similarity of the health promoting activities between these two Ziziphus seeds, their chemical profiles, including triterpenoids, flavonoids, nucleosides, free amino acids and fatty acids were compared using high-performance liquid chromatography coupled with evaporative light scattering detection (HPLC-ELSD), ultra-high performance liquid chromatography coupled with triple-quadrupole mass spectrometry (UHPLC-TQ MS), and gas chromatography coupled with mass spectrometry (GC-MS) methods. Furthermore, a more holistic investigation was performed with multivariate principle component analysis and orthogonal projections to latent structures-discriminant analysis analyses to explore the relative variability between the seeds of two species. The results showed that a significant difference exists between ZS and ZM, and ZS was more rich in saponins, polyunsaturated fatty acids and some amino acids, whereas ZM was particularly rich in saturated fatty acids and flavonoids. The above results suggested the bioactivities of ZM for human health may not be similar to ZS owing to their difference in chemical profiles. These results would also be helpful for distinguishing the ZM from ZS with the chemical markers obtained from the study, and set a scientific foundation for establishing the quality control method of ZS.
Collapse
Affiliation(s)
- Sheng Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese MedicineNanjing, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese MedicineNanjing, China
| | - Yiqun Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese MedicineNanjing, China
| | - Ruiqing Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese MedicineNanjing, China
| | - Hui Yan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese MedicineNanjing, China
| | - Dawei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese MedicineNanjing, China
| | - Yuping Tang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese MedicineNanjing, China
| | - Shulan Su
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese MedicineNanjing, China
| |
Collapse
|
142
|
Maksimov EG, Mironov KS, Trofimova MS, Nechaeva NL, Todorenko DA, Klementiev KE, Tsoraev GV, Tyutyaev EV, Zorina AA, Feduraev PV, Allakhverdiev SI, Paschenko VZ, Los DA. Membrane fluidity controls redox-regulated cold stress responses in cyanobacteria. PHOTOSYNTHESIS RESEARCH 2017; 133:215-223. [PMID: 28110449 DOI: 10.1007/s11120-017-0337-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 01/08/2017] [Indexed: 06/06/2023]
Abstract
Membrane fluidity is the important regulator of cellular responses to changing ambient temperature. Bacteria perceive cold by the transmembrane histidine kinases that sense changes in thickness of the cytoplasmic membrane due to its rigidification. In the cyanobacterium Synechocystis, about a half of cold-responsive genes is controlled by the light-dependent transmembrane histidine kinase Hik33, which also partially controls the responses to osmotic, salt, and oxidative stress. This implies the existence of some universal, but yet unknown signal that triggers adaptive gene expression in response to various stressors. Here we selectively probed the components of photosynthetic machinery and functionally characterized the thermodynamics of cyanobacterial photosynthetic membranes with genetically altered fluidity. We show that the rate of oxidation of the quinone pool (PQ), which interacts with both photosynthetic and respiratory electron transport chains, depends on membrane fluidity. Inhibitor-induced stimulation of redox changes in PQ triggers cold-induced gene expression. Thus, the fluidity-dependent changes in the redox state of PQ may universally trigger cellular responses to stressors that affect membrane properties.
Collapse
Affiliation(s)
- Eugene G Maksimov
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia, 119992
| | - Kirill S Mironov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia, 127276
| | - Marina S Trofimova
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia, 127276
| | - Natalya L Nechaeva
- Chemical Enzymology Department, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia, 119992
| | - Daria A Todorenko
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia, 119992
| | - Konstantin E Klementiev
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia, 119992
| | - Georgy V Tsoraev
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia, 119992
| | - Eugene V Tyutyaev
- Department of Biotechnology, Bioengineering and Biochemistry, Faculty Biotechnology and Biology, Ogarev Mordovia State University, Saransk, Republic of Mordovia, Russia, 430032
| | - Anna A Zorina
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia, 127276
| | - Pavel V Feduraev
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia, 127276
- Chemical-Biological Institute, Immanuel Kant Federal Baltic University, Kaliningrad, Russia, 236041
| | | | - Vladimir Z Paschenko
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia, 119992
| | - Dmitry A Los
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia, 127276.
| |
Collapse
|
143
|
Bertucci JI, Blanco AM, Canosa LF, Unniappan S. Direct actions of macronutrient components on goldfish hepatopancreas in vitro to modulate the expression of ghr-I, ghr-II, igf-I and igf-II mRNAs. Gen Comp Endocrinol 2017; 250:1-8. [PMID: 28549738 DOI: 10.1016/j.ygcen.2017.05.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/02/2017] [Accepted: 05/22/2017] [Indexed: 12/18/2022]
Abstract
In mammals and fish, somatic growth and metabolism are coordinated by the GH-IGF axis, composed of growth hormone (GH), growth hormone receptors I and II (GHR-I and GHR-II), and the insulin-like growth factors I and II (IGF-I and IGF-II). In order to determine if dietary macronutrients regulate the hepatopancreatic expression of ghr-I, ghr-II, igf-I and igf-II independently of circulating GH, organ culture experiments were conducted. Briefly, goldfish hepatopancreas sections were incubated with different doses of glucose; L-tryptophan; oleic acid; linolenic acid (LNA); eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). After two and four hours of treatment, the expression of ghr-I, ghr-II, igf-I and igf-II mRNAs was quantified. We found that glucose and L-tryptophan globally upregulate the mRNA expression of ghr-I; ghr-II; igf-I and igf-II. Duration of exposure, and unsaturation level of fatty acids differentially modulate ghr-I, ghr-II and igf-II mRNA expression. Additionally, we found that fatty acids increase the expression of igf-I depending on incubation time and fatty acid class. In conclusion, here we present evidence for GH-independent, direct effects exerted by dietary macronutrients on GHR and IGF in goldfish hepatopancreas.
Collapse
Affiliation(s)
- Juan Ignacio Bertucci
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, Buenos Aires, Argentina
| | - Ayelén Melisa Blanco
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Luis Fabián Canosa
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, Buenos Aires, Argentina.
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
144
|
Di Capua CB, Doprado M, Belardinelli JM, Morbidoni HR. Complete auxotrophy for unsaturated fatty acids requires deletion of two sets of genes in Mycobacterium smegmatis. Mol Microbiol 2017; 106:93-108. [PMID: 28762586 DOI: 10.1111/mmi.13753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2017] [Indexed: 11/29/2022]
Abstract
The synthesis of unsaturated fatty acids in Mycobacterium smegmatis is poorly characterized. Bioinformatic analysis revealed four putative fatty acid desaturases in its genome, one of which, MSMEG_1886, is highly homologous to desA3, the only palmitoyl/stearoyl desaturase present in the Mycobacterium tuberculosis genome. A MSMEG_1886 deletion mutant was partially auxotrophic for oleic acid and viable at 37°C and 25°C, although with a long lag phase in liquid medium. Fatty acid analysis suggested that MSMEG_1886 is a palmitoyl/stearoyl desaturase, as the synthesis of palmitoleic acid was abrogated, while oleic acid contents dropped by half in the mutant. Deletion of the operon MSMEG_1741-1743 (highly homologous to a Pseudomonas aeruginosa acyl-CoA desaturase) had little effect on growth of the parental strain; however the double mutant MSMEG_1886-MSMEG_1741-1743 strictly required oleic acid for growth. The ΔMSMEG_1886-ΔMSMEG_1741 double mutant was able to grow (poorly but better than the ΔMSMEG_1886 single mutant) in solid and liquid media devoid of oleic acid, suggesting a repressor role for ΔMSMEG_1741. Fatty acid analysis of the described mutants suggested that MSMEG_1742-43 desaturates C18:0 and C24:0 fatty acids. Thus, although the M. smegmatis desA3 homologue is the major player in unsaturated fatty acid synthesis, a second set of genes is also involved.
Collapse
Affiliation(s)
- Cecilia B Di Capua
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Mariana Doprado
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Juan Manuel Belardinelli
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Héctor R Morbidoni
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
145
|
Knez M, Stangoulis JCR, Glibetic M, Tako E. The Linoleic Acid: Dihomo-γ-Linolenic Acid Ratio (LA:DGLA)-An Emerging Biomarker of Zn Status. Nutrients 2017; 9:E825. [PMID: 28763004 PMCID: PMC5579618 DOI: 10.3390/nu9080825] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/27/2017] [Accepted: 07/28/2017] [Indexed: 11/19/2022] Open
Abstract
Zinc (Zn) deficiency is a common aliment predicted to affect 17% of the world's population. Zinc is a vital micronutrient used for over 300 enzymatic reactions and multiple biochemical and structural processes in the body. Although whole blood, plasma, and urine zinc decrease in severe zinc deficiency, accurate assessment of zinc status, especially in mild to moderate deficiency, is difficult as studies with these biomarkers are often contradictory and inconsistent. Hence, as suggested by the World Health Organization, sensitive and specific biological markers of zinc status are still needed. In this review, we provide evidence to demonstrate that the LA:DGLA ratio (linoleic acid:dihomo-γ-linolenic acid ratio) may be a useful additional indicator for assessing Zn status more precisely. However, this biomarker needs to be tested further in order to determine its full potential.
Collapse
Affiliation(s)
- Marija Knez
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia.
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, 11000 Belgrade, Serbia.
| | - James C R Stangoulis
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia.
| | - Maria Glibetic
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, 11000 Belgrade, Serbia.
| | - Elad Tako
- USDA/ARS (US Department of Agriculture, Agricultural Research Service), Robert W. Holley Centre for Agriculture and Health, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
146
|
Zhang JY, Qin X, Liang A, Kim E, Lawrence P, Park WJ, Kothapalli KSD, Brenna JT. Fads3 modulates docosahexaenoic acid in liver and brain. Prostaglandins Leukot Essent Fatty Acids 2017; 123:25-32. [PMID: 28838557 PMCID: PMC5609706 DOI: 10.1016/j.plefa.2017.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/29/2017] [Accepted: 07/05/2017] [Indexed: 10/19/2022]
Abstract
Fatty acid desaturase 3 (FADS3) is the third member of the FADS gene cluster. FADS1 and FADS2 code for enzymes required for highly unsaturated fatty acid (HUFA) biosynthesis, but FADS3 function remains elusive. We generated the first Fads3 knockout (KO) mouse with an aim to characterize its metabolic phenotype and clues to in vivo function. All mice (wild type (WT) and KO) were fed facility rodent chow devoid of HUFA. No differences in overt phenotypes (survival, fertility, growth rate) were observed. Docosahexaenoic acid (DHA, 22:6n-3) levels in the brain of postnatal day 1 (P1) KO mice were lower than the WT (P < 0.05). The ratio of docosapentaenoic acid (DPA, 22:5n-3) to DHA in P1 KO liver was higher than in WT suggesting lower desaturase activity. Concomitantly, 20:4n-6 was lower but its elongation product 22:4n-6 was greater in the liver of P1 KO mice. P1 KO liver Fads1 and Fads2 mRNA levels were significantly downregulated whereas expression levels of elongation of very long chain 2 (Elovl2) and Elovl5 genes were upregulated compared to age-matched WT. No Δ13-desaturation of vaccenic acid was observed in liver or heart in WT mice expressing FADS3 as was reported in vitro. Taken together, the fatty acid compositional results suggest that Fads3 enhances liver-mediated 22:6n-3 synthesis to support brain 22:6n-3 accretion before and during the brain growth spurt.
Collapse
Affiliation(s)
- Ji Yao Zhang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Xia Qin
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Allison Liang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Ellen Kim
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Peter Lawrence
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Woo Jung Park
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | | | - J Thomas Brenna
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
147
|
Influence of water salinity on genes implicated in somatic growth, lipid metabolism and food intake in Pejerrey ( Odontesthes bonariensis ). Comp Biochem Physiol B Biochem Mol Biol 2017; 210:29-38. [DOI: 10.1016/j.cbpb.2017.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/06/2017] [Accepted: 05/21/2017] [Indexed: 01/06/2023]
|
148
|
Díaz ML, Cuppari S, Soresi D, Carrera A. In Silico Analysis of Fatty Acid Desaturase Genes and Proteins in Grasses. Appl Biochem Biotechnol 2017; 184:484-499. [PMID: 28755245 DOI: 10.1007/s12010-017-2556-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 07/13/2017] [Indexed: 02/03/2023]
Abstract
Fatty acid desaturases (FADs) catalyze the introduction of a double bond into acyl chains. Two FAD groups have been identified in plants: acyl-acyl carrier proteins (ACPs) and acyl-lipid or membrane-bound FAD. The former catalyze the conversion of 18:0 to 18:1 and to date have only been identified in plants. The latter are found in eukaryotes and bacteria and are responsible for multiple desaturations. In this study, we identified 82 desaturase gene and protein sequences from 10 grass species deposited in GenBank that were analyzed using bioinformatic approaches. Subcellular localization predictions of desaturase family revealed their localization in plasma membranes, chloroplasts, endoplasmic reticula, and mitochondria. The in silico mapping showed multiple chromosomal locations in most species. Furthermore, the presence of the characteristic histidine domains, the predicted motifs, and the finding of transmembrane regions strongly support the protein functionality. The identification of putative regulatory sites in the promotor and the expression profiles revealed the wide range of pathways in which fatty acid desaturases are involved. This study is an updated survey on desaturases of grasses that provides a comprehensive insight into diversity and evolution. This characterization is a necessary first step before considering these genes as candidates for new biotechnological approaches.
Collapse
Affiliation(s)
- Marina Lucía Díaz
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, 8000, Bahía Blanca, Argentina.
- Comisión de Investigaciones Científicas, Buenos Aires, Argentina.
| | - Selva Cuppari
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS)-CONICET, Camino La Carrindanga Km 7, 8000, Bahía Blanca, Argentina
| | - Daniela Soresi
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, 8000, Bahía Blanca, Argentina
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS)-CONICET, Camino La Carrindanga Km 7, 8000, Bahía Blanca, Argentina
| | - Alicia Carrera
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS)-CONICET, Camino La Carrindanga Km 7, 8000, Bahía Blanca, Argentina
- Departamento de Agronomía, Universidad Nacional del Sur, San Andrés 800, Bahía Blanca, Argentina
| |
Collapse
|
149
|
Wang J, Chen W, Nian H, Ji X, Lin L, Wei Y, Zhang Q. Inhibition of Polyunsaturated Fatty Acids Synthesis Decreases Growth Rate and Membrane Fluidity of Rhodosporidium kratochvilovae at Low Temperature. Lipids 2017; 52:729-735. [DOI: 10.1007/s11745-017-4273-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/08/2017] [Indexed: 12/01/2022]
|
150
|
Δ12-fatty acid desaturase is involved in growth at low temperature in yeast Yarrowia lipolytica. Biochem Biophys Res Commun 2017; 488:165-170. [DOI: 10.1016/j.bbrc.2017.05.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 05/04/2017] [Indexed: 12/19/2022]
|