101
|
Um Min Allah N, Berahim Z, Ahmad A, Kannan TP. Biological Interaction Between Human Gingival Fibroblasts and Vascular Endothelial Cells for Angiogenesis: A Co-culture Perspective. Tissue Eng Regen Med 2017; 14:495-505. [PMID: 30603504 DOI: 10.1007/s13770-017-0065-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/18/2017] [Accepted: 06/08/2017] [Indexed: 12/13/2022] Open
Abstract
Advancement in cell culture protocols, multidisciplinary research approach, and the need of clinical implication to reconstruct damaged or diseased tissues has led to the establishment of three-dimensional (3D) test systems for regeneration and repair. Regenerative therapies, including dental tissue engineering, have been pursued as a new prospect to repair and rebuild the diseased/lost oral tissues. Interactions between the different cell types, growth factors, and extracellular matrix components involved in angiogenesis are vital in the mechanisms of new vessel formation for tissue regeneration. In vitro pre-vascularization is one of the leading scopes in the tissue-engineering field. Vascularization strategies that are associated with co-culture systems have proved that there is communication between different cell types with mutual beneficial effects in vascularization and tissue regeneration in two-dimensional or 3D cultures. Endothelial cells with different cell populations, including osteoblasts, smooth muscle cells, and fibroblasts in a co-culture have shown their ability to advocate pre-vascularization. In this review, a co-culture perspective of human gingival fibroblasts and vascular endothelial cells is discussed with the main focus on vascularization and future perspective of this model in regeneration and repair.
Collapse
Affiliation(s)
- Nasar Um Min Allah
- 1School of Dental Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan Malaysia
| | - Zurairah Berahim
- 1School of Dental Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan Malaysia
| | - Azlina Ahmad
- 1School of Dental Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan Malaysia
| | - Thirumulu Ponnuraj Kannan
- 1School of Dental Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan Malaysia
- 2Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan Malaysia
| |
Collapse
|
102
|
Abstract
To curb the high cost of drug development, there is an urgent need to develop more predictive tissue models using human cells to determine drug efficacy and safety in advance of clinical testing. Recent insights gained through fundamental biological studies have validated the importance of dynamic cell environments and cellular communication to the expression of high fidelity organ function. Building on this knowledge, emerging organ-on-a-chip technology is poised to fill the gaps in drug screening by offering predictive human tissue models with methods of sophisticated tissue assembly. Organ-on-a-chip start-ups have begun to spawn from academic research to fill this commercial space and are attracting investment to transform the drug discovery industry. This review traces the history, examines the scientific foundation and envisages the prospect of these renowned organ-on-a-chip technologies. It serves as a guide for new members of this dynamic field to navigate the existing scientific and market space.
Collapse
Affiliation(s)
- Boyang Zhang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada.
| | | |
Collapse
|
103
|
Mammoto T, Jiang A, Jiang E, Mammoto A. Role of Twist1 Phosphorylation in Angiogenesis and Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2017; 55:633-644. [PMID: 27281171 DOI: 10.1165/rcmb.2016-0012oc] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Idiopathic pulmonary fibrosis is a chronic and progressive lung disease in which microvessel remodeling is deregulated. However, the mechanism by which deregulated angiogenesis contributes to the pathogenesis of pulmonary fibrosis remains unclear. Here we show that a transcription factor, Twist1, controls angiogenesis through the angiopoietin-Tie2 pathway, and that deregulation of this mechanism mediates pathological angiogenesis and collagen deposition in a bleomycin-induced mouse pulmonary fibrosis model. Twist1 knockdown decreases Tie2 expression and attenuates endothelial cell sprouting in vitro. Angiogenesis is also inhibited in fibrin gel implanted on Tie2-specific Twist1 conditional knockout (Twist1fl/fl/Tie2-cre) mouse lung in vivo. Inhibition of Twist1 phosphorylation at the serine 42 (Ser42) residue by treating endothelial cells with a mutant construct (Twist1S42A) decreases Tie2 expression and attenuates angiogenesis compared with full-length Twist1 in vitro and in vivo. Bleomycin challenge up-regulates Twist1 Ser42 phosphorylation and Tie2 expression, increases blood vessel density, and induces collagen deposition in the mouse lung, whereas these effects are attenuated in Twist1fl/fl/Tie2-cre mice or in mice treated with Twist1S42A mutant construct. These results indicate that Twist1 Ser42 phosphorylation contributes to the pathogenesis of bleomycin-induced pulmonary fibrosis through angiopoietin-Tie2 signaling.
Collapse
Affiliation(s)
- Tadanori Mammoto
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Amanda Jiang
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Elisabeth Jiang
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Akiko Mammoto
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
104
|
Dynamic alterations in decoy VEGF receptor-1 stability regulate angiogenesis. Nat Commun 2017; 8:15699. [PMID: 28589930 PMCID: PMC5467243 DOI: 10.1038/ncomms15699] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 04/20/2017] [Indexed: 12/11/2022] Open
Abstract
Blood vessel expansion is driven by sprouting angiogenesis of endothelial cells, and is essential for development, wound healing and disease. Membrane-localized vascular endothelial growth factor receptor-1 (mVEGFR1) is an endothelial cell-intrinsic decoy receptor that negatively modulates blood vessel morphogenesis. Here we show that dynamic regulation of mVEGFR1 stability and turnover in blood vessels impacts angiogenesis. mVEGFR1 is highly stable and constitutively internalizes from the plasma membrane. Post-translational palmitoylation of mVEGFR1 is a binary stabilization switch, and ligand engagement leads to depalmitoylation and lysosomal degradation. Trafficking of palmitoylation enzymes via Rab27a regulates mVEGFR1 stability, as reduced levels of Rab27a impaired palmitoylation of mVEGFR1, decreased its stability, and elevated blood vessel sprouting and in vivo angiogenesis. These findings identify a regulatory axis affecting blood vessel morphogenesis that highlights exquisite post-translational regulation of mVEGFR1 in its role as a molecular rheostat.
Collapse
|
105
|
Zhang X, Dong J, He Y, Zhao M, Liu Z, Wang N, Jiang M, Zhang Z, Liu G, Liu H, Nie Y, Fan D, Tie J. miR-218 inhibited tumor angiogenesis by targeting ROBO1 in gastric cancer. Gene 2017; 615:42-49. [PMID: 28323002 DOI: 10.1016/j.gene.2017.03.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/22/2017] [Accepted: 03/16/2017] [Indexed: 12/20/2022]
Abstract
Aberrant expression of miRNAs is involved in several carcinogenic processes, including tumor growth, metastasis and angiogenesis. The aim of this study was to determine the role of miR-218 in gastric cancer angiogenesis. In situ hybridization was performed on a set of tissue microarray samples to assess the difference in miR-218 expression in vessels between tumor tissues and normal gastric mucosa. In vitro, ectopic expression of miR-218 disturbed the tubular structure and inhibited the migration of endothelial cells. Motility and tube formation were rescued when miR-218 was downregulated. Moreover, miR-218 suppressed endothelial cell sprouting in a fibrin bead sprouting assay. Subsequently, we identified ROBO1 as a target of miR-218 in endothelial cells and determined it was responsible for the effect of miR-218 on tumor angiogenesis. In vivo, local injection of mature miR-218 in xenografted tumors disrupted the vessel plexus and thus inhibited tumor growth. Taken together, our study demonstrated an anti-angiogenic role of miR-218 in gastric cancer and indicated that delivery of miR-218 may be a potential therapeutic strategy to inhibit tumor angiogenesis.
Collapse
Affiliation(s)
- Xiangyuan Zhang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jiaqiang Dong
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yan He
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ming Zhao
- Yan'an University, Yan'an 716000, China
| | - Zhen Liu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Na Wang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Mingzuo Jiang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhe Zhang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Gang Liu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Haiming Liu
- College of Computer Science and Technology, Jilin University, Changchun 120012, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Jun Tie
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
106
|
Lacko LA, Hurtado R, Hinds S, Poulos MG, Butler JM, Stuhlmann H. Altered feto-placental vascularization, feto-placental malperfusion and fetal growth restriction in mice with Egfl7 loss of function. Development 2017; 144:2469-2479. [PMID: 28526753 DOI: 10.1242/dev.147025] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 05/16/2017] [Indexed: 01/16/2023]
Abstract
EGFL7 is a secreted angiogenic factor produced by embryonic endothelial cells. To understand its role in placental development, we established a novel Egfl7 knockout mouse. The mutant mice have gross defects in chorioallantoic branching morphogenesis and placental vascular patterning. Microangiography and 3D imaging revealed patchy perfusion of Egfl7-/- placentas marked by impeded blood conductance through sites of narrowed vessels. Consistent with poor feto-placental perfusion, Egfl7 knockout resulted in reduced placental weight and fetal growth restriction. The placentas also showed abnormal fetal vessel patterning and over 50% reduction in fetal blood space. In vitro, placental endothelial cells were deficient in migration, cord formation and sprouting. Expression of genes involved in branching morphogenesis, Gcm1, Syna and Synb, and in patterning of the extracellular matrix, Mmrn1, were temporally dysregulated in the placentas. Egfl7 knockout did not affect expression of the microRNA embedded within intron 7. Collectively, these data reveal that Egfl7 is crucial for placental vascularization and embryonic growth, and may provide insight into etiological factors underlying placental pathologies associated with intrauterine growth restriction, which is a significant cause of infant morbidity and mortality.
Collapse
Affiliation(s)
- Lauretta A Lacko
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, Box 60, New York, NY 10065, USA
| | - Romulo Hurtado
- Department of Physiology and Biophysics, Weill Cornell Medical College, 1300 York Avenue, Box 60, New York, NY 10065, USA
| | - Samantha Hinds
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, Box 60, New York, NY 10065, USA
| | - Michael G Poulos
- Department of Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 60, New York, NY 10065, USA
| | - Jason M Butler
- Department of Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 60, New York, NY 10065, USA
| | - Heidi Stuhlmann
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, Box 60, New York, NY 10065, USA
| |
Collapse
|
107
|
Osaki T, Kageyama T, Shimazu Y, Mysnikova D, Takahashi S, Takimoto S, Fukuda J. Flatbed epi relief-contrast cellular monitoring system for stable cell culture. Sci Rep 2017; 7:1897. [PMID: 28507330 PMCID: PMC5432522 DOI: 10.1038/s41598-017-02001-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 04/06/2017] [Indexed: 01/20/2023] Open
Abstract
Consistent cell preparation is a fundamental preliminary step for understanding complex cellular mechanisms in various cell-based research fields, including basic cell biology, cancer research, and tissue engineering. However, certain elusive factors, such as cellular de-differentiation and contamination with mycoplasma or other types of cells, have compromised the reproducibility and reliability of cell-based approaches. Here, we propose an epi relief-contrast cellular monitoring system (eRC-CMS) that allows images of cells in a typical culture plate to be acquired, stored, and analysed for daily cell quality control. Due to its full flatbed nature and automated system, cells placed at any location on the stage can be analysed without special attention. Using this system, changes in the size, circularity, and proliferation of endothelial cells in subculture were recorded. Analyses of images of ~9,930,000 individual cells revealed that the growth activity and cell circularity in subcultures were closely correlated with their angiogenic activity in a subsequent hydrogel assay, demonstrating that eRC-CMS is useful for assessing cell quality in advance. We further demonstrated that eRC-CMS was feasible for the imaging of neurite elongation and spheroid formation. This system may provide a robust and versatile approach for daily cell preparation to facilitate reliable and reproducible cell-based studies.
Collapse
Affiliation(s)
- Tatsuya Osaki
- Faculty of Engineering, Yokohama National University, Yokohama, 240-8501, Japan
| | - Tatsuto Kageyama
- Faculty of Engineering, Yokohama National University, Yokohama, 240-8501, Japan
| | - Yuka Shimazu
- Faculty of Engineering, Yokohama National University, Yokohama, 240-8501, Japan
| | - Dina Mysnikova
- Faculty of Engineering, Yokohama National University, Yokohama, 240-8501, Japan
| | - Shintaro Takahashi
- Optical System Development Division, R&D Group, OLYMPUS Corporation, Hachioji, 192-8507, Japan
| | - Shinichi Takimoto
- Optical System Development Division, R&D Group, OLYMPUS Corporation, Hachioji, 192-8507, Japan
| | - Junji Fukuda
- Faculty of Engineering, Yokohama National University, Yokohama, 240-8501, Japan.
| |
Collapse
|
108
|
Hernandez-Fernaud JR, Ruengeler E, Casazza A, Neilson LJ, Pulleine E, Santi A, Ismail S, Lilla S, Dhayade S, MacPherson IR, McNeish I, Ennis D, Ali H, Kugeratski FG, Al Khamici H, van den Biggelaar M, van den Berghe PV, Cloix C, McDonald L, Millan D, Hoyle A, Kuchnio A, Carmeliet P, Valenzuela SM, Blyth K, Yin H, Mazzone M, Norman JC, Zanivan S. Secreted CLIC3 drives cancer progression through its glutathione-dependent oxidoreductase activity. Nat Commun 2017; 8:14206. [PMID: 28198360 PMCID: PMC5316871 DOI: 10.1038/ncomms14206] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 12/06/2016] [Indexed: 02/06/2023] Open
Abstract
The secretome of cancer and stromal cells generates a microenvironment that contributes to tumour cell invasion and angiogenesis. Here we compare the secretome of human mammary normal and cancer-associated fibroblasts (CAFs). We discover that the chloride intracellular channel protein 3 (CLIC3) is an abundant component of the CAF secretome. Secreted CLIC3 promotes invasive behaviour of endothelial cells to drive angiogenesis and increases invasiveness of cancer cells both in vivo and in 3D cell culture models, and this requires active transglutaminase-2 (TGM2). CLIC3 acts as a glutathione-dependent oxidoreductase that reduces TGM2 and regulates TGM2 binding to its cofactors. Finally, CLIC3 is also secreted by cancer cells, is abundant in the stromal and tumour compartments of aggressive ovarian cancers and its levels correlate with poor clinical outcome. This work reveals a previously undescribed invasive mechanism whereby the secretion of a glutathione-dependent oxidoreductase drives angiogenesis and cancer progression by promoting TGM2-dependent invasion.
Collapse
Affiliation(s)
| | | | - Andrea Casazza
- Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, VIB, Leuven B-3000, Belgium
| | | | - Ellie Pulleine
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8LT, UK
| | - Alice Santi
- Cancer Research UK Beatson Institute, Glasgow G611BD, UK
| | - Shehab Ismail
- Cancer Research UK Beatson Institute, Glasgow G611BD, UK
| | - Sergio Lilla
- Cancer Research UK Beatson Institute, Glasgow G611BD, UK
| | | | - Iain R. MacPherson
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G611QH, UK
| | - Iain McNeish
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G611QH, UK
| | - Darren Ennis
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G611QH, UK
| | - Hala Ali
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- Centre for Health Technologies, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | | | - Heba Al Khamici
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- Centre for Health Technologies, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | | | | | | | - Laura McDonald
- Cancer Research UK Beatson Institute, Glasgow G611BD, UK
| | - David Millan
- Department of Pathology, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Aoisha Hoyle
- Department of Pathology, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Anna Kuchnio
- Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology, Vesalius Research Center, VIB, B-3000 Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology, Vesalius Research Center, VIB, B-3000 Leuven, Belgium
| | - Stella M. Valenzuela
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- Centre for Health Technologies, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Glasgow G611BD, UK
| | - Huabing Yin
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8LT, UK
| | - Massimiliano Mazzone
- Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, VIB, Leuven B-3000, Belgium
| | - Jim C. Norman
- Cancer Research UK Beatson Institute, Glasgow G611BD, UK
| | - Sara Zanivan
- Cancer Research UK Beatson Institute, Glasgow G611BD, UK
| |
Collapse
|
109
|
Eglinger J, Karsjens H, Lammert E. Quantitative assessment of angiogenesis and pericyte coverage in human cell-derived vascular sprouts. Inflamm Regen 2017; 37:2. [PMID: 29259701 PMCID: PMC5725907 DOI: 10.1186/s41232-016-0033-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/26/2016] [Indexed: 11/10/2022] Open
Abstract
Background Pericytes, surrounding the endothelium, fulfill diverse functions that are crucial for vascular homeostasis. The loss of pericytes is associated with pathologies, such as diabetic retinopathy and Alzheimer's disease. Thus, there exists a need for an experimental system that combines pharmacologic manipulation and quantification of pericyte coverage during sprouting angiogenesis. Here, we describe an in vitro angiogenesis assay that develops lumenized vascular sprouts composed of endothelial cells enveloped by pericytes, with the additional ability to comparatively screen the effect of multiple small molecules simultaneously. For automated analysis, we also present an ImageJ plugin tool we developed to quantify sprout morphology and pericyte coverage. Methods Human umbilical vein endothelial cells and human brain vascular pericytes were coated on microcarrier beads and embedded in fibrin gels in a 96-well plate to form lumenized vascular sprouts. After treatment with pharmacologic compounds, sprouts were fixed, stained, and imaged via optical z-sections over the area of each well. The maximum intensity projections of these images were stitched together to form montages of the wells, and those montages were processed and analyzed. Results Vascular sprouts formed within 4-12 days and contained a patent lumen surrounded by a layer of human endothelial cells and pericytes. Using our workflow and image analysis, pericyte coverage after treatment with various compounds was successfully quantified. Conclusions Here we present a robust in vitro assay using primary human vascular cells that allows researchers to analyze the effects of multiple compounds on sprouting angiogenesis and pericyte coverage. Our ImageJ plugin offers automated evaluation across multiple different vascular parameters, such as sprout length, cell density, branch points, and pericyte coverage.
Collapse
Affiliation(s)
- Jan Eglinger
- Institute of Metabolic Physiology, Heinrich-Heine University, Düsseldorf, Germany.,Institute for Beta Cell Biology, Leibniz Center for Diabetes Research, German Diabetes Center (DDZ), Düsseldorf, Germany.,Current address: Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Haiko Karsjens
- Institute of Metabolic Physiology, Heinrich-Heine University, Düsseldorf, Germany.,Institute for Beta Cell Biology, Leibniz Center for Diabetes Research, German Diabetes Center (DDZ), Düsseldorf, Germany
| | - Eckhard Lammert
- Institute of Metabolic Physiology, Heinrich-Heine University, Düsseldorf, Germany.,Institute for Beta Cell Biology, Leibniz Center for Diabetes Research, German Diabetes Center (DDZ), Düsseldorf, Germany
| |
Collapse
|
110
|
Damelin M, Bankovich A, Bernstein J, Lucas J, Chen L, Williams S, Park A, Aguilar J, Ernstoff E, Charati M, Dushin R, Aujay M, Lee C, Ramoth H, Milton M, Hampl J, Lazetic S, Pulito V, Rosfjord E, Sun Y, King L, Barletta F, Betts A, Guffroy M, Falahatpisheh H, O’Donnell CJ, Stull R, Pysz M, Escarpe P, Liu D, Foord O, Gerber HP, Sapra P, Dylla SJ. A PTK7-targeted antibody-drug conjugate reduces tumor-initiating cells and induces sustained tumor regressions. Sci Transl Med 2017; 9:9/372/eaag2611. [DOI: 10.1126/scitranslmed.aag2611] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/21/2016] [Accepted: 12/07/2016] [Indexed: 12/19/2022]
|
111
|
MicroRNA regulation of endothelial TREX1 reprograms the tumour microenvironment. Nat Commun 2016; 7:13597. [PMID: 27886180 PMCID: PMC5133658 DOI: 10.1038/ncomms13597] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/18/2016] [Indexed: 02/07/2023] Open
Abstract
Rather than targeting tumour cells directly, elements of the tumour microenvironment can be modulated to sensitize tumours to the effects of therapy. Here we report a unique mechanism by which ectopic microRNA-103 can manipulate tumour-associated endothelial cells to enhance tumour cell death. Using gain-and-loss of function approaches, we show that miR-103 exacerbates DNA damage and inhibits angiogenesis in vitro and in vivo. Local, systemic or vascular-targeted delivery of miR-103 in tumour-bearing mice decreased angiogenesis and tumour growth. Mechanistically, miR-103 regulation of its target gene TREX1 in endothelial cells governs the secretion of pro-inflammatory cytokines into the tumour microenvironment. Our data suggest that this inflammatory milieu may potentiate tumour cell death by supporting immune activation and inducing tumour expression of Fas and TRAIL receptors. Our findings reveal miR-mediated crosstalk between vasculature and tumour cells that can be exploited to improve the efficacy of chemotherapy and radiation. The tumour microenvironment can be modulated to sensitize tumours to the effects of therapy. Here the authors show that radiation induced miR-103 downregulates TREX1 in endothelial cells, decreases angiogenesis and leads to the secretion of proinflammatory mediators that reduce tumour growth.
Collapse
|
112
|
Romero-López M, Trinh AL, Sobrino A, Hatch MMS, Keating MT, Fimbres C, Lewis DE, Gershon PD, Botvinick EL, Digman M, Lowengrub JS, Hughes CCW. Recapitulating the human tumor microenvironment: Colon tumor-derived extracellular matrix promotes angiogenesis and tumor cell growth. Biomaterials 2016; 116:118-129. [PMID: 27914984 DOI: 10.1016/j.biomaterials.2016.11.034] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 12/14/2022]
Abstract
Extracellular matrix (ECM) is an essential and dynamic component of all tissues and directly affects cellular behavior by providing both mechanical and biochemical signaling cues. Changes in ECM can alter tissue homeostasis, potentially leading to promotion of cellular transformation and the generation of tumors. Therefore, understanding ECM compositional changes during cancer progression is vital to the development of targeted treatments. Previous efforts to reproduce the native 3D cellular microenvironment have utilized protein gels and scaffolds that incompletely recapitulate the complexity of native tissues. Here, we address this problem by extracting and comparing ECM from normal human colon and colon tumor that had metastasized to liver. We found differences in protein composition and stiffness, and observed significant differences in vascular network formation and tumor growth in each of the reconstituted matrices, both in vitro and in vivo. We studied free/bound ratios of NADH in the tumor and endothelial cells using Fluorescence Lifetime Imaging Microscopy as a surrogate for the metabolic state of the cells. We observed that cells seeded in tumor ECM had higher relative levels of free NADH, consistent with a higher glycolytic rate, than those seeded in normal ECM. These results demonstrate that the ECM plays an important role in the growth of cancer cells and their associated vasculature.
Collapse
Affiliation(s)
- Mónica Romero-López
- Department of Biomedical Engineering, The Henry Samueli School of Engineering, UC Irvine, USA
| | - Andrew L Trinh
- Department of Biomedical Engineering, The Henry Samueli School of Engineering, UC Irvine, USA
| | - Agua Sobrino
- Department of Biomedical Engineering, The Henry Samueli School of Engineering, UC Irvine, USA
| | - Michaela M S Hatch
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, UC Irvine, USA
| | - Mark T Keating
- Department of Biomedical Engineering, The Henry Samueli School of Engineering, UC Irvine, USA
| | - Cristhian Fimbres
- Department of Biomedical Engineering, The Henry Samueli School of Engineering, UC Irvine, USA
| | - David E Lewis
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, UC Irvine, USA
| | - Paul D Gershon
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, UC Irvine, USA
| | - Elliot L Botvinick
- Department of Biomedical Engineering, The Henry Samueli School of Engineering, UC Irvine, USA; The Edwards Lifesciences Center for Advanced Cardiovascular Technology, UC Irvine, USA
| | - Michelle Digman
- Department of Biomedical Engineering, The Henry Samueli School of Engineering, UC Irvine, USA
| | - John S Lowengrub
- Department of Biomedical Engineering, The Henry Samueli School of Engineering, UC Irvine, USA; Department of Mathematics, School of Physical Sciences, UC Irvine, USA
| | - Christopher C W Hughes
- Department of Biomedical Engineering, The Henry Samueli School of Engineering, UC Irvine, USA; Department of Molecular Biology and Biochemistry, School of Biological Sciences, UC Irvine, USA; The Edwards Lifesciences Center for Advanced Cardiovascular Technology, UC Irvine, USA.
| |
Collapse
|
113
|
Garrett JP, Lowery AM, Adam AP, Kowalczyk AP, Vincent PA. Regulation of endothelial barrier function by p120-catenin∙VE-cadherin interaction. Mol Biol Cell 2016; 28:85-97. [PMID: 27852896 PMCID: PMC5221632 DOI: 10.1091/mbc.e16-08-0616] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/06/2016] [Accepted: 11/08/2016] [Indexed: 01/06/2023] Open
Abstract
Maintaining VE-cadherin levels by inhibiting its endocytosis through p120-catenin binding is not sufficient for forming a restrictive barrier. Instead, p120-catenin binding to VE-cadherin is required to allow tyrosine-phosphorylated VE-cadherin to contribute to barrier formation. Endothelial p120-catenin (p120) maintains the level of vascular endothelial cadherin (VE-Cad) by inhibiting VE-Cad endocytosis. Loss of p120 results in a decrease in VE-Cad levels, leading to the formation of monolayers with decreased barrier function (as assessed by transendothelial electrical resistance [TEER]), whereas overexpression of p120 increases VE-Cad levels and promotes a more restrictive monolayer. To test whether reduced endocytosis mediated by p120 is required for VE-Cad formation of a restrictive barrier, we restored VE-Cad levels using an endocytic-defective VE-Cad mutant. This endocytic-defective mutant was unable to rescue the loss of TEER associated with p120 or VE-Cad depletion. In contrast, the endocytic-defective mutant was able to prevent sprout formation in a fibrin bead assay, suggesting that p120•VE-Cad interaction regulates barrier function and angiogenic sprouting through different mechanisms. Further investigation found that depletion of p120 increases Src activity and that loss of p120 binding results in increased VE-Cad phosphorylation. In addition, expression of a Y658F–VE-Cad mutant or an endocytic-defective Y658F–VE-Cad double mutant were both able to rescue TEER independently of p120 binding. Our results show that in addition to regulating endocytosis, p120 also allows the phosphorylated form of VE-Cad to participate in the formation of a restrictive monolayer.
Collapse
Affiliation(s)
| | | | - Alejandro P Adam
- Department of Molecular and Cellular Physiology and.,Department of Ophthalmology, Albany Medical College, Albany, NY 12208
| | - Andrew P Kowalczyk
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30307.,Department of Dermatology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30307
| | | |
Collapse
|
114
|
Antiangiogenic Therapeutic Potential of Peptides Derived from the Molecular Motor KIF13B that Transports VEGFR2 to Plasmalemma in Endothelial Cells. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 187:214-224. [PMID: 27863212 DOI: 10.1016/j.ajpath.2016.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/28/2016] [Accepted: 09/15/2016] [Indexed: 12/12/2022]
Abstract
Vascular endothelial growth factor receptor 2 (VEGFR2) localized on the surface of endothelial cells (ECs) is a key determinant of the magnitude and duration of angiogenesis induced by vascular endothelial growth factor (VEGF). The kinesin family plus-end motor KIF13B transports VEGFR2 to the EC surface, and as such, specific inhibition of polarized VEGFR2 trafficking prevents angiogenesis. We designed a series of bioactive peptides based on deep analysis of VEGFR2-binding domain of KIF13B that compete specifically with VEGFR2 binding of KIF13B and thereby potently inhibit angiogenesis. Expression of these peptides by lentivirus prevents VEGF-induced capillary network formation in Matrigel plugs and neovascularization in vivo. A synthetic soluble, cell-permeable, 23-amino acid peptide termed kinesin-derived angiogenesis inhibitor (KAI) not only prevents interaction of VEGFR2 with KIF13B but also trafficking of VEGFR2 in the plus-end direction to the EC plasmalemma. Kinesin-derived angiogenesis inhibitor also inhibits VEGF-induced EC migration and tumor growth in human lung carcinoma xenografted in immunodeficient mice. Thus, we describe a novel class of peptides derived from the site of interaction of KIF13B with VEGFR2 that inhibit VEGFR2 trafficking and thereby starve cancer of blood supply.
Collapse
|
115
|
Jenny Zhou H, Qin L, Zhang H, Tang W, Ji W, He Y, Liang X, Wang Z, Yuan Q, Vortmeyer A, Toomre D, Fuh G, Yan M, Kluger MS, Wu D, Min W. Endothelial exocytosis of angiopoietin-2 resulting from CCM3 deficiency contributes to cerebral cavernous malformation. Nat Med 2016; 22:1033-1042. [PMID: 27548575 PMCID: PMC5014607 DOI: 10.1038/nm.4169] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 07/21/2016] [Indexed: 12/14/2022]
Abstract
Cerebral cavernous malformations (CCMs) are vascular malformations that affect the central nervous system and result in cerebral hemorrhage, seizure and stroke. CCMs arise from loss-of-function mutations in one of three genes: KRIT1 (also known as CCM1), CCM2 or PDCD10 (also known as CCM3). PDCD10 mutations in humans often result in a more severe form of the disease relative to mutations in the other two CCM genes, and PDCD10-knockout mice show severe defects, the mechanistic basis for which is unclear. We have recently reported that CCM3 regulates exocytosis mediated by the UNC13 family of exocytic regulatory proteins. Here, in investigating the role of endothelial cell exocytosis in CCM disease progression, we found that CCM3 suppresses UNC13B- and vesicle-associated membrane protein 3 (VAMP3)-dependent exocytosis of angiopoietin 2 (ANGPT2) in brain endothelial cells. CCM3 deficiency in endothelial cells augments the exocytosis and secretion of ANGPT2, which is associated with destabilized endothelial cell junctions, enlarged lumen formation and endothelial cell-pericyte dissociation. UNC13B deficiency, which blunts ANGPT2 secretion from endothelial cells, or treatment with an ANGPT2-neutralizing antibody normalizes the defects in the brain and retina caused by endothelial-cell-specific CCM3 deficiency, including the disruption of endothelial cell junctions, vessel dilation and pericyte dissociation. Thus, enhanced secretion of ANGPT2 in endothelial cells contributes to the progression of CCM disease, providing a new therapeutic approach for treating this devastating pathology.
Collapse
Affiliation(s)
- Huanjiao Jenny Zhou
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lingfeng Qin
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT
| | - Haifeng Zhang
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT
| | - Wenwen Tang
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT
| | - Weidong Ji
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangzhou Darron Medscience, Co. Ltd, Guangzhou, China
| | - Yun He
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT
- Department of Toxicology, School of Public Health, Sun Yat-sen University of Medical Sciences, Guangzhou, China
| | - Xiaoling Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zongren Wang
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qianying Yuan
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT
| | - Alexander Vortmeyer
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT
| | - Derek Toomre
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Germaine Fuh
- Department of Antibody Engineering, Genentech Inc, South San Francisco, CA
| | - Minghong Yan
- Department of Molecular Oncology, Genentech Inc, South San Francisco, CA
| | - Martin S. Kluger
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Dianqing Wu
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT
| | - Wang Min
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangzhou Darron Medscience, Co. Ltd, Guangzhou, China
| |
Collapse
|
116
|
3D microtumors in vitro supported by perfused vascular networks. Sci Rep 2016; 6:31589. [PMID: 27549930 PMCID: PMC4994029 DOI: 10.1038/srep31589] [Citation(s) in RCA: 284] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/19/2016] [Indexed: 12/18/2022] Open
Abstract
There is a growing interest in developing microphysiological systems that can be used to model both normal and pathological human organs in vitro. This "organs-on-chips" approach aims to capture key structural and physiological characteristics of the target tissue. Here we describe in vitro vascularized microtumors (VMTs). This "tumor-on-a-chip" platform incorporates human tumor and stromal cells that grow in a 3D extracellular matrix and that depend for survival on nutrient delivery through living, perfused microvessels. Both colorectal and breast cancer cells grow vigorously in the platform and respond to standard-of-care therapies, showing reduced growth and/or regression. Vascular-targeting agents with different mechanisms of action can also be distinguished, and we find that drugs targeting only VEGFRs (Apatinib and Vandetanib) are not effective, whereas drugs that target VEGFRs, PDGFR and Tie2 (Linifanib and Cabozantinib) do regress the vasculature. Tumors in the VMT show strong metabolic heterogeneity when imaged using NADH Fluorescent Lifetime Imaging Microscopy and, compared to their surrounding stroma, many show a higher free/bound NADH ratio consistent with their known preference for aerobic glycolysis. The VMT platform provides a unique model for studying vascularized solid tumors in vitro.
Collapse
|
117
|
Issa ME, Berndt S, Carpentier G, Pezzuto JM, Cuendet M. Bruceantin inhibits multiple myeloma cancer stem cell proliferation. Cancer Biol Ther 2016; 17:966-75. [PMID: 27434731 DOI: 10.1080/15384047.2016.1210737] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Multiple myeloma (MM) continues to claim the lives of a majority of patients. MM cancer stem cells (CSCs) have been demonstrated to sustain tumor growth. Due to their ability to self-renew and to express detoxifying enzymes and efflux transporters, MM-CSCs are rendered highly resistant to conventional therapies. Therefore, managing MM-CSCs characteristics could have profound clinical implications. Bruceantin (BCT) is a natural product previously demonstrated to inhibit the growth of MM in RPMI 8226 cells-inoculated mouse xenograft models, and to cause regression in already established tumors. The objectives of the present study were to test the inhibitory effects of BCT on MM-CSCs growth derived from a human primary tumor, and to explore a mechanism of action underlying these effects. BCT exhibited potent antiproliferative activity in MM-CSCs starting at 25 nM. BCT induced cell cycle arrest, cell death and apoptosis in MM-CSCs as well as inhibited cell migration and angiogenesis in vitro. Using a qPCR screen, it was found that the gene expression of a number of Notch pathway members was altered. Pretreatment of MM-CSCs with the γ-secretase inhibitor RO4929097, a Notch pathway inhibitor, reversed BCT-induced effects on MM-CSCs proliferation. In this study, BCT was shown to be an effective agent in controlling the proliferation, viability and migration of MM-CSCs as well as angiogenesis in vitro. The effect on MM-CSCs proliferation may be mediated by the Notch pathway. These results warrant further investigation of BCT in a broader set of human-derived MM-CSCs and with in vivo models representative of MM.
Collapse
Affiliation(s)
- Mark E Issa
- a School of Pharmaceutical Sciences , University of Geneva, University of Lausanne, Rue Michel Servet , Geneva , Switzerland
| | - Sarah Berndt
- a School of Pharmaceutical Sciences , University of Geneva, University of Lausanne, Rue Michel Servet , Geneva , Switzerland
| | - Gilles Carpentier
- b Laboratoire CRRET, Faculté des Sciences et Technologie , Université Paris Est Créteil , Créteil Cedex , France
| | - John M Pezzuto
- c Arnold & Marie Schwartz College of Pharmacy and Health Sciences , Long Island University , Brooklyn , NY , USA
| | - Muriel Cuendet
- a School of Pharmaceutical Sciences , University of Geneva, University of Lausanne, Rue Michel Servet , Geneva , Switzerland
| |
Collapse
|
118
|
Kim JM, Hong KS, Song WK, Bae D, Hwang IK, Kim JS, Chung HM. Perivascular Progenitor Cells Derived From Human Embryonic Stem Cells Exhibit Functional Characteristics of Pericytes and Improve the Retinal Vasculature in a Rodent Model of Diabetic Retinopathy. Stem Cells Transl Med 2016; 5:1268-76. [PMID: 27388242 DOI: 10.5966/sctm.2015-0342] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 03/30/2016] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED : Diabetic retinopathy (DR) is the leading cause of blindness in working-age people. Pericyte loss is one of the pathologic cellular events in DR, which weakens the retinal microvessels. Damage to the microvascular networks is irreversible and permanent; thus further progression of DR is inevitable. In this study, we hypothesize that multipotent perivascular progenitor cells derived from human embryonic stem cells (hESC-PVPCs) improve the damaged retinal vasculature in the streptozotocin-induced diabetic rodent models. We describe a highly efficient and feasible protocol to derive such cells with a natural selection method without cell-sorting processes. As a cellular model of pericytes, hESC-PVPCs exhibited marker expressions such as CD140B, CD146, NG2, and functional characteristics of pericytes. Following a single intravitreal injection into diabetic Brown Norway rats, we demonstrate that the cells localized alongside typical perivascular regions of the retinal vasculature and stabilized the blood-retinal barrier breakdown. Findings in this study highlight a therapeutic potential of hESC-PVPCs in DR by mimicking the role of pericytes in vascular stabilization. SIGNIFICANCE This study provides a simple and feasible method to generate perivascular progenitor cells from human embryonic stem cells. These cells share functional characteristics with pericytes, which are irreversibly lost at the onset of diabetic retinopathy. Animal studies demonstrated that replenishing the damaged pericytes with perivascular progenitor cells could restore retinal vascular integrity and prevent fluid leakage. This provides promising and compelling evidence that perivascular progenitor cells can be used as a novel therapeutic agent to treat diabetic retinopathy patients.
Collapse
Affiliation(s)
- Jung Mo Kim
- Department of Tissue Morphogenesis, Max-Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Ki-Sung Hong
- Stem Cell Research Lab, Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Won Kyung Song
- Department of Ophthalmology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Daekyeong Bae
- Stem Cell Research Lab, Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Republic of Korea
| | - In-Kyu Hwang
- Stem Cell Research Lab, Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Jong Soo Kim
- Stem Cell Research Lab, Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Hyung-Min Chung
- Stem Cell Research Lab, Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
119
|
Sanz-Nogués C, O'Brien T. In vitro models for assessing therapeutic angiogenesis. Drug Discov Today 2016; 21:1495-1503. [PMID: 27262402 DOI: 10.1016/j.drudis.2016.05.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/30/2016] [Accepted: 05/25/2016] [Indexed: 01/05/2023]
Abstract
Arterial obstruction leading to ischemia causes a reduction of oxygen and nutrient supply to distal tissues. The physiological response to tissue ischemia triggers a cascade of events that results in the development of accessory vasculature to increase local tissue perfusion and to salvage tissue. However, this adaptive mechanism of repair is suboptimal in some patients. Therapeutic angiogenesis aims to stimulate new blood vessel formation via the local administration of proangiogenic agents or cell therapy products (CTPs). In this review, we provide a summary of the current understanding of in vitro models for assessing the angiogenic potential of a product.
Collapse
Affiliation(s)
- Clara Sanz-Nogués
- Regenerative Medicine Institute (REMEDI), Biomedical Sciences Building, National University of Ireland Galway, Newcastle Road, Galway, Ireland
| | - Timothy O'Brien
- Regenerative Medicine Institute (REMEDI), Biomedical Sciences Building, National University of Ireland Galway, Newcastle Road, Galway, Ireland.
| |
Collapse
|
120
|
Ziegler ME, Hatch MMS, Wu N, Muawad SA, Hughes CCW. mTORC2 mediates CXCL12-induced angiogenesis. Angiogenesis 2016; 19:359-71. [PMID: 27106789 DOI: 10.1007/s10456-016-9509-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 04/03/2016] [Indexed: 01/26/2023]
Abstract
The chemokine CXCL12, through its receptor CXCR4, positively regulates angiogenesis by promoting endothelial cell (EC) migration and tube formation. However, the relevant downstream signaling pathways in EC have not been defined. Similarly, the upstream activators of mTORC2 signaling in EC are also poorly defined. Here, we demonstrate for the first time that CXCL12 regulation of angiogenesis requires mTORC2 but not mTORC1. We find that CXCR4 signaling activates mTORC2 as indicated by phosphorylation of serine 473 on Akt and does so through a G-protein- and PI3K-dependent pathway. Significantly, independent disruption of the mTOR complexes by drugs or multiple independent siRNAs reveals that mTORC2, but not mTORC1, is required for microvascular sprouting in a 3D in vitro angiogenesis model. Importantly, in a mouse model, both tumor angiogenesis and tumor volume are significantly reduced only when mTORC2 is inhibited. Finally, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), which is a key regulator of glycolytic flux, is required for microvascular sprouting in vitro, and its expression is reduced in vivo when mTORC2 is targeted. Taken together, these findings identify mTORC2 as a critical signaling nexus downstream of CXCL12/CXCR4 that represents a potential link between mTORC2, metabolic regulation, and angiogenesis.
Collapse
Affiliation(s)
- Mary E Ziegler
- The Department of Molecular Biology and Biochemistry, University of California Irvine, 3219 McGaugh Hall, Mail Code: 3900, Irvine, CA, 92697, USA
| | - Michaela M S Hatch
- The Department of Molecular Biology and Biochemistry, University of California Irvine, 3219 McGaugh Hall, Mail Code: 3900, Irvine, CA, 92697, USA
| | - Nan Wu
- The Department of Molecular Biology and Biochemistry, University of California Irvine, 3219 McGaugh Hall, Mail Code: 3900, Irvine, CA, 92697, USA
| | - Steven A Muawad
- The Department of Molecular Biology and Biochemistry, University of California Irvine, 3219 McGaugh Hall, Mail Code: 3900, Irvine, CA, 92697, USA
| | - Christopher C W Hughes
- The Department of Molecular Biology and Biochemistry, University of California Irvine, 3219 McGaugh Hall, Mail Code: 3900, Irvine, CA, 92697, USA. .,The Department of Biomedical Engineering, University of California Irvine, Irvine, CA, 92697, USA. .,The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
121
|
Kushner EJ, Ferro LS, Yu Z, Bautch VL. Excess centrosomes perturb dynamic endothelial cell repolarization during blood vessel formation. Mol Biol Cell 2016; 27:1911-20. [PMID: 27099371 PMCID: PMC4907724 DOI: 10.1091/mbc.e15-09-0645] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 04/13/2016] [Indexed: 12/22/2022] Open
Abstract
Excess centrosomes preclude proper interphase MTOC reorientation during sprouting morphogenesis. Normal centrosome numbers are required for dynamic repolarization and migration of sprouting ECs, which contribute to blood vessel formation. Blood vessel formation requires dynamic movements of endothelial cells (ECs) within sprouts. The cytoskeleton regulates migratory polarity, and centrosomes organize the microtubule cytoskeleton. However, it is not well understood how excess centrosomes, commonly found in tumor stromal cells, affect microtubule dynamics and interphase cell polarity. Here we find that ECs dynamically repolarize during sprouting angiogenesis, and excess centrosomes block repolarization and reduce migration and sprouting. ECs with excess centrosomes initially had more centrosome-derived microtubules but, paradoxically, fewer steady-state microtubules. ECs with excess centrosomes had elevated Rac1 activity, and repolarization was rescued by blockade of Rac1 or actomyosin blockers, consistent with Rac1 activity promoting cortical retrograde actin flow and actomyosin contractility, which precludes cortical microtubule engagement necessary for dynamic repolarization. Thus normal centrosome numbers are required for dynamic repolarization and migration of sprouting ECs that contribute to blood vessel formation.
Collapse
Affiliation(s)
- Erich J Kushner
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Luke S Ferro
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Zhixian Yu
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Victoria L Bautch
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
122
|
Tattersall IW, Du J, Cong Z, Cho BS, Klein AM, Dieck CL, Chaudhri RA, Cuervo H, Herts JH, Kitajewski J. In vitro modeling of endothelial interaction with macrophages and pericytes demonstrates Notch signaling function in the vascular microenvironment. Angiogenesis 2016; 19:201-15. [PMID: 26965898 DOI: 10.1007/s10456-016-9501-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 02/17/2016] [Indexed: 01/10/2023]
Abstract
Angiogenesis is regulated by complex interactions between endothelial cells and support cells of the vascular microenvironment, such as tissue myeloid cells and vascular mural cells. Multicellular interactions during angiogenesis are difficult to study in animals and challenging in a reductive setting. We incorporated stromal cells into an established bead-based capillary sprouting assay to develop assays that faithfully reproduce major steps of vessel sprouting and maturation. We observed that macrophages enhance angiogenesis, increasing the number and length of endothelial sprouts, a property we have dubbed "angiotrophism." We found that polarizing macrophages toward a pro-inflammatory profile further increased their angiotrophic stimulation of vessel sprouting, and this increase was dependent on macrophage Notch signaling. To study endothelial/pericyte interactions, we added vascular pericytes directly to the bead-bound endothelial monolayer. These pericytes formed close associations with the endothelial sprouts, causing increased sprout number and vessel caliber. We found that Jagged1 expression and Notch signaling are essential for the growth of both endothelial cells and pericytes and may function in their interaction. We observed that combining endothelial cells with both macrophages and pericytes in the same sprouting assay has multiplicative effects on sprouting. These results significantly improve bead-capillary sprouting assays and provide an enhanced method for modeling interactions between the endothelium and the vascular microenvironment. Achieving this in a reductive in vitro setting represents a significant step toward a better understanding of the cellular elements that contribute to the formation of mature vasculature.
Collapse
Affiliation(s)
| | - Jing Du
- Obstetrics/Gynecology, Columbia University, New York, NY, USA
- Pathology and Cell Biology, Columbia University, New York, NY, USA
| | | | - Bennet S Cho
- Obstetrics/Gynecology, Columbia University, New York, NY, USA
| | - Alyssa M Klein
- Obstetrics/Gynecology, Columbia University, New York, NY, USA
| | - Chelsea L Dieck
- Obstetrics/Gynecology, Columbia University, New York, NY, USA
| | | | - Henar Cuervo
- Obstetrics/Gynecology, Columbia University, New York, NY, USA
| | - James H Herts
- Obstetrics/Gynecology, Columbia University, New York, NY, USA
| | - Jan Kitajewski
- Obstetrics/Gynecology, Columbia University, New York, NY, USA.
- Pathology and Cell Biology, Columbia University, New York, NY, USA.
- Physiology and Biophysics, University of Illinois Chicago, College of Medicine, Chicago, IL, USA.
- Columbia University Medical Center, 1130 St. Nicholas Avenue, ICRC 926, New York, NY, 10032, USA.
| |
Collapse
|
123
|
Cell-Demanded VEGF Release via Nanocapsules Elicits Different Receptor Activation Dynamics and Enhanced Angiogenesis. Ann Biomed Eng 2016; 44:1983-92. [PMID: 26940611 DOI: 10.1007/s10439-016-1581-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 02/26/2016] [Indexed: 12/15/2022]
Abstract
Although the delivery of vascular endothelial growth factor (VEGF) with extended release profiles has consistently shown beneficial therapeutic effects compared with bolus delivery, [Martino, M. M., F. Tortelli, M. Mochizuki, S. Traub, D. Ben-David, G. A. Kuhn, R. Muller, E. Livne, S. A. Eming, and J. A. Hubbell. Sci. Transl. Med. 3(100):100ra189, 2011; Martino, M. M., P. S. Briquez, A. Ranga, M. P. Lutolf, and J. A. Hubbell. Proc. Natl. Acad. Sci. USA. 110(12):4563-4568, 2013; Amiram, M., K. M. Luginbuhl, X. Li, M. N. Feinglos, and A. Chilkoti. Proc. Natl. Acad. Sci. USA. 110(8):2792-2797, 2013] it remains unclear if the reason is solely due to the physical availability and the reduced degradation of the protein. Here we studied the activation of VEGF receptor 2 (VR-2) by sustained released VEGF compared with bolus delivered VEGF to unveil that sustained delivery system alters the dynamics of receptor activation and affects the actions of cells between sprouting and proliferation. We utilized a protein nanocapsule delivery strategy that releases VEGF as mediated by extracellular proteases. These protein nanocapsules were synthesized through an aqueous assembly of a nanogel-peptide shell around the protein, leading to one to two proteins encapsulated per nanocapsule. Receptor activation studies revealed differential dynamics of receptor activation for slowly released VEGF compared with bolus delivered VEGF. As expected sustained released VEGF via nanocapsules resulted in enhanced vascular sprouting in vitro and in vivo. These studies demonstrate the physical presentation of VEGF, in this case of a slow release with time, can affect its molecular mechanism of actions and cause alterations in cellular responses and therapeutic outcomes.
Collapse
|
124
|
Kumar R, Janjanam J, Singh NK, Rao GN. A new role for cofilin in retinal neovascularization. J Cell Sci 2016; 129:1234-49. [PMID: 26857814 DOI: 10.1242/jcs.179382] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 02/02/2016] [Indexed: 12/17/2022] Open
Abstract
Pak1 plays an important role in several cellular processes, including cell migration, but its role in pathological angiogenesis is not known. Here, we have determined its role in pathological retinal angiogenesis using an oxygen-induced retinopathy (OIR) model. VEGFA induced phosphorylation of Pak1 and its effector cofilin in a manner that was dependent on time as well as p38MAPKβ (also known as MAPK11) in human retinal microvascular endothelial cells (HRMVECs). Depletion of the levels of any of these molecules inhibited VEGFA-induced HRMVEC F-actin stress fiber formation, migration, proliferation, sprouting and tube formation. In accordance with these observations, hypoxia induced Pak1 and cofilin phosphorylation with p38MAPKβ being downstream to Pak1 and upstream to cofilin in mouse retina. Furthermore, Pak1 deficiency abolished hypoxia-induced p38MAPKβ and cofilin phosphorylation and abrogated retinal endothelial cell proliferation, tip cell formation and neovascularization. In addition, small interfering RNA (siRNA)-mediated downregulation of p38MAPKβ or cofilin levels in the wild-type mouse retina also diminished endothelial cell proliferation, tip cell formation and neovascularization. Taken together, these observations suggest that, although the p38MAPKβ-Pak1-cofilin axis is required for HRMVEC migration, proliferation, sprouting and tubulogenesis, Pak1-p38MAPKβ-cofilin signaling is also essential for hypoxia-induced mouse retinal endothelial cell proliferation, tip cell formation and neovascularization.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jagadeesh Janjanam
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Nikhlesh K Singh
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Gadiparthi N Rao
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
125
|
Wong HK, Ivan Lam CR, Wen F, Mark Chong SK, Tan NS, Jerry C, Pal M, Tan LP. Novel method to improve vascularization of tissue engineered constructs with biodegradable fibers. Biofabrication 2016; 8:015004. [DOI: 10.1088/1758-5090/8/1/015004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
126
|
Zippel N, Ding Y, Fleming I. A Modified Aortic Ring Assay to Assess Angiogenic Potential In Vitro. Methods Mol Biol 2016; 1430:205-19. [PMID: 27172956 DOI: 10.1007/978-1-4939-3628-1_14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Angiogenesis, an integral part of many physiological and pathological processes, is a tightly regulated multistep process. Angiogenesis assays are used to clarify the molecular mechanisms and screen for pharmacological inhibitors. However, most in vitro angiogenesis models measure only one aspect of this process, whereas in vivo assays are complex and difficult to interpret. The ex vivo aortic ring model allows the study of many key features of angiogenesis, such as endothelial activation, branching, and remodeling as well as later steps such as pericyte acquisition. This model can be modified to include genetic manipulation and can be used to assess the pro- or anti-angiogenic effects of compounds in a relatively controlled system.
Collapse
Affiliation(s)
- Nina Zippel
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, Frankfurt am Main, Frankfurt, D-60590, Germany
| | - Yindi Ding
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, Frankfurt am Main, Frankfurt, D-60590, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, Frankfurt am Main, Frankfurt, D-60590, Germany.
| |
Collapse
|
127
|
Winters L, Thambi N, Andreev J, Kuhnert F. Evaluation of Angiogenesis Inhibitors Using the HUVEC Fibrin Bead Sprouting Assay. Bio Protoc 2016. [DOI: 10.21769/bioprotoc.1947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
128
|
Stem Cell Spheroid-Based Sprout Assay in Three-Dimensional Fibrin Scaffold: A Novel In Vitro Model for the Study of Angiogenesis. Methods Mol Biol 2016; 1430:179-89. [PMID: 27172954 DOI: 10.1007/978-1-4939-3628-1_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Angiogenesis is a complex process of critical importance during development and in physiological and pathophysiological conditions. There is considerable research interest in studying the angiogenesis cascade and consequently a need for a physiologically valid, quantitative, and cost-effective assay. In this chapter, we describe the stem cell spheroid-based sprout assay in three-dimensional fibrin scaffold which allows fast and easy screening of pro- and anti-angiogenic effects of substances with a high degree of reproducibility.
Collapse
|
129
|
Abstract
Angiogenesis represents one aspect in the complex process that leads to the generation of the vascular tumor stroma. The related functional constituents include responses of endothelial, mural, bone marrow-derived, and resident inflammatory cells as well as activation of coagulation and fibrinolytic systems in blood. Multiple molecular and cellular effectors participate in these events, often in a tumor-specific manner and with changes enforced through the microenvironment, genetic evolution, and responses to anticancer therapies. To capture various elements of these interactions several surrogate assays have been devised, which can be mechanistically useful and are amenable to quantification, but are individually insufficient to describe the underlying complexity and are best used in a targeted and combinatorial manner. Below, we present a survey of angiogenesis assays and experimental approaches to analyze vascular events in cancer. We also provided specific examples of validated protocols, which are less described, but enable the straightforward analysis of vascular structures and coagulant properties of cancer cells in vivo and in vitro.
Collapse
Affiliation(s)
- Esterina D'Asti
- Montreal Children's Hospital, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada, H4A 3J1
| | - Brian Meehan
- Montreal Children's Hospital, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada, H4A 3J1
| | - Janusz Rak
- Montreal Children's Hospital, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada, H4A 3J1.
| |
Collapse
|
130
|
Bridgeman VL, Wan E, Foo S, Nathan MR, Welti JC, Frentzas S, Vermeulen PB, Preece N, Springer CJ, Powles T, Nathan PD, Larkin J, Gore M, Vasudev NS, Reynolds AR. Preclinical Evidence That Trametinib Enhances the Response to Antiangiogenic Tyrosine Kinase Inhibitors in Renal Cell Carcinoma. Mol Cancer Ther 2015; 15:172-83. [PMID: 26487278 DOI: 10.1158/1535-7163.mct-15-0170] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 09/17/2015] [Indexed: 11/16/2022]
Abstract
Sunitinib and pazopanib are antiangiogenic tyrosine kinase inhibitors (TKI) used to treat metastatic renal cell carcinoma (RCC). However, the ability of these drugs to extend progression-free and overall survival in this patient population is limited by drug resistance. It is possible that treatment outcomes in RCC patients could be improved by rationally combining TKIs with other agents. Here, we address whether inhibition of the Ras-Raf-MEK-ERK1/2 pathway is a rational means to improve the response to TKIs in RCC. Using a xenograft model of RCC, we found that tumors that are resistant to sunitinib have a significantly increased angiogenic response compared with tumors that are sensitive to sunitinib in vivo. We also observed significantly increased levels of phosphorylated ERK1/2 in the vasculature of resistant tumors, when compared with sensitive tumors. These data suggested that the Ras-Raf-MEK-ERK1/2 pathway, an important driver of angiogenesis in endothelial cells, remains active in the vasculature of TKI-resistant tumors. Using an in vitro angiogenesis assay, we identified that the MEK inhibitor (MEKI) trametinib has potent antiangiogenic activity. We then show that, when trametinib is combined with a TKI in vivo, more effective suppression of tumor growth and tumor angiogenesis is achieved than when either drug is utilized alone. In conclusion, we provide preclinical evidence that combining a TKI, such as sunitinib or pazopanib, with a MEKI, such as trametinib, is a rational and efficacious treatment regimen for RCC.
Collapse
Affiliation(s)
- Victoria L Bridgeman
- Tumour Biology Team, The Breast Cancer Now Toby Robins Research Centre, Mary-Jean Mitchell Green Building, The Institute of Cancer Research (ICR), London, United Kingdom
| | - Elaine Wan
- Tumour Biology Team, The Breast Cancer Now Toby Robins Research Centre, Mary-Jean Mitchell Green Building, The Institute of Cancer Research (ICR), London, United Kingdom. The Royal Marsden (RM), London, United Kingdom
| | - Shane Foo
- Tumour Biology Team, The Breast Cancer Now Toby Robins Research Centre, Mary-Jean Mitchell Green Building, The Institute of Cancer Research (ICR), London, United Kingdom
| | - Mark R Nathan
- Tumour Biology Team, The Breast Cancer Now Toby Robins Research Centre, Mary-Jean Mitchell Green Building, The Institute of Cancer Research (ICR), London, United Kingdom
| | - Jonathan C Welti
- Tumour Biology Team, The Breast Cancer Now Toby Robins Research Centre, Mary-Jean Mitchell Green Building, The Institute of Cancer Research (ICR), London, United Kingdom
| | - Sophia Frentzas
- Tumour Biology Team, The Breast Cancer Now Toby Robins Research Centre, Mary-Jean Mitchell Green Building, The Institute of Cancer Research (ICR), London, United Kingdom. The Royal Marsden (RM), London, United Kingdom
| | - Peter B Vermeulen
- Tumour Biology Team, The Breast Cancer Now Toby Robins Research Centre, Mary-Jean Mitchell Green Building, The Institute of Cancer Research (ICR), London, United Kingdom. Translational Cancer Research Unit, GZA Hospitals St. Augustinus, Antwerp, Belgium
| | - Natasha Preece
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Caroline J Springer
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Thomas Powles
- Experimental Cancer Medicine Centre, Queen Mary University of London, London, United Kingdom
| | - Paul D Nathan
- Department of Medical Oncology, Mount Vernon Cancer Centre, Northwood, United Kingdom
| | | | - Martin Gore
- The Royal Marsden (RM), London, United Kingdom
| | - Naveen S Vasudev
- Tumour Biology Team, The Breast Cancer Now Toby Robins Research Centre, Mary-Jean Mitchell Green Building, The Institute of Cancer Research (ICR), London, United Kingdom. The Royal Marsden (RM), London, United Kingdom.
| | - Andrew R Reynolds
- Tumour Biology Team, The Breast Cancer Now Toby Robins Research Centre, Mary-Jean Mitchell Green Building, The Institute of Cancer Research (ICR), London, United Kingdom.
| |
Collapse
|
131
|
Investigating human vascular tube morphogenesis and maturation using endothelial cell-pericyte co-cultures and a doxycycline-inducible genetic system in 3D extracellular matrices. Methods Mol Biol 2015; 1189:171-89. [PMID: 25245694 DOI: 10.1007/978-1-4939-1164-6_12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Considerable progress has occurred toward our understanding of the molecular basis for vascular morphogenesis, maturation, and stabilization. A major reason for this progress has been the development of novel in vitro systems to investigate these processes in 3D extracellular matrices. In this chapter, we present models of human endothelial cell (EC) tube formation and EC-pericyte tube co-assembly using serum-free defined conditions in 3D collagen matrices. We utilize both human venous and arterial ECs and show that both cell types readily form tubes and induce pericyte recruitment and both ECs and pericytes work together to remodel the extracellular matrix environment by assembling the vascular basement membrane, a key step in capillary tube network maturation and stabilization. Importantly, we have shown that these events occur under serum-free defined conditions using the hematopoietic stem cell cytokines, SCF, IL-3, and SDF-1α and also including FGF-2. In contrast, the combination of VEGF and FGF-2 fails to support vascular tube morphogenesis or pericyte-induced tube maturation under the same serum-free defined conditions. Furthermore, we present novel assays whereby we have developed both human ECs and pericytes to induce specific genes using a doxycycline-regulated lentiviral system. In this manner, we can upregulate the expression of wild-type or mutant gene products at any stage of vascular morphogenesis or maturation in 3D matrices. These in vitro experimental approaches will continue to identify key molecular requirements and signaling pathways that control fundamental events in tissue vascularization under normal or pathologic conditions. Furthermore, these models will provide new insights into the development of novel disease therapeutic approaches where vascularization is an important pathogenic component and create new ways to assemble capillary tube networks with associated pericytes for tissue engineering applications.
Collapse
|
132
|
Singh NK, Kotla S, Kumar R, Rao GN. Cyclic AMP Response Element Binding Protein Mediates Pathological Retinal Neovascularization via Modulating DLL4-NOTCH1 Signaling. EBioMedicine 2015; 2:1767-84. [PMID: 26870802 PMCID: PMC4740322 DOI: 10.1016/j.ebiom.2015.09.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 09/08/2015] [Accepted: 09/23/2015] [Indexed: 11/29/2022] Open
Abstract
Retinal neovascularization is the most common cause of moderate to severe vision loss in all age groups. Despite the use of anti-VEGFA therapies, this complication continues to cause blindness, suggesting a role for additional molecules in retinal neovascularization. Besides VEGFA and VEGFB, hypoxia induced VEGFC expression robustly. Based on this finding, we tested the role of VEGFC in pathological retinal angiogenesis. VEGFC induced proliferation, migration, sprouting and tube formation of human retinal microvascular endothelial cells (HRMVECs) and these responses require CREB-mediated DLL4 expression and NOTCH1 activation. Furthermore, down regulation of VEGFC levels substantially reduced tip cell formation and retinal neovascularization in vivo. In addition, we observed that CREB via modulating the DLL4-NOTCH1 signaling mediates VEGFC-induced tip cell formation and retinal neovascularization. In regard to upstream mechanism, we found that down regulation of p38β levels inhibited hypoxia-induced CREB-DLL4-NOTCH1 activation, tip cell formation, sprouting and retinal neovascularization. Based on these findings, it may be suggested that VEGFC besides its role in the regulation of lymphangiogenesis also plays a role in pathological retinal angiogenesis and this effect depends on p38β and CREB-mediated activation of DLL4-NOTCH1 signaling.
Collapse
Affiliation(s)
- Nikhlesh K Singh
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Sivareddy Kotla
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Raj Kumar
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Gadiparthi N Rao
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
133
|
Kuhnert F, Chen G, Coetzee S, Thambi N, Hickey C, Shan J, Kovalenko P, Noguera-Troise I, Smith E, Fairhurst J, Andreev J, Kirshner JR, Papadopoulos N, Thurston G. Dll4 Blockade in Stromal Cells Mediates Antitumor Effects in Preclinical Models of Ovarian Cancer. Cancer Res 2015; 75:4086-96. [PMID: 26377940 DOI: 10.1158/0008-5472.can-14-3773] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 07/14/2015] [Indexed: 11/16/2022]
Abstract
The Notch ligand delta-like 4 (Dll4) has been identified as a promising target in tumor angiogenesis in preclinical studies, and Dll4 inhibitors have recently entered clinical trials for solid tumors, including ovarian cancers. In this study, we report the development of REGN421 (enoticumab), a fully human IgG1 monoclonal antibody that binds human Dll4 with sub-nanomolar affinity and inhibits Notch signaling. Administering REGN421 to immunodeficient mice engineered to express human Dll4 inhibited the growth of several human tumor xenografts in association with the formation of nonfunctional tumor blood vessels. In ovarian tumor xenograft models, Dll4 was expressed specifically by the tumor endothelium, and Dll4 blockade by human-specific or mouse-specific Dll4 antibodies exerted potent antitumor activity, which relied entirely on targeting Dll4 expressed by tumor stromal cells but not by the tumor cells themselves. However, Dll4 blockade reduced Notch signaling in both blood vessels and tumor cells surrounding the blood vessels, suggesting that endothelial-expressed Dll4 might induce Notch signaling in adjacent ovarian tumor cells. The antitumor effects of targeting Dll4 were augmented significantly by simultaneous inhibition of VEGF signaling, whereas this combined blockade reversed normal organ vascular changes induced by Dll4 blockade alone. Overall, our findings deepen the rationale for antibody-based strategies to target Dll4 in ovarian cancers, especially in combination with VEGF blockade.
Collapse
Affiliation(s)
- Frank Kuhnert
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York.
| | - Guoying Chen
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | | | - Nithya Thambi
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Carlos Hickey
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Jing Shan
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | | | | | - Eric Smith
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | | | | | | | | | | |
Collapse
|
134
|
Farhan MA, Carmine-Simmen K, Lewis JD, Moore RB, Murray AG. Endothelial Cell mTOR Complex-2 Regulates Sprouting Angiogenesis. PLoS One 2015; 10:e0135245. [PMID: 26295809 PMCID: PMC4546419 DOI: 10.1371/journal.pone.0135245] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 07/20/2015] [Indexed: 12/11/2022] Open
Abstract
Tumor neovascularization is targeted by inhibition of vascular endothelial growth factor (VEGF) or the receptor to prevent tumor growth, but drug resistance to angiogenesis inhibition limits clinical efficacy. Inhibition of the phosphoinositide 3 kinase pathway intermediate, mammalian target of rapamycin (mTOR), also inhibits tumor growth and may prevent escape from VEGF receptor inhibitors. mTOR is assembled into two separate multi-molecular complexes, mTORC1 and mTORC2. The direct effect of mTORC2 inhibition on the endothelium and tumor angiogenesis is poorly defined. We used pharmacological inhibitors and RNA interference to determine the function of mTORC2 versus Akt1 and mTORC1 in human endothelial cells (EC). Angiogenic sprouting, EC migration, cytoskeleton re-organization, and signaling events regulating matrix adhesion were studied. Sustained inactivation of mTORC1 activity up-regulated mTORC2-dependent Akt1 activation. In turn, ECs exposed to mTORC1-inhibition were resistant to apoptosis and hyper-responsive to renal cell carcinoma (RCC)-stimulated angiogenesis after relief of the inhibition. Conversely, mTORC1/2 dual inhibition or selective mTORC2 inactivation inhibited angiogenesis in response to RCC cells and VEGF. mTORC2-inactivation decreased EC migration more than Akt1- or mTORC1-inactivation. Mechanistically, mTORC2 inactivation robustly suppressed VEGF-stimulated EC actin polymerization, and inhibited focal adhesion formation and activation of focal adhesion kinase, independent of Akt1. Endothelial mTORC2 regulates angiogenesis, in part by regulation of EC focal adhesion kinase activity, matrix adhesion, and cytoskeletal remodeling, independent of Akt/mTORC1.
Collapse
Affiliation(s)
| | | | - John D. Lewis
- Department of Oncology, University of Alberta, Edmonton, Canada
| | - Ronald B. Moore
- Department of Surgery, University of Alberta, Edmonton, Canada
| | - Allan G. Murray
- Department of Medicine, University of Alberta, Edmonton, Canada
- * E-mail:
| |
Collapse
|
135
|
Simons M, Alitalo K, Annex BH, Augustin HG, Beam C, Berk BC, Byzova T, Carmeliet P, Chilian W, Cooke JP, Davis GE, Eichmann A, Iruela-Arispe ML, Keshet E, Sinusas AJ, Ruhrberg C, Woo YJ, Dimmeler S. State-of-the-Art Methods for Evaluation of Angiogenesis and Tissue Vascularization: A Scientific Statement From the American Heart Association. Circ Res 2015; 116:e99-132. [PMID: 25931450 DOI: 10.1161/res.0000000000000054] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
136
|
Patella F, Schug ZT, Persi E, Neilson LJ, Erami Z, Avanzato D, Maione F, Hernandez-Fernaud JR, Mackay G, Zheng L, Reid S, Frezza C, Giraudo E, Fiorio Pla A, Anderson K, Ruppin E, Gottlieb E, Zanivan S. Proteomics-based metabolic modeling reveals that fatty acid oxidation (FAO) controls endothelial cell (EC) permeability. Mol Cell Proteomics 2015; 14:621-34. [PMID: 25573745 PMCID: PMC4349982 DOI: 10.1074/mcp.m114.045575] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 12/22/2014] [Indexed: 12/12/2022] Open
Abstract
Endothelial cells (ECs) play a key role to maintain the functionality of blood vessels. Altered EC permeability causes severe impairment in vessel stability and is a hallmark of pathologies such as cancer and thrombosis. Integrating label-free quantitative proteomics data into genome-wide metabolic modeling, we built up a model that predicts the metabolic fluxes in ECs when cultured on a tridimensional matrix and organize into a vascular-like network. We discovered how fatty acid oxidation increases when ECs are assembled into a fully formed network that can be disrupted by inhibiting CPT1A, the fatty acid oxidation rate-limiting enzyme. Acute CPT1A inhibition reduces cellular ATP levels and oxygen consumption, which are restored by replenishing the tricarboxylic acid cycle. Remarkably, global phosphoproteomic changes measured upon acute CPT1A inhibition pinpointed altered calcium signaling. Indeed, CPT1A inhibition increases intracellular calcium oscillations. Finally, inhibiting CPT1A induces hyperpermeability in vitro and leakage of blood vessel in vivo, which were restored blocking calcium influx or replenishing the tricarboxylic acid cycle. Fatty acid oxidation emerges as central regulator of endothelial functions and blood vessel stability and druggable pathway to control pathological vascular permeability.
Collapse
Affiliation(s)
| | | | - Erez Persi
- ¶The Blavatnik School of Computer Science, Tel Aviv University, 69978 Tel Aviv, Israel; ‖School of Physics and Astronomy, Tel Aviv University, 69978 Tel Aviv, Israel
| | | | - Zahra Erami
- **Tumour Cell Migration Lab, Cancer Research UK Beatson Institute, Switchback Road, G61 1BD, Glasgow, UK
| | - Daniele Avanzato
- ‡‡Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy
| | - Federica Maione
- §§Laboratory of Transgenic Mouse Models, Candiolo Cancer Institute - FPO, IRCCS, Str prov 142 Km 3.95, 10060, Candiolo, Torino, Italy; ¶¶Department of Science and Drug Technology, University of Torino, Via P. Giuria, 9 - 10125 Torino, Italy
| | | | | | | | | | - Christian Frezza
- ‖‖MRC Cancer Unit, Cambridge Biomedical Campus, University of Cambridge, Hutchison/MRC Research Centre, Box 197, CB2 0XZ, Cambridge, UK
| | - Enrico Giraudo
- §§Laboratory of Transgenic Mouse Models, Candiolo Cancer Institute - FPO, IRCCS, Str prov 142 Km 3.95, 10060, Candiolo, Torino, Italy; ¶¶Department of Science and Drug Technology, University of Torino, Via P. Giuria, 9 - 10125 Torino, Italy
| | - Alessandra Fiorio Pla
- ‡‡Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy
| | - Kurt Anderson
- **Tumour Cell Migration Lab, Cancer Research UK Beatson Institute, Switchback Road, G61 1BD, Glasgow, UK
| | - Eytan Ruppin
- ¶The Blavatnik School of Computer Science, Tel Aviv University, 69978 Tel Aviv, Israel; Sackler School of Medicine, and Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel-Aviv University, 69978 Tel Aviv, Israel
| | | | | |
Collapse
|
137
|
Rytlewski JA, Alejandra Aldon M, Lewis EW, Suggs LJ. Mechanisms of tubulogenesis and endothelial phenotype expression by MSCs. Microvasc Res 2015; 99:26-35. [PMID: 25711526 DOI: 10.1016/j.mvr.2015.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 12/03/2014] [Accepted: 02/11/2015] [Indexed: 11/17/2022]
Abstract
Stem cell-based therapies are a promising new avenue for treating ischemic disease and chronic wounds. Mesenchymal stem cells (MSCs) have a proven ability to augment the neovascularization processes necessary for wound healing and are widely popular as an autologous source of progenitor cells. Our lab has previously reported on PEGylated fibrin as a unique hydrogel that promotes spontaneous tubulogenesis of encapsulated MSCs without exogenous factors. However, the mechanisms underlying this process have remained unknown. To better understand the therapeutic value of PEGylated fibrin delivery of MSCs, we sought to clarify the relationship between biomaterial properties and cell behavior. Here we find that fibrin PEGylation does not dramatically alter the macroscopic mechanical properties of the fibrin-based matrix (less than 10% difference). It does, however, dramatically reduce the rate of diffusion through the gel matrix. PEGylated fibrin enhances the tubulogenic growth of encapsulated MSCs demonstrating fluid-filled lumens by interconnected MSCs. Image analysis gave a value of 4320 ± 1770 μm total network length versus 618 ± 443 μm for unmodified fibrin. PEGylation promotes the endothelial phenotype of encapsulated MSCs--compared to unmodified fibrin--as evidenced by higher levels of endothelial markers (von Willebrand factor, 2.2-fold; vascular endothelial cadherin, 1.8-fold) and vascular endothelial growth factor (VEGF, up to 1.8-fold). Prospective analysis of underlying molecular pathways demonstrated that this endothelial-like MSC behavior is sensitively modulated by hypoxic stress, but not VEGF supplementation as evidenced by a significant increase in VEGF and MMP-2 secretion per cell under hypoxia. Further gain-of-function studies under hypoxic stress demonstrated that hypoxia culture of MSCs in unmodified fibrin could increase both vWF and VE-cadherin levels to values that were not significantly different than cells cultured in PEGylated fibrin. This result corroborated our hypothesis that the diffusion-limited environment of PEGylated fibrin is augmenting endothelial differentiation cues provided by unmodified fibrin. However, MSC networks lack platelet endothelial cell adhesion molecule-1 (PECAM-1) expression, which indicates incomplete differentiation towards an endothelial cell type. Collectively, the data here supports a revised understanding of MSC-derived neovascularization that contextualizes their behavior and utility as a hybrid endothelial-stromal cell type, with mixed characteristics of both populations.
Collapse
Affiliation(s)
- Julie A Rytlewski
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton, Stop C0800, Austin, TX 78712, USA.
| | - M Alejandra Aldon
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton, Stop C0800, Austin, TX 78712, USA.
| | - Evan W Lewis
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton, Stop C0800, Austin, TX 78712, USA.
| | - Laura J Suggs
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton, Stop C0800, Austin, TX 78712, USA.
| |
Collapse
|
138
|
Dave JM, Bayless KJ. Vimentin as an integral regulator of cell adhesion and endothelial sprouting. Microcirculation 2015; 21:333-44. [PMID: 24387004 DOI: 10.1111/micc.12111] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 12/30/2013] [Indexed: 12/11/2022]
Abstract
Angiogenesis is a multistep process that requires intricate changes in cell shape to generate new blood vessels. IF are a large family of proteins that play an important structural and functional role in forming and regulating the cytoskeleton. Vimentin, a major type III intermediate filament protein is expressed in endothelial and other mesenchymal cells. The structure of vimentin is conserved in mammals and shows dynamic expression profiles in various cell types and different developmental stages. Although initial studies with vimentin-deficient mice demonstrated a virtually normal phenotype, subsequent studies have revealed several defects in cell attachment, migration, signaling, neurite extension, and vascularization. Regulation of vimentin is highly complex and is driven by posttranslational modifications such as phosphorylation and cleavage by intracellular proteases. This review discusses various novel functions which are now known to be mediated by vimentin, summarizing structure, regulation and roles of vimentin in cell adhesion, migration, angiogenesis, neurite extension, and cancer. We specifically highlight a pathway involving growth factor-mediated calpain activation, vimentin cleavage, and MT1-MMP membrane translocation that is required for endothelial cell invasion in 3D environments. This pathway may also regulate the analogous processes of neurite extension and tumor cell invasion.
Collapse
Affiliation(s)
- Jui M Dave
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | | |
Collapse
|
139
|
Kangsamaksin T, Murtomaki A, Kofler NM, Cuervo H, Chaudhri RA, Tattersall IW, Rosenstiel PE, Shawber CJ, Kitajewski J. NOTCH decoys that selectively block DLL/NOTCH or JAG/NOTCH disrupt angiogenesis by unique mechanisms to inhibit tumor growth. Cancer Discov 2014; 5:182-97. [PMID: 25387766 DOI: 10.1158/2159-8290.cd-14-0650] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
UNLABELLED A proangiogenic role for Jagged (JAG)-dependent activation of NOTCH signaling in the endothelium has yet to be described. Using proteins that encoded different NOTCH1 EGF-like repeats, we identified unique regions of Delta-like ligand (DLL)-class and JAG-class ligand-receptor interactions, and developed NOTCH decoys that function as ligand-specific NOTCH inhibitors. N110-24 decoy blocked JAG1/JAG2-mediated NOTCH1 signaling, angiogenic sprouting in vitro, and retinal angiogenesis, demonstrating that JAG-dependent NOTCH signal activation promotes angiogenesis. In tumors, N110-24 decoy reduced angiogenic sprouting, vessel perfusion, pericyte coverage, and tumor growth. JAG-NOTCH signaling uniquely inhibited expression of antiangiogenic soluble (s) VEGFR1/sFLT1. N11-13 decoy interfered with DLL1-DLL4-mediated NOTCH1 signaling and caused endothelial hypersprouting in vitro, in retinal angiogenesis, and in tumors. Thus, blockade of JAG- or DLL-mediated NOTCH signaling inhibits angiogenesis by distinct mechanisms. JAG-NOTCH signaling positively regulates angiogenesis by suppressing sVEGFR1-sFLT1 and promoting mural-endothelial cell interactions. Blockade of JAG-class ligands represents a novel, viable therapeutic approach to block tumor angiogenesis and growth. SIGNIFICANCE This is the first report identifying unique regions of the NOTCH1 extracellular domain that interact with JAG-class and DLL-class ligands. Using this knowledge, we developed therapeutic agents that block JAG-dependent NOTCH signaling and demonstrate for the first time that JAG blockade inhibits experimental tumor growth by targeting tumor angiogenesis.
Collapse
Affiliation(s)
- Thaned Kangsamaksin
- Department of Obstetrics/Gynecology, Columbia University Medical Center, Columbia University, New York, New York. Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Aino Murtomaki
- Department of Obstetrics/Gynecology, Columbia University Medical Center, Columbia University, New York, New York. Division of Genetics, Department of Biosciences, Viikki Biocenter, University of Helsinki, Helsinki, Finland
| | - Natalie M Kofler
- Department of Obstetrics/Gynecology, Columbia University Medical Center, Columbia University, New York, New York
| | - Henar Cuervo
- Department of Obstetrics/Gynecology, Columbia University Medical Center, Columbia University, New York, New York
| | - Reyhaan A Chaudhri
- Department of Obstetrics/Gynecology, Columbia University Medical Center, Columbia University, New York, New York
| | - Ian W Tattersall
- Department of Obstetrics/Gynecology, Columbia University Medical Center, Columbia University, New York, New York
| | - Paul E Rosenstiel
- Department of Pathology and Cellular Biology, Columbia University Medical Center, Columbia University, New York, New York
| | - Carrie J Shawber
- Department of Obstetrics/Gynecology, Columbia University Medical Center, Columbia University, New York, New York. Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, Columbia University, New York, New York. Department of Surgery, Columbia University Medical Center, Columbia University, New York, New York
| | - Jan Kitajewski
- Department of Obstetrics/Gynecology, Columbia University Medical Center, Columbia University, New York, New York. Department of Pathology and Cellular Biology, Columbia University Medical Center, Columbia University, New York, New York. Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, Columbia University, New York, New York.
| |
Collapse
|
140
|
Phosphoinositide 3-kinase β mediates microvascular endothelial repair of thrombotic microangiopathy. Blood 2014; 124:2142-9. [DOI: 10.1182/blood-2014-02-557975] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Key Points
Endothelial PI3Kβ is not required in the quiescent vasculature, but PI3Kβ loss confers sensitivity for thrombotic microangiopathy. PI3Kβ activity is required for endothelial angiogenic differentiation and microvascular repair.
Collapse
|
141
|
Lee VK, Lanzi AM, Haygan N, Yoo SS, Vincent PA, Dai G. Generation of Multi-Scale Vascular Network System within 3D Hydrogel using 3D Bio-Printing Technology. Cell Mol Bioeng 2014; 7:460-472. [PMID: 25484989 PMCID: PMC4251565 DOI: 10.1007/s12195-014-0340-0] [Citation(s) in RCA: 218] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Although 3D bio-printing technology has great potential in creating complex tissues with multiple cell types and matrices, maintaining the viability of thick tissue construct for tissue growth and maturation after the printing is challenging due to lack of vascular perfusion. Perfused capillary network can be a solution for this issue; however, construction of a complete capillary network at single cell level using the existing technology is nearly impossible due to limitations in time and spatial resolution of the dispensing technology. To address the vascularization issue, we developed a 3D printing method to construct larger (lumen size of ~1mm) fluidic vascular channels and to create adjacent capillary network through a natural maturation process, thus providing a feasible solution to connect the capillary network to the large perfused vascular channels. In our model, microvascular bed was formed in between two large fluidic vessels, and then connected to the vessels by angiogenic sprouting from the large channel edge. Our bio-printing technology has a great potential in engineering vascularized thick tissues and vascular niches, as the vascular channels are simultaneously created while cells and matrices are printed around the channels in desired 3D patterns.
Collapse
Affiliation(s)
- Vivian K. Lee
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Alison M. Lanzi
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Ngo Haygan
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Seung-Schik Yoo
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Peter A. Vincent
- Center for Cardiovascular Sciences, Albany Medical College, Albany, NY 12208, USA
| | - Guohao Dai
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| |
Collapse
|
142
|
Yamada KH, Nakajima Y, Geyer M, Wary KK, Ushio-Fukai M, Komarova Y, Malik AB. KIF13B regulates angiogenesis through Golgi to plasma membrane trafficking of VEGFR2. J Cell Sci 2014; 127:4518-30. [PMID: 25128562 DOI: 10.1242/jcs.156109] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Although the trafficking of newly synthesized VEGFR2 to the plasma membrane is a key determinant of angiogenesis, the molecular mechanisms of Golgi to plasma membrane trafficking are unknown. Here, we have identified a key role of the kinesin family plus-end molecular motor KIF13B in delivering VEGFR2 cargo from the Golgi to the endothelial cell surface. KIF13B is shown to interact directly with VEGFR2 on microtubules. We also observed that overexpression of truncated versions of KIF13B containing the binding domains that interact with VEGFR2 inhibited VEGF-induced capillary tube formation. KIF13B depletion prevented VEGF-mediated endothelial migration, capillary tube formation and neo-vascularization in mice. Impairment in trafficking induced by knockdown of KIF13B shunted VEGFR2 towards the lysosomal degradation pathway. Thus, KIF13B is an essential molecular motor required for the trafficking of VEGFR2 from the Golgi, and its delivery to the endothelial cell surface mediates angiogenesis.
Collapse
Affiliation(s)
- Kaori H Yamada
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612, USA Center of Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Yuki Nakajima
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612, USA Center of Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Melissa Geyer
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612, USA Center of Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Kishore K Wary
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612, USA Center of Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Masuko Ushio-Fukai
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Yulia Komarova
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612, USA Center of Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Asrar B Malik
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612, USA Center of Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| |
Collapse
|
143
|
Newey SE, Tsaknakis G, Khoo CP, Athanassopoulos T, Camicia R, Zhang Y, Grabowska R, Harris AL, Roubelakis MG, Watt SM. The hematopoietic chemokine CXCL12 promotes integration of human endothelial colony forming cell-derived cells into immature vessel networks. Stem Cells Dev 2014; 23:2730-43. [PMID: 24940843 DOI: 10.1089/scd.2014.0005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Proangiogenic factors, vascular endothelial growth factor (VEGF), and fibroblast growth factor-2 (FGF-2) prime endothelial cells to respond to "hematopoietic" chemokines and cytokines by inducing/upregulating expression of the respective chemokine/cytokine receptors. Coculture of human endothelial colony forming cell (ECFC)-derived cells with human stromal cells in the presence of VEGF and FGF-2 for 14 days resulted in upregulation of the "hematopoietic" chemokine CXCL12 and its CXCR4 receptor by day 3 of coculture. Chronic exposure to the CXCR4 antagonist AMD3100 in this vasculo/angiogenesis assay significantly reduced vascular tubule formation, an observation recapitulated by delayed AMD3100 addition. While AMD3100 did not affect ECFC-derived cell proliferation, it did demonstrate a dual action. First, over the later stages of the 14-day cocultures, AMD3100 delayed tubule organization into maturing vessel networks, resulting in enhanced endothelial cell retraction and loss of complexity as defined by live cell imaging. Second, at earlier stages of cocultures, we observed that AMD3100 significantly inhibited the integration of exogenous ECFC-derived cells into established, but immature, vascular networks. Comparative proteome profiler array analyses of ECFC-derived cells treated with AMD3100 identified changes in expression of potential candidate molecules involved in adhesion and/or migration. Blocking antibodies to CD31, but not CD146 or CD166, reduced the ECFC-derived cell integration into these extant vascular networks. Thus, CXCL12 plays a key role not only in endothelial cell sensing and guidance, but also in promoting the integration of ECFC-derived cells into developing vascular networks.
Collapse
Affiliation(s)
- Sarah E Newey
- 1 Stem Cell Research Laboratory , Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, and NHS Blood and Transplant, John Radcliffe Hospital, Oxford, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Obeidat M, Li L, Ballermann BJ. TIMAP promotes angiogenesis by suppressing PTEN-mediated Akt inhibition in human glomerular endothelial cells. Am J Physiol Renal Physiol 2014; 307:F623-33. [PMID: 25007873 DOI: 10.1152/ajprenal.00070.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The function of TIMAP, an endothelial cell (EC)-predominant protein phosphatase 1-regulatory subunit, is poorly understood. We explored the potential role of TIMAP in the Akt-dependent regulation of glomerular EC proliferation, survival, and in vitro angiogenesis. To deplete TIMAP, the EC were transfected with TIMAP-specific or nonspecific small interfering (si) RNA. The rate of electrical impedance development across subconfluent EC monolayers, a measure of the time-dependent increase in EC number, was 93 ± 2% lower in TIMAP-depleted than in control EC. This effect on cell proliferation was associated with reduced DNA synthesis and increased apoptosis: TIMAP silencing reduced 5-ethynyl-2'-deoxyuridine incorporation by 38 ± 2% during the exponential phase of EC proliferation, and cleaved caspase 3 as well as caspase 3 activity increased in TIMAP-depleted relative to control cells. Furthermore, TIMAP depletion inhibited the formation of angiogenic sprouts by glomerular EC in three-dimensional culture. TIMAP depletion strongly diminished growth factor-stimulated Akt phosphorylation without altering ERK1/2 phosphorylation, suggesting a specific effect on the PI3K/Akt/PTEN pathway. Endogenous TIMAP and PTEN colocalized in EC and coimmunoprecipitated from EC lysates. The inhibitory PTEN phosphorylation on S370 was significantly reduced in TIMAP-depleted compared with control EC, while phosphorylation of PTEN on the S380/T382/T383 cluster remained unchanged. Finally, the PTEN inhibitor bpV(phen) fully reversed the suppressive effect of TIMAP depletion on Akt phosphorylation. The data indicate that in growing EC, TIMAP is necessary for Akt-dependent EC proliferation, survival, and angiogenic sprout formation and that this effect of TIMAP is mediated by inhibition of the tumor suppressor PTEN.
Collapse
Affiliation(s)
- Marya Obeidat
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Laiji Li
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
145
|
Lee VK, Kim DY, Ngo H, Lee Y, Seo L, Yoo SS, Vincent PA, Dai G. Creating perfused functional vascular channels using 3D bio-printing technology. Biomaterials 2014; 35:8092-102. [PMID: 24965886 DOI: 10.1016/j.biomaterials.2014.05.083] [Citation(s) in RCA: 318] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 05/28/2014] [Indexed: 11/25/2022]
Abstract
We developed a methodology using 3D bio-printing technology to create a functional in vitro vascular channel with perfused open lumen using only cells and biological matrices. The fabricated vasculature has a tight, confluent endothelium lining, presenting barrier function for both plasma protein and high-molecular weight dextran molecule. The fluidic vascular channel is capable of supporting the viability of tissue up to 5 mm in distance at 5 million cells/mL density under the physiological flow condition. In static-cultured vascular channels, active angiogenic sprouting from the vessel surface was observed whereas physiological flow strongly suppressed this process. Gene expression analysis was reported in this study to show the potential of this vessel model in vascular biology research. The methods have great potential in vascularized tissue fabrication using 3D bio-printing technology as the vascular channel is simultaneously created while cells and matrix are printed around the channel in desired 3D patterns. It can also serve as a unique experimental tool for investigating fundamental mechanisms of vascular remodeling with extracellular matrix and maturation process under 3D flow condition.
Collapse
Affiliation(s)
- Vivian K Lee
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Diana Y Kim
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Haygan Ngo
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Young Lee
- Department of Bio and Brain Engineering, KAIST, Daejeon, Republic of Korea
| | - Lan Seo
- Department of Biological Sciences, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Seung-Schik Yoo
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Peter A Vincent
- Center for Cardiovascular Sciences, Albany Medical College, Albany, NY 12208, USA
| | - Guohao Dai
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA.
| |
Collapse
|
146
|
Yaqoob U, Jagavelu K, Shergill U, de Assuncao T, Cao S, Shah VH. FGF21 promotes endothelial cell angiogenesis through a dynamin-2 and Rab5 dependent pathway. PLoS One 2014; 9:e98130. [PMID: 24848261 PMCID: PMC4029959 DOI: 10.1371/journal.pone.0098130] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 04/28/2014] [Indexed: 12/26/2022] Open
Abstract
Binding of angiogenic molecules with cognate receptor tyrosine kinases (RTK) is required for angiogenesis however the precise link between RTK binding, endocytosis, and signaling requires further investigation. Here, we use FGFR1 as a model to test the effects of the large GTPase and endocytosis regulatory molecule dynamin-2 on angiogenic signaling in context of distinct FGF ligands. In vitro, overexpression of dominant negative dynamin-2 (DynK44A) attenuates FGFR1 activation of Erk and tubulogenesis by FGF2. Furthermore, we identify FGF21, a non-classical, FGF ligand implicated in diverse human pathologies as an angiogenic molecule acting through FGFR1 and β-Klotho coreceptor. Disruption of FGFR1 activation of ERK by FGF21 is achieved by perturbation of the function of both dynamin-2 and Rab5 GTPase. In vivo, mice harboring endothelial selective overexpression of DynK44A, show impaired angiogenesis in response to FGF21. In conclusion, dynamin dependent endocytosis of FGFR1 is required for in vitro and in vivo angiogenesis in response to FGF2 and the non-classical FGF ligand, FGF21. These studies extend our understanding of the relationships between RTK binding, internalization, endosomal targeting, and angiogenic signaling.
Collapse
Affiliation(s)
- Usman Yaqoob
- Gastroenterology Research Unit, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Kumaravelu Jagavelu
- Gastroenterology Research Unit, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Uday Shergill
- Gastroenterology Research Unit, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Thiago de Assuncao
- Gastroenterology Research Unit, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Sheng Cao
- Gastroenterology Research Unit, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail: (SC); (VHS)
| | - Vijay H. Shah
- Gastroenterology Research Unit, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail: (SC); (VHS)
| |
Collapse
|
147
|
Blacher S, Erpicum C, Lenoir B, Paupert J, Moraes G, Ormenese S, Bullinger E, Noel A. Cell invasion in the spheroid sprouting assay: a spatial organisation analysis adaptable to cell behaviour. PLoS One 2014; 9:e97019. [PMID: 24806521 PMCID: PMC4013117 DOI: 10.1371/journal.pone.0097019] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 04/14/2014] [Indexed: 12/21/2022] Open
Abstract
The endothelial cell spheroid assay provides a suitable in vitro model to study (lymph) angiogenesis and test pro- and anti-(lymph) angiogenic factors or drugs. Usually, the extent of cell invasion, observed through optical microscopy, is measured. The present study proposes the spatial distribution of migrated cells as a new descriptor of the (lymph) angiogenic response. The utility of this novel method rests with its capacity to locally characterise spheroid structure, allowing not only the investigation of single and collective cell invasion but also the evolution of the spheroid core itself. Moreover, the proposed method can be applied to 2D-projected spheroid images obtained by optical microscopy, as well as to 3D images acquired by confocal microscopy. To validate the proposed methodology, endothelial cell invasion was evaluated under different experimental conditions. The results were compared with widely used global parameters. The comparison shows that our method prevents local spheroid modifications from being overlooked and leading to the possible misinterpretation of results.
Collapse
Affiliation(s)
- Silvia Blacher
- Laboratory of tumor and developmental biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Charlotte Erpicum
- Laboratory of tumor and developmental biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Bénédicte Lenoir
- Laboratory of tumor and developmental biology, GIGA-Cancer, University of Liège, Liège, Belgium
- Laboratory of cardiovascular research, CRP santé, Luxembourg, Luxembourg
| | - Jenny Paupert
- Laboratory of tumor and developmental biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Gustavo Moraes
- GIGA-Imaging and Flow Cytometry Platform, University of Liege, Liege, Belgium
| | - Sandra Ormenese
- GIGA-Imaging and Flow Cytometry Platform, University of Liege, Liege, Belgium
| | - Eric Bullinger
- GIGA Systems Biology and Chemical Biology, University of Liege, Liege, Belgium
| | - Agnès Noel
- Laboratory of tumor and developmental biology, GIGA-Cancer, University of Liège, Liège, Belgium
- * E-mail:
| |
Collapse
|
148
|
Popson SA, Ziegler ME, Chen X, Holderfield MT, Shaaban CI, Fong AH, Welch-Reardon KM, Papkoff J, Hughes CCW. Interferon-induced transmembrane protein 1 regulates endothelial lumen formation during angiogenesis. Arterioscler Thromb Vasc Biol 2014; 34:1011-9. [PMID: 24603679 DOI: 10.1161/atvbaha.114.303352] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE It is well established that angiogenesis is a complex and coordinated multistep process. However, there remains a lack of information about the genes that regulate individual stages of vessel formation. Here, we aimed to define the role of human interferon-induced transmembrane protein 1 (IFITM1) during blood vessel formation. APPROACH AND RESULTS We identified IFITM1 in a microarray screen for genes differentially regulated by endothelial cells (ECs) during an in vitro angiogenesis assay and found that IFITM1 expression was strongly induced as ECs sprouted and formed lumens. We showed by immunohistochemistry that human IFITM1 was expressed by stable blood vessels in multiple organs. siRNA-mediated knockdown of IFITM1 expression spared EC sprouting but completely disrupted lumen formation, in both in vitro and in an in vivo xeno-transplant model. ECs lacking IFITM1 underwent early stages of lumenogenesis (ie, intracellular vacuole formation) but failed to mature or expand lumens. Coimmunoprecipitation studies confirmed occludin as an IFITM1 binding partner in ECs, and immunocytochemistry showed a lack of occludin at endothelial tight junctions in the absence of IFITM1. Finally, time-lapse video microscopy revealed that IFITM1 is required for the formation of stable cell-cell contacts during endothelial lumen formation. CONCLUSIONS IFITM1 is essential for the formation of functional blood vessels and stabilizes EC-EC interactions during endothelial lumen formation by regulating tight junction assembly.
Collapse
Affiliation(s)
- Stephanie A Popson
- From the Department of Molecular Biology and Biochemistry (S.A.P., M.E.Z., M.T.H., C.I.S., A.H.F., K.M.W.-R., J.P., C.C.W.H.), Department of Biomedical Engineering (X.C., C.C.W.H.), Edwards Lifesciences Center for Advanced Cardiovascular Technology (C.C.W.H.), and Chao Family Comprehensive Cancer Center (C.C.W.H.), University of California Irvine
| | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Welch-Reardon KM, Ehsan SM, Wang K, Wu N, Newman AC, Romero-Lopez M, Fong AH, George SC, Edwards RA, Hughes CCW. Angiogenic sprouting is regulated by endothelial cell expression of Slug. J Cell Sci 2014; 127:2017-28. [PMID: 24554431 DOI: 10.1242/jcs.143420] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The Snail family of zinc-finger transcription factors are evolutionarily conserved proteins that control processes requiring cell movement. Specifically, they regulate epithelial-to-mesenchymal transitions (EMT) where an epithelial cell severs intercellular junctions, degrades basement membrane and becomes a migratory, mesenchymal-like cell. Interestingly, Slug expression has been observed in angiogenic endothelial cells (EC) in vivo, suggesting that angiogenic sprouting may share common attributes with EMT. Here, we demonstrate that sprouting EC in vitro express both Slug and Snail, and that siRNA-mediated knockdown of either inhibits sprouting and migration in multiple in vitro angiogenesis assays. We find that expression of MT1-MMP, but not of VE-Cadherin, is regulated by Slug and that loss of sprouting as a consequence of reduced Slug expression can be reversed by lentiviral-mediated re-expression of MT1-MMP. Activity of MMP2 and MMP9 are also affected by Slug expression, likely through MT1-MMP. Importantly, we find enhanced expression of Slug in EC in human colorectal cancer samples compared with normal colon tissue, suggesting a role for Slug in pathological angiogenesis. In summary, these data implicate Slug as an important regulator of sprouting angiogenesis, particularly in pathological settings.
Collapse
Affiliation(s)
- Katrina M Welch-Reardon
- The Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Endothelial cells expressing low levels of CD143 (ACE) exhibit enhanced sprouting and potency in relieving tissue ischemia. Angiogenesis 2014; 17:617-30. [PMID: 24414940 DOI: 10.1007/s10456-014-9414-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 01/04/2014] [Indexed: 01/05/2023]
Abstract
The sprouting of endothelial cells from pre-existing blood vessels represents a critical event in the angiogenesis cascade. However, only a fraction of cultured or transplanted endothelial cells form new vessels. Moreover, it is unclear whether this results from a stochastic process or instead relates to certain endothelial cells having a greater angiogenic potential. This study investigated whether there exists a sub-population of cultured endothelial cells with enhanced angiogenic potency in vitro and in vivo. First, endothelial cells that participated in sprouting, and non-sprouting cells, were separately isolated from a 3D fibrin gel sprouting assay. Interestingly, the sprouting cells, when placed back into the same assay, displayed a sevenfold increase in the number of sprouts, as compared to control cells. Angiotensin-converting enzyme (CD143) was significantly down regulated on sprouting cells, as compared to regular endothelial cells. A subset of endothelial cells with low CD143 expression was then prospectively isolated from an endothelial cell culture. Finally, these cells were found to have greater potency in alleviating local ischemia, and restoring regional blood perfusion when transplanted into ischemic hindlimbs, as compared to unsorted endothelial cells. In summary, this study indicates that low expression of CD143 can be used as a biomarker to identify an endothelial cell sub-population that is more capable to drive neovascularization.
Collapse
|