101
|
Abstract
Despite decades of research, morphogenesis along the various body axes remains one of the major mysteries in developmental biology. A milestone in the field was the realisation that a set of closely related regulators, called Hox genes, specifies the identity of body segments along the anterior-posterior (AP) axis in most animals. Hox genes have been highly conserved throughout metazoan evolution and code for homeodomain-containing transcription factors. Thus, they exert their function mainly through activation or repression of downstream genes. However, while much is known about Hox gene structure and molecular function, only a few target genes have been identified and studied in detail. Our knowledge of Hox downstream genes is therefore far from complete and consequently Hox-controlled morphogenesis is still poorly understood. Genome-wide approaches have facilitated the identification of large numbers of Hox downstream genes both in Drosophila and vertebrates, and represent a crucial step towards a comprehensive understanding of how Hox proteins drive morphological diversification. In this review, we focus on the role of Hox genes in shaping segmental morphologies along the AP axis in Drosophila, discuss some of the conclusions drawn from analyses of large target gene sets and highlight methods that could be used to gain a more thorough understanding of Hox molecular function. In addition, the mechanisms of Hox target gene regulation are considered with special emphasis on recent findings and their implications for Hox protein specificity in the context of the whole organism.
Collapse
Affiliation(s)
- Stefanie D Hueber
- Department of Molecular Biology, AG I. Lohmann, MPI for Developmental Biology, Tübingen, Germany
| | | |
Collapse
|
102
|
Geisen MJ, Meglio TD, Pasqualetti M, Ducret S, Brunet JF, Chedotal A, Rijli FM. Hox paralog group 2 genes control the migration of mouse pontine neurons through slit-robo signaling. PLoS Biol 2008; 6:e142. [PMID: 18547144 PMCID: PMC2422855 DOI: 10.1371/journal.pbio.0060142] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Accepted: 04/28/2008] [Indexed: 12/18/2022] Open
Abstract
The pontine neurons (PN) represent a major source of mossy fiber projections to the cerebellum. During mouse hindbrain development, PN migrate tangentially and sequentially along both the anteroposterior (AP) and dorsoventral (DV) axes. Unlike DV migration, which is controlled by the Netrin-1/Dcc attractive pathway, little is known about the molecular mechanisms guiding PN migration along the AP axis. Here, we show that Hoxa2 and Hoxb2 are required both intrinsically and extrinsically to maintain normal AP migration of subsets of PN, by preventing their premature ventral attraction towards the midline. Moreover, the migration defects observed in Hoxa2 and Hoxb2 mutant mice were phenocopied in compound Robo1;Robo2, Slit1;Slit2, and Robo2;Slit2 knockout animals, indicating that these guidance molecules act downstream of Hox genes to control PN migration. Indeed, using chromatin immunoprecipitation assays, we further demonstrated that Robo2 is a direct target of Hoxa2 in vivo and that maintenance of high Robo and Slit expression levels was impaired in Hoxa2 mutant mice. Lastly, the analysis of Phox2b-deficient mice indicated that the facial motor nucleus is a major Slit signaling source required to prevent premature ventral migration of PN. These findings provide novel insights into the molecular control of neuronal migration from transcription factor to regulation of guidance receptor and ligand expression. Specifically, they address the question of how exposure to multiple guidance cues along the AP and DV axes is regulated at the transcriptional level and in turn translated into stereotyped migratory responses during tangential migration of neurons in the developing mammalian brain.
Collapse
Affiliation(s)
- Marc J Geisen
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, UMR 7104, CU de Strasbourg, Illkirch, France
| | - Thomas Di Meglio
- CNRS UMR 7102 Université Pierre et Marie Curie–Paris 6, Paris, France
| | - Massimo Pasqualetti
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, UMR 7104, CU de Strasbourg, Illkirch, France
| | - Sebastien Ducret
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, UMR 7104, CU de Strasbourg, Illkirch, France
- Friedrich Miescher Institute, Basel, Switzerland
| | | | - Alain Chedotal
- CNRS UMR 7102 Université Pierre et Marie Curie–Paris 6, Paris, France
| | - Filippo M Rijli
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, UMR 7104, CU de Strasbourg, Illkirch, France
- Friedrich Miescher Institute, Basel, Switzerland
| |
Collapse
|
103
|
Gouti M, Gavalas A. Hoxb1 controls cell fate specification and proliferative capacity of neural stem and progenitor cells. Stem Cells 2008; 26:1985-97. [PMID: 18499896 DOI: 10.1634/stemcells.2008-0182] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The directed differentiation of embryonic stem cells (ESCs) into neural stem cells (NSCs) of specific identities and the identification of endogenous pathways that may mediate expansion of NSCs are fundamental goals for the treatment of degenerative disorders and trauma of the nervous system. We report that timely induction of a Hoxb1 transgene in ESC-derived NSCs resulted in the specification of NSCs toward a hindbrain-specific identity through the activation of a rhombomere 4-specific genetic program and the repression of anterior neural identity. This change was accompanied by changes in signaling pathways that pattern the dorsoventral (DV) axis of the nervous system and concomitant changes in the expression of DV neural progenitor markers. Furthermore, Hoxb1 mediated the maintenance and expansion of posterior neural progenitor cells. Hoxb1(+) cells kept proliferating upon mitogen withdrawal and became transiently amplifying progenitors instead of terminally differentiating. This was partially attributed to Hoxb1-dependent activation of the Notch signaling pathway and Notch-dependent STAT3 phosphorylation at Ser 727, thus linking Hox gene function with maintenance of active Notch signaling and the JAK/STAT pathway. Thus, timely expression of specific Hox genes could be used to establish NSCs and neural progenitors of distinct posterior identities. ESC-derived NSCs have a mixed DV identity that is subject to regulation by Hox genes. Finally, these findings set the stage for the elucidation of molecular pathways involved in the expansion of posterior NSCs and neural progenitors. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Mina Gouti
- Developmental Biology Laboratory, Biomedical Research Foundation of the Academy of Athens, Soranou Ephessiou 4, Athens 11527, Greece
| | | |
Collapse
|
104
|
Capellini TD, Zewdu R, Di Giacomo G, Asciutti S, Kugler JE, Di Gregorio A, Selleri L. Pbx1/Pbx2 govern axial skeletal development by controlling Polycomb and Hox in mesoderm and Pax1/Pax9 in sclerotome. Dev Biol 2008; 321:500-14. [PMID: 18691704 DOI: 10.1016/j.ydbio.2008.04.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 03/27/2008] [Accepted: 04/03/2008] [Indexed: 10/22/2022]
Abstract
The post-cranial axial skeleton consists of a metameric series of vertebral bodies and intervertebral discs, as well as adjoining ribs and sternum. Patterning of individual vertebrae and distinct regions of the vertebral column is accomplished by Polycomb and Hox proteins in the paraxial mesoderm, while their subsequent morphogenesis depends partially on Pax1/Pax9 in the sclerotome. In this study, we uncover that Pbx1/Pbx2 are co-expressed during successive stages of vertebral and rib development. Next, by exploiting a Pbx1/Pbx2 loss-of-function mouse, we show that decreasing Pbx2 dosage in the absence of Pbx1 affects axial development more severely than single loss of Pbx1. Pbx1/Pbx2 mutants exhibit a homogeneous vertebral column, with loss of vertebral identity, rudimentary ribs, and rostral hindlimb shifts. Of note, these axial defects do not arise from perturbed notochord function, as cellular proliferation, apoptosis, and expression of regulators of notochord signaling are normal in Pbx1/Pbx2 mutants. While the observed defects are consistent with loss of Pbx activity as a Hox-cofactor in the mesoderm, we additionally establish that axial skeletal patterning and hindlimb positioning are governed by Pbx1/Pbx2 through their genetic control of Polycomb and Hox expression and spatial distribution in the mesoderm, as well as of Pax1/Pax9 in the sclerotome.
Collapse
Affiliation(s)
- Terence D Capellini
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
105
|
Lampe X, Samad OA, Guiguen A, Matis C, Remacle S, Picard JJ, Rijli FM, Rezsohazy R. An ultraconserved Hox-Pbx responsive element resides in the coding sequence of Hoxa2 and is active in rhombomere 4. Nucleic Acids Res 2008; 36:3214-25. [PMID: 18417536 PMCID: PMC2425489 DOI: 10.1093/nar/gkn148] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Hoxa2 gene has a fundamental role in vertebrate craniofacial and hindbrain patterning. Segmental control of Hoxa2 expression is crucial to its function and several studies have highlighted transcriptional regulatory elements governing its activity in distinct rhombomeres. Here, we identify a putative Hox–Pbx responsive cis-regulatory sequence, which resides in the coding sequence of Hoxa2 and is an important component of Hoxa2 regulation in rhombomere (r) 4. By using cell transfection and chromatin immunoprecipitation (ChIP) assays, we show that this regulatory sequence is responsive to paralogue group 1 and 2 Hox proteins and to their Pbx co-factors. Importantly, we also show that the Hox–Pbx element cooperates with a previously reported Hoxa2 r4 intronic enhancer and that its integrity is required to drive specific reporter gene expression in r4 upon electroporation in the chick embryo hindbrain. Thus, both intronic as well as exonic regulatory sequences are involved in Hoxa2 segmental regulation in the developing r4. Finally, we found that the Hox–Pbx exonic element is embedded in a larger 205-bp long ultraconserved genomic element (UCE) shared by all vertebrate genomes. In this respect, our data further support the idea that extreme conservation of UCE sequences may be the result of multiple superposed functional and evolutionary constraints.
Collapse
Affiliation(s)
- Xavier Lampe
- Unit of Developmental Genetics, Université Catholique de Louvain, 1200 Brussels, Belgium, Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104 CNRS/INSERM/ULP, Collège de France, BP 10142-CU de Strasbourg, 67404 Illkirch Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
106
|
Morey C, Da Silva NR, Kmita M, Duboule D, Bickmore WA. Ectopic nuclear reorganisation driven by a Hoxb1 transgene transposed into Hoxd. J Cell Sci 2008; 121:571-7. [PMID: 18252796 DOI: 10.1242/jcs.023234] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The extent to which the nuclear organisation of a gene impacts on its ability to be expressed, or whether nuclear organisation merely reflects gene expression states, remains an important but unresolved issue. A model system that has been instrumental in investigating this question utilises the murine Hox gene clusters encoding homeobox-containing proteins. Nuclear reorganisation and chromatin decondensation, initiated towards the 3' end of the clusters, accompanies activation of Hox genes in both differentiation and development, and might be linked to mechanisms underlying colinearity. To investigate this, and to delineate the cis-acting elements involved, here we analyse the nuclear behaviour of a 3' Hoxb1 transgene transposed to the 5' end of the Hoxd cluster. We show that this transgene contains the cis-acting elements sufficient to initiate ectopic local nuclear reorganisation and chromatin decondensation and to break Hoxd colinearity in the primitive streak region of the early embryo. Significantly, in rhombomere 4, the transgene is able to induce attenuated nuclear reorganisation and decondensation of Hoxd even though there is no detectable expression of the transgene at this site. This shows that reorganisation of chromosome territories and chromatin decondensation can be uncoupled from transcription itself and suggests that they can therefore operate upstream of gene expression.
Collapse
Affiliation(s)
- Céline Morey
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Edinburgh University, Crewe Road, Edinburgh EH4 2XU, UK
| | | | | | | | | |
Collapse
|
107
|
Altered neuronal lineages in the facial ganglia of Hoxa2 mutant mice. Dev Biol 2008; 314:171-88. [DOI: 10.1016/j.ydbio.2007.11.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 10/24/2007] [Accepted: 11/21/2007] [Indexed: 01/19/2023]
|
108
|
Abstract
Vertebrate evolution is characterized by gene and genome duplication events. There is strong evidence that a whole-genome duplication occurred in the lineage leading to the teleost fishes. We have focused on the teleost hoxb1 duplicate genes as a paradigm to investigate the consequences of gene duplication. Previous analysis of the duplicated zebrafish hoxb1 genes suggested they have subfunctionalized. The combined expression pattern of the two zebrafish hoxb1 genes recapitulates the expression pattern of the single Hoxb1 gene of tetrapods, possibly due to degenerative changes in complementary cis-regulatory elements of the duplicates. Here we have tested the hypothesis that all teleost duplicates had a similar fate post duplication, by examining hoxb1 genes in medaka and striped bass. Consistent with this theory, we found that the ancestral Hoxb1 expression pattern is subdivided between duplicate genes in a largely similar fashion in zebrafish, medaka, and striped bass. Further, our analysis of hoxb1 genes reveals that sequence changes in cis-regulatory regions may underlie subfunctionalization in all teleosts, although the specific changes vary between species. It was previously shown that zebrafish hoxb1 duplicates have also evolved different functional capacities. We used misexpression to compare the functions of hoxb1 duplicates from zebrafish, medaka and striped bass. Unexpectedly, we found that some biochemical properties, which were paralog specific in zebrafish, are conserved in both duplicates of other species. This work suggests that the fate of duplicate genes varies across the teleost group.
Collapse
Affiliation(s)
- Imogen A Hurley
- Department of Organismal Biology and Anatomy, The University of Chicago, 1027 East 57th Street, IL 60637, USA
| | | | | |
Collapse
|
109
|
Matis C, Oury F, Remacle S, Lampe X, Gofflot F, Picard JJ, Rijli FM, Rezsohazy R. Identification of Lmo1 as part of a Hox-dependent regulatory network for hindbrain patterning. Dev Dyn 2007; 236:2675-84. [PMID: 17676642 DOI: 10.1002/dvdy.21266] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The embryonic functions of Hox proteins have been extensively investigated in several animal phyla. These transcription factors act as selectors of developmental programmes, to govern the morphogenesis of multiple structures and organs. However, despite the variety of morphogenetic processes Hox proteins are involved in, only a limited set of their target genes has been identified so far. To find additional targets, we used a strategy based upon the simultaneous overexpression of Hoxa2 and its cofactors Pbx1 and Prep in a cellular model. Among genes whose expression was upregulated, we identified LMO1, which codes for an intertwining LIM-only factor involved in protein-DNA oligomeric complexes. By analysing its expression in Hox knockout mice, we show that Lmo1 is differentially regulated by Hoxa2 and Hoxb2, in specific columns of hindbrain neuronal progenitors. These results suggest that Lmo1 takes part in a Hox paralogue 2-dependent network regulating anteroposterior and dorsoventral hindbrain patterning.
Collapse
Affiliation(s)
- Christelle Matis
- Unit of Developmental Genetics, Université Catholique de Louvain, Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Holcman D, Kasatkin V, Prochiantz A. Modeling homeoprotein intercellular transfer unveils a parsimonious mechanism for gradient and boundary formation in early brain development. J Theor Biol 2007; 249:503-17. [PMID: 17904161 DOI: 10.1016/j.jtbi.2007.07.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 07/10/2007] [Accepted: 07/25/2007] [Indexed: 11/20/2022]
Abstract
Morphogens are molecules inducing morphogenetic responses from cells and cell ensembles. The concept of morphogen is related to that of positional value, as the generation of morphological and physiological characteristics is function of position. Based on the observation that homeoproteins, a category of transcription factors with morphogenetic functions, traffic between abutting cells and, very often, regulate their own expression, we develop here a biophysical model of homeoprotein propagation and study the associated mathematical equations. This mode of cell signaling can generate domains of homeoprotein expression. We study both the transient and steady-state regimes and, in this latter regime, we obtain various morphogenetic gradients, depending on the value of some parameters, such as morphogen synthesis, degradation rates and efficiency of intercellular passage. The same equations, applied to pairs of homeoproteins with auto-activation and reciprocal inhibition properties, account for border formation. They also allow us to compute how specific perturbations can either be buffered or lead to modifications in the position of borders between adjacent areas. The model developed here, based on experimental data, and avoids theoretical obstacles associated with pluricellularity. It extends the idea that Bicoid homeoprotein is a morphogen in the fly embryo syncitium to most homeoproteins and to pluricellular systems. Because the position of borders between brain areas is of primary physiological importance, our model might lead to original views regarding epigenetic inter-individual variations and the origin of neurological and psychiatric diseases. In addition, it provides new hypotheses regarding the molecular basis of brain evolution.
Collapse
Affiliation(s)
- D Holcman
- Department of Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel.
| | | | | |
Collapse
|
111
|
Cellot S, Krosl J, Chagraoui J, Meloche S, Humphries RK, Sauvageau G. Sustained in vitro trigger of self-renewal divisions in Hoxb4hiPbx1(10) hematopoietic stem cells. Exp Hematol 2007; 35:802-16. [PMID: 17577929 PMCID: PMC2752385 DOI: 10.1016/j.exphem.2007.02.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Factors that trigger and sustain self-renewal divisions in tissue stem cells remain poorly characterized. By modulating the levels of Hoxb4 and its co-factor Pbxl in primary hematopoietic cells (Hoxb4hiPbxl(10) cells), we report an in vitro expansion of mouse hematopoietic stem cells (HSCs) by 105-fold over 2 weeks, with subsequent preservation of HSC properties. Clonal analyses of the hematopoietic system in recipients of expanded HSCs indicate that up to 70% of Hoxb4hiPbxl(10) stem cells present at initiation of culture underwent self-renewal in vitro. In this setting, Hoxb4 and its co-factor did not promote an increase in DNA synthesis, or a decrease in doubling time of Scal+Lin- cells when compared to controls. Q-PCR analyses further revealed a downregulation of Cdknlb (p27Kipl) and Mxdl (MadI) transcript levels in Hoxb4hiPbxl(l0) primitive cells, accompanied by a more subtle increase in c-myc and reduction in Ccnd3 (Cyclin D3). We thus put forward this strategy as an efficient in vitro HSC expansion tool, enabling a further step into the avenue of self-renewal molecular effectors.
Collapse
Affiliation(s)
- Sonia Cellot
- Laboratory of Molecular Genetics of Stem Cells, Institute for Research in Immunology and Cancer (IRIC), C.P. 6128 succursale Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Jana Krosl
- Laboratory of Molecular Genetics of Stem Cells, Institute for Research in Immunology and Cancer (IRIC), C.P. 6128 succursale Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Jalila Chagraoui
- Laboratory of Molecular Genetics of Stem Cells, Institute for Research in Immunology and Cancer (IRIC), C.P. 6128 succursale Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Sylvain Meloche
- Signaling and Cell Growth, Institut de Recherche en Immunologie et Cancérologie (IRIC), C.P. 6128 succursale Centre-Ville, Montréal, Québec H3C 3J7, Canada
- Departments of Molecular Biology and Pharmacology, Université de Montréal
| | - R. Keith Humphries
- Terry Fox Laboratories, British Columbia Cancer Agency, Vancouver, British Columbia and Department of Medicine, University of British Columbia, Vancouver, British Columbia
| | - Guy Sauvageau
- Laboratory of Molecular Genetics of Stem Cells, Institute for Research in Immunology and Cancer (IRIC), C.P. 6128 succursale Centre-Ville, Montréal, Québec H3C 3J7, Canada
- Department of Medicine and Division of Hematology and Leukemia Cell Bank of Quebec, Maisonneuve-Rosemont Hospital, Montréal, Québec, Canada
| |
Collapse
|
112
|
Abstract
Background The duplication-degeneration-complementation (DDC) model has been proposed as an explanation for the unexpectedly high retention of duplicate genes. The hypothesis proposes that, following gene duplication, the two gene copies degenerate to perform complementary functions that jointly match that of the single ancestral gene, a process also known as subfunctionalization. We distinguish between subfunctionalization at the regulatory level and at the product level (e.g within temporal or spatial expression domains). Results In contrast to what is expected under the DDC model, we use in silico modeling to show that regulatory subfunctionalization is expected to peak and then decrease significantly. At the same time, neofunctionalization (recruitment of novel interactions) increases monotonically, eventually affecting the regulatory elements of the majority of genes. Furthermore, since this process occurs under conditions of stabilizing selection, there is no need to invoke positive selection. At the product level, the frequency of subfunctionalization is no higher than would be expected by chance, a finding that was corroborated using yeast microarray time-course data. We also find that product subfunctionalization is not necessarily caused by regulatory subfunctionalization. Conclusion Our results suggest a more complex picture of post-duplication evolution in which subfunctionalization plays only a partial role in conjunction with redundancy and neofunctionalization. We argue that this behavior is a consequence of the high evolutionary plasticity in gene networks.
Collapse
|
113
|
|
114
|
Abstract
Flavin-containing monooxygenases (FMOs) are important oxidative drug metabolizing enzymes. FMO3 is the primary human adult liver FMO enzyme, but is developmentally regulated. FMO3 promoter characterization using in vitro DNA binding assays with HepG2 cell and fetal and adult liver nuclear protein, as well as FMO3/reporter construct transient expression in HepG2 cells, provided evidence for specific mechanisms contributing to both developmental and constitutive adult regulation. NFY, USF1, an unidentified GC box binding protein, and YY1 appear to play major roles regulating constitutive FMO3 transcription, while Pbx(2) as a heterodimer with an unidentified Hox isoform also may contribute to FMO3 developmental expression.
Collapse
Affiliation(s)
- David E Klick
- Department of Pediatrics, and The Children's Research Institute, Medical College of Wisconsin, and Children's Hospital and Health System, Milwaukee, Wisconsin 53226, USA
| | | |
Collapse
|
115
|
A unique Extradenticle recruitment mode in the Drosophila Hox protein Ultrabithorax. Proc Natl Acad Sci U S A 2007; 104:16946-51. [PMID: 17942685 DOI: 10.1073/pnas.0705832104] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hox transcription factors are essential for shaping body morphology in development and evolution. The control of Hox protein activity in part arises from interaction with the PBC class of partners, pre-B cell transcription factor (Pbx) proteins in vertebrates and Extradenticle (Exd) in Drosophila. Characterized interactions occur through a single mode, involving a short hexapeptide motif in the Hox protein. This apparent uniqueness in Hox-PBC interaction provides little mechanistic insight in how the same cofactors endow Hox proteins with specific and diverse activities. Here, we identify in the Drosophila Ultrabithorax (Ubx) protein a short motif responsible for an alternative mode of Exd recruitment. Together with previous reports, this finding highlights that the Hox protein Ubx has multiple ways to interact with the Exd cofactor and suggests that flexibility in Hox-PBC contacts contributes to specify and diversify Hox protein function.
Collapse
|
116
|
Chatonnet F, Wrobel LJ, Mézières V, Pasqualetti M, Ducret S, Taillebourg E, Charnay P, Rijli FM, Champagnat J. Distinct roles of Hoxa2 and Krox20 in the development of rhythmic neural networks controlling inspiratory depth, respiratory frequency, and jaw opening. Neural Dev 2007; 2:19. [PMID: 17897445 PMCID: PMC2098766 DOI: 10.1186/1749-8104-2-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Accepted: 09/26/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Little is known about the involvement of molecular determinants of segmental patterning of rhombomeres (r) in the development of rhythmic neural networks in the mouse hindbrain. Here, we compare the phenotypes of mice carrying targeted inactivations of Hoxa2, the only Hox gene expressed up to r2, and of Krox20, expressed in r3 and r5. We investigated the impact of such mutations on the neural circuits controlling jaw opening and breathing in newborn mice, compatible with Hoxa2-dependent trigeminal defects and direct regulation of Hoxa2 by Krox20 in r3. RESULTS We found that Hoxa2 mutants displayed an impaired oro-buccal reflex, similarly to Krox20 mutants. In contrast, while Krox20 is required for the development of the rhythm-promoting parafacial respiratory group (pFRG) modulating respiratory frequency, Hoxa2 inactivation did not affect neonatal breathing frequency. Instead, we found that Hoxa2-/- but not Krox20-/- mutation leads to the elimination of a transient control of the inspiratory amplitude normally occurring during the first hours following birth. Tracing of r2-specific progenies of Hoxa2 expressing cells indicated that the control of inspiratory activity resides in rostral pontine areas and required an intact r2-derived territory. CONCLUSION Thus, inspiratory shaping and respiratory frequency are under the control of distinct Hox-dependent segmental cues in the mammalian brain. Moreover, these data point to the importance of rhombomere-specific genetic control in the development of modular neural networks in the mammalian hindbrain.
Collapse
Affiliation(s)
- Fabrice Chatonnet
- NGI, UPR 2216, Institut de Neurobiologie Alfred Fessard IFR2218, Centre National de la Recherche Scientifique, F-91198 Gif sur Yvette Cedex, France
- IGFL UMR 5242 CNRS/INRA/UCB/École Normale Supérieure de Lyon, allée d'Italie, 69364 Lyon Cedex 07, France
| | - Ludovic J Wrobel
- NGI, UPR 2216, Institut de Neurobiologie Alfred Fessard IFR2218, Centre National de la Recherche Scientifique, F-91198 Gif sur Yvette Cedex, France
| | - Valérie Mézières
- NGI, UPR 2216, Institut de Neurobiologie Alfred Fessard IFR2218, Centre National de la Recherche Scientifique, F-91198 Gif sur Yvette Cedex, France
| | - Massimo Pasqualetti
- IGBMC, UMR 7104, CNRS/INSERM/ULP/Collège de France, CU de Strasbourg, F-67404 Illkirch Cedex, France
- Laboratori di Biologia Cellulare e dello Sviluppo, Università di Pisa, Via G Carducci, Pisa, Italy
| | - Sébastien Ducret
- IGBMC, UMR 7104, CNRS/INSERM/ULP/Collège de France, CU de Strasbourg, F-67404 Illkirch Cedex, France
| | - Emmanuel Taillebourg
- INSERM, U 784, Ecole Normale Supérieure, rue d'Ulm, 75230 Paris Cedex 05, France
- CEA, Laboratoire de Biochimie et Biophysique des Systèmes Intégrés, 38054 Grenoble, France
| | - Patrick Charnay
- INSERM, U 784, Ecole Normale Supérieure, rue d'Ulm, 75230 Paris Cedex 05, France
| | - Filippo M Rijli
- IGBMC, UMR 7104, CNRS/INSERM/ULP/Collège de France, CU de Strasbourg, F-67404 Illkirch Cedex, France
| | - Jean Champagnat
- NGI, UPR 2216, Institut de Neurobiologie Alfred Fessard IFR2218, Centre National de la Recherche Scientifique, F-91198 Gif sur Yvette Cedex, France
| |
Collapse
|
117
|
Gong KQ, Yallowitz AR, Sun H, Dressler GR, Wellik DM. A Hox-Eya-Pax complex regulates early kidney developmental gene expression. Mol Cell Biol 2007; 27:7661-8. [PMID: 17785448 PMCID: PMC2169072 DOI: 10.1128/mcb.00465-07] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During embryonic development, the anterior-posterior body axis is specified in part by the combinatorial activities of Hox genes. Given the poor DNA binding specificity of Hox proteins, their interaction with cofactors to regulate target genes is critical. However, few regulatory partners or downstream target genes have been identified. Herein, we demonstrate that Hox11 paralogous proteins form a complex with Pax2 and Eya1 to directly activate expression of Six2 and Gdnf in the metanephric mesenchyme. We have identified the binding site within the Six2 enhancer necessary for Hox11-Eya1-Pax2-mediated activation and demonstrate that this site is essential for Six2 expression in vivo. Furthermore, genetic interactions between Hox11 and Eya1 are consistent with their participation in the same pathway. Thus, anterior-posterior-patterning Hox proteins interact with Pax2 and Eya1, factors important for nephrogenic mesoderm specification, to directly regulate the activation of downstream target genes during early kidney development.
Collapse
Affiliation(s)
- Ke-Qin Gong
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical Center, 109 Zina Pitcher, 3045 BSRB, Ann Arbor, MI 48109-2200, USA
| | | | | | | | | |
Collapse
|
118
|
Pouilhe M, Gilardi-Hebenstreit P, Desmarquet-Trin Dinh C, Charnay P. Direct regulation of vHnf1 by retinoic acid signaling and MAF-related factors in the neural tube. Dev Biol 2007; 309:344-57. [PMID: 17669392 DOI: 10.1016/j.ydbio.2007.07.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 06/21/2007] [Accepted: 07/04/2007] [Indexed: 12/14/2022]
Abstract
The homeodomain transcription factor vHNF1 plays an essential role in the patterning of the caudal segmented hindbrain, where it participates in the definition of the boundary between rhombomeres (r) 4 and 5 and in the specification of the identity of r5 and r6. Understanding the molecular basis of vHnf1 own expression therefore constitutes an important issue to decipher the regulatory network governing hindbrain patterning. We have identified a highly conserved 800-bp enhancer element located in the fourth intron of vHnf1 and whose activity recapitulates vHnf1 neural expression in transgenic mice. Functional analysis of this enhancer revealed that it contains two types of essential motifs, a retinoic acid response element and two half T-MARE sites, indicating that it integrates direct inputs from the retinoic acid signaling cascade and MAF-related factors. Our data suggest that MAFB, which is itself regulated by vHNF1, acts as a positive modulator of vHnf1 in r5 and r6, whereas another MAF-related factor is absolutely required for the expression of vHnf1 in both the hindbrain and the spinal cord. We propose a model accounting for the initiation and maintenance phases of vHnf1 expression and for the establishment of the r4/r5 boundary, based on cooperative contributions of Maf factors and retinoic acid signaling.
Collapse
Affiliation(s)
- Marie Pouilhe
- INSERM, U784, 46 rue d'Ulm, 75230 Paris Cedex 05, France
| | | | | | | |
Collapse
|
119
|
Erickson T, Scholpp S, Brand M, Moens CB, Waskiewicz AJ. Pbx proteins cooperate with Engrailed to pattern the midbrain-hindbrain and diencephalic-mesencephalic boundaries. Dev Biol 2007; 301:504-17. [PMID: 16959235 PMCID: PMC1850147 DOI: 10.1016/j.ydbio.2006.08.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 07/26/2006] [Accepted: 08/07/2006] [Indexed: 11/27/2022]
Abstract
Pbx proteins are a family of TALE-class transcription factors that are well characterized as Hox co-factors acting to impart segmental identity to the hindbrain rhombomeres. However, no role for Pbx in establishing more anterior neural compartments has been demonstrated. Studies done in Drosophila show that Engrailed requires Exd (Pbx orthologue) for its biological activity. Here, we present evidence that zebrafish Pbx proteins cooperate with Engrailed to compartmentalize the midbrain by regulating the maintenance of the midbrain-hindbrain boundary (MHB) and the diencephalic-mesencephalic boundary (DMB). Embryos lacking Pbx function correctly initiate midbrain patterning, but fail to maintain eng2a, pax2a, fgf8, gbx2, and wnt1 expression at the MHB. Formation of the DMB is also defective as shown by a caudal expansion of diencephalic epha4a and pax6a expression into midbrain territory. These phenotypes are similar to the phenotype of an Engrailed loss-of-function embryo, supporting the hypothesis that Pbx and Engrailed act together on a common genetic pathway. Consistent with this model, we demonstrate that zebrafish Engrailed and Pbx interact in vitro and that this interaction is required for both the eng2a overexpression phenotype and Engrailed's role in patterning the MHB. Our data support a novel model of midbrain development in which Pbx and Engrailed proteins cooperatively pattern the mesencephalic region of the neural tube.
Collapse
Affiliation(s)
- Timothy Erickson
- Department of Biological Sciences, CW405, Biological Sciences Building, University of Alberta, Edmonton AB, Canada T6G2E9
| | | | | | | | | |
Collapse
|
120
|
Vavouri T, Walter K, Gilks WR, Lehner B, Elgar G. Parallel evolution of conserved non-coding elements that target a common set of developmental regulatory genes from worms to humans. Genome Biol 2007; 8:R15. [PMID: 17274809 PMCID: PMC1852409 DOI: 10.1186/gb-2007-8-2-r15] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 10/20/2006] [Accepted: 02/02/2007] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The human genome contains thousands of non-coding sequences that are often more conserved between vertebrate species than protein-coding exons. These highly conserved non-coding elements (CNEs) are associated with genes that coordinate development, and have been proposed to act as transcriptional enhancers. Despite their extreme sequence conservation in vertebrates, sequences homologous to CNEs have not been identified in invertebrates. RESULTS Here we report that nematode genomes contain an alternative set of CNEs that share sequence characteristics, but not identity, with their vertebrate counterparts. CNEs thus represent a very unusual class of sequences that are extremely conserved within specific animal lineages yet are highly divergent between lineages. Nematode CNEs are also associated with developmental regulatory genes, and include well-characterized enhancers and transcription factor binding sites, supporting the proposed function of CNEs as cis-regulatory elements. Most remarkably, 40 of 156 human CNE-associated genes with invertebrate orthologs are also associated with CNEs in both worms and flies. CONCLUSION A core set of genes that regulate development is associated with CNEs across three animal groups (worms, flies and vertebrates). We propose that these CNEs reflect the parallel evolution of alternative enhancers for a common set of developmental regulatory genes in different animal groups. This 're-wiring' of gene regulatory networks containing key developmental coordinators was probably a driving force during the evolution of animal body plans. CNEs may, therefore, represent the genomic traces of these 'hard-wired' core gene regulatory networks that specify the development of each alternative animal body plan.
Collapse
Affiliation(s)
- Tanya Vavouri
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- School of Biological and Chemical Sciences, Queen Mary, University of London, London E1 4NS, UK
| | - Klaudia Walter
- MRC Biostatistics Unit, Institute of Public Health, Cambridge CB2 2SR, UK
| | - Walter R Gilks
- Department of Statistics, University of Leeds, Leeds LS2 9JT, UK
| | - Ben Lehner
- EMBL/CRG Systems Biology Unit, Centre for Genomic Regulation (CRG), UPF, C/Dr. Aiguader 88, Barcelona 08003, Spain
| | - Greg Elgar
- School of Biological and Chemical Sciences, Queen Mary, University of London, London E1 4NS, UK
| |
Collapse
|
121
|
Tümpel S, Cambronero F, Ferretti E, Blasi F, Wiedemann LM, Krumlauf R. Expression of Hoxa2 in rhombomere 4 is regulated by a conserved cross-regulatory mechanism dependent upon Hoxb1. Dev Biol 2006; 302:646-60. [PMID: 17113575 DOI: 10.1016/j.ydbio.2006.10.029] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Revised: 10/17/2006] [Accepted: 10/19/2006] [Indexed: 01/08/2023]
Abstract
The Hoxa2 gene is an important component of regulatory events during hindbrain segmentation and head development in vertebrates. In this study we have used sequenced comparisons of the Hoxa2 locus from 12 vertebrate species in combination with detailed regulatory analyses in mouse and chicken embryos to characterize the mechanistic basis for the regulation of Hoxa2 in rhombomere (r) 4. A highly conserved region in the Hoxa2 intron functions as an r4 enhancer. In vitro binding studies demonstrate that within the conserved region three bipartite Hox/Pbx binding sites (PH1-PH3) in combination with a single binding site for Pbx-Prep/Meis (PM) heterodimers co-operate to regulate enhancer activity in r4. Mutational analysis reveals that these sites are required for activity of the enhancer, suggesting that the r4 enhancer from Hoxa2 functions in vivo as a Hox-response module in combination with the Hox cofactors, Pbx and Prep/Meis. Furthermore, this r4 enhancer is capable of mediating a response to ectopic HOXB1 expression in the hindbrain. These findings reveal that Hoxa2 is a target gene of Hoxb1 and permit us to develop a gene regulatory network for r4, whereby Hoxa2, along with Hoxb1, Hoxb2 and Hoxa1, is integrated into a series of auto- and cross-regulatory loops between Hox genes. These data highlight the important role played by direct cross-talk between Hox genes in regulating hindbrain patterning.
Collapse
Affiliation(s)
- Stefan Tümpel
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | | | | | | | | | | |
Collapse
|
122
|
Tvrdik P, Capecchi MR. Reversal of Hox1 gene subfunctionalization in the mouse. Dev Cell 2006; 11:239-50. [PMID: 16890163 DOI: 10.1016/j.devcel.2006.06.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Revised: 06/23/2006] [Accepted: 06/30/2006] [Indexed: 02/02/2023]
Abstract
In vertebrates, paralogous Hox genes play diverse biological roles. We examined the interchangeability of Hoxa1 and Hoxb1 in mouse development by swapping their protein-coding regions. Remarkably, the mice expressing the Hox-B1 protein from the Hoxa1 locus, and vice versa, are essentially normal. We noted, nonetheless, a specific facial nerve hypomorphism in hemizygous Hoxb1(A1/-) mice and decreased viability in homozygous Hoxa1(B1/B1) embryos. Further, we established a mouse line in which we have inserted the 107 bp Hoxb1 autoregulatory enhancer into the Hoxa1 promoter. Strikingly, the newly generated autoregulatory Hoxa1 gene can deliver the functionality of both paralogs in these mice, providing normal viability as well as proper facial nerve formation even in the Hoxb1 mutant background. This study affirms that subfunctionalization of the transcriptional regulatory elements has a principal role in the diversification of paralogous Hox genes. Moreover, we show that the ancestral vertebrate Hox1 gene can still be experimentally reconstructed.
Collapse
Affiliation(s)
- Petr Tvrdik
- Howard Hughes Medical Institute, University of Utah, 15 North 2030 East, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|
123
|
Blagburn JM. Co-factors and co-repressors of Engrailed: expression in the central nervous system and cerci of the cockroach, Periplaneta americana. Cell Tissue Res 2006; 327:177-87. [PMID: 17024417 DOI: 10.1007/s00441-006-0300-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Accepted: 07/10/2006] [Indexed: 10/24/2022]
Abstract
In the larval cockroach (Periplaneta americana), knockout of Engrailed (En) in the medial sensory neurons of the cercal sensory system changes their axonal arborization and synaptic specificity. Immunocytochemistry has been used to investigate whether the co-repressor Groucho (Gro; vertebrate homolog: TLE) and the co-factor Extradenticle (Exd; vertebrate homolog: Pbx) are expressed in the cercal system. Gro/TLE is expressed ubiquitously in cell nuclei in the embryo, except for the distal pleuropodia. Gro is expressed in all nuclei of the thoracic and abdominal central nervous system (CNS) of first instar larva, although some neurons express less Gro than others. Cercal sensory neurons express Gro protein, which might therefore act as a co-repressor with En. Exd/Pbx is expressed in the proximal portion of all segmental appendages in the embryo, with the exception of the cerci. In the first instar CNS, Exd protein is expressed in subsets of neurons (including dorsal unpaired medial neurons) in the thoracic ganglia, in the first two abdominal ganglia, and in neuromeres A8-A11 of the terminal ganglion. Exd is absent from the cerci. Because Ultrabithorax/Abdominal-A (Ubx/Abd-A) can substitute for Exd as En co-factors in Drosophila, Ubx/Abd-A immunoreactivity has also been investigated. Ubx/Abd-A immunostaining is present in abdominal segments of the embryo and first instar CNS as far caudal as A7 and faintly in the T3 segment. However, Ubx/Abd-A is absent in the cerci and their neurons. Thus, in contrast to its role in Drosophila segmentation, En does not require the co-factors Exd or Ubx/Abd-A in order to control the synaptic specificity of cockroach sensory neurons.
Collapse
Affiliation(s)
- Jonathan M Blagburn
- Institute of Neurobiology and Department of Physiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico.
| |
Collapse
|
124
|
Oury F, Murakami Y, Renaud JS, Pasqualetti M, Charnay P, Ren SY, Rijli FM. Hoxa2- and rhombomere-dependent development of the mouse facial somatosensory map. Science 2006; 313:1408-13. [PMID: 16902088 DOI: 10.1126/science.1130042] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In the mouse trigeminal pathway, sensory inputs from distinct facial structures, such as whiskers or lower jaw and lip, are topographically mapped onto the somatosensory cortex through relay stations in the thalamus and hindbrain. In the developing hindbrain, the mechanisms generating such maps remain elusive. We found that in the principal sensory nucleus, the whisker-related map is contributed by rhombomere 3-derived neurons, whereas the rhombomere 2-derived progeny supply the lower jaw and lip representation. Moreover, early Hoxa2 expression in neuroepithelium prevents the trigeminal nerve from ectopically projecting to the cerebellum, whereas late expression in the principal sensory nucleus promotes selective arborization of whisker-related afferents and topographic connectivity to the thalamus. Hoxa2 inactivation further results in the absence of whisker-related maps in the postnatal brain. Thus, Hoxa2- and rhombomere 3-dependent cues determine the whisker area map and are required for the assembly of the whisker-to-barrel somatosensory circuit.
Collapse
Affiliation(s)
- Franck Oury
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université Louis Pasteur, UMR 7104, BP 10142, Communauté Urbaine de Strasbourg, 67404 Illkirch Cedex, France
| | | | | | | | | | | | | |
Collapse
|
125
|
Lebel M, Mo R, Shimamura K, Hui CC. Gli2 and Gli3 play distinct roles in the dorsoventral patterning of the mouse hindbrain. Dev Biol 2006; 302:345-55. [PMID: 17026983 DOI: 10.1016/j.ydbio.2006.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Revised: 08/01/2006] [Accepted: 08/02/2006] [Indexed: 10/24/2022]
Abstract
Sonic Hedgehog (Shh) signaling plays a critical role during dorsoventral (DV) patterning of the developing neural tube by modulating the expression of neural patterning genes. Overlapping activator functions of Gli2 and Gli3 have been shown to be required for motoneuron development and correct neural patterning in the ventral spinal cord. However, the role of Gli2 and Gli3 in ventral hindbrain development is unclear. In this paper, we have examined DV patterning of the hindbrain of Shh(-/-), Gli2(-/-) and Gli3(-/-) embryos, and found that the respective role of Gli2 and Gli3 is not only different between the hindbrain and spinal cord, but also at distinct rostrocaudal levels of the hindbrain. Remarkably, the anterior hindbrain of Gli2(-/-) embryos displays ventral patterning defects as severe as those observed in Shh(-/-) embryos suggesting that, unlike in the spinal cord and posterior hindbrain, Gli3 cannot compensate for the loss of Gli2 activator function in Shh-dependent ventral patterning of the anterior hindbrain. Loss of Gli3 also results in a distinct patterning defect in the anterior hindbrain, including dorsal expansion of Nkx6.1 expression. Furthermore, we demonstrate that ventral patterning of rhombomere 4 is less affected by loss of Gli2 function revealing a different requirement for Gli proteins in this rhombomere. Taken together, these observations indicate that Gli2 and Gli3 perform rhombomere-specific function during DV patterning of the hindbrain.
Collapse
Affiliation(s)
- Mélanie Lebel
- Program in Developmental Biology, The Hospital for Sick Children, Room 13-314, Toronto Medical Discovery Tower, Ontario, Canada
| | | | | | | |
Collapse
|
126
|
Noro B, Culi J, McKay DJ, Zhang W, Mann RS. Distinct functions of homeodomain-containing and homeodomain-less isoforms encoded by homothorax. Genes Dev 2006; 20:1636-50. [PMID: 16778079 PMCID: PMC1482483 DOI: 10.1101/gad.1412606] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The homothorax (hth) gene of Drosophila melanogaster is required for executing Hox functions, for head development, and for forming the proximodistal (PD) axis of the appendages. We show that alternative splicing of hth generates two types of protein isoforms, one that contains a DNA-binding homeodomain (HthFL) and one that does not contain a homeodomain (HDless). Both types of Hth isoforms include the evolutionarily conserved HM domain, which mediates a direct interaction with Extradenticle (Exd), another homeodomain protein. We show that although both HthFL and HDless isoforms of Hth can induce the nuclear localization of Exd, they carry out distinct sets of functions during development. Surprisingly, we find that many of hth's functions, including PD patterning and most Hox-related activities, can be executed by the HDless isoforms. In contrast, antennal development shows an absolute dependency on the HthFL isoform. Thus, alternative splicing of hth results in the generation of multiple transcription factors that execute unique functions in vivo. We further demonstrate that the mouse ortholog of hth, Meis1, also encodes a HDless isoform, suggesting that homeodomain-less variants of this gene family are evolutionarily ancient.
Collapse
Affiliation(s)
- Barbara Noro
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
127
|
Kikugawa T, Kinugasa Y, Shiraishi K, Nanba D, Nakashiro KI, Tanji N, Yokoyama M, Higashiyama S. PLZF regulates Pbx1 transcription and Pbx1-HoxC8 complex leads to androgen-independent prostate cancer proliferation. Prostate 2006; 66:1092-9. [PMID: 16637071 DOI: 10.1002/pros.20443] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Promyelocytic leukemia zinc finger (PLZF) protein, a transcriptional repressor and negative regulator of the cell cycle, has been characterized as a prostatic androgen-responsive gene. DU145 cells show androgen-independent growth and lack PLZF gene expression. METHODS We analyzed PLZF-regulating genes by DNA microarray using DU145 cells infected with LacZ- or PLZF-carrying adenoviruses. RESULTS DNA microarray revealed that Pbx1 is a prominent suppressed gene in PLZF-overexpressing DU145 cells. Androgen receptor (AR)-expressing DU145 cells recovered androgen-dependent PLZF expression and subsequent repression of Pbx1 expression. Immunoprecipitation of Pbx1 in DU145 cells revealed a Pbx1-HoxC8 heterocomplex. siRNAs for Pbx1 and HoxC8 knocked downexpression of each, and this suppressed androgen-independent cell growth. Double knockdown of both Pbx1 and HoxC8 suppressed cell growth much more significantly. CONCLUSIONS Androgen-independent cell line DU145 cells lack PLZF gene expression, resulting in the upregulation of Pbx1 and HoxC8 expression. The Pbx1-HoxC8 heterocomplex may lead to androgen-independent growth in prostate cancer.
Collapse
MESH Headings
- Androgens/physiology
- Blotting, Western
- Cell Cycle/genetics
- Cell Cycle/physiology
- Cell Line, Tumor
- Cell Proliferation
- DNA, Neoplasm/analysis
- DNA, Neoplasm/genetics
- DNA-Binding Proteins/analysis
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Down-Regulation
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/physiology
- Genes, Tumor Suppressor/physiology
- Homeodomain Proteins/analysis
- Homeodomain Proteins/genetics
- Homeodomain Proteins/physiology
- Humans
- Kruppel-Like Transcription Factors
- Male
- Neoplasms, Hormone-Dependent/chemistry
- Neoplasms, Hormone-Dependent/genetics
- Neoplasms, Hormone-Dependent/pathology
- Neoplasms, Hormone-Dependent/physiopathology
- Oligonucleotide Array Sequence Analysis
- Pre-B-Cell Leukemia Transcription Factor 1
- Promyelocytic Leukemia Zinc Finger Protein
- Prostatic Neoplasms/chemistry
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/pathology
- Prostatic Neoplasms/physiopathology
- Protein Binding
- Proto-Oncogene Proteins/analysis
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/physiology
- RNA, Small Interfering/pharmacology
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription Factors/analysis
- Transcription Factors/genetics
- Transcription Factors/physiology
- Transcription, Genetic/physiology
- Transfection
Collapse
Affiliation(s)
- Tadahiko Kikugawa
- Department of Biochemistry and Molecular Genetics, Ehime University School of Medicine, Shitsukawa, To-on, Ehime, Japan
| | | | | | | | | | | | | | | |
Collapse
|
128
|
Zubair M, Ishihara S, Oka S, Okumura K, Morohashi KI. Two-step regulation of Ad4BP/SF-1 gene transcription during fetal adrenal development: initiation by a Hox-Pbx1-Prep1 complex and maintenance via autoregulation by Ad4BP/SF-1. Mol Cell Biol 2006; 26:4111-21. [PMID: 16705164 PMCID: PMC1489093 DOI: 10.1128/mcb.00222-06] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The orphan nuclear receptor Ad4BP/SF-1 (adrenal 4 binding protein/steroidogenic factor 1) is essential for the proper development and function of reproductive and steroidogenic tissues. Although the expression of Ad4BP/SF-1 is specific for those tissues, the mechanisms underlying this tissue-specific expression remain unknown. In this study, we used transgenic mouse assays to examine the regulation of the tissue-specific expression of Ad4BP/SF-1. An investigation of the entire Ad4BP/SF-1 gene locus revealed a fetal adrenal enhancer (FAdE) in intron 4 containing highly conserved binding sites for Pbx-Prep, Pbx-Hox, and Ad4BP/SF-1. Transgenic assays revealed that the Ad4 sites, together with Ad4BP/SF-1, develop an autoregulatory loop and thereby maintain transcription, while the Pbx/Prep and Pbx/Hox sites initiate transcription prior to the establishment of the autoregulatory loop. Indeed, a limited number of Hox family members were found to be expressed in the adrenal primordia. Whether a true fetal-type adrenal cortex is present in mice remained controversial, and this argument was complicated by the postnatal development of the so-called X zone. Using transgenic mice with lacZ driven by the FAdE, we clearly identified a fetal adrenal cortex in mice, and the X zone is the fetal adrenal cells accumulated at the juxtamedullary region after birth.
Collapse
Affiliation(s)
- Mohamad Zubair
- Division of Sex Differentiation, National Institute for Basic Biology, Myodaiji-cho, Okazaki 444-8787, Japan
| | | | | | | | | |
Collapse
|
129
|
Pearson JC, Lemons D, McGinnis W. Modulating Hox gene functions during animal body patterning. Nat Rev Genet 2006; 6:893-904. [PMID: 16341070 DOI: 10.1038/nrg1726] [Citation(s) in RCA: 630] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
With their power to shape animal morphology, few genes have captured the imagination of biologists as the evolutionarily conserved members of the Hox clusters have done. Recent research has provided new insight into how Hox proteins cause morphological diversity at the organismal and evolutionary levels. Furthermore, an expanding collection of sequences that are directly regulated by Hox proteins provides information on the specificity of target-gene activation, which might allow the successful prediction of novel Hox-response genes. Finally, the recent discovery of microRNA genes within the Hox gene clusters indicates yet another level of control by Hox genes in development and evolution.
Collapse
Affiliation(s)
- Joseph C Pearson
- Section in Cell & Developmental Biology, University of California, San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
130
|
Capellini TD, Di Giacomo G, Salsi V, Brendolan A, Ferretti E, Srivastava D, Zappavigna V, Selleri L. Pbx1/Pbx2 requirement for distal limb patterning is mediated by the hierarchical control of Hox gene spatial distribution and Shh expression. Development 2006; 133:2263-73. [PMID: 16672333 DOI: 10.1242/dev.02395] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vertebrate limb development occurs along three cardinal axes-proximodistal, anteroposterior and dorsoventral-that are established via the organization of signaling centers, such as the zone of polarizing activity (ZPA). Distal limb development, in turn, requires a molecular feedback loop between the ZPA expression of sonic hedgehog (Shh) and the apical ectodermal ridge. The TALE homeoprotein Pbx1 has been shown to be essential for proximal limb development. In this study, we first uncover that Pbx1 and Pbx2 are co-expressed in the lateral plate and early limb field mesoderm. Later, Pbx2 is expressed throughout the limb, unlike Pbx1, which is expressed only in the proximal bud. By exploiting a Pbx1/Pbx2 loss-of-function mouse model, we demonstrate that, despite the lack of limb abnormalities in Pbx2-deficient (Pbx2(-/-)) embryos, compound Pbx1(-/-); Pbx2(+/-) mutants, in addition to their exacerbated proximal limb defects, exhibit novel and severe distal abnormalities. Additionally, we reveal that Pbx1(-/-); Pbx2(-/-) embryos lack limbs altogether. Furthermore, we establish that, unlike in flies, where the leg develops independently of Hox and where the Pbx ortholog Exd is required for specification of proximal (but not distal) limbs, in vertebrates, distal limb patterning is Pbx1/Pbx2 dependent. Indeed, we demonstrate that Pbx genetic requirement is mediated, at least in part, through their hierarchical control of Hox spatial distribution and Shh expression. Overall, we establish that, by controlling the spatial expression of Hox genes in the posterior limb and regulating ZPA function, Pbx1/Pbx2 exert a primary hierarchical function on Hox genes, rather than behaving merely as Hox ancillary factors.
Collapse
Affiliation(s)
- Terence D Capellini
- Department of Cell and Developmental Biology, Cornell University Weill Medical School, New York, NY 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
131
|
Moens CB, Selleri L. Hox cofactors in vertebrate development. Dev Biol 2006; 291:193-206. [PMID: 16515781 DOI: 10.1016/j.ydbio.2005.10.032] [Citation(s) in RCA: 379] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2005] [Revised: 10/17/2005] [Accepted: 10/24/2005] [Indexed: 11/18/2022]
Abstract
Hox genes encode homeodomain-containing transcription factors that pattern the body axes of animal embryos. It is well established that the exquisite DNA-binding specificity that allows different Hox proteins to specify distinct structures along the body axis is frequently dependent on interactions with other DNA-binding proteins which act as Hox cofactors. These include the PBC and MEIS classes of TALE (Three Amino acid Loop Extension) homeodomain proteins. The PBC class comprises fly Extradenticle (Exd) and vertebrate Pbx homeoproteins, whereas the MEIS class includes fly Homothorax (Hth) and vertebrate Meis and Prep homeoproteins. Exd was first implicated as a Hox cofactor based on mutant phenotypes in the fly. In vertebrates, PBC and MEIS homeobox proteins play important roles in development and disease. In this review, we describe the evidence that these functions reflect a requirement for Pbx and Meis/Prep proteins as Hox cofactors. However, there is mounting evidence that, like in the fly, Pbx and Meis/Prep proteins function more broadly, and we also discuss how "Hox cofactors" function as partners for other, non-Hox transcription factors during development. Conversely, we review the evidence that Hox proteins have functions that are independent of Pbx and Meis/Prep cofactors and discuss the possibility that other proteins may participate in the DNA-bound Hox complex, contributing to DNA-binding specificity in the absence of, or in addition to, Pbx and Meis/Prep.
Collapse
Affiliation(s)
- Cecilia B Moens
- Division of Basic Science and HHMI, Fred Hutchinson Cancer Research Center, Seattle, WA 98115, USA.
| | | |
Collapse
|
132
|
Stultz BG, Jackson DG, Mortin MA, Yang X, Beachy PA, Hursh DA. Transcriptional activation by extradenticle in the Drosophila visceral mesoderm. Dev Biol 2006; 290:482-94. [PMID: 16403493 DOI: 10.1016/j.ydbio.2005.11.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Revised: 11/22/2005] [Accepted: 11/22/2005] [Indexed: 11/16/2022]
Abstract
decapentaplegic (dpp) is a direct target of Ultrabithorax (Ubx) in parasegment 7 (PS7) of the embryonic visceral mesoderm. We demonstrate that extradenticle (exd) and homothorax (hth) are also required for dpp expression in this location, as well as in PS3, at the site of the developing gastric caecae. A 420 bp element from dpp contains EXD binding sites necessary for expressing a reporter gene in both these locations. Using a specificity swap, we demonstrate that EXD directly activates this element in vivo. Activation does not require Ubx, demonstrating that EXD can activate transcription independently of homeotic proteins. Restoration is restricted to the domains of endogenous dpp expression, despite ubiquitous expression of altered specificity EXD. We demonstrate that nuclear EXD is more extensively phosphorylated than the cytoplasmic form, suggesting that EXD is a target of signal transduction by protein kinases.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Animals, Genetically Modified
- Binding Sites
- Blotting, Western
- Body Patterning
- Cell Nucleus/metabolism
- Crosses, Genetic
- Cytoplasm/metabolism
- Drosophila Proteins/genetics
- Drosophila Proteins/metabolism
- Drosophila Proteins/physiology
- Electrophoresis, Gel, Two-Dimensional
- Embryo, Nonmammalian/metabolism
- Enhancer Elements, Genetic
- Gene Expression Regulation, Developmental
- Genes, Reporter
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Homeodomain Proteins/physiology
- Immunoblotting
- Immunohistochemistry
- Mesoderm/metabolism
- Molecular Sequence Data
- Phosphorylation
- Protein Binding
- Protein Structure, Tertiary
- Signal Transduction
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription Factors/physiology
- Transcriptional Activation
- Transgenes
- beta-Galactosidase/metabolism
Collapse
Affiliation(s)
- Brian G Stultz
- Cellular and Tissue Therapy Branch, Center for Biologics Evaluation and Research, Food and Drug Administration, HFM-730, Bldg. 29B, Rm. 1E16, 8800 Rockville Pike, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
133
|
Di Giacomo G, Koss M, Capellini TD, Brendolan A, Pöpperl H, Selleri L. Spatio-temporal expression of Pbx3 during mouse organogenesis. Gene Expr Patterns 2006; 6:747-57. [PMID: 16434237 DOI: 10.1016/j.modgep.2005.12.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Revised: 12/09/2005] [Accepted: 12/13/2005] [Indexed: 10/25/2022]
Abstract
Pbx3 is a member of the Pbx family of TALE (three amino acid loop extension) class homeodomain transcription factors. These transcription factors are implicated in developmental and transcriptional gene regulation in numerous cell types through their abilities to form hetero-oligomeric DNA-binding complexes. Pbx3 was found to be expressed at high levels in the developing central nervous system (CNS), including a region of the medulla oblongata which is implicated in the control of respiration. Furthermore, as reported, Pbx3-deficient mice develop to term but die within a few hours of birth from central respiratory failure. In this study, we have characterized Pbx3 expression patterns during organogenesis in numerous tissues and organ systems other than the CNS, as a first step toward understanding the potentially overlapping functions of Pbx3 with other Pbx family members during vertebrate development. We have performed in situ hybridization on whole mount and sectioned mouse embryos from gestational day (E) 9 to E16.5. During early organogenesis, until E12.5, Pbx3 expression is found mostly in the embryonic head, forelimbs, and septum transversum, unlike Pbx1 and Pbx2 expression which is more widespread. Conversely, later in organogenesis, Pbx3 expression becomes more widely detectable throughout the developing embryo. Epithelial and mesenchymal tissues, as well as the CNS, represent major sites of Pbx3 expression. The enteric nervous system also expresses high levels of Pbx3, distinctively in the cells of the ganglia of Auerbach's myenteric nerve plexus, that also express Dlx2 and Notch1. Cartilage is also a site of Pbx3 expression. Interestingly, like Pbx1, Pbx3 is highly expressed in proliferating chondrocytes but is lost as chondrocytes become hypertrophic during endochondral ossification. Finally, Pbx3 is expressed only in the forelimb buds during early limb development, while the hindlimb bud is devoid of Pbx3. This finding leads us to add Pbx3 to the sparse list of early forelimb-specific molecular markers.
Collapse
Affiliation(s)
- Giuseppina Di Giacomo
- Department of Cell and Developmental Biology, Cornell University Weill Medical School, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
134
|
Abstract
Retinoid signaling plays an important role in the developmental patterning of the hindbrain. Studies of the teratogenic effects of retinoids showed early on that the hindbrain suffered patterning defects in cases of retinoid excess or deficiency. Closer examination of these effects in animal models suggested that retinoids might play a physiological role in specifying the antero-posterior axis of the hindbrain. This idea was supported by the localization of retinoid synthetic and degradative enzymes, binding proteins, and receptors to the hindbrain and neighboring regions of the neuroepithelium and the mesoderm. In parallel, it became clear that the molecular patterning of the hindbrain, in terms of the regionalized expression of Hox genes and other developmental regulatory genes, is profoundly influenced by retinoid signaling.
Collapse
Affiliation(s)
- Joel C Glover
- Department of Physiology, PB 1103 Blindern, University of Oslo, 0317 Oslo, Norway
| | | | | |
Collapse
|
135
|
Wada H, Escriva H, Zhang S, Laudet V. Conserved RARE localization in amphioxusHox clusters and implications forHox code evolution in the vertebrate neural crest. Dev Dyn 2006; 235:1522-31. [PMID: 16538655 DOI: 10.1002/dvdy.20730] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The Hox code in the neural crest cells plays an important role in the development of the complex craniofacial structures that are characteristic of vertebrates. Previously, 3' AmphiHox1 flanking region has been shown to drive gene expression in neural tubes and neural crest cells in a retinoic acid (RA)-dependent manner. In the present study, we found that the DR5-type RA response elements located at the 3' AmphiHox1 flanking region of Branchiostoma floridae are necessary and sufficient to express reporter genes in both the neural tube and neural crest cells of chick embryos, specifically at the post-otic level. The DR5 at the 3' flanking region of chick Hoxb1 is also capable of driving the same expression in chick embryos. We found that AmphiHox3 possesses a DR5-type RARE in its 5' flanking region, and this drives an expression pattern similar to the RARE element found in the 3' flanking region of AmphiHox1. Therefore, the location of these DR5-type RAREs is conserved in amphioxus and vertebrate Hox clusters. Our findings demonstrate that conserved RAREs mediate RA-dependent regulation of Hox genes in amphioxus and vertebrates, and in vertebrates this drives expression of Hox genes in both neural crest and neural tube. This suggests that Hox expression in vertebrate neural crest cells has evolved via the co-option of a pre-existing regulatory pathway that primitively regulated neural tube (and possibly epidermal) Hox expression.
Collapse
Affiliation(s)
- Hiroshi Wada
- Seto Marine Biological Laboratory, FSERC, Kyoto University, Wakayama, Japan.
| | | | | | | |
Collapse
|
136
|
Ferretti E, Cambronero F, Tümpel S, Longobardi E, Wiedemann LM, Blasi F, Krumlauf R. Hoxb1 enhancer and control of rhombomere 4 expression: complex interplay between PREP1-PBX1-HOXB1 binding sites. Mol Cell Biol 2005; 25:8541-52. [PMID: 16166636 PMCID: PMC1265741 DOI: 10.1128/mcb.25.19.8541-8552.2005] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Hoxb1 autoregulatory enhancer directs segmental expression in vertebrate hindbrain. Three conserved repeats (R1, R2, and R3) in the enhancer have been described as Pbx-Hoxb1 (PH) binding sites, and one Pbx-Meinox (PM) binding site has also been characterized. We have investigated the importance and relative roles of PH and PM binding sites with respect to protein interactions and in vivo regulatory activity. We have identified a new PM site (PM2) and found that it cooperates with the R3 PH site to form ternary Prep1-Pbx1-Hoxb1 complexes. In vivo, the combination of the R3 and PM2 sites is sufficient to mediate transgenic reporter activity in the developing chick hindbrain. In both chicken and mouse transgenic embryos, mutations of the PM1 and PM2 sites reveal that they cooperate to modulate in vivo regulatory activity of the Hoxb1 enhancer. Furthermore, we have shown that the R2 motif functions as a strong PM site, with a high binding affinity for Prep1-Pbx1 dimers, and renamed this site R2/PM3. In vitro R2/PM3, when combined with the PM1 and R3 motifs, inhibits ternary complex formation mediated by these elements and in vivo reduces and restricts reporter expression in transgenic embryos. These inhibitory effects appear to be a consequence of the high PM binding activity of the R2/PM3 site. Taken together, our results demonstrate that the activity of the Hoxb1 autoregulatory enhancer depends upon multiple Prep1-Pbx1 (PM1, PM2, and PM3) and Pbx1-Hoxb1 (R1 and R3) binding sites that cooperate to modulate and spatially restrict the expression of Hoxb1 in r4 rhombomere.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Animals, Genetically Modified
- Base Sequence
- Binding Sites
- Brain/embryology
- Brain/metabolism
- Cell Differentiation
- Cell Line
- Cell Nucleus/metabolism
- Chick Embryo
- Drosophila melanogaster
- Electroporation
- Embryo, Mammalian/metabolism
- Embryo, Nonmammalian
- Enhancer Elements, Genetic
- Gene Expression Regulation
- Gene Expression Regulation, Developmental
- Genes, Reporter
- Homeodomain Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Transgenic
- Molecular Sequence Data
- Neurons/metabolism
- Oligonucleotides/chemistry
- Pre-B-Cell Leukemia Transcription Factor 1
- Protein Binding
- Sequence Homology, Nucleic Acid
- Transcription Factors/metabolism
- Transgenes
Collapse
Affiliation(s)
- Elisabetta Ferretti
- Molecular Genetics Unit, Department of Molecular Biology and Functional Genomics, Istituto Scientifico H. San Raffaele, Università Vita Salute San Raffaele, via Olgettina 58, 20132 Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
137
|
Schwartz PH, Nethercott H, Kirov II, Ziaeian B, Young MJ, Klassen H. Expression of Neurodevelopmental Markers by Cultured Porcine Neural Precursor Cells. Stem Cells 2005; 23:1286-94. [PMID: 16100001 DOI: 10.1634/stemcells.2004-0306] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Despite the increasing importance of the pig as a large animal model, little is known about porcine neural precursor cells. To evaluate the markers expressed by these cells, brains were dissected from 60-day fetuses, enzymatically dissociated, and grown in the presence of epidermal growth factor, basic fibroblast growth factor, and platelet-derived growth factor. Porcine neural precursors could be grown as suspended spheres or adherent monolayers, depending on culture conditions. Expanded populations were banked or harvested for analysis using reverse transcription-polymerase chain reaction (RT-PCR), immunocytochemistry, microarrays, and flow cytometry, and results compared with data from analogous human forebrain progenitor cells. Cultured porcine neural precursors widely expressed neural cell adhesion molecule (NCAM), polysialic acid (PSA)-NCAM, vimentin, Ki-67, and Sox2. Minority subpopulations of cells expressed doublecortin, beta-III tubulin, synapsin I, glial fibrillary acidic protein (GFAP), and aquaporin 4 (AQP4) consistent with increased lineage restriction. A human microarray detected porcine transcripts for nogoA (RTN4) and stromal cell-derived factor 1 (SDF1), possibly cyclin D2 and Pbx1, but not CD133, Ki-67, nestin, or nucleostemin. Subsequent RT-PCR showed pig forebrain precursors to be positive for cyclin D2, nucleostemin, nogoA, Pbx1, vimentin, and a faint band for SDF1, whereas no signal was detected for CD133, fatty acid binding protein 7 (FABP7), or Ki-67. Human forebrain progenitor cells were positive for all the genes mentioned. This study shows that porcine neural precursors share many characteristics with their human counterparts and, thus, may be useful in porcine cell transplantation studies potentially leading to the application of this strategy in the setting of nervous system disease and injury.
Collapse
Affiliation(s)
- Philip H Schwartz
- National Human Neural Stem Cell Resource, Children's Hospital of Orange County, Research Institute, 455 South Main Street, Orange, California 92868-3874, USA
| | | | | | | | | | | |
Collapse
|
138
|
Brendolan A, Ferretti E, Salsi V, Moses K, Quaggin S, Blasi F, Cleary ML, Selleri L. A Pbx1-dependent genetic and transcriptional network regulates spleen ontogeny. Development 2005; 132:3113-26. [PMID: 15944191 DOI: 10.1242/dev.01884] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The genetic control of cell fate specification, morphogenesis and expansion of the spleen, a crucial lymphoid organ, is poorly understood. Recent studies of mutant mice implicate various transcription factors in spleen development, but the hierarchical relationships between these factors have not been explored. In this report, we establish a genetic network that regulates spleen ontogeny, by analyzing asplenic mice mutant for the transcription factors Pbx1, Hox11 (Tlx1), Nkx3.2 (Bapx1) and Pod1 (capsulin, Tcf21). We show that Hox11 and Nkx2.5, among the earliest known markers for splenic progenitor cells, are absent in the splenic anlage of Pbx1 homozygous mutant (-/-) embryos, implicating the TALE homeoprotein Pbx1 in splenic cell specification. Pbx1 and Hox11 genetically interact in spleen formation and loss of either is associated with a similar reduction of progenitor cell proliferation and failed expansion of the splenic anlage. Chromatin immunoprecipitation assays show that Pbx1 binds to the Hox11 promoter in spleen mesenchymal cells, which co-express Pbx1 and Hox11. Furthermore, Hox11 binds its own promoter in vivo and acts synergistically with TALE proteins to activate transcription, supporting its role in an auto-regulatory circuit. These studies establish a Pbx1-Hox11-dependent genetic and transcriptional pathway in spleen ontogeny. Additionally, we demonstrate that while Nkx3.2 and Pod1 control spleen development via separate pathways, Pbx1 genetically regulates key players in both pathways, and thus emerges as a central hierarchical co-regulator in spleen genesis.
Collapse
Affiliation(s)
- Andrea Brendolan
- Department of Cell and Developmental Biology, Cornell University, Weill Medical School, New York, NY, 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
139
|
Choe SK, Sagerström CG. Variable Meis-dependence among paralog group-1 Hox proteins. Biochem Biophys Res Commun 2005; 331:1384-91. [PMID: 15883028 DOI: 10.1016/j.bbrc.2005.04.063] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Indexed: 10/25/2022]
Abstract
Optimal function of Hox transcription factors may require Meis and Pbx cofactors. Here we test the in vivo Meis-dependence of two zebrafish paralog group-1 (PG1) Hox proteins. Misexpression of Hoxb1a induces ectopic gene expression throughout the anterior nervous system, while Hoxb1b induces ectopic expression primarily in hindbrain rhombomere 2. These activities are drastically reduced when endogenous Meis function is disrupted, demonstrating that both proteins are Meis-dependent. Upon addition of Meis3, Hoxb1b mimics the more severe Hoxb1a phenotype, indicating that Hoxb1b requires higher Meis levels than Hoxb1a. Using chimeric proteins we map this difference to the N-terminus, which contains the transcription activation domain. Lastly, we demonstrate strong genetic interactions between meis and PG1 hox genes, as well as between meis and pbx genes, in vivo. Our results are consistent with PG1 hox genes requiring pbx and meis function in vivo and reveal that different Hox proteins have distinct Meis requirements.
Collapse
Affiliation(s)
- Seong-Kyu Choe
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | | |
Collapse
|
140
|
Cobb J, Duboule D. Comparative analysis of genes downstream of the Hoxd cluster in developing digits and external genitalia. Development 2005; 132:3055-67. [PMID: 15944189 DOI: 10.1242/dev.01885] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mammalian Hox genes encode transcription factors that are crucial for proper morphogenesis along the various body axes. Despite their extensive structural and functional characterization, the nature of their target genes remains elusive. We have addressed this question by using DNA microarrays to screen for genes whose expression in developing distal forelimbs and genital eminences was significantly modified in the absence of the full Hoxd gene complement. This comparative approach not only identified specific candidate genes, but also allowed the examination of whether a similar Hox expression pattern in distinct tissues leads to the modulation of the same or different downstream genes. We report here a set of potential target genes, most of which were not previously known to play a role in the early stages of either limb or genital bud development. Interestingly, we find that the majority of these candidate genes are differentially expressed in both structures,although often at different times. This supports the idea that both appendices involve similar genetic controls, both upstream and downstream of the Hox gene family. These results highlight the surprising mechanistic relationship between these rather different body parts and suggest a common developmental strategy to build up the most distal appendicular structures of the body, i.e. the digits and the penis/clitoris.
Collapse
Affiliation(s)
- John Cobb
- National Research Center (NCCR Zoology and Animal Biology, University of Geneva, Sciences III, Quai Ernest Ansermet 30, 1211 Geneva 4, Switzerland
| | | |
Collapse
|
141
|
Akin ZN, Nazarali AJ. Hox genes and their candidate downstream targets in the developing central nervous system. Cell Mol Neurobiol 2005; 25:697-741. [PMID: 16075387 PMCID: PMC11529567 DOI: 10.1007/s10571-005-3971-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Accepted: 04/14/2004] [Indexed: 12/14/2022]
Abstract
1. Homeobox (Hox) genes were originally discovered in the fruit fly Drosophila, where they function through a conserved homeodomain as transcriptional regulators to control embryonic morphogenesis. Since then over 1000 homeodomain proteins have been identified in several species. In vertebrates, 39 Hox genes have been identified as homologs of the original Drosophila complex, and like their Drosophila counterparts they are organized within chromosomal clusters. Vertebrate Hox genes have also been shown to play a critical role in embryonic development as transcriptional regulators. 2. Both the Drosophila and vertebrate Hox genes have been shown to interact with various cofactors, such as the TALE homeodomain proteins, in recognition of consensus sequences within regulatory elements of their target genes. These protein-protein interactions are believed to contribute to enhancing the specificity of target gene recognition in a cell-type or tissue- dependent manner. The regulatory activity of a particular Hox protein on a specific regulatory element is highly variable and dependent on its interacting partners within the transcriptional complex. 3. In vertebrates, Hox genes display spatially restricted patterns of expression within the developing CNS, both along the anterioposterior and dorsoventral axis of the embryo. Their restricted gene expression is suggestive of a regulatory role in patterning of the CNS, as well as in cell specification. Determining the precise function of individual Hox genes in CNS morphogenesis through classical mutational analyses is complicated due to functional redundancy between Hox genes. 4. Understanding the precise mechanisms through which Hox genes mediate embryonic morphogenesis requires the identification of their downstream target genes. Although Hox genes have been implicated in the regulation of several pathways, few target genes have been shown to be under their direct regulatory control. Development of methodologies used for the isolation of target genes and for the analysis of putative targets will be beneficial in establishing the genetic pathways controlled by Hox factors. 5. Within the developing CNS various cell adhesion molecules and signaling molecules have been identified as candidate downstream target genes of Hox proteins. These targets play a role in processes such as cell migration and differentiation, and are implicated in contributing to neuronal processes such as plasticity and/or specification. Hence, Hox genes not only play a role in patterning of the CNS during early development, but may also contribute to cell specification and identity.
Collapse
Affiliation(s)
- Z. N. Akin
- Laboratory of Molecular Biology, College of Pharmacy and Nutrition, University of Saskatchewan, 116 Thorvaldson Building, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9 Canada
| | - A. J. Nazarali
- Laboratory of Molecular Biology, College of Pharmacy and Nutrition, University of Saskatchewan, 116 Thorvaldson Building, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9 Canada
| |
Collapse
|
142
|
Poulin F, Nobrega MA, Plajzer-Frick I, Holt A, Afzal V, Rubin EM, Pennacchio LA. In vivo characterization of a vertebrate ultraconserved enhancer. Genomics 2005; 85:774-81. [PMID: 15885503 DOI: 10.1016/j.ygeno.2005.03.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Revised: 03/04/2005] [Accepted: 03/07/2005] [Indexed: 02/03/2023]
Abstract
Genomic sequence comparisons among human, mouse, and pufferfish (Takifugu rubripes (Fugu)) have revealed a set of extremely conserved noncoding sequences. While this high degree of sequence conservation suggests severe evolutionary constraint and predicts a lack of tolerance to change to retain in vivo functionality, such elements have been minimally explored experimentally. In this study, we describe the in-depth characterization of an ancient conserved enhancer, Dc2, located near the dachshund gene, which displays a human-Fugu identity of 84% over 424 basepairs (bp). In addition to this large overall conservation, we find that Dc2 is characterized by the presence of a large block of sequence (144 bp) that is completely identical among human, mouse, chicken, zebrafish, and Fugu. Through the testing of reporter vector constructs in transgenic mice, we observed that the 424-bp Dc2-conserved element is necessary and sufficient for brain tissue enhancer activity. In vivo analyses also revealed that the 144-bp 100% conserved sequence is necessary, but not sufficient, to replicate Dc2 enhancer function. However, the introduction of two separate 16-bp insertions into the highly conserved enhancer core did not cause any detectable modification of its in vivo activity. Our observations indicate that the 144-bp 100% conserved element is tolerant of change at least at the resolution of this transgenic mouse assay and suggest that purifying selection on the Dc2 sequence might not be as strong as we predicted or that some unknown property also constrains this highly conserved enhancer sequence.
Collapse
Affiliation(s)
- Francis Poulin
- Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | | | | | | | | | | | | |
Collapse
|
143
|
Vermot J, Schuhbaur B, Le Mouellic H, McCaffery P, Garnier JM, Hentsch D, Brûlet P, Niederreither K, Chambon P, Dollé P, Le Roux I. Retinaldehyde dehydrogenase 2 and Hoxc8 are required in the murine brachial spinal cord for the specification of Lim1+ motoneurons and the correct distribution of Islet1+ motoneurons. Development 2005; 132:1611-21. [PMID: 15753214 DOI: 10.1242/dev.01718] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Retinoic acid (RA) activity plays sequential roles during the development of the ventral spinal cord. Here, we have investigated the functions of local RA synthesis in the process of motoneuron specification and early differentiation using a conditional knockout strategy that ablates the function of the retinaldehyde dehydrogenase 2 (Raldh2) synthesizing enzyme essentially in brachial motoneurons, and later in mesenchymal cells at the base of the forelimb. Mutant (Raldh2L-/-) embryos display an early embryonic loss of a subset of Lim1+ brachial motoneurons, a mispositioning of Islet1+ neurons and inappropriate axonal projections of one of the nerves innervating extensor limb muscles, which lead to an adult forepaw neuromuscular defect. The molecular basis of the Raldh2L-/- phenotype relies in part on the deregulation of Hoxc8, which in turn regulates the RA receptor RARbeta. We further show that Hoxc8 mutant mice, which exhibit a similar congenital forepaw defect, display at embryonic stages molecular defects that phenocopy the Raldh2L-/- motoneuron abnormalities. Thus, interdependent RA signaling and Hox gene functions are required for the specification of brachial motoneurons in the mouse.
Collapse
Affiliation(s)
- Julien Vermot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université Louis Pasteur, BP 10142, 67404 Illkirch Cedex, C.U. de Strasbourg, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Yang L, Sym M, Kenyon C. The roles of two C. elegans HOX co-factor orthologs in cell migration and vulva development. Development 2005; 132:1413-28. [PMID: 15750187 DOI: 10.1242/dev.01569] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Anteroposterior cell migration and patterning in C. elegans are governed by multiple, interacting signaling pathways and transcription factors. In this study, we have investigated the role of ceh-20, the C. elegans ortholog of the HOX co-factor Extradenticle (Exd/Pbx), and unc-62, the C. elegans ortholog of Homothorax (Hth/Meis/Prep), in two processes that are regulated by Hox gene lin-39: cell migration and vulva formation. As in lin-39 mutants, the anterior migrations of neuroblasts in the Q lineage are truncated in Hox co-factor mutants. Surprisingly, though, our findings suggested that the roles of ceh-20 and unc-62 are different from that of lin-39; specifically, ceh-20 and unc-62 but not lin-39 are required for the transmembrane protein MIG-13 to promote anterior migration. To our knowledge, ceh-20 and unc-62 are the only genes that have been implicated in the mig-13 pathway. We find that ceh-20 and unc-62 are also required for several steps in vulva development. Surprisingly, ceh-20 and unc-62 mutants have phenotypes that are starkly different from those of lin-39 mutants. Thus, in this process, too, ceh-20 and unc-62 are likely to have functions that are independent of lin-39.
Collapse
Affiliation(s)
- Lucie Yang
- Department of Biochemistry and Biophysics, University of California, San Francisco, Mission Bay Genentech Hall, 600 16th Street, Room S312A, San Francisco, CA 94143-2200, USA
| | | | | |
Collapse
|
145
|
Sirbu IO, Gresh L, Barra J, Duester G. Shifting boundaries of retinoic acid activity control hindbrain segmental gene expression. Development 2005; 132:2611-22. [PMID: 15872003 PMCID: PMC2833012 DOI: 10.1242/dev.01845] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Retinoic acid (RA) generated by Raldh2 in paraxial mesoderm is required for specification of the posterior hindbrain, including restriction of Hoxb1 expression to presumptive rhombomere 4 (r4). Hoxb1 expression requires 3' and 5' RA response elements for widespread induction up to r4 and for r3/r5 repression, but RA has previously been detected only from r5-r8, and vHnf1 is required for repression of Hoxb1 posterior to r4 in zebrafish. We demonstrate in mouse embryos that an RA signal initially travels from the paraxial mesoderm to r3, forming a boundary next to the r2 expression domain of Cyp26a1 (which encodes an RA-degrading enzyme). After Hoxb1 induction, the RA boundary quickly shifts to r4/r5, coincident with induction of Cyp26c1 in r4. A functional role for Cyp26c1 in RA degradation was established through examination of RA-treated embryos. Analysis of Raldh2-/- and vHnf1-/- embryos supports a direct role for RA in Hoxb1 induction up to r4 and repression in r3/r5, as well as an indirect role for RA in Hoxb1 repression posterior to r4 via RA induction of vHnf1 up to the r4/r5 boundary. Our findings suggest that Raldh2 and Cyp26 generate shifting boundaries of RA activity, such that r3-r4 receives a short pulse of RA and r5-r8 receives a long pulse of RA. These two pulses of RA activity function to establish expression of Hoxb1 and vHnf1 on opposite sides of the r4/r5 boundary.
Collapse
Affiliation(s)
- Ioan Ovidiu Sirbu
- OncoDevelopmental Biology Program, Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Lionel Gresh
- Unité d’Expression Génétique et Maladie URA 1644, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Jacqueline Barra
- Unité de Biologie du Développement URA 2578, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Gregg Duester
- OncoDevelopmental Biology Program, Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
- Author for correspondence ()
| |
Collapse
|
146
|
Chambeyron S, Da Silva NR, Lawson KA, Bickmore WA. Nuclear re-organisation of the Hoxb complex during mouse embryonic development. Development 2005; 132:2215-23. [PMID: 15829525 DOI: 10.1242/dev.01813] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The spatial and temporal co-linear expression of Hox genes during development is an exquisite example of programmed gene expression. The precise mechanisms underpinning this are not known. Analysis of Hoxbchromatin structure and nuclear organisation, during the differentiation of murine ES cells, has lent support to the idea that there is a progressive`opening' of chromatin structure propagated through Hox clusters from 3′to 5′, which contributes to the sequential activation of gene expression. Here, we show that similar events occur in vivo in at least two stages of development. The first changes in chromatin structure and nuclear organisation were detected during gastrulation in the Hoxb1-expressing posterior primitive streak region: Hoxbchromatin was decondensed and the Hoxb1 locus looped out from its chromosome territory, in contrast to non-expressing Hoxb9, which remained within the chromosome territory. At E9.5, when differential Hox expression along the anteroposterior axis is being established, we found concomitant changes in the organisation of Hoxb. Hoxb organisation differed between regions of the neural tube that had never expressed Hoxb [rhombomeres (r) 1 and 2], strongly expressed Hoxb1 but not b9 (r4), had downregulated Hoxb1 (r5), expressed Hoxb9 but not Hoxb1 (spinal cord), and expressed both genes(tail bud). We conclude that Hoxb chromatin decondensation and nuclear re-organisation is regulated in different parts of the developing embryo, and at different developmental stages. The differential nuclear organisation of Hoxb along the anteroposterior axis of the developing neural tube is coherent with co-linear Hox gene expression. In early development nuclear re-organisation is coupled to Hoxb expression,but does not anticipate it.
Collapse
|
147
|
Li JYH, Lao Z, Joyner AL. New regulatory interactions and cellular responses in the isthmic organizer region revealed by altering Gbx2 expression. Development 2005; 132:1971-81. [PMID: 15790971 DOI: 10.1242/dev.01727] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mouse homeobox gene Gbx2 is first expressed throughout the posterior region of the embryo during gastrulation, and becomes restricted to rhombomeres 1-3 (r1-3) by embryonic day 8.5 (E8.5). Previous studies have shown that r1-3 do not develop in Gbx2 mutants and that there is an early caudal expansion of the midbrain gene Otx2 to the anterior border of r4. Furthermore, expression of Wnt1 and Fgf8, two crucial components of the isthmic organizer, is no longer segregated to adjacent domains in Gbx2 mutants. In this study, we extend the phenotypic analysis of Gbx2 mutants by showing that Gbx2 is not only required for development of r1-3, but also for normal gene expression in r4-6. To determine whether Gbx2 can alter hindbrain development, we generated Hoxb1-Gbx2 (HG) transgenic mice in which Gbx2 is ectopically expressed in r4. We show that Gbx2 is not sufficient to induce r1-3 development in r4. To test whether an Otx2/Gbx2 interface can induce r1-3 development, we introduced the HG transgene onto a Gbx2-null mutant background and recreated a new Otx2/Gbx2 border in the anterior hindbrain. Development of r3, but not r1 and r2, is rescued in Gbx2–/–; HG embryos. In addition, the normal spatial relationship of Wnt1 and Fgf8 is established at the new Otx2/Gbx2 border, demonstrating that an interaction between Otx2 and Gbx2 is sufficient to produce the normal pattern of Wnt1 and Fgf8 expression. However, the expression domains of Fgf8 and Spry1, a downstream target of Fgf8, are greatly reduced in mid/hindbrain junction area of Gbx2–/–; HG embryos and the posterior midbrain is truncated because of abnormal cell death. Interestingly, we show that increased cell death and a partial loss of the midbrain are associated with increased expression of Fgf8 and Spry1 in Gbx2conditional mutants that lack Gbx2 in r1 after E9.0. These results together suggest that cell survival in the posterior midbrain is positively or negatively regulated by Fgf8, depending on Fgf8 expression level. Our studies provide new insights into the regulatory interactions that maintain isthmic organizer gene expression and the consequences of altered levels of organizer gene expression on cell survival.
Collapse
Affiliation(s)
- James Y H Li
- Howard Hughes Medical Institute and Developmental Genetics Program, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA.
| | | | | |
Collapse
|
148
|
Ebner A, Cabernard C, Affolter M, Merabet S. Recognition of distinct target sites by a unique Labial/Extradenticle/Homothorax complex. Development 2005; 132:1591-600. [PMID: 15753213 DOI: 10.1242/dev.01721] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hox genes encode evolutionarily conserved transcriptional regulators, which define regional identities along the anteroposterior axis of multicellular animals. In Drosophila, Hox proteins bind to target DNA sequences in association with the Extradenticle (Exd) and Homothorax (Hth) co-factors. The current model of Hox-binding selectivity proposes that the nucleotide sequence identity defines the Hox protein engaged in the trimeric complex, implying that distinct Hox/Exd/Hth complexes select different binding sites and that a given Hox/Exd/Hth complex recognizes a consensus DNA sequence. Here, we report that the regulation of a newly identified Lab target gene does not rely on the previously established consensus Lab/Exd/Hth-binding site, but on a strongly divergent sequence. Thus Lab, and most probably other Hox proteins, selects different DNA sequences in regulating downstream target genes. These observations have implications with regard to the current model of Hox-binding selectivity.
Collapse
Affiliation(s)
- Andreas Ebner
- Biozentrum der Universität Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | | | |
Collapse
|
149
|
Tabariès S, Lapointe J, Besch T, Carter M, Woollard J, Tuggle CK, Jeannotte L. Cdx protein interaction with Hoxa5 regulatory sequences contributes to Hoxa5 regional expression along the axial skeleton. Mol Cell Biol 2005; 25:1389-401. [PMID: 15684390 PMCID: PMC548006 DOI: 10.1128/mcb.25.4.1389-1401.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hox gene functions are intimately linked to correct developmental expression of the genes. The identification of cis-acting regulatory sequences and their associated trans-acting factors constitutes a key step in deciphering the mechanisms underlying the correct positioning of the functional domain of Hox genes along the anterior-posterior axis. We have identified DNA elements driving Hoxa5 regionalized expression in mice, using the 2.1-kb mesodermal enhancer (MES) localized in Hoxa5 3' flanking sequences as a starting point. The MES sequence comprises regulatory elements targeting Hoxa5 expression in the limbs, the urogenital and gastrointestinal tracts, and the cervical-upper thoracic region of the prevertebral column. A 164-bp DNA fragment within the MES caudally restricts Hoxa5 expression at the level of prevertebra 10, corresponding to the posterior limit of its functional domain. Cdx proteins directly bind to this element in vitro via two conserved sites. Preventing Cdx binding by mutating the sites causes caudal expansion of the transgene expression domain. Of all three murine Cdx proteins that bind this element in vitro, Cdx4 has emerged as a potential regional posterior repressor of Hoxa5 expression. The restrictive control provided by Cdx interactions with Hoxa5 regulatory sequences may be one of the critical events in cervicothoracic axial specification.
Collapse
Affiliation(s)
- Sébastien Tabariès
- Centre de Recherche de L'Hôtel-Dieu de Québec, 9 rue McMahon, Québec, QC G1R 2J6, Canada.
| | | | | | | | | | | | | |
Collapse
|
150
|
Huang H, Rastegar M, Bodner C, Goh SL, Rambaldi I, Featherstone M. MEIS C Termini Harbor Transcriptional Activation Domains That Respond to Cell Signaling. J Biol Chem 2005; 280:10119-27. [PMID: 15654074 DOI: 10.1074/jbc.m413963200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MEIS proteins form heteromeric DNA-binding complexes with PBX monomers and PBX.HOX heterodimers. We have shown previously that transcriptional activation by PBX.HOX is augmented by either protein kinase A (PKA) or the histone deacetylase inhibitor trichostatin A (TSA). To examine the contribution of MEIS proteins to this response, we used the chromatin immunoprecipitation assay to show that MEIS1 in addition to PBX1, HOXA1, and HOXB1 was recruited to a known PBX.HOX target, the Hoxb1 autoregulatory element following Hoxb1 transcriptional activation in P19 cells. Subsequent to TSA treatment, MEIS1 recruitment lagged behind that of HOX and PBX partners. MEIS1A also enhanced the transcriptional activation of a reporter construct bearing the Hoxb1 autoregulatory element after treatment with TSA. The MEIS1 homeodomain and protein-protein interaction with PBX contributed to this activity. We further mapped TSA-responsive and CREB-binding protein-dependent PKA-responsive transactivation domains to the MEIS1A and MEIS1B C termini. Fine mutation of the 56-residue MEIS1A C terminus revealed four discrete regions required for transcriptional activation function. All of the mutations impairing the response to TSA likewise reduced activation by PKA, implying a common mechanistic basis. C-terminal deletion of MEIS1 impaired transactivation without disrupting DNA binding or complex formation with HOX and PBX. Despite sequence similarity to MEIS and a shared ability to form heteromeric complexes with PBX and HOX partners, the PREP1 C terminus does not respond to TSA or PKA. Thus, MEIS C termini possess transcriptional regulatory domains that respond to cell signaling and confer functional differences between MEIS and PREP proteins.
Collapse
Affiliation(s)
- He Huang
- McGill Cancer Centre, McGill University, 3655 Promenade Sir William Osler, Montréal, Québec H3G 1Y6, Canada
| | | | | | | | | | | |
Collapse
|