101
|
Greenacre SA, Ischiropoulos H. Tyrosine nitration: localisation, quantification, consequences for protein function and signal transduction. Free Radic Res 2001; 34:541-81. [PMID: 11697033 DOI: 10.1080/10715760100300471] [Citation(s) in RCA: 383] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The nitration of free tyrosine or protein tyrosine residues generates 3-nitrotyrosine the detection of which has been utilised as a footprint for the in vivo formation of peroxynitrite and other reactive nitrogen species. The detection of 3-nitrotyrosine by analytical and immunological techniques has established that tyrosine nitration occurs under physiological conditions and levels increase in most disease states. This review provides an updated, comprehensive and detailed summary of the tissue, cellular and specific protein localisation of 3-nitrotyrosine and its quantification. The potential consequences of nitration to protein function and the pathogenesis of disease are also examined together with the possible effects of protein nitration on signal transduction pathways and on the metabolism of proteins.
Collapse
Affiliation(s)
- S A Greenacre
- Centre for Cardiovascular Biology and Medicine and Wolfson Centre for Age-related Disease, King's College London, Guy's Campus, London, SE1 1UL, UK
| | | |
Collapse
|
102
|
Liu JS, Zhao ML, Brosnan CF, Lee SC. Expression of inducible nitric oxide synthase and nitrotyrosine in multiple sclerosis lesions. THE AMERICAN JOURNAL OF PATHOLOGY 2001; 158:2057-66. [PMID: 11395383 PMCID: PMC1891989 DOI: 10.1016/s0002-9440(10)64677-9] [Citation(s) in RCA: 243] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nitric oxide generated by the inducible form of nitric oxide synthase (iNOS) may contribute to the pathogenesis of multiple sclerosis (MS). In this report, we studied postmortem tissues of MS patients for the expression of iNOS by in situ hybridization and immunocytochemistry. Immunocytochemistry for nitrotyrosine, a putative footprint for peroxynitrite formation was also performed. In acute MS lesions, intense reactivity for iNOS mRNA and protein was detected in reactive astrocytes throughout the lesion and in adjacent normal appearing white matter. Staining of macrophages, inflammatory cell infiltrates, and endothelial cells was variable from case to case, but generally detected only in acute lesions. In chronic MS lesions reactive astrocytes at the lesion edge were positive for iNOS whereas the lesion center was nonreactive. Normal appearing white matter demonstrated little reactivity, as did tissues from noninflamed control brains. Staining for nitrotyrosine was also detected in acute but not chronic MS lesions, and displayed a diffuse parenchymal, membranous, and perivascular pattern of immunoreactivity. These results support the conclusion that iNOS is induced in multiple cell types in MS lesions and that astrocyte-derived nitric oxide could be important in orchestrating inflammatory responses in MS, particularly at the blood-brain barrier.
Collapse
Affiliation(s)
- J S Liu
- Department of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
103
|
Xu LY, Yang JS, Link H, Xiao BG. SIN-1, a nitric oxide donor, ameliorates experimental allergic encephalomyelitis in Lewis rats in the incipient phase: the importance of the time window. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:5810-6. [PMID: 11313425 DOI: 10.4049/jimmunol.166.9.5810] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NO is involved in the regulation of immune responses. The role of NO in the pathogenesis of experimental allergic encephalomyelitis (EAE) is controversial. In this study, 3-morpholinosydnonimine (SIN-1), an NO donor, was administered to Lewis rats on days 5-7 postimmunization, i.e., during the incipient phase of EAE. SIN-1 reduced clinical signs of EAE compared with those in PBS-treated control rats and was accompanied by reduced ED1(+) macrophages and CD4(+) T cell infiltration within the CNS. Blood mononuclear cells (MNC) obtained on day 14 postimmunization revealed that SIN-1 administration enhanced NO and IFN-gamma production by blood MNC and suppressed Ag- and mitogen-induced proliferative responses. MHC class II, B7-1 and B7-2 were down-regulated in SIN-1-treated EAE rats. Simultaneously, frequencies of apoptotic cells among blood MNC were increased. In vivo, SIN-1 is likely to behave as an NO donor. Administration of SIN-1 induced NO production, but did not affect superoxide and peroxynitrite formation. Enhanced NO production during the priming phase of EAE thus promotes apoptosis, down-regulates disease-promoting immune reactivities, and ameliorates clinical EAE, mainly through SIN-1-derived NO, without depending on NO synthase.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/therapeutic use
- Amino Acid Sequence
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/administration & dosage
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Antigens, CD/biosynthesis
- B7-1 Antigen/biosynthesis
- B7-2 Antigen
- Cell Membrane/immunology
- Cell Membrane/metabolism
- Cell Movement/drug effects
- Cell Movement/immunology
- Down-Regulation/immunology
- Drug Administration Schedule
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/prevention & control
- Guinea Pigs
- Histocompatibility Antigens Class II/biosynthesis
- Immunosuppressive Agents/administration & dosage
- Immunosuppressive Agents/therapeutic use
- Injections, Intraperitoneal
- Interferon-gamma/biosynthesis
- Interferon-gamma/metabolism
- Leukocyte Count
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Lymphocyte Activation/drug effects
- Membrane Glycoproteins/antagonists & inhibitors
- Membrane Glycoproteins/biosynthesis
- Molecular Sequence Data
- Molsidomine/administration & dosage
- Molsidomine/analogs & derivatives
- Molsidomine/therapeutic use
- Myelin Basic Protein/immunology
- Nitric Oxide/biosynthesis
- Nitric Oxide Donors/administration & dosage
- Nitric Oxide Donors/therapeutic use
- Peptide Fragments/immunology
- Rats
- Rats, Inbred Lew
- Spinal Cord/pathology
Collapse
Affiliation(s)
- L Y Xu
- Experimental Neurobiology and Neuroimmunology Units, Division of Neurology, Karolinska Institute, Huddinge University Hospital, Stockholm, Sweden
| | | | | | | |
Collapse
|
104
|
Wingerchuk DM, Lucchinetti CF, Noseworthy JH. Multiple sclerosis: current pathophysiological concepts. J Transl Med 2001; 81:263-81. [PMID: 11310820 DOI: 10.1038/labinvest.3780235] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Multiple sclerosis (MS) is an often disabling disease primarily affecting young adults that exhibits extraordinary clinical, radiological, and pathological heterogeneity. We review the following: (a) known environmental and genetic factors that contribute to MS susceptibility; (b) current knowledge regarding fundamental pathophysiological processes in MS, including immune cell recruitment and entry into the central nervous system (CNS), formation of the plaque, and orchestration of the immune response; (c) descriptive and qualitative distinct pathological patterns in MS and their implications; (d) the evidence supporting the causative role of direct toxins, cell-mediated and humorally mediated immune mechanisms, and the concept of a "primary oligodendrogliopathy" in demyelination and axonal injury; (e) the potential benefits of inflammation; (f) the prospects for remyelination; and (g) therapeutic implications and approaches suggested by putative pathophysiological mechanisms.
Collapse
Affiliation(s)
- D M Wingerchuk
- Department of Neurology, Mayo Clinic, Scottsdale, Arizona, USA
| | | | | |
Collapse
|
105
|
Kieseier BC, Storch MK, Hartung HP. Toxic effector molecules in the pathogenesis of immune-mediated disorders of the central nervous system. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2001; 59:69-80. [PMID: 10961420 DOI: 10.1007/978-3-7091-6781-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A growing body of evidence supports the notion that inflammatory reactions in the central nervous system (CNS) are not only restricted to established immune mediated disorders, such as multiple sclerosis, but also contribute to the pathogenesis of Alzheimer's disease and other types of neurodegenerative disorders. The biological roles of toxic mediators, such as nitric oxide, reactive oxygen species, as well as complement and proteases in the genesis of inflammatory reactions in the CNS are reviewed within the context of demyelination and neuronal damage.
Collapse
Affiliation(s)
- B C Kieseier
- Department of Neurology, Karl-Franzens-University, Graz, Austria
| | | | | |
Collapse
|
106
|
Boullerne AI, Nedelkoska L, Benjamins JA. Role of calcium in nitric oxide-induced cytotoxicity: EGTA protects mouse oligodendrocytes. J Neurosci Res 2001; 63:124-35. [PMID: 11169622 DOI: 10.1002/1097-4547(20010115)63:2<124::aid-jnr1004>3.0.co;2-c] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Active nitrogen species are overproduced in inflammatory brain lesions in multiple sclerosis (MS) and experimental allergic encephalomyelitis (EAE). NO has been shown to mediate the death of oligodendrocytes (OLs), a primary target of damage in MS. To develop strategies to protect OLs, we examined the mechanisms of cytotoxicity of two NO donors, S-nitroso-N-acetyl-penicillamine (SNAP) and sodium nitroprusside (SNP) on mature mouse OLs. Nitrosonium ion (NO+) rather than NO. mediates damage with both SNAP and SNP, as shown by significant protection with hemoglobin (HbO2), but not with the NO. scavenger PTIO. SNAP and SNP differ in time course and mechanisms of killing OLs. With SNAP, OL death is delayed for at least 6 hr, but with SNP, OL death is continuous over 18 hr with no delay. Relative to NO release, SNP is more toxic than SNAP, due to synergism of NO with cyanide released by SNP. SNAP elicits a Ca2+ influx in over half of the OLs within min. Further, OL death due to NO release from SNAP is Ca2+-dependent, because the Ca2+ chelator EGTA protects OLs from killing by SNAP, and also from killing by the NONOates NOC-9 and NOC-18, which spontaneously release NO. SNP does not elicit a Ca2+ influx, and EGTA is not protective. In comparison to the N20.1 OL cell line (Boullerne et al., [1999] J. Neurochem. 72:1050-1060), mature OLs are (1) more sensitive to SNAP, (2) much more resistant to SNP, (3) sensitive to cyanide, but not iron, and (4) exhibit a Ca2+ influx and EGTA protection in response to NO generated by SNAP.
Collapse
Affiliation(s)
- A I Boullerne
- Department of Neurology, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| | | | | |
Collapse
|
107
|
Scott GS, Hooper DC. The role of uric acid in protection against peroxynitrite-mediated pathology. Med Hypotheses 2001; 56:95-100. [PMID: 11133262 DOI: 10.1054/mehy.2000.1118] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Peroxynitrite, the product of the free radicals nitric oxide and superoxide, has been implicated in the pathogenesis of inflammatory CNS disorders. Uric acid, an effective scavenger of peroxynitrite, is a purine metabolite present at high levels in the serum of hominoids relative to lower-order animals due to the functional deletion of urate oxidase. Raising the normally low levels of uric acid in mice is therapeutic for experimental allergic encephalomyelitis, an animal model of multiple sclerosis. This therapeutic activity of uric acid is associated with the inhibition of peroxynitrite-induced tissue damage, blood-CNS barrier permeability changes, and CNS inflammation. Based on these findings we have concluded that peroxynitrite has an important role in promoting enhanced vascular permeability and inflammatory cell extravasation. We hypothesize that higher uric acid levels in hominoids evolved to protect against this process.
Collapse
Affiliation(s)
- G S Scott
- Department of Microbiology and Immunology and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
108
|
Koprowski H, Spitsin SV, Hooper DC. Prospects for the treatment of multiple sclerosis by raising serum levels of uric acid, a scavenger of peroxynitrite. Ann Neurol 2001; 49:139. [PMID: 11198290 DOI: 10.1002/1531-8249(200101)49:1<139::aid-ana28>3.0.co;2-a] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
109
|
Emerson MR, LeVine SM. Heme oxygenase-1 and NADPH cytochrome P450 reductase expression in experimental allergic encephalomyelitis: an expanded view of the stress response. J Neurochem 2000; 75:2555-62. [PMID: 11080209 DOI: 10.1046/j.1471-4159.2000.0752555.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Oxidative stress is implicated in the pathogenesis of experimental allergic encephalomyelitis (EAE), a model for multiple sclerosis. Heme oxygenase-1 (HO-1) is a heat shock protein induced by oxidative stress. HO-1 metabolizes the pro-oxidant heme to the antioxidant biliverdin and CO. HO-1 requires electrons, donated by NADPH cytochrome P450 reductase (henceforth, reductase), for catalytic activity. EAE was induced with a peptide of proteolipid protein in SJL mice, and the expression of HO-1 and reductase in the hindbrain was analyzed. HO-1 protein levels were significantly increased in EAE animals compared with control mice. HO-1 expression was present in ameboid macrophages, reactive microglia, and astrocytes in white matter tracks. Bergmann glia and ameboid macrophages also were occasionally stained in the molecular layer of the cerebellum. Unlike HO-1, reductase protein levels decreased with disease severity. HO-1 and reductase were associated with each other in endoplasmic reticulum micelles, suggesting that the decrease in reductase does not interfere with its association with HO-1. In cells that express HO-1, the association of reductase with HO-1 should competitively inhibit the interaction of reductase with cytochrome P450 isozymes and thereby limit free radical production as the latter two enzymes act cooperatively to produce superoxide. The increase in HO-1 together with the decrease in reductase may be part of a common defense mechanism attempting to minimize tissue damage in several neurological conditions.
Collapse
Affiliation(s)
- M R Emerson
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | |
Collapse
|
110
|
Kean RB, Spitsin SV, Mikheeva T, Scott GS, Hooper DC. The peroxynitrite scavenger uric acid prevents inflammatory cell invasion into the central nervous system in experimental allergic encephalomyelitis through maintenance of blood-central nervous system barrier integrity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:6511-8. [PMID: 11086092 DOI: 10.4049/jimmunol.165.11.6511] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Uric acid (UA), a product of purine metabolism, is a known scavenger of peroxynitrite (ONOO(-)), which has been implicated in the pathogenesis of multiple sclerosis and experimental allergic encephalomyelitis (EAE). To determine whether the known therapeutic action of UA in EAE is mediated through its capacity to inactivate ONOO(-) or some other immunoregulatory phenomenon, the effects of UA on Ag presentation, T cell reactivity, Ab production, and evidence of CNS inflammation were assessed. The inclusion of physiological levels of UA in culture effectively inhibited ONOO(-)-mediated oxidation as well as tyrosine nitration, which has been associated with damage in EAE and multiple sclerosis, but had no inhibitory effect on the T cell-proliferative response to myelin basic protein (MBP) or on APC function. In addition, UA treatment was found to have no notable effect on the development of the immune response to MBP in vivo, as measured by the production of MBP-specific Ab and the induction of MBP-specific T cells. The appearance of cells expressing mRNA for inducible NO synthase in the circulation of MBP-immunized mice was also unaffected by UA treatment. However, in UA-treated animals, the blood-CNS barrier breakdown normally associated with EAE did not occur, and inducible NO synthase-positive cells most often failed to reach CNS tissue. These findings are consistent with the notion that UA is therapeutic in EAE by inactivating ONOO(-), or a related molecule, which is produced by activated monocytes and contributes to both enhanced blood-CNS barrier permeability as well as CNS tissue pathology.
Collapse
MESH Headings
- Animals
- Blood-Brain Barrier/drug effects
- Blood-Brain Barrier/immunology
- Capillary Permeability/drug effects
- Capillary Permeability/immunology
- Cell Movement/drug effects
- Cell Movement/immunology
- Central Nervous System/immunology
- Central Nervous System/pathology
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/physiopathology
- Female
- Free Radical Scavengers/administration & dosage
- Free Radical Scavengers/metabolism
- Free Radical Scavengers/pharmacology
- Injections, Intraperitoneal
- Injections, Subcutaneous
- Macrophages, Peritoneal/drug effects
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/metabolism
- Mice
- Mice, Inbred Strains
- Myelin Basic Protein/administration & dosage
- Myelin Basic Protein/immunology
- Nitrates/antagonists & inhibitors
- Nitrates/metabolism
- Oxidation-Reduction
- Uric Acid/administration & dosage
- Uric Acid/metabolism
- Uric Acid/pharmacology
Collapse
Affiliation(s)
- R B Kean
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | |
Collapse
|
111
|
Schluesener HJ, Seid K. Heme oxygenase-1 in lesions of rat experimental autoimmune encephalomyelitis and neuritis. J Neuroimmunol 2000; 110:114-20. [PMID: 11024540 DOI: 10.1016/s0165-5728(00)00352-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The enzyme heme oxygenase-1 (HO-1) is reducing heme to the gaseous mediator carbon monoxide, to iron and the antioxidant biliverdin. The inducible expression of HO-1 is considered a protective cellular mechanism against reactive oxygen intermediates. Further, carbon monoxide (CO) is a regulator of cGMP synthesis, of NO-synthetases and cyclooxygenases, thereby indirectly modulating reactive processes. Here we report expression of HO-1 in rat experimental autoimmune encephalomyelitis (EAE) and neuritis (EAN). With both models, similar results were obtained: HO-1 was localized predominantly to infiltrating, monocytic, but only rarely to ramified microglial cells or astrocytes surrounding the inflammatory lesions. Prominent expression by monocytic cells was seen from day 11 after immunization correlating with the development of neurologic disease. Further, local expression is persistent for long after cessation of neurologic signs. Thus, HO-1 could be considered a factor in the formation and resolution of inflammatory autoimmune lesions of the nervous system.
Collapse
Affiliation(s)
- H J Schluesener
- Institute of Brain Research, University of Tübingen, Calwer Str. 3, D-72076, Tübingen, Germany.
| | | |
Collapse
|
112
|
Lu F, Selak M, O'Connor J, Croul S, Lorenzana C, Butunoi C, Kalman B. Oxidative damage to mitochondrial DNA and activity of mitochondrial enzymes in chronic active lesions of multiple sclerosis. J Neurol Sci 2000; 177:95-103. [PMID: 10980305 DOI: 10.1016/s0022-510x(00)00343-9] [Citation(s) in RCA: 240] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Soluble products of activated immune cells include reactive oxygen species (ROS) and nitric oxide (NO) with a high potential to induce biochemical modifications and degenerative changes in areas of inflammation in the central nervous system (CNS). Previously, we demonstrated an increased production of ROS by activated mononuclear cells (MNC) of patients with multiple sclerosis (MS) compared to those of controls, and development of oxidative damage to total DNA in association with inflammation in chronic active plaques. The current study aimed to determine whether mitochondrial (mt)DNA is affected by oxidative damage, and whether oxidative damage to mitochondrial macromolecules (including mtDNA) is associated with a decline in the activity of mitochondrial enzyme complexes. Using molecular and biochemical methods we demonstrate a trend for impaired NADH dehydrogenase (DH) activity and a possible compensatory increase in complex IV activity in association with oxidative damage to mtDNA in chronic active plaques. Immunohistochemistry confirms the increase of oxidative damage to DNA predominantly located in the cytoplasmic compartment of cells in chronic active plaques. These observations suggest that oxidative damage to macromolecules develops in association with inflammation in the CNS, and may contribute to a decline of energy metabolism in affected cells. As observed in neurodegenerative diseases of non-inflammatory origin, decreased ATP synthesis can ultimately lead to cell death or degeneration. Therefore, elucidation of this pathway in MS deserves further studies which may identify neuroprotective strategies to prevent tissue degeneration and the associated clinical disability.
Collapse
Affiliation(s)
- F Lu
- Department of Neurology, MS 406 MCP-Hahnemann University, 245 North 15th Street, Philadelphia, PA 19102, USA
| | | | | | | | | | | | | |
Collapse
|
113
|
Cross AH, San M, Stern MK, Keeling RM, Salvemini D, Misko TP. A catalyst of peroxynitrite decomposition inhibits murine experimental autoimmune encephalomyelitis. J Neuroimmunol 2000; 107:21-8. [PMID: 10808047 DOI: 10.1016/s0165-5728(00)00242-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Peroxynitrite (PN), the product of nitric oxide (NO) reacted with superoxide, is generated at sites of inflammation. Nitrotyrosine (NT), a marker of PN formation, is abundant in lesions of acute experimental autoimmune encephalomyelitis (EAE), and in active multiple sclerosis (MS) plaques. To determine whether PN plays a role in EAE pathogenesis, mice induced to develop EAE were treated with a catalyst specific for the decomposition of PN. Because this catalyst has no effect upon NO, using it allowed differentiation of PN-mediated effects from NO-mediated effects. Mice receiving the PN decomposition catalyst displayed less severe clinical disease, and less inflammation and demyelination than control mice. Encephalitogenic T cells could be recovered from catalyst-treated mice, indicating that the PN decomposition catalyst blocked the pathogenic action of PN at the effector stage of EAE, but was not directly toxic to encephalitogenic T cells. PN plays an important role distinct from that of NO in the pathogenesis of EAE, a major model for MS.
Collapse
Affiliation(s)
- A H Cross
- Department of Neurology and Neurosurgery, Washington University School of Medicine, Box 8111, 660 S. Euclid, St. Louis, MO 63110, USA.
| | | | | | | | | | | |
Collapse
|
114
|
Matés JM, Pérez-Gómez C, Olalla L, Segura JM, Blanca M. Allergy to drugs: antioxidant enzymic activities, lipid peroxidation and protein oxidative damage in human blood. Cell Biochem Funct 2000; 18:77-84. [PMID: 10814964 DOI: 10.1002/(sici)1099-0844(200006)18:2<77::aid-cbf851>3.0.co;2-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Reactive oxygen species lead to lipid peroxidation and specific oxidation of some specific enzymes, proteins and other macromolecules, thus affecting many intra- and intercellular systems. Recently, antioxidant functions have been linked to anti-inflammatory properties. Cell defences against toxic oxygen include antioxidant enzymes. We studied the enzymic antioxidant capacity in human blood of both erythrocytes and mononuclear cells from patients suffering from an allergic reaction to different drugs. We determined superoxide dismutases (SODs), glutathione peroxidase (GSHPx) and catalase (CAT) activities in each cell type. We also determined the extent of thiobarbituric acid reactive substances (TBARS) and the oxidative damage to proteins, in order to study the correlation between the cellular enzymic activities, the oxidative status and the allergic reaction. In mononuclear cells from allergic patients, SODs and CAT activities were enhanced compared with controls. Conversely, a decrease in GSHPx activity was found. In erythrocytes, higher values for CAT, GSHPx and SODs activities were found in allergic patients. TBARS were also enhanced in both types of cells, and the carbonyl content of serum was equally increased. The respective enzymic imbalances in mononuclear cells and erythrocytes, namely, GSHPx/SOD and CAT/SOD, and their consequences are discussed. To our knowledge, this is the first global study of antioxidant enzyme determinations, including TBARS level and carbonyl content, in patients suffering from allergies to drugs.
Collapse
Affiliation(s)
- J M Matés
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, Spain.
| | | | | | | | | |
Collapse
|
115
|
van der Veen RC, Dietlin TA, Hofman FM, Pen L, Segal BH, Holland SM. Superoxide prevents nitric oxide-mediated suppression of helper T lymphocytes: decreased autoimmune encephalomyelitis in nicotinamide adenine dinucleotide phosphate oxidase knockout mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:5177-83. [PMID: 10799876 DOI: 10.4049/jimmunol.164.10.5177] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NO, which suppresses T cell proliferation, may be inactivated by superoxide (O2-) due to their strong mutual affinity. To examine this possibility, preactivated Th clones were cocultured with stimulated macrophages. PMA neutralized the inhibitory activity of NO, which was dependent on extracellular O2- production. In contrast, macrophages from p47phox -/- (pKO) mice, which lack functional NADPH oxidase, retained their NO-dependent inhibition of T cell proliferation upon stimulation with PMA, indicating that NADPH oxidase is the major source of NO-inactivating O2- in this system. To examine the NO-O2- interaction in vivo, the role of NADPH oxidase in experimental autoimmune encephalomyelitis was studied in pKO mice. No clinical or histological signs were observed in the pKO mice. Neither a bias in Th subsets nor a reduced intensity of T cell responses could account for the disease resistance. Although spleen cells from pKO mice proliferated poorly in response to the immunogen, inhibition of NO synthase uncovered a normal proliferative response. These results indicate that NO activity may play a critical role in T cell responses in pKO mice and that in normal spleens inhibition of T cell proliferation by NO may be prevented by simultaneous NADPH oxidase activity.
Collapse
MESH Headings
- Adjuvants, Immunologic/genetics
- Adjuvants, Immunologic/physiology
- Animals
- Cells, Cultured
- Coculture Techniques
- Encephalomyelitis, Autoimmune, Experimental/enzymology
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/prevention & control
- Immunosuppressive Agents/antagonists & inhibitors
- Immunosuppressive Agents/pharmacology
- Lymph Nodes/cytology
- Lymph Nodes/immunology
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Macrophages, Peritoneal/enzymology
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Myelin Proteins
- Myelin-Associated Glycoprotein/immunology
- Myelin-Oligodendrocyte Glycoprotein
- NADPH Oxidases/genetics
- NADPH Oxidases/physiology
- Nitric Oxide/antagonists & inhibitors
- Nitric Oxide/metabolism
- Nitric Oxide/physiology
- Superoxides/metabolism
- Superoxides/pharmacology
- T-Lymphocytes, Helper-Inducer/immunology
- Tetradecanoylphorbol Acetate/antagonists & inhibitors
- Tetradecanoylphorbol Acetate/pharmacology
Collapse
Affiliation(s)
- R C van der Veen
- Department of Neurology, University of Southern California School of Medicine, Los Angeles, CA 90033, USA.
| | | | | | | | | | | |
Collapse
|
116
|
Zamora R, Vodovotz Y, Billiar TR. Inducible Nitric Oxide Synthase and Inflammatory Diseases. Mol Med 2000. [DOI: 10.1007/bf03401781] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
117
|
Hooper DC, Scott GS, Zborek A, Mikheeva T, Kean RB, Koprowski H, Spitsin SV. Uric acid, a peroxynitrite scavenger, inhibits CNS inflammation, blood-CNS barrier permeability changes, and tissue damage in a mouse model of multiple sclerosis. FASEB J 2000; 14:691-8. [PMID: 10744626 DOI: 10.1096/fasebj.14.5.691] [Citation(s) in RCA: 289] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Peroxynitrite (ONOO(-)), a toxic product of the free radicals nitric oxide and superoxide, has been implicated in the pathogenesis of CNS inflammatory diseases, including multiple sclerosis and its animal correlate experimental autoimmune encephalomyelitis (EAE). In this study we have assessed the mode of action of uric acid (UA), a purine metabolite and ONOO(-) scavenger, in the treatment of EAE. We show that if administered to mice before the onset of clinical EAE, UA interferes with the invasion of inflammatory cells into the CNS and prevents development of the disease. In mice with active EAE, exogenously administered UA penetrates the already compromised blood-CNS barrier, blocks ONOO(-)-mediated tyrosine nitration and apoptotic cell death in areas of inflammation in spinal cord tissues and promotes recovery of the animals. Moreover, UA treatment suppresses the enhanced blood-CNS barrier permeability characteristic of EAE. We postulate that UA acts at two levels in EAE: 1) by protecting the integrity of the blood-CNS barrier from ONOO(-)-induced permeability changes such that cell invasion and the resulting pathology is minimized; and 2) through a compromised blood-CNS barrier, by scavenging the ONOO(-) directly responsible for CNS tissue damage and death.
Collapse
Affiliation(s)
- D C Hooper
- Department of Microbiology and Immunology, Kimmel Cancer Institute, and the Biotechnology Foundation Laboratories, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | | | | | | | | | | | |
Collapse
|
118
|
Willenborg DO, Staykova MA, Cowden WB. Our shifting understanding of the role of nitric oxide in autoimmune encephalomyelitis: a review. J Neuroimmunol 1999; 100:21-35. [PMID: 10695712 DOI: 10.1016/s0165-5728(99)00212-x] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Nitric oxide was first described being produced in inflammatory cells involved in experimental autoimmune encephalomyelitis in 1992. Since then some 45 papers have appeared examining the role of NO in this central nervous system autoimmune inflammatory disease. Of the first 10 papers published all resulted in the interpretation that NO was a pathologic or "bad" molecule in the context of EAE. A few papers then began to appear suggesting that NO may not in fact always be a harmful molecule and by the end of 1997 early 1998, 22 papers suggested a destructive role for the molecule while three suggested it was protective. The past two years have seen a significant increase in reports supporting a protective mechanism for NO in EAE such that as of July 1999, 27 papers suggest a destructive and 15 a protective role for NO with a few uncommitted. This review sets out in a more or less chronological order the studies examining the role of NO in EAE and maps our changing understanding of the molecules role in this CNS inflammatory disease and by inference perhaps multiple sclerosis.
Collapse
Affiliation(s)
- D O Willenborg
- The Neurosciences Research Unit, The Canberra Hospital, Australia
| | | | | |
Collapse
|
119
|
Abstract
OBJECTIVES To describe the importance of the antioxidant enzymes superoxide dismutase, glutathione peroxidase, and catalase working together in human cells against toxic reactive oxygen species, their relationship with several pathophysiologic processes and their possible therapeutic implications. CONCLUSIONS Reactive oxygen species (ROS) are involved in the cell growth, differentiation, progression, and death. Low concentrations of ROS may be beneficial or even indispensable in processes such as intracellular signaling and defense against micro-organisms. Nevertheless, higher amounts of ROS play a role in the aging process as well as in a number of human disease states, including cancer, ischemia, and failures in immunity and endocrine functions. As a safeguard against the accumulation of ROS, several nonenzymatic and enzymatic antioxidant activities exist. Therefore, when oxidative stress arises as a consequence of a pathologic event, a defense system promotes the regulation and expression of these enzymes.
Collapse
Affiliation(s)
- J M Matés
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, Spain.
| | | | | |
Collapse
|
120
|
Cross AH, Lyons JA, San M, Keeling RM, Ku G, Racke MK. T cells are the main cell type expressing B7-1 and B7-2 in the central nervous system during acute, relapsing and chronic experimental autoimmune encephalomyelitis. Eur J Immunol 1999; 29:3140-7. [PMID: 10540325 DOI: 10.1002/(sici)1521-4141(199910)29:10<3140::aid-immu3140>3.0.co;2-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
T cell co-stimulation through the CD28 receptor on T cells is critical to the induction of experimental autoimmune encephalomyelitis (EAE). In this study, expression of the co-stimulatory ligands B7-1 (CD80) and B7-2 (CD86), as well as the receptors CD28 and CTLA-4, were quantitated in central nervous system (CNS) tissues from mice at various stages of EAE. Immunohistochemistry and flow cytometry of CNS-infiltrating cells revealed a high percentage of infiltrating T cells expressing B7-1 and B7-2 during acute, chronic and relapsing EAE. Of the infiltrating cells 10-20% were CTLA-4(+), most of which were CD4(+) T cells. B7-1 and B7-2 expression within the CNS during active EAE might increase the potential for local activation of autoimmune T cells; however, the high level of expression of B7 molecules may also provide a mechanism for the autoregulation of activated CTLA-4(+) T cells.
Collapse
Affiliation(s)
- A H Cross
- Department of Neurology and Neurosurgery, Washington University School of Medicine, St. Louis 63110, USA.
| | | | | | | | | | | |
Collapse
|
121
|
Torreilles F, Salman-Tabcheh S, Guérin M, Torreilles J. Neurodegenerative disorders: the role of peroxynitrite. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1999; 30:153-63. [PMID: 10525172 DOI: 10.1016/s0165-0173(99)00014-4] [Citation(s) in RCA: 328] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Inflammatory reaction is thought to be an important contributor to neuronal damage in neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS) and the parkinsonism dementia complex of Guam. Among the toxic agents released in brain tissues by activated cells, we focus attention in this review on peroxynitrite, the product of the reaction between nitric oxide (NO) and superoxide. Peroxynitrite is a strong oxidizing and nitrating agent which can react with all classes of biomolecules. In the CNS it can be generated by microglial cells activated by pro-inflammatory cytokines or beta-amyloid peptide (beta-A) and by neurons in three different situations: hyperactivity of glutamate neurotransmission, mitochondrial dysfunction and depletion of L-arginine or tetrahydrobiopterin. The first two situations correspond to cellular responses to an initial neuronal injury and the peroxynitrite formed only exacerbates the inflammatory process, whereas in the third situation the peroxynitrite generated directly contributes to the initiation of the neurodegenerative process.
Collapse
Affiliation(s)
- F Torreilles
- CNRS UMR 9921 UFR Pharmacie, 15 av. Charles Flahault, 34060, Montpellier, France
| | | | | | | |
Collapse
|
122
|
Sloane JA, Hollander W, Moss MB, Rosene DL, Abraham CR. Increased microglial activation and protein nitration in white matter of the aging monkey. Neurobiol Aging 1999; 20:395-405. [PMID: 10604432 DOI: 10.1016/s0197-4580(99)00066-4] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Activated microglia are important pathological features of a variety of neurological diseases, including the normal aging process of the brain. Here, we quantified the level of microglial activation in the aging rhesus monkey using antibodies to HLA-DR and inducible nitric oxide synthase (iNOS). We observed that 3 out of 5 white matter areas but only 1 of 4 cortical gray matter regions examined showed significant increases in two measures of activated microglia with age, indicating that diffuse white matter microglial activation without significant gray matter involvement occurs with age. Substantial levels of iNOS and 3-nitrotyrosine, a marker for peroxynitrite, increased diffusely throughout subcortical white matter with age, suggesting a potential role of nitric oxide in age-related white matter injury. In addition, we found that the density of activated microglia in the subcortical white matter of the cingulate gyrus and the corpus callosum was significantly elevated with cognitive impairment in elderly monkeys. This study suggests that microglial activation increases in white matter with age and that these increases may reflect the role of activated microglia in the general pathogenesis of normal brain aging.
Collapse
Affiliation(s)
- J A Sloane
- Department of Pathology, Boston University School of Medicine, MA 02118, USA
| | | | | | | | | |
Collapse
|
123
|
Kieseier BC, Storch MK, Archelos JJ, Martino G, Hartung HP. Effector pathways in immune mediated central nervous system demyelination. Curr Opin Neurol 1999; 12:323-36. [PMID: 10499177 DOI: 10.1097/00019052-199906000-00011] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Multiple sclerosis is generally regarded to be a primarily T-cell driven disease. Recent evidence has refocused interest on antibodies. Adhesion molecules, matrix metalloproteinases, chemokines and cytokines, and nitric oxide and oxygen metabolites all participate in the amplification and effector stages of the disease.
Collapse
Affiliation(s)
- B C Kieseier
- Department of Neurology, Karl-Franzens Universität Graz, Austria.
| | | | | | | | | |
Collapse
|
124
|
Abstract
This review summarises the role that reactive oxygen and nitrogen species play in demyelination, such as that occurring in the inflammatory demyelinating disorders multiple sclerosis and Guillain-Barré syndrome. The concentrations of reactive oxygen and nitrogen species (e.g. superoxide, nitric oxide and peroxynitrite) can increase dramatically under conditions such as inflammation, and this can overwhelm the inherent antioxidant defences within lesions. Such oxidative and/or nitrative stress can damage the lipids, proteins and nucleic acids of cells and mitochondria, potentially causing cell death. Oligodendrocytes are more sensitive to oxidative and nitrative stress in vitro than are astrocytes and microglia, seemingly due to a diminished capacity for antioxidant defence, and the presence of raised risk factors, including a high iron content. Oxidative and nitrative stress might therefore result in vivo in selective oligodendrocyte death, and thereby demyelination. The reactive species may also damage the myelin sheath, promoting its attack by macrophages. Damage can occur directly by lipid peroxidation, and indirectly by the activation of proteases and phospholipase A2. Evidence for the existence of oxidative and nitrative stress within inflammatory demyelinating lesions includes the presence of both lipid and protein peroxides, and nitrotyrosine (a marker for peroxynitrite formation). The neurological deficit resulting from experimental autoimmune demyelinating disease has generally been reduced by trial therapies intended to diminish the concentration of reactive oxygen species. However, therapies aimed at diminishing reactive nitrogen species have had a more variable outcome, sometimes exacerbating disease.
Collapse
Affiliation(s)
- K J Smith
- Department of Clinical Neurological Sciences, Guy's, King's and St. Thomas' School of Medicine, London.
| | | | | |
Collapse
|
125
|
Forge JK, Pedchenko TV, LeVine SM. Iron deposits in the central nervous system of SJL mice with experimental allergic encephalomyelitis. Life Sci 1998; 63:2271-84. [PMID: 9870713 DOI: 10.1016/s0024-3205(98)00512-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Iron has been proposed to promote oxidative tissue damage in multiple sclerosis (MS). In order to gain insights about how iron gets processed during MS, the deposition of iron was investigated in the CNS of mice with experimental allergic encephalomyelitis (EAE), which is a commonly used animal model of MS. Control mice (adjuvant only) and EAE mice (myelin basic protein plus adjuvant), were sacrificed at 4-8 days (preclinical phase), 10-13 days (clinical phase), or 18 days (recovery phase) post injection. Sections from the cerebrum, hindbrain, and cervical, thoracic and lumbar spinal cord were stained as previously described (J. Neurosci. Res. 29:413, 1991), and scored blindly for histopathological staining. There was minimal histopathological staining at any age in control animals or during the preclinical stage in EAE animals. At the clinical stage of EAE, stained pathological features (macrophages, extravasated RBC and granular staining) were significantly increased compared to the preclinical stage. In the recovery phase, macrophage and granular staining persisted but there was loss of extravasated RBC. Dual labeling studies revealed that granular deposits were present in astrocytes and in locations that appeared to be extracellular. In order to gain insights about the origin of iron deposits in EAE mice, additional studies were performed on brains of mice with extravasated blood lesions. These brains had granular, macrophage and RBC staining. Thus, each of the stained features in EAE animals could be due to the extravasation of blood which occurs in the SJL model of EAE, although some of the iron could have originated from myelin and oligodendrocytes damaged during EAE.
Collapse
Affiliation(s)
- J K Forge
- Department of Molecular and Integrative Physiology and the Smith Mental Retardation and Human Development Center, University of Kansas Medical Center, Kansas City 66160, USA
| | | | | |
Collapse
|
126
|
Guy J, Qi X, Hauswirth WW. Adeno-associated viral-mediated catalase expression suppresses optic neuritis in experimental allergic encephalomyelitis. Proc Natl Acad Sci U S A 1998; 95:13847-52. [PMID: 9811889 PMCID: PMC24923 DOI: 10.1073/pnas.95.23.13847] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Suppression of oxidative injury by viral-mediated transfer of the human catalase gene was tested in the optic nerves of animals with experimental allergic encephalomyelitis (EAE). EAE is an inflammatory autoimmune disorder of primary central nervous system demyelination that has been frequently used as an animal model for the human disease multiple sclerosis (MS). The optic nerve is a frequent site of involvement common to both EAE and MS. Recombinant adeno-associated virus containing the human gene for catalase was injected over the right optic nerve heads of SJL/J mice that were simultaneously sensitized for EAE. After 1 month, cell-specific catalase activity, evaluated by quantitation of catalase immunogold, was increased approximately 2-fold each in endothelia, oligodendroglia, astrocytes, and axons of the optic nerve. Effects of catalase on the histologic lesions of EAE were measured by computerized analysis of the myelin sheath area (for demyelination), optic disc area (for optic nerve head swelling), extent of the cellular infiltrate, extravasated serum albumin labeled by immunogold (for blood-brain barrier disruption), and in vivo H2O2 reaction product. Relative to control, contralateral optic nerves injected with the recombinant virus without a therapeutic gene, catalase gene inoculation reduced demyelination by 38%, optic nerve head swelling by 29%, cellular infiltration by 34%, disruption of the blood-brain barrier by 64%, and in vivo levels of H2O2 by 61%. Because the efficacy of potential treatments for MS are usually initially tested in the EAE animal model, this study suggests that catalase gene delivery by using viral vectors may be a therapeutic strategy for suppression of MS.
Collapse
Affiliation(s)
- J Guy
- Department of Ophthalmology, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | | | | |
Collapse
|
127
|
Kawczak JA, Mathisen PM, Drazba JA, Fuss B, Macklin WB, Tuohy VK. Digitized image analysis reveals diffuse abnormalities in normal-appearing white matter during acute experimental autoimmune encephalomyelitis. J Neurosci Res 1998; 54:364-72. [PMID: 9819141 DOI: 10.1002/(sici)1097-4547(19981101)54:3<364::aid-jnr7>3.0.co;2-#] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Demyelination of the central nervous system is a hallmark of multiple sclerosis and its widely used animal model, experimental autoimmune encephalomyelitis (EAE). Recent studies using magnetic resonance imaging and spectroscopy on multiple sclerosis patients have revealed abnormalities of central nervous system normal-appearing white matter suggesting that micro-demyelination and/or extensive membrane turnover accompanies and perhaps precedes the appearance of manifest inflammatory lesions. In the present study, we induced EAE in SWXJ mice and analyzed digitized images of immunocytochemically stained spinal cord for detection of myelin proteolipid protein (PLP). We found that digitized image analysis is a highly sensitive, objective methodology for measuring the extent of myelin loss during EAE. Our data show that two-thirds of the measured reduction of myelin PLP occurring in EAE spinal cord could be attributed to a loss of myelin in normal-appearing white matter. The marked decrease in detection of PLP was accompanied by a corresponding decrease in PLP mRNA in the central nervous system. Our results indicate that during acute EAE, diffuse myelin abnormalities extend far beyond visibly detectable inflammatory foci and are characterized by a global decrease in the expression of myelin genes and their encoded proteins.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Demyelinating Diseases/immunology
- Demyelinating Diseases/metabolism
- Demyelinating Diseases/pathology
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Image Processing, Computer-Assisted
- Immunohistochemistry
- Mice
- Mice, Inbred Strains
- Myelin Proteolipid Protein/analysis
- Myelin Proteolipid Protein/genetics
- Myelin Proteolipid Protein/immunology
- Peptide Fragments/immunology
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Spinal Cord/chemistry
- Spinal Cord/pathology
Collapse
Affiliation(s)
- J A Kawczak
- Department of Immunology, Lerner Research Institute, The Cleveland Clinic Foundation, Ohio 44195, USA
| | | | | | | | | | | |
Collapse
|
128
|
Eiserich JP, Patel RP, O'Donnell VB. Pathophysiology of nitric oxide and related species: free radical reactions and modification of biomolecules. Mol Aspects Med 1998; 19:221-357. [PMID: 10231805 DOI: 10.1016/s0098-2997(99)00002-3] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since its initial discovery as an endogenously produced bioactive mediator, nitric oxide (.NO) has been found to play a critical role in the cellular function of nearly all organ systems. Furthermore, aberrant production of .NO or reactive nitrogen species (RNS) derived from .NO, has been implicated in a number of pathological conditions, such as acute lung disease, atherosclerosis and septic shock. While .NO itself is fairly non-toxic, secondary RNS are oxidants and nitrating agents that can modify both the structure and function of numerous biomolecules both in vitro, and in vivo. The mechanisms by which RNS mediate toxicity are largely dictated by its unique reactivity. The study of how reactive nitrogen species (RNS) derived from .NO interact with biomolecules such as proteins, carbohydrates and lipids, to modify both their structure and function is an area of active research, which is lending major new insights into the mechanisms underlying their pathophysiological role in human disease. In the context of .NO-dependent pathophysiology, these biochemical reactions will play a major role since they: (i) lead to removal of .NO and decreased efficiency of .NO as an endothelial-derived relaxation factor (e.g. in hypertension, atherosclerosis) and (ii) lead to production of other intermediate species and covalently modified biomolecules that cause injury and cellular dysfunction during inflammation. Although the physical and chemical properties of .NO and .NO-derived RNS are well characterised, extrapolating this fundamental knowledge to a complicated biological environment is a current challenge for researchers in the field of .NO and free radical research. In this review, we describe the impact of .NO and .NO-derived RNS on biological processes primarily from a biochemical standpoint. In this way, it is our intention to outline the most pertinent and relevant reactions of RNS, as they apply to a diverse array of pathophysiological states. Since reactions of RNS in vivo are likely to be vast and complex, our aim in this review is threefold: (i) address the major sources and reactions of .NO-derived RNS in biological systems, (ii) describe current knowledge regarding the functional consequences underlying .NO-dependent covalent modification of specific biomolecules, and (iii) to summarise and critically evaluate the available evidence implicating these reactions in human pathology. To this end, three areas of special interest have been chosen for detailed description, namely, formation and role of S-nitrosothiols, modulation of lipid oxidation/nitration by RNS, and tyrosine nitration mechanisms and consequences.
Collapse
Affiliation(s)
- J P Eiserich
- Department of Anesthesiology, University of Alabama, Birmingham 35233, USA
| | | | | |
Collapse
|
129
|
Cross AH, Manning PT, Keeling RM, Schmidt RE, Misko TP. Peroxynitrite formation within the central nervous system in active multiple sclerosis. J Neuroimmunol 1998; 88:45-56. [PMID: 9688323 DOI: 10.1016/s0165-5728(98)00078-2] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Peroxynitrite, generated by the reaction of nitric oxide (NO) with superoxide at sites of inflammation, is a strong oxidant capable of damaging tissues and cells. Detection of nitrotyrosine (NT) at inflammatory sites serves as a biochemical marker for peroxynitrite-mediated damage. In this study, NT was detected immunohistochemically within autopsied CNS tissues from six of nine multiple sclerosis (MS) patients, and in most of the MS sections displaying inflammation. Nitrite and nitrate, the stable oxidation products of NO and peroxynitrite, respectively, were measured in cerebrospinal fluid samples obtained from MS patients and controls. Levels of nitrate were elevated significantly during clinical relapses of MS. These data suggest that peroxynitrite formation is a major consequence of NO produced in MS-affected CNS and implicate a role for this powerful oxidant in the pathogenesis of MS.
Collapse
Affiliation(s)
- A H Cross
- Department of Neurology and Neurosurgery, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|
130
|
Martiney JA, Rajan AJ, Charles PC, Cerami A, Ulrich PC, Macphail S, Tracey KJ, Brosnan CF. Prevention and Treatment of Experimental Autoimmune Encephalomyelitis by CNI-1493, a Macrophage-Deactivating Agent. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.11.5588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), are characterized by episodic neurologic dysfunction, perivascular mononuclear cell inflammation occurring mainly in white matter, and demyelination. Strong circumstantial evidence supports the conclusion that macrophage activation and local production of proinflammatory cytokines are necessary for disease induction and lesion formation. We now report that CNI-1493, a small m.w. compound, which inhibits macrophage activation and subsequent proinflammatory cytokine production, suppresses EAE induced in the genetically susceptible SJL/J mouse. Treatment with 5 mg/kg/day completely suppressed mild disease (clinical index of 1.6 ± 0.5 in the untreated group as compared with 0.0 ± 0.0 for the treated group) and significantly reduced acute disease (clinical index of 4.3 ± 0.7 in the untreated group as compared with 0.5 ± 0.3 for the treated group). Suppression of clinical manifestations of the disease correlated with a significant decrease in histopathology and proinflammatory cytokine expression at the lesion site. Moreover, drug treatment during the chronic phase resulted in amelioration of clinical signs. The data presented here should prove useful in developing novel chemotherapeutic approaches for the treatment of MS.
Collapse
Affiliation(s)
| | - Alice J. Rajan
- †Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Peter C. Charles
- †Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Anthony Cerami
- ‡The Kenneth S. Warren Laboratories, Tarrytown, NY 10591; and
| | - Peter C. Ulrich
- ‡The Kenneth S. Warren Laboratories, Tarrytown, NY 10591; and
| | - Stuart Macphail
- §Laboratory of Cellular Immunology, North Shore University Hospital, Manhasset, NY 11030
| | - Kevin J. Tracey
- *The Picower Institute for Medical Research, Manhasset, NY 11030
| | - Celia F. Brosnan
- †Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
131
|
Abstract
Peroxynitrite and hydroxyl radicals are potent initiators of DNA single strand breakage, which is an obligatory stimulus for the activation of the nuclear enzyme poly(ADP-ribose)synthetase (PARS). Rapid activation of PARS depletes the intracellular concentration of its substrate, NAD+, slowing the rate of glycolysis, electron transport and ATP formation. This process can result in acute cell dysfunction and cell necrosis. Accordingly, inhibitors of PARS protect against cell death under these conditions. In addition to the direct cytotoxic pathway regulated by DNA injury and PARS activation, PARS also appears to modulate the course of inflammation by regulating the expression of a number of genes, including the gene for intercellular adhesion molecule 1, collagenase and the inducible nitric oxide synthase. The research into the role of PARS in inflammatory conditions is now supported by novel tools, such as novel, potent inhibitors of PARS, and genetically engineered animals lacking the gene for PARS. In vivo data demonstrate that inhibition of PARS protects against various forms of inflammation, including zymosan or endotoxin induced multiple organ failure, arthritis, allergic encephalomyelitis, and diabetic islet cell destruction. Pharmacological inhibition of PARS may be a promising novel approach for the experimental therapy of various forms of inflammation.
Collapse
Affiliation(s)
- C Szabó
- Children's Hospital Medical Center, Division of Critical Care, Cincinnati, OH 45229, USA
| |
Collapse
|
132
|
Sahrbacher UC, Lechner F, Eugster HP, Frei K, Lassmann H, Fontana A. Mice with an inactivation of the inducible nitric oxide synthase gene are susceptible to experimental autoimmune encephalomyelitis. Eur J Immunol 1998; 28:1332-8. [PMID: 9565373 DOI: 10.1002/(sici)1521-4141(199804)28:04<1332::aid-immu1332>3.0.co;2-g] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Nitric oxide (NO) generated by the inducible nitric oxide synthase (iNOS) has been implicated in the pathogenesis of experimental autoimmune encephalomyelitis (EAE). In this study mice genetically deficient for iNOS are shown to be susceptible to EAE induced by immunization with myelin oligodendrocyte glycoprotein (MOG). In iNOS (-/-) mice the course of disease was earlier in onset and more aggressive compared to control animals. A disease-relevant compensatory up-regulation of neuronal (n)NOS and endothelial (e)NOS with increased production of NO in iNOS (-/-) mice is excluded by 1) the failure to detect increased nNOS and eNOS mRNA, 2) the absence of detection of nitrosylated tyrosine residues in EAE tissue indicating absence of NO-derived peroxynitrite, and 3) the lack of disease-preventing effects of NG-nitro-L-arginine methyl ester. In conclusion, these results do not support the hypothesis that NO is crucial for the development of EAE.
Collapse
Affiliation(s)
- U C Sahrbacher
- Departement of Internal Medicine, University Hospital Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|