101
|
The development of potentially better practices to support the neurodevelopment of infants in the NICU. J Perinatol 2007; 27 Suppl 2:S48-74. [PMID: 18034182 DOI: 10.1038/sj.jp.7211844] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To review the existing evidence used to identify potentially better care practices that support newborn brain development. STUDY DESIGN Literature review. RESULT Sixteen potentially better practices are identified and grouped into two operational clinical bundles based upon timing for recommended implementation. CONCLUSION Existing evidence supports the implementation of selected care practices that potentially may support newborn brain development.
Collapse
|
102
|
Kremin T, Hasselmo ME. Cholinergic suppression of glutamatergic synaptic transmission in hippocampal region CA3 exhibits laminar selectivity: Implication for hippocampal network dynamics. Neuroscience 2007; 149:760-7. [PMID: 17964734 PMCID: PMC2175389 DOI: 10.1016/j.neuroscience.2007.07.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Revised: 06/28/2007] [Accepted: 07/11/2007] [Indexed: 11/24/2022]
Abstract
Acetylcholine may help set the dynamics within neural systems to facilitate the learning of new information. Neural models have shown that if new information is encoded at the same time as retrieval of existing information that is already stored, the memories will interfere with each other. Structures such as the hippocampus have a distinct laminar organization of inputs that allows this hypothesis to be tested. In region CA1 of the rat (Sprague Dawley) hippocampus, the cholinergic agonist carbachol (CCh) suppresses transmission in stratum radiatum (SR), at synapses of the Schaffer collateral projection from CA3, while having lesser effects in stratum lacunosum-moleculare (SLM), the perforant path projection from entorhinal cortex (Hasselmo and Schnell, 1994). The current research extends support of this selectivity by demonstrating laminar effects in region CA3. CCh caused significantly greater suppression in SR than in SLM at low concentrations, while the difference in suppression was not significant at higher concentrations. Differences in paired-pulse facilitation suggest presynaptic inhibition substantially contributes to the suppression and is highly concentration and stratum dependent. This selective suppression of the recurrent excitation would be appropriate to set CA3 dynamics to prevent runaway modification of the synapses of excitatory recurrent collaterals by reducing the influence of previously stored associations and allowing incoming information from the perforant path to have a predominant influence on neural activity.
Collapse
Affiliation(s)
- T Kremin
- Ernest Gallo Clinic & Research Center, University of California at San Francisco, 5858 Horton Street, Suite 200, Emeryville, CA 94680, USA.
| | | |
Collapse
|
103
|
Froemke RC, Merzenich MM, Schreiner CE. A synaptic memory trace for cortical receptive field plasticity. Nature 2007; 450:425-9. [PMID: 18004384 DOI: 10.1038/nature06289] [Citation(s) in RCA: 446] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Accepted: 09/21/2007] [Indexed: 11/09/2022]
Abstract
Receptive fields of sensory cortical neurons are plastic, changing in response to alterations of neural activity or sensory experience. In this way, cortical representations of the sensory environment can incorporate new information about the world, depending on the relevance or value of particular stimuli. Neuromodulation is required for cortical plasticity, but it is uncertain how subcortical neuromodulatory systems, such as the cholinergic nucleus basalis, interact with and refine cortical circuits. Here we determine the dynamics of synaptic receptive field plasticity in the adult primary auditory cortex (also known as AI) using in vivo whole-cell recording. Pairing sensory stimulation with nucleus basalis activation shifted the preferred stimuli of cortical neurons by inducing a rapid reduction of synaptic inhibition within seconds, which was followed by a large increase in excitation, both specific to the paired stimulus. Although nucleus basalis was stimulated only for a few minutes, reorganization of synaptic tuning curves progressed for hours thereafter: inhibition slowly increased in an activity-dependent manner to rebalance the persistent enhancement of excitation, leading to a retuned receptive field with new preference for the paired stimulus. This restricted period of disinhibition may be a fundamental mechanism for receptive field plasticity, and could serve as a memory trace for stimuli or episodes that have acquired new behavioural significance.
Collapse
Affiliation(s)
- Robert C Froemke
- Coleman Memorial Laboratory and W. M. Keck Foundation Center for Integrative Neuroscience, Department of Otolaryngology, University of California, San Francisco, California 94143, USA.
| | | | | |
Collapse
|
104
|
Farries MA, Fairhall AL. Reinforcement learning with modulated spike timing dependent synaptic plasticity. J Neurophysiol 2007; 98:3648-65. [PMID: 17928565 DOI: 10.1152/jn.00364.2007] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Spike timing-dependent synaptic plasticity (STDP) has emerged as the preferred framework linking patterns of pre- and postsynaptic activity to changes in synaptic strength. Although synaptic plasticity is widely believed to be a major component of learning, it is unclear how STDP itself could serve as a mechanism for general purpose learning. On the other hand, algorithms for reinforcement learning work on a wide variety of problems, but lack an experimentally established neural implementation. Here, we combine these paradigms in a novel model in which a modified version of STDP achieves reinforcement learning. We build this model in stages, identifying a minimal set of conditions needed to make it work. Using a performance-modulated modification of STDP in a two-layer feedforward network, we can train output neurons to generate arbitrarily selected spike trains or population responses. Furthermore, a given network can learn distinct responses to several different input patterns. We also describe in detail how this model might be implemented biologically. Thus our model offers a novel and biologically plausible implementation of reinforcement learning that is capable of training a neural population to produce a very wide range of possible mappings between synaptic input and spiking output.
Collapse
Affiliation(s)
- Michael A Farries
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | | |
Collapse
|
105
|
Winters BD, Bartko SJ, Saksida LM, Bussey TJ. Scopolamine infused into perirhinal cortex improves object recognition memory by blocking the acquisition of interfering object information. Learn Mem 2007; 14:590-6. [PMID: 17823242 PMCID: PMC1994083 DOI: 10.1101/lm.634607] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Accepted: 07/20/2007] [Indexed: 11/25/2022]
Abstract
In a previous study, we reported apparently paradoxical facilitation of object recognition memory following infusions of the cholinergic muscarinic receptor antagonist scopolamine into the perirhinal cortex (PRh) of rats. We attributed these effects to the blockade by scopolamine of the acquisition of interfering information. The present study tested this possibility directly by modifying the spontaneous object recognition memory task to allow the presentation of a potentially interfering object either before the sample phase or in the retention delay between the sample and choice phases. Presentation of an object between the sample and choice phases disrupted subsequent recognition of the sample object (retroactive interference), and intra-PRh infusions of scopolamine prior to the presentation of the irrelevant object prevented this retroactive interference effect. Moreover, presentation of an irrelevant object prior to the sample phase interfered proactively with sample object recognition, and intra-PRh infusions of scopolamine prior to the presentation of the pre-sample object prevented this proactive interference effect. These results suggest that blocking muscarinic cholinergic receptors in PRh can disrupt the acquisition of potentially interfering object information, thereby facilitating object recognition memory. This finding provides further, strong evidence that acetylcholine is important for the acquisition of object information in PRh.
Collapse
Affiliation(s)
- Boyer D Winters
- Department of Experimental Psychology, University of Cambridge, Cambridge, United Kingdom.
| | | | | | | |
Collapse
|
106
|
Tang J, Xiao Z, Suga N. Bilateral cortical interaction: modulation of delay-tuned neurons in the contralateral auditory cortex. J Neurosci 2007; 27:8405-13. [PMID: 17670987 PMCID: PMC6673069 DOI: 10.1523/jneurosci.1257-07.2007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Transcallosal excitation and inhibition have been theorized based on the effect of callosotomy on intractable epilepsy and dichotic listening research, respectively. We studied bilateral interaction of cortical auditory neurons and found that this interaction consisted of focused facilitation and widespread lateral inhibition. The frequency modulated (FM)-FM area of the auditory cortex of the mustached bat is composed of delay-tuned neurons tuned to the combination of the emitted biosonar pulse and its echo with a specific echo delay [best delay (BD)] and consists of three subdivisions in terms of the combination sensitivity of neurons. We found that focal electric stimulation of one of these three subdivisions evoked BD shifts of delay-tuned neurons in all three subdivisions of the contralateral FM-FM area, presumably via the corpus callosum. The effect of electric stimulation of the delay-tuned neurons on the contralateral delay-tuned neurons was different depending on whether the BD of a recorded neuron was matched or unmatched in BD with that of the stimulated neurons. BD-matched neurons did not change their BDs and increased the responses at their BDs, whereas BD-unmatched neurons shifted their BDs away from the BD of the stimulated neurons and reduced their responses. The ipsilateral and contralateral BD shifts evoked by the electric stimulation were identical to each other. The contralateral modulation, in addition to the ipsilateral modulation, increases the contrast in the neural representation of the echo delay to which the stimulated neurons are tuned.
Collapse
Affiliation(s)
- Jie Tang
- Department of Biology, Washington University, St. Louis, Missouri 63130, and
| | - Zhongju Xiao
- Department of Physiology, Nanfang Medical University, Guangzhou 510515, China
| | - Nobuo Suga
- Department of Biology, Washington University, St. Louis, Missouri 63130, and
| |
Collapse
|
107
|
Rasmusson DD, Smith SA, Semba K. Inactivation of prefrontal cortex abolishes cortical acetylcholine release evoked by sensory or sensory pathway stimulation in the rat. Neuroscience 2007; 149:232-41. [PMID: 17850979 DOI: 10.1016/j.neuroscience.2007.06.057] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 05/28/2007] [Accepted: 06/18/2007] [Indexed: 11/20/2022]
Abstract
Sensory stimulation and electrical stimulation of sensory pathways evoke an increase in acetylcholine release from the corresponding cortical areas. The pathways by which such sensory information reaches the cholinergic neurons of the basal forebrain that are responsible for this release are unclear, but have been hypothesized to pass through the prefrontal cortex (PFC). This hypothesis was tested in urethane-anesthetized rats using microdialysis to collect acetylcholine from somatosensory, visual, or auditory cortex, before and after the PFC was inactivated by local microdialysis delivery of the GABA-A receptor agonist muscimol (0.2% for 10 min at 2 microl/min). Before PFC inactivation, peripheral sensory stimulation and ventral posterolateral thalamic stimulation evoked 60 and 105% increases, respectively, in acetylcholine release from somatosensory cortex. Stimulation of the lateral geniculate nucleus evoked a 57% increase in acetylcholine release from visual cortex and stimulation of the medial geniculate nucleus evoked a 72% increase from auditory cortex. Muscimol delivery to the PFC completely abolished each of these evoked increases (overall mean change from baseline = -7%). In addition, the spontaneous level of acetylcholine release in somatosensory, visual, and auditory cortices was reduced by 15-59% following PFC inactivation, suggesting that PFC activity has a tonic facilitatory influence on the basal forebrain cholinergic neurons. These experiments demonstrate that the PFC is necessary for sensory pathway evoked cortical ACh release and strongly support the proposed sensory cortex-to-PFC-to-basal forebrain circuit for each of these modalities.
Collapse
Affiliation(s)
- D D Rasmusson
- Department of Physiology and Biophysics, Dalhousie University, 5850 College Street, Halifax, NS, Canada B3H 1X5.
| | | | | |
Collapse
|
108
|
Kilgard MP, Vazquez JL, Engineer ND, Pandya PK. Experience dependent plasticity alters cortical synchronization. Hear Res 2007; 229:171-9. [PMID: 17317055 PMCID: PMC2258141 DOI: 10.1016/j.heares.2007.01.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 12/09/2006] [Accepted: 01/03/2007] [Indexed: 11/29/2022]
Abstract
Theories of temporal coding by cortical neurons are supported by observations that individual neurons can respond to sensory stimulation with millisecond precision and that activity in large populations is often highly correlated. Synchronization is highest between neurons with overlapping receptive fields and modulated by both sensory stimulation and behavioral state. It is not yet clear whether cortical synchronization is an epiphenomenon or a critical component of efficient information transmission. Experimental manipulations that generate receptive field plasticity can be used to test the relationship between synchronization and receptive fields. Here we demonstrate that increasing receptive field size in primary auditory cortex by repeatedly pairing a train of tones with nucleus basalis (NB) stimulation increases synchronization, and decreasing receptive field size by pairing different tone frequencies with NB stimulation decreases synchronization. These observations seem to support the conclusion that neural synchronization is simply an artifact caused by common inputs. However, pairing tone trains of different carrier frequencies with NB stimulation increases receptive field size without increasing synchronization, and environmental enrichment increases synchronization without increasing receptive field size. The observation that receptive fields and synchronization can be manipulated independently suggests that common inputs are only one of many factors shaping the strength and temporal precision of cortical synchronization and supports the hypothesis that precise neural synchronization contributes to sensory information processing.
Collapse
Affiliation(s)
- M P Kilgard
- University of Texas at Dallas, School of Behavioral and Brain Sciences, Richardson, TX 75083, USA.
| | | | | | | |
Collapse
|
109
|
Ji W, Suga N. Serotonergic modulation of plasticity of the auditory cortex elicited by fear conditioning. J Neurosci 2007; 27:4910-8. [PMID: 17475799 PMCID: PMC6672087 DOI: 10.1523/jneurosci.5528-06.2007] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the awake big brown bat, 30 min auditory fear conditioning elicits conditioned heart rate decrease and long-term best frequency (BF) shifts of cortical auditory neurons toward the frequency of the conditioned tone; 15 min conditioning elicits subthreshold cortical BF shifts that can be augmented by acetylcholine. The fear conditioning causes stress and an increase in the cortical serotonin (5-HT) level. Serotonergic neurons in the raphe nuclei associated with stress and fear project to the cerebral cortex and cholinergic basal forebrain. Recently, it has been shown that 5-HT(2A) receptors are mostly expressed on pyramidal neurons and their activation improves learning and memory. We applied 5-HT, an agonist (alpha-methyl-5-HT), or an antagonist (ritanserin) of 5-HT(2A) receptors to the primary auditory cortex and discovered the following drug effects: (1) 5-HT had no effect on the conditioned heart rate change, although it reduced the auditory responses; (2) 4 mm 5-HT augmented the subthreshold BF shifts, whereas 20 mm 5-HT did not; (3) 20 mm 5-HT reduced the long-term BF shifts and changed them into short-term; (4) alpha-methyl-5-HT increased the auditory responses and augmented the subthreshold BF shifts as well as the long-term BF shifts; (5) in contrast, ritanserin reduced the auditory responses and reversed the direction of the BF shifts. Our data indicate that the BF shift can be modulated by serotonergic neurons that augment or reduce the BF shift or even reverse the direction of the BF shift. Therefore, not only the cholinergic system, but also the serotonergic system, plays an important role in cortical plasticity according to behavioral demands.
Collapse
Affiliation(s)
- Weiqing Ji
- Department of Biology, Washington University, St. Louis, Missouri 63130
| | - Nobuo Suga
- Department of Biology, Washington University, St. Louis, Missouri 63130
| |
Collapse
|
110
|
Andero R, Torras-Garcia M, Quiroz-Padilla MF, Costa-Miserachs D, Coll-Andreu M. Electrical stimulation of the pedunculopontine tegmental nucleus in freely moving awake rats: Time- and site-specific effects on two-way active avoidance conditioning. Neurobiol Learn Mem 2007; 87:510-21. [PMID: 17169591 DOI: 10.1016/j.nlm.2006.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 11/02/2006] [Accepted: 11/03/2006] [Indexed: 11/25/2022]
Abstract
The pedunculopontine tegmental nucleus (PPTg) is involved in the regulation of thalamocortical transmission and of several functions related to ventral and dorsal striatal circuits. Stimulation of the PPTg in anesthetized animals increases cortical arousal, cortical acetylcholine release, bursting activity of mesopontine dopaminergic cells, and striatal dopamine release. It was hypothetized that PPTg stimulation could improve learning by enhancing cortical arousal and optimizing the activity of striatal circuits. We tested whether electrical stimulation (ES) of the PPTg, applied to freely-moving awake rats previously implanted with a chronic electrode, would improve the acquisition and/or the retention of two-way active avoidance conditioning, and whether this effect would depend on the specific PPTg region stimulated (anterior vs posterior) and on the time of ES: just before (pre-training) or after (post-training) each of three training sessions. The treatment consisted of 20 min of ES (0.2 ms pulses at 100 Hz; current intensity: 40-80 microA). The results showed that (1) this stimulation did not induce either any signs of distress nor abnormal behaviors, apart from some motor stereotyped behaviors that disappeared when current intensity was lowered; (2) pre-training ES applied to the anterior PPTg improved the acquisition of two-way active avoidance, (3) no learning improvement was found after either post-training ES of the anterior PPTg, or pre- and post-training ES of the posterior PPTg. The results give support to a role of PPTg in learning-related processes, and point to the existence of functional PPTg regions.
Collapse
Affiliation(s)
- Raül Andero
- Institut de Neurociències, Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Edifici B, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | | | | | | | | |
Collapse
|
111
|
Härtig W, Stieler J, Boerema AS, Wolf J, Schmidt U, Weissfuss J, Bullmann T, Strijkstra AM, Arendt T. Hibernation model of tau phosphorylation in hamsters: selective vulnerability of cholinergic basal forebrain neurons - implications for Alzheimer's disease. Eur J Neurosci 2007; 25:69-80. [PMID: 17241268 DOI: 10.1111/j.1460-9568.2006.05250.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neurofibrillar tangles made up of 'paired helical filaments' (PHFs) consisting of hyperphosphorylated microtubule-associated protein tau are major hallmarks of Alzheimer's disease (AD). Tangle formation selectively affects certain neuronal types and systematically progresses throughout numerous brain areas, which reflects a hierarchy of neuronal vulnerability and provides the basis for the neuropathological staging of disease severity. Mechanisms underlying this selective neuronal vulnerability are unknown. We showed previously that reversible PHF-like phosphorylation of tau occurs during obligate hibernation. Here we extend these findings to facultative hibernators such as Syrian hamsters (Mesocricetus auratus) forced into hibernation. In this model, we showed in the basal forebrain projection system that cholinergic neurons are selectively affected by PHF-like phosphorylated tau, while gamma-aminobutyric acid (GABA)ergic neurons are largely spared, which shows strong parallels to the situation in AD. Formation of PHF-tau in these neurons apparently does not affect their function as pacemaker for terminating hibernation. We conclude that although formation of PHF-like phosphorylated tau in the mammalian brain follows a certain hierarchy, affecting some neurons more frequently than others, it is not necessarily associated with impaired neuronal function and viability. This indicates a more general link between PHF-like phosphorylation of tau and the adaptation of neurons under conditions of a 'vita minima'.
Collapse
Affiliation(s)
- Wolfgang Härtig
- Department of Neurochemistry, Paul Flechsig Institute for Brain Research, University of Leipzig, Jahnallee 59, 04109 Leipzig, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Melzer P, Mineo L, Ebner FF. Optic nerve transection affects development and use-dependent plasticity in neocortex of the rat: Quantitative acetylcholinesterase imaging. Brain Res 2007; 1139:68-84. [PMID: 17280650 DOI: 10.1016/j.brainres.2006.12.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Revised: 12/04/2006] [Accepted: 12/14/2006] [Indexed: 11/15/2022]
Abstract
We investigated the effects of neonatal optic nerve transection on cortical acetylcholinesterase (AChE) activity in hooded rats during postnatal development and following behavioral manipulation after weaning. AChE reaction product was quantified on digitized images of histochemically stained sections in layer IV of primary somatic sensory, primary visual and visual association cortex. Rats with optic nerve transection were compared to sham-operated littermates. In all cortical regions of both types of animal, AChE reaction product was increased to peak 2 weeks after birth and decreased thereafter, reaching adult levels at the end of the third postnatal week. During postnatal development, reaction product in primary visual cortex was lower in rats deprived of retinal input than in sham-operated littermates and the area delineated by reaction product was smaller. However, optic nerve transection did not modify the time course of postnatal development or statistically significantly diminish adult levels of AChE activity. Behavioral manipulations after weaning statistically significantly increased enzyme activity in sham-operated rats in all cortical areas examined. Compared with cage rearing, training in a discrimination task with food reward had a greater impact than environmental enrichment. By contrast, in the rats with optic nerve transection enrichment and training resulted in statistically significantly increased AChE activity only in lateral visual association cortex. Our findings provide evidence for intra- and supramodal influences of the neonatal removal of retinal input on neural activity- and use-dependent modifications of cortical AChE activity. The laminar distribution of the AChE reaction product suggests that the observed changes in AChE activity were mainly related to cholinergic basal forebrain afferents. These afferents may facilitate the stabilization of transient connections between the somatic sensory and the visual pathway.
Collapse
Affiliation(s)
- Peter Melzer
- Deparment of Psychology, Vanderbilt University, 301 Wilson Hall, 111 21st Ave. S., Nashville, Tennessee 37203, USA.
| | | | | |
Collapse
|
113
|
Hennevin E, Huetz C, Edeline JM. Neural representations during sleep: From sensory processing to memory traces. Neurobiol Learn Mem 2007; 87:416-40. [PMID: 17178239 DOI: 10.1016/j.nlm.2006.10.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2006] [Revised: 10/20/2006] [Accepted: 10/26/2006] [Indexed: 10/23/2022]
Abstract
In the course of a day, the brain undergoes large-scale changes in functional modes, from attentive wakefulness to the deepest stage of sleep. The present paper evaluates how these state changes affect the neural bases of sensory and cognitive representations. Are organized neural representations still maintained during sleep? In other words, despite the absence of conscious awareness, do neuronal signals emitted during sleep contain information and have a functional relevance? Through a critical evaluation of the animal and human literature, neural representations at different levels of integration (from the most elementary sensory level to the most cognitive one) are reviewed. Recordings of neuronal activity in animals at presentation of neutral or significant stimuli show that some analysis of the external word remains possible during sleep, allowing recognition of behaviorally relevant stimuli. Event-related brain potentials in humans confirm the preservation of some sensory integration and discriminative capacity. Behavioral and neuroimaging studies in humans substantiate the notion that memory representations are reactivated and are reorganized during post-learning sleep; these reorganisations may account for the beneficial effects of sleep on behavioral performance. Electrophysiological results showing replay of neuronal sequences in animals are presented, and their relevance as neuronal correlates of memory reactivation is discussed. The reviewed literature provides converging evidence that structured neural representations can be activated during sleep. Which reorganizations unique to sleep benefit memory representations, and to what extent the operations still efficient in processing environmental information during sleep are similar to those underlying the non-conscious, automatic processing continually at work in wakefulness, are challenging questions open to investigation.
Collapse
Affiliation(s)
- Elizabeth Hennevin
- Laboratoire de Neurobiologie de l'Apprentissage, de la Mémoire et de la Communication, UMR CNRS 8620, Université Paris-Sud, Bâtiment 446, 91405 Orsay Cedex, France.
| | | | | |
Collapse
|
114
|
Weible AP, Weiss C, Disterhoft JF. Connections of the caudal anterior cingulate cortex in rabbit: neural circuitry participating in the acquisition of trace eyeblink conditioning. Neuroscience 2007; 145:288-302. [PMID: 17224240 DOI: 10.1016/j.neuroscience.2006.11.046] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Revised: 11/17/2006] [Accepted: 11/21/2006] [Indexed: 11/16/2022]
Abstract
The caudal anterior cingulate cortex (cAC) is an essential component of the circuitry involved in acquisition of forebrain-dependent trace eyeblink conditioning. Lesions of the cAC prevent trace eyeblink conditioning [Weible AP, McEchron MD, Disterhoft JF (2000) Cortical involvement in acquisition and extinction of trace eyeblink conditioning. Behav Neurosci 114(6):1058-1067]. The patterns of activation of cAC neurons recorded in vivo suggest an attentional role for this structure early in training [Weible AP, Weiss C, Disterhoft JF (2003) Activity profiles of single neurons in caudal anterior cingulate cortex during trace eyeblink conditioning in the rabbit. J Neurophysiol 90(2):599-612]. The goal of the present study was to identify connections of the portion of the rabbit cAC previously demonstrated to be involved in trace eyeblink conditioning, using the neuronal tract tracer wheat germ agglutinin conjugated to horseradish peroxidase, to better understand how the cAC contributes to the process of associative learning. Reciprocal connections with the claustrum provide a route for the transfer of sensory information between the cAC and neocortical and allocortical regions also involved in learning. Connections with components of the basal forebrain cholinergic system are described, with relevance to the proposed attentional role of the cAC. Reciprocal and unidirectional connections were in evidence in multiple thalamic regions, including the medial dorsal nucleus, which have been implicated in a variety of conditioning paradigms. Anterograde connections with the caudate and lateral pontine nuclei provide access to forebrain motor and brainstem sensory circuitry, respectively. The relevance of these connections to acquisition of the trace conditioned reflex is discussed.
Collapse
Affiliation(s)
- A P Weible
- Department of Physiology, Northwestern University Institute for Neuroscience, 303 East Chicago Avenue, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
115
|
Raghanti MA, Stimpson CD, Marcinkiewicz JL, Erwin JM, Hof PR, Sherwood CC. Cholinergic innervation of the frontal cortex: Differences among humans, chimpanzees, and macaque monkeys. J Comp Neurol 2007; 506:409-24. [DOI: 10.1002/cne.21546] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
116
|
Alenda A, Nuñez A. Cholinergic modulation of sensory interference in rat primary somatosensory cortical neurons. Brain Res 2006; 1133:158-67. [PMID: 17196557 DOI: 10.1016/j.brainres.2006.11.092] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 11/17/2006] [Accepted: 11/20/2006] [Indexed: 11/19/2022]
Abstract
Sensory interaction was studied using extracellular recordings from 275 neurons in the primary somatosensory (SI) cortex of pentobarbital-anesthetized rats. Tactile stimulation was applied to the receptive field using a 1 mm diameter probe that indented the skin for 20 ms, at 0.5 Hz, (test stimulus). Tactile test responses of SI neurons decreased during simultaneous application of a gentle tickling (distracter stimuli) continuously for 60 s on a separate receptive field located in the same or the contralateral hindlimb (ipsi- or contralateral distraction). This decrease in neural response produced by distracter stimuli was interpreted as "sensory interference". Sensory interference was observed in 66% and 61% of recorded SI neurons when ipsi- or contralateral distracters were applied, respectively and was blocked by a novel stimulus obtained by increasing the stimulation frequency of the test tactile stimuli from 0.5 to 2 Hz. The number of neurons showing sensory interference in response to a contralateral distracter was not modified after corpus callosum transection, suggesting that interhemispheric connections are not crucial for sensory interference. In contrast, the number of neurons showing sensory interference decreased in animals with 192 IgG-saporin basal forebrain lesions that decreased the number of cortical cholinergic fibers. This finding indicates that cholinergic afferents from the basal forebrain are fundamental to sensory interference and suggests that the associative cortices - basal forebrain - sensory cortices network may be implicated in sensory interference.
Collapse
Affiliation(s)
- Andrea Alenda
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo 2, 28029 Madrid, Spain
| | | |
Collapse
|
117
|
Dringenberg HC, Kuo MC. Cholinergic, histaminergic, and noradrenergic regulation of LTP stability and induction threshold: cognitive implications. EXS 2006; 98:165-83. [PMID: 17019888 DOI: 10.1007/978-3-7643-7772-4_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Hans C Dringenberg
- Department of Psychology, Centre for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| | | |
Collapse
|
118
|
Boix-Trelis N, Vale-Martínez A, Guillazo-Blanch G, Costa-Miserachs D, Martí-Nicolovius M. Effects of nucleus basalis magnocellularis stimulation on a socially transmitted food preference and c-Fos expression. Learn Mem 2006; 13:783-93. [PMID: 17101878 PMCID: PMC1783633 DOI: 10.1101/lm.305306] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Accepted: 07/21/2006] [Indexed: 11/24/2022]
Abstract
Experiment 1 examined the effects of electrical stimulation of nucleus basalis magnocellularis (NBM) on a relational odor-association task--the social transmission of food preference (STFP). Rats were stimulated unilaterally in the NBM for 20 min (100 microA, 1 Hz) immediately before the social training. They were tested on their ability to remember preference for the trained food either immediately or following a 24-h delay. Stimulation of NBM improved retention regardless of delay, and additional behavioral measures (social interaction, motor activity, or exploration) did not account for such effects. Experiment 2 investigated brain regions activated after NBM electrical stimulation by examining the induction of c-Fos. This treatment led to bilateral increased c-Fos expression in prefrontal regions, such as orbitofrontal, prelimbic, and infralimbic cortices, and some hippocampal subregions (dorsal CA and ventral dentate gyrus). In contrast, no differences between groups in c-Fos expression were found in basolateral amygdala, dorsal dentate gyrus, ventral CA, or ventral subiculum. Present findings indicate that pretraining NBM electrical stimulation facilitates the acquisition of STFP, supporting a role of NBM in the early stages of memory formation, and suggest that the treatment might cause such effects by inducing neural changes, related to transcription factors such as c-Fos, in the prefrontal cortex or the hippocampal formation.
Collapse
Affiliation(s)
- Núria Boix-Trelis
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - Anna Vale-Martínez
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - Gemma Guillazo-Blanch
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - David Costa-Miserachs
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - Margarita Martí-Nicolovius
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| |
Collapse
|
119
|
Daselaar SM, Fleck MS, Cabeza R. Triple Dissociation in the Medial Temporal Lobes: Recollection, Familiarity, and Novelty. J Neurophysiol 2006; 96:1902-11. [PMID: 16738210 DOI: 10.1152/jn.01029.2005] [Citation(s) in RCA: 331] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Memory for past events may be based on retrieval accompanied by specific contextual details (recollection) or on the feeling that an item is old (familiarity) or new (novelty) in the absence of contextual details. There are indications that recollection, familiarity, and novelty involve different medial temporal lobe subregions, but available evidence is scarce and inconclusive. Using functional magnetic resonance imaging (MRI), we isolated retrieval-related activity associated with recollection, familiarity, and novelty by distinguishing between linear and nonlinear oldness functions derived from recognition confidence levels. Within the medial temporal lobes (MTLs), we found a triple dissociation among the posterior half of the hippocampus, which was associated with recollection, the posterior parahippocampal gyrus, which was associated with familiarity, and anterior half of the hippocampus and rhinal regions, which were associated with novelty. Furthermore, multiple regression analyses based on individual trial activity showed that all three memory signals, i.e., recollection, familiarity, and novelty, make significant and independent contributions to recognition memory performance. Finally, functional dissociations among recollection, familiarity, and novelty were also found in posterior midline, left parietal cortex, and prefrontal cortex regions. This is the first study to reveal a triple dissociation within the MTL associated with distinct retrieval processes. This finding has direct implications for current memory models.
Collapse
Affiliation(s)
- S M Daselaar
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
120
|
Winters BD, Saksida LM, Bussey TJ. Paradoxical facilitation of object recognition memory after infusion of scopolamine into perirhinal cortex: implications for cholinergic system function. J Neurosci 2006; 26:9520-9. [PMID: 16971536 PMCID: PMC6674588 DOI: 10.1523/jneurosci.2319-06.2006] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 08/01/2006] [Accepted: 08/10/2006] [Indexed: 11/21/2022] Open
Abstract
The cholinergic system has long been implicated in learning and memory, yet its specific function remains unclear. In the present study, we investigated the role of cortical acetylcholine in a rodent model of declarative memory by infusing the cholinergic muscarinic receptor antagonist scopolamine into the rat perirhinal cortex during different stages (encoding, storage/consolidation, and retrieval) of the spontaneous object recognition task. Presample infusions of scopolamine significantly impaired object recognition compared with performance of the same group of rats on saline trials; this result is consistent with previous reports supporting a role for perirhinal acetylcholine in object information acquisition. Scopolamine infusions directly before the retrieval stage had no discernible effect on object recognition. However, postsample infusions of scopolamine with sample-to-infusion delays of up to 20 h significantly facilitated performance relative to postsample saline infusion trials. Additional analysis suggested that the infusion episode could cause retroactive or proactive interference with the sample object trace and that scopolamine blocked the acquisition of this interfering information, thereby facilitating recognition memory. This is, to our knowledge, the first example of improved recognition memory after administration of scopolamine. The overall pattern of results is inconsistent with a direct role for cortical acetylcholine in declarative memory consolidation or retrieval. Rather, the cholinergic input to the perirhinal cortex may facilitate acquisition by enhancing the cortical processing of incoming stimulus information.
Collapse
Affiliation(s)
- Boyer D Winters
- Department of Experimental Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom.
| | | | | |
Collapse
|
121
|
Ivliev DA, Ivlieva NY. Modulation of neuron activity in the basal forebrain of the rat related to the outcome of food-procuring movements. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2006; 36:889-96. [PMID: 16964469 DOI: 10.1007/s11055-006-0103-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Accepted: 04/27/2005] [Indexed: 10/24/2022]
Abstract
Neuron activity was recorded from the basal forebrain of rats, including the mixed area of the ventral pallidum, substantia innominata, and mid part of Meynert's nucleus. The base of the forebrain was found to contain neurons (40% of all neurons recorded) which altered their activity on acquisition of a food-procuring skill in conditions of free behavior, depending on the outcome of the acquired movement reaction. The discharge frequencies of these cells increased when the animal obtained food from the feeder. When the rat was unable to procure the food, the discharge frequency of these cells either remained constant or decreased. Most of the neurons (57.1% of all neurons showing modifications) demonstrated modulation of their activity towards the end of the food-procuring movement, but before it was completed. A smaller proportion of the cells (35.7%) changed their activity after food was retrieved from the feeder.
Collapse
Affiliation(s)
- D A Ivliev
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow.
| | | |
Collapse
|
122
|
Sarter M, Gehring WJ, Kozak R. More attention must be paid: The neurobiology of attentional effort. ACTA ACUST UNITED AC 2006; 51:145-60. [PMID: 16530842 DOI: 10.1016/j.brainresrev.2005.11.002] [Citation(s) in RCA: 373] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Revised: 10/31/2005] [Accepted: 11/01/2005] [Indexed: 10/24/2022]
Abstract
Increases in attentional effort are defined as the motivated activation of attentional systems in response to detrimental challenges on attentional performance, such as the presentation of distractors, prolonged time-on-task, changing target stimulus characteristics and stimulus presentation parameters, circadian phase shifts, stress or sickness. Increases in attentional effort are motivated by the expected performance outcome; in the absence of such motivation, attentional performance continues to decline or may cease altogether. The beneficial effects of increased attentional effort are due in part to the activation of top-down mechanisms that act to optimize input detection and processing, thereby stabilizing or recovering attentional performance in response to challenges. Following a description of the psychological construct "attentional effort", evidence is reviewed indicating that increases in the activity of cortical cholinergic inputs represent a major component of the neuronal circuitry mediating increases in attentional effort. A neuronal model describes how error detection and reward loss, indicating declining performance, are integrated with motivational mechanisms on the basis of neuronal circuits between prefrontal/anterior cingulate and mesolimbic regions. The cortical cholinergic input system is activated by projections of mesolimbic structures to the basal forebrain cholinergic system. In prefrontal regions, increases in cholinergic activity are hypothesized to contribute to the activation of the anterior attention system and associated executive functions, particularly the top-down optimization of input processing in sensory regions. Moreover, and influenced in part by prefrontal projections to the basal forebrain, increases in cholinergic activity in sensory and other posterior cortical regions contribute directly to the modification of receptive field properties or the suppression of contextual information and, therefore, to the mediation of top-down effects. The definition of attentional effort as a cognitive incentive, and the description of a neuronal circuitry model that integrates brain systems involved in performance monitoring, the processing of incentives, activation of attention systems and modulation of input functions, suggest that 'attentional effort' represents a viable construct for cognitive neuroscience research.
Collapse
Affiliation(s)
- Martin Sarter
- Department of Psychology, University of Michigan, Ann Arbor, 48109, USA.
| | | | | |
Collapse
|
123
|
Rasch BH, Born J, Gais S. Combined Blockade of Cholinergic Receptors Shifts the Brain from Stimulus Encoding to Memory Consolidation. J Cogn Neurosci 2006; 18:793-802. [PMID: 16768378 DOI: 10.1162/jocn.2006.18.5.793] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Abstract
High central nervous system levels of acetylcholine (ACh) are commonly regarded as crucial for learning and memory, and a decline in cholinergic neurotransmission is associated with Alzheimer's dementia. However, recent findings revealed exceptions to this rule: The low ACh tone characterizing slowwave sleep (SWS) has proven necessary for consolidation of hippocampus-dependent declarative memories during this sleep stage. Such observations, together with recent models of a hippocampal-neocortical dialogue underlying systems memory consolidation, suggest that high levels of ACh support memory encoding, whereas low levels facilitate consolidation. We tested this hypothesis in human subjects by blocking cholinergic neurotransmission during wakefulness, starting 30 min after learning. Subjects received the muscarinic antagonist scopolamine (4 µg/kg bodyweight intravenously) and the nicotinic antagonist mecamylamine (5 mg orally). Compared to placebo, combined muscarinic and nicotinic receptor blockade significantly improved consolidation of declarative memories tested 10 hr later, but simultaneously impaired acquisition of similar material. Consolidation of procedural memories, which are not dependent on hippocampal functioning, was unaffected. Neither scopolamine nor mecamylamine alone enhanced declarative memory consolidation. Our findings support the notion that ACh acts as a switch between modes of acquisition and consolidation. We propose that the natural shift in central nervous system cholinergic tone from high levels during wakefulness to minimal levels during SWS optimizes declarative memory consolidation during a period with no need for new memory encoding.
Collapse
|
124
|
Abstract
Neocortical neurons in vivo exist in an environment of continuous synaptic bombardment, receiving a complex barrage of excitatory and inhibitory inputs. This background activity (by depolarizing neurons, increasing membrane conductance, and introducing fluctuations) strongly alters many aspects of neuronal responsiveness. In this study, we asked how it shapes neuromodulation of postsynaptic responses. Specifically, we examined muscarinic modulation of forelimb motor cortex, a brain area in which cholinergic stimulation is known to be necessary for modifications during motor skill learning. Using a dynamic clamp system to inject simulated conductances into pyramidal neurons in motor cortical slices, we mimicked in vivo-like activity by introducing a random background of excitatory and inhibitory inputs. When muscarinic receptors were stimulated with the agonist oxotremorine-M, several previously described currents were modified, and excitability was increased. However, the presence of the background conductances strongly attenuated most muscarinic agonist effects, with the notable exception that sustained firing responses to trains of inputs were well preserved. This may be important for promoting plasticity in vivo.
Collapse
Affiliation(s)
- Niraj S Desai
- The Neurosciences Institute, San Diego, California 92121, USA.
| | | |
Collapse
|
125
|
Disney AA, Domakonda KV, Aoki C. Differential expression of muscarinic acetylcholine receptors across excitatory and inhibitory cells in visual cortical areas V1 and V2 of the macaque monkey. J Comp Neurol 2006; 499:49-63. [PMID: 16958109 DOI: 10.1002/cne.21096] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cholinergic neuromodulation, a candidate mechanism for aspects of attention, is complex and is not well understood. Because structure constrains function, quantitative anatomy is an invaluable tool for reducing such a challenging problem. Our goal was to determine the extent to which m1 and m2 muscarinic acetylcholine receptors (mAChRs) are expressed by inhibitory vs. excitatory neurons in the early visual cortex. To this end, V1 and V2 of macaque monkeys were immunofluorescently labelled for gamma-aminobutyric acid (GABA) and either m1 or m2 mAChRs. Among the GABA-immunoreactive (ir) neurons, 61% in V1 and 63% in V2 were m1 AChR-ir, whereas 28% in V1 and 43% in V2 were m2 AChR-ir. In V1, both mAChRs were expressed by fewer than 10% of excitatory neurons. However, in V2, the population of mAChR-ir excitatory neurons was at least double that observed in V1. We also examined m1 and m2 AChR immunoreactivity in layers 2 and 3 of area V1 under the electron microscope and found evidence that GABAergic neurons localize mAChRs to the soma, whereas glutamatergic neurons expressed mAChRs more strongly in dendrites. Axon and terminal labelling was generally weak. These data represent the first quantitative anatomical study of m1 and m2 AChR expression in the cortex of any species. In addition, the increased expression in excitatory neurons across the V1/V2 border may provide a neural basis for the observation that attentional effects gain strength up through the visual pathway from area V1 through V2 to V4 and beyond.
Collapse
Affiliation(s)
- Anita A Disney
- Center for Neural Science, New York University, New York, New York 10003, USA.
| | | | | |
Collapse
|
126
|
Etheredge JA, Murchison D, Abbott LC, Griffith WH. Functional compensation by other voltage-gated Ca2+ channels in mouse basal forebrain neurons with Ca(V)2.1 mutations. Brain Res 2005; 1140:105-19. [PMID: 16364258 DOI: 10.1016/j.brainres.2005.11.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Revised: 11/10/2005] [Accepted: 11/14/2005] [Indexed: 01/19/2023]
Abstract
Tottering (tg/tg) and leaner (tg(la)/tg(la)) mutant mice exhibit distinct mutations in the gene encoding the voltage-activated Ca(2+) channel alpha(1A) subunit (CACNA1A), the pore-forming subunit of the Ca(V)2.1 (P/Q type) Ca(2+) channels. These mice exhibit absence seizures and deficiencies in motor control and other functions. Previous work in cerebellar Purkinje neurons has shown that these mutations cause dramatic reductions in calcium channel function. Because Purkinje cell somata primarily express the Ca(V)2.1 channels, the general decrease in Ca(V)2.1 channel function is observed as a profound decrease in whole-cell current. In contrast to Purkinje cells, basal forebrain (BF) neurons express all of the Ca(2+) channel alpha(1) subunits, with Ca(V)2.1 contributing approximately 30% to the whole-cell current in wild-type (+/+) mice. Here, we show that whole-cell Ba(2+) current densities in BF neurons are not reduced in the mutant genotypes despite a reduction in the Ca(V)2.1 contribution. By blocking the different Ca(2+) channel subtypes with specific pharmacological agents, we found a significant increase in the proportion of Ca(V)1 Ca(2+) current in mutant phenotypes. There was no change in tissue mRNA expression of calcium channel subtypes Ca(V)2.1, Ca(V)2.2, Ca(V)1.2, Ca(V)1.3, and Ca(V)2.3 in the tottering and leaner mutant mice. These results suggest that Ca(V)1 channels may functionally upregulate to compensate for reduced Ca(V)2.1 function in the mutants without an increase in Ca(v)1 message. Single-cell reverse transcription polymerase chain reaction (RT-PCR) experiments in a subset of sampled neurons revealed that approximately 90% of the cells could be considered cholinergic based on choline acetyltransferase (ChAT) mRNA expression.
Collapse
Affiliation(s)
- Jason A Etheredge
- Department of Medical Pharmacology and Toxicology, College of Medicine, Reynolds Medical Science Building, Texas A&M University System Health Science Center, 1114-TAMU, College Station, TX 77843-1114, USA
| | | | | | | |
Collapse
|
127
|
Kamke MR, Brown M, Irvine DRF. Origin and immunolesioning of cholinergic basal forebrain innervation of cat primary auditory cortex. Hear Res 2005; 206:89-106. [PMID: 16081001 DOI: 10.1016/j.heares.2004.12.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Accepted: 12/09/2004] [Indexed: 11/17/2022]
Abstract
Numerous studies have implicated the cholinergic basal forebrain (cBF) in the modulation of auditory cortical responses. This study aimed to accurately define the sources of cBF input to primary auditory cortex (AI) and to assess the efficacy of a cholinergic immunotoxin in cat. Three anaesthetized cats received multiple injections of horseradish-peroxidase conjugated wheatgerm-agglutin into physiologically identified AI. Following one to two days survival, tetramethylbenzidine histochemistry revealed the greatest number of retrogradely labeled cells in ipsilateral putamen, globus pallidus and internal capsule, and smaller numbers in more medial nuclei of the basal forebrain (BF). Concurrent choline acetyltransferase immunohistochemistry showed that almost 80% of the retrogradely labeled cells in BF were cholinergic, with the vast majority of these cells arising from the more lateral BF nuclei identified above. In the second part of the study, unilateral intraparenchymal injections of the cholinergic immunotoxin ME20.4-SAP were made into the putamen/globus pallidus nuclei of six cats. Immuno- and histochemistry revealed a massive reduction in the number of cholinergic cells in and around the targeted area, and a corresponding reduction in the density of cholinergic fibers in auditory cortex. These results are discussed in terms of their implications for investigations of the role of the cBF in cortical plasticity.
Collapse
Affiliation(s)
- Marc R Kamke
- Department of Psychology, School of Psychology, Psychiatry and Psychological Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Vic. 3800, Australia.
| | | | | |
Collapse
|
128
|
Kamke MR, Brown M, Irvine DRF. Basal Forebrain Cholinergic Input Is Not Essential for Lesion-Induced Plasticity in Mature Auditory Cortex. Neuron 2005; 48:675-86. [PMID: 16301182 DOI: 10.1016/j.neuron.2005.09.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Revised: 07/11/2005] [Accepted: 09/13/2005] [Indexed: 11/17/2022]
Abstract
The putative role of the basal forebrain cholinergic system in mediating lesion-induced plasticity in topographic cortical representations was investigated. Cholinergic immunolesions were combined with unilateral restricted cochlear lesions in adult cats, demonstrating the consequence of cholinergic depletion on lesion-induced plasticity in primary auditory cortex (AI). Immunolesions almost eliminated the cholinergic input to AI, while cochlear lesions produced broad high-frequency hearing losses. The results demonstrate that the near elimination of cholinergic input does not disrupt reorganization of the tonotopic representation of the lesioned (contralateral) cochlea in AI and does not affect the normal representation of the unlesioned (ipsilateral) cochlea. It is concluded that cholinergic basal forebrain input to AI is not essential for the occurrence of lesion-induced plasticity in AI.
Collapse
Affiliation(s)
- Marc R Kamke
- School of Psychology, Psychiatry, and Psychological Medicine, Monash University, Victoria 3800, Australia.
| | | | | |
Collapse
|
129
|
Pizzo DP, Coufal NG, Lortie MJ, Gage FH, Thal LJ. Regulatable acetylcholine-producing fibroblasts enhance cognitive performance. Mol Ther 2005; 13:175-82. [PMID: 16185935 DOI: 10.1016/j.ymthe.2005.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Revised: 08/02/2005] [Accepted: 08/02/2005] [Indexed: 11/28/2022] Open
Abstract
Regulatable gene therapy systems provide a method to alter neurotransmitter levels in vivo. We developed a rodent fibroblast cell line expressing the choline acetyltransferase (ChAT) cDNA that is silenced by doxycycline (DOX) administration. The ability of the cell line to improve cognition was tested by grafting after cholinergic lesions. Ibotenic acid was injected bilaterally into the nucleus basalis of rats, which were distributed into three groups. One group received no treatment, while the second group received cortical transplants (Graft). The third group received identical grafts but was treated with DOX to turn off ChAT expression (Graft/DOX). An unlesioned group served as control. Water maze acquisition was significantly better in the Graft group compared to the Graft/DOX group, an effect also seen in the retention and spatial probe trials. However, cognitive enhancement was restricted to spatial tasks, as inhibitory avoidance or open-field activity measures were unchanged. Molecular and biochemical analyses confirmed that DOX regulated transgene transcription and ACh levels. This study demonstrates that regulatable gene therapy has therapeutic value for single-gene disorders and also provides a mechanism to deliver small molecules in a spatiotemporal pattern to delineate the role of these compounds in discrete behavioral tasks.
Collapse
Affiliation(s)
- Donald P Pizzo
- Department of Neurosciences, University of California at San Diego, VA Medical Center MC 9151, La Jolla, CA 92093-9157, USA
| | | | | | | | | |
Collapse
|
130
|
Ji W, Suga N, Gao E. Effects of Agonists and Antagonists of NMDA and ACh Receptors on Plasticity of Bat Auditory System Elicited by Fear Conditioning. J Neurophysiol 2005; 94:1199-211. [PMID: 16061490 DOI: 10.1152/jn.00112.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In big brown bats, tone-specific plastic changes [best frequency (BF) shifts] of cortical and collicular neurons can be evoked by auditory fear conditioning, repetitive acoustic stimuli or cortical electric stimulation. It has been shown that acetylcholine (ACh) plays an important role in evoking large long-term cortical BF shifts. However, the role of N-methyl-d-aspartate (NMDA) receptors in evoking BF shifts has not yet been studied. We found 1) NMDA applied to the auditory cortex (AC) or inferior colliculus (IC) augmented the auditory responses, as ACh did, whereas 2-amino-5-phosphovalerate (APV), an antagonist of NMDA receptors, reduced the auditory responses, as atropine did; 2) although any of these four drugs did not evoke BF shifts, they influenced the development of the long-term cortical and short-term collicular BF shifts elicited by conditioning; 3) like ACh, NMDA augmented the cortical and collicular BF shifts regardless of whether it was applied to the AC or IC; 4) endogenous ACh of the AC and IC is necessary to produce the long-term cortical and short-term collicular BF shifts; 5) blockade of collicular NMDA receptors by APV abolished the development of the collicular BF shift and made the cortical BF shift small and short-term; 6) blockade of cortical NMDA receptors by APV reduced the cortical and collicular BF shifts and made the cortical BF shift short-term; and 7) conditioning with NMDA + atropine applied to the AC evoked the small, short-term cortical BF shift, whereas conditioning with APV + ACh applied to the AC evoked the small, but long-term cortical BF shift.
Collapse
Affiliation(s)
- Weiqing Ji
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | | | | |
Collapse
|
131
|
Ruzhinskaya NN, Gdovskii PA. Effects of Cholinergic Substances on Plasticity of Synapses in Olfactory Bulb of the Pike Esox lucius. J EVOL BIOCHEM PHYS+ 2005. [DOI: 10.1007/s10893-005-0080-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
132
|
Rodriguez R, Kallenbach U, Singer W, Munk MHJ. Short- and long-term effects of cholinergic modulation on gamma oscillations and response synchronization in the visual cortex. J Neurosci 2005; 24:10369-78. [PMID: 15548651 PMCID: PMC6730306 DOI: 10.1523/jneurosci.1839-04.2004] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neurons can engage in synchronized oscillatory activity in the gamma-frequency range when responding to sensory stimuli. Both the oscillatory patterning and the synchronization of responses are enhanced with arousal and attention or when the electroencephalogram is activated by electrical stimulation of the mesencephalic reticular formation. Here we show with intracortical application of cholinergic antagonists that the enhancement of gamma oscillations and response synchronization is mediated by acetylcholine and muscarinic receptors. We demonstrate further that coapplication of cholinergic agonists with synchrony-inducing light stimuli causes a lasting increase in the probability that the stimulated cells engage in gamma oscillations and response synchronization. These changes develop slowly over tens of minutes and then persist for many hours. Thus, cholinergic modulation plays a crucial role both in the fast, state-dependent facilitation of gamma oscillations and response synchronization and in use-dependent long-term modifications of cortical dynamics that favor synchronization of responses in the gamma-frequency range.
Collapse
Affiliation(s)
- Rosa Rodriguez
- Department of Neurophysiology, Max-Planck-Institute for Brain Research, D-60528 Frankfurt/Main, Germany
| | | | | | | |
Collapse
|
133
|
Dupont E, Canu MH, Stevens L, Falempin M. Effects of a 14-day period of hindpaw sensory restriction on mRNA and protein levels of NGF and BDNF in the hindpaw primary somatosensory cortex. ACTA ACUST UNITED AC 2005; 133:78-86. [PMID: 15661367 DOI: 10.1016/j.molbrainres.2004.09.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2004] [Indexed: 10/26/2022]
Abstract
Neurotrophins have been reported to play an important role in neuronal plasticity and to be regulated by neuronal activity and/or neurotransmitters. Recently, we have shown that hindpaw sensory restriction induces a cortical reorganisation in the hindpaw primary somatosensory cortex, and that acetylcholine plays a significant role in this process. Sensory restriction was obtained by hindlimb suspension for 14 days. In this study, we examined the effects of a long period of hindpaw sensory restriction on the NGF and BDNF mRNA and protein expressions in the hindpaw somatosensory cortex. mRNA and protein levels were assessed by RT-PCR and ELISA, respectively. First, we found that NGF and BDNF mRNA relative levels increased after hindpaw sensory restriction. Second, the level of NGF protein increased, whereas that of BDNF remained unchanged. This differential response of NGF and BDNF proteins to sensory restriction suggested different levels of gene regulation, i.e., at pretranslational or posttranslational states. Moreover, inasmuch as our results differ from other models of sensory restriction (dark rearing, whisker removal, etc.), we hypothesized that the regulation of neurotrophin expression is dependent on the type and duration of the sensory restriction. In conclusion, we argue that neuronal plasticity induced by hindpaw sensory restriction requires neurotrophin expression.
Collapse
Affiliation(s)
- Erwan Dupont
- Laboratoire de Plasticité Neuromusculaire, EA 1032, IFR 118 Université des Sciences et Technologies de Lille, Bâtiment SN4 F-59655 Villeneuve d'Ascq Cedex, France
| | | | | | | |
Collapse
|
134
|
Sarter M, Hasselmo ME, Bruno JP, Givens B. Unraveling the attentional functions of cortical cholinergic inputs: interactions between signal-driven and cognitive modulation of signal detection. ACTA ACUST UNITED AC 2005; 48:98-111. [PMID: 15708630 DOI: 10.1016/j.brainresrev.2004.08.006] [Citation(s) in RCA: 499] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2004] [Indexed: 12/17/2022]
Abstract
Neurophysiological studies demonstrated that increases in cholinergic transmission in sensory areas enhance the cortical processing of thalamic inputs. Cholinergic activity also suppresses the retrieval of internal associations, thereby further promoting sensory input processing. Behavioral studies documented the role of cortical cholinergic inputs in attentional functions and capacities by demonstrating, for example, that the integrity of the cortical cholinergic input system is necessary for attentional performance, and that the activity of cortical cholinergic inputs is selectively enhanced during attentional performance. This review aims at integrating the neurophysiological and behavioral evidence on the functions of cortical cholinergic inputs and hypothesizes that the cortical cholinergic input system generally acts to optimize the processing of signals in attention-demanding contexts. Such signals 'recruit', via activation of basal forebrain corticopetal cholinergic projections, the cortical attention systems and thereby amplify the processing of attention-demanding signals (termed 'signal-driven cholinergic modulation of detection'). The activity of corticopetal cholinergic projections is also modulated by direct prefrontal projections to the basal forebrain and, indirectly, to cholinergic terminals elsewhere in the cortex; thus, cortical cholinergic inputs are also involved in the mediation of top-down effects, such as the knowledge-based augmentation of detection (see Footnote 1) of signals and the filtering of irrelevant information (termed 'cognitive cholinergic modulation of detection'). Thus, depending on the quality of signals and task characteristics, cortical cholinergic activity reflects the combined effects of signal-driven and cognitive modulation of detection. This hypothesis begins to explain signal intensity or duration-dependent performance in attention tasks, the distinct effects of cortex-wide versus prefrontal cholinergic deafferentation on attention performance, and it generates specific predictions concerning cortical acetylcholine (ACh) release in attention task-performing animals. Finally, the consequences of abnormalities in the regulation of cortical cholinergic inputs for the manifestation of the symptoms of major neuropsychiatric disorders are conceptualized in terms of dysregulation in the signal-driven and cognitive cholinergic modulation of detection processes.
Collapse
Affiliation(s)
- Martin Sarter
- Department of Psychology, University of Michigan, 525 E. University Ave., Ann Arbor, MI 48109-1109, USA.
| | | | | | | |
Collapse
|
135
|
Winters BD, Bussey TJ. Removal of cholinergic input to perirhinal cortex disrupts object recognition but not spatial working memory in the rat. Eur J Neurosci 2005; 21:2263-70. [PMID: 15869523 DOI: 10.1111/j.1460-9568.2005.04055.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The perirhinal cortex of the temporal lobe has a crucial role in object recognition memory. Cholinergic transmission within perirhinal cortex also seems to be important for this function, as the muscarinic receptor antagonist scopolamine disrupts object recognition performance when administered systemically or directly into perirhinal cortex. In the present study, we directly assessed the contribution of cholinergic basal forebrain input to perirhinal cortex in object recognition. Selective bilateral removal of the cholinergic basal forebrain inputs to perirhinal cortex was accomplished by injecting the immunotoxin 192 IgG-saporin directly into perirhinal cortex in rats. These animals were significantly impaired relative to vehicle-injected controls in a spontaneous object recognition task despite intact spatial alternation performance. These results are consistent with recent reports of object recognition impairment following acute cholinergic receptor blockade and extend these findings by demonstrating that chronic removal of cholinergic basal forebrain input to an otherwise intact perirhinal cortex causes a severe object recognition deficit similar to that associated with more extensive cell body lesions of perirhinal cortex.
Collapse
Affiliation(s)
- Boyer D Winters
- Department of Experimental Psychology, University of Cambridge, Downing St., Cambridge CB2 3EB, UK.
| | | |
Collapse
|
136
|
Hirayama J, Yoshimoto J, Ishii S. Bayesian representation learning in the cortex regulated by acetylcholine. Neural Netw 2005; 17:1391-400. [PMID: 15541942 DOI: 10.1016/j.neunet.2004.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2003] [Revised: 06/18/2004] [Accepted: 06/18/2004] [Indexed: 11/21/2022]
Abstract
A brain needs to detect an environmental change and to quickly learn internal representations necessary in a new environment. This paper presents a theoretical model of cortical representation learning that can adapt to dynamic environments, incorporating the results by previous studies on the functional role of acetylcholine (ACh). We adopt the probabilistic principal component analysis (PPCA) as a functional model of cortical representation learning, and present an on-line learning method for PPCA according to Bayesian inference, including a heuristic criterion for model selection. Our approach is examined in two types of simulations with synthesized and realistic data sets, in which our model is able to re-learn new representation bases after the environment changes. Our model implies the possibility that a higher-level recognition regulates the cortical ACh release in the lower-level, and that the ACh level alters the learning dynamics of a local circuit in order to continuously acquire appropriate representations in a dynamic environment.
Collapse
Affiliation(s)
- Junichiro Hirayama
- Nara Institute of Science and Technology 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
| | | | | |
Collapse
|
137
|
Han SH, Murchison D, Griffith WH. Low voltage-activated calcium and fast tetrodotoxin-resistant sodium currents define subtypes of cholinergic and noncholinergic neurons in rat basal forebrain. ACTA ACUST UNITED AC 2005; 134:226-38. [PMID: 15836920 DOI: 10.1016/j.molbrainres.2004.10.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Revised: 10/22/2004] [Accepted: 10/24/2004] [Indexed: 11/26/2022]
Abstract
Neurons of the basal forebrain (BF) possess unique combinations of voltage-gated membrane currents. Here, we describe subtypes of rat basal forebrain neurons based on patch-clamp analysis of low-voltage activated (LVA) calcium and tetrodotoxin-resistant (TTX-R) sodium currents combined with single-cell RT-PCR analysis. Neurons were identified by mRNA expression of choline acetyltransferase (ChAT+, cholinergic) and glutamate decarboxylase (GAD67, GABAergic). Four cell types were encountered: ChAT+, GAD+, ChAT+/GAD+ and ChAT-/GAD- cells. Both ChAT+ and ChAT+/GAD+ cells (71/75) displayed LVA currents and most (34/39) expressed mRNA for LVA Ca(2+) channel subunits. Ca(v)3.2 was detected in 31/34 cholinergic neurons and Ca(v)3.1 was expressed in 6/34 cells. Three cells expressed both subunits. No single neurons showed Ca(v)3.3 mRNA expression, although BF tissue expression was observed. In young rats (2-4 mo), ChAT+/GAD+ cells displayed larger LVA current densities compared to ChAT+ neurons, while these latter neurons displayed an age-related increase in current densities. Most (29/38) noncholinergic neurons (GAD+ and ChAT-/GAD-) possessed fast TTX-R sodium currents resembling those mediated by Na(+) channel subunit Na(v)1.5. This subunit was expressed predominately in noncholinergic neurons. No cholinergic cells (0/75) displayed fast TTX-R currents. The TTX-R currents were faster and larger in GAD+ neurons compared to ChAT-/GAD- neurons. The properties of ChAT+/GAD+ neurons resemble those of ChAT+ neurons, rather than of GAD+ neurons. These results suggest novel features of subtypes of cholinergic and noncholinergic neurons within the BF that may provide new insights for understanding normal BF function.
Collapse
Affiliation(s)
- Sun-Ho Han
- Department of Medical Pharmacology and Toxicology, College of Medicine, Texas A and M University System Health Science Center, 1114-TAMU, College Station, TX 77843-1114, USA
| | | | | |
Collapse
|
138
|
Hennevin E, Maho C. Fear conditioning-induced plasticity in auditory thalamus and cortex: To what extent is it expressed during slow-wave sleep? Behav Neurosci 2005; 119:1277-89. [PMID: 16300434 DOI: 10.1037/0735-7044.119.5.1277] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
After fear conditioning to a tone, rats received nonawakening presentations of the tone alone during slow-wave sleep (SWS) episodes. Multiunit activity was recorded in the medial part of the medial geniculate (MGm) and in the primary auditory cortex (ACx). Although tone-evoked responses were increased in MGm and ACx during the 3 conditioning sessions, group data failed to show any significant changes during SWS. Nonetheless, the few recordings (5/29) that exhibited the strongest conditioned responses during wakefulness expressed enhanced responding during SWS. Compared with previous data obtained in MGm during paradoxical sleep, associative plastic changes were less easily expressed during SWS. These results are discussed with regard to functional changes that occur in the thalamocortical system across vigilance states.
Collapse
Affiliation(s)
- Elizabeth Hennevin
- Laboratoire de Neurobiologie de l'Apprentissage, de la Mémoire et de la Communication, Centre National de la Recherche Scientifique, UMR 8620, Université Paris-Sud, Orsay, Cedex, France.
| | | |
Collapse
|
139
|
Mann EO, Tominaga T, Ichikawa M, Greenfield SA. Cholinergic modulation of the spatiotemporal pattern of hippocampal activity in vitro. Neuropharmacology 2005; 48:118-33. [PMID: 15617733 DOI: 10.1016/j.neuropharm.2004.08.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2004] [Revised: 06/14/2004] [Accepted: 08/17/2004] [Indexed: 10/26/2022]
Abstract
The aim of this study was to use optical imaging with voltage-sensitive dyes (Di-4-ANEPPS), to examine the cholinergic modulation of CA1 network responses to Schaffer collateral input. By comparing responses recorded with optical imaging and field recordings across the proximodistal axis of CA1, it was initially demonstrated that voltage-sensitive dyes could report reliably both the pattern of activation and cholinergic modulation. The higher spatial resolution of optical imaging was used to explore the somatodendritic profile of cholinergic modulation. It was found that activation of muscarinic acetylcholine receptors (mAChR) (1-10 microM carbachol), inhibited evoked responses across all layers of CA1. This was accompanied by an increase in paired-pulse facilitation in the apical and distal dendritic layers (40 ms inter-stimulus interval), but not in perisomatic regions. The mAChR antagonist, 20 microM atropine, alone increased facilitation at perisomatic sites, suggesting that muscarinic signalling pathways actively suppress perisomatic responses to repetitive stimulation. In contrast, the activation of nicotinic acetylcholine receptors (10 microM nicotine) had no significant effect on single evoked responses, but selectively increased facilitation at perisomatic sites. These results suggest that cholinergic modulation of the hippocampal CA1 network has multiple differential effects on the somatodendritic processing of the Schaffer collateral input.
Collapse
Affiliation(s)
- Edward O Mann
- Department of Pharmacology, Oxford University, Mansfield Road, Oxford OX1 3QT, UK.
| | | | | | | |
Collapse
|
140
|
Irvine DRF, Wright BA. Plasticity of Spectral Processing. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2005; 70:435-72. [PMID: 16472642 DOI: 10.1016/s0074-7742(05)70013-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Dexter R F Irvine
- Department of Psychology, Faculty of Medicine, Nursing, and Health Sciences, Monash University, Victoria 3800, Australia
| | | |
Collapse
|
141
|
Sánchez-Camacho C, López JM, González A. Basal forebrain cholinergic system of the anuran amphibianRana perezi: Evidence for a shared organization pattern with amniotes. J Comp Neurol 2005; 494:961-75. [PMID: 16385484 DOI: 10.1002/cne.20833] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The organization of the basal forebrain cholinergic system (BFCS) in the frog was studied by means of choline acetyltransferase (ChAT) immunohistochemistry. The BFCS was observed as a conspicuous cholinergic cell population extending through the diagonal band, medial septal nucleus, bed nucleus of the stria terminalis, and pallidal regions. Abundant fiber labeling was also found around the labeled cell bodies. The combination of retrograde tract tracing with dextran amines and ChAT immunohistochemistry revealed intraseptal and intra-BFCS cholinergic connections. In addition, an extratelencephalic cholinergic input from the laterodorsal tegemental nucleus was demonstrated. The possible influence of monoaminergic inputs on the BFCS neurons was examined by means of tyrosine hydroxylase and serotonin immunohistochemistry combined with ChAT immunolabeling. Our results showed that catecholaminergic fibers overlapped the BFCS, with the exception of the medial septal nucleus. Serotoninergic innervation was widespread, but less abundant in the caudal extent of the BFCS. Taken together, our results on the localization of the cholinergic neurons in the basal forebrain and their relationship with cholinergic, catecholaminergic, and serotoninergic afferents have shown numerous common features with amniotes. In particular, anurans and mammals (for which most data is available) share a strikingly comparable organization pattern of the BFCS.
Collapse
Affiliation(s)
- Cristina Sánchez-Camacho
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense, 28040 Madrid, Spain
| | | | | |
Collapse
|
142
|
Ma X, Suga N. Lateral inhibition for center-surround reorganization of the frequency map of bat auditory cortex. J Neurophysiol 2004; 92:3192-9. [PMID: 15548634 DOI: 10.1152/jn.00301.2004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Repetitive acoustic stimulation, auditory fear conditioning, and focal electric stimulation of the auditory cortex (AC) each evoke the reorganization of the central auditory system. Our current study of the big brown bat indicates that focal electric stimulation of the AC evokes center-surround reorganization of the frequency map of the AC. In the center, the neuron's best frequencies (BFs), together with their frequency-tuning curves, shift toward the BFs of electrically stimulated cortical neurons (centripetal BF shifts). In the surround, BFs shift away from the stimulated cortical BF (centrifugal BF shifts). Centripetal BF shifts are much larger than centrifugal BF shifts. An antagonist (bicuculline methiodide) of inhibitory synaptic transmitter receptors changes centrifugal BF shifts into centripetal BF shifts, whereas its agonist (muscimol) changes centripetal BF shifts into centrifugal BF shifts. This reorganization of the AC thus depends on a balance between facilitation and inhibition evoked by focal cortical electric stimulation. Unlike neurons in the AC of the big brown bat, neurons in the Doppler-shifted constant-frequency (DSCF) area of the AC of the mustached bat are highly specialized for fine-frequency analysis and show almost exclusively centrifugal BF shifts for focal electric stimulation of the DSCF area. Our current data indicate that in the highly specialized area, lateral inhibition is strong compared with the less-specialized area and that the specialized and nonspecialized areas both share the same inhibitory mechanism for centrifugal BF shifts.
Collapse
Affiliation(s)
- Xiaofeng Ma
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA
| | | |
Collapse
|
143
|
Montero-Pastor A, Vale-Martínez A, Guillazo-Blanch G, Martí-Nicolovius M. Effects of electrical stimulation of the nucleus basalis on two-way active avoidance acquisition, retention, and retrieval. Behav Brain Res 2004; 154:41-54. [PMID: 15302109 DOI: 10.1016/j.bbr.2004.01.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2003] [Revised: 01/15/2004] [Accepted: 01/15/2004] [Indexed: 02/02/2023]
Abstract
This study assessed the role of the nucleus basalis magnocellularis (NBM) in specific memory phases of two-way active avoidance conditioning. We evaluated the effects of NBM electrical stimulation applied during different phases of the avoidance task. Rats were trained in a 30-trial acquisition session, and were tested again 24 and 48 h later. NBM stimulation was applied at different stages of memory formation of the conditioning: (1) immediately before the first training session to determine the effects on acquisition of the two-way avoidance task; (2) immediately after the first training session to evaluate effects on memory consolidation; and (3) immediately before the 24-h retention session to analyze the effects on the retrieval process. NBM stimulation before training significantly improved the acquisition of the task, without affecting subsequent retention at either 24 or 48 h. Stimulation of the NBM immediately after the first training session slightly impaired performance in the 24-h retention session. Stimulation of the NBM immediately before the 24-h retention session did not affect performance in either the 24 or 48-h retention sessions. Therefore, the NBM may play a more important role in acquisition of memory in aversively motivated conditioning tasks than in consolidation or retrieval of such memories. These results are discussed in the context of attention enhancement and cortical and amygdala activation.
Collapse
Affiliation(s)
- Ana Montero-Pastor
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | | | |
Collapse
|
144
|
Manunta Y, Edeline JM. Noradrenergic Induction of Selective Plasticity in the Frequency Tuning of Auditory Cortex Neurons. J Neurophysiol 2004; 92:1445-63. [PMID: 15084638 DOI: 10.1152/jn.00079.2004] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neuromodulators have long been viewed as permissive factors in experience-induced cortical plasticity, both during development and in adulthood. Experiments performed over the last two decades have reported the potency of acetylcholine to promote changes in functional properties of cortical cells in the auditory, visual, and somatosensory modality. In contrast, very few attempts were made with the monoaminergic systems. The present study evaluates how repeated presentation of brief pulses of noradrenaline (NA) concomitant with presentation of a particular tone frequency changes the frequency tuning curves of auditory cortex neurons determined at 20 dB above threshold. After 100 trials of NA-tone pairing, 28% of the cells (19/67) exhibited selective tuning modifications for the frequency paired with NA. All the selective effects were obtained when the paired frequency was within 1/4 of an octave from the initial best frequency. For these cells, selective decreases were prominent (15/19 cases), and these effects lasted ≥15 min after pairing. No selective effects were observed under various control conditions: tone alone ( n = 10 cells), NA alone ( n = 11 cells), pairing with ascorbic acid ( n = 6 cells), or with GABA ( n = 20 cells). Selective effects were observed when the NA-tone pairing was performed in the presence of propranolol (4/10 cells) but not when it was performed in the presence phentolamine (0/13 cells), suggesting that the effects were mediated by alpha receptors. These results indicate that brief increases in noradrenaline concentration can trigger selective modifications in the tuning curves of cortical neurons that, in most of the cases, go in opposite direction compared with those usually reported with acetylcholine.
Collapse
Affiliation(s)
- Yves Manunta
- NAMC, UMR CNRS 8620, Bat. 446, Université Paris-Sud, 91405 Orsay Cedex, France.
| | | |
Collapse
|
145
|
Fournier GN, Semba K, Rasmusson DD. Modality- and region-specific acetylcholine release in the rat neocortex. Neuroscience 2004; 126:257-62. [PMID: 15207343 DOI: 10.1016/j.neuroscience.2004.04.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2004] [Indexed: 11/29/2022]
Abstract
The basal forebrain is the major source of acetylcholine in the neocortex, and this projection has been variously described as either diffuse or highly specific. We used in vivo microdialysis to examine this discrepancy by collecting acetylcholine release simultaneously from visual, somatosensory and prefrontal cortical areas. Urethane-anesthetized rats were presented with visual and somatosensory stimulation in counter-balanced order and acetylcholine was measured using HPLC. Evoked acetylcholine release was modality-specific, i.e. visual stimulation evoked a large (75%) increase from visual cortex and little (24%) change from the somatosensory area whereas skin stimulation had the opposite effect. No increase was apparent in prefrontal cortex with either stimulation protocol. This experiment extends early studies using cortical cups to collect acetylcholine, and is consistent with the concept of functional specificity within the cholinergic basal forebrain with respect to both its sensory inputs and projections to the neocortex. This functional specificity within the cholinergic basal forebrain might be utilized in the modulation of different cortical regions during selective attention and plasticity.
Collapse
Affiliation(s)
- G N Fournier
- Department of Physiology and Biophysics, Dalhousie University, 5850 College Street, Halifax, NS, Canada B3H 1X5
| | | | | |
Collapse
|
146
|
Zhang L, Plotkin RC, Wang G, Sandel ME, Lee S. Cholinergic augmentation with donepezil enhances recovery in short-term memory and sustained attention after traumatic brain injury. Arch Phys Med Rehabil 2004; 85:1050-5. [PMID: 15241749 DOI: 10.1016/j.apmr.2003.10.014] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE To examine effects of donepezil on short-term memory and sustained attention in postacute patients with traumatic brain injury (TBI). DESIGN A 24-week, randomized, placebo-controlled, double-blind crossover trial. SETTING Outpatient clinics in 2 teaching hospitals. PARTICIPANTS Eighteen postacute TBI patients with cognitive impairment. INTERVENTION Patients were randomly assigned to group A or group B. Patients in group A received donepezil for the first 10 weeks and then a placebo for another 10 weeks. The 2 treatment phases were separated by a washout period of 4 weeks. Patients in group B received the preparations in the opposite order. MAIN OUTCOME MEASURES Short-term memory and sustained attention were assessed by 2 indexes (Auditory Immediate Index [AII], Visual Immediate Index [VII]) of the Wechsler Memory Scale-III and the Paced Auditory Serial Addition Test (PASAT), at baseline, week 10, and week 24 of the trial. RESULTS Intragroup comparison of different phases of the trial in both groups showed that donepezil significantly increased the testing scores of the AII and VII, as well as PASAT scores, compared with baseline. There was no significant change in the testing scores between assessment at baseline and the end of the placebo phase in group B. Intergroup comparison at the 10-week assessment showed significantly improved testing scores in group A with donepezil over group B with the placebo. The improved testing scores with donepezil in group A were sustained after the washout period and placebo phase, suggesting a carry-over effect of the medication. CONCLUSIONS Donepezil increased neuropsychologic testing scores in short-term memory and sustained attention in postacute TBI patients. Cholinergic augmentation may be a viable approach to restore memory and attention after TBI.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Rehabilitation Medicine, University of Texas Health Science Center, San Antonio, TX, USA.
| | | | | | | | | |
Collapse
|
147
|
Pizzo DP, Paban V, Coufal NG, Gage FH, Thal LJ. Long-term production of choline acetyltransferase in the CNS after transplantation of fibroblasts modified with a regulatable vector. ACTA ACUST UNITED AC 2004; 126:1-13. [PMID: 15207910 DOI: 10.1016/j.molbrainres.2004.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2004] [Indexed: 10/26/2022]
Abstract
A rat fibroblast cell line was modified to contain the Drosophila choline acetyltransferase (ChAT) cDNA under the control of a tetracycline-regulated system. Several clonal lines were assessed in vitro and in vivo to establish the optimal clone for gene therapy experiments. The influence of in vitro cell density on ChAT expression was compared to biological activity detected after grafting to the rat brain. While each clone had different ChAT activity patterns, all clones had low activity immediately post-grafting which increased over time, reaching a plateau between 1 and 2 months which was maintained for at least 1 year. The clones expressed a high basal ChAT activity level in vitro that was repressed in a dose- and time-dependent manner with doxycycline (DOX) treatment. In the absence of DOX, high levels of ChAT activity were maintained for at least 2 months in vitro. DOX induced a rapid and strong (200-fold) suppression of ChAT activity within 48 h. A dose-response curve indicated that the fibroblasts were very sensitive to low concentrations of DOX (ED50 12 pg/ml). Removal of DOX led to a derepression of ChAT activity within 2 days. These cells will be useful for ex vivo gene therapy of the cholinergic system.
Collapse
Affiliation(s)
- Donald P Pizzo
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92023, USA
| | | | | | | | | |
Collapse
|
148
|
Abstract
Acetylcholine release in sensory neocortex contributes to higher-order sensory function, in part by activating nicotinic acetylcholine receptors (nAChRs). Molecular studies have revealed a bewildering array of nAChR subtypes and cellular actions; however, there is some consensus emerging about the major nAChR subtypes and their functions in sensory cortex. This review first describes the systems-level effects of activating nAChRs in visual, somatosensory, and auditory cortex, and then describes, as far as possible, the underlying cellular and synaptic mechanisms. A related goal is to examine if sensory cortex can be considered a model system for cortex in general, because the use of sensory stimuli to activate neural circuits physiologically is helpful for understanding mechanisms of systems-level function and plasticity. A final goal is to highlight the emerging role of nAChRs in developing sensory cortex, and the adverse impact of early nicotine exposure on subsequent sensory-cognitive function.
Collapse
Affiliation(s)
- Raju Metherate
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California 92697, USA.
| |
Collapse
|
149
|
Pepeu G, Giovannini MG. Changes in acetylcholine extracellular levels during cognitive processes. Learn Mem 2004; 11:21-7. [PMID: 14747513 DOI: 10.1101/lm.68104] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Measuring the changes in neurotransmitter extracellular levels in discrete brain areas is considered a tool for identifying the neuronal systems involved in specific behavioral responses or cognitive processes. Acetylcholine (ACh) is the first neurotransmitter whose diffusion from the central nervous system was investigated and whose extracellular levels variations were correlated to changes in neuronal activity. This was done initially by means of the cup technique and then by the microdialysis technique. The latter, notwithstanding some technical limitations, makes it possible to detect variations in extracellular levels of ACh in unrestrained, behaving animals. This review summarizes and discusses the results obtained investigating the changes in ACh release during performance of operant tasks, exposition to novel stimuli, locomotor activity, and the performance of spatial memory tasks, working memory, and place preference memory tasks. Activation of the forebrain cholinergic system has been demonstrated in many tasks and conditions in which the environment requires the animal to analyze novel stimuli that may represent a threat or offer a reward. The sustained cholinergic activation, demonstrated by high levels of extracellular ACh observed during the behavioral paradigms, indicates that many behaviors occur within or require the facilitation provided by the cholinergic system to the operation of pertinent neuronal pathways.
Collapse
Affiliation(s)
- Giancarlo Pepeu
- Department of Pharmacology, University of Florence, 50139 Florence, Italy.
| | | |
Collapse
|
150
|
Weinberger NM. The nucleus basalis and memory codes: auditory cortical plasticity and the induction of specific, associative behavioral memory. Neurobiol Learn Mem 2004; 80:268-84. [PMID: 14521869 DOI: 10.1016/s1074-7427(03)00072-8] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Receptive field (RF) plasticity develops in the primary auditory cortex (ACx) when a tone conditioned stimulus (CS) becomes associated with an appetitive or aversive unconditioned stimulus (US). This prototypical stimulus-stimulus (S-S) association is accompanied by shifts of frequency tuning of neurons toward or to the frequency of the CS such that the area of best tuning of the CS frequency is increased in the tonotopic representation of the ACx. RF plasticity has all of the major characteristics of behavioral associative memory: it is highly specific, discriminative, rapidly induced, consolidates (becomes stronger and more specific over hours to days) and can be retained indefinitely (tested to two months). Substitution of nucleus basalis (NB) stimulation for a US induces the same associative RF plasticity, and this requires the engagement of muscarinic receptors in the ACx. Pairing a tone with NB stimulation actually induces specific, associative behavioral memory, as indexed by post-training frequency generalization gradients. The degree of acquired behavioral significance of sounds appears to be encoded by the number of neurons that become retuned in the ACx to that acoustic stimulus, the greater the importance, the greater the number of re-tuned cells. This memory code has recently been supported by direct neurobehavioral tests. In toto, these findings support the view that specific, learned auditory memory content is stored in the ACx, and further that this storage of information during learning and the instantiation of the memory code involves the engagement of the nucleus basalis and its release of acetylcholine into target structures, particularly the cerebral cortex.
Collapse
Affiliation(s)
- Norman M Weinberger
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA 92797-3800, USA.
| |
Collapse
|