101
|
Abstract
T cell cytoarchitecture differs dramatically depending on whether the cell is circulating within the bloodstream, migrating through tissues, or interacting with antigen-presenting cells. The transition between these states requires important signaling-dependent changes in actin cytoskeletal dynamics. Recently, analysis of actin-regulatory proteins associated with T cell activation has provided new insights into how T cells control actin dynamics in response to external stimuli and how actin facilitates downstream signaling events and effector functions. Among the actin-regulatory proteins that have been identified are nucleation-promoting factors such as WASp, WAVE2, and HS1; severing proteins such as cofilin; motor proteins such as myosin II; and linker proteins such as ezrin and moesin. We review the current literature on how signaling pathways leading from diverse cell surface receptors regulate the coordinated activity of these and other actin-regulatory proteins and how these proteins control T cell function.
Collapse
Affiliation(s)
- Janis K Burkhardt
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | |
Collapse
|
102
|
Takai Y, Kitano K, Terawaki SI, Maesaki R, Hakoshima T. Structural basis of the cytoplasmic tail of adhesion molecule CD43 and its binding to ERM proteins. J Mol Biol 2008; 381:634-44. [PMID: 18614175 DOI: 10.1016/j.jmb.2008.05.085] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 05/29/2008] [Accepted: 05/31/2008] [Indexed: 11/24/2022]
Abstract
CD43/leukosialin/sialophorin is the major adhesion molecule in most hematopoietic cells and belongs to the sialomucin superfamily. In leukocyte emigration and activation, the exclusion of CD43 from the immunological synapse is an essential step. While the exclusion requires binding of the cytoplasmic region to ERM (ezrin/radixin/moesin) proteins, the detailed specific nature of the interaction between CD43 and ERM proteins is obscure. We have characterized the conformational properties of the CD43 cytoplasmic region, consisting of 124 amino acid residues, by hydrodynamic and spectroscopic measurements. Sedimentation equilibrium and velocity studies of ultracentrifugation revealed that the CD43 cytoplasmic peptide exists in a monomeric and extended form in solution. The crystal structure of the complex between the radixin FERM (4.1 and ERM) domain and the CD43 juxtamembrane region peptide reveals that the nonpolar region of the peptide binds subdomain C of the FERM domain. CD43 lacks the Motif-1 sequence for FERM binding found in the FERM-intercellular adhesion molecule-2 complex but possesses two conserved leucine residues that dock into the hydrophobic pocket of subdomain C without forming a 3(10)-helix. The FERM-binding site on CD43 is overlapped with the functional nuclear localization signal sequence. Our structure suggests that regulation of ERM binding may be coupled with regulated intramembrane proteolysis of CD43 followed by the nuclear transfer of the cytoplasmic peptide.
Collapse
Affiliation(s)
- Yumiko Takai
- Structural Biology Laboratory, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | | | | | | | | |
Collapse
|
103
|
Cannon JL, Collins A, Mody PD, Balachandran D, Henriksen KJ, Smith CE, Tong J, Clay BS, Miller SD, Sperling AI. CD43 regulates Th2 differentiation and inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 180:7385-93. [PMID: 18490738 PMCID: PMC2669414 DOI: 10.4049/jimmunol.180.11.7385] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
CD43 is a highly glycosylated transmembrane protein that regulates T cell activation. CD43(-/-) T cells are hyperproliferative and the cytoplasmic tail of CD43 has been found to be sufficient to reconstitute wild-type proliferation levels, suggesting an intracellular mechanism. In this study, we report that upon TCR ligation CD43(-/-) T cells demonstrated no increase in tyrosine phosphorylation but a decreased calcium flux. Interestingly, CD43(-/-) T cells preferentially differentiated into Th2 cells in vitro, and CD43(-/-) T cells show increased GATA-3 translocation into the nucleus. In vivo, CD43(-/-) mice exhibited increased inflammation in two separate models of Th2-mediated allergic airway disease. In contrast, in Th1-mediated diabetes, nonobese diabetic CD43(-/-) mice did not significantly differ from wild-type mice in disease onset or progression. Th1-induced experimental autoimmune encephalomyelitis to MOG(35-55) was also normal in the CD43(-/-) mice. Nonetheless, the CD43(-/-) mice produced more IL-5 when restimulated with MOG(35-55) in vitro and demonstrated decreased delayed-type hypersensitivity responses. Together, these data demonstrate that although CD43(-/-) T cells preferentially differentiate into Th2 cells, this response is not sufficient to protect against Th1-mediated autoimmune responses.
Collapse
Affiliation(s)
- Judy L Cannon
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL 60637, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Weber M, Treanor B, Depoil D, Shinohara H, Harwood NE, Hikida M, Kurosaki T, Batista FD. Phospholipase C-gamma2 and Vav cooperate within signaling microclusters to propagate B cell spreading in response to membrane-bound antigen. ACTA ACUST UNITED AC 2008; 205:853-68. [PMID: 18362175 PMCID: PMC2292224 DOI: 10.1084/jem.20072619] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
B cell receptor (BCR) recognition of membrane-bound antigen initiates a spreading and contraction response, the extent of which is controlled through the formation of signaling-active BCR-antigen microclusters and ultimately affects the outcome of B cell activation. We followed a genetic approach to define the molecular requirements of BCR-induced spreading and microcluster formation. We identify a key role for phospholipase C-γ2 (PLCγ2), Vav, B cell linker, and Bruton's tyrosine kinase in the formation of highly coordinated “microsignalosomes,” the efficient assembly of which is absolutely dependent on Lyn and Syk. Using total internal reflection fluorescence microscopy, we examine at high resolution the recruitment of PLCγ2 and Vav to microsignalosomes, establishing a novel synergistic relationship between the two. Thus, we demonstrate the importance of cooperation between components of the microsignalosome in the amplification of signaling and propagation of B cell spreading, which is critical for appropriate B cell activation.
Collapse
Affiliation(s)
- Michele Weber
- Lymphocyte Interaction Laboratory, London Research Institute, Cancer Research UK, London WC2A 3PX, England, UK
| | | | | | | | | | | | | | | |
Collapse
|
105
|
|
106
|
Bajénoff M, Germain RN. Seeing is believing: a focus on the contribution of microscopic imaging to our understanding of immune system function. Eur J Immunol 2008; 37 Suppl 1:S18-33. [PMID: 17972341 DOI: 10.1002/eji.200737663] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Many cells of the immune system do not occupy fixed tissue locations, but circulate in the blood, traffic through the lymph, and migrate within organized lymphoid organs and periphery tissues. Rare antigen-specific lymphocytes must find one another for productive adaptive immune responses and the different phases of cell-mediated and humoral immune response development take place in distinct sites. This historical feature examines how we have reached our current understanding of these aspects of immune system function. It emphasizes the critical role of ever-improving imaging techniques in determining where immune cells reside and interact and stresses the key past contribution of sequential static immunohistochemical analysis using monoclonal reagents. In combination with genetic studies, these imaging experiments resulted in our current paradigm that views activation-dependent changes in chemokine sensitivity as central to effective cell co-operation. We also highlight the very recent application of two-photon imaging to the direct observation of immune cell dynamics in a natural tissue environment, noting how the application of this technology has reinforced some existing ideas and is changing other long-held views. We conclude with some speculations about the opportunities for further advances using ever more powerful imaging methods.
Collapse
Affiliation(s)
- Marc Bajénoff
- Lymphocyte Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1892, USA
| | | |
Collapse
|
107
|
|
108
|
Ramírez-Pliego O, Escobar-Zárate DL, Rivera-Martínez GM, Cervantes-Badillo MG, Esquivel-Guadarrama FR, Rosas-Salgado G, Rosenstein Y, Santana MA. CD43 signals induce Type One lineage commitment of human CD4+ T cells. BMC Immunol 2007; 8:30. [PMID: 18036228 PMCID: PMC2235884 DOI: 10.1186/1471-2172-8-30] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Accepted: 11/23/2007] [Indexed: 12/20/2022] Open
Abstract
Background The activation and effector phenotype of T cells depend on the strength of the interaction of the TcR with its cognate antigen and additional signals provided by cytokines and by co-receptors. Lymphocytes sense both the presence of an antigen and also clues from antigen-presenting cells, which dictate the requisite response. CD43 is one of the most abundant molecules on the surface of T cells; it mediates its own signalling events and cooperates with those mediated by the T cell receptor in T cell priming. We have examined the role of CD43 signals on the effector phenotype of adult CD4+ and CD8+ human T cells, both alone and in the presence of signals from the TcR. Results CD43 signals direct the expression of IFNγ in human T cells. In freshly isolated CD4+ T cells, CD43 signals potentiated expression of the IFNγ gene induced by TcR activation; this was not seen in CD8+ T cells. In effector cells, CD43 signals alone induced the expression of the IFNγ gene in CD4+ T cells and to a lesser extent in CD8+ cells. The combined signals from CD43 and the TcR increased the transcription of the T-bet gene in CD4+ T cells and inhibited the transcription of the GATA-3 gene in both populations of T cells, thus predisposing CD4+ T cells to commitment to the T1 lineage. In support of this, CD43 signals induced a transient membrane expression of the high-affinity chains of the receptors for IL-12 and IFNγ in CD4+ T cells. CD43 and TcR signals also cooperated with those of IL-12 in the induction of IFNγ expression. Moreover, CD43 signals induced the co-clustering of IFNγR and the TcR and cooperated with TcR and IL-12 signals, triggering a co-capping of both receptors in CD4+ populations, a phenomenon that has been associated with a T1 commitment. Conclusion Our results suggest a key role for CD43 signals in the differentiation of human CD4+ T cells into a T1 pattern.
Collapse
Affiliation(s)
- Oscar Ramírez-Pliego
- Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Av, Universidad 1001, Col, Chamilpa, Cuernavaca, 62210, Mexico.
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Ilani T, Khanna C, Zhou M, Veenstra TD, Bretscher A. Immune synapse formation requires ZAP-70 recruitment by ezrin and CD43 removal by moesin. J Cell Biol 2007; 179:733-46. [PMID: 18025306 PMCID: PMC2080902 DOI: 10.1083/jcb.200707199] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Accepted: 10/24/2007] [Indexed: 11/22/2022] Open
Abstract
Immunological synapse (IS) formation involves receptor-ligand pair clustering and intracellular signaling molecule recruitment with a coincident removal of other membrane proteins away from the IS. As microfilament-membrane linkage is critical to this process, we investigated the involvement of ezrin and moesin, the two ezrin/radixin/moesin proteins expressed in T cells. We demonstrate that ezrin and moesin, which are generally believed to be functionally redundant, are differentially localized and have important and complementary functions in IS formation. Specifically, we find that ezrin directly interacts with and recruits the signaling kinase ZAP-70 to the IS. Furthermore, the activation of ezrin by phosphorylation is essential for this process. In contrast, moesin dephosphorylation and removal, along with CD43, are necessary to prepare a region of the cell cortex for IS. Thus, ezrin and moesin have distinct and critical functions in the T cell cortex during IS formation.
Collapse
Affiliation(s)
- Tal Ilani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
110
|
Garcia GG, Sadighi Akha AA, Miller RA. Age-related defects in moesin/ezrin cytoskeletal signals in mouse CD4 T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 179:6403-9. [PMID: 17982027 PMCID: PMC2441933 DOI: 10.4049/jimmunol.179.10.6403] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cytoskeletal proteins of the ezrin-radixin-moesin (ERM) family contribute to T cell activation in response to Ag, and also to T cell polarization in response to connective tissue matrix proteins and chemokine gradients. Previous work has shown that T cells from aged mice are defective in their ability to develop molecular linkages between surface macromolecules and the underlying cytoskeletal framework, both for proteins that move to the synapse and those that are excluded from the site of T cell-APC interaction. T cells from aged mice also show defective cytoskeletal rearrangements and lamellipodia formation when placed in contact with slides coated with Abs to the TCR/CD3 complex. In this study, we show that old CD4 T cells differ from young CD4 T cells in several aspects of ERM biochemistry, including ERM phosphorylation and ERM associations with CD44, CD43, and EBP50. In addition, CD4 T cells from aged mice show defects in the Rho GTPase activities known to control ERM function.
Collapse
Affiliation(s)
- Gonzalo G. Garcia
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Amir A. Sadighi Akha
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Richard A. Miller
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
- University of Michigan Geriatrics Center, Ann Arbor, Michigan, USA
- Ann Arbor DVA Medical Center, Ann Arbor, Michigan, USA. Phone: (734) 936 2120. Fax: (734) 936 9220
| |
Collapse
|
111
|
Batista FD, Arana E, Barral P, Carrasco YR, Depoil D, Eckl-Dorna J, Fleire S, Howe K, Vehlow A, Weber M, Treanor B. The role of integrins and coreceptors in refining thresholds for B-cell responses. Immunol Rev 2007; 218:197-213. [PMID: 17624954 DOI: 10.1111/j.1600-065x.2007.00540.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Despite compelling evidence that a large proportion of antigens encountered in vivo by B cells are membrane bound, the general view is that B cells are mainly activated by soluble antigens. This notion may have been biased somewhat over the years because the high affinity of the B-cell receptor (BCR) for soluble intact ligands allows efficient B-cell stimulation in vitro. In vivo, however, even soluble antigens are likely to be deposited on the surface of antigen-presenting cells, either by complement or Fc receptors in the form of immune complexes, thus becoming more potent stimulators of B-cell activation. In this framework, the BCR works in a complex environment of integrins and coreceptors, as well as the B-cell cytoskeleton. Over the last few years, we have focused on B-cell membrane-bound antigen recognition. Here, we discuss some of our findings in the context of what is currently known in this exciting new field.
Collapse
Affiliation(s)
- Facundo D Batista
- Lymphocyte Interaction Laboratory, London Research Institute, Cancer Research UK, London, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Graf B, Bushnell T, Miller J. LFA-1-mediated T cell costimulation through increased localization of TCR/class II complexes to the central supramolecular activation cluster and exclusion of CD45 from the immunological synapse. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 179:1616-24. [PMID: 17641028 PMCID: PMC3993012 DOI: 10.4049/jimmunol.179.3.1616] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
T cell activation is associated with a dramatic reorganization of cell surface proteins and associated signaling components into discrete subdomains within the immunological synapse in T cell:APC conjugates. However, the signals that direct the localization of these proteins and the functional significance of this organization have not been established. In this study, we have used wild-type and LFA-1-deficient, DO11.10 TCR transgenic T cells to examine the role of LFA-1 in the formation of the immunological synapse. We found that coengagement of LFA-1 is not required for the formation of the central supramolecular activation cluster (cSMAC) region, but does increase the accumulation of TCR/class II complexes within the cSMAC. In addition, LFA-1 is required for the recruitment and localization of talin into the peripheral supramolecular activation cluster region and exclusion of CD45 from the synapse. The ability of LFA-1 to increase the amount of TCR engaged during synapse formation and segregate the phosphatase, CD45, from the synapse suggests that LFA-1 might enhance proximal TCR signaling. To test this, we combined flow cytometry-based cell adhesion and calcium-signaling assays and found that coengagement of LFA-1 significantly increased the magnitude of the intracellular calcium response following Ag presentation. These data support the idea that in addition to its important role on regulating T cell:APC adhesion, coengagement of LFA-1 can enhance T cell signaling, and suggest that this may be accomplished in part through the organization of proteins within the immunological synapse.
Collapse
MESH Headings
- Adjuvants, Immunologic/biosynthesis
- Adjuvants, Immunologic/genetics
- Adjuvants, Immunologic/physiology
- Animals
- Antigen-Presenting Cells/cytology
- Antigen-Presenting Cells/immunology
- Antigen-Presenting Cells/metabolism
- Cell Communication/genetics
- Cell Communication/immunology
- Cell Line, Tumor
- Histocompatibility Antigens Class II/metabolism
- Leukocyte Common Antigens/metabolism
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Lymphocyte Function-Associated Antigen-1/biosynthesis
- Lymphocyte Function-Associated Antigen-1/genetics
- Lymphocyte Function-Associated Antigen-1/physiology
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Mice, Transgenic
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/physiology
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Talin/metabolism
- Up-Regulation/immunology
Collapse
Affiliation(s)
- Beth Graf
- The David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY 14642
| | - Timothy Bushnell
- Center for Pediatric Biomedical Research, Aab Institute for Biomedical Research, University of Rochester, Rochester, NY 14642
| | - Jim Miller
- The David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY 14642
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642
| |
Collapse
|
113
|
Abstract
Following stimulation, T cells undergo marked changes in actin architecture that are required for productive immune responses. T-cell-receptor-dependent reorganization of the actin cytoskeleton is necessary for the formation of the immunological synapse at the T-cell-antigen-presenting-cell contact site and the distal pole complex at the opposite face of the T cell. Convergence of specific signaling molecules within these two plasma membrane domains facilitates downstream signaling events leading to full T-cell activation. Recent studies have identified many of the relevant actin-regulatory proteins, and significant progress has been made in our understanding of how these proteins choreograph molecular movements associated with T-cell activation. Proteins such as WASp, WAVE2, HS1 and cofilin direct the formation of a cortical actin scaffold at the immune synapse, while actin-binding proteins such as ezrin and moesin direct binding of signaling molecules to actin filaments within the distal pole complex.
Collapse
Affiliation(s)
- Yanping Huang
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and University of Pennsylvania School of Medicine, 816D Abramson Research Center, 3615 Civic Center Blvd., Philadelphia, PA 19104, USA
| | | |
Collapse
|
114
|
Mody PD, Cannon JL, Bandukwala HS, Blaine KM, Schilling AB, Swier K, Sperling AI. Signaling through CD43 regulates CD4 T-cell trafficking. Blood 2007; 110:2974-82. [PMID: 17638845 PMCID: PMC2018673 DOI: 10.1182/blood-2007-01-065276] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The mucin-like protein CD43 is excluded from the immune synapse, and regulates T-cell proliferation as well as T-cell migration. While the CD43 cytoplasmic domain is necessary for regulation of T-cell activation and proliferation, the mechanism via which CD43 regulates trafficking is not well defined. To investigate whether CD43 phosphorylation regulates its function in T cells, we used tandem mass spectrometry and identified Ser76 in murine CD43 as a previously unidentified site of basal phosphorylation. Interestingly, mutation of this single serine to alanine greatly diminishes T-cell trafficking to the lymph node, while CD43 exclusion and CD43-mediated regulation of T-cell proliferation remain intact. Furthermore, the CD43 extracellular domain was also required for T-cell trafficking, providing a hitherto unknown function for the extracellular domain, and suggesting that the extracellular domain may be required to transduce signals via the cytoplasmic domain. These data reveal a novel mechanism by which CD43 regulates T-cell function, and suggest that CD43 functions as a signaling molecule, sensing extracellular cues and transducing intracellular signals that modulate T-cell function.
Collapse
Affiliation(s)
- Purvi D Mody
- Committee on Immunology, University of Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
115
|
Hayashi K, Altman A. Protein kinase C theta (PKCtheta): a key player in T cell life and death. Pharmacol Res 2007; 55:537-44. [PMID: 17544292 PMCID: PMC2045646 DOI: 10.1016/j.phrs.2007.04.009] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 03/03/2007] [Accepted: 04/16/2007] [Indexed: 12/14/2022]
Abstract
Protein kinase C theta (PKCtheta) is a member of the novel, Ca(2+)-independent PKC subfamily, which plays an important and non-redundant role in several aspects of T cell biology. Much progress has been accomplished in understanding the function of PKCtheta in the immune system and its unique translocation to the immunological synapse in Ag-stimulated T lymphocytes. Biochemical and genetic approaches revealed that PKCtheta is required for the activation of mature T cells as well as for their survival. Mutation of the PKCtheta gene leads to impaired receptor-induced stimulation of the transcription factors AP-1, NF-kappaB and NFAT, which results in defective T cell activation, and to aberrant expression of apoptosis-related proteins, resulting in poor T cell survival. Furthermore, PKCtheta-deficient mice display defects in the differentiation of T helper subsets, particularly in Th2- and Th17-mediated inflammatory responses. Therefore, PKCtheta is a critical enzyme that regulates T cell function at multiple stages, and it represents an attractive drug target for allergic and autoimmune diseases.
Collapse
Affiliation(s)
- Keitaro Hayashi
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | | |
Collapse
|
116
|
González PA, Carreño LJ, Figueroa CA, Kalergis AM. Modulation of immunological synapse by membrane-bound and soluble ligands. Cytokine Growth Factor Rev 2007; 18:19-31. [PMID: 17344089 DOI: 10.1016/j.cytogfr.2007.01.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An efficient adaptive immune response should prevent pathogen infections and tumor growth without causing significant damage to host constituents. A crucial event determining the balance between tolerance and immunity is antigen recognition by T cells on the surface of antigen presenting cells (APC). Several molecular contacts at the interface between T cells and APCs contribute to define the nature of the adaptive immune response against a particular antigen. Upon TCR engagement by a peptide-MHC complex (pMHC) on the surface of an APC, a specialized supra-molecular structure known as immunological synapse (IS) assembles at the interface between these two cells. This structure involves massive re-distribution of membrane proteins, including TCR and pMHC complexes, as well as co-stimulatory and adhesion molecules. Furthermore, IS assembly leads to several important intracellular events necessary for T cell activation, such as recruitment of signaling molecules and cytoskeleton rearrangements. Because IS assembly leads to major consequences on the function of T cells, several studies have attempted to identify both soluble and membrane-bound molecules that could contribute to modulate the IS function. Here we describe recent literature on the regulation of IS assembly and modulation by TCR/pMHC binding kinetics, chemokines and cytokines focusing on their role at controlling the balance between adaptive immunity and tolerance.
Collapse
Affiliation(s)
- Pablo A González
- Millenniun Nucleus on Immunology and Immunotherapy, Departamento de Genética Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | | | | | | |
Collapse
|
117
|
|
118
|
Masilamani M, Nguyen C, Kabat J, Borrego F, Coligan JE. CD94/NKG2A inhibits NK cell activation by disrupting the actin network at the immunological synapse. THE JOURNAL OF IMMUNOLOGY 2006; 177:3590-6. [PMID: 16951318 DOI: 10.4049/jimmunol.177.6.3590] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
An adequate immune response is the result of the fine balance between activation and inhibitory signals. The exact means by which inhibitory signals obviate activation signals in immune cells are not totally elucidated. Human CD94/NKG2A is an ITIM-containing inhibitory receptor expressed by NK cells and some CD8+ T cells that recognize HLA-E. We show that the engagement of this receptor prevents NK cell activation by disruption of the actin network and exclusion of lipid rafts at the point of contact with its ligand (inhibitory NK cell immunological synapse, iNKIS). CD94/NKG2A engagement leads to recruitment and activation of src homology 2 domain-bearing tyrosine phosphatase 1. This likely explains the observed dephosphorylation of guanine nucleotide exchange factor and regulator of actin, Vav1, as well as ezrin-radixin-moesin proteins that connect actin filaments to membrane structures. In contrast, NK cell activation by NKG2D induced Vav1 and ezrin-radixin-moesin phosphorylation. Thus, CD94/NKG2A prevents actin-dependent recruitment of raft-associated activation receptors complexes to the activating synapse. This was further substantiated by showing that inhibition of actin polymerization abolished lipid rafts exclusion at the iNKIS, whereas cholesterol depletion had no effect on actin disruption at the iNKIS. These data indicate that the lipid rafts exclusion at the iNKIS is an active process which requires an intact cytoskeleton to maintain lipid rafts outside the inhibitory synapse. The net effect is to maintain an inhibitory state in the proximity of the iNKIS, while allowing the formation of activation synapse at distal points within the same NK cell.
Collapse
Affiliation(s)
- Madhan Masilamani
- Receptor Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | | | | | | | | |
Collapse
|
119
|
Erwig LP, McPhilips KA, Wynes MW, Ivetic A, Ridley AJ, Henson PM. Differential regulation of phagosome maturation in macrophages and dendritic cells mediated by Rho GTPases and ezrin-radixin-moesin (ERM) proteins. Proc Natl Acad Sci U S A 2006; 103:12825-30. [PMID: 16908865 PMCID: PMC1568932 DOI: 10.1073/pnas.0605331103] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Indexed: 02/03/2023] Open
Abstract
Deletion of apoptotic cells from tissues involves their phagocytosis by macrophages, dendritic cells, and tissue cells. Although much attention has been focused on the participating ligands, receptors, and mechanisms of uptake, little is known of the disposition of the ingested cell within the phagosome. Here we show that uptake of apoptotic cells by macrophages or fibroblasts results in rapid phagosome maturation, whereas macrophage phagosomes containing Ig-opsonized target cells mature at a slower rate. The early maturation was shown to depend on activation of Rho acting through Rho kinase on ezrin-radixin-moesin proteins. Blockade of Rho signaling or inhibition of moesin both delayed maturation rates to those seen with opsonized targets. By contrast, phagosome maturation in dendritic cells was slower, similar between apoptotic and opsonized target cells, and unaffected by Rho inhibition. These observations have direct implications for the clearance of dying cells and the roles played by different phagocytes in antigen digestion and presentation.
Collapse
Affiliation(s)
- Lars-Peter Erwig
- Program in Cell Biology, Department of Pediatrics, National Jewish Medical and Research Center, 1400 Jackson Street, Denver, CO 80206, USA.
| | | | | | | | | | | |
Collapse
|
120
|
Müller N, Avota E, Schneider-Schaulies J, Harms H, Krohne G, Schneider-Schaulies S. Measles virus contact with T cells impedes cytoskeletal remodeling associated with spreading, polarization, and CD3 clustering. Traffic 2006; 7:849-58. [PMID: 16787397 DOI: 10.1111/j.1600-0854.2006.00426.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
CD3/CD28-induced activation of the PI3/Akt kinase pathway and proliferation is impaired in T cells after contact with the measles virus (MV) glycoprotein (gp) complex. We now show that this signal also impairs actin cytoskeletal remodeling in T cells, which loose their ability to adhere and to promote microvilli formation. MV exposure results in an almost complete collapse of membrane protrusions associated with reduced phosphorylation levels of cofilin and ezrin/radixin/moesin (ERM) proteins. Consistent with their inability to activate Cdc42 and Rac1 in response to the ligation of CD3/CD28, T cells exposed to MV fail to acquire a morphology consistent with spreading and lamellopodia formation. In spite of these impairments of cytoskeleton-driven morphological alterations, these cells are recruited into conjugates with dendritic cells as efficiently as control T cells. The signal elicited by MV, however, prevents T cells to polarize as documented by a failure to redistribute the microtubule organizing center toward the synapse. Moreover, CD3 cannot be efficiently clustered and redistributed to the central region of the immunological synapse. Thus, by inducing microvillar collapse and interfering with cytoskeletal remodeling, MV signaling disturbs the ability of T cells to adhere, spread, and cluster receptors essential for sustained T-cell activation.
Collapse
Affiliation(s)
- Nora Müller
- Institute for Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, D-97078 Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
121
|
Ford ML, Evavold BD. Modulation of MOG 37-50-specific CD8+ T cell activation and expansion by CD43. Cell Immunol 2006; 240:53-61. [PMID: 16890924 DOI: 10.1016/j.cellimm.2006.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 06/13/2006] [Accepted: 06/16/2006] [Indexed: 01/22/2023]
Abstract
Several recent reports have described an effector role for CD8(+) T cells during EAE. We have previously demonstrated reduced disease incidence and severity in CD43(-/-) mice following MOG immunization, and attributed this attenuation in disease progression to the effects of CD43 deficiency on CD4+ T cells. Here, we extend those studies to examine the effects of the loss of CD43 on MOG-specific CD8+ T cells. A reduced frequency of MOG-specific CD8+ T cells following immunization was observed in CD43(-/-) mice relative to wild-type controls, as demonstrated by intracellular cytokine and MHC tetramer staining. In addition, adoptive transfer of CD8+ MOG 35-55-primed LN cells from CD43(-/-) mice resulted in significantly attenuated EAE induction as compared to recipients of wild-type CD8+ MOG-primed cells. Analysis of intracellular signaling intermediates revealed a deficiency in the ability of MOG-specific CD8+ T cells to phosphorylate ERK in response to antigen. These results characterize an important role for CD43 during the activation and expansion of autoreactive MOG-specific CD8+ T cells.
Collapse
Affiliation(s)
- Mandy L Ford
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
| | | |
Collapse
|
122
|
Saito T, Yokosuka T. Immunological synapse and microclusters: the site for recognition and activation of T cells. Curr Opin Immunol 2006; 18:305-13. [PMID: 16616469 DOI: 10.1016/j.coi.2006.03.014] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Accepted: 03/28/2006] [Indexed: 12/12/2022]
Abstract
An immunological synapse (IS) is formed at the interface between antigen-presenting cells and T cells, and is believed to be the structure responsible for antigen recognition and T-cell activation. However, recent imaging analyses reveal that T-cell receptor microclusters (MCs) formed prior to IS are the site for antigen recognition and T-cell activation. MCs are continuously generated at the periphery of the interface, even after IS formation, and induce sustained activation signals. MC formation is not accompanied by lipid-raft clustering. Central supramolecular activation cluster is considered functional in recycling and degradation of T-cell receptors, directional secretion of cytokines and cytolytic granules, generation of sustained signals, or maintenance of the cell-cell conjugation.
Collapse
Affiliation(s)
- Takashi Saito
- Laboratory for Cell Signaling, RIKEN Research Center for Allergy and Immunology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| | | |
Collapse
|
123
|
Poppe D, Tiede I, Fritz G, Becker C, Bartsch B, Wirtz S, Strand D, Tanaka S, Galle PR, Bustelo XR, Neurath MF. Azathioprine suppresses ezrin-radixin-moesin-dependent T cell-APC conjugation through inhibition of Vav guanosine exchange activity on Rac proteins. THE JOURNAL OF IMMUNOLOGY 2006; 176:640-51. [PMID: 16365460 PMCID: PMC1965586 DOI: 10.4049/jimmunol.176.1.640] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We have shown recently that the azathioprine metabolite 6-Thio-GTP causes immunosuppression by blockade of GTPase activation in T lymphocytes. In the present study, we describe a new molecular mechanism by which 6-Thio-GTP blocks GTPase activation. Although 6-Thio-GTP could bind to various small GTPases, it specifically blocked activation of Rac1 and Rac2 but not of closely related Rho family members such as Cdc42 and RhoA in primary T cells upon stimulation with alphaCD28 or fibronectin. Binding of 6-Thio-GTP to Rac1 did not suppress Rac effector coupling directly but blocked Vav1 exchange activity upon 6-Thio-GTP hydrolysis, suggesting that 6-Thio-GTP loading leads to accumulation of 6-Thio-GDP-loaded, inactive Rac proteins over time by inhibiting Vav activity. In the absence of apoptosis, blockade of Vav-mediated Rac1 activation led to a blockade of ezrin-radixin-moesin dephosphorylation in primary T cells and suppression of T cell-APC conjugation. Azathioprine-generated 6-Thio-GTP thus prevents the development of an effective immune response via blockade of Vav activity on Rac proteins. These findings provide novel insights into the immunosuppressive effects of azathioprine and suggest that antagonists of the Vav-Rac signaling pathway may be useful for suppression of T cell-dependent pathogenic immune responses.
Collapse
Affiliation(s)
- Daniela Poppe
- Laboratory of Immunology, I. Department of Medicine, University of Mainz, Mainz, Germany
| | - Imke Tiede
- Laboratory of Immunology, I. Department of Medicine, University of Mainz, Mainz, Germany
| | - Gerhard Fritz
- Department of Toxicology, University of Mainz, Mainz, Germany
| | - Christoph Becker
- Laboratory of Immunology, I. Department of Medicine, University of Mainz, Mainz, Germany
| | - Brigitte Bartsch
- Laboratory of Immunology, I. Department of Medicine, University of Mainz, Mainz, Germany
| | - Stefan Wirtz
- Laboratory of Immunology, I. Department of Medicine, University of Mainz, Mainz, Germany
| | - Dennis Strand
- Laboratory of Immunology, I. Department of Medicine, University of Mainz, Mainz, Germany
| | - Shinya Tanaka
- Laboratory of Molecular and Cellular Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Peter R. Galle
- Laboratory of Immunology, I. Department of Medicine, University of Mainz, Mainz, Germany
| | - Xosé R. Bustelo
- Centro de Investigación del Cáncer, University of Salamanca-Spanish Council for Scientific Research, Salamanca, Spain
| | - Markus F. Neurath
- Laboratory of Immunology, I. Department of Medicine, University of Mainz, Mainz, Germany
- Address correspondence and reprint requests to Dr. Markus F. Neurath, Laboratory of Immunology, I. Department of Medicine, University of Mainz, Langenbeckstrasse 1, 55101 Mainz, Germany. E-mail address:
| |
Collapse
|
124
|
Carreño LJ, González PA, Kalergis AM. Modulation of T cell function by TCR/pMHC binding kinetics. Immunobiology 2006; 211:47-64. [PMID: 16446170 DOI: 10.1016/j.imbio.2005.09.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Accepted: 09/05/2005] [Indexed: 01/19/2023]
Abstract
The interaction between the T cell receptor (TCR) and the peptide-MHC complex (pMHC) at the interface between the T cell and the antigen presenting cell (APC) is the main event controlling the specificity of antigen recognition by T cells. It is thought that TCR/pMHC binding kinetics are critical for the selection of the T cell repertoire in the thymus, as well as the activation of mature T cells in the periphery. One of the binding parameters that conditions T cell activation by pMHC ligands is the half-life of the TCR/pMHC interaction. This kinetic parameter is highly significant for the regulation of T cell activation and therefore determines the capacity of T cells to respond against pathogen- and tumor-derived antigens, avoiding self-reactivity. Several studies support the notion that T cells are activated only by TCR/pMHC interactions that are above a threshold of half-life. pMHC complexes that bind TCRs with half-lives below that threshold behave as null or antagonistic ligands. However, since prolonged half-lives can also impair T cell activation, there seems to be a ceiling for the TCR/pMHC half life that leads to efficient activation of T cells. According to these observations, efficient T cell activation would require an optimal half-life of TCR/pMHC interaction. These kinetic restrictions for T cell activation are important to generate a protective adaptive immune response minimizing cross-reactivity against self-constituents. The nature of the TCR/pMHC interaction defines in the thymus whether a thymocyte develops into a mature T cell or is eliminated by apoptosis. In addition, the kinetics of TCR/pMHC binding can determine the type of response shown by mature T cells in the periphery. Although several studies have focused on the modulation of T cell function by the affinity of the TCR/pMHC interaction, the binding kinetics rules governing T cell activation remain poorly understood. Here we review recent data and propose a new model for the regulation of T cell function by TCR/pMHC binding kinetics.
Collapse
Affiliation(s)
- Leandro J Carreño
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda #340, Santiago, Chile
| | | | | |
Collapse
|
125
|
Weikl TR, Lipowsky R. Chapter 4 Membrane Adhesion and Domain Formation. ADVANCES IN PLANAR LIPID BILAYERS AND LIPOSOMES 2006. [DOI: 10.1016/s1554-4516(06)05004-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
126
|
Yokosuka T, Sakata-Sogawa K, Kobayashi W, Hiroshima M, Hashimoto-Tane A, Tokunaga M, Dustin ML, Saito T. Newly generated T cell receptor microclusters initiate and sustain T cell activation by recruitment of Zap70 and SLP-76. Nat Immunol 2005; 6:1253-62. [PMID: 16273097 DOI: 10.1038/ni1272] [Citation(s) in RCA: 554] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Accepted: 10/06/2005] [Indexed: 11/09/2022]
Abstract
T cell receptor (TCR) activation and signaling precede immunological synapse formation and are sustained for hours after initiation. However, the precise physical sites of the initial and sustained TCR signaling are not definitively known. We report here that T cell activation was initiated and sustained in TCR-containing microclusters generated at the initial contact sites and the periphery of the mature immunological synapse. Microclusters containing TCRs, the tyrosine kinase Zap70 and the adaptor molecule SLP-76 were continuously generated at the periphery. TCR microclusters migrated toward the central supramolecular cluster, whereas Zap70 and SLP-76 dissociated from these microclusters before the microclusters coalesced with the TCR-rich central supramolecular cluster. Tyrosine phosphorylation and calcium influx were induced as microclusters formed at the initial contact sites. Inhibition of signaling prevented recruitment of Zap70 into the microclusters. These results indicated that TCR-rich microclusters initiate and sustain TCR signaling.
Collapse
Affiliation(s)
- Tadashi Yokosuka
- Laboratory for Cell Signaling, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | | | | | | | |
Collapse
|
127
|
Abstract
The recruitment of memory T cells from blood into tissues is a central element of immune surveillance and adaptive immune responses and a key feature of chronic cutaneous inflammatory diseases such as psoriasis and atopic dermatitis. Human memory T cells that infiltrate skin express the carbohydrate epitope cutaneous lymphocyte-associated antigen (CLA). Expression of the CLA epitope on T cells has been described on P-selectin glycoprotein ligand-1 (PSGL-1) and associated with the acquisition of both E-selectin and P-selectin ligand functions. In this report, we show that CD43, a sialomucin expressed constitutively on T cells, can also be decorated with the CLA epitope and serve as an E-selectin ligand. CLA expressed on CD43 was found exclusively on the high-molecular-weight (125 kDa) glycoform bearing core-2-branched O-linked glycans. CLA+ CD43 purified from human T cells supported tethering and rolling in shear flow via E-selectin but did not support binding of P-selectin. The identification and characterization of CD43 as a T-cell E-selectin ligand distinct from PSGL-1 expands the role of CD43 in the regulation of T-cell trafficking and provides new targets for the modulation of immune functions in skin.
Collapse
Affiliation(s)
- Robert C Fuhlbrigge
- Department of Dermatology, Brigham and Women's Hospital, Harvard Institutes of Medicine, 77 Ave Louis Pasteur, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
128
|
Andersson C, Fernandez-Rodriguez J, Laos S, Baeckström D, Haass C, Hansson G. Shedding and gamma-secretase-mediated intramembrane proteolysis of the mucin-type molecule CD43. Biochem J 2005; 387:377-84. [PMID: 15540986 PMCID: PMC1134965 DOI: 10.1042/bj20041387] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
CD43 is a transmembrane molecule that contains a 123-aminoacids-long cytoplasmic tail and a highly O-glycosylated extracellular domain of mucin type. Endogenous CD43 expressed in COLO 205, K562 and Jurkat cells revealed a membrane-associated, 20 kDa CD43-specific cytoplasmic tail fragment (CD43-CTF) upon inhibition of gamma-secretase. This fragment was formed by an extracellular cleavage, as it was not accumulated after treating cells with 1,10-phenanthroline, a metalloprotease inhibitor. When CD43 was transfected into HEK-293 cells expressing dominant-negative PS1 (presenilin-1), the CD43-CTF was accumulated, but not in cells with wild-type PS1. Owing to its accumulation in the presence of a non-functional PS variant, it may thus be a novel gamma-secretase substrate. This CTF is formed by an extracellular cleavage close to the membrane, is a fragment that can be concluded to be a substrate for gamma-secretase. However, the intracellular gamma-secretase product has not been possible to detect, suggesting a quick processing of this product. During normal growth the CTF was not found without gamma-secretase inhibition, but when the cells (COLO 205) were very confluent the fragment could be detected. The intracellular domain of CD43 has previously been shown to contain a functional nuclear localization signal, and has been suggested to be involved in gene activation. From this and the present results, a novel way to explain how mucin-type molecules may transduce intracellular signals can be proposed.
Collapse
Affiliation(s)
- Christian X. Andersson
- *Department of Medical Biochemistry, Göteborg University, Medicinaregatan 9A, 413 90 Gothenburg, Sweden
| | - Julia Fernandez-Rodriguez
- *Department of Medical Biochemistry, Göteborg University, Medicinaregatan 9A, 413 90 Gothenburg, Sweden
| | - Sirle Laos
- *Department of Medical Biochemistry, Göteborg University, Medicinaregatan 9A, 413 90 Gothenburg, Sweden
| | - Dan Baeckström
- *Department of Medical Biochemistry, Göteborg University, Medicinaregatan 9A, 413 90 Gothenburg, Sweden
| | - Christian Haass
- †Adolf-Butenandt-Institute, Department of Biochemistry, Laboratory for Alzheimer's and Parkinson's Disease Research, Schillerstr. 44, Ludwig-Maximilians-University, D-80336 Munich, Germany
| | - Gunnar C. Hansson
- *Department of Medical Biochemistry, Göteborg University, Medicinaregatan 9A, 413 90 Gothenburg, Sweden
- To whom correspondence should be addressed (email )
| |
Collapse
|
129
|
Scheinecker C. Application of in vivo microscopy: evaluating the immune response in living animals. Arthritis Res Ther 2005; 7:246-52. [PMID: 16277700 PMCID: PMC1297591 DOI: 10.1186/ar1843] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The initiation of an immune response requires that professional antigen-presenting cells, such as dendritic cells, physically interact with antigen-specific T cells within the complex environment of the lymph node. Although the way in which antigen is presented to T cells and in particular the cellular associations involved in antigen-specific stimulation events have been extensively investigated, data on antigen presentation have come primarily from studies in vitro or examination of the late consequences of antigen presentation in vivo. However, there is increasing recognition that events defined in vitro might not correspond entirely to the physiological situation in vivo. Recent developments in imaging technology now allow real-time observation of single-cell and molecular interactions in intact lymphoid tissues and have already contributed to a more detailed picture of how cells coordinate the initiation or suppression of an immune response.
Collapse
Affiliation(s)
- Clemens Scheinecker
- Department of Rheumatology, Internal Medicine III, Medical University of Vienna (MUW), General Hospital of Vienna (AKH), Waehringer Guertel 18-20, A-1090 Wien, Austria.
| |
Collapse
|
130
|
Douglass AD, Vale RD. Single-molecule microscopy reveals plasma membrane microdomains created by protein-protein networks that exclude or trap signaling molecules in T cells. Cell 2005; 121:937-50. [PMID: 15960980 PMCID: PMC2851620 DOI: 10.1016/j.cell.2005.04.009] [Citation(s) in RCA: 595] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Revised: 02/22/2005] [Accepted: 04/04/2005] [Indexed: 01/21/2023]
Abstract
Membrane subdomains have been implicated in T cell signaling, although their properties and mechanisms of formation remain controversial. Here, we have used single-molecule and scanning confocal imaging to characterize the behavior of GFP-tagged signaling proteins in Jurkat T cells. We show that the coreceptor CD2, the adaptor protein LAT, and tyrosine kinase Lck cocluster in discrete microdomains in the plasma membrane of signaling T cells. These microdomains require protein-protein interactions mediated through phosphorylation of LAT and are not maintained by interactions with actin or lipid rafts. Using a two color imaging approach that allows tracking of single molecules relative to the CD2/LAT/Lck clusters, we demonstrate that these microdomains exclude and limit the free diffusion of molecules in the membrane but also can trap and immobilize specific proteins. Our data suggest that diffusional trapping through protein-protein interactions creates microdomains that concentrate or exclude cell surface proteins to facilitate T cell signaling.
Collapse
|
131
|
Abstract
The Vav family proteins (Vav1, Vav2, Vav3) are cytoplasmic guanine nucleotide exchange factors (GEFs) for Rho-family GTPases. T-cell antigen receptor (TCR) signalling results in the tyrosine phosphorylation of Vav proteins and hence their activation. Results from mice deficient in one or more Vav proteins has shown that they play critical roles in T-cell development and activation. Vav1 is required for TCR-induced calcium flux, activation of the ERK MAP kinase pathway, activation of the NF-kappaB transcription factor, inside-out activation of the integrin LFA-1, TCR clustering, and polarisation of the T cell. Although many of these processes may require the GEF activity of Vav1, it is possible that Vav1 also has adaptor-like functions. Recent evidence suggests that Vav1 might also function in the nucleus, where it undergoes arginine methylation. An emerging theme is that Vav proteins may have important functions downstream of receptors other than the TCR, such as integrins and chemokine receptors.
Collapse
Affiliation(s)
- Victor L J Tybulewicz
- Division of Immune Cell Biology, National Institute for Medical Research, Mill Hill, London NW7 1AA, UK.
| |
Collapse
|
132
|
Abstract
T cells integrate and transduce the key signals necessary to mount an appropriate immune response. To do this, they rely on both secreted factors as well as physical cell-cell contact. Much attention has focused on the organization of proteins at the contact area between a T cell and an antigen-presenting cell, known as the immunological synapse. It has been shown in vitro that proteins segregate into two distinct regions within this contact area, a central area referred to as the c-SMAC, where the T cell receptor and associated signaling molecules are enriched, and a peripheral region called the p-SMAC containing LFA-1 and the scaffolding protein talin. Whether or not these structures form in vivo and how they function in T cell activation remain issues of great interest. Here, we review recently published work and propose several possible functions for the role of the c-SMAC in T cell activation.
Collapse
Affiliation(s)
- Joseph Lin
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | | | | |
Collapse
|
133
|
Groves JT. Molekulare Organisation und Signaltransduktion an Kontaktstellen zwischen Membranen. Angew Chem Int Ed Engl 2005. [DOI: 10.1002/ange.200461014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
134
|
Groves JT. Molecular Organization and Signal Transduction at Intermembrane Junctions. Angew Chem Int Ed Engl 2005; 44:3524-38. [PMID: 15844101 DOI: 10.1002/anie.200461014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Surfaces create an environment in which multiple forces conspire together to yield a wealth of complex chemical processes. This is especially true of cell membranes, whose fluidity and flexibility enables responsive feedback with surface chemical interactions in ways not generally seen with inorganic materials. Spatial pattern formation of cell-surface proteins at intermembrane junctions provides many beautiful examples of these phenomena, and is also emerging as a functional aspect of intercellular signaling. Correspondingly, the study of interactions of cell-membrane surfaces is attracting significant attention from cell biologists and physical chemists alike. This convergence is fueled be recent, exquisite observations of protein pattern formation events within living immunological synapses along with parallel advances in membrane reconstitution, manipulation, and imaging technologies.
Collapse
Affiliation(s)
- Jay T Groves
- Department of Chemistry, University of California Berkeley, USA.
| |
Collapse
|
135
|
Mattila PE, Green CE, Schaff U, Simon SI, Walcheck B. Cytoskeletal interactions regulate inducible L-selectin clustering. Am J Physiol Cell Physiol 2005; 289:C323-32. [PMID: 15788481 DOI: 10.1152/ajpcell.00603.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
L-selectin (CD62L) amplifies neutrophil capture within the microvasculature at sites of inflammation. Activation by G protein-coupled stimuli or through ligation of L-selectin promotes clustering of L-selectin and serves to increase its adhesiveness, signaling, and colocalization with beta(2)-integrins. Currently, little is known about the molecular process regulating the lateral mobility of L-selectin. On neutrophil stimulation, a progressive change takes place in the organization of its plasma membrane, resulting in membrane domains that are characteristically enriched in glycosyl phosphatidylinositol (GPI)-anchored proteins and exclude the transmembrane protein CD45. Clustering of L-selectin, facilitated by E-selectin engagement or antibody cross-linking, resulted in its colocalization with GPI-anchored CD55, but not with CD45 or CD11c. Disrupting microfilaments in neutrophils or removing a conserved cationic motif in the cytoplasmic domain of L-selectin increased its mobility and membrane domain localization in the plasma membrane. In addition, the conserved element was critical for L-selectin-dependent tethering under shear flow. Our data indicate that L-selectin's lateral mobility is regulated by interactions with the actin cytoskeleton that in turn fortifies leukocyte tethering. We hypothesize that both membrane mobility and stabilization augment L-selectin's effector functions and are regulated by dynamic associations with membrane domains and the actin cytoskeleton.
Collapse
Affiliation(s)
- Polly E Mattila
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | | | | | | | | |
Collapse
|
136
|
Poenie M, Kuhn J, Combs J. Real-time visualization of the cytoskeleton and effector functions in T cells. Curr Opin Immunol 2005; 16:428-38. [PMID: 15245735 DOI: 10.1016/j.coi.2004.05.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Advances in imaging technology have been essential to our understanding of T-cell activation and effector functions. Much of the progress stems from the use of fluorescent fusion proteins combined with high resolution imaging techniques, including confocal and multiphoton microscopy. However, these techniques have limitations, and other modes of imaging, including new developments on the horizon, might add promising new tools for the visualization of cytoskeleton-dependent processes in living cells.
Collapse
Affiliation(s)
- Martin Poenie
- Department of Molecular Cell and Developmental Biology, University of Texas at Austin, 78712, USA.
| | | | | |
Collapse
|
137
|
Zhou W, Vergara L, König R. T cell receptor induced intracellular redistribution of type I protein kinase A. Immunology 2005; 113:453-9. [PMID: 15554923 PMCID: PMC1782591 DOI: 10.1111/j.1365-2567.2004.01992.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The productive activation of CD4(+) T lymphocytes, leading to proliferation and cytokine secretion, requires precise temporal regulation of intracellular cyclic AMP concentrations. The major effector molecule activated by cyclic AMP in mammalian cells is the cyclic AMP-dependent protein kinase A (PKA). The type I PKA isozyme mediates the inhibitory effects of cyclic AMP on T-cell activation. Using laser scanning confocal microscopy, we demonstrated that the regulation of PKA type I activity involves spatial redistribution of PKA type I molecules following T-cell receptor (TCR) stimulation. In resting T cells, PKA type I was located in membrane proximal regions and distributed equally across the cell. Shortly after antigen engagement, T cells and antigen-presenting cells formed an area of intense contact, known as the immunological synapse. TCR concentrated at the synapse, whereas PKA type I molecules redistributed to the opposite cell pole within 10 min after T-cell stimulation. Type I PKA redistribution was solely dependent on TCR signalling, because we observed the same temporal and spatial distribution after antibody-mediated cross-linking of the TCR-associated CD3 complex. Segregation of TCR and PKA type I molecules was maintained for at least 20 min. Thirty minutes after stimulation, PKA type I partially colocalized with the TCR. After 60 min, PKA type I distribution again approached the resting state. Considering that initial TCR signals lead to increases in intracellular cyclic AMP, PKA type I molecules may be targeted towards localized cyclic AMP accumulations or transported away from these areas, depending on the requirements of the cellular response.
Collapse
Affiliation(s)
- Wenhong Zhou
- Department of Microbiology and Immunology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | | | | |
Collapse
|
138
|
Abstract
It is well established that the large array of functions that a tumour cell has to fulfil to settle as a metastasis in a distant organ requires cooperative activities between the tumour and the surrounding tissue and that several classes of molecules are involved, such as cell-cell and cell-matrix adhesion molecules and matrix degrading enzymes, to name only a few. Furthermore, metastasis formation requires concerted activities between tumour cells and surrounding cells as well as matrix elements and possibly concerted activities between individual molecules of the tumour cell itself. Adhesion molecules have originally been thought to be essential for the formation of multicellular organisms and to tether cells to the extracellular matrix or to neighbouring cells. CD44 transmembrane glycoproteins belong to the families of adhesion molecules and have originally been described to mediate lymphocyte homing to peripheral lymphoid tissues. It was soon recognized that the molecules, under selective conditions, may suffice to initiate metastatic spread of tumour cells. The question remained as to how a single adhesion molecule can fulfil that task. This review outlines that adhesion is by no means a passive task. Rather, ligand binding, as exemplified for CD44 and other similar adhesion molecules, initiates a cascade of events that can be started by adherence to the extracellular matrix. This leads to activation of the molecule itself, binding to additional ligands, such as growth factors and matrix degrading enzymes, complex formation with additional transmembrane molecules and association with cytoskeletal elements and signal transducing molecules. Thus, through the interplay of CD44 with its ligands and associating molecules CD44 modulates adhesiveness, motility, matrix degradation, proliferation and cell survival, features that together may well allow a tumour cell to proceed through all steps of the metastatic cascade.
Collapse
Affiliation(s)
- R Marhaba
- Department of Tumor Progression and Immune Defense, German Cancer Research Center, D-69120 Heidelberg, Germany
| | | |
Collapse
|
139
|
Abstract
Rho GTPases are molecular switches controlling a broad range of cellular processes including lymphocyte activation. Not surprisingly, Rho GTPases are now recognized as pivotal regulators of antigen-specific T cell activation by APCs and immunological synapse formation. This review summarizes recent advances in our understanding of how Rho GTPase-dependent pathways control T lymphocyte motility, polarization and activation.
Collapse
Affiliation(s)
- M Deckert
- INSERM Unit 576, Hôpital de l'Archet, BP3079, 06202 Nice, France.
| | | | | |
Collapse
|
140
|
Huang AYC, Qi H, Germain RN. Illuminating the landscape of in vivo immunity: insights from dynamic in situ imaging of secondary lymphoid tissues. Immunity 2004; 21:331-9. [PMID: 15357944 DOI: 10.1016/j.immuni.2004.08.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Revised: 08/10/2004] [Accepted: 08/11/2004] [Indexed: 02/07/2023]
Abstract
A central feature of the immune system is the migratory behavior of its cellular components. Thus, fully understanding the generation and maintenance of immune responses must include consideration of how hematopoietic cells home to, interact within, and exit from secondary lymphoid organs as well as peripheral tissues. Recent advances in in situ imaging techniques now permit direct observation of these events in their physiologic settings with high spatiotemporal resolution. This review summarizes progress in this area of investigation from a lymphocentric perspective. We highlight controversies, point out key unanswered questions, and briefly outline what we believe are some of the near-term directions that in situ microscopic analysis of the immune system will take.
Collapse
Affiliation(s)
- Alex Y C Huang
- Lymphocyte Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
141
|
Kasson PM, Huppa JB, Krogsgaard M, Davis MM, Brunger AT. Quantitative imaging of lymphocyte membrane protein reorganization and signaling. Biophys J 2004; 88:579-89. [PMID: 15501943 PMCID: PMC1305035 DOI: 10.1529/biophysj.104.048827] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Changes in membrane protein localization are critical to establishing cell polarity and regulating cell signaling. Fluorescence microscopy of labeled proteins allows visualization of these changes, but quantitative analysis is needed to study this aspect of cell signaling in full mechanistic detail. We have developed a novel approach for quantitative assessment of membrane protein redistribution based on four-dimensional video microscopy of fluorescently labeled proteins. Our analytic system provides robust automated methods for cell surface reconstruction, cell shape tracking, cell-surface distance measurement, and cluster formation analysis. These methods permit statistical analyses and testing of mechanistic hypotheses regarding cell signaling. We have used this approach to measure antigen-dependent clustering of signaling molecules in CD4+ T lymphocytes, obtaining clustering velocities consistent with single-particle tracking data. Our system captures quantitative differences in clustering between signaling proteins with distinct biological functions. Our methods can be generalized to a range of cell-signaling phenomena and enable novel applications not feasible with single-particle studies, such as analysis of subcellular protein localization in live organ culture.
Collapse
Affiliation(s)
- Peter M Kasson
- Biophysics Program, Stanford University School of Medicine, Stanford, California, USA
| | | | | | | | | |
Collapse
|
142
|
Boisvert J, Edmondson S, Krummel MF. Immunological synapse formation licenses CD40-CD40L accumulations at T-APC contact sites. THE JOURNAL OF IMMUNOLOGY 2004; 173:3647-52. [PMID: 15356109 DOI: 10.4049/jimmunol.173.6.3647] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The maintenance of tolerance is likely to rely on the ability of a T cell to polarize surface molecules providing "help" to only specific APCs. The formation of a mature immunological synapse leads to concentration of the TCR at the APC interface. In this study, we show that the CD40-CD154 receptor-ligand pair is also highly concentrated into a central region of the synapse on mouse lymphocytes only after the formation of the TCR/CD3 c-SMAC. Concentration of this ligand was strictly dependent on TCR recognition, the binding of ICAM-1 to T cell integrins and the presence of an intact cytoskeleton in the T cells. This may provide a novel explanation for the specificity of T cell help directing the help signal to the site of Ag receptor signal. It may also serve as a site for these molecular aggregates to coassociate and/or internalize alongside other signaling receptors.
Collapse
Affiliation(s)
- Judie Boisvert
- Department of Pathology, University of California, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
143
|
Blanchard N, Decraene M, Yang K, Miro-Mur F, Amigorena S, Hivroz C. Strong and durable TCR clustering at the T/dendritic cell immune synapse is not required for NFAT activation and IFN-gamma production in human CD4+ T cells. THE JOURNAL OF IMMUNOLOGY 2004; 173:3062-72. [PMID: 15322166 DOI: 10.4049/jimmunol.173.5.3062] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The exact function of TCR clustering and organized macromolecular patterns at the immune synapse between APCs and T lymphocytes is unclear. Using human immature or mature dendritic cells (DCs) and autologous CD4(+) effector T cells, we demonstrate that, within a given conjugate, mature DCs induce strong and long-lasting TCR clustering and protein kinase C-theta translocation in a superantigen dose-dependent manner. Moreover, mature DCs promote CD43 exclusion in a dose-independent manner. In contrast, immature DCs are less potent at inducing these molecular rearrangements. Using these models to correlate T cell functions with the frequency, the intensity, and the duration of TCR clustering, we show, in Jurkat T cells, that weak and transient TCR clustering is sufficient to promote TCR down-modulation, protein kinase C-theta translocation at the synapse, and substantial NFAT transcriptional activation. Moreover, we show, in CD4(+) T cell blasts, that strong TCR clustering is required for neither TCR down-modulation nor optimal IFN-gamma production. Together, our results demonstrate that some CD4(+) functional responses, such as cytokine production, are independent of central supramolecular activation cluster formation.
Collapse
Affiliation(s)
- Nicolas Blanchard
- Institut National de la Santé et de la Recherche Médicale, Unité 520, Institut Curie, Paris, France
| | | | | | | | | | | |
Collapse
|
144
|
Abstract
T cells form intriguing patterns during adhesion to antigen-presenting cells. The patterns are composed of two types of domains, which either contain short TCR/MHCp receptor-ligand complexes or the longer LFA-1/ICAM-1 complexes. The final pattern consists of a central TCR/MHCp domain surrounded by a ring-shaped LFA-1/ICAM-1 domain, whereas the characteristic pattern formed at intermediate times is inverted with TCR/MHCp complexes at the periphery of the contact zone and LFA-1/ICAM-1 complexes in the center. Several mechanisms have been proposed to explain the T-cell pattern formation. Whereas biologists have emphasized the role of active cytoskeletal processes, previous theoretical studies suggest that the pattern evolution may be caused by spontaneous self-assembly processes alone. Some of these studies focus on circularly symmetric patterns and propose a pivot mechanism for the formation of the intermediate inverted pattern. Here, we present a statistical-mechanical model which includes thermal fluctuations and the full range of spatial patterns. We confirm the observation that the intermediate inverted pattern may be formed by spontaneous self-assembly. However, we find a different self-assembly mechanism in which numerous TCR/MHCp microdomains initially nucleate throughout the contact zone. The diffusion of free receptors and ligands into the contact zone subsequently leads to faster growth of peripheral TCR/MHCp microdomains and to a closed ring for sufficiently large TCR/MHCp concentrations. At smaller TCR/MHCp concentrations, we observe a second regime of pattern formation with characteristic multifocal intermediates, which resemble patterns observed during adhesion of immature T cells or thymozytes. In contrast to other theoretical models, we find that the final T-cell pattern with a central TCR/MHCp domain is only obtained in the presence of active cytoskeletal transport processes.
Collapse
Affiliation(s)
- Thomas R Weikl
- Max-Planck-Institut für Kolloid und Grenzflächenforschung, Potsdam, Germany.
| | | |
Collapse
|
145
|
Kyoizumi S, Ohara T, Kusunoki Y, Hayashi T, Koyama K, Tsuyama N. Expression characteristics and stimulatory functions of CD43 in human CD4+ memory T cells: analysis using a monoclonal antibody to CD43 that has a novel lineage specificity. THE JOURNAL OF IMMUNOLOGY 2004; 172:7246-53. [PMID: 15187099 DOI: 10.4049/jimmunol.172.12.7246] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We have used HSCA-2, an mAb that recognizes a sialic acid-dependent epitope on the low molecular mass (approximately 115-kDa) glycoform of CD43 that is expressed in resting T and NK cells, to examine the expression characteristics and stimulatory functions of CD43 in human CD4+ memory T cells. Having previously reported that the memory cells that respond to recall Ags in a CD4+ CD45RO+ T cell population almost all belong to a subset whose surface CD43 expression levels are elevated, we now find that exposing these same memory T cells to HSCA-2 mAb markedly increases their proliferative responsiveness to recall Ags. We think it unlikely that this increase in responsiveness is a result of CD43-mediated monocyte activation, especially given that the HSCA-2 mAb differs from all previously used CD43 mAbs in having no obvious binding specificity for monocyte CD43. Predictably, treatment with HSCA-2 mAb did not lead to significant recall responses in CD4+ CD45RO+ T cells, whose CD43 expression levels were similar to or lower than those of naive cells. Other experiments indicated that the HSCA-2 mAb was capable of enhancing the proliferative responsiveness of CD4+ memory T cells that had been exposed to polyclonal stimulation by monocyte-bound CD3 mAb and could also act in synergy with CD28 mAb to enhance the responsiveness of CD4+ T cells to CD3 stimulation. Taken together, these findings suggest that the CD43 molecules expressed on CD4+ memory T cells may be capable of enhancing the costimulatory signaling and hence providing accessory functions to TCR-mediated activation processes.
Collapse
Affiliation(s)
- Seishi Kyoizumi
- Laboratory of Immunology, Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami Ward, Hiroshima 732-0815, Japan.
| | | | | | | | | | | |
Collapse
|
146
|
Abstract
The elimination of pathogens and pathogen-infected cells initially rests on the rapid deployment of innate immune defences. Should these defences fail, it is the lymphocytes--T cells and B cells--with their antigen-specific receptors that must rise to the task of providing adaptive immunity. Technological advances are now allowing immunologists to correlate data obtained in vitro with in vivo functions. A better understanding of T-cell activation in vivo could lead to more effective strategies for the treatment and prevention of infectious and autoimmmune diseases.
Collapse
Affiliation(s)
- Marianne Boes
- Department of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
147
|
Abstract
The ezrin/radixin/moesin (ERM) family of actin-binding proteins act both as linkers between the actin cytoskeleton and plasma membrane proteins and as signal transducers in responses involving cytoskeletal remodelling. The Rho family of GTPases also regulate cytoskeletal organisation, and several molecular pathways linking ERM proteins and Rho GTPases have been described. This review discusses recent findings on ERM protein function in leucocytes and how these may be integrated with Rho GTPase signalling.
Collapse
Affiliation(s)
- Aleksandar Ivetic
- Ludwig Institute for Cancer Research, Royal Free and University College School of Medicine, London, UK
| | | |
Collapse
|
148
|
Zhao H, Shiue H, Palkon S, Wang Y, Cullinan P, Burkhardt JK, Musch MW, Chang EB, Turner JR. Ezrin regulates NHE3 translocation and activation after Na+-glucose cotransport. Proc Natl Acad Sci U S A 2004; 101:9485-90. [PMID: 15197272 PMCID: PMC439003 DOI: 10.1073/pnas.0308400101] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Accepted: 05/12/2004] [Indexed: 11/18/2022] Open
Abstract
Initiation of Na(+)-glucose cotransport in intestinal epithelial cells leads to activation of the apical Na(+)-H(+) exchanger NHE3 and subsequent increases in cytoplasmic pH (pH(i)). This process requires activation of p38 mitogen-activated protein (MAP) kinase, but additional signaling intermediates have not been identified. One candidate is the cytoskeletal linker protein ezrin, which interacts with NHE3 via specific regulatory proteins. The data show that initiation of Na(+)-glucose cotransport resulted in rapid increases in both apical membrane-associated NHE3 and cytoskeletal-associated ezrin and occurred in parallel with ezrin phosphorylation at threonine 567. Phosphorylation at this site is known to activate ezrin and increase its association with actin. Consistent with a central role for ezrin activation in this NHE3 regulation, an N-terminal dominant negative ezrin construct inhibited both NHE3 recruitment and pH(i) increases after Na(+)-glucose cotransport. Ezrin phosphorylation occurred in parallel with p38 MAP kinase activation, and the latter proceeded normally in cells expressing dominant negative ezrin. In contrast, inhibition of p38 MAP kinase prevented increases in ezrin phosphorylation after initiation of Na(+)-glucose cotransport. Thus, ezrin phosphorylation after Na(+)-glucose cotransport requires p38 MAP kinase activity, but p38 MAP kinase activation does not require ezrin function. These data describe a specific role for ezrin in the coordinate regulation of Na(+)-glucose cotransport and Na(+)-H(+) exchange. Intact ezrin function is necessary for NHE3 recruitment to the apical membrane and NHE3-dependent pH(i) increases triggered by Na(+)-glucose cotransport. The data also define a pathway of p38 MAP kinase-dependent ezrin activation.
Collapse
Affiliation(s)
- Huiren Zhao
- Departments of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Serrador JM, Cabrero JR, Sancho D, Mittelbrunn M, Urzainqui A, Sánchez-Madrid F. HDAC6 deacetylase activity links the tubulin cytoskeleton with immune synapse organization. Immunity 2004; 20:417-28. [PMID: 15084271 DOI: 10.1016/s1074-7613(04)00078-0] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2003] [Revised: 02/06/2004] [Accepted: 02/10/2004] [Indexed: 11/29/2022]
Abstract
We investigated the role of acetylated microtubules in the antigen-specific interaction of T helper and antigen-presenting cells (APCs). In T cells, acetylated microtubules concentrated at contact site with APCs, surrounding clusters of CD3 and LFA-1. TcR engagement induced a transient deacetylation of microtubules at early times and an enhanced acetylation at late times. Confocal videomicroscopy studies revealed that the HDAC6 tubulin deacetylase was translocated and concentrated at the contact site of T cells with APCs. Overexpression of HDAC6 but not a dead deacetylase mutant in T cells disorganized CD3 and LFA-1 at the immune synapse. This effect was reverted by treatment with the deacetylase inhibitor trichostatin A. The antigen-specific translocation of the microtubule organizing center (MTOC) and IL-2 production were also severely impaired by overexpression of HDAC6. Our results underscore the key role for HDAC6 in the organization of the immune synapse and the antigen-specific reorientation of the MTOC.
Collapse
Affiliation(s)
- Juan M Serrador
- Servicio de Inmunología, Hospital de la Princesa, Universidad Autónoma de Madrid, E-28006 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
150
|
Huang T, You Y, Spoor MS, Richer EJ, Kudva VV, Paige RC, Seiler MP, Liebler JM, Zabner J, Plopper CG, Brody SL. Foxj1 is required for apical localization of ezrin in airway epithelial cells. J Cell Sci 2004; 116:4935-45. [PMID: 14625387 DOI: 10.1242/jcs.00830] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Establishment and maintenance of epithelial cell polarity depend on cytoskeletal organization and protein trafficking to polarized cortical membranes. ERM (ezrin, radixin, moesin) family members link polarized proteins with cytoskeletal actin. Although ERMs are often considered to be functionally similar, we found that, in airway epithelial cells, apical localization of ERMs depend on cell differentiation and is independently regulated. Moesin was present in the apical membrane of all undifferentiated epithelial cells. However, in differentiated cells, ezrin and moesin were selectively localized to apical membranes of ciliated airway cells and were absent from secretory cells. To identify regulatory proteins required for selective ERM trafficking, we evaluated airway epithelial cells lacking Foxj1, an F-box factor that directs programs required for cilia formation at the apical membrane. Interestingly, Foxj1 expression was also required for localization of apical ezrin, but not moesin. Additionally, membrane-cytoskeletal and threonine-phosphorylated ezrin were decreased in Foxj1-null cells, consistent with absent apical ezrin. Although apical moesin expression was present in null cells, it could not compensate for ezrin because ERM-associated EBP50 and the beta2 adrenergic receptor failed to localize apically in the absence of Foxj1. These findings indicate that Foxj1 regulates ERM proteins differentially to selectively direct the apical localization of ezrin for the organization of multi-protein complexes in apical membranes of airway epithelial cells.
Collapse
Affiliation(s)
- Tao Huang
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63110, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|