101
|
Lynch AS, Abbanat D. New antibiotic agents and approaches to treat biofilm-associated infections. Expert Opin Ther Pat 2010; 20:1373-87. [DOI: 10.1517/13543776.2010.505923] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
102
|
ExsA recruits RNA polymerase to an extended -10 promoter by contacting region 4.2 of sigma-70. J Bacteriol 2010; 192:3597-607. [PMID: 20453093 DOI: 10.1128/jb.00129-10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
ExsA is a member of the AraC family of transcriptional activators and is required for expression of the Pseudomonas aeruginosa type III secretion system (T3SS). ExsA-dependent promoters consist of two binding sites for monomeric ExsA located approximately 50 bp upstream of the transcription start sites. Binding to both sites is required for recruitment of sigma(70)-RNA polymerase (RNAP) to the promoter. ExsA-dependent promoters also contain putative -35 hexamers that closely match the sigma(70) consensus but are atypically spaced 21 or 22 bp from the -10 hexamer. Because several nucleotides located within the putative -35 region are required for ExsA binding, it is unclear whether the putative -35 region makes an additional contribution to transcription initiation. In the present study we demonstrate that the putative -35 hexamer is dispensable for ExsA-independent transcription from the P(exsC) promoter and that deletion of sigma(70) region 4.2, which contacts the -35 hexamer, has no effect on ExsA-independent transcription from P(exsC). Region 4.2 of sigma(70), however, is required for ExsA-dependent activation of the P(exsC) and P(exsD) promoters. Genetic data suggest that ExsA directly contacts region 4.2 of sigma(70), and several amino acids were found to contribute to the interaction. In vitro transcription assays demonstrate that an extended -10 element located in the P(exsC) promoter is important for overall promoter activity. Our collective data suggest a model in which ExsA compensates for the lack of a -35 hexamer by interacting with region 4.2 of sigma(70) to recruit RNAP to the promoter.
Collapse
|
103
|
Sequential XylS-CTD binding to the Pm promoter induces DNA bending prior to activation. J Bacteriol 2010; 192:2682-90. [PMID: 20363935 DOI: 10.1128/jb.00165-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
XylS protein, a member of the AraC family of transcriptional regulators, comprises a C-terminal domain (CTD) involved in DNA binding and an N-terminal domain required for effector binding and protein dimerization. In the absence of benzoate effectors, the N-terminal domain behaves as an intramolecular repressor of the DNA binding domain. To date, the poor solubility properties of the full-length protein have restricted XylS analysis to genetic approaches in vivo. To characterize the molecular consequences of XylS binding to its operator, we used a recombinant XylS-CTD variant devoid of the N-terminal domain. The resulting protein was soluble and monomeric in solution and activated transcription from its cognate promoter in an effector-independent manner. XylS binding sites in the Pm promoter present an intrinsic curvature of 35 degrees centered at position -42 within the proximal site. Gel retardation and DNase footprint analysis showed XylS-CTD binding to Pm occurred sequentially: first a XylS-CTD monomer binds to the proximal site overlapping the RNA polymerase binding sequence to form complex I. This first event increased Pm bending to 50 degrees and was followed by the binding of the second monomer, which further increased the observed global curvature to 98 degrees. This generated a concomitant shift in the bending center to a region centered at position -51 when the two sites were occupied (complex II). We propose a model in which DNA structure and binding sequences strongly influence XylS binding events previous to transcription activation.
Collapse
|
104
|
Hurt JK, McQuade TJ, Emanuele A, Larsen MJ, Garcia GA. High-throughput screening of the virulence regulator VirF: a novel antibacterial target for shigellosis. ACTA ACUST UNITED AC 2010; 15:379-87. [PMID: 20237205 DOI: 10.1177/1087057110362101] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Shigella flexneri is a human enteropathogen that infects about 165 million people and claims more than 1 million lives per year worldwide. Although shigellosis has been considered a disease of the "Third World," like many other contagious diseases, it does occur in developed countries. The emergence of drug and multidrug-resistant strains of Shigella emphasizes the need for novel antibiotic development. VirF, an AraC-type transcriptional regulator, is responsible for the expression of all downstream virulence factors that control intracellular invasion and cell-to-cell spread of Shigella. Gene knockout studies have validated that inhibition of VirF expression is sufficient to block the normal life cycle of Shigella in the host and thereby increase susceptibility to the host immune system. The authors have developed a high-throughput, cell-based assay to monitor inhibition of VirF using beta-galactosidase as a reporter protein. Using an avirulent strain of Shigella, they have screened libraries containing approximately 42,000 small molecules. Following confirmation and dose-response analysis, they have identified 7 compounds that demonstrate VirF inhibition in vivo >or=55% in comparison with the controls and little general antibacterial activity (measured by cell growth, OD(600)). The authors are in the process of confirming these "hits" in several secondary assays to assess the mechanism of action.
Collapse
Affiliation(s)
- Julie K Hurt
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109-1065, USA
| | | | | | | | | |
Collapse
|
105
|
Abstract
ExsA is a transcriptional activator of the Pseudomonas aeruginosa type III secretion system (T3SS). The T3SS consists of >40 genes organized within 10 transcriptional units, each of which is controlled by the transcriptional activator ExsA. ExsA-dependent promoters contain two adjacent ExsA binding sites that when occupied protect the -30 to -70 region from DNase I cleavage. The promoters also possess regions bearing strong resemblance to the consensus -10 and -35 regions of sigma(70)-dependent promoters. The spacing distance between the putative -10 and -35 regions of ExsA-dependent promoters, however, is increased by 4 to 5 bp compared to that in typical sigma(70)-dependent promoters. In the present study, we demonstrate that ExsA-dependent transcriptional activation requires a 21- or 22-bp spacer length between the -10 and -35 regions. Despite the atypical spacing in this region, in vitro transcription assays using sigma(70)-saturated RNA polymerase holoenzyme (RNAP-sigma(70)) confirm that ExsA-dependent promoters are indeed sigma(70) dependent. Potassium permanganate footprinting experiments indicate that ExsA facilitates an early step in transcriptional initiation. Although RNAP-sigma(70) binds to the promoters with low affinity in the absence of ExsA, the activator stimulates transcription by enhancing recruitment of RNAP-sigma(70) to the P(exsC) and P(exsD) promoters. Abortive initiation assays confirm that ExsA enhances the equilibrium binding constant for RNAP while having only a modest effect on the isomerization rate constant.
Collapse
|
106
|
Bicarbonate Induces Vibrio cholerae virulence gene expression by enhancing ToxT activity. Infect Immun 2009; 77:4111-20. [PMID: 19564378 DOI: 10.1128/iai.00409-09] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae is a gram-negative bacterium that is the causative agent of cholera, a severe diarrheal illness. The two biotypes of V. cholerae O1 capable of causing cholera, classical and El Tor, require different in vitro growth conditions for induction of virulence gene expression. Growth under the inducing conditions or infection of a host initiates a complex regulatory cascade that results in production of ToxT, a regulatory protein that directly activates transcription of the genes encoding cholera toxin (CT), toxin-coregulated pilus (TCP), and other virulence genes. Previous studies have shown that sodium bicarbonate induces CT expression in the V. cholerae El Tor biotype. However, the mechanism for bicarbonate-mediated CT induction has not been defined. In this study, we demonstrate that bicarbonate stimulates virulence gene expression by enhancing ToxT activity. Both the classical and El Tor biotypes produce inactive ToxT protein when they are cultured statically in the absence of bicarbonate. Addition of bicarbonate to the culture medium does not affect ToxT production but causes a significant increase in CT and TCP expression in both biotypes. Ethoxyzolamide, a potent carbonic anhydrase inhibitor, inhibits bicarbonate-mediated virulence induction, suggesting that conversion of CO(2) into bicarbonate by carbonic anhydrase plays a role in virulence induction. Thus, bicarbonate is the first positive effector for ToxT activity to be identified. Given that bicarbonate is present at high concentration in the upper small intestine where V. cholerae colonizes, bicarbonate is likely an important chemical stimulus that V. cholerae senses and that induces virulence during the natural course of infection.
Collapse
|
107
|
Functional domains of ExsA, the transcriptional activator of the Pseudomonas aeruginosa type III secretion system. J Bacteriol 2009; 191:3811-21. [PMID: 19376850 DOI: 10.1128/jb.00002-09] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa utilizes a type III secretion system (T3SS) to evade phagocytosis and damage eukaryotic cells. Transcription of the T3SS regulon is controlled by ExsA, a member of the AraC/XylS family of transcriptional regulators. These family members generally consist of an approximately 100-amino acid carboxy-terminal domain (CTD) with two helix-turn-helix DNA binding motifs and an approximately 200-amino acid amino-terminal domain (NTD) with known functions including oligomerization and ligand binding. In the present study, we show that the CTD of ExsA binds to ExsA-dependent promoters in vitro and activates transcription from ExsA-dependent promoters both in vitro and in vivo. Despite possessing these activities, the CTD lacks the cooperative binding properties observed for full-length ExsA at the P(exsC) promoter. In addition, the CTD is unaffected by the negative regulatory activity of ExsD, an inhibitor of ExsA activity. Binding studies confirm that ExsD interacts directly with the NTD of ExsA. Our data are consistent with a model in which a single ExsA molecule first binds to a high-affinity site on the P(exsC) promoter. Protein-protein interactions mediated by the NTD then recruit an additional ExsA molecule to a second site on the promoter to form a complex capable of stimulating wild-type levels of transcription. These findings provide important insight into the mechanisms of transcriptional activation by ExsA and inhibition of ExsA activity by ExsD.
Collapse
|
108
|
Thibault J, Faudry E, Ebel C, Attree I, Elsen S. Anti-activator ExsD forms a 1:1 complex with ExsA to inhibit transcription of type III secretion operons. J Biol Chem 2009; 284:15762-70. [PMID: 19369699 DOI: 10.1074/jbc.m109.003533] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The ExsA protein is a Pseudomonas aeruginosa transcriptional regulator of the AraC/XylS family that is responsible for activating the type III secretion system operons upon host cell contact. Its activity is known to be controlled in vivo through interaction with its negative regulator ExsD. Using a heterologous expression system, we demonstrated that ExsD is sufficient to inhibit the transcriptional activity of ExsA. Gel shift assays with ExsA- and ExsD-containing cytosolic extracts revealed that ExsD does not block DNA target sites but affects the DNA binding activity of the transcriptional activator. The ExsA-ExsD complex was purified after coproduction of the two partners in Escherichia coli. Size exclusion chromatography and ultracentrifugation analysis revealed a homogeneous complex with a 1:1 ratio. When in interaction with ExsD, ExsA is not able to bind to its specific target any longer, as evidenced by gel shift assays. Size exclusion chromatography further showed a partial dissociation of the complex in the presence of a specific DNA sequence. A model of the molecular inhibitory role of ExsD toward ExsA is proposed, in which, under noninducing conditions, the anti-activator ExsD sequesters ExsA and hinders its binding to DNA sites, preventing the transcription of type III secretion genes.
Collapse
Affiliation(s)
- Julie Thibault
- Commissariat à l'Energie Atomique, Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Biochimie et de Biophysique des Systèmes Intégrés, F-38054 Grenoble
| | | | | | | | | |
Collapse
|
109
|
Role of the AraC-XylS family regulator YdeO in multi-drug resistance of Escherichia coli. J Antibiot (Tokyo) 2009; 62:251-7. [PMID: 19329985 DOI: 10.1038/ja.2009.23] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Multi-drug efflux pumps contribute to the resistance of Escherichia coli to many antibiotics and biocides. In this study, we report that the AraC-XylS family regulator YdeO increases the multi-drug resistance of E. coli through activation of the MdtEF efflux pump. Screening of random fragments of genomic DNA for their ability to increase beta-lactam resistance led to the isolation of a plasmid containing ydeO, which codes for the regulator of acid resistance. When overexpressed, ydeO significantly increased the resistance of the E. coli strain to oxacillin, cloxacillin, nafcillin, erythromycin, rhodamine 6G and sodium dodecyl sulfate. The increase in drug resistance caused by ydeO overexpression was completely suppressed by deleting the multifunctional outer membrane channel gene tolC. TolC interacts with different drug efflux pumps. Quantitative real-time PCR showed that YdeO activated only mdtEF expression and none of the other drug efflux pumps in E. coli. Deletion of mdtEF completely suppressed the YdeO-mediated multi-drug resistance. YdeO enhances the MdtEF-dependent drug efflux activity in E. coli. Our results indicate that the YdeO regulator, in addition to its role in acid resistance, increases the multi-drug resistance of E. coli by activating the MdtEF multi-drug efflux pump.
Collapse
|
110
|
Minchin SD, Busby SJ. Analysis of mechanisms of activation and repression at bacterial promoters. Methods 2009; 47:6-12. [DOI: 10.1016/j.ymeth.2008.10.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 10/14/2008] [Accepted: 10/15/2008] [Indexed: 11/30/2022] Open
|
111
|
Hartog E, Ben-Shalom L, Shachar D, Matthews KR, Yaron S. Regulation ofmarA, soxS, rob, acrABandmicFinSalmonella entericaserovar Typhimurium. Microbiol Immunol 2008; 52:565-74. [DOI: 10.1111/j.1348-0421.2008.00075.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
112
|
Zeng J, Zhang X, Wang Y, Ai C, Liu Q, Qiu G. Glu43 is an essential residue for coordinating the [Fe2S2] cluster of IscR from Acidithiobacillus ferrooxidans. FEBS Lett 2008; 582:3889-92. [PMID: 18955052 DOI: 10.1016/j.febslet.2008.09.060] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 09/29/2008] [Accepted: 09/29/2008] [Indexed: 11/28/2022]
Abstract
The iron-sulfur cluster regulator (IscR) was reported to be a repressor of the iscRSUA operon. In vitro transcription reactions revealed that the IscR had a repression effect on the iscR promoter. The IscR contains a [Fe2S2] cluster per each monomer, and three highly conserved cysteines were identified to ligate the [Fe2S2] cluster. It was proposed that a non-cysteine residue might be the fourth ligand for the [Fe2S2] cluster. In this study, using site-directed mutagenesis, Glu43 was found to be the fourth residue that coordinates the [Fe2S2] cluster of IscR.
Collapse
Affiliation(s)
- Jia Zeng
- Department of Bioengineering, School of Resources Processing and Bioengineering, Central South University, Changsha, Hunan 410083, PR China.
| | | | | | | | | | | |
Collapse
|
113
|
Abstract
Regulated promoters are useful tools for many aspects related to recombinant gene expression in bacteria, including for high‐level expression of heterologous proteins and for expression at physiological levels in metabolic engineering applications. In general, it is common to express the genes of interest from an inducible promoter controlled either by a positive regulator or by a repressor protein. In this review, we discuss established and potentially useful positively regulated bacterial promoter systems, with a particular emphasis on those that are controlled by the AraC‐XylS family of transcriptional activators. The systems function in a wide range of microorganisms, including enterobacteria, soil bacteria, lactic bacteria and streptomycetes. The available systems that have been applied to express heterologous genes are regulated either by sugars (l‐arabinose, l‐rhamnose, xylose and sucrose), substituted benzenes, cyclohexanone‐related compounds, ε‐caprolactam, propionate, thiostrepton, alkanes or peptides. It is of applied interest that some of the inducers require the presence of transport systems, some are more prone than others to become metabolized by the host and some have been applied mainly in one or a limited number of species. Based on bioinformatics analyses, the AraC‐XylS family of regulators contains a large number of different members (currently over 300), but only a small fraction of these, the XylS/Pm, AraC/PBAD, RhaR‐RhaS/rhaBAD, NitR/PnitA and ChnR/Pb regulator/promoter systems, have so far been explored for biotechnological applications.
Collapse
Affiliation(s)
- Trygve Brautaset
- Department of Biotechnology, Sintef Materials and Chemistry, Sintef, Trondheim, Norway.
| | | | | |
Collapse
|
114
|
Flexibility of Vibrio cholerae ToxT in transcription activation of genes having altered promoter spacing. J Bacteriol 2008; 190:7925-31. [PMID: 18849430 DOI: 10.1128/jb.00512-08] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cholera, a severe diarrheal disease, is caused by ingestion of the gram-negative bacterium Vibrio cholerae. Expression of V. cholerae virulence factors is highly regulated at the transcriptional and posttranscriptional levels by a complex network of proteins and small noncoding RNAs. The direct activator of transcription of most V. cholerae virulence genes is the ToxT protein. ToxT binds to a 13-bp sequence, the toxbox, located upstream of genes in its regulon. However, the organization of toxboxes relative to each other and to the core promoter elements at different genes varies dramatically. At different ToxT-activated genes a single toxbox may be necessary and sufficient for full activation, or pairs of toxboxes organized as either inverted or direct repeats may be required for full activation. Although all toxboxes are located at positions consistent with a class I promoter architecture, the locations of toxboxes relative to the transcription start site also vary from gene to gene. To further assess the ability of ToxT to activate transcription from different configurations relative to the core promoter elements, we constructed promoter-lacZ fusions having altered spacing both between toxbox pairs and between the promoter-proximal toxbox and the -35 box at five different ToxT-activated promoters. Our results suggest that that ToxT has remarkable flexibility in its positioning as a transcription activator and that different interactions between ToxT and RNA polymerase occur during transcription activation of promoters having different toxbox configurations.
Collapse
|
115
|
Identification of a novel genomic island specific to hospital-acquired clonal complex 17 Enterococcus faecium isolates. Appl Environ Microbiol 2008; 74:7094-7. [PMID: 18836023 DOI: 10.1128/aem.01378-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hospital-acquired clonal complex 17 (CC17) Enterococcus faecium strains are genetically distinct from indigenous strains and are enriched with resistance genes and virulence genes. We identified a genomic island in CC17 E. faecium tentatively encoding a metabolic pathway involved in carbohydrate transport and metabolism, which may provide a competitive advantage over the indigenous E. faecium microbiota.
Collapse
|
116
|
Wang S, He YX, Bao R, Teng YB, Ye BP, Zhou CZ. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of hypothetical protein SCO4226 from Streptomyces coelicolor A3(2). Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:847-50. [PMID: 18765920 PMCID: PMC2531269 DOI: 10.1107/s174430910802575x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Accepted: 08/10/2008] [Indexed: 11/11/2022]
Abstract
A non-Pfam hypothetical protein SCO4226 of molecular weight 9 kDa from Streptomyces coelicolor A3(2) was overexpressed in Escherichia coli and the purified recombinant protein was crystallized using the sitting-drop vapour-diffusion method. An X-ray diffraction data set was collected to 2.0 A resolution. The crystal belonged to space group P2(1), with unit-cell parameters a = 29.67, b = 67.00, c = 34.43 A, alpha = gamma = 90.00, beta = 94.26 degrees .
Collapse
Affiliation(s)
- Shu Wang
- School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, People’s Republic of China
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People’s Republic of China
| | - Yong-Xing He
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People’s Republic of China
| | - Rui Bao
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People’s Republic of China
| | - Yan-Bin Teng
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People’s Republic of China
| | - Bo-Ping Ye
- School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, People’s Republic of China
| | - Cong-Zhao Zhou
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People’s Republic of China
| |
Collapse
|
117
|
mgtA Expression is induced by rob overexpression and mediates a Salmonella enterica resistance phenotype. J Bacteriol 2008; 190:4951-8. [PMID: 18487336 DOI: 10.1128/jb.00195-08] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Rob is a member of the Sox/Mar subfamily of AraC/XylS-type transcriptional regulators implicated in bacterial multidrug, heavy metal, superoxide, and organic solvent resistance phenotypes. We demonstrate that, in Salmonella enterica, Rob overexpression upregulates the transcription of mgtA, which codes for the MgtA Mg2+ transporter. mgtA was previously characterized as a member of the Mg2+-modulated PhoPQ regulon. Here we demonstrate that Rob (but not its paralog protein SoxS or MarA) is able to induce mgtA transcription in a PhoP-independent fashion by binding to a conserved Mar/Sox/Rob motif localized downstream of the PhoP-box and overlapping the PhoP-dependent transcriptional start site. We found that Rob-induced mgtA expression confers low-level cyclohexane resistance on Salmonella. Because mgtA intactness is required for Rob-induced cyclohexane resistance, provided the AcrAB multidrug efflux pump can be expressed, we postulate that MgtA is involved in the AcrAB-mediated cyclohexane detoxification mechanism promoted by Rob in Salmonella.
Collapse
|
118
|
Brutinel ED, Vakulskas CA, Brady KM, Yahr TL. Characterization of ExsA and of ExsA-dependent promoters required for expression of the Pseudomonas aeruginosa type III secretion system. Mol Microbiol 2008; 68:657-71. [PMID: 18373522 DOI: 10.1111/j.1365-2958.2008.06179.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Expression of the Pseudomonas aeruginosa type III secretion system (T3SS) is activated by ExsA, a member of the AraC/XylS family of transcriptional regulators. In the present study we examine the DNA-binding properties of ExsA. ExsA was purified as a histidine-tagged fusion protein (ExsA(His)) and found to be monomeric in solution. ExsA(His) specifically bound T3SS promoters with high affinity as determined by electrophoretic mobility shift assays (EMSA). For each promoter tested two distinct ExsA-DNA complexes were detected. Biochemical analyses indicate that the higher-mobility complex consists of a single ExsA(His) molecule bound to DNA while the lower-mobility complex results from the binding of two ExsA(His) molecules. DNase I protection assays demonstrate that the ExsA(His) binding site overlaps the -35 RNA polymerase binding site and extends upstream an additional approximately 34 bp. An alignment of all 10 ExsA-dependent promoters revealed a number of highly conserved nucleotides within the footprinted region. We find that most of the highly conserved nucleotides are required for transcription in vivo; EMSA-binding assays confirm that several of these nucleotides are essential determinants of ExsA(His) binding. The combined data support a model in which two ExsA(His) molecules bind adjacent sites on the promoter to activate T3SS gene transcription.
Collapse
Affiliation(s)
- Evan D Brutinel
- Department of Microbiology, University of Iowa, lowa, IA, USA
| | | | | | | |
Collapse
|
119
|
Samarasinghe S, El-Robh MS, Grainger DC, Zhang W, Soultanas P, Busby SJW. Autoregulation of the Escherichia coli melR promoter: repression involves four molecules of MelR. Nucleic Acids Res 2008; 36:2667-76. [PMID: 18346968 PMCID: PMC2377442 DOI: 10.1093/nar/gkn119] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Escherichia coli MelR protein is a transcription activator that autoregulates its own promoter by repressing transcription initiation. Optimal repression requires MelR binding to a site that overlaps the melR transcription start point and to upstream sites. In this work, we have investigated the different determinants needed for optimal repression and their spatial requirements. We show that repression requires a complex involving four DNA-bound MelR molecules, and that the global CRP regulator plays little or no role.
Collapse
|
120
|
Evidence that AphB, essential for the virulence of Vibrio vulnificus, is a global regulator. J Bacteriol 2008; 190:3768-73. [PMID: 18344367 DOI: 10.1128/jb.00058-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The Vibrio vulnificus aphB mutant was significantly less virulent than the wild type and was impaired in motility and adherence to host cells. Microarray analysis revealed that AphB of V. vulnificus (AphB(Vv)) influences the expression of over 10% of the V. vulnificus genome. The combined results indicated that AphB(Vv) is a global regulator contributing to the pathogenesis of V. vulnificus.
Collapse
|
121
|
Roles of effectors in XylS-dependent transcription activation: intramolecular domain derepression and DNA binding. J Bacteriol 2008; 190:3118-28. [PMID: 18296514 DOI: 10.1128/jb.01784-07] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
XylS, an AraC family protein, activates transcription from the benzoate degradation pathway Pm promoter in the presence of a substrate effector such as 3-methylbenzoate (3MB). We developed a procedure to obtain XylS-enriched preparations which proved suitable to analyze its activation mechanism. XylS showed specific 3MB-independent binding to its target operator, which became strictly 3MB dependent in a dimerization-defective mutant. We demonstrated that the N-terminal domain of the protein can make linker-independent interactions with the C-terminal domain and inhibit its capacity to bind DNA. Interactions are hampered in the presence of 3MB effector. We propose two independent roles for 3MB in XylS activation: in addition to its known influence favoring protein dimerization, the effector is able to modify XylS conformation to trigger N-terminal domain intramolecular derepression. We also show that activation by XylS involves RNA polymerase recruitment to the Pm promoter as demonstrated by chromatin immunoprecipitation assays. RNA polymerase switching in Pm transcription was reproduced in in vitro transcription assays. All sigma(32)-, sigma(38)-, and sigma(70)-dependent RNA polymerases were able to carry out Pm transcription in a rigorous XylS-dependent manner, as demonstrated by the formation of open complexes only in the presence of the regulator.
Collapse
|
122
|
Nishino K, Senda Y, Yamaguchi A, Nishino K, Yamaguchi A, Nishino K, Yamaguchi A. The AraC-family regulator GadX enhances multidrug resistance in Escherichia coli by activating expression of mdtEF multidrug efflux genes. J Infect Chemother 2008; 14:23-9. [DOI: 10.1007/s10156-007-0575-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Accepted: 10/29/2007] [Indexed: 12/23/2022]
|
123
|
Joshi MV, Bignell DRD, Johnson EG, Sparks JP, Gibson DM, Loria R. The AraC/XylS regulator TxtR modulates thaxtomin biosynthesis and virulence in Streptomyces scabies. Mol Microbiol 2007; 66:633-42. [PMID: 17919290 DOI: 10.1111/j.1365-2958.2007.05942.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Streptomyces scabies is the best studied of those streptomycetes that cause an economically important disease known as potato scab. The phytotoxin thaxtomin is made exclusively by these pathogens and is required for virulence. Here we describe regulation of thaxtomin biosynthesis by TxtR, a member of the AraC/XylS family of transcriptional regulators. The txtR gene is imbedded in the thaxtomin biosynthetic pathway and is located on a conserved pathogenicity island in S. scabies, S. turgidiscabies and S. acidiscabies. Thaxtomin biosynthesis was abolished and virulence was almost eliminated in the txtR deletion mutant of S. scabies 87.22. Accumulation of thaxtomin biosynthetic gene (txtA, txtB, txtC, nos) transcripts was reduced compared with the wild-type S. scabies 87.22. NOS-dependent nitric oxide production by S. scabies was also reduced in the mutant. The TxtR protein bound cellobiose, an inducer of thaxtomin production, and transcription of txtR and thaxtomin biosynthetic genes was upregulated in response to cellobiose. TxtR is the first example of an AraC/XylS family protein regulated by cellobiose. Together, these data suggest that cellobiose, the smallest oligomer of cellulose, may signal the availability of expanding plant tissue, which is the site of action of thaxtomin.
Collapse
Affiliation(s)
- Madhumita V Joshi
- Department of Plant Pathology, Cornell University, Ithaca, NY 14853-5904, USA
| | | | | | | | | | | |
Collapse
|
124
|
Domínguez-Cuevas P, Marín P, Marqués S, Ramos JL. XylS-Pm promoter interactions through two helix-turn-helix motifs: identifying XylS residues important for DNA binding and activation. J Mol Biol 2007; 375:59-69. [PMID: 18005985 DOI: 10.1016/j.jmb.2007.10.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 10/15/2007] [Accepted: 10/16/2007] [Indexed: 11/25/2022]
Abstract
The XylS protein is the positive transcription regulator of the TOL plasmid meta-cleavage pathway operon Pm. XylS belongs to the AraC family of transcriptional regulators and exhibits an N-terminal domain involved in effector recognition, and a C-terminal domain, made up of seven alpha-helices conforming two helix-turn-helix DNA-binding domains. alpha-Helix 3 and alpha-helix 6 are the recognition helices. In consonance with XylS structural organization, Pm exhibits a bipartite DNA-binding motif consisting of two boxes, called A and B, whose sequences are TGCA and GGNTA, respectively. This bipartite motif is repeated at the Pm promoter so that one of the XylS monomers binds to each of the repeats. An extensive series of genetic epistasis assays combining mutant Pm promoters and XylS single substitution mutant proteins revealed that alpha-helix 3 contacts A box nucleotides, whereas alpha-helix 6 residues contact B box nucleotides. In alpha-helix 3, Asn246 and Arg242 are involved in specific contacts with the TG dinucleotide at box A, whereas Arg296 and Glu299 contact the second G and T nucleotides at box B. On the basis of our results and of the three-dimensional model of the XylS C-terminal domain, we propose that Ser243, Glu249 and Lys250 in alpha-helix 3, and Asn299 and Arg302 in alpha-helix 6 contact the phosphate backbones. Alanine substitutions at the predicted phosphate backbone-contacting residues yielded mutants with low levels of activity, suggesting that XylS-Pm binding specificity not only involves specific amino acid-base interactions, but also relies on secondary DNA structure, which, although at another level, also comes into play. We propose a model in which a XylS dimer binds to the direct repeats in Pm in a head-to-tail conformation that allows the direct interaction of the XylS proximal subunit with the RNA polymerase sigma factor.
Collapse
Affiliation(s)
- Patricia Domínguez-Cuevas
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Department of Environmental Protection, E-18008 Granada, Spain
| | | | | | | |
Collapse
|
125
|
Matson JS, Withey JH, DiRita VJ. Regulatory networks controlling Vibrio cholerae virulence gene expression. Infect Immun 2007; 75:5542-9. [PMID: 17875629 PMCID: PMC2168339 DOI: 10.1128/iai.01094-07] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Jyl S Matson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-0620, USA
| | | | | |
Collapse
|
126
|
Ibarra JA, Pérez-Rueda E, Segovia L, Puente JL. The DNA-binding domain as a functional indicator: the case of the AraC/XylS family of transcription factors. Genetica 2007; 133:65-76. [PMID: 17712603 DOI: 10.1007/s10709-007-9185-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Accepted: 07/19/2007] [Indexed: 10/22/2022]
Abstract
The AraC/XylS family of transcription factors, which include proteins that are involved in the regulation of diverse biological processes, has been of considerable interest recently and has been constantly expanding by means of in silico predictions and experimental analysis. In this work, using a HMM based on the DNA binding domain of 58 experimentally characterized proteins from the AraC/XylS (A/X), 1974 A/X proteins were found in 149 out of 212 bacterial genomes. This domain was used as a template to generate a phylogenetic tree and as a tool to predict the putative regulatory role of the new members of this family based on their proximity to a particular functional cluster in the tree. Based on this approach we assigned a functional regulatory role for 75% of the TFs dataset. Of these, 33.7% regulate genes involved in carbon-source catabolism, 9.6% global metabolism, 8.3% nitrogen metabolism, 2.9% adaptation responses, 8.9% stress responses, and 11.7% virulence. The abundance of TFs involved in the regulation of metabolic processes indicates that bacteria have optimized their regulatory systems to control energy uptake. In contrast, the lower percentage of TFs required for stress, adaptation and virulence regulation reflects the specialization acquired by each subset of TFs associated with those processes. This approach would be useful in assigning regulatory roles to uncharacterized members of other transcriptional factor families and it might facilitate their experimental analysis.
Collapse
Affiliation(s)
- J Antonio Ibarra
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico.
| | | | | | | |
Collapse
|
127
|
Joo CH, Shin YC, Gack M, Wu L, Levy D, Jung JU. Inhibition of interferon regulatory factor 7 (IRF7)-mediated interferon signal transduction by the Kaposi's sarcoma-associated herpesvirus viral IRF homolog vIRF3. J Virol 2007; 81:8282-92. [PMID: 17522209 PMCID: PMC1951281 DOI: 10.1128/jvi.00235-07] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2007] [Accepted: 05/05/2007] [Indexed: 11/20/2022] Open
Abstract
Upon viral infection, the major defense mounted by the host immune system is activation of the interferon (IFN)-mediated antiviral pathway that is mediated by IFN regulatory factors (IRFs). In order to complete their life cycle, viruses must modulate the host IFN-mediated immune response. Kaposi's sarcoma-associated herpesvirus (KSHV), a human tumor-inducing herpesvirus, has developed a unique mechanism for antagonizing cellular IFN-mediated antiviral activity by incorporating viral homologs of the cellular IRFs, called vIRFs. Here, we report a novel immune evasion mechanism of KSHV vIRF3 to block cellular IRF7-mediated innate immunity in response to viral infection. KSHV vIRF3 specifically interacts with either the DNA binding domain or the central IRF association domain of IRF7, and this interaction leads to the inhibition of IRF7 DNA binding activity and, therefore, suppression of alpha interferon (IFN-alpha) production and IFN-mediated immunity. Remarkably, the central 40 amino acids of vIRF3, containing the double alpha helix motifs, are sufficient not only for binding to IRF7, but also for inhibiting IRF7 DNA binding activity. Consequently, the expression of the double alpha helix motif-containing peptide effectively suppresses IRF7-mediated IFN-alpha production. This demonstrates a remarkably efficient means of viral avoidance of host antiviral activity.
Collapse
Affiliation(s)
- Chul Hyun Joo
- Tumor Virology Division, New England Primate Research Center, Department of Microbiology and Molecular Genetics, Harvard Medical School, 1 Pine Hill Drive, Southborough, MA 01772, USA
| | | | | | | | | | | |
Collapse
|
128
|
Wickstrum JR, Skredenske JM, Kolin A, Jin DJ, Fang J, Egan SM. Transcription activation by the DNA-binding domain of the AraC family protein RhaS in the absence of its effector-binding domain. J Bacteriol 2007; 189:4984-93. [PMID: 17513476 PMCID: PMC1951867 DOI: 10.1128/jb.00530-07] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli L-rhamnose-responsive transcription activators RhaS and RhaR both consist of two domains, a C-terminal DNA-binding domain and an N-terminal dimerization domain. Both function as dimers and only activate transcription in the presence of L-rhamnose. Here, we examined the ability of the DNA-binding domains of RhaS (RhaS-CTD) and RhaR (RhaR-CTD) to bind to DNA and activate transcription. RhaS-CTD and RhaR-CTD were both shown by DNase I footprinting to be capable of binding specifically to the appropriate DNA sites. In vivo as well as in vitro transcription assays showed that RhaS-CTD could activate transcription to high levels, whereas RhaR-CTD was capable of only very low levels of transcription activation. As expected, RhaS-CTD did not require the presence of L-rhamnose to activate transcription. The upstream half-site at rhaBAD and the downstream half-site at rhaT were found to be the strongest of the known RhaS half-sites, and a new putative RhaS half-site with comparable strength to known sites was identified. Given that cyclic AMP receptor protein (CRP), the second activator required for full rhaBAD expression, cannot activate rhaBAD expression in a DeltarhaS strain, it was of interest to test whether CRP could activate transcription in combination with RhaS-CTD. We found that RhaS-CTD allowed significant activation by CRP, both in vivo and in vitro, although full-length RhaS allowed somewhat greater CRP activation. We conclude that RhaS-CTD contains all of the determinants necessary for transcription activation by RhaS.
Collapse
Affiliation(s)
- Jason R Wickstrum
- Department of Molecular Biosciences, 1200 Sunnyside Ave., University of Kansas, Lawrence, KS 66045, USA
| | | | | | | | | | | |
Collapse
|
129
|
Kuscer E, Coates N, Challis I, Gregory M, Wilkinson B, Sheridan R, Petković H. Roles of rapH and rapG in positive regulation of rapamycin biosynthesis in Streptomyces hygroscopicus. J Bacteriol 2007; 189:4756-63. [PMID: 17468238 PMCID: PMC1913445 DOI: 10.1128/jb.00129-07] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rapamycin is an important macrocyclic polyketide produced by Streptomyces hygroscopicus and showing immunosuppressive, antifungal, and antitumor activities as well as displaying anti-inflammatory and neuroregenerative properties. The immense pharmacological potential of rapamycin has led to the production of an array of analogues, including through genetic engineering of the rapamycin biosynthetic gene cluster. This cluster contains several putative regulatory genes. Based on DNA sequence analysis, the products of genes rapH and rapG showed high similarities with two different families of transcriptional activators, LAL and AraC, respectively. Overexpression of either gene resulted in a substantial increase in rapamycin biosynthesis, confirming their positive regulatory role, while deletion of both from the chromosome of S. hygroscopicus resulted in a complete loss of antibiotic production. Complementation studies indicated an essential role of the RapG regulator for rapamycin biosynthesis and a supportive role of RapH. A direct effect of rapH and rapG gene products on the promoter of the rapamycin polyketide synthase operon, rapA-rapB, was observed using the chalcone synthase gene rppA as a reporter system.
Collapse
Affiliation(s)
- Enej Kuscer
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | | | | | | | | | | | | |
Collapse
|
130
|
Nian H, Zhang J, Song F, Fan L, Huang D. Isolation of transposon mutants and characterization of genes involved in biofilm formation by Pseudomonas fluorescens TC222. Arch Microbiol 2007; 188:205-13. [PMID: 17453174 DOI: 10.1007/s00203-007-0235-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 03/07/2007] [Accepted: 03/19/2007] [Indexed: 10/23/2022]
Abstract
Biofilm formation mutants are often found to have defective or altered motility. The motility phenotype was exploited to identify Pseudomonas fluorescens biofilm formation mutants. Fourteen motility mutants were obtained from P. fluorescens isolate TC222 and eight stable mutants were studied further. The eight transposon insertion mutants showed altered ability to form biofilm compared with the parent. Five Tn5-inserted genes from these mutants were cloned and sequenced. Genetic analysis showed that two insertions were located in genes affecting multiple cell surface characteristics, including lipopolysaccharide (rfbD) and polar flagella (fliR). Three genes encoding for a putative Mig-14 family protein (epsB), a probable bacteriophage signal peptide protein (bspA) and a soluble pyridine nucleotide transhydrogenase (pyrA) were reported for the first time to be involved in biofilm formation. Complementation experiments of rfbD and epsB genes proved that biofilm formation of the corresponding mutants could be restored. Further semi-quantitative reverse transcription-PCR analysis showed that both rfbD and epsB can express their transcripts much higher in the complemented strains than that in wild-type strains. The transcripts of both genes in their mutants could not be detected.
Collapse
Affiliation(s)
- Hongjuan Nian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100094, People's Republic of China
| | | | | | | | | |
Collapse
|
131
|
Viveiros M, Dupont M, Rodrigues L, Couto I, Davin-Regli A, Martins M, Pagès JM, Amaral L. Antibiotic stress, genetic response and altered permeability of E. coli. PLoS One 2007; 2:e365. [PMID: 17426813 PMCID: PMC1838523 DOI: 10.1371/journal.pone.0000365] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Accepted: 03/08/2007] [Indexed: 12/05/2022] Open
Abstract
Background Membrane permeability is the first step involved in resistance of bacteria to an antibiotic. The number and activity of efflux pumps and outer membrane proteins that constitute porins play major roles in the definition of intrinsic resistance in Gram-negative bacteria that is altered under antibiotic exposure. Methodology/Principal Findings Here we describe the genetic regulation of porins and efflux pumps of Escherichia coli during prolonged exposure to increasing concentrations of tetracycline and demonstrate, with the aid of quantitative real-time reverse transcriptase-polymerase chain reaction methodology and western blot detection, the sequence order of genetic expression of regulatory genes, their relationship to each other, and the ensuing increased activity of genes that code for transporter proteins of efflux pumps and down-regulation of porin expression. Conclusions/Significance This study demonstrates that, in addition to the transcriptional regulation of genes coding for membrane proteins, the post-translational regulation of proteins involved in the permeability of Gram-negative bacteria also plays a major role in the physiological adaptation to antibiotic exposure. A model is presented that summarizes events during the physiological adaptation of E. coli to tetracycline exposure.
Collapse
Affiliation(s)
- Miguel Viveiros
- Unit of Mycobacteriology, Unidade de Parasitologia e Microbiologia Médicas (UPMM), Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Myrielle Dupont
- UMR-MD-1, IFR48, Facultés de Médecine et de Pharmacie, Université de la Méditerranée, Marseille, France
| | - Liliana Rodrigues
- Unit of Mycobacteriology, Unidade de Parasitologia e Microbiologia Médicas (UPMM), Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Isabel Couto
- Unit of Mycobacteriology, Unidade de Parasitologia e Microbiologia Médicas (UPMM), Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
- Centro de Recursos Microbiológicos (CREM), Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Anne Davin-Regli
- UMR-MD-1, IFR48, Facultés de Médecine et de Pharmacie, Université de la Méditerranée, Marseille, France
| | - Marta Martins
- Unit of Mycobacteriology, Unidade de Parasitologia e Microbiologia Médicas (UPMM), Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Jean-Marie Pagès
- UMR-MD-1, IFR48, Facultés de Médecine et de Pharmacie, Université de la Méditerranée, Marseille, France
| | - Leonard Amaral
- Unit of Mycobacteriology, Unidade de Parasitologia e Microbiologia Médicas (UPMM), Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
132
|
Abstract
Fimbria-mediated interaction with the host elicits both innate and adaptive immune responses, and thus their expression may not always be beneficial in vivo. Furthermore, the metabolic drain of producing fimbriae is significant. It is not surprising, therefore, to find that fimbrial production in Escherichia coli and Salmonella enterica is under extensive environmental regulation. In many instances, fimbrial expression is regulated by phase variation, in which individual cells are capable of switching between fimbriate and afimbriate states to produce a mixed population. Mechanisms of phase variation vary considerably between different fimbriae and involve both genetic and epigenetic processes. Notwithstanding this, fimbrial expression is also sometimes controlled at the posttranscriptional level. In this chapter, we review key features of the regulation of fimbrial gene expression in E. coli and Salmonella. The occurrence and distribution of fimbrial operons vary significantly among E. coli pathovars and even among the many Salmonella serovars. Therefore, general principles are presented on the basis of detailed discussion of paradigms that have been extensively studied, including Pap, type 1 fimbriae, and curli. The roles of operon specific regulators like FimB or CsgD and of global regulatory proteins like Lrp, CpxR, and the histone-like proteins H-NS and IHF are reviewed as are the roles of sRNAs and of signalling nucleotide cyclic-di-GMP. Individual examples are discussed in detail to illustrate how the regulatory factors cooperate to allow tight control of expression of single operons. Molecular networks that allow coordinated expression between multiple fimbrial operons and with flagella in a single isolate are also presented. This chapter illustrates how adhesin expression is controlled, and the model systems also illustrate general regulatory principles germane to our overall understanding of bacterial gene regulation.
Collapse
|
133
|
Thomas MS. Iron acquisition mechanisms of the Burkholderia cepacia complex. Biometals 2007; 20:431-52. [PMID: 17295049 DOI: 10.1007/s10534-006-9065-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2006] [Accepted: 11/28/2006] [Indexed: 01/21/2023]
Abstract
The Burkholderia cepacia complex (Bcc) is comprised of at least 10 closely related species of Gram-negative proteobacteria that are associated with infections in certain groups of immunocompromised individuals, particularly those with cystic fibrosis. Infections in humans tend to occur in the lungs, which present an iron-restricted environment to a prospective pathogen, and accordingly members of the Bcc appear to possess efficient mechanisms for iron capture. These bacteria specify up to four different types of siderophore (ornibactin, pyochelin, cepabactin and cepaciachelin) that employ the full repertoire of iron-binding groups present in most naturally occurring siderophores. Members of the Bcc are also capable of utilising some exogenous siderophores that they are not able to synthesise. In addition to siderophore-mediated mechanisms of iron uptake, the Bcc possess mechanisms for acquiring iron from haem and from ferritin. The Bcc therefore appear to be well-equipped for life in an iron-poor environment.
Collapse
Affiliation(s)
- Mark S Thomas
- Unit of Infection and Immunity, School of Medicine and Biomedical Sciences, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK.
| |
Collapse
|
134
|
Shakhnovich EA, Hung DT, Pierson E, Lee K, Mekalanos JJ. Virstatin inhibits dimerization of the transcriptional activator ToxT. Proc Natl Acad Sci U S A 2007; 104:2372-7. [PMID: 17283330 PMCID: PMC1892951 DOI: 10.1073/pnas.0611643104] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The development of antimicrobials is critical in this time of increasing antibiotic resistance of most clinically relevant bacteria. To date, all current antibiotics focus on inhibiting crucial enzymatic activities of their protein targets (i.e., trimethoprim for dihydrofolate reductase), thus disrupting in vitro essential gene functions. In contrast, we have previously reported the identification of virstatin, a small molecule that inhibits virulence regulation in Vibrio cholerae, thereby preventing intestinal colonization in an infant mouse model for cholera. Virstatin prevents expression of the two major V. cholerae virulence factors, cholera toxin (CT) and the toxin coregulated pilus, by inhibiting the virulence transcriptional activator ToxT. It has previously been described that the N-terminal domain of ToxT has the ability to form homodimers. We now demonstrate that virstatin inhibits ToxT dimerization, thus demonstrating that it further falls into a unique class of inhibitors that works by disrupting protein-protein interactions, particularly homodimerization. Using virstatin, truncation mutants of ToxT, and a virstatin-resistant mutant, we show that dimerization is required for ToxT activation of the ctx promoter. In contrast, ToxT dimerization does not appear to be required at all of the other ToxT-regulated promoters, suggesting multiple mechanisms may exist for its transcriptional activity.
Collapse
Affiliation(s)
- Elizabeth A. Shakhnovich
- *Department of Microbiology and Molecular Genetics, Harvard Medical School, Armenise Building, Room 425, 200 Longwood Avenue, Boston, MA 02115
| | - Deborah T. Hung
- *Department of Microbiology and Molecular Genetics, Harvard Medical School, Armenise Building, Room 425, 200 Longwood Avenue, Boston, MA 02115
- Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Simches Research Building 7208, 185 Cambridge Street, Boston, MA 02114
- Broad Institute of Massachusetts Institute of Technology and Harvard, 7 Cambridge Center, Cambridge, MA 02142; and
| | - Emily Pierson
- *Department of Microbiology and Molecular Genetics, Harvard Medical School, Armenise Building, Room 425, 200 Longwood Avenue, Boston, MA 02115
- Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Simches Research Building 7208, 185 Cambridge Street, Boston, MA 02114
- Broad Institute of Massachusetts Institute of Technology and Harvard, 7 Cambridge Center, Cambridge, MA 02142; and
| | - Kyungae Lee
- New England Regional Center of Excellence, 200 Longwood Avenue, Boston, MA 02114
| | - John J. Mekalanos
- *Department of Microbiology and Molecular Genetics, Harvard Medical School, Armenise Building, Room 425, 200 Longwood Avenue, Boston, MA 02115
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
135
|
Ellermeier JR, Slauch JM. Adaptation to the host environment: regulation of the SPI1 type III secretion system in Salmonella enterica serovar Typhimurium. Curr Opin Microbiol 2007; 10:24-9. [PMID: 17208038 DOI: 10.1016/j.mib.2006.12.002] [Citation(s) in RCA: 225] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Accepted: 12/18/2006] [Indexed: 11/28/2022]
Abstract
Salmonella enterica invades the intestinal epithelium of the host using a type III secretion system encoded on Salmonella pathogenicity island 1 (SPI1). The bacteria integrate environmental signals from a variety of global regulatory systems to precisely induce transcription of SPI1. The regulatory circuit converges on expression of HilA, which directly regulates transcription of the SPI1 apparatus genes. Transcription of hilA is controlled by a complex feed-forward loop. Regulatory signals feed into the system through post-transcriptional and post-translational control of HilD, which in turn activates HilC and RtsA. These three regulators act in concert to control hilA transcription. The system acts as a switch, ensuring that SPI1 is fully on at the appropriate time.
Collapse
Affiliation(s)
- Jeremy R Ellermeier
- Department of Microbiology, University of Illinois, B103 Chemical and Life Sciences Laboratory, Urbana, IL 61801, USA
| | | |
Collapse
|
136
|
Childers BM, Weber GG, Prouty MG, Castaneda MM, Peng F, Klose KE. Identification of residues critical for the function of the Vibrio cholerae virulence regulator ToxT by scanning alanine mutagenesis. J Mol Biol 2007; 367:1413-30. [PMID: 17320105 DOI: 10.1016/j.jmb.2007.01.061] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Revised: 01/22/2007] [Accepted: 01/23/2007] [Indexed: 11/30/2022]
Abstract
Virulence factor expression in Vibrio cholerae is controlled by the transcriptional regulatory protein ToxT. ToxT activates transcription of the genes encoding cholera toxin (ctx) and the toxin co-regulated pilus (tcp), as well as accessory colonization factor (acf) genes. Previous studies of ToxT, a member of the AraC family of proteins, have revealed that it consists of two domains, an N-terminal dimerization and environmental sensing domain, and a C-terminal DNA binding domain. In this study, comprehensive scanning alanine mutagenesis was utilized to identify amino acids critical for the function of ToxT. Forty-eight proteins with Ala substitutions (of 267 total) exhibited defects in ToxT-dependent activation (>90% reduction) in both a V. cholerae acfA-phoA reporter strain and a Salmonella typhimurium ctxAp-lacZ reporter strain. Most of these mutant proteins also caused reductions in cholera toxin (CT) and toxin coregulated pilus (TCP) expression in a DeltatoxT V cholerae strain under in vitro virulence factor inducing conditions. Further analysis with a LexA-based reporter system revealed that one of the 20 Ala substitutions in the N terminus (F151A) diminishes dimerization, and this residue is located in a region of predicted alpha-helical structure, thus identifying a putative dimer interface. Ala substitutions in two putative helix-turn-helix (HTH) recognition helices that caused differential promoter activation (K203A and S249A) did not appear to alter specific DNA binding, suggesting these residues contribute to other aspects of transcriptional activation. A number of Ala substitutions were also found that result in a higher level of ToxT transcriptional activity, and these mutations were almost exclusively found within the N terminus, consistent with this domain being involved in modulation of ToxT activity. This study illuminates the contribution of specific amino acids to the dimerization, DNA binding, and transcriptional activity of ToxT.
Collapse
Affiliation(s)
- Brandon M Childers
- South Texas Center for Emerging Infectious Diseases, University of Texas San Antonio, San Antonio, TX 78249, USA
| | | | | | | | | | | |
Collapse
|
137
|
Łyżeń R, Wȩgrzyn G, Wȩgrzyn A, Szalewska-Pałasz A. Stimulation of the lambda pR promoter by Escherichia coli SeqA protein requires downstream GATC sequences and involves late stages of transcription initiation. MICROBIOLOGY-SGM 2007; 152:2985-2992. [PMID: 17005979 DOI: 10.1099/mic.0.29110-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Escherichia coli SeqA protein is a major negative regulator of chromosomal DNA replication acting by sequestration, and thus inactivation, of newly formed oriC regions. However, other activities of this protein have been discovered recently, one of which is regulation of transcription. SeqA has been demonstrated to be a specific transcription factor acting at bacteriophage lambda promoters p(I), p(aQ) and p(R). While SeqA-mediated stimulation of p(I) and p(aQ) occurs by facilitating functions of another transcription activator protein, cII, a mechanism for stimulation of p(R) remains largely unknown. Here, it has been demonstrated that two GATC sequences, located 82 and 105 bp downstream of the p(R) transcription start site, are necessary for this stimulation both in vivo and in vitro. SeqA-mediated activation of p(R) was as effective on a linear DNA template as on a supercoiled one, indicating that alterations in DNA topology are not likely to facilitate the SeqA effect. In vitro transcription analysis demonstrated that the most important regulatory effect of SeqA in p(R) transcription occurs after open complex formation, namely during promoter clearance. SeqA did not influence the appearance and level of abortive transcripts or the pausing during transcription elongation. Interestingly, SeqA is one of few known prokaryotic transcription factors which bind downstream of the regulated promoter and still act as transcription activators.
Collapse
Affiliation(s)
- Robert Łyżeń
- Department of Molecular Biology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
| | - Grzegorz Wȩgrzyn
- Department of Molecular Biology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
| | - Alicja Wȩgrzyn
- Laboratory of Molecular Biology (affiliated with University of Gdansk), Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kladki 24, 80-822 Gdansk, Poland
| | | |
Collapse
|
138
|
Morales SE, Lewis TA. Transcriptional regulation of the pdt gene cluster of Pseudomonas stutzeri KC involves an AraC/XylS family transcriptional activator (PdtC) and the cognate siderophore pyridine-2,6-bis(thiocarboxylic acid). Appl Environ Microbiol 2006; 72:6994-7002. [PMID: 16936044 PMCID: PMC1636214 DOI: 10.1128/aem.01518-06] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to gain an understanding of the molecular mechanisms dictating production of the siderophore and dechlorination agent pyridine-2,6-bis(thiocarboxylic acid) (PDTC), we have begun characterization of a gene found in the pdt gene cluster of Pseudomonas stutzeri KC predicted to have a regulatory role. That gene product is an AraC family transcriptional activator, PdtC. Quantitative reverse transcription-PCR and expression of transcriptional reporter fusions were used to assess a role for pdtC in the transcription of pdt genes. PdtC and an upstream, promoter-proximal DNA segment were required for wild-type levels of expression from the promoter of a predicted biosynthesis operon (P(pdtF)). At least two other transcriptional units within the pdt cluster were also dependent upon pdtC for expression at wild-type levels. The use of a heterologous, Pseudomonas putida host demonstrated that pdtC and an exogenously added siderophore were necessary and sufficient for expression from the pdtF promoter, i.e., none of the PDTC utilization genes within the pdt cluster were required for transcriptional signaling. Tests using the promoter of the pdtC gene in transcriptional reporter fusions indicated siderophore-dependent negative autoregulation similar to that seen with other AraC-type regulators of siderophore biosynthesis and utilization genes. The data increase the repertoire of siderophore systems known to be regulated by this type of transcriptional activator and have implications for PDTC signaling.
Collapse
Affiliation(s)
- Sergio E Morales
- Department of Microbiology and Molecular Genetics, University of Vermont, 95 Carrigan Dr., Burlington, VT 05405, USA
| | | |
Collapse
|
139
|
Filiatrault MJ, Picardo KF, Ngai H, Passador L, Iglewski BH. Identification of Pseudomonas aeruginosa genes involved in virulence and anaerobic growth. Infect Immun 2006; 74:4237-45. [PMID: 16790798 PMCID: PMC1489737 DOI: 10.1128/iai.02014-05] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Revised: 01/31/2006] [Accepted: 04/17/2006] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is a gram-negative, opportunistic pathogen and a significant cause of acute and chronic infections in patients with compromised host defenses. Evidence suggests that within infections P. aeruginosa encounters oxygen limitation and exists in microbial aggregates known as biofilms. However, there is little information that describes genes involved in anaerobic growth of P. aeruginosa and their association with virulence of this pathogen. To identify genes required for anaerobic growth, random transposon (Tn) mutagenesis was used to screen for mutants that demonstrated the inability to grow anaerobically using nitrate as a terminal electron acceptor. Of approximately 35,000 mutants screened, 57 mutants were found to exhibit no growth anaerobically using nitrate. Identification of the genes disrupted by the Tn revealed 24 distinct loci required for anaerobic growth on nitrate, including several genes not previously associated with anaerobic growth of P. aeruginosa. Several of these mutants were capable of growing anaerobically using nitrite and/or arginine, while five mutants were unable to grow anaerobically under any of the conditions tested. Three mutants were markedly attenuated in virulence in the lettuce model of P. aeruginosa infection. These studies have identified novel genes important for anaerobic growth and demonstrate that anaerobic metabolism influences virulence of P. aeruginosa.
Collapse
Affiliation(s)
- Melanie J Filiatrault
- University of Rochester School of Medicine and Dentistry, Department of Microbiology and Immunology, 601 Elmwood Avenue, Box 672, Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
140
|
Kahramanoglou C, Webster CL, El-Robh MS, Belyaeva TA, Busby SJW. Mutational analysis of the Escherichia coli melR gene suggests a two-state concerted model to explain transcriptional activation and repression in the melibiose operon. J Bacteriol 2006; 188:3199-207. [PMID: 16621812 PMCID: PMC1447455 DOI: 10.1128/jb.188.9.3199-3207.2006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription of the Escherichia coli melAB operon is regulated by the MelR protein, an AraC family member whose activity is modulated by the binding of melibiose. In the absence of melibiose, MelR is unable to activate the melAB promoter but autoregulates its own expression by repressing the melR promoter. Melibiose triggers MelR-dependent activation of the melAB promoter and relieves MelR-dependent repression of the melR promoter. Twenty-nine single amino acid substitutions in MelR that result in partial melibiose-independent activation of the melAB promoter have been identified. Combinations of different substitutions result in almost complete melibiose-independent activation of the melAB promoter. MelR carrying each of the single substitutions is less able to repress the melR promoter, while MelR carrying some combinations of substitutions is completely unable to repress the melR promoter. These results argue that different conformational states of MelR are responsible for activation of the melAB promoter and repression of the melR promoter. Supporting evidence for this is provided by the isolation of substitutions in MelR that block melibiose-dependent activation of the melAB promoter while not changing melibiose-independent repression of the melR promoter. Additional experiments with a bacterial two-hybrid system suggest that interactions between MelR subunits differ according to the two conformational states.
Collapse
Affiliation(s)
- Christina Kahramanoglou
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | | | | | | | | |
Collapse
|
141
|
Dramsi S, Caliot E, Bonne I, Guadagnini S, Prévost MC, Kojadinovic M, Lalioui L, Poyart C, Trieu-Cuot P. Assembly and role of pili in group B streptococci. Mol Microbiol 2006; 60:1401-13. [PMID: 16796677 DOI: 10.1111/j.1365-2958.2006.05190.x] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Streptococcus agalactiae[group B streptococcus (GBS)] is the leading cause of neonatal pneumonia, sepsis and meningitis. An in silico genome analysis indicated that GBS strain NEM316 encodes five putative sortases, including the major class A sortase enzyme and four class C sortases. The genes encoding the class C sortases are tandemly arranged in two different loci, srtC1-C2 and srtC3-C4, with a similar genetic organization and are thought to be involved in pilus biosynthesis. Each pair of sortase genes is flanked by LPXTG protein encoding genes, two upstream and one downstream, and a divergently transcribed regulatory gene located upstream from this locus. We demonstrated that strain NEM316 expresses only the srtC3-C4 locus, which encodes three surface proteins (Gbs1474, Gbs1477 and Gbs1478) that polymerize to form appendages resembling pili. Structural and functional analysis of this locus revealed that: (i) the transcriptional activator RogB is required for expression of the srtC3-C4 operon; (ii) Gbs1477, and either SrtC3 or SrtC4 are absolutely required for pilus biogenesis; and (iii) GBS NEM316 pili are composed of three surface proteins, Gbs1477, the bona fide pilin which is the major component, Gbs1474, a minor associated component, and Gbs1478, a pilus-associated adhesin. Surprisingly, pilus-like structures can be formed in the absence of the two minor components, i.e. the putative anchor Gbs1474 or the adhesin Gbs1478. Adherence assays showed that Gbs1478 confers adhesive capacity to the pilus. This study provides the first evidence that adhesive pili are also present in Gram-positive pathogens.
Collapse
Affiliation(s)
- Shaynoor Dramsi
- Unité de Biologie des Bactéries Pathogènes à Gram-Positif Institut Pasteur, URA CNRS 2172, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Prouty MG, Osorio CR, Klose KE. Characterization of functional domains of the Vibrio cholerae virulence regulator ToxT. Mol Microbiol 2006; 58:1143-56. [PMID: 16262796 DOI: 10.1111/j.1365-2958.2005.04897.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The toxT gene encodes an AraC family transcriptional activator that is responsible for regulating virulence gene expression in Vibrio cholerae. Analysis of ToxT by dominant/negative assays and a LexA-based reporter system demonstrated that the N-terminus of the protein contains dimerization determinants, indicating that ToxT likely functions as a dimer. Additionally, a natural variant of ToxT with only 60% identity in the N-terminus, as well as a mutant form of ToxT with an altered amino acid in the N-terminus (L107F), exhibited altered transcriptional responses to bile, suggesting that the N-terminus is involved in environmental sensing. The C-terminus of ToxT functions to bind DNA and requires dimerization for stable binding in vitro, as demonstrated by gel shift analysis. Interestingly, a dimerized form of the ToxT C-terminus is able to bind DNA in vitro but is transcriptionally inactive in vivo, indicating that the N-terminus contains determinants that are required for transcriptional activation. These results provide a model for a two-domain structure for ToxT, with an N-terminal dimerization and environmental sensing domain and a C-terminal DNA-binding domain; unlike other well-studied AraC family proteins, both domains of ToxT appear to be required for transcriptional activation.
Collapse
Affiliation(s)
- Michael G Prouty
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | | |
Collapse
|
143
|
Withey JH, DiRita VJ. The toxbox: specific DNA sequence requirements for activation of Vibrio cholerae virulence genes by ToxT. Mol Microbiol 2006; 59:1779-89. [PMID: 16553883 DOI: 10.1111/j.1365-2958.2006.05053.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Gram-negative, curved rod Vibrio cholerae causes the severe diarrhoeal disease cholera. The two major virulence factors produced by V. cholerae during infection are the cholera toxin (CT) and the toxin-coregulated pilus (TCP). Transcription of the genes encoding both CT and the components of the TCP is directly activated by ToxT, a transcription factor in the AraC/XylS family. ToxT binds upstream of the ctxAB genes, encoding CT, and upstream of tcpA, the first gene in a large operon encoding the components of the TCP. The DNA sequences upstream of ctxAB and tcpA that contain ToxT binding sites do not have any significant similarity other than being AT-rich. Extensive site-directed mutagenesis was performed on the region upstream of tcpA previously shown to be protected by ToxT, and we identified specific base pairs important for activation of tcpA transcription by ToxT. This genetic approach was complemented by copper-phenanthroline footprinting experiments that showed protection by ToxT of the base pairs identified as most important for transcription activation in the mutagenesis experiments. Based on this new information and on previous work, we propose the presence of a ToxT-binding motif - the 'toxbox'- in promoters regulated by ToxT. At tcpA, two toxbox elements are present in a direct repeat configuration and both are required for activation of transcription by ToxT. The identity of only a few of the base pairs within the toxbox is important for activation by ToxT, and we term these the core toxbox elements. Lastly, we examined ToxT binding to a mutant having 5 bp inserted between the two toxboxes at tcpA and found that occupancy of both binding sites is retained regardless of the positions of the binding sites relative to each other on the face of the DNA. This suggests that ToxT binds independently as a monomer to each toxbox in the tcpA direct repeat, in accordance with what we observed previously with the inverted repeat ToxT sites between acfA and acfD.
Collapse
Affiliation(s)
- Jeffrey H Withey
- Unit for Laboratory Animal Medicine and Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, 48109-0614, USA
| | | |
Collapse
|
144
|
Barras F, Loiseau L, Py B. How Escherichia coli and Saccharomyces cerevisiae build Fe/S proteins. Adv Microb Physiol 2006; 50:41-101. [PMID: 16221578 DOI: 10.1016/s0065-2911(05)50002-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Owing to the versatile electronic properties of iron and sulfur, iron sulfur (Fe/S) clusters are perfectly suited for sensing changes in environmental conditions and regulating protein properties accordingly. Fe/S proteins have been recruited in a wide array of diverse biological processes, including electron transfer chains, metabolic pathways and gene regulatory circuits. Chemistry has revealed the great diversity of Fe/S clusters occurring in proteins. The question now is to understand how iron and sulfur come together to form Fe/S clusters and how these clusters are subsequently inserted into apoproteins. Iron, sulfide and reducing conditions were found to be sufficient for successful maturation of many apoproteins in vitro, opening the possibility that insertion might be a spontaneous event. However, as in many other biological pathways such as protein folding, genetic analyses revealed that Fe/S cluster biogenesis and insertion depend in vivo upon auxiliary proteins. This was brought to light by studies on Azotobacter vinelandii nitrogenase, which, in particular, led to the concept of scaffold proteins, the role of which would be to allow transient assembly of Fe/S cluster. These studies paved the way toward the identification of the ISC and SUF systems, subjects of the present review that allow Fe/S cluster assembly into apoproteins of most organisms. Despite the recent discovery of the SUF and ISC systems, remarkable progress has been made in our understanding of their molecular composition and biochemical mechanisms. Such a rapid increase in our knowledge arose from a convergent interest from researchers engaged in unrelated fields and whose complementary expertise covered most experimental approaches used in biology. Also, the high conservation of ISC and SUF systems throughout a wide array of organisms helped cross-feeding between studies. The ISC system is conserved in eubacteria and most eukaryotes, while the SUF system arises in eubacteria, archaea, plants and parasites. ISC and SUF systems share a common core function made of a cysteine desulfurase, which acts as a sulfur donor, and scaffold proteins, which act as sulfur and iron acceptors. The ISC and SUF systems also exhibit important differences. In particular, the ISC system includes an Hsp70/Hsp40-like pair of chaperones, while the SUF system involves an unorthodox ATP-binding cassette (ABC)-like component. The role of these two sets of ATP-hydrolyzing proteins in Fe/S cluster biogenesis remains unclear. Both systems are likely to target overlapping sets of apoproteins. However, regulation and phenotypic studies in E. coli, which synthesizes both types of systems, leads us to envisage ISC as the house-keeping one that functions under normal laboratory conditions, while the SUF system appears to be required in harsh environmental conditions such as oxidative stress and iron starvation. In Saccharomyces cerevisiae, the ISC system is located in the mitochondria and its function is necessary for maturation of both mitochondrial and cytosolic Fe/S proteins. Here, we attempt to provide the first comprehensive review of the ISC and SUF systems since their discovery in the mid and late 1990s. Most emphasis is put on E. coli and S. cerevisiae models with reference to other organisms when their analysis provided us with information of particular significance. We aim at covering information made available on each Isc and Suf component by the different experimental approaches, including physiology, gene regulation, genetics, enzymology, biophysics and structural biology. It is our hope that this parallel coverage will facilitate the identification of both similarities and specificities of ISC and SUF systems.
Collapse
Affiliation(s)
- Frédéric Barras
- Laboratoire de Chimie Bactérienne, UPR-CNRS 9043 and LRC-CNRS-CEA 35v, Institut de Biologie Structurale et Microbiologie, 31 Chemin Joseph Aiguier, 13402 Marseille, France
| | | | | |
Collapse
|
145
|
Abstract
The Escherichia coli transcriptional regulator MarA affects functions that include antibiotic resistance, persistence, and survival. MarA functions as an activator or repressor of transcription utilizing similar degenerate DNA sequences (marboxes) with three different binding site configurations with respect to the RNA polymerase-binding sites. We demonstrate that MarA down-regulates rob transcripts both in vivo and in vitro via a MarA-binding site within the rob promoter that is positioned between the -10 and -35 hexamers. As for the hdeA and purA promoters, which are repressed by MarA, the rob marbox is also in the "backward" orientation. Protein-DNA interactions show that SoxS and Rob, like MarA, bind the same marbox in the rob promoter. Electrophoretic mobility shift analyses with a MarA-specific antibody demonstrate that MarA and RNA polymerase form a ternary complex with the rob promoter DNA. Transcription experiments in vitro and potassium permanganate footprinting analysis show that MarA affects the RNA polymerase-mediated closed to open complex formation at the rob promoter.
Collapse
Affiliation(s)
- Thamarai Schneiders
- Center for Adaptation Genetics and Drug Resistance and the Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | | |
Collapse
|
146
|
Lu CD. Pathways and regulation of bacterial arginine metabolism and perspectives for obtaining arginine overproducing strains. Appl Microbiol Biotechnol 2006; 70:261-72. [PMID: 16432742 DOI: 10.1007/s00253-005-0308-z] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Revised: 12/13/2005] [Accepted: 12/16/2005] [Indexed: 10/25/2022]
Abstract
L-arginine is produced by bacterial fermentation and is consumed in food flavoring and pharmaceutical industries. A better understanding of arginine metabolism in bacteria could be beneficial for a rational design of recombinant L-arginine producers by genetic engineering. This mini-review illustrated the current status of genes and enzymes for arginine metabolism, including biosynthetic pathways, catabolic pathways, uptake and excretion systems, and regulation. The linkage of polyamine and glutamate metabolism to the arginine network was also discussed, followed by a perspective view on how to construct arginine overproducing strains of bacteria with increasing biosynthesis and excretion and decreasing catabolism and uptake.
Collapse
Affiliation(s)
- Chung-Dar Lu
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
147
|
Park W, Peña-Llopis S, Lee Y, Demple B. Regulation of superoxide stress in Pseudomonas putida KT2440 is different from the SoxR paradigm in Escherichia coli. Biochem Biophys Res Commun 2006; 341:51-6. [PMID: 16412384 DOI: 10.1016/j.bbrc.2005.12.142] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Accepted: 12/20/2005] [Indexed: 11/20/2022]
Abstract
In Escherichia coli, the SoxR regulon orchestrates genes for defense against certain types of oxidative stress through the SoxR-regulated synthesis of the SoxS transcription activator. The Pseudomonas putida genome did not reveal a clear soxS homolog. The P. putida SoxR protein appears to be functional: its expression in an E. coli DeltasoxR strain restored the paraquat inducibility of soxS. Of nine candidate P. putida oxidative stress genes, which are known to be SoxR regulon in E. coli, tested for response to superoxide or nitric oxide, fumC-1, sodA, zwf-1, and particularly fpr, encoding ferredoxin:NADP(+) reductase, were induced, all independent of P. putida soxR. Disruption of the fpr and finR, a regulatory protein that is required for paraquat-dependent expression of the fpr, resulted in more oxidative stress sensitivity. However, a P. putida soxR-deletion strain had normal resistance to the superoxide-generating agent paraquat. The data presented here show that the genetic responses to superoxide stress in P. putida differ markedly from those seen in E. coli and Salmonella, and the role of P. putida soxR remains to be established.
Collapse
Affiliation(s)
- Woojun Park
- Division of Environmental Science and Ecological Engineering, Korea University, Anam-Dong 5Ga, Seoul.
| | | | | | | |
Collapse
|
148
|
Withey JH, Dirita VJ. Vibrio cholerae ToxT independently activates the divergently transcribed aldA and tagA genes. J Bacteriol 2005; 187:7890-900. [PMID: 16291662 PMCID: PMC1291258 DOI: 10.1128/jb.187.23.7890-7900.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Vibrio cholerae ToxT regulon includes the genes encoding cholera toxin (CT) and the toxin-coregulated pilus (TCP), which are the major virulence factors required for causing cholera disease and colonizing the upper small intestine of the host, respectively. The genes encoding CT, ctxAB, and the genes encoding the components of the TCP, tcpA to tcpJ, are organized within operons, upstream of which are DNA binding sites for the transcriptional activator ToxT. ToxT is a member of the large AraC/XylS family of transcriptional regulators and also activates transcription of five other genes whose roles in V. cholerae pathogenesis, if any, are poorly understood. acfA and acfD are divergently transcribed genes required for efficient colonization of the intestine. Transcriptional activation of acfA and acfD requires a pair of central ToxT binding sites in an inverted-repeat configuration for ToxT-directed transcription of both genes. tcpI has an unknown role in pathogenesis. aldA and tagA are divergently transcribed genes that also have unknown roles in pathogenesis. In this study, we map the aldA and tagA promoters and identify the ToxT binding sites upstream of each gene. Our results suggest that two ToxT binding sites in an inverted-repeat configuration are required for ToxT-directed transcription of tagA and that a single ToxT binding site is required for ToxT-directed transcription of aldA. Furthermore, to direct transcription of tagA and aldA, ToxT uses independent binding regions upstream of each gene, in contrast to what we previously found for the divergently transcribed acfA and acfD genes, which share ToxT binding sites between the two genes.
Collapse
Affiliation(s)
- Jeffrey H Withey
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, 48109-0614, USA
| | | |
Collapse
|
149
|
Michel L, González N, Jagdeep S, Nguyen-Ngoc T, Reimmann C. PchR-box recognition by the AraC-type regulator PchR of Pseudomonas aeruginosa requires the siderophore pyochelin as an effector. Mol Microbiol 2005; 58:495-509. [PMID: 16194235 DOI: 10.1111/j.1365-2958.2005.04837.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Under iron limitation, the opportunistic human pathogen Pseudomonas aeruginosa produces the siderophore pyochelin. When secreted into the extracellular environment, pyochelin complexes ferric ions and delivers them, via the outer membrane receptor FptA, to the bacterial cytoplasm. Extracellular pyochelin also acts as a signalling molecule, inducing the expression of pyochelin biosynthesis and uptake genes by a mechanism involving the AraC-type regulator PchR. We have identified a 32 bp conserved sequence element (PchR-box) in promoter regions of pyochelin-controlled genes and we show that the PchR-box in the pchR-pchDCBA intergenic region is essential for the induction of the pyochelin biosynthetic operon pchDCBA and the repression of the divergently transcribed pchR gene. PchR was purified as a fusion with maltose-binding protein (MBP). Mobility shift assays demonstrated specific binding of MBP-PchR to the PchR-box in the presence, but not in the absence of pyochelin and iron. PchR-box mutations that interfered with pyochelin-dependent regulation in vivo, also affected pyochelin-dependent PchR-box recognition in vitro. We conclude that pyochelin, probably in its iron-loaded state, is the intracellular effector required for PchR-mediated regulation. The fact that extracellular pyochelin triggers this regulation suggests that the siderophore can enter the cytoplasm.
Collapse
Affiliation(s)
- Laurent Michel
- Département de Microbiologie Fondamentale, Université de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
150
|
Dong YH, Zhang XF, Xu JL, Tan AT, Zhang LH. VqsM, a novel AraC-type global regulator of quorum-sensing signalling and virulence in Pseudomonas aeruginosa. Mol Microbiol 2005; 58:552-64. [PMID: 16194239 DOI: 10.1111/j.1365-2958.2005.04851.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human pathogen Pseudomonas aeruginosa uses quorum-sensing (QS) signalling systems to synchronize the production of virulence factors. There are two interrelated QS systems, las and rhl, in P. aeruginosa. In addition to this complexity, a number of transcriptional regulators were shown to have complicated interplays with las and rhl central QS components. Here, we describe a novel virulence and QS modulator (VqsM) that positively regulates the QS systems in P. aeruginosa. Mutation in vqsM resulted in much reduced production of N-acylhomoserine lactones (AHLs) and extracellular enzymes. Sequence analysis revealed that vqsM encodes a transcriptional regulator with an AraC-type helix-turn-helix DNA binding domain at the C-terminal of the peptide. Global gene expression profile analysis showed at least a total of 302 genes to be influenced, directly or indirectly, by VqsM. Among the 203 VqsM-promoted genes, 52.2% were known to be QS upregulated. Several genes encoding the key regulators implicated in QS, such as rhlR, rsaL, vqsR, mvfR, pprB and rpoS, and two AHL synthesis genes, lasI and rhlI, were suppressed in the vqsM mutant. Similar to the 'AHL-blind' phenotype of vqsR and pprB mutants, vqsM mutant did not respond to external addition of N-3-oxo-dodecanoyl-homoserine lactone signals. Moreover, overexpression of vqsR in vqsM mutant more or less restored the production of both AHL and virulence factors. The results demonstrate that VqsM, largely through modulation of vqsR expression, plays a vital role in regulation of QS signalling in P. aeruginosa.
Collapse
Affiliation(s)
- Yi-Hu Dong
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, 138673, Singapore
| | | | | | | | | |
Collapse
|