101
|
Morphofunctional Characteristics of Erythrocytes and Blood Erythropoietin Level in Patients as Predictors of Severe Course of COVID-19. Bull Exp Biol Med 2022; 173:46-50. [PMID: 35622261 PMCID: PMC9136801 DOI: 10.1007/s10517-022-05490-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Indexed: 12/03/2022]
Abstract
Morphological and functional characteristics of erythrocytes, hemoglobin, and erythropoietin level in the venous blood were evaluated by laser interference microscopy, Raman spectroscopy with a short-focus extreme aperture lens monochromator, and by ELISA, respectively, in 30 patients with verified moderate COVID-19 at the time of hospitalization and 30 healthy volunteers. The patients whose course of COVID-19 has worsened to critical by day 5 had already had lower (p<0.001) indicators at the time of hospitalization such as the area and thickness of erythrocytes, the hemoglobin distribution and packing density, hemoglobin conformation index (I1355/I1550)/(I1375/I1580) reflecting its oxygen affinity, and blood erythropoietin content. Our findings suggest that these characteristics of erythrocytes, hemoglobin, and erythropoietin can serve as potential predictors of COVID-19 aggravation in hospitalized patients.
Collapse
|
102
|
Moreno-Castaño AB, Diaz-Ricart M, Escolar G, García E, Mañú-Pereira MDM, Idrizovic A, Matute M, Molina A, Faneca J, Merino A. Southeast Asian ovalocytosis detected in a critical patient with COVID-19 pneumonia. Int J Lab Hematol 2022; 44:e215-e218. [PMID: 35580896 PMCID: PMC9347702 DOI: 10.1111/ijlh.13878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Ana Belén Moreno-Castaño
- Pathology Department, Centre Diagnòstic Biomèdic (CDB), Hospital Clinic, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Maribel Diaz-Ricart
- Pathology Department, Centre Diagnòstic Biomèdic (CDB), Hospital Clinic, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ginés Escolar
- Pathology Department, Centre Diagnòstic Biomèdic (CDB), Hospital Clinic, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Estefanía García
- Pathology Department, Centre Diagnòstic Biomèdic (CDB), Hospital Clinic, Barcelona, Spain
| | | | - Amira Idrizovic
- Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d'Hebrón, Barcelona, Spain
| | - Mónica Matute
- Pneumology Department, Clinic Respiratory Institute (ICR), Hospital Clinic, Barcelona, Spain
| | - Angel Molina
- Biochemistry and Molecular Genetics Department, Core Laboratory, Biomedical Diagnostic Centre, Hospital Clinic, Barcelona, Spain
| | - Joana Faneca
- Biochemistry and Molecular Genetics Department, Core Laboratory, Biomedical Diagnostic Centre, Hospital Clinic, Barcelona, Spain
| | - Anna Merino
- Biochemistry and Molecular Genetics Department, Core Laboratory, Biomedical Diagnostic Centre, Hospital Clinic, Barcelona, Spain
| |
Collapse
|
103
|
Meacci E, Pierucci F, Garcia-Gil M. Skeletal Muscle and COVID-19: The Potential Involvement of Bioactive Sphingolipids. Biomedicines 2022; 10:biomedicines10051068. [PMID: 35625805 PMCID: PMC9138286 DOI: 10.3390/biomedicines10051068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 01/08/2023] Open
Abstract
SARS-CoV-2 virus infection is the cause of the coronavirus disease 2019 (COVID-19), which is still spreading over the world. The manifestation of this disease can range from mild to severe and can be limited in time (weeks) or persist for months in about 30–50% of patients. COVID-19 is considered a multiple organ dysfunction syndrome and the musculoskeletal system manifestations are beginning to be considered of absolute importance in both COVID-19 patients and in patients recovering from the SARS-CoV-2 infection. Musculoskeletal manifestations of COVID-19 and other coronavirus infections include loss of muscle mass, muscle weakness, fatigue or myalgia, and muscle injury. The molecular mechanisms by which SARS-CoV-2 can cause damage to skeletal muscle (SkM) cells are not yet well understood. Sphingolipids (SLs) represent an important class of eukaryotic lipids with structural functions as well as bioactive molecules able to modulate crucial processes, including inflammation and viral infection. In the last two decades, several reports have highlighted the role of SLs in modulating SkM cell differentiation, regeneration, aging, response to insulin, and contraction. This review summarizes the consequences of SARS-CoV-2 infection on SkM and the potential involvement of SLs in the tissue responses to virus infection. In particular, we highlight the role of sphingosine 1-phosphate signaling in order to aid the prediction of novel targets for preventing and/or treating acute and long-term musculoskeletal manifestations of virus infection in COVID-19.
Collapse
Affiliation(s)
- Elisabetta Meacci
- Unit of Biochemical Sciences and Molecular Biology, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale GB Morgagni 50, 50121 Florence, Italy;
- Interuniversity Institute of Myology, University of Florence, 50121 Florence, Italy
- Correspondence: ; Tel.: +39-055-2751231
| | - Federica Pierucci
- Unit of Biochemical Sciences and Molecular Biology, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale GB Morgagni 50, 50121 Florence, Italy;
| | - Mercedes Garcia-Gil
- Unit of Physiology, Department of Biology, University of Pisa, Via S. Zeno 31, 56127 Pisa, Italy;
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56127 Pisa, Italy
| |
Collapse
|
104
|
Catala A, Stone M, Busch MP, D’Alessandro A. Reprogramming of red blood cell metabolism in Zika virus-infected donors. Transfusion 2022; 62:1045-1064. [PMID: 35285520 PMCID: PMC9086146 DOI: 10.1111/trf.16851] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Diseases caused by arthropod-borne viruses remain a burden to global health; in particular, Zika virus (ZIKV) has been reported in 87 countries and territories. In healthy blood donors, ZIKV RNA can be detected in red blood cells (RBCs) months after infection, clearance of detectable nucleic acid in plasma, and seroconversion. However, little information is available on the impact of ZIKV infection to metabolism. STUDY DESIGN AND METHODS We applied mass spectrometry-based metabolomics and lipidomics approaches to investigate the impact of ZIKV infection on RBCs over the course of infection. ZIKV-infected blood donors (n = 25) were identified through molecular and serologic methods, which included nucleic acid amplification testing and real-time polymerase chain reaction (PCR) for detection of ZIKV RNA and enzyme-linked immunosorbent assay (ELISA) for detection of flavivirus-specific IgM and IgG. RESULTS In ZIKV RNA-positive donors, we observed lower glucose and lactate levels, and higher levels of ribose phosphate, suggestive of the activation of the pentose phosphate pathway. The top pathways altered in RBCs from ZIKV-IgM-positive donors include amino acid metabolism and biosynthesis, fatty acid metabolism and biosynthesis, linoleic acid and arachidonate metabolism and glutathione metabolism. RBCs from ZIKV-infected donors had increased levels of early glycolytic metabolites, and higher levels of metabolites of the pentose phosphate pathway. Alterations in acyl-carnitine and fatty acid metabolism are consistent with impaired membrane lipid homeostasis in RBCs from ZIKV IgM positive donors. CONCLUSION RBC from healthy blood donors who had been infected by ZIKV are characterized by long-lasting metabolic alterations even months after infection has resolved.
Collapse
Affiliation(s)
- Alexis Catala
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Program in Structural Biology and Biochemistry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Mars Stone
- Vitalant Research Institute, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Michael P. Busch
- Vitalant Research Institute, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Program in Structural Biology and Biochemistry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
105
|
Grau M, Ibershoff L, Zacher J, Bros J, Tomschi F, Diebold KF, Predel HG, Bloch W. Even patients with mild COVID-19 symptoms after SARS-CoV-2 infection show prolonged altered red blood cell morphology and rheological parameters. J Cell Mol Med 2022; 26:3022-3030. [PMID: 35419946 PMCID: PMC9097836 DOI: 10.1111/jcmm.17320] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/16/2022] [Accepted: 03/28/2022] [Indexed: 12/13/2022] Open
Abstract
Infection with the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and the associated coronavirus disease-19 (COVID-19) might affect red blood cells (RBC); possibly altering oxygen supply. However, investigations of cell morphology and RBC rheological parameters during a mild disease course are lacking and thus, the aim of the study. Fifty individuals with mild COVID-19 disease process were tested after the acute phase of SARS-CoV-2 infection (37males/13 females), and the data were compared to n = 42 healthy controls (30 males/12 females). Analysis of venous blood samples, taken at rest, revealed a higher percentage of permanently elongated RBC and membrane extensions in COVID-19 patients. Haematological parameters and haemoglobin concentration, MCH and MCV in particular, were highly altered in COVID-19. RBC deformability and deformability under an osmotic gradient were significantly reduced in COVID-19 patients. Higher RBC-NOS activation was not capable to at least in part counteract these reductions. Impaired RBC deformability might also be related to morphological changes and/or increased oxidative state. RBC aggregation index remained unaffected. However, higher shear rates were necessary to balance the aggregation-disaggregation in COVID-19 patients which might be, among others, related to morphological changes. The data suggest prolonged modifications of the RBC system even during a mild COVID-19 disease course.
Collapse
Affiliation(s)
- Marijke Grau
- Institute of Cardiovascular Research and Sports Medicine, Molecular and Cellular Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Lars Ibershoff
- Institute of Cardiovascular Research and Sports Medicine, Molecular and Cellular Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Jonas Zacher
- Department of Preventive and Rehabilitative Sports and Performance Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Janina Bros
- Institute of Cardiovascular Research and Sports Medicine, Molecular and Cellular Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Fabian Tomschi
- Institute of Cardiovascular Research and Sports Medicine, Molecular and Cellular Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Katharina Felicitas Diebold
- Department of Preventive and Rehabilitative Sports and Performance Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Hans-Georg Predel
- Department of Preventive and Rehabilitative Sports and Performance Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Wilhelm Bloch
- Institute of Cardiovascular Research and Sports Medicine, Molecular and Cellular Sports Medicine, German Sport University Cologne, Cologne, Germany
| |
Collapse
|
106
|
Pascual-Guàrdia S, Ferrer A, Diaz O, Caguana AO, Tejedor E, Rodríguez-Chiaradia DA, Gea J. [Reply to «Absence of Relevant Clinical Effects of SARS-CoV-2 on the Affinity of Hemoglobin for O 2 in Patients with COVID-19»]. Arch Bronconeumol 2022; 58:374-375. [PMID: 35095169 PMCID: PMC8783978 DOI: 10.1016/j.arbres.2022.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Sergi Pascual-Guàrdia
- Servicio de Neumología, Hospital del Mar - IMIM. Departamento MELIS, Universitat Pompeu Fabra. CIBERES, ISCiii. BRN, Barcelona, España
| | - Antoni Ferrer
- Servicio de Neumología, Hospital del Mar - IMIM. Departamento MELIS, Universitat Pompeu Fabra. CIBERES, ISCiii. BRN, Barcelona, España
| | - Oscar Diaz
- Laboratorio de Referencia de Cataluña, El Prat de Llobregat, Barcelona, España
| | - Antonio O Caguana
- Servicio de Neumología, Hospital del Mar - IMIM. Departamento MELIS, Universitat Pompeu Fabra. CIBERES, ISCiii. BRN, Barcelona, España
| | - Elvira Tejedor
- Laboratorio de Referencia de Cataluña, El Prat de Llobregat, Barcelona, España
| | - Diego A Rodríguez-Chiaradia
- Servicio de Neumología, Hospital del Mar - IMIM. Departamento MELIS, Universitat Pompeu Fabra. CIBERES, ISCiii. BRN, Barcelona, España
| | - Joaquim Gea
- Servicio de Neumología, Hospital del Mar - IMIM. Departamento MELIS, Universitat Pompeu Fabra. CIBERES, ISCiii. BRN, Barcelona, España.
| |
Collapse
|
107
|
Mohammed Y, Goodlett DR, Cheng MP, Vinh DC, Lee TC, Mcgeer A, Sweet D, Tran K, Lee T, Murthy S, Boyd JH, Singer J, Walley KR, Patrick DM, Quan C, Ismail S, Amar L, Pal A, Bassawon R, Fesdekjian L, Gou K, Lamontagne F, Marshall J, Haljan G, Fowler R, Winston BW, Russell JA, ARBs CORONA I. Longitudinal Plasma Proteomics Analysis Reveals Novel Candidate Biomarkers in Acute COVID-19. J Proteome Res 2022; 21:975-992. [PMID: 35143212 PMCID: PMC8864781 DOI: 10.1021/acs.jproteome.1c00863] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Indexed: 12/15/2022]
Abstract
The host response to COVID-19 pathophysiology over the first few days of infection remains largely unclear, especially the mechanisms in the blood compartment. We report on a longitudinal proteomic analysis of acute-phase COVID-19 patients, for which we used blood plasma, multiple reaction monitoring with internal standards, and data-independent acquisition. We measured samples on admission for 49 patients, of which 21 had additional samples on days 2, 4, 7, and 14 after admission. We also measured 30 externally obtained samples from healthy individuals for comparison at baseline. The 31 proteins differentiated in abundance between acute COVID-19 patients and healthy controls belonged to acute inflammatory response, complement activation, regulation of inflammatory response, and regulation of protein activation cascade. The longitudinal analysis showed distinct profiles revealing increased levels of multiple lipid-associated functions, a rapid decrease followed by recovery for complement activation, humoral immune response, and acute inflammatory response-related proteins, and level fluctuation in the regulation of smooth muscle cell proliferation, secretory mechanisms, and platelet degranulation. Three proteins were differentiated between survivors and nonsurvivors. Finally, increased levels of fructose-bisphosphate aldolase B were determined in patients with exposure to angiotensin receptor blockers versus decreased levels in those exposed to angiotensin-converting enzyme inhibitors. Data are available via ProteomeXchange PXD029437.
Collapse
Affiliation(s)
- Yassene Mohammed
- Genome BC Proteomics Centre, University
of Victoria, Victoria V8Z 5N3, British Columbia,
Canada
- Center for Proteomics and Metabolomics,
Leiden University Medical Center, Leiden 2333 ZA,
Netherlands
| | - David R. Goodlett
- Genome BC Proteomics Centre, University
of Victoria, Victoria V8Z 5N3, British Columbia,
Canada
- Department of Biochemistry and Microbiology,
University of Victoria, Victoria V8W 2Y2, British Columbia,
Canada
- International Centre for Cancer Vaccine Science,
University of Gdansk, Gdansk 80-822, European Union,
Poland
| | - Matthew P. Cheng
- Division of Infectious Diseases (Department of
Medicine), Division of Medical Microbiology (Department of Pathology and Laboratory
Medicine), McGill University Health Centre, Montreal H4A 3J1,
Quebec, Canada
| | - Donald C. Vinh
- Division of Infectious Diseases (Department of
Medicine), Division of Medical Microbiology (Department of Pathology and Laboratory
Medicine), McGill University Health Centre, Montreal H4A 3J1,
Quebec, Canada
| | - Todd C. Lee
- Department of Medicine, McGill
University, Montreal H4A 3J1, Quebec, Canada
| | - Allison Mcgeer
- Mt. Sinai Hospital and University of
Toronto, University Avenue, Toronto M5G 1X5, Ontario,
Canada
| | - David Sweet
- Division of Critical Care Medicine, Department of
Emergency Medicine, Vancouver General Hospital and University of British
Columbia, Vancouver V5Z 1M9, British Columbia,
Canada
| | - Karen Tran
- Division of General Internal Medicine,
Vancouver General Hospital and University of British
Columbia, Vancouver V5Z 1M9, British Columbia,
Canada
| | - Terry Lee
- Centre for Health Evaluation and Outcome Science
(CHEOS), St. Paul’s Hospital, University of British
Columbia, 1081 Burrard Street, Vancouver V6Z 1Y6, British Columbia,
Canada
| | - Srinivas Murthy
- BC Children’s Hospital,
University of British Columbia, Vancouver V6H 3N1, British Columbia,
Canada
| | - John H. Boyd
- Centre for Heart Lung Innovation, St.
Paul’s Hospital, University of British Columbia, 1081 Burrard
Street, Vancouver V6Z 1Y6, British Columbia, Canada
- Division of Critical Care Medicine, St.
Paul’s Hospital, University of British Columbia, 1081 Burrard
Street, Vancouver V6Z 1Y6, British Columbia, Canada
| | - Joel Singer
- Centre for Health Evaluation and Outcome Science
(CHEOS), St. Paul’s Hospital, University of British
Columbia, 1081 Burrard Street, Vancouver V6Z 1Y6, British Columbia,
Canada
| | - Keith R. Walley
- Centre for Heart Lung Innovation, St.
Paul’s Hospital, University of British Columbia, 1081 Burrard
Street, Vancouver V6Z 1Y6, British Columbia, Canada
- Division of Critical Care Medicine, St.
Paul’s Hospital, University of British Columbia, 1081 Burrard
Street, Vancouver V6Z 1Y6, British Columbia, Canada
| | - David M. Patrick
- British Columbia Centre for Disease
Control (BCCDC) and University of British Columbia, Vancouver V5Z 4R4,
British Columbia, Canada
| | - Curtis Quan
- Department of Medicine, McGill
University, Montreal H4A 3J1, Quebec, Canada
| | - Sara Ismail
- Department of Medicine, McGill
University, Montreal H4A 3J1, Quebec, Canada
| | - Laetitia Amar
- Department of Medicine, McGill
University, Montreal H4A 3J1, Quebec, Canada
| | - Aditya Pal
- Department of Medicine, McGill
University, Montreal H4A 3J1, Quebec, Canada
| | - Rayhaan Bassawon
- Department of Medicine, McGill
University, Montreal H4A 3J1, Quebec, Canada
| | - Lara Fesdekjian
- Department of Medicine, McGill
University, Montreal H4A 3J1, Quebec, Canada
| | - Karine Gou
- Department of Medicine, McGill
University, Montreal H4A 3J1, Quebec, Canada
| | | | - John Marshall
- Department of Surgery, St.
Michael’s Hospital, Toronto M5B 1W8, Ontario,
Canada
| | - Greg Haljan
- Division of Critical Care, Surrey
Memorial Hospital and University of British Columbia, Surrey V3V 1Z2,
British Columbia, Canada
| | - Robert Fowler
- Sunnybrook Health Sciences
Centre, Toronto M4N 3M5, Ontario, Canada
| | - Brent W. Winston
- Departments of Critical Care Medicine, Medicine and
Biochemistry and Molecular Biology, University of Calgary,
Calgary T2N 4N1, Alberta, Canada
| | - James A. Russell
- Centre for Heart Lung Innovation, St.
Paul’s Hospital, University of British Columbia, 1081 Burrard
Street, Vancouver V6Z 1Y6, British Columbia, Canada
- Division of Critical Care Medicine, St.
Paul’s Hospital, University of British Columbia, 1081 Burrard
Street, Vancouver V6Z 1Y6, British Columbia, Canada
| | - ARBs CORONA I
- Genome BC Proteomics Centre, University
of Victoria, Victoria V8Z 5N3, British Columbia,
Canada
- Center for Proteomics and Metabolomics,
Leiden University Medical Center, Leiden 2333 ZA,
Netherlands
- Department of Biochemistry and Microbiology,
University of Victoria, Victoria V8W 2Y2, British Columbia,
Canada
- International Centre for Cancer Vaccine Science,
University of Gdansk, Gdansk 80-822, European Union,
Poland
- Department of Medicine, McGill
University, Montreal H4A 3J1, Quebec, Canada
- Mt. Sinai Hospital and University of
Toronto, University Avenue, Toronto M5G 1X5, Ontario,
Canada
- Division of Critical Care Medicine, Department of
Emergency Medicine, Vancouver General Hospital and University of British
Columbia, Vancouver V5Z 1M9, British Columbia,
Canada
- Division of General Internal Medicine,
Vancouver General Hospital and University of British
Columbia, Vancouver V5Z 1M9, British Columbia,
Canada
- Centre for Health Evaluation and Outcome Science
(CHEOS), St. Paul’s Hospital, University of British
Columbia, 1081 Burrard Street, Vancouver V6Z 1Y6, British Columbia,
Canada
- BC Children’s Hospital,
University of British Columbia, Vancouver V6H 3N1, British Columbia,
Canada
- Centre for Heart Lung Innovation, St.
Paul’s Hospital, University of British Columbia, 1081 Burrard
Street, Vancouver V6Z 1Y6, British Columbia, Canada
- Division of Critical Care Medicine, St.
Paul’s Hospital, University of British Columbia, 1081 Burrard
Street, Vancouver V6Z 1Y6, British Columbia, Canada
- British Columbia Centre for Disease
Control (BCCDC) and University of British Columbia, Vancouver V5Z 4R4,
British Columbia, Canada
- University of Sherbrooke,
Sherbrooke J1K 2R1, Quebec, Canada
- Department of Surgery, St.
Michael’s Hospital, Toronto M5B 1W8, Ontario,
Canada
- Division of Critical Care, Surrey
Memorial Hospital and University of British Columbia, Surrey V3V 1Z2,
British Columbia, Canada
- Sunnybrook Health Sciences
Centre, Toronto M4N 3M5, Ontario, Canada
- Departments of Critical Care Medicine, Medicine and
Biochemistry and Molecular Biology, University of Calgary,
Calgary T2N 4N1, Alberta, Canada
- Division of Infectious Diseases (Department of
Medicine), Division of Medical Microbiology (Department of Pathology and Laboratory
Medicine), McGill University Health Centre, Montreal H4A 3J1,
Quebec, Canada
| |
Collapse
|
108
|
[Translated article] Reply to “Absence of Relevant Clinical Effects of SARS-CoV-2 on the Affinity of Hemoglobin for O2 in Patients With COVID-19”. Arch Bronconeumol 2022. [PMCID: PMC9005044 DOI: 10.1016/j.arbres.2022.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
109
|
Plasma Total Antioxidant Capacity and Carbonylated Proteins Are Increased in Pregnant Women with Severe COVID-19. Viruses 2022; 14:v14040723. [PMID: 35458453 PMCID: PMC9025616 DOI: 10.3390/v14040723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress (OS) induced by SARS-CoV-2 infection may play an important role in COVID-19 complications. However, information on oxidative damage in pregnant women with COVID-19 is limited. Objective: We aimed to compare lipid and protein oxidative damage and total antioxidant capacity (TAC) between pregnant women with severe and non-severe COVID-19. Methods: We studied a consecutive prospective cohort of patients admitted to the obstetrics emergency department. All women positive for SARS-CoV-2 infection by reverse transcription-polymerase chain reaction (RT-qPCR) were included. Clinical data were collected and blood samples were obtained at hospital admission. Plasma OS markers, malondialdehyde (MDA), carbonylated proteins (CP), and TAC; angiogenic markers, fms-like tyrosine kinase-1 (sFlt-1) and placental growth factor (PlGF); and renin-angiotensin system (RAS) markers, angiotensin-converting enzyme 2 (ACE-2) and angiotensin-II (ANG-II) were measured. Correlation between OS, angiogenic, and RAS was evaluated. Results: In total, 57 pregnant women with COVID-19 were included, 17 (28.9%) of which had severe COVID-19; there were 3 (5.30%) maternal deaths. Pregnant women with severe COVID-19 had higher levels of carbonylated proteins (5782 pmol vs. 6651 pmol; p = 0.024) and total antioxidant capacity (40.1 pmol vs. 56.1 pmol; p = 0.001) than women with non-severe COVID-19. TAC was negatively correlated with ANG-II (p < 0.0001) and MDA levels (p < 0.0001) and positively with the sFlt-1/PlGF ratio (p = 0.027). Conclusions: In pregnant women, severe COVID-19 is associated with an increase in protein oxidative damage and total antioxidant capacity as a possible counterregulatory mechanism.
Collapse
|
110
|
Galbraith MD, Kinning KT, Sullivan KD, Araya P, Smith KP, Granrath RE, Shaw JR, Baxter R, Jordan KR, Russell S, Dzieciatkowska M, Reisz JA, Gamboni F, Cendali F, Ghosh T, Guo K, Wilson CC, Santiago ML, Monte AA, Bennett TD, Hansen KC, Hsieh EWY, D'Alessandro A, Espinosa JM. Specialized interferon action in COVID-19. Proc Natl Acad Sci U S A 2022; 119:e2116730119. [PMID: 35217532 PMCID: PMC8931386 DOI: 10.1073/pnas.2116730119] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/31/2022] [Indexed: 02/06/2023] Open
Abstract
The impacts of interferon (IFN) signaling on COVID-19 pathology are multiple, with both protective and harmful effects being documented. We report here a multiomics investigation of systemic IFN signaling in hospitalized COVID-19 patients, defining the multiomics biosignatures associated with varying levels of 12 different type I, II, and III IFNs. The antiviral transcriptional response in circulating immune cells is strongly associated with a specific subset of IFNs, most prominently IFNA2 and IFNG. In contrast, proteomics signatures indicative of endothelial damage and platelet activation associate with high levels of IFNB1 and IFNA6. Seroconversion and time since hospitalization associate with a significant decrease in a specific subset of IFNs. Additionally, differential IFN subtype production is linked to distinct constellations of circulating myeloid and lymphoid immune cell types. Each IFN has a unique metabolic signature, with IFNG being the most associated with activation of the kynurenine pathway. IFNs also show differential relationships with clinical markers of poor prognosis and disease severity. For example, whereas IFNG has the strongest association with C-reactive protein and other immune markers of poor prognosis, IFNB1 associates with increased neutrophil to lymphocyte ratio, a marker of late severe disease. Altogether, these results reveal specialized IFN action in COVID-19, with potential diagnostic and therapeutic implications.
Collapse
Affiliation(s)
- Matthew D Galbraith
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Kohl T Kinning
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Kelly D Sullivan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Paula Araya
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Keith P Smith
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Ross E Granrath
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Jessica R Shaw
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Ryan Baxter
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Kimberly R Jordan
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Seth Russell
- Data Science to Patient Value, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Fabia Gamboni
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Francesca Cendali
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Tusharkanti Ghosh
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO 80045
| | - Kejun Guo
- Department of Medicine, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Cara C Wilson
- Department of Medicine, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Mario L Santiago
- Department of Medicine, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Andrew A Monte
- Department of Emergency Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Tellen D Bennett
- Department of Pediatrics, Sections of Informatics and Data Science and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Elena W Y Hsieh
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
- Department of Pediatrics, Section of Allergy/Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Joaquin M Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045;
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
111
|
Focosi D, Franchini M, Maggi F. Modified Hemagglutination Tests for COVID-19 Serology in Resource-Poor Settings: Ready for Prime-Time? Vaccines (Basel) 2022; 10:406. [PMID: 35335038 PMCID: PMC8953758 DOI: 10.3390/vaccines10030406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 12/14/2022] Open
Abstract
During the ongoing COVID-19 pandemic, serology has suffered several manufacturing and budget bottlenecks. Kode technology exposes exogenous antigens on the surface of cells; in the case of red blood cells, modified cells are called kodecytes, making antibody-antigen reactions detectable by the old-fashioned hemagglutination test. In this commentary, we review evidence supporting the utility of SARS-CoV-2 Spike kodecytes for clinical diagnostic purposes and serosurveys in resource-poor settings.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy
| | - Massimo Franchini
- Division of Transfusion Medicine, Carlo Poma Hospital, 46100 Mantua, Italy;
| | - Fabrizio Maggi
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy;
| |
Collapse
|
112
|
Mahdi A, Collado A, Tengbom J, Jiao T, Wodaje T, Johansson N, Farnebo F, Färnert A, Yang J, Lundberg JO, Zhou Z, Pernow J. Erythrocytes Induce Vascular Dysfunction in COVID-19. JACC Basic Transl Sci 2022; 7:193-204. [PMID: 35194565 PMCID: PMC8849181 DOI: 10.1016/j.jacbts.2021.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 12/20/2022]
Abstract
Patients hospitalized for COVID-19 display marked impairment in endothelial function, which is persistent following recovery from the acute infection. RBCs from patients with COVID-19 impair vascular function through mechanisms involving increased arginase 1, ROS and IFNγ, and reduced NO bioactivity. These data advance our understanding in COVID-19–associated vascular injury with a clear involvement of RBCs. Targeting these mechanisms might provide a novel therapeutic strategy to alleviate vascular injury in patients with COVID-19.
Current knowledge regarding mechanisms underlying cardiovascular complications in patients with COVID-19 is limited and urgently needed. We shed light on a previously unrecognized mechanism and unravel a key role of red blood cells, driving vascular dysfunction in patients with COVID-19 infection. We establish the presence of profound and persistent endothelial dysfunction in vivo in patients with COVID-19. Mechanistically, we show that targeting reactive oxygen species or arginase 1 improves vascular dysfunction mediated by red blood cells. These translational observations hold promise that restoring the redox balance in red blood cells might alleviate the clinical complications of COVID-19–associated vascular dysfunction.
Collapse
Key Words
- ACh, acetylcholine
- C19-RBC, red blood cell from patients with COVID-19
- COVID-19
- EDR, endothelium-dependent relaxation
- EIR, endothelium-independent relaxation
- H-RBC, red blood cell from healthy subjects
- HNE, hydroxynonenal
- IFN, interferon
- RBC, red blood cell
- RHI, reactive hyperemia index
- ROS, reactive oxygen species
- SNP, sodium nitroprusside
- TNF, tumor necrosis factor
- arginase
- endothelial dysfunction
- nitric oxide
- reactive oxygen species
- red blood cells
Collapse
Affiliation(s)
- Ali Mahdi
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Aida Collado
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - John Tengbom
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Tong Jiao
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Tigist Wodaje
- Division of Cardiology, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Niclas Johansson
- Division of Infectious Diseases, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Filip Farnebo
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Stockholm Craniofacial Center, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Färnert
- Division of Infectious Diseases, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Jiangning Yang
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Zhichao Zhou
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - John Pernow
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
113
|
Sarkar S, Kannan S, Khanna P, Singh AK. Role of red blood cell distribution width, as a prognostic indicator in COVID-19: A systematic review and meta-analysis. Rev Med Virol 2022; 32:e2264. [PMID: 34091982 PMCID: PMC8209859 DOI: 10.1002/rmv.2264] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/24/2021] [Accepted: 05/31/2021] [Indexed: 02/06/2023]
Abstract
The red blood cell distribution width (RDW), an indicator of anisocytosis has emerged as a potential tool for risk stratification of critically ill patients with sepsis. Prognostic predictors are of paramount interest for prompt intervention and optimal utilization of the healthcare system in this ongoing context of the Coronavirus Disease 2019 (COVID-19) pandemic. The current systematic review and meta-analysis aims to explore the utility of RDW in the prognosis of COVID-19 patients. A comprehensive screening of electronic databases was performed up to 30th April 2021 after enrolling in PROSPERO (CRD42020206685). Observational studies or interventional studies, evaluating the impact of RDW in COVID-19 outcomes (mortality and severity) are included in this meta-analysis.Our search retrieved 25 studies, with a total of 18,392 and 3,446 COVID-19 patients for mortality and disease severity outcomes. Deceased and critically ill patients had higher RDW levels on admission in comparison to survivors and non-severe patients (SMD = 0.46; 95%CI 0.31-0.71; I2 = 88% and SMD = 0.46; 95%CI 0.26-0.67; I2 = 60%, respectively). In a sub-group analysis of 2,980 patients, RDW > 14.5 has been associated with increased risk of mortality (OR = 2.73; 95%CI 1.96-3.82; I2 = 56%). However, the evidences is of low quality. A higher level of RDW on admission in COVID-19 patients is associated with increased morbidity and mortality. However, further studies regarding the cut-off value of RDW are the need of the hour.
Collapse
Affiliation(s)
- Soumya Sarkar
- Department of AnaesthesiaPain Medicine & Critical CareAIIMSNew DelhiIndia
| | - Sundara Kannan
- Department of AnaesthesiaPain Medicine & Critical CareAIIMSNew DelhiIndia
| | - Puneet Khanna
- Department of AnaesthesiaPain Medicine & Critical CareAIIMSNew DelhiIndia
| | - Akhil Kant Singh
- Department of AnaesthesiaPain Medicine & Critical CareAIIMSNew DelhiIndia
| |
Collapse
|
114
|
Xu J, Yuan Y, Chen YY, Xiong CF, Zhang Z, Feng YQ. Carboxylic submetabolome-driven signature characterization of COVID-19 asymptomatic infection. Talanta 2022; 239:123086. [PMID: 34871866 PMCID: PMC8632795 DOI: 10.1016/j.talanta.2021.123086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 12/11/2022]
Abstract
Asymptomatic infection of COVID-19 is a global threat for public health. Unfortunately, the study about metabolic dysregulation of asymptomatic infection is barely investigated. Here, we performed carboxylic submetabolome profiling of serum from 62 asymptomatic and 122 control individuals, by a highly sensitive chemical isotope labelling method. Twenty-one discriminative carboxylic features, including 12-hydroxyeicosatetraenoic acid, cholic acid, glycoursodeoxycholic acid and 15,16-dihydroxyoctadeca-9,12-dienoic acid were discovered to be dysregulated in asymptomatic patients. This panel containing 21 carboxylic features could accurately identify asymptomatic patients based on a random forest model, providing an accuracy of 85.7% with only 3.6% false positive rate and 7.1% false negative rate. The dysregulated metabolites found in asymptomatic patients covered several important pathways, such as arachidonic acid metabolism, synthesis of bile acid, β-oxidation of fatty acids, activation of macrophage and platelet aggregation. This work provided valuable knowledge about serum biomarkers and molecular clues associated with asymptomatic COVID-19 patients.
Collapse
Affiliation(s)
- Jing Xu
- Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Yu Yuan
- Hubei Key Lab of Environment and Health Incubating, Department of Occupation and Environmental Health, Huazhong University of Science & Technology, Wuhan, 430030, PR China
| | - Yao-Yu Chen
- Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Cai-Feng Xiong
- Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Zheng Zhang
- School of Life Sciences, Central China Normal University, 152 Luoyu Rd, Wuhan, 430079, PR China.
| | - Yu-Qi Feng
- Department of Chemistry, Wuhan University, Wuhan, 430072, PR China; School of Health Sciences, Wuhan University, Wuhan, 430071, PR China.
| |
Collapse
|
115
|
Nader E, Nougier C, Boisson C, Poutrel S, Catella J, Martin F, Charvet J, Girard S, Havard‐Guibert S, Martin M, Rezigue H, Desmurs‐Clavel H, Renoux C, Joly P, Guillot N, Bertrand Y, Hot A, Dargaud Y, Connes P. Increased blood viscosity and red blood cell aggregation in patients with COVID-19. Am J Hematol 2022; 97:283-292. [PMID: 34939698 DOI: 10.1002/ajh.26440] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022]
Abstract
The aim of this study was to (1) analyze blood viscosity, red blood cell (RBC) deformability, and aggregation in hospitalized patients with Coronavirus disease 19 (COVID-19); (2) test the associations between impaired blood rheology and blood coagulation; and (3) test the associations between impaired blood rheology and several indicators of clinical severity. A total of 172 patients with COVID-19, hospitalized in COVID-unit of the Internal Medicine Department (Lyon, France) participated in this study between January and May 2021. Clinical parameters were collected for each patient. Routine hematological/biochemical parameters, blood viscosity, RBC deformability and aggregation, and RBC senescence markers were measured on the first day of hospitalization. A control group of 38 healthy individuals was constituted to compare the blood rheological and RBC profile. Rotational thromboelastography was performed in 76 patients to study clot formation dynamics. Our study demonstrated that patients with COVID-19 had increased blood viscosity despite lower hematocrit than healthy individuals, as well as increased RBC aggregation. In-vitro experiments demonstrated a strong contribution of plasma fibrinogen in this RBC hyper-aggregation. RBC aggregation correlated positively with clot firmness, negatively with clot formation time, and positively with the length of hospitalization. Patients with oxygen supplementation had higher RBC aggregation and blood viscosity than those without, and patients with pulmonary lesions had higher RBC aggregation and enhanced coagulation than those without. This study is the first to demonstrate blood hyper-viscosity and RBC hyper-aggregation in a large cohort of patients with COVID-19 and describe associations with enhanced coagulation and clinical outcomes.
Collapse
Affiliation(s)
- Elie Nader
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team Vascular Biology and Red Blood Cell Université Claude Bernard Lyon 1 Villeurbanne France
- Laboratoire d'Excellence du Globule Rouge (Labex GR‐Ex) PRES Sorbonne Paris France
| | - Christophe Nougier
- Laboratoire d'Hématologie, Groupement Hospitalier Est Hospices Civils de Lyon Lyon France
| | - Camille Boisson
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team Vascular Biology and Red Blood Cell Université Claude Bernard Lyon 1 Villeurbanne France
- Laboratoire d'Excellence du Globule Rouge (Labex GR‐Ex) PRES Sorbonne Paris France
- Service de Biochimie et Biologie Moléculaire, Centre de Biologie et de Pathologie Est Hospices Civils de Lyon Lyon France
| | - Solene Poutrel
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team Vascular Biology and Red Blood Cell Université Claude Bernard Lyon 1 Villeurbanne France
- Laboratoire d'Excellence du Globule Rouge (Labex GR‐Ex) PRES Sorbonne Paris France
- Service de Médecine Interne, Hôpital Edouard Herriot Hospices Civils de Lyon Lyon France
| | - Judith Catella
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team Vascular Biology and Red Blood Cell Université Claude Bernard Lyon 1 Villeurbanne France
- Laboratoire d'Excellence du Globule Rouge (Labex GR‐Ex) PRES Sorbonne Paris France
- Service de Médecine Interne, Hôpital Edouard Herriot Hospices Civils de Lyon Lyon France
| | - Fiona Martin
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team Vascular Biology and Red Blood Cell Université Claude Bernard Lyon 1 Villeurbanne France
- Laboratoire d'Excellence du Globule Rouge (Labex GR‐Ex) PRES Sorbonne Paris France
| | - Juliette Charvet
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team Vascular Biology and Red Blood Cell Université Claude Bernard Lyon 1 Villeurbanne France
- Laboratoire d'Excellence du Globule Rouge (Labex GR‐Ex) PRES Sorbonne Paris France
| | - Sandrine Girard
- Laboratoire d'Hématologie, Groupement Hospitalier Est Hospices Civils de Lyon Lyon France
| | - Salomé Havard‐Guibert
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team Vascular Biology and Red Blood Cell Université Claude Bernard Lyon 1 Villeurbanne France
- Laboratoire d'Excellence du Globule Rouge (Labex GR‐Ex) PRES Sorbonne Paris France
| | - Marie Martin
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team Vascular Biology and Red Blood Cell Université Claude Bernard Lyon 1 Villeurbanne France
- Laboratoire d'Excellence du Globule Rouge (Labex GR‐Ex) PRES Sorbonne Paris France
| | - Hamdi Rezigue
- Laboratoire d'Hématologie, Groupement Hospitalier Est Hospices Civils de Lyon Lyon France
| | - Helene Desmurs‐Clavel
- Service de Médecine Interne, Hôpital Edouard Herriot Hospices Civils de Lyon Lyon France
- GEMMAT, Groupe d'Etude Multidisciplinaire en Maladies Thrombotiques, Lyon, France 4 Service de Medecine Intensive Reanimation Hopital Edouard Herriot Lyon France
| | - Céline Renoux
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team Vascular Biology and Red Blood Cell Université Claude Bernard Lyon 1 Villeurbanne France
- Laboratoire d'Excellence du Globule Rouge (Labex GR‐Ex) PRES Sorbonne Paris France
- Service de Biochimie et Biologie Moléculaire, Centre de Biologie et de Pathologie Est Hospices Civils de Lyon Lyon France
| | - Philippe Joly
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team Vascular Biology and Red Blood Cell Université Claude Bernard Lyon 1 Villeurbanne France
- Laboratoire d'Excellence du Globule Rouge (Labex GR‐Ex) PRES Sorbonne Paris France
- Service de Biochimie et Biologie Moléculaire, Centre de Biologie et de Pathologie Est Hospices Civils de Lyon Lyon France
| | - Nicolas Guillot
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team Vascular Biology and Red Blood Cell Université Claude Bernard Lyon 1 Villeurbanne France
- Laboratoire d'Excellence du Globule Rouge (Labex GR‐Ex) PRES Sorbonne Paris France
| | - Yves Bertrand
- Institut d'Hématologique et d'Oncologique Pédiatrique Hospices Civils de Lyon Lyon France
| | - Arnaud Hot
- Service de Médecine Interne, Hôpital Edouard Herriot Hospices Civils de Lyon Lyon France
| | - Yesim Dargaud
- Laboratoire d'Hématologie, Groupement Hospitalier Est Hospices Civils de Lyon Lyon France
- GEMMAT, Groupe d'Etude Multidisciplinaire en Maladies Thrombotiques, Lyon, France 4 Service de Medecine Intensive Reanimation Hopital Edouard Herriot Lyon France
- Unite d'Hemostase Clinique Hopital Cardiologique Louis Pradel, Lyon, France 6 UR4609 Hemostase & Thrombose Universite Claude Bernard Lyon 1 Lyon France
- UR4609 Hemostase & Thrombose Universite Claude Bernard Lyon 1 Lyon France
| | - Philippe Connes
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team Vascular Biology and Red Blood Cell Université Claude Bernard Lyon 1 Villeurbanne France
- Laboratoire d'Excellence du Globule Rouge (Labex GR‐Ex) PRES Sorbonne Paris France
| |
Collapse
|
116
|
Piagnerelli M, Vanderelst J, Rousseau A, Monteyne D, Perez-Morga D, Biston P, Zouaoui Boudjeltia K. Red Blood Cell Shape and Deformability in Patients With COVID-19 Acute Respiratory Distress Syndrome. Front Physiol 2022; 13:849910. [PMID: 35295564 PMCID: PMC8918625 DOI: 10.3389/fphys.2022.849910] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
BackgroundAcute respiratory distress syndrome due to coronavirus disease 2019 (COVID-19) is associated with high mortality. Several studies have reported that the microcirculation responds adequately to hypoxia in COVID-19 patients by increasing oxygen availability, in contrast to the inadequate response observed in patients with bacterial sepsis. Red blood cells (RBCs), the key cells for oxygen transport, and notably their rheology, are altered during bacterial sepsis, but few data are available in patients with COVID-19.MethodsIn this prospective, non-interventional study, shape was assessed on admission (or inclusion for the volunteers) using Pearson’s second coefficient of dissymmetry (PCD) on the histogram obtained with a flow cytometer technique. A null value represents a perfect spherical shape. RBC deformability was determined using ektacytometry by the elongation index in relation to the shear stress (0.3 to 50 Pa) applied to the RBC membrane. A higher elongation index indicates greater RBC deformability. Results were compared across groups. Scanning electronic microscopy was performed on RBCs from COVID-19 patients. RBC shape and deformability were also assessed on days 3 and 7 in COVID-19 patients.ResultsForty-nine ICU patients were included (30 with COVID-19 ARDS and 19 with bacterial sepsis). ARDS was more severe in patients with COVID-19 than in those with sepsis (PaO2/FiO2 99 [73–154] vs. 270 [239–295] mmHg p < 0.001) and mechanical ventilation was more frequently required (87 vs. 21%; p < 0.001). Mortality was significantly higher in COVID-19 patients (15/30 [50%] vs. 4/19 [21%], p = 0.046). RBCs were significantly more spherical in septic patients (PCD −0.40 [−0.56; −0.18]) than in healthy volunteers (PCD −0.54 [−0.66; −0.49]) but not than in COVID-19 patients (−0.48 [−0.55; −0.43]). In COVID-19 non-survivors (n = 11), sphericity was more marked on day 7 (PCD −0.40 [−0.47; −0.28]) than on day 1 (PCD vs. −0.49 [−0.59; −0.44]); p = 0.045. At ICU admission, RBC deformability was altered for all shear stress values studied in septic patients compared to COVID-19 patients and healthy volunteers (maximum elongation index for septic patients: 0.600 [0.594–0.630] vs. 0.646 [0.637–0.653] for COVID-19 patients and 0.640 [0.635–0.650] for healthy volunteers; both p < 0.001). In the 18 COVID-19 patients studied for 7 days, RBC deformability did not change over time and was not related to outcome. At day 1, RBCs from COVID-19 patients showed a normal structure on scanning electronic microscopy.ConclusionIn contrast to the significantly altered shape and decreased deformability in patients with bacterial sepsis, RBCs from severely hypoxemic COVID-19 patients had normal deformability on admission, and this pattern did not change over the first week despite a more spherical shape in non-survivors. As RBCs are the key cell for oxygen transport, this maintenance of normal deformability may contribute to the adequate microcirculatory response to severe hypoxia of the microcirculation that has been observed in these patients.
Collapse
Affiliation(s)
- Michaël Piagnerelli
- Intensive Care, CHU-Charleroi Marie-Curie, Université Libre de Bruxelles, Charleroi, Belgium
- Experimental Medicine Laboratory, CHU-Charleroi Vésale, ULB 222 Unit, Université Libre de Bruxelles, Montigny-le-Tilleul, Belgium
- *Correspondence: Michaël Piagnerelli,
| | - Julie Vanderelst
- Intensive Care, CHU-Charleroi Marie-Curie, Université Libre de Bruxelles, Charleroi, Belgium
| | - Alexandre Rousseau
- Experimental Medicine Laboratory, CHU-Charleroi Vésale, ULB 222 Unit, Université Libre de Bruxelles, Montigny-le-Tilleul, Belgium
| | - Daniel Monteyne
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, Charleroi, Belgium
- IBMM, Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles, Charleroi, Belgium
| | - David Perez-Morga
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, Charleroi, Belgium
- IBMM, Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles, Charleroi, Belgium
| | - Patrick Biston
- Intensive Care, CHU-Charleroi Marie-Curie, Université Libre de Bruxelles, Charleroi, Belgium
| | - Karim Zouaoui Boudjeltia
- Experimental Medicine Laboratory, CHU-Charleroi Vésale, ULB 222 Unit, Université Libre de Bruxelles, Montigny-le-Tilleul, Belgium
| |
Collapse
|
117
|
Research into Morphofunctional Characteristics of Erythrocytes in COVID-19 Patients. Biomedicines 2022; 10:biomedicines10030553. [PMID: 35327355 PMCID: PMC8945033 DOI: 10.3390/biomedicines10030553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 01/27/2023] Open
Abstract
In this paper, the erythrocytes of healthy donors and people with a confirmed diagnosis of COVID-19 were tested by Raman spectroscopy and laser interference microscopy. We argue that erythrocytes (red blood cells) in COVID-19 patients have an irregular shape, and their morphometric characteristics are impaired in comparison to healthy red blood cells. Raman spectroscopy also allows us to detect a decreased oxygen transport function of these erythrocytes. The combination of these methods—Raman spectroscopy and laser interference microscopy—is a highly effective method for the diagnosis of SARS-CoV-2.
Collapse
|
118
|
Implication of COVID-19 on Erythrocytes Functionality: Red Blood Cell Biochemical Implications and Morpho-Functional Aspects. Int J Mol Sci 2022; 23:ijms23042171. [PMID: 35216286 PMCID: PMC8878454 DOI: 10.3390/ijms23042171] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 01/08/2023] Open
Abstract
Several diseases (such as diabetes, cancer, and neurodegenerative disorders) affect the morpho-functional aspects of red blood cells, sometimes altering their normal metabolism. In this review, the hematological changes are evaluated, with particular focus on the morphology and metabolic aspects of erythrocytes. Changes in the functionality of such cells may, in fact, help provide important information about disease severity and progression. The viral infection causes significant damage to the blood cells that are altered in size, rigidity, and distribution width. Lower levels of hemoglobin and anemia have been reported in several studies, and an alteration in the concentration of antioxidant enzymes has been shown to promote a dangerous state of oxidative stress in red blood cells. Patients with severe COVID-19 showed an increase in hematological changes, indicating a progressive worsening as COVID-19 severity progressed. Therefore, monitored hematological alterations in patients with COVID-19 may play an important role in the management of the disease and prevent the risk of a severe course of the disease. Finally, monitored changes in erythrocytes and blood, in general, may be one of the causes of the condition known as Long COVID.
Collapse
|
119
|
Elkhalifa AME, Elderdery AY, Al Bataj IA, Tamomh AG, Alyami MM, Almakrami HA, Alofair MA, Almorish MA, Bashanfer S, Tabash MI, Idris HME, Ahmed DZ, Alhamidi AH, Mok PL. Hematological Findings among COVID-19 Patients Attending King Khalid Hospital at Najran, Kingdom of Saudi Arabia. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4620037. [PMID: 35224093 PMCID: PMC8865990 DOI: 10.1155/2022/4620037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/06/2022] [Indexed: 01/08/2023]
Abstract
COVID-19 is a global pandemic viral infection that has affected millions worldwide. Limited data is available on the effect of COVID-19 on hematological parameters in Saudi Arabia. This study is aimed at examining the role of hematological parameters among COVID-19 patients admitted to King Khalid Hospital in Najran, Saudi Arabia. This is a retrospective, hospital-based study of 514 cases who were recruited during August to October 2020. 257 COVID-19 patients formed the study group, and a further 257 negative subjects formed the control group. Anemia was significantly elevated in positive subjects over controls (respectively, 64.2% and 35.8%), with patients 2.5 times more likely to be anemic (p < 0.01). Thrombocytopenia was higher in patients over controls (respectively, 62% and 38%), with patients ~1.7 times more likely to be thrombocytopenic (p < 0.01). Moreover, leukopenia was significantly higher in patients over controls (respectively, 71% and 29%), with positive subjects ~2.6 times more likely to be leukopenic. Our study results indicate that mild anemia associated with leukopenia may have diagnostic value for COVID-19. Careful assessment of hematological parameters, at baseline and throughout the disease path, will assist physicians in formulating personalized approaches to treatment and promptly offer intensive care to those in greater need.
Collapse
Affiliation(s)
- Ahmed M. E. Elkhalifa
- College of Health Sciences, Saudi Electronic University, Riyadh, Saudi Arabia
- Faculty of Medical Laboratory Sciences, University of El Imam El Mahdi, Kosti, Sudan
| | | | | | - Abdelhakam G. Tamomh
- Faculty of Medical Laboratory Sciences, University of El Imam El Mahdi, Kosti, Sudan
| | | | | | | | | | - Salem Bashanfer
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Mohammed I. Tabash
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Al-Azhar University, Gaza, State of Palestine
| | | | - Dania Z. Ahmed
- Hampshire Hospitals NHS Foundation Trust and Health Education, UK
| | - Abdulaziz H. Alhamidi
- Clinical Laboratory Sciences Department, College of Applied Medical Science, King Saud University, Riyadh, Saudi Arabia
| | - Pooi Ling Mok
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
120
|
Stephenson D, Nemkov T, Qadri SM, Sheffield WP, D’Alessandro A. Inductively-Coupled Plasma Mass Spectrometry-Novel Insights From an Old Technology Into Stressed Red Blood Cell Physiology. Front Physiol 2022; 13:828087. [PMID: 35197866 PMCID: PMC8859330 DOI: 10.3389/fphys.2022.828087] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/17/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Ion and metal homeostasis are critical to red blood cell physiology and Inductively Coupled Plasma (ICP) is a decades old approach to pursue elemental analysis. Recent evolution of ICP has resulted in its coupling to mass spectrometry (MS) instead of atomic absorption/emission. METHODS Here we performed Inductively-coupled plasma mass spectrometry (ICP-MS) measurements of intra- and extra-cellular Na, K, Ca, Mg, Fe, and Cu in red blood cells undergoing ionic, heat, or starvation stress. Results were correlated with Ca measurements from other common platforms (e.g., fluorescence-based approaches) and extensive measurements of red blood cell metabolism. RESULTS All stresses induced significant intra- and extracellular alterations of all measured elements. In particular, ionomycin treatment or hypertonic stress significantly impacted intracellular sodium and extracellular potassium and magnesium levels. Iron efflux was observed as a function of temperatures, with ionic and heat stress at 40°C causing the maximum decrease in intracellular iron pools and increases in the supernatants. Strong positive correlation was observed between calcium measurements via ICP-MS and fluorescence-based approaches. Correlation analyses with metabolomics data showed a strong positive association between extracellular calcium and intracellular sodium or magnesium levels and intracellular glycolysis. Extracellular potassium or iron were positively correlated with free fatty acids (especially mono-, poly-, and highly-unsaturated or odd-chain fatty acid products of lipid peroxidation). Intracellular iron was instead positively correlated with saturated fatty acids (palmitate, stearate) and negatively with methionine metabolism (methionine, S-adenosylmethionine), phosphatidylserine exposure and glycolysis. CONCLUSION In the era of omics approaches, ICP-MS affords a comprehensive characterization of intracellular elements that provide direct insights on red blood cell physiology and represent meaningful covariates for data generated via other omics platforms such as metabolomics.
Collapse
Affiliation(s)
- Daniel Stephenson
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver–Anschutz Medical Campus, Aurora, CO, United States
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver–Anschutz Medical Campus, Aurora, CO, United States
| | - Syed M. Qadri
- Faculty of Health Sciences, Ontario Tech University, Oshawa, ON, Canada
| | - William P. Sheffield
- Centre for Innovation, Canadian Blood Services, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver–Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
121
|
Cavezzi A, Menicagli R, Troiani E, Corrao S. COVID-19, Cation Dysmetabolism, Sialic Acid, CD147, ACE2, Viroporins, Hepcidin and Ferroptosis: A Possible Unifying Hypothesis. F1000Res 2022; 11:102. [PMID: 35340277 PMCID: PMC8921693 DOI: 10.12688/f1000research.108667.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/20/2022] [Indexed: 08/26/2024] Open
Abstract
Background: iron and calcium dysmetabolism, with hyperferritinemia, hypoferremia, hypocalcemia and anemia have been documented in the majority of COVID-19 patients at later/worse stages. Furthermore, complementary to ACE2, both sialic acid (SA) molecules and CD147 proved relevant host receptors for SARS-CoV-2 entry, which explains the viral attack to multiple types of cells, including erythrocytes, endothelium and neural tissue. Several authors advocated that cell ferroptosis may be the core and final cell degenerative mechanism. Methods: a literature research was performed in several scientific search engines, such as PubMed Central, Cochrane Library, Chemical Abstract Service. More than 500 articles were retrieved until mid-December 2021, to highlight the available evidence about the investigated issues. Results: based on COVID-19 literature data, we have highlighted a few pathophysiological mechanisms, associated with virus-based cation dysmetabolism, multi-organ attack, mitochondria degeneration and ferroptosis. Our suggested elucidated pathological sequence is: a) spike protein subunit S1 docking with sialylated membrane glycoproteins/receptors (ACE2, CD147), and S2 subunit fusion with the lipid layer; b) cell membrane morpho-functional changes due to the consequent electro-chemical variations and viroporin action, which induce an altered ion channel function and intracellular cation accumulation; c) additional intracellular iron concentration due to a deregulated hepcidin-ferroportin axis, with higher hepcidin levels. Viral invasion may also affect erythrocytes/erythroid precursors, endothelial cells and macrophages, through SA and CD147 receptors, with relative hemoglobin and iron/calcium dysmetabolism. AB0 blood group, hemochromatosis, or environmental elements may represent possible factors which affect individual susceptibility to COVID-19. Conclusions: our literature analysis confirms the combined role of SA molecules, ACE2, CD147, viroporins and hepcidin in determining the cation dysmetabolism and final ferroptosis in the cells infected by SARS-CoV-2. The altered ion channels and electrochemical gradients of the cell membrane have a pivotal role in the virus entry and cell dysmetabolism, with subsequent multi-organ immune-inflammatory degeneration and erythrocyte/hemoglobin alterations.
Collapse
Affiliation(s)
- Attilio Cavezzi
- Eurocenter Venalinfa, San Benedetto del Tronto, AP, 63074, Italy
| | | | - Emidio Troiani
- Cardiology Unit, Social Security Institute, State Hospital, Cailungo, 47893, San Marino
| | - Salvatore Corrao
- Department of Clinical Medicine, Internal Medicine Division,, ARNAS Civico Di Cristina Benfratelli Hospital Trust, Palermo, Italy
| |
Collapse
|
122
|
Cavezzi A, Menicagli R, Troiani E, Corrao S. COVID-19, Cation Dysmetabolism, Sialic Acid, CD147, ACE2, Viroporins, Hepcidin and Ferroptosis: A Possible Unifying Hypothesis. F1000Res 2022; 11:102. [PMID: 35340277 PMCID: PMC8921693 DOI: 10.12688/f1000research.108667.2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/17/2022] [Indexed: 12/15/2022] Open
Abstract
Background: iron and calcium dysmetabolism, with hyperferritinemia, hypoferremia, hypocalcemia and anemia have been documented in the majority of COVID-19 patients at later/worse stages. Furthermore, complementary to ACE2, both sialic acid (SA) molecules and CD147 proved relevant host receptors for SARS-CoV-2 entry, which explains the viral attack to multiple types of cells, including erythrocytes, endothelium and neural tissue. Several authors advocated that cell ferroptosis may be the core and final cell degenerative mechanism. Methods: a literature research was performed in several scientific search engines, such as PubMed Central, Cochrane Library, Chemical Abstract Service. More than 500 articles were retrieved until mid-December 2021, to highlight the available evidence about the investigated issues. Results: based on COVID-19 literature data, we have highlighted a few pathophysiological mechanisms, associated with virus-based cation dysmetabolism, multi-organ attack, mitochondria degeneration and ferroptosis. Our suggested elucidated pathological sequence is: a) spike protein subunit S1 docking with sialylated membrane glycoproteins/receptors (ACE2, CD147), and S2 subunit fusion with the lipid layer; b) cell membrane morpho-functional changes due to the consequent electro-chemical variations and viroporin action, which induce an altered ion channel function and intracellular cation accumulation; c) additional intracellular iron concentration due to a deregulated hepcidin-ferroportin axis, with higher hepcidin levels. Viral invasion may also affect erythrocytes/erythroid precursors, endothelial cells and macrophages, through SA and CD147 receptors, with relative hemoglobin and iron/calcium dysmetabolism. AB0 blood group, hemochromatosis, or environmental elements may represent possible factors which affect individual susceptibility to COVID-19. Conclusions: our literature analysis confirms the combined role of SA molecules, ACE2, CD147, viroporins and hepcidin in determining the cation dysmetabolism and final ferroptosis in the cells infected by SARS-CoV-2. The altered ion channels and electrochemical gradients of the cell membrane have a pivotal role in the virus entry and cell dysmetabolism, with subsequent multi-organ immune-inflammatory degeneration and erythrocyte/hemoglobin alterations.
Collapse
Affiliation(s)
- Attilio Cavezzi
- Eurocenter Venalinfa, San Benedetto del Tronto, AP, 63074, Italy
| | | | - Emidio Troiani
- Cardiology Unit, Social Security Institute, State Hospital, Cailungo, 47893, San Marino
| | - Salvatore Corrao
- Department of Clinical Medicine, Internal Medicine Division,, ARNAS Civico Di Cristina Benfratelli Hospital Trust, Palermo, Italy
| |
Collapse
|
123
|
Petelina TI, Musikhina NA, Avdeeva KS, Shcherbinina AE, Leonovich SV, Zueva EV, Garanina VD, Gultiaeva EP, Yaroslavskaya EI, Kalyuzhnaya EN, Gorbatenko EA, Kapustina AA, Gapon LI. Estimation of erythrocyte parameters of general blood analysis in patients with SARS-CoV-2 -associated pneumonia. Klin Lab Diagn 2022; 67:24-30. [PMID: 35077066 DOI: 10.51620/0869-2084-2022-67-1-24-30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The study of the features and dynamics of the erythrocyte parameters of general blood analysis in patients with cardiovascular diseases who underwent SARS-CoV-2 associated pneumonia is of great practical importance. That was a prospective study. The study included 106 patients with SARS-CoV-2-associated pneumonia. All patients were divided into 2 groups. The first group included 51 patients without CVD, the second group included 55 patients with CVD .Patients in both groups underwent laboratory examination of blood samples at the time of hospitalization and 3 months after discharge from the hospital. Parameters of the erythroid series of the general blood test were assessed. Among inflammatory biomarkers, we examined the concentration of C-reactive protein (CRP), high-sensitivity CRP (hs-CRP) and homocysteine. Initially all patients underwent computed tomography of the chest organs. Revealed what indicators of the erythroid series in the groups of patients with and without CVD had significant differences in a number of parameters: ESR; RDW-SD and RDW-CV with significant excess of parameters in group 2. Three months after discharge from the hospital, patients in both groups had a significant increase in HCT, MCV, MCH. There was detected decrease in both groups in MCHC, RDW-CV (p<0.001 for all parameters), ESR level in group 2.At baseline, CRP exceeded reference values in both groups of patients, reaching maximum values in group 2. After 3 months CRP decreased significantly only in group 1. Increased CRP was associated with elevated hs-CRP in 3 months after discharge and elevated homocysteine levels in both groups, indicating the persistence of prolonged inflammatory vascular reaction in patients after SARS-CoV-2 associated pneumonia, more pronounced in group 2 patients. RDW-CV over 13.6 and lymphocytes / CRP less than 0.6 increase the likelihood of having lung tissue damage over 50% by 9.3 and 5.9 times, respectively. Thus, the data obtained confirm that RDW-CV, the coefficient of variation of erythrocyte distribution width, associated with the parameters of inflammatory response and the lymphocytes / CRP is lung volume marker and of COVID-19 severity. Careful consideration of already known laboratory parameters allows us to expand the number of indicators influencing the risk of COVID-19 complications and enable an earlier response to a difficult situation.
Collapse
Affiliation(s)
- T I Petelina
- Tyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Sciences
| | - N A Musikhina
- Tyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Sciences
| | - K S Avdeeva
- Tyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Sciences
| | - A E Shcherbinina
- Tyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Sciences
| | - S V Leonovich
- Tyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Sciences
| | - E V Zueva
- Tyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Sciences
| | - V D Garanina
- Tyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Sciences
| | - E P Gultiaeva
- Tyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Sciences
| | - E I Yaroslavskaya
- Tyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Sciences
| | - E N Kalyuzhnaya
- Tyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Sciences
| | - E A Gorbatenko
- Tyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Sciences
| | - A A Kapustina
- Tyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Sciences
| | - L I Gapon
- Tyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Sciences
| |
Collapse
|
124
|
O'Connor T, Santaniello S, Javidi B. COVID-19 detection from red blood cells using highly comparative time-series analysis (HCTSA) in digital holographic microscopy. OPTICS EXPRESS 2022; 30:1723-1736. [PMID: 35209327 DOI: 10.1364/oe.442321] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
We present an automated method for COVID-19 screening based on reconstructed phase profiles of red blood cells (RBCs) and a highly comparative time-series analysis (HCTSA). Video digital holographic data -was obtained using a compact, field-portable shearing microscope to capture the temporal fluctuations and spatio-temporal dynamics of live RBCs. After numerical reconstruction of the digital holographic data, the optical volume is calculated at each timeframe of the reconstructed data to produce a time-series signal for each cell in our dataset. Over 6000 features are extracted on the time-varying optical volume sequences using the HCTSA to quantify the spatio-temporal behavior of the RBCs, then a linear support vector machine is used for classification of individual RBCs. Human subjects are then classified for COVID-19 based on the consensus of their cells' classifications. The proposed method is tested on a dataset of 1472 RBCs from 24 human subjects (10 COVID-19 positive, 14 healthy) collected at UConn Health Center. Following a cross-validation procedure, our system achieves 82.13% accuracy, with 92.72% sensitivity, and 73.21% specificity (area under the receiver operating characteristic curve: 0.8357). Furthermore, the proposed system resulted in 21 out of 24 human subjects correctly labeled. To the best of our knowledge this is the first report of a highly comparative time-series analysis using digital holographic microscopy data.
Collapse
|
125
|
Chen X, Zhang S, Gan Y, Liu R, Wang RQ, Du K. Understanding microbeads stacking in deformable Nano-Sieve for Efficient plasma separation and blood cell retrieval. J Colloid Interface Sci 2022; 606:1609-1616. [PMID: 34500162 PMCID: PMC8572169 DOI: 10.1016/j.jcis.2021.08.119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/06/2021] [Accepted: 08/17/2021] [Indexed: 01/17/2023]
Abstract
Efficient separation of blood cells and plasma is key for numerous molecular diagnosis and therapeutics applications. Despite various microfluidics-based separation strategies having been developed, there is still a need for a simple, reliable, and multiplexing separation device that can process a large volume of blood. Here we show a microbead-packed deformable microfluidic system that can efficiently separate highly purified plasma from whole blood, as well as retrieve blocked blood cells from the device. To support and rationalize the experimental validation of the proposed device, a highly accurate model is constructed to help understand the link between the mechanical properties of the microfluidics, flow rate, and microbeads packing/leaking based on the microscope imaging and the optical coherence tomography (OCT) scanning. This deformable nano-sieve device is expected to offer a new solution for centrifuge-free diagnosis and treatment of bloodborne diseases and contribute to the design of next-generation deformable microfluidics for separation applications.
Collapse
Affiliation(s)
- Xinye Chen
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY 14623, United States, Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, NY 14623, United States
| | - Shuhuan Zhang
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY 14623, United States
| | - Yu Gan
- Department of Electrical and Computer Engineering, University of Alabama, Tuscaloosa, AL 35401 United States
| | - Rui Liu
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY 14623, United States
| | - Ruo-Qian Wang
- Department of Civil and Environmental Engineering, Rutgers, The State University of New Jersey, NJ 08854 USA, Corresponding authors ;
| | - Ke Du
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY 14623, United States, Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, NY 14623, United States, Chemistry and Materials Science, Rochester Institute of Technology, Rochester, NY 14623, United States, Corresponding authors ;
| |
Collapse
|
126
|
Plassmeyer M, Alpan O, Corley MJ, Premeaux TA, Lillard K, Coatney P, Vaziri T, Michalsky S, Pang APS, Bukhari Z, Yeung ST, Evering TH, Naughton G, Latterich M, Mudd P, Spada A, Rindone N, Loizou D, Ulrik Sønder S, Ndhlovu LC, Gupta R. Caspases and therapeutic potential of caspase inhibitors in moderate-severe SARS-CoV-2 infection and long COVID. Allergy 2022; 77:118-129. [PMID: 33993490 PMCID: PMC8222863 DOI: 10.1111/all.14907] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND COVID-19 can present with lymphopenia and extraordinary complex multiorgan pathologies that can trigger long-term sequela. AIMS Given that inflammasome products, like caspase-1, play a role in the pathophysiology of a number of co-morbid conditions, we investigated caspases across the spectrum of COVID-19 disease. MATERIALS & METHODS We assessed transcriptional states of multiple caspases and using flow cytometry, the expression of active caspase-1 in blood cells from COVID-19 patients in acute and convalescent stages of disease. Non-COVID-19 subject presenting with various comorbid conditions served as controls. RESULTS Single-cell RNA-seq data of immune cells from COVID-19 patients showed a distinct caspase expression pattern in T cells, neutrophils, dendritic cells, and eosinophils compared with controls. Caspase-1 was upregulated in CD4+ T-cells from hospitalized COVID-19 patients compared with unexposed controls. Post-COVID-19 patients with lingering symptoms (long-haulers) also showed upregulated caspase-1activity in CD4+ T-cells that ex vivo was attenuated with a select pan-caspase inhibitor. We observed elevated caspase-3/7levels in red blood cells from COVID-19 patients compared with controls that was reduced following caspase inhibition. DISCUSSION Our preliminary results suggest an exuberant caspase response in COVID-19 that may facilitate immune-related pathological processes leading to severe outcomes. Further clinical correlations of caspase expression in different stages of COVID-19 will be needed. CONCLUSION Pan-caspase inhibition could emerge as a therapeutic strategy to ameliorate or prevent severe COVID-19.
Collapse
Affiliation(s)
| | | | - Michael J. Corley
- Department of Medicine Division of Infectious Diseases Weill Cornell Medicine New York City NY USA
| | - Thomas A. Premeaux
- Department of Medicine Division of Infectious Diseases Weill Cornell Medicine New York City NY USA
| | | | | | | | | | - Alina P. S. Pang
- Department of Medicine Division of Infectious Diseases Weill Cornell Medicine New York City NY USA
| | - Zaheer Bukhari
- S.U.N.Y. Downstate Health Sciences University Brooklyn NY USA
| | - Stephen T. Yeung
- Department of Medicine Division of Infectious Diseases Weill Cornell Medicine New York City NY USA
| | - Teresa H. Evering
- Department of Medicine Division of Infectious Diseases Weill Cornell Medicine New York City NY USA
| | | | | | - Philip Mudd
- Department of Emergency Medicine Washington University School of Medicine Saint Louis MO USA
| | | | | | | | | | - Lishomwa C. Ndhlovu
- Department of Medicine Division of Infectious Diseases Weill Cornell Medicine New York City NY USA
| | - Raavi Gupta
- S.U.N.Y. Downstate Health Sciences University Brooklyn NY USA
| |
Collapse
|
127
|
Ousaka D, Nishibori M. [A new approach to combat the sepsis including COVID-19 by accelerating detoxification of hemolysis-related DAMPs]. Nihon Yakurigaku Zasshi 2022; 157:422-425. [PMID: 36328552 DOI: 10.1254/fpj.22073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Sepsis is one of the leading cause of death worldwide. Recently, several studies suggested that free-hemoglobin and heme derived from hemolysis are important factors which may be associated with severity of septic patients including COVID-19. In other words, hemolysis-derived products enhance the inflammatory responses as damage-associated molecular patterns (DAMPs) in both intravascular and extravascular space. In addition, hemoglobin has vasoconstrictive activity by depleting nitric oxide, whereas heme or Fe2+ produce reactive oxygen species (ROS) through Fenton reaction leading to tissue injury. At present, we have no therapeutic options against sepsis-related hemolysis in clinical settings, however, there might be two therapeutic strategies in this regard. One is supplemental therapy of depleted scavenging proteins such as haptoglobin and hemopexin, the other is activation of the internal scavenging system including macrophage-CD163 pathway. These novel targets against sepsis are also critical for the next pandemic. In this review, we summarize the current issues regarding sepsis-related hemolysis including COVID-19, as well as for future perspectives.
Collapse
Affiliation(s)
- Daiki Ousaka
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
| | - Masahiro Nishibori
- Translational Research and Drug Development, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
| |
Collapse
|
128
|
Elahi S. Hematopoietic responses to SARS-CoV-2 infection. Cell Mol Life Sci 2022; 79:187. [PMID: 35284964 PMCID: PMC8918078 DOI: 10.1007/s00018-022-04220-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/03/2022] [Accepted: 02/22/2022] [Indexed: 01/09/2023]
Abstract
Under physiological conditions, hematopoietic stem and progenitor cells (HSPCs) in the bone marrow niches are responsible for the highly regulated and interconnected hematopoiesis process. At the same time, they must recognize potential threats and respond promptly to protect the host. A wide spectrum of microbial agents/products and the consequences of infection-induced mediators (e.g. cytokines, chemokines, and growth factors) can have prominent impact on HSPCs. While COVID-19 starts as a respiratory tract infection, it is considered a systemic disease which profoundly alters the hematopoietic system. Lymphopenia, neutrophilia, thrombocytopenia, and stress erythropoiesis are the hallmark of SARS-CoV-2 infection. Moreover, thrombocytopenia and blood hypercoagulability are common among COVID-19 patients with severe disease. Notably, the invasion of erythroid precursors and progenitors by SARS-CoV-2 is a cardinal feature of COVID-19 disease which may in part explain the mechanism underlying hypoxia. These pieces of evidence support the notion of skewed steady-state hematopoiesis to stress hematopoiesis following SARS-CoV-2 infection. The functional consequences of these alterations depend on the magnitude of the effect, which launches a unique hematopoietic response that is associated with increased myeloid at the expense of decreased lymphoid cells. This article reviews some of the key pathways including the infectious and inflammatory processes that control hematopoiesis, followed by a comprehensive review that summarizes the latest evidence and discusses how SARS-CoV-2 infection impacts hematopoiesis.
Collapse
Affiliation(s)
- Shokrollah Elahi
- Faculty of Medicine and Dentistry, School of Dentistry, Division of Foundational Sciences, Department of Oncology, and Li Ka Shing Institute of Virology, University of Alberta, 7020 Katz Group Centre, 11361-87th Ave NW, Edmonton, AB T6G 2E1 Canada
| |
Collapse
|
129
|
Jayasena T, Bustamante S, Poljak A, Sachdev P. Assay of Fatty Acids and Their Role in the Prevention and Treatment of COVID-19. Methods Mol Biol 2022; 2511:213-234. [PMID: 35838963 DOI: 10.1007/978-1-0716-2395-4_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Since the emergence of COVID-19, concerted worldwide efforts have taken place to minimize global spread of the contagion. Its widespread effects have also facilitated evolution of new strains, such as the delta and omicron variants, which emerged toward the end of 2020 and 2021, respectively. While these variants appear to be no more deadly than the previous alpha, beta, and gamma strains, and widespread population vaccinations notwithstanding, greater virulence makes the challenge of minimizing spread even greater. One of the peculiarities of this virus is the extreme heath impacts, with the great majority of individuals minimally affected, even sometimes unaware of infection, while for a small minority, it is deadly or produces diverse long-term effects. Apart from vaccination, another approach has been an attempt to identify treatments, for those individuals for whom the virus represents a threat of particularly severe health impact(s). These treatments include anti-SARS-CoV-2 monoclonal antibodies, anticoagulant therapies, interleukin inhibitors, and anti-viral agents such as remdesivir. Nutritional factors are also under consideration, and a variety of clinical trials are showing promise for the use of specific fatty acids, or related compounds such as fat-soluble steroid vitamin D, to mitigate the more lethal aspects of COVID-19 by modulating inflammation and by anti-viral effects. Here we explore the potential protective role of fatty acids as a potential prophylactic as well as remedial treatment during viral infections, particularly COVID-19. We present a multiplexed method for the analysis of free and phospholipid bound fatty acids, which may facilitate research into the role of fatty acids as plasma biomarkers and therapeutic agents in minimizing pre- and post-infection health impacts.
Collapse
Affiliation(s)
- Tharusha Jayasena
- Centre for Healthy Brain Ageing, University of New South Wales, Sydney, NSW, Australia.
| | - Sonia Bustamante
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW, Australia
| | - Anne Poljak
- Centre for Healthy Brain Ageing, University of New South Wales, Sydney, NSW, Australia
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW, Australia
| | - Perminder Sachdev
- Centre for Healthy Brain Ageing, University of New South Wales, Sydney, NSW, Australia
- Neuropsychiatric Institute, Euroa Centre, Prince of Wales Hospital, Sydney, NSW, Australia
| |
Collapse
|
130
|
Gille T, Sesé L, Aubourg E, Bernaudin JF, Richalet JP, Planès C. Is there a shift of the oxygen-hemoglobin dissociation curve in COVID-19? Am J Physiol Lung Cell Mol Physiol 2022; 322:L174-L175. [PMID: 35015569 PMCID: PMC8759957 DOI: 10.1152/ajplung.00390.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Thomas Gille
- Service de Physiologie et Explorations Fonctionnelles, Hôpital Avicenne, Hôpitaux Universitaires de Paris Seine-Saint-Denis, Assistance Publique - Hôpitaux de Paris, Bobigny, France.,Inserm UMR 1272 "Hypoxie et Poumon," UFR SMBH Léonard de Vinci, Université Sorbonne Paris Nord, Bobigny, France
| | - Lucile Sesé
- Service de Physiologie et Explorations Fonctionnelles, Hôpital Avicenne, Hôpitaux Universitaires de Paris Seine-Saint-Denis, Assistance Publique - Hôpitaux de Paris, Bobigny, France.,Inserm UMR 1272 "Hypoxie et Poumon," UFR SMBH Léonard de Vinci, Université Sorbonne Paris Nord, Bobigny, France
| | - Eric Aubourg
- Centre National de la Recherche Scientifique, CEA, Astroparticule et Cosmologie, Université de Paris, Paris, France
| | - Jean-François Bernaudin
- Inserm UMR 1272 "Hypoxie et Poumon," UFR SMBH Léonard de Vinci, Université Sorbonne Paris Nord, Bobigny, France.,Faculté de Médecine, Sorbonne Université, Paris, France
| | - Jean-Paul Richalet
- Inserm UMR 1272 "Hypoxie et Poumon," UFR SMBH Léonard de Vinci, Université Sorbonne Paris Nord, Bobigny, France
| | - Carole Planès
- Service de Physiologie et Explorations Fonctionnelles, Hôpital Avicenne, Hôpitaux Universitaires de Paris Seine-Saint-Denis, Assistance Publique - Hôpitaux de Paris, Bobigny, France.,Inserm UMR 1272 "Hypoxie et Poumon," UFR SMBH Léonard de Vinci, Université Sorbonne Paris Nord, Bobigny, France
| |
Collapse
|
131
|
Erythrocytes increase endogenous sphingosine 1-phosphate levels as an adaptive response to SARS-CoV-2 infection. Clin Sci (Lond) 2021; 135:2781-2791. [PMID: 34878105 PMCID: PMC8696489 DOI: 10.1042/cs20210666] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/16/2021] [Accepted: 12/08/2021] [Indexed: 12/23/2022]
Abstract
Low plasma levels of the signaling lipid metabolite sphingosine 1-phosphate (S1P) are associated with disrupted endothelial cell (EC) barriers, lymphopenia and reduced responsivity to hypoxia. Total S1P levels were also reduced in 23 critically ill patients with coronavirus disease 2019 (COVID-19), and the two main S1P carriers, serum albumin (SA) and high-density lipoprotein (HDL) were dramatically low. Surprisingly, we observed a carrier-changing shift from SA to HDL, which probably prevented an even further drop in S1P levels. Furthermore, intracellular S1P levels in red blood cells (RBCs) were significantly increased in COVID-19 patients compared with healthy controls due to up-regulation of S1P producing sphingosine kinase 1 and down-regulation of S1P degrading lyase expression. Cell culture experiments supported increased sphingosine kinase activity and unchanged S1P release from RBC stores of COVID-19 patients. These observations suggest adaptive mechanisms for maintenance of the vasculature and immunity as well as prevention of tissue hypoxia in COVID-19 patients.
Collapse
|
132
|
Vilskersts R, Kigitovica D, Korzh S, Videja M, Vilks K, Cirule H, Skride A, Makrecka-Kuka M, Liepinsh E, Dambrova M. Protective Effects of Meldonium in Experimental Models of Cardiovascular Complications with a Potential Application in COVID-19. Int J Mol Sci 2021; 23:45. [PMID: 35008470 PMCID: PMC8744985 DOI: 10.3390/ijms23010045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/18/2022] Open
Abstract
Right ventricular (RV) and left ventricular (LV) dysfunction is common in a significant number of hospitalized coronavirus disease 2019 (COVID-19) patients. This study was conducted to assess whether the improved mitochondrial bioenergetics by cardiometabolic drug meldonium can attenuate the development of ventricular dysfunction in experimental RV and LV dysfunction models, which resemble ventricular dysfunction in COVID-19 patients. Effects of meldonium were assessed in rats with pulmonary hypertension-induced RV failure and in mice with inflammation-induced LV dysfunction. Rats with RV failure showed decreased RV fractional area change (RVFAC) and hypertrophy. Treatment with meldonium attenuated the development of RV hypertrophy and increased RVFAC by 50%. Mice with inflammation-induced LV dysfunction had decreased LV ejection fraction (LVEF) by 30%. Treatment with meldonium prevented the decrease in LVEF. A decrease in the mitochondrial fatty acid oxidation with a concomitant increase in pyruvate metabolism was noted in the cardiac fibers of the rats and mice with RV and LV failure, respectively. Meldonium treatment in both models restored mitochondrial bioenergetics. The results show that meldonium treatment prevents the development of RV and LV systolic dysfunction by enhancing mitochondrial function in experimental models of ventricular dysfunction that resembles cardiovascular complications in COVID-19 patients.
Collapse
Affiliation(s)
- Reinis Vilskersts
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (S.K.); (M.V.); (K.V.); (H.C.); (M.M.-K.); (E.L.); (M.D.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Rigas Stradins University, LV-1007 Riga, Latvia
| | - Dana Kigitovica
- Department of Internal Diseases, Faculty of Medicine, Rigas Stradins University, LV-1007 Riga, Latvia; (D.K.); (A.S.)
- Department of Nephrology, Pauls Stradins Clinical University Hospital, LV-1012 Riga, Latvia
| | - Stanislava Korzh
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (S.K.); (M.V.); (K.V.); (H.C.); (M.M.-K.); (E.L.); (M.D.)
| | - Melita Videja
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (S.K.); (M.V.); (K.V.); (H.C.); (M.M.-K.); (E.L.); (M.D.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Rigas Stradins University, LV-1007 Riga, Latvia
| | - Karlis Vilks
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (S.K.); (M.V.); (K.V.); (H.C.); (M.M.-K.); (E.L.); (M.D.)
- Department of Molecular Biology, Faculty of Biology, University of Latvia, LV-1050 Riga, Latvia
| | - Helena Cirule
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (S.K.); (M.V.); (K.V.); (H.C.); (M.M.-K.); (E.L.); (M.D.)
| | - Andris Skride
- Department of Internal Diseases, Faculty of Medicine, Rigas Stradins University, LV-1007 Riga, Latvia; (D.K.); (A.S.)
- Department of Rare Diseases, Pauls Stradins Clinical University Hospital, LV-1012 Riga, Latvia
| | - Marina Makrecka-Kuka
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (S.K.); (M.V.); (K.V.); (H.C.); (M.M.-K.); (E.L.); (M.D.)
| | - Edgars Liepinsh
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (S.K.); (M.V.); (K.V.); (H.C.); (M.M.-K.); (E.L.); (M.D.)
| | - Maija Dambrova
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (S.K.); (M.V.); (K.V.); (H.C.); (M.M.-K.); (E.L.); (M.D.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Rigas Stradins University, LV-1007 Riga, Latvia
| |
Collapse
|
133
|
Angiotensin System Modulations in Spontaneously Hypertensive Rats and Consequences on Erythrocyte Properties; Action of MLN-4760 and Zofenopril. Biomedicines 2021; 9:biomedicines9121902. [PMID: 34944718 PMCID: PMC8698991 DOI: 10.3390/biomedicines9121902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023] Open
Abstract
Various pathologies (COVID-19 including) are associated with abnormalities in erythrocyte properties. Hypertension represents an unfavorable condition for erythrocyte quality and is the most prevalent risk factor in COVID-19 patients. ACE2 downregulation that is typical of these patients can further deteriorate cardiovascular health; however, its consequences on erythrocyte properties are not known yet. The aim was to investigate the effect of ACE2 inhibition and the potential beneficial effect of zofenopril on erythrocytes in spontaneously hypertensive rats. ACE2 inhibition induced by MLN-4760 (1 mg/kg/day for 2 weeks) led to deterioration of erythrocyte morphology and osmotic resistance, but plasma markers of oxidative stress, erythrocyte deformability, nitric oxide production and Na,K-ATPase activity were not significantly affected. Zofenopril administration (10 mg/kg/day, initiated after 4-day-lasting ACE2 inhibition) resulted in unexpected increase in angiotensin II plasma levels in both control and ACE-inhibited spontaneously hypertensive rats, but in normalization of osmotic resistance in ACE2-inhibited rats. The overall effect of zofenopril on erythrocyte qualities could be evaluated as beneficial.
Collapse
|
134
|
Li CX, Gao J, Zhang Z, Chen L, Li X, Zhou M, Wheelock ÅM. Multiomics integration-based molecular characterizations of COVID-19. Brief Bioinform 2021; 23:6447675. [PMID: 34864875 PMCID: PMC8769889 DOI: 10.1093/bib/bbab485] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/04/2021] [Accepted: 10/23/2021] [Indexed: 01/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), rapidly became a global health challenge, leading to unprecedented social and economic consequences. The mechanisms behind the pathogenesis of SARS-CoV-2 are both unique and complex. Omics-scale studies are emerging rapidly and offer a tremendous potential to unravel the puzzle of SARS-CoV-2 pathobiology, as well as moving forward with diagnostics, potential drug targets, risk stratification, therapeutic responses, vaccine development and therapeutic innovation. This review summarizes various aspects of understanding multiomics integration-based molecular characterizations of COVID-19, which to date include the integration of transcriptomics, proteomics, genomics, lipidomics, immunomics and metabolomics to explore virus targets and developing suitable therapeutic solutions through systems biology tools. Furthermore, this review also covers an abridgment of omics investigations related to disease pathogenesis and virulence, the role of host genetic variation and a broad array of immune and inflammatory phenotypes contributing to understanding COVID-19 traits. Insights into this review, which combines existing strategies and multiomics integration profiling, may help further advance our knowledge of COVID-19.
Collapse
Affiliation(s)
- Chuan-Xing Li
- Respiratory Medicine Unit, Department of Medicine & Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,The First Hospital of Lanzhou University, Lanzhou, China
| | - Jing Gao
- Respiratory Medicine Unit, Department of Medicine & Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Heart and Lung Centre, Department of Pulmonary Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Zicheng Zhang
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Lu Chen
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xun Li
- The First Hospital of Lanzhou University, Lanzhou, China.,The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Meng Zhou
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Åsa M Wheelock
- Respiratory Medicine Unit, Department of Medicine & Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
135
|
S SN, Saha S, Bhattacharjee A. A 2D FSI mathematical model of blood flow to analyze the hyper-viscous effects in atherosclerotic COVID patients. RESULTS IN ENGINEERING 2021; 12:100275. [PMID: 35317220 PMCID: PMC8382661 DOI: 10.1016/j.rineng.2021.100275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/21/2021] [Accepted: 08/22/2021] [Indexed: 06/14/2023]
Abstract
Recent researches on COVID 19 has been extended to analyze the various morphological and anatomical changes in a patient's body due to the invasion of the virus. These latest studies have concluded that there happens a high rise in the viscosity of the blood in a COVID 19 patient, supported by the extensive analysis of the clinical data. In the present paper, a mathematical model in the form of a differential equation system has been proposed to disclose the various changes that occur in the flow across the stenosis of an arterial segment. The consequences of the hyperviscosity of blood on the blood flow characteristics in a stenosed artery are analyzed by solving the model using a finite element method (FEM) solver. A laminar flow coupled with solid mechanics through the Fluid-Structure Interaction (FSI) interface has been studied using an Arbitrary Lagrangian-Eulerian (ALE) method. For the first time, the mathematical model was used to analyze the hyper-viscous flow condition in COVID 19 patients. The present research is mainly based on the numerous clinical reports enlisting the various morphological, hematological, and rheological changes in the blood.
Collapse
Affiliation(s)
- Shankar Narayan S
- CMR Institute of Technology, Bengaluru, 560037, India
- Dayananda Sagar University, Bengaluru, 560068, India
| | - Sunanda Saha
- Vellore Institute of Technology, Vellore, 632014, India
| | | |
Collapse
|
136
|
Pascual-Guàrdia S, Ferrer A, Díaz Ó, Caguana AO, Tejedor E, Bellido-Calduch S, Rodríguez-Chiaradia DA, Gea J. Absence of relevant clinical effects of SARS-COV-2 on the affinity of hemoglobin for O 2 in patients with COVID-19. Arch Bronconeumol 2021; 57:757-763. [PMID: 34720331 PMCID: PMC8536567 DOI: 10.1016/j.arbr.2021.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 03/17/2021] [Indexed: 12/14/2022]
Abstract
Pulmonary involvement in COVID-19 is frequently associated with alterations in oxygenation. The arterial partial pressure of oxygen (PaO2) is the most clinically used variable to assess such oxygenation, since it decisively influences the oxygen transported by hemoglobin (expressed by its percentage of saturation, SaO2). However, two recent studies conducted respectively in silico and using omic techniques in red blood cells of COVID-19 patients have suggested that SARS-CoV-2 could decrease the affinity of oxygen for the hemoglobin (which would imply that PaO2 would overestimate SaO2), and also reduce the amount of this carrier molecule. OBJECTIVE To evaluate this hypothesis in blood samples from COVID-19 patients. METHODS Blood gases of all COVID-19 patients performed in our laboratory in two months were included, as well as those from two control groups: synchronous patients with negative PCR for SARS-CoV-2 (SCG) and a historical group (HCG). Both SaO2 and venous saturations (SvO2) measured by cooximetry (COX) were compared separately with those calculated using the Kelman (K), Severinghaus (SV) and Siggaard-Andersen (SA) equations in each group. RESULTS Measured and calculated SaO2 and SvO2 were practically equivalent in all groups. Intraclass correlation coefficients (ICC) for SaO2 in COVID-19 were 0.993 for COX-K and 0.992 for both COX-SV and COX-SA; being 0.995 for SvO2 for either COX-K, COX-SV or COX-SA. Hemoglobin and ferritin were slightly higher in COVID-19 compared to SCG and HCG (hemoglobin, p < 0.001 for both; ferritin, p < 0.05 for SCG and p < 0.001 for HCG). CONCLUSION Under clinical conditions SARS-CoV-2 does not have an appreciable influence on the affinity of oxygen for the hemoglobin, nor on the levels of this carrier molecule. Therefore, PaO2 is a good marker of blood oxygenation also in COVID-19.
Collapse
Affiliation(s)
- Sergi Pascual-Guàrdia
- Servicio de Neumología, Hospital del Mar-IMIM, DCEXS, Universitat Pompeu Fabra, CIBERES, ISCIII, BRN, Barcelona, Spain
| | - Antoni Ferrer
- Servicio de Neumología, Hospital del Mar-IMIM, DCEXS, Universitat Pompeu Fabra, CIBERES, ISCIII, BRN, Barcelona, Spain
| | - Óscar Díaz
- Laboratorio de Referencia de Cataluña, El Prat de Llobregat, Spain
| | - Antonio O Caguana
- Servicio de Neumología, Hospital del Mar-IMIM, DCEXS, Universitat Pompeu Fabra, CIBERES, ISCIII, BRN, Barcelona, Spain
| | - Elvira Tejedor
- Laboratorio de Referencia de Cataluña, El Prat de Llobregat, Spain
| | - Salomé Bellido-Calduch
- Servicio de Neumología, Hospital del Mar-IMIM, DCEXS, Universitat Pompeu Fabra, CIBERES, ISCIII, BRN, Barcelona, Spain
| | - Diego A Rodríguez-Chiaradia
- Servicio de Neumología, Hospital del Mar-IMIM, DCEXS, Universitat Pompeu Fabra, CIBERES, ISCIII, BRN, Barcelona, Spain
| | - Joaquim Gea
- Servicio de Neumología, Hospital del Mar-IMIM, DCEXS, Universitat Pompeu Fabra, CIBERES, ISCIII, BRN, Barcelona, Spain
| |
Collapse
|
137
|
McMahon TJ, Darrow CC, Hoehn BA, Zhu H. Generation and Export of Red Blood Cell ATP in Health and Disease. Front Physiol 2021; 12:754638. [PMID: 34803737 PMCID: PMC8602689 DOI: 10.3389/fphys.2021.754638] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/05/2021] [Indexed: 12/16/2022] Open
Abstract
Metabolic homeostasis in animals depends critically on evolved mechanisms by which red blood cell (RBC) hemoglobin (Hb) senses oxygen (O2) need and responds accordingly. The entwined regulation of ATP production and antioxidant systems within the RBC also exploits Hb-based O2-sensitivity to respond to various physiologic and pathophysiologic stresses. O2 offloading, for example, promotes glycolysis in order to generate both 2,3-DPG (a negative allosteric effector of Hb O2 binding) and ATP. Alternatively, generation of the nicotinamide adenine dinucleotide phosphate (NADPH) critical for reducing systems is favored under the oxidizing conditions of O2 abundance. Dynamic control of ATP not only ensures the functional activity of ion pumps and cellular flexibility, but also contributes to the availability of vasoregulatory ATP that can be exported when necessary, for example in hypoxia or upon RBC deformation in microvessels. RBC ATP export in response to hypoxia or deformation dilates blood vessels in order to promote efficient O2 delivery. The ability of RBCs to adapt to the metabolic environment via differential control of these metabolites is impaired in the face of enzymopathies [pyruvate kinase deficiency; glucose-6-phosphate dehydrogenase (G6PD) deficiency], blood banking, diabetes mellitus, COVID-19 or sepsis, and sickle cell disease. The emerging availability of therapies capable of augmenting RBC ATP, including newly established uses of allosteric effectors and metabolite-specific additive solutions for RBC transfusates, raises the prospect of clinical interventions to optimize or correct RBC function via these metabolite delivery mechanisms.
Collapse
Affiliation(s)
- Timothy J McMahon
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Durham VA and Duke University Medical Centers, Durham, NC, United States
| | - Cole C Darrow
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Durham VA and Duke University Medical Centers, Durham, NC, United States
| | - Brooke A Hoehn
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Durham VA and Duke University Medical Centers, Durham, NC, United States
| | - Hongmei Zhu
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Durham VA and Duke University Medical Centers, Durham, NC, United States
| |
Collapse
|
138
|
Himbert S, Qadri SM, Sheffield WP, Schubert P, D’Alessandro A, Rheinstädter MC. Blood bank storage of red blood cells increases RBC cytoplasmic membrane order and bending rigidity. PLoS One 2021; 16:e0259267. [PMID: 34767588 PMCID: PMC8589153 DOI: 10.1371/journal.pone.0259267] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/17/2021] [Indexed: 12/05/2022] Open
Abstract
Blood banks around the world store blood components for several weeks ensuring its availability for transfusion medicine. Red blood cells (RBCs) are known to undergo compositional changes during storage, which may impact the cells' function and eventually the recipients' health. We extracted the RBC's cytoplasmic membrane (RBCcm) to study the effect of storage on the membranes' molecular structure and bending rigidity by a combination of X-ray diffraction (XRD), X-ray diffuse scattering (XDS) and coarse grained Molecular Dynamics (MD) simulations. Blood was stored in commercial blood bags for 2 and 5 weeks, respectively and compared to freshly drawn blood. Using mass spectrometry, we measured an increase of fatty acids together with a slight shift towards shorter tail lengths. We observe an increased fraction (6%) of liquid ordered (lo) domains in the RBCcms with storage time, and an increased lipid packing in these domains, leading to an increased membrane thickness and membrane order. The size of both, lo and liquid disordered (ld) lipid domains was found to decrease with increased storage time by up to 25%. XDS experiments reveal a storage dependent increase in the RBCcm's bending modulus κ by a factor of 2.8, from 1.9 kBT to 5.3 kBT. MD simulations were conducted in the absence of proteins. The results show that the membrane composition has a small contribution to the increased bending rigidity and suggests additional protein-driven mechanisms.
Collapse
Affiliation(s)
- Sebastian Himbert
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, Canada
- Origins Institute, McMaster University, Hamilton, ON, Canada
| | - Syed M. Qadri
- Faculty of Health Sciences, Ontario Tech University, Oshawa, ON, Canada
| | - William P. Sheffield
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Centre for Innovation, Canadian Blood Services, Hamilton, ON, Canada
| | - Peter Schubert
- Centre for Innovation, Canadian Blood Services, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - Angelo D’Alessandro
- University of Colorado Denver-Anschutz Medical Campus, Aurora, CO, United States of America
| | - Maikel C. Rheinstädter
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, Canada
- Origins Institute, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
139
|
Alayash AI. The Impact of COVID-19 Infection on Oxygen Homeostasis: A Molecular Perspective. Front Physiol 2021; 12:711976. [PMID: 34690793 PMCID: PMC8532809 DOI: 10.3389/fphys.2021.711976] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/27/2021] [Indexed: 12/14/2022] Open
Abstract
The novel coronavirus (2019-nCoV/SARS-CoV-2) causes respiratory symptoms including a substantial pulmonary dysfunction with worsening arterial hypoxemia (low blood oxygenation), eventually leading to acute respiratory distress syndrome (ARDS). The impact of the viral infection on blood oxygenation and other elements of oxygen homeostasis, such as oxygen sensing and respiratory mitochondrial mechanisms, are not well understood. As a step toward understanding these mechanisms in the context of COVID-19, recent experiments revealed contradictory data on the impact of COVID-19 infection on red blood cells (RBCs) oxygenation parameters. However, structural protein damage and membrane lipid remodeling in RBCs from COVID-19 patients that may impact RBC function have been reported. Moreover, COVID-19 infection could potentially disrupt one, if not all, of the other major pathways of homeostasis. Understanding the nature of the crosstalk among normal homeostatic pathways; oxygen carrying, oxygen sensing (i.e., hypoxia inducible factor, HIF) proteins, and the mitochondrial respiratory machinery may provide a target for therapeutic interventions.
Collapse
Affiliation(s)
- Abdu I Alayash
- Division of Blood and Devices (DBCD), United States Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
140
|
Khodadoust MM. Inferring a causal relationship between ceramide levels and COVID-19 respiratory distress. Sci Rep 2021; 11:20866. [PMID: 34675292 PMCID: PMC8531370 DOI: 10.1038/s41598-021-00286-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/07/2021] [Indexed: 12/17/2022] Open
Abstract
A causal relationship between plasma ceramide concentration and respiratory distress symptoms in COVID-19 patients is inferred. In this study, plasma samples of 52 individuals infected with COVID-19 were utilized in a lipidomic analysis. Lipids belonging to the ceramide class exhibited a 400-fold increase in total plasma concentration in infected patients. Further analysis led to the demonstration of concentration dependency for severe COVID-19 respiratory symptoms in a subclass of ceramides. The subclasses Cer(d18:0/24:1), Cer(d18:1/24:1), and Cer(d18:1/22:0) were shown to be increased by 48-, 40-, and 33-fold, respectively, in infected plasma samples and to 116-, 91- and 50-fold, respectively, in plasma samples with respiratory distress. Hence, monitoring plasma ceramide concentration, can be a valuable tool for measuring effects of therapies on COVID-19 respiratory distress patients.
Collapse
|
141
|
Palladino M. Complete blood count alterations in COVID-19 patients: A narrative review. Biochem Med (Zagreb) 2021; 31:030501. [PMID: 34658642 PMCID: PMC8495616 DOI: 10.11613/bm.2021.030501] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/22/2021] [Indexed: 12/14/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) pandemic represents a scientific and social crisis. One of the main unmet needs for coronavirus disease 2019 is its unpredictable clinical course, which can rapidly change in an irreversible outcome. COVID-19 patients can be classified into mild, moderate, and severe. Several haematological parameters, such as platelets, white blood cell total count, lymphocytes, neutrophils, (together with neutrophil-lymphocyte and platelet-lymphocyte ratio), and haemoglobin were described to be associated with COVID-19 infection and severity. The purpose of these review is to describe the current state of the art about complete blood count alterations during COVID-19 infection, and to summarize the crucial role of some haematological parameters during the course of the disease. Decreased platelet, lymphocyte, haemoglobin, eosinophil, and basophil count, increased neutrophil count and neutrophil-lymphocyte and platelet-lymphocyte ratio have been associated with COVID-19 infection and a worse clinical outcome. Our study adds some novelty about the identification of effective biomarkers of progressive disease, and might be helpful for diagnosis, prevention of complications, and effective therapy.
Collapse
|
142
|
Gagliardi S, Poloni ET, Pandini C, Garofalo M, Dragoni F, Medici V, Davin A, Visonà SD, Moretti M, Sproviero D, Pansarasa O, Guaita A, Ceroni M, Tronconi L, Cereda C. Detection of SARS-CoV-2 genome and whole transcriptome sequencing in frontal cortex of COVID-19 patients. Brain Behav Immun 2021; 97:13-21. [PMID: 34022369 PMCID: PMC8132498 DOI: 10.1016/j.bbi.2021.05.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/30/2021] [Accepted: 05/14/2021] [Indexed: 12/15/2022] Open
Abstract
SARS-Cov-2 infection is frequently associated with Nervous System manifestations. However, it is not clear how SARS-CoV-2 can cause neurological dysfunctions and which molecular processes are affected in the brain. In this work, we examined the frontal cortex tissue of patients who died of COVID-19 for the presence of SARS-CoV-2, comparing qRT-PCR with ddPCR. We also investigated the transcriptomic profile of frontal cortex from COVID-19 patients and matched controls by RNA-seq analysis to characterize the transcriptional signature. Our data showed that SARS-CoV-2 could be detected by ddPCR in 8 (88%) of 9 examined samples while by qRT-PCR in one case only (11%). Transcriptomic analysis revealed that 11 genes (10 mRNAs and 1 lncRNA) were differential expressed when frontal cortex of COVID-19 patients were compared to controls. These genes fall into categories including hypoxia, hemoglobin-stabilizing protein, hydrogen peroxide processes. This work demonstrated that the quantity of viral RNA in frontal cortex is minimal and it can be detected only with a very sensitive method (ddPCR). Thus, it is likely that SARS-CoV-2 does not actively infect and replicate in the brain; its topography within encephalic structures remains uncertain. Moreover, COVID-19 may have a role on brain gene expression, since we observed an important downregulation of genes associated to hypoxia inducting factor system (HIF) that may inhibit the capacity of defense system during infection and oxigen deprivation, showing that hypoxia, well known multi organ condition associated to COVID-19, also marked the brain.
Collapse
Affiliation(s)
- Stella Gagliardi
- Genomic and Post Genomic Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Emanuele Tino Poloni
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation & ASP Golgi-Redaelli, Abbiategrasso, Milano, Italy
| | - Cecilia Pandini
- Genomic and Post Genomic Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Maria Garofalo
- Genomic and Post Genomic Unit, IRCCS Mondino Foundation, Pavia, Italy; Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Francesca Dragoni
- Genomic and Post Genomic Unit, IRCCS Mondino Foundation, Pavia, Italy; Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Valentina Medici
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation & ASP Golgi-Redaelli, Abbiategrasso, Milano, Italy
| | - Annalisa Davin
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation & ASP Golgi-Redaelli, Abbiategrasso, Milano, Italy
| | - Silvia Damiana Visonà
- Department of Public Health, Experimental and Forensic Medicine, Unit of Legal Medicine and Forensic Sciences "A. Fornari", University of Pavia, Pavia, Italy
| | - Matteo Moretti
- Department of Public Health, Experimental and Forensic Medicine, Unit of Legal Medicine and Forensic Sciences "A. Fornari", University of Pavia, Pavia, Italy
| | - Daisy Sproviero
- Genomic and Post Genomic Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Orietta Pansarasa
- Genomic and Post Genomic Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Antonio Guaita
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation & ASP Golgi-Redaelli, Abbiategrasso, Milano, Italy
| | - Mauro Ceroni
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; Department of General Neurology, IRCCS Mondino Foundation, Pavia, Italy
| | - Livio Tronconi
- Department of Public Health, Experimental and Forensic Medicine, Unit of Legal Medicine and Forensic Sciences "A. Fornari", University of Pavia, Pavia, Italy; U.O. Medicina Legale, IRCCS Mondino Foundation, Pavia, Italy
| | - Cristina Cereda
- Director of Newborn Screening and Metabolic Diseases, University Children's Hospital V. Buzzi, Milan, Italy.
| |
Collapse
|
143
|
Hao Y, Zhang Z, Feng G, Chen M, Wan Q, Lin J, Wu L, Nie W, Chen S. Distinct lipid metabolic dysregulation in asymptomatic COVID-19. iScience 2021; 24:102974. [PMID: 34396083 PMCID: PMC8356725 DOI: 10.1016/j.isci.2021.102974] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/31/2021] [Accepted: 08/08/2021] [Indexed: 12/15/2022] Open
Abstract
Asymptomatic infection is a big challenge in curbing the spread of COVID-19. However, its identification and pathogenesis elucidation remain issues. Here, by performing comprehensive lipidomic characterization of serum samples from 89 asymptomatic COVID-19 patients and 178 healthy controls, we screened out a panel of 15 key lipids that could accurately identify asymptomatic patients using a new ensemble learning model based on stacking strategy with a voting algorithm. This strategy provided a high accuracy of 96.0% with only 3.6% false positive rate and 4.8% false negative rate. More importantly, the unique lipid metabolic dysregulation was revealed, especially the enhanced synthesis of membrane phospholipids, altered sphingolipids homeostasis, and differential fatty acids metabolic pattern, implicating the specific host immune, inflammatory, and antiviral responses in asymptomatic COVID-19. This study provides a potential prediagnostic method for asymptomatic COVID-19 and molecular clues for the pathogenesis and therapy of this disease.
Collapse
Affiliation(s)
- Yanhong Hao
- Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Zheng Zhang
- School of Life Sciences, Central China Normal University, Wuhan, Hubei 430072, China
| | - Guifang Feng
- Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Moran Chen
- Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Qiongqiong Wan
- Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Jie Lin
- Community Health Service Center of Shuiguohu Street, Wuhan, Hubei 430071, China
| | - Liang Wu
- Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Wenjing Nie
- Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Suming Chen
- Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
144
|
Maheshwari A, Priya G, Bajpai M. Isolated erythrocytosis: A consequence of COVID-19 induced hypoxia. Int J Lab Hematol 2021; 44:e44-e45. [PMID: 34523804 PMCID: PMC8652857 DOI: 10.1111/ijlh.13699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/14/2021] [Accepted: 08/27/2021] [Indexed: 12/05/2022]
Affiliation(s)
- Ashish Maheshwari
- Department of Transfusion Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Guru Priya
- Department of Transfusion Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Meenu Bajpai
- Department of Transfusion Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| |
Collapse
|
145
|
Industrially Compatible Transfusable iPSC-Derived RBCs: Progress, Challenges and Prospective Solutions. Int J Mol Sci 2021; 22:ijms22189808. [PMID: 34575977 PMCID: PMC8472628 DOI: 10.3390/ijms22189808] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 02/06/2023] Open
Abstract
Amidst the global shortfalls in blood supply, storage limitations of donor blood and the availability of potential blood substitutes for transfusion applications, society has pivoted towards in vitro generation of red blood cells (RBCs) as a means to solve these issues. Many conventional research studies over the past few decades have found success in differentiating hematopoietic stem and progenitor cells (HSPCs) from cord blood, adult bone marrow and peripheral blood sources. More recently, techniques that involve immortalization of erythroblast sources have also gained traction in tackling this problem. However, the RBCs generated from human induced pluripotent stem cells (hiPSCs) still remain as the most favorable solution due to many of its added advantages. In this review, we focus on the breakthroughs for high-density cultures of hiPSC-derived RBCs, and highlight the major challenges and prospective solutions throughout the whole process of erythropoiesis for hiPSC-derived RBCs. Furthermore, we elaborate on the recent advances and techniques used to achieve cost-effective, high-density cultures of GMP-compliant RBCs, and on their relevant novel applications after downstream processing and purification.
Collapse
|
146
|
Lee WS, Yousefi M, Yan B, Yong CL, Ooi YS. Know your enemy and know yourself - the case of SARS-CoV-2 host factors. Curr Opin Virol 2021; 50:159-170. [PMID: 34488003 PMCID: PMC8379091 DOI: 10.1016/j.coviro.2021.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/10/2021] [Accepted: 08/14/2021] [Indexed: 02/06/2023]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the etiologic agent that causes Coronavirus Disease 2019 (COVID-19) pandemic, is a newly emerging respiratory RNA virus with exceptional transmissibility and pathogenicity. Numerous COVID-19 related studies have been fast-tracked, with the ultimate goal to end the pandemic. Here we review the major stages of SARS-CoV-2 infection cycle in cells, with specific emphasis on essential host factors. Insights into the cell biology of SARS-CoV-2 infection have accelerated the development of host-directed therapeutics, as shown by dozens of clinical trials evaluating COVID-19 treatments using host-targeting compounds.
Collapse
Affiliation(s)
- Wai Suet Lee
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Meisam Yousefi
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Biaoguo Yan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Cythia Lingli Yong
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Yaw Shin Ooi
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore.
| |
Collapse
|
147
|
D’Alessandro A, Thomas T, Akpan IJ, Reisz JA, Cendali FI, Gamboni F, Nemkov T, Thangaraju K, Katneni U, Tanaka K, Kahn S, Wei AZ, Valk JE, Hudson KE, Roh D, Moriconi C, Zimring JC, Hod EA, Spitalnik SL, Buehler PW, Francis RO. Biological and Clinical Factors Contributing to the Metabolic Heterogeneity of Hospitalized Patients with and without COVID-19. Cells 2021; 10:2293. [PMID: 34571942 PMCID: PMC8467961 DOI: 10.3390/cells10092293] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 12/26/2022] Open
Abstract
The Corona Virus Disease 2019 (COVID-19) pandemic represents an ongoing worldwide challenge. The present large study sought to understand independent and overlapping metabolic features of samples from acutely ill patients (n = 831) that tested positive (n = 543) or negative (n = 288) for COVID-19. High-throughput metabolomics analyses were complemented with antigen and enzymatic activity assays on plasma from acutely ill patients collected while in the emergency department, at admission, or during hospitalization. Lipidomics analyses were also performed on COVID-19-positive or -negative subjects with the lowest and highest body mass index (n = 60/group). Significant changes in amino acid and fatty acid/acylcarnitine metabolism emerged as highly relevant markers of disease severity, progression, and prognosis as a function of biological and clinical variables in these patients. Further, machine learning models were trained by entering all metabolomics and clinical data from half of the COVID-19 patient cohort and then tested on the other half, yielding ~78% prediction accuracy. Finally, the extensive amount of information accumulated in this large, prospective, observational study provides a foundation for mechanistic follow-up studies and data sharing opportunities, which will advance our understanding of the characteristics of the plasma metabolism in COVID-19 and other acute critical illnesses.
Collapse
Affiliation(s)
- Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, USA; (J.A.R.); (F.I.C.); (F.G.); (T.N.)
| | - Tiffany Thomas
- Department of Pathology & Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; (T.T.); (J.E.V.); (K.E.H.); (C.M.); (E.A.H.); (S.L.S.); (R.O.F.)
| | - Imo J. Akpan
- Division of Hematology/Oncology, Department of Medicine, Irving Medical Center, Columbia University, New York, NY 10032, USA; (I.J.A.); (S.K.); (A.Z.W.)
| | - Julie A. Reisz
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, USA; (J.A.R.); (F.I.C.); (F.G.); (T.N.)
| | - Francesca I. Cendali
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, USA; (J.A.R.); (F.I.C.); (F.G.); (T.N.)
| | - Fabia Gamboni
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, USA; (J.A.R.); (F.I.C.); (F.G.); (T.N.)
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, USA; (J.A.R.); (F.I.C.); (F.G.); (T.N.)
| | - Kiruphagaran Thangaraju
- Center for Blood Oxygen Transport, Department of Pathology, Department of Pediatrics, University of Maryland, Baltimore, MD 21201, USA; (K.T.); (U.K.); (P.W.B.)
| | - Upendra Katneni
- Center for Blood Oxygen Transport, Department of Pathology, Department of Pediatrics, University of Maryland, Baltimore, MD 21201, USA; (K.T.); (U.K.); (P.W.B.)
| | - Kenichi Tanaka
- Department of Anesthesiology, University of Maryland, Baltimore, MD 21201, USA;
- Department of Anesthesiology, University of Oklahoma College of Medicine, Oklahoma City, OK 73126-0901, USA
| | - Stacie Kahn
- Division of Hematology/Oncology, Department of Medicine, Irving Medical Center, Columbia University, New York, NY 10032, USA; (I.J.A.); (S.K.); (A.Z.W.)
| | - Alexander Z. Wei
- Division of Hematology/Oncology, Department of Medicine, Irving Medical Center, Columbia University, New York, NY 10032, USA; (I.J.A.); (S.K.); (A.Z.W.)
| | - Jacob E. Valk
- Department of Pathology & Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; (T.T.); (J.E.V.); (K.E.H.); (C.M.); (E.A.H.); (S.L.S.); (R.O.F.)
| | - Krystalyn E. Hudson
- Department of Pathology & Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; (T.T.); (J.E.V.); (K.E.H.); (C.M.); (E.A.H.); (S.L.S.); (R.O.F.)
| | - David Roh
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA;
| | - Chiara Moriconi
- Department of Pathology & Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; (T.T.); (J.E.V.); (K.E.H.); (C.M.); (E.A.H.); (S.L.S.); (R.O.F.)
| | - James C. Zimring
- Department of Pathology, University of Virginia, Charlottesville, VA 22903, USA;
| | - Eldad A. Hod
- Department of Pathology & Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; (T.T.); (J.E.V.); (K.E.H.); (C.M.); (E.A.H.); (S.L.S.); (R.O.F.)
| | - Steven L. Spitalnik
- Department of Pathology & Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; (T.T.); (J.E.V.); (K.E.H.); (C.M.); (E.A.H.); (S.L.S.); (R.O.F.)
| | - Paul W. Buehler
- Center for Blood Oxygen Transport, Department of Pathology, Department of Pediatrics, University of Maryland, Baltimore, MD 21201, USA; (K.T.); (U.K.); (P.W.B.)
| | - Richard O. Francis
- Department of Pathology & Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; (T.T.); (J.E.V.); (K.E.H.); (C.M.); (E.A.H.); (S.L.S.); (R.O.F.)
| |
Collapse
|
148
|
Mohanty S, Paul S, Ahmad Y. Understanding the SARS-CoV-2 virus to mitigate current and future pandemic(s). Virusdisease 2021; 32:390-399. [PMID: 34109260 PMCID: PMC8178034 DOI: 10.1007/s13337-021-00696-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/20/2021] [Indexed: 11/25/2022] Open
Abstract
Micro-organisms form the first pioneer community in the history of biological life, thought to be present in the primordial soup and evolving later with more complex life-forms. Among micro-organisms, viruses form a separate taxon of organisms. Viruses are obligate parasites, being inactive without a host and becoming active once in contact with specific hosts. Viruses, with an inherent ability to infect and hijack cellular structures, have been utilised as vectors to introduce foreign genetic material in a variety of biological species, e.g. adenoviral vectors. However, viruses have also been the root cause of many infectious diseases, most notable being HIV-AIDS, for its resistance to treatment and omnipresent occurrence. There are many families of viruses like retroviridae, picornaviridae and poxviridae. This review focuses on a specific member of the coronaviridae, the SARS-CoV-2. This virus is responsible for the current COVID-19 pandemic. This review summarises its transmission, molecular mechanism by which it causes disease, associated clinical symptoms and the strategies available to control it from sources like PubMed, Google Scholar, webservers of National Institute of Health (NIH), European Molecular Biology Laboratory (EMBL), World Health Organisation (WHO), United States Food and Drug Administration (USFDA) and Centers for Disease Control and Prevention (CDC) available as on 1st May 2021.
Collapse
Affiliation(s)
- Swaraj Mohanty
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Lucknow Road, Timarpur, Delhi 110054 India
| | - Subhojit Paul
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Lucknow Road, Timarpur, Delhi 110054 India
| | - Yasmin Ahmad
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Lucknow Road, Timarpur, Delhi 110054 India
| |
Collapse
|
149
|
Yang J, Yan Y, Zhong W. Application of omics technology to combat the COVID-19 pandemic. MedComm (Beijing) 2021; 2:381-401. [PMID: 34766152 PMCID: PMC8554664 DOI: 10.1002/mco2.90] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 12/17/2022] Open
Abstract
As of August 27, 2021, the ongoing pandemic of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread to over 220 countries, areas, and territories. Thus far, 214,468,601 confirmed cases, including 4,470,969 deaths, have been reported to the World Health Organization. To combat the COVID-19 pandemic, multiomics-based strategies, including genomics, transcriptomics, proteomics, and metabolomics, have been used to study the diagnosis methods, pathogenesis, prognosis, and potential drug targets of COVID-19. In order to help researchers and clinicians to keep up with the knowledge of COVID-19, we summarized the most recent progresses reported in omics-based research papers. This review discusses omics-based approaches for studying COVID-19, summarizing newly emerged SARS-CoV-2 variants as well as potential diagnostic methods, risk factors, and pathological features of COVID-19. This review can help researchers and clinicians gain insight into COVID-19 features, providing direction for future drug development and guidance for clinical treatment, so that patients can receive appropriate treatment as soon as possible to reduce the risk of disease progression.
Collapse
Affiliation(s)
- Jingjing Yang
- National Engineering Research Center for the Emergency DrugBeijing Institute of Pharmacology and ToxicologyBeijingChina
- School of Pharmaceutical SciencesHainan UniversityHaikouHainanChina
| | - Yunzheng Yan
- National Engineering Research Center for the Emergency DrugBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Wu Zhong
- National Engineering Research Center for the Emergency DrugBeijing Institute of Pharmacology and ToxicologyBeijingChina
| |
Collapse
|
150
|
Affiliation(s)
- Dieter Böning
- Institut für Physiologie, Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Wilhelm Bloch
- Institut für Kreislaufforschung und Sportmedizin, Deutsche Sporthochschule Köln, Cologne, Germany
| | - Wolfgang M Kuebler
- Institut für Physiologie, Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|