101
|
Yuan J, Feng Z, Wang Q, Han L, Guan S, Liu L, Ye H, Xu L, Han X. 3’UTR of SARS-CoV-2 spike gene hijack host miR-296 or miR-520h to disturb cell proliferation and cytokine signaling. Front Immunol 2022; 13:924667. [PMID: 36238276 PMCID: PMC9552351 DOI: 10.3389/fimmu.2022.924667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has becoming globally public health threat. Recently studies were focus on SARS-CoV-2 RNA to design vaccine and drugs. It was demonstrated that virus RNA could play as sponge to host noncoding RNAs to regulate cellular processes. Bioinformatic research predicted a series of motif on SARS-CoV-2 genome where are targets of human miRNAs. In this study, we used dual-luciferase reporter assays to validate the interaction between 3’UTR of SARS-CoV-2 S (S-3’UTR) gene and bioinformatic predicted targeting miRNAs. The growth of 293T cells and HUVECs with overexpressed S-3’UTR was determined, while miRNAs and IL6, TNF-α levels were checked in this condition. Then, miR-296 and miR-602 mimic were introduced into 293T cells and HUVECs with overexpressed S-3’UTR, respectively, to reveal the underlying regulation mechanism. In results, we screened 19 miRNAs targeting the S-3’UTR, including miR-296 and miR-602. In 293T cell, S-3’UTR could inhibit 293T cell growth through down-regulation of miR-296. By reducing miR-602, S-3’UTR could induce HUVECs cell proliferation, alter the cell cycle, reduce apoptosis, and enhanced IL6 and TNF-αlevel. In conclusion, SARS-CoV-2 RNA could play as sponge of host miRNA to disturb cell growth and cytokine signaling. It suggests an important clue for designing COVID-19 drug and vaccine.
Collapse
Affiliation(s)
- Jinjin Yuan
- Department of Infectious Diseases, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Ziheng Feng
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Qiaowen Wang
- Department of Infectious Diseases, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Lifen Han
- Department of Infectious Diseases, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Shenchan Guan
- Department of Infectious Diseases, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Lijuan Liu
- Department of Infectious Diseases, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Hanhui Ye
- Department of Infectious Diseases, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
- *Correspondence: Xiao Han, ; Lili Xu, ; Hanhui Ye,
| | - Lili Xu
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- *Correspondence: Xiao Han, ; Lili Xu, ; Hanhui Ye,
| | - Xiao Han
- Department of Infectious Diseases, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
- *Correspondence: Xiao Han, ; Lili Xu, ; Hanhui Ye,
| |
Collapse
|
102
|
Kim S, Lee I, Piao S, Nagar H, Choi SJ, Kim YR, Irani K, Jeon BH, Kim CS. miR204 potentially promotes non-alcoholic fatty liver disease by inhibition of cpt1a in mouse hepatocytes. Commun Biol 2022; 5:1002. [PMID: 36130994 PMCID: PMC9492679 DOI: 10.1038/s42003-022-03945-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 09/05/2022] [Indexed: 12/06/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is associated with hepatic metabolism dysfunction. However, the mechanistic role of miR204 in the development of NAFLD is unknown. We investigate the functional significance of miR204 in the evolution of NAFLD. IDH2 KO mice feed a normal diet (ND) or HFD increased body weight, epididymal fat-pad weight, lipid droplet in liver, blood parameter and inflammation compared to WT mice fed a ND or HFD. Moreover, the expression of miR204 is increased in mice with IDH2 deficiency. Increased miR204 by IDH2 deficiency regulates carnitine palmitoyltransferase 1a (cpt1a) synthesis, which inhibits fatty acid β-oxidation. Inhibition of miR204 prevents the disassembly of two fatty acid-related genes by activating CPT1a expression, which decreases lipid droplet in liver, inflammatory cytokines, epididymal fat pad weight, blood parameters. Increased miR204 by IDH2 deficiency promotes the pathogenesis of HFD-induced NAFLD by regulating hepatic fatty acid metabolism and inflammation.
Collapse
Affiliation(s)
- Seonhee Kim
- Department of Physiology & Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Ikjun Lee
- Department of Physiology & Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Shuyu Piao
- Department of Physiology & Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Harsha Nagar
- Department of Physiology & Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Su-Jeong Choi
- Department of Physiology & Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Young-Rae Kim
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Kaikobad Irani
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Byeong Hwa Jeon
- Department of Physiology & Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Cuk-Seong Kim
- Department of Physiology & Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.
| |
Collapse
|
103
|
Roy D, Modi A, Ghosh R, Ghosh R, Benito-León J. Visceral Adipose Tissue Molecular Networks and Regulatory microRNA in Pediatric Obesity: An In Silico Approach. Int J Mol Sci 2022; 23:11036. [PMID: 36232337 PMCID: PMC9569899 DOI: 10.3390/ijms231911036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/05/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Childhood obesity carries an increased risk of metabolic complications, sleep disturbances, and cancer. Visceral adiposity is independently associated with inflammation and insulin resistance in obese children. However, the underlying pathogenic mechanisms are still unclear. We aimed to detect the gene expression pattern and its regulatory network in the visceral adipose tissue of obese pediatric individuals. Using differentially-expressed genes (DEGs) identified from two publicly available datasets, GSE9624 and GSE88837, we performed functional enrichment, protein-protein interaction, and network analyses to identify pathways, targeting transcription factors (TFs), microRNA (miRNA), and regulatory networks. There were 184 overlapping DEGs with six significant clusters and 19 candidate hub genes. Furthermore, 24 TFs targeted these hub genes. The genes were regulated by miR-16-5p, miR-124-3p, miR-103a-3p, and miR-107, the top miRNA, according to a maximum number of miRNA-mRNA interaction pairs. The miRNA were significantly enriched in several pathways, including lipid metabolism, immune response, vascular inflammation, and brain development, and were associated with prediabetes, diabetic nephropathy, depression, solid tumors, and multiple sclerosis. The genes and miRNA detected in this study involve pathways and diseases related to obesity and obesity-associated complications. The results emphasize the importance of the TGF-β signaling pathway and its regulatory molecules, the immune system, and the adipocytic apoptotic pathway in pediatric obesity. The networks associated with this condition and the molecular mechanisms through which the potential regulators contribute to pathogenesis are open to investigation.
Collapse
Affiliation(s)
- Dipayan Roy
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur 342005, Rajasthan, India
- Indian Institute of Technology (IIT), Madras 600036, Tamil Nadu, India
- School of Humanities, Indira Gandhi National Open University (IGNOU), New Delhi 110044, Delhi, India
| | - Anupama Modi
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur 342005, Rajasthan, India
| | - Ritwik Ghosh
- Department of General Medicine, Burdwan Medical College & Hospital, Burdwan 713104, West Bengal, India
| | - Raghumoy Ghosh
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur 342005, Rajasthan, India
- Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Singapore 636921, Singapore
| | - Julián Benito-León
- Department of Neurology, University Hospital “12 de Octubre”, Av. De Córdoba, s/n, 28041 Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Av. De Córdoba, s/n, 28041 Madrid, Spain
- Department of Medicine, Universidad Complutense, Pl. de Ramón y Cajal, s/n, 28040 Madrid, Spain
| |
Collapse
|
104
|
Cardiovascular Disease-Associated MicroRNAs as Novel Biomarkers of First-Trimester Screening for Gestational Diabetes Mellitus in the Absence of Other Pregnancy-Related Complications. Int J Mol Sci 2022; 23:ijms231810635. [PMID: 36142536 PMCID: PMC9501303 DOI: 10.3390/ijms231810635] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/25/2022] Open
Abstract
We assessed the diagnostic potential of cardiovascular disease-associated microRNAs for the early prediction of gestational diabetes mellitus (GDM) in singleton pregnancies of Caucasian descent in the absence of other pregnancy-related complications. Whole peripheral venous blood samples were collected within 10 to 13 weeks of gestation. This retrospective study involved all pregnancies diagnosed with only GDM (n = 121) and 80 normal term pregnancies selected with regard to equality of sample storage time. Gene expression of 29 microRNAs was assessed using real-time RT-PCR. Upregulation of 11 microRNAs (miR-1-3p, miR-20a-5p, miR-20b-5p, miR-23a-3p, miR-100-5p, miR-125b-5p, miR-126-3p, miR-181a-5p, miR-195-5p, miR-499a-5p, and miR-574-3p) was observed in pregnancies destinated to develop GDM. Combined screening of all 11 dysregulated microRNAs showed the highest accuracy for the early identification of pregnancies destinated to develop GDM. This screening identified 47.93% of GDM pregnancies at a 10.0% false positive rate (FPR). The predictive model for GDM based on aberrant microRNA expression profile was further improved via the implementation of clinical characteristics (maternal age and BMI at early stages of gestation and an infertility treatment by assisted reproductive technology). Following this, 69.17% of GDM pregnancies were identified at a 10.0% FPR. The effective prediction model specifically for severe GDM requiring administration of therapy involved using a combination of these three clinical characteristics and three microRNA biomarkers (miR-20a-5p, miR-20b-5p, and miR-195-5p). This model identified 78.95% of cases at a 10.0% FPR. The effective prediction model for GDM managed by diet only required the involvement of these three clinical characteristics and eight microRNA biomarkers (miR-1-3p, miR-20a-5p, miR-20b-5p, miR-100-5p, miR-125b-5p, miR-195-5p, miR-499a-5p, and miR-574-3p). With this, the model identified 50.50% of GDM pregnancies managed by diet only at a 10.0% FPR. When other clinical variables such as history of miscarriage, the presence of trombophilic gene mutations, positive first-trimester screening for preeclampsia and/or fetal growth restriction by the Fetal Medicine Foundation algorithm, and family history of diabetes mellitus in first-degree relatives were included in the GDM prediction model, the predictive power was further increased at a 10.0% FPR (72.50% GDM in total, 89.47% GDM requiring therapy, and 56.44% GDM managed by diet only). Cardiovascular disease-associated microRNAs represent promising early biomarkers to be implemented into routine first-trimester screening programs with a very good predictive potential for GDM.
Collapse
|
105
|
Mak KWY, Mustafa AF, Belsham DD. Neuroendocrine microRNAs linked to energy homeostasis: future therapeutic potential. Pharmacol Rep 2022; 74:774-789. [PMID: 36083576 DOI: 10.1007/s43440-022-00409-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 01/10/2023]
Abstract
The brain orchestrates whole-body metabolism through an intricate system involving interneuronal crosstalk and communication. Specifically, a key player in this complex circuitry is the hypothalamus that controls feeding behaviour, energy expenditure, body weight and metabolism, whereby hypothalamic neurons sense and respond to circulating hormones, nutrients, and chemicals. Dysregulation of these neurons contributes to the development of metabolic disorders, such as obesity and type 2 diabetes. The involvement of hypothalamic microRNAs, post-transcriptional regulators of gene expression, in the central regulation of energy homeostasis has become increasingly apparent, although not completely delineated. This review summarizes current evidence demonstrating the regulation of feeding-related neuropeptides by brain-derived microRNAs as well as the regulation of specific miRNAs by nutrients and other peripheral signals. Moreover, the involvement of microRNAs in the central nervous system control of insulin, leptin, and estrogen signal transduction is examined. Finally, the therapeutic and diagnostic potential of microRNAs for metabolic disorders will be discussed and the regulation of brain-derived microRNAs by nutrients and other peripheral signals is considered. Demonstrating a critical role of microRNAs in hypothalamic regulation of energy homeostasis is an innovative route to uncover novel biomarkers and therapeutic candidates for metabolic disorders.
Collapse
Affiliation(s)
- Kimberly W Y Mak
- Department of Physiology, University of Toronto, Medical Sciences Building 3247A, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Aws F Mustafa
- Department of Physiology, University of Toronto, Medical Sciences Building 3247A, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Denise D Belsham
- Department of Physiology, University of Toronto, Medical Sciences Building 3247A, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON, Canada.
- Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
106
|
Genipin improves lipid metabolism and sperm parametersin obese mice via regulation of miR-132 expression. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1278-1288. [PMID: 36082932 PMCID: PMC9827900 DOI: 10.3724/abbs.2022120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Obesity has now surpassed malnutrition and infectious diseases as the most significant contributor to health problems worldwide. In particular, obesity is associated with several metabolic disorders, including hyperlipidemia, hepatic steatosis, and subfertility. Genipin (GNP), the aglycone of geniposide, is isolated from the extract of the traditional Chinese medicine Gardenia jasminoides Ellis and has been used in traditional oriental medicine against several inflammation-driven diseases. However, the effect and molecular mechanism of GNP on obesity-associated dyslipidemia and sperm dysfunction still need to be explored. In this study, we detect the effects of GNP on hyperlipidemia, hepatic lipid accumulation and sperm function using a high-fat diet (HFD)-induced obese mouse model. We find that obese mice treated with GNP show an improvement in body weight, serum triglyceride levels, serum hormone levels, serum inflammatory cytokines, hepatic steatosis and sperm function. At the molecular level, HFD/GNP diversely regulates the expression of miR-132 in a tissue-specific manner. miR-132 further targets and regulates the expression of SREBP-1c in liver cells, as well as the expressions of SREBP-1c and StAR in Leydig cells in the testis, thus modifying lipogenesis and steroidogenesis, respectively. Collectively, our data demonstrate that GNP shows a broad effect on the improvement of HFD-induced metabolic disorder and sperm dysfunction in male mice by tissue-specific regulation of miR-132. Our findings reveal the function GNP in ameliorating hepatic lipid metabolism and sperm function and suggest that this compound is a versatile drug to treat metabolic disorders.
Collapse
|
107
|
Prajzlerová K, Šenolt L, Filková M. Is there a potential of circulating miRNAs as biomarkers in rheumatic diseases? Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
108
|
Sheng CY, Son YH, Jang J, Park SJ. In vitro skeletal muscle models for type 2 diabetes. BIOPHYSICS REVIEWS 2022; 3:031306. [PMID: 36124295 PMCID: PMC9478902 DOI: 10.1063/5.0096420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Type 2 diabetes mellitus, a metabolic disorder characterized by abnormally elevated blood sugar, poses a growing social, economic, and medical burden worldwide. The skeletal muscle is the largest metabolic organ responsible for glucose homeostasis in the body, and its inability to properly uptake sugar often precedes type 2 diabetes. Although exercise is known to have preventative and therapeutic effects on type 2 diabetes, the underlying mechanism of these beneficial effects is largely unknown. Animal studies have been conducted to better understand the pathophysiology of type 2 diabetes and the positive effects of exercise on type 2 diabetes. However, the complexity of in vivo systems and the inability of animal models to fully capture human type 2 diabetes genetics and pathophysiology are two major limitations in these animal studies. Fortunately, in vitro models capable of recapitulating human genetics and physiology provide promising avenues to overcome these obstacles. This review summarizes current in vitro type 2 diabetes models with focuses on the skeletal muscle, interorgan crosstalk, and exercise. We discuss diabetes, its pathophysiology, common in vitro type 2 diabetes skeletal muscle models, interorgan crosstalk type 2 diabetes models, exercise benefits on type 2 diabetes, and in vitro type 2 diabetes models with exercise.
Collapse
Affiliation(s)
- Christina Y. Sheng
- Biohybrid Systems Group, Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Young Hoon Son
- Biohybrid Systems Group, Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | - Sung-Jin Park
- Biohybrid Systems Group, Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, Atlanta, Georgia 30322, USA
| |
Collapse
|
109
|
MicroRNAs in non-alcoholic fatty liver disease: Progress and perspectives. Mol Metab 2022; 65:101581. [PMID: 36028120 PMCID: PMC9464960 DOI: 10.1016/j.molmet.2022.101581] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a spectrum of disease ranging from simple hepatic steatosis (NAFL) to non-alcoholic steatohepatitis (NASH) which may progress to cirrhosis and liver cancer. NAFLD is rapidly becoming a global health challenge, and there is a need for improved diagnostic- and prognostic tools and for effective pharmacotherapies to treat NASH. The molecular mechanisms of NAFLD development and progression remain incompletely understood, though ample evidence supports a role of microRNAs (miRNAs) - small non-coding RNAs regulating gene expression - in the progression of metabolic liver disease. SCOPE OF REVIEW In this review, we summarise the currently available liver miRNA profiling studies in people with various stages of NAFLD. We further describe the mechanistic role of three of the most extensively studied miRNA species, miR-34a, miR-122 and miR-21, and highlight selected findings on novel NAFLD-linked miRNAs. We also examine the literature on exosomal microRNAs (exomiRs) as inter-hepatocellular or -organ messengers in NAFLD. Furthermore, we address the status for utilizing circulating NAFLD-associated miRNAs as minimally invasive tools for disease diagnosis, staging and prognosis as well as their potential use as NASH pharmacotherapeutic targets. Finally, we reflect on future directions for research in the miRNA field. MAJOR CONCLUSIONS NAFLD is associated with changes in hepatic miRNA expression patterns at early, intermediate and late stages, and specific miRNA species appear to be involved in steatosis development and NAFL progression to NASH and cirrhosis. These miRNAs act either within or between hepatocytes and other liver cell types such as hepatic stellate cells and Kupffer cells or as circulating inter-organ messengers carrying signals between the liver and extra-hepatic metabolic tissues, including the adipose tissues and the cardiovascular system. Among circulating miRNAs linked to NAFLD, miR-34a, miR-122 and miR-192 are the best candidates as biomarkers for NAFLD diagnosis and staging. To date, no miRNA-targeting pharmacotherapy has been approved for the treatment of NASH, and no such therapy is currently under clinical development. Further research should be conducted to translate the contribution of miRNAs in NAFLD into innovative therapeutic strategies.
Collapse
|
110
|
Cornejo PJ, Vergoni B, Ohanna M, Angot B, Gonzalez T, Jager J, Tanti JF, Cormont M. The Stress-Responsive microRNA-34a Alters Insulin Signaling and Actions in Adipocytes through Induction of the Tyrosine Phosphatase PTP1B. Cells 2022; 11:cells11162581. [PMID: 36010657 PMCID: PMC9406349 DOI: 10.3390/cells11162581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/18/2022] Open
Abstract
Metabolic stresses alter the signaling and actions of insulin in adipocytes during obesity, but the molecular links remain incompletely understood. Members of the microRNA-34 (miR-34 family play a pivotal role in stress response, and previous studies showed an upregulation of miR-34a in adipose tissue during obesity. Here, we identified miR-34a as a new mediator of adipocyte insulin resistance. We confirmed the upregulation of miR-34a in adipose tissues of obese mice, which was observed in the adipocyte fraction exclusively. Overexpression of miR-34a in 3T3-L1 adipocytes or in fat pads of lean mice markedly reduced Akt activation by insulin and the insulin-induced glucose transport. This was accompanied by a decreased expression of VAMP2, a target of miR-34a, and an increased expression of the tyrosine phosphatase PTP1B. Importantly, PTP1B silencing prevented the inhibitory effect of miR-34a on insulin signaling. Mechanistically, miR-34a decreased the NAD+ level through inhibition of Naprt and Nampt, resulting in an inhibition of Sirtuin-1, which promoted an upregulation of PTP1B. Furthermore, the mRNA expression of Nampt and Naprt was decreased in adipose tissue of obese mice. Collectively, our results identify miR-34a as a new inhibitor of insulin signaling in adipocytes, providing a potential pathway to target to fight insulin resistance.
Collapse
Affiliation(s)
- Pierre-Jean Cornejo
- Université Côte d’Azur, Inserm, C3M, Team “Molecular and Cellular Physiopathology of Obesity and Diabetes”, 06204 Nice, France
| | - Bastien Vergoni
- Université Côte d’Azur, Inserm, C3M, Team “Molecular and Cellular Physiopathology of Obesity and Diabetes”, 06204 Nice, France
| | - Mickaël Ohanna
- Université Côte d’Azur, Inserm, C3M, “Team Microenvironnement, Signalisation et Cancer”, 06204 Nice, France
| | - Brice Angot
- Université Côte d’Azur, Inserm, C3M, Team “Molecular and Cellular Physiopathology of Obesity and Diabetes”, 06204 Nice, France
| | - Teresa Gonzalez
- Université Côte d’Azur, Inserm, C3M, Team “Molecular and Cellular Physiopathology of Obesity and Diabetes”, 06204 Nice, France
- Aix Marseille Université, Inserm, INRAE, C2VN, 13385 Marseille, France
| | - Jennifer Jager
- Université Côte d’Azur, Inserm, C3M, Team “Molecular and Cellular Physiopathology of Obesity and Diabetes”, 06204 Nice, France
| | - Jean-François Tanti
- Université Côte d’Azur, Inserm, C3M, Team “Molecular and Cellular Physiopathology of Obesity and Diabetes”, 06204 Nice, France
| | - Mireille Cormont
- Université Côte d’Azur, Inserm, C3M, Team “Molecular and Cellular Physiopathology of Obesity and Diabetes”, 06204 Nice, France
- Correspondence: ; Tel.: +33-4-89-15-38-31
| |
Collapse
|
111
|
Sommerauer C, Kutter C. Noncoding RNAs in liver physiology and metabolic diseases. Am J Physiol Cell Physiol 2022; 323:C1003-C1017. [PMID: 35968891 DOI: 10.1152/ajpcell.00232.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The liver holds central roles in detoxification, energy metabolism and whole-body homeostasis but can develop malignant phenotypes when being chronically overwhelmed with fatty acids and glucose. The global rise of metabolic-associated fatty liver disease (MAFLD) is already affecting a quarter of the global population. Pharmaceutical treatment options against different stages of MAFLD do not yet exist and several clinical trials against hepatic transcription factors and other proteins have failed. However, emerging roles of noncoding RNAs, including long (lncRNA) and short noncoding RNAs (sRNA), in various cellular processes pose exciting new avenues for treatment interventions. Actions of noncoding RNAs mostly rely on interactions with proteins, whereby the noncoding RNA fine-tunes protein function in a process termed riboregulation. The developmental stage-, disease stage- and cell type-specific nature of noncoding RNAs harbors enormous potential to precisely target certain cellular pathways in a spatio-temporally defined manner. Proteins interacting with RNAs can be categorized into canonical or non-canonical RNA binding proteins (RBPs) depending on the existence of classical RNA binding domains. Both, RNA- and RBP-centric methods have generated new knowledge of the RNA-RBP interface and added an additional regulatory layer. In this review, we summarize recent advances of how of RBP-lncRNA interactions and various sRNAs shape cellular physiology and the development of liver diseases such as MAFLD and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Christian Sommerauer
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology, grid.4714.6Karolinska Institute, Stockholm, Sweden
| | - Claudia Kutter
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology, grid.4714.6Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
112
|
Liu F, Chen J, Luo C, Meng X. Pathogenic Role of MicroRNA Dysregulation in Podocytopathies. Front Physiol 2022; 13:948094. [PMID: 35845986 PMCID: PMC9277480 DOI: 10.3389/fphys.2022.948094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs (miRNAs) participate in the regulation of various important biological processes by regulating the expression of various genes at the post-transcriptional level. Podocytopathies are a series of renal diseases in which direct or indirect damage of podocytes results in proteinuria or nephrotic syndrome. Despite decades of research, the exact pathogenesis of podocytopathies remains incompletely understood and effective therapies are still lacking. An increasing body of evidence has revealed a critical role of miRNAs dysregulation in the onset and progression of podocytopathies. Moreover, several lines of research aimed at improving common podocytopathies diagnostic tools and avoiding invasive kidney biopsies have also identified circulating and urine miRNAs as possible diagnostic and prognostic biomarkers for podocytopathies. The present review mainly aims to provide an updated overview of the recent achievements in research on the potential applicability of miRNAs involved in renal disorders related to podocyte dysfunction by laying particular emphasis on focal segmental glomerulosclerosis (FSGS), minimal change disease (MCD), membranous nephropathy (MN), diabetic kidney disease (DKD) and IgA nephropathy (IgAN). Further investigation into these dysregulated miRNAs will not only generate novel insights into the mechanisms of podocytopathies, but also might yield novel strategies for the diagnosis and therapy of this disease.
Collapse
Affiliation(s)
- Feng Liu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiefang Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Changqing Luo
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Changqing Luo, ; Xianfang Meng,
| | - Xianfang Meng
- Department of Neurobiology, Institute of Brain Research, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Changqing Luo, ; Xianfang Meng,
| |
Collapse
|
113
|
MicroRNA-Based Diagnosis and Therapy. Int J Mol Sci 2022; 23:ijms23137167. [PMID: 35806173 PMCID: PMC9266664 DOI: 10.3390/ijms23137167] [Citation(s) in RCA: 306] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are a group of endogenous non-coding RNAs that regulate gene expression. Alteration in miRNA expression results in changes in the profile of genes involving a range of biological processes, contributing to numerous human disorders. With high stability in human fluids, miRNAs in the circulation are considered as promising biomarkers for diagnosis, as well as prognosis of disease. In addition, the translation of miRNA-based therapy from a research setting to clinical application has huge potential. The aim of the current review is to: (i) discuss how miRNAs traffic intracellularly and extracellularly; (ii) emphasize the role of circulating miRNAs as attractive potential biomarkers for diagnosis and prognosis; (iii) describe how circulating microRNA can be measured, emphasizing technical problems that may influence their relative levels; (iv) highlight some of the circulating miRNA panels available for clinical use; (v) discuss how miRNAs could be utilized as novel therapeutics, and finally (v) update those miRNA-based therapeutics clinical trials that could potentially lead to a breakthrough in the treatment of different human pathologies.
Collapse
|
114
|
The Mystery of Exosomes in Gestational Diabetes Mellitus. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2169259. [PMID: 35720179 PMCID: PMC9200544 DOI: 10.1155/2022/2169259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 05/31/2022] [Indexed: 11/27/2022]
Abstract
Gestational diabetes mellitus (GDM) is one of the common pregnancy complications, which increases the risk of short-term and long-term adverse consequences in both the mother and offspring. However, the pathophysiological mechanism of GDM is still poorly understood. Inflammation, insulin resistance and oxidative stress are considered critical factors in the occurrence and development of GDM. Although the lifestyle intervention and insulin are the primary treatment, adverse pregnancy outcomes still cannot be ignored. Exosomes have a specific function of carrying biological information, which can transmit information to target cells and play an essential role in intercellular communication. Their possible roles in normal pregnancy and GDM have been widely concerned. The possibility of exosomal cargos as biomarkers of GDM is proposed. This paper reviews the literature in recent years and discusses the role of exosomes in GDM and their possible mechanisms to provide some reference for the prediction, prevention, and treatment of GDM and improve the outcome of pregnancy.
Collapse
|
115
|
Alexandru N, Procopciuc A, Vîlcu A, Comariţa IK, Bӑdilӑ E, Georgescu A. Extracellular vesicles-incorporated microRNA signature as biomarker and diagnosis of prediabetes state and its complications. Rev Endocr Metab Disord 2022; 23:309-332. [PMID: 34143360 DOI: 10.1007/s11154-021-09664-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/08/2021] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs) are small anuclear vesicles, delimited by a lipid bilayer, released by almost all cell types, carrying functionally active biological molecules that can be transferred to the neighbouring or distant cells, inducing phenotypical and functional changes, relevant in various physio-pathological conditions. The microRNAs are the most significant active components transported by EVs, with crucial role in intercellular communication and significant effects on recipient cells. They may also server as novel valuable biomarkers for the diagnosis of metabolic disorders. Moreover, EVs are supposed to mediate type 2 diabetes mellitus (T2DM) risk and its progress. The T2DM development is preceded by prediabetes, a state that is associated with early forms of nephropathy and neuropathy, chronic kidney disease, diabetic retinopathy, and increased risk of macrovascular disease. Although the interest of scientists was focused not only on the pathogenesis of diabetes, but also on the early diagnosis, little is known about EVs-incorporated microRNA involvement in prediabetes state and its microvascular and macrovascular complications. Here, we survey the biogenesis, classification, content, biological functions and the most popular primary isolation methods of EVs, review the EVs-associated microRNA profiling connexion with early stages of diabetes and discuss the role of EVs containing specific microRNAs in prediabetes complications.
Collapse
Affiliation(s)
- Nicoleta Alexandru
- Pathophysiology and Pharmacology Department, Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of Romanian Academy, Bucharest, Romania
| | - Anastasia Procopciuc
- Pathophysiology and Pharmacology Department, Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of Romanian Academy, Bucharest, Romania
| | - Alexandra Vîlcu
- Pathophysiology and Pharmacology Department, Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of Romanian Academy, Bucharest, Romania
| | - Ioana Karla Comariţa
- Pathophysiology and Pharmacology Department, Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of Romanian Academy, Bucharest, Romania
| | - Elisabeta Bӑdilӑ
- Internal Medicine Clinic, Emergency Clinical Hospital, Bucharest, Romania.
| | - Adriana Georgescu
- Pathophysiology and Pharmacology Department, Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of Romanian Academy, Bucharest, Romania.
| |
Collapse
|
116
|
Advances of microRNAs in regulating mitochondrial function: new potential application in NAFLD treatment. Mol Biol Rep 2022; 49:9841-9853. [PMID: 35612781 DOI: 10.1007/s11033-022-07503-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/22/2022] [Indexed: 11/09/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common metabolic diseases and closely associated with lipid disorder. Mitochondrion has been recognized to play a key role in lipid metabolism as the main site of energy metabolism in cells, and its dysfunction is involved in the progression of NAFLD. MicroRNAs (miRNAs), one of regulators in the pathogenesis of NAFLD, are discovered to modulate mitochondrial function by targeting mitochondrial proteins or mitochondrial-related factors, thereby improving or deteriorating NAFLD-associated pathologies. This review summarizes the differentially expressed miRNAs from clinical and experimental models of NAFLD with abilities in regulating mitochondrial function, expounds their underlying molecular mechanism and discusses their prospect and future research direction.
Collapse
|
117
|
Abstract
Several studies have reported a significant association between the metabolic syndrome (MetS) and mortality around the world. Caveolin-1 (CAV-1) has been widely studied in dyslipidaemia, and several studies have indicated that CAV-1 genetic variations may correlate with dietary intake of fatty acids. This study aimed to investigate the interaction of CAV-1 rs3807992 with types of dietary fatty acid in the MetS risk. This cross-sectional study was carried out on 404 overweight and obese females. Dietary intake was obtained from a 147-item FFQ. The CAV-1 genotype was measured using the PCR-restriction fragment length polymorphism method. Anthropometric values and serum levels (TC, LDL, HDL, TAG and FBS) were measured by standard methods. It was observed that the (AA + AG) group had significantly higher BMI, waist circumference and DBP (P = 0·02, P = 0·02, and P = 0·01, respectively) and lower serum LDL, HDL and TC (P < 0·05) than the GG group. It was found that A allele carriers were at higher odds of the MetS (P = 0·01), abdominal obesity (P = 0·06), increased TAG concentration (P = 0·01), elevated blood pressure (BP) (P = 0·01), increased glucose concentration (P = 0·45) and decreased HDL-cholesterol concentration (P = 0·03). Moreover, the interaction of CAV-1 and SFA intake was significant in terms of the MetS (P = 0·03), LDL (P = 0·03) and BP (P = 0·01). Additionally, the (AA + AG) group was significantly related to PUFA intake in terms of the MetS (P = 0·04), TAG (P = 0·02), glucose (P = 0·02) and homoeostasis model assessment insulin resistance (P = 0·01). Higher PUFA consumption might attenuate the CAV-1 rs3807992 associations with the MetS, and individuals with greater genetic predisposition appeared to have a higher risk of the MetS, associated with higher SFA consumption.
Collapse
|
118
|
Mitochondria homeostasis: Biology and involvement in hepatic steatosis to NASH. Acta Pharmacol Sin 2022; 43:1141-1155. [PMID: 35105958 PMCID: PMC9061859 DOI: 10.1038/s41401-022-00864-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/09/2022] [Indexed: 12/13/2022]
Abstract
Mitochondrial biology and behavior are central to the physiology of liver. Multiple mitochondrial quality control mechanisms remodel mitochondrial homeostasis under physiological and pathological conditions. Mitochondrial dysfunction and damage induced by overnutrition lead to oxidative stress, inflammation, liver cell death, and collagen production, which advance hepatic steatosis to nonalcoholic steatohepatitis (NASH). Accumulating evidence suggests that specific interventions that target mitochondrial homeostasis, including energy metabolism, antioxidant effects, and mitochondrial quality control, have emerged as promising strategies for NASH treatment. However, clinical translation of these findings is challenging due to the complex and unclear mechanisms of mitochondrial homeostasis in the pathophysiology of NASH.
Collapse
|
119
|
Transcriptome reveals key microRNAs involved in fat deposition between different tail sheep breeds. PLoS One 2022; 17:e0264804. [PMID: 35231067 PMCID: PMC8887763 DOI: 10.1371/journal.pone.0264804] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 02/16/2022] [Indexed: 12/11/2022] Open
Abstract
MicroRNA (miRNA) is a kind of noncoding RNA whose function involved in various biological processes in neuronal maturation and adipocyte cells, such as differentiation, proliferation, development, apoptosis, and metabolism. Herein, miRNA-Seq was used to identify miRNAs in the tail fat tissue of Hu sheep (short-fat-tailed) and Tibetan sheep (short-thin-tailed). In this study, 155 differentially expression miRNAs (DE miRNAs) were identified, including 78 up-regulated and 77 down-regulated. Among these DE miRNAs, 17 miRNAs were reported and related with lipid metabolism. MiRanda and RNAhybrid software were used to predict the target genes of DE miRNAs, obtaining the number of targeting relationships is 38553. Target genes were enriched by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). 742 terms and 302 single pathways are enriched, including lipid metabolic process, response to lipid, cellular lipid catabolic process, lipid catabolic process, cellular lipid metabolic process, inositol lipid-mediated signaling, calcium channel activity, PI3K-Akt signaling pathway, MAPK signaling pathway, ECM-receptor interaction, AMPK signaling pathway, Wnt signaling pathway and TGF-beta signaling pathway. Notably, miR-379-5p was associated with tail fat deposition of sheep. Dual-Luciferase reporter assays showed miR-379-5p and HOXC9 had targeted relationship. The result of RT-qPCR showed that the expression trend of miR-379-5p and HOXC9 was opposite. miR-379-5p was down-regulated and highly expressed in tail adipose tissue of Tibetan sheep. HOXC9 was highly expressed in adipose tissue of Hu sheep. These results could provide a meaningful theoretical basis for studying the molecular mechanisms of sheep tail adipogenesis.
Collapse
|
120
|
Šimonienė D, Stukas D, Daukša A, Veličkienė D. Clinical Role of Serum miR-107 in Type 2 Diabetes and Related Risk Factors. Biomolecules 2022; 12:biom12040558. [PMID: 35454146 PMCID: PMC9027608 DOI: 10.3390/biom12040558] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 01/27/2023] Open
Abstract
Background: As the diagnostic and treatment options for diabetes improve, more attention nowadays is being paid to the exact identification of the etiopathological mechanism of type 2 diabetes (T2DM). Insulin resistance (IR) is a pathogenetic background for T2DM. Several studies demonstrate that miRNAs play an important role in systemic inflammation and thus in T2DM pathogenesis. Overexpression of miR-107 may cause an imbalance of glucose homeostasis, obesity, and dyslipidemia, by regulating insulin sensitivity through the insulin signaling pathway. Methods: 53 patients with T2DM and 54 nondiabetic patients were involved in the study. This study aimed to examine whether miR-107 expression in the serum of patients with diabetes was different from the control group (non-diabetic) and whether miR-107 expression correlated with lipid levels, BMI, and other factors, and finally, with insulin resistance in general. Results: miR-107 expression was higher in the T2DM group than in the control group (1.33 versus 0.63 (p = 0.016). In general, miR-107 expression was directly and positively associated with BMI (r = 0.3, p = 0.01), age (r = 0.3, p = 0.004), and male gender (p = 0.006). Moreover, miR-107 was related to dyslipidemia: Patients with higher miR-107 levels had lower HDL levels (in the control group: r = −0.262, p = 0.022 vs. diabetic group: r = −0.315, p = 0.007). Finally, the overexpression of miR-107 was associated with higher HOMA-IR in the diabetic group (r = 0.373, p = 0.035). Conclusion: MiR-107 expression is higher among diabetic patients than that of nondiabetic control subjects. Higher miR-107 levels are also related to dyslipidemia (lower HDL levels)—in the general cohort and non-diabetic subjects. Moreover, higher miR-107 expression is related to insulin resistance in the diabetic group. In general, higher miR-107 expression levels are related to a higher BMI, older age, and the male gender.
Collapse
Affiliation(s)
- Diana Šimonienė
- Department of Endocrinology, Lithuanian University of Health Sciences (LUHS), 50161 Kaunas, Lithuania;
- Correspondence: ; Tel.: +370-6-8979121
| | - Darius Stukas
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Lithuanian University of Health Sciences (LUHS), 44307 Kaunas, Lithuania; (D.S.); (A.D.)
| | - Albertas Daukša
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Lithuanian University of Health Sciences (LUHS), 44307 Kaunas, Lithuania; (D.S.); (A.D.)
- Department of Surgery, Lithuanian University of Health Sciences (LUHS), 50161 Kaunas, Lithuania
| | - Džilda Veličkienė
- Department of Endocrinology, Lithuanian University of Health Sciences (LUHS), 50161 Kaunas, Lithuania;
- Institute of Endocrinology, Lithuanian University of Health Sciences (LUHS), 44307 Kaunas, Lithuania
| |
Collapse
|
121
|
Asakiya C, Zhu L, Yuhan J, Zhu L, Huang K, Xu W. Current progress of miRNA-derivative nucleotide drugs: Modifications, delivery systems, applications. Expert Opin Drug Deliv 2022; 19:435-450. [PMID: 35387533 DOI: 10.1080/17425247.2022.2063835] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION miRNA-derivative clinical nucleotide drugs (mdCNDs) effectively treat several diseases, with numerous undergoing clinical trials. In early-stage trials in disease therapeutics such as malignant pleural mesothelioma and hepatic virus C infection, mdCND's therapeutic potency is undeniably good for effectiveness and safety. AREAS COVERED 15 mdCNDs undergoing clinical trials are introduced in this review. MiRNA modifications methods have been summarized including phosphorothioate, cholesterol, locked nucleic acid, 2'-O-methyl, N,N-diethyl-4-(4-nitronaphthalen1-ylazo)-phenylamine modifications and many more. Moreover, delivery systems, including self-assembled, inorganic ions nanoparticles, exosomes, and lipid-based nanosystems for mdCNDs targeted delivery, are presented. Among that, EnGeneIC, N-Acetylgalactosamine, liposomal nanoparticles, and cholesterol-conjugated for mdCNDs delivery are currently undergoing clinical trials. The pH, light, temperature, redox-responsive, enzyme, and specific-substance modes to trigger the release of miRNAs to target sites on-demand and the prospects of mdCNDs are discussed in this review. EXPERT OPINION mdNCDs are one type of promising clinical drugs, however, it is still in the infancy. During the development process, it is imperative to advance in modifying miRNAs, especially at the 5'-end, to enhance targetability and stability against nucleases, develop a stimuli-responsive mode to control the release of mdCNDs to tissue cell-type-specific sites.
Collapse
Affiliation(s)
- Charles Asakiya
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China.,College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Liye Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China.,College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Jieyu Yuhan
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China.,College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Longjiao Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Kunlun Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| |
Collapse
|
122
|
Li X, Qi L. Epigenetics in Precision Nutrition. J Pers Med 2022; 12:jpm12040533. [PMID: 35455649 PMCID: PMC9027461 DOI: 10.3390/jpm12040533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/14/2022] [Accepted: 03/24/2022] [Indexed: 02/01/2023] Open
Abstract
Precision nutrition is an emerging area of nutrition research, with primary focus on the individual variability in response to dietary and lifestyle factors, which are mainly determined by an individual’s intrinsic variations, such as those in genome, epigenome, and gut microbiome. The current research on precision nutrition is heavily focused on genome and gut microbiome, while epigenome (DNA methylation, non-coding RNAs, and histone modification) is largely neglected. The epigenome acts as the interface between the human genome and environmental stressors, including diets and lifestyle. Increasing evidence has suggested that epigenetic modifications, particularly DNA methylation, may determine the individual variability in metabolic health and response to dietary and lifestyle factors and, therefore, hold great promise in discovering novel markers for precision nutrition and potential targets for precision interventions. This review summarized recent studies on DNA methylation with obesity, diabetes, and cardiovascular disease, with more emphasis put in the relations of DNA methylation with nutrition and diet/lifestyle interventions. We also briefly reviewed other epigenetic events, such as non-coding RNAs, in relation to human health and nutrition, and discussed the potential role of epigenetics in the precision nutrition research.
Collapse
Affiliation(s)
- Xiang Li
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA;
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA;
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Correspondence: ; Tel.: +1-504-988-7259
| |
Collapse
|
123
|
Hromadnikova I, Kotlabova K, Krofta L. First-Trimester Screening for Fetal Growth Restriction and Small-for-Gestational-Age Pregnancies without Preeclampsia Using Cardiovascular Disease-Associated MicroRNA Biomarkers. Biomedicines 2022; 10:biomedicines10030718. [PMID: 35327520 PMCID: PMC8945808 DOI: 10.3390/biomedicines10030718] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 02/06/2023] Open
Abstract
The goal of the study was to determine the early diagnostical potential of cardiovascular disease-associated microRNAs for prediction of small-for-gestational-age (SGA) and fetal growth restriction (FGR) without preeclampsia (PE). The whole peripheral venous blood samples were collected within 10 to 13 weeks of gestation from singleton Caucasian pregnancies within the period November 2012 to March 2020. The case-control retrospective study, nested in a cohort, involved all pregnancies diagnosed with SGA (n = 37) or FGR (n = 82) without PE and 80 appropriate-for-gestational age (AGA) pregnancies selected with regard to equality of sample storage time. Gene expression of 29 cardiovascular disease-associated microRNAs was assessed using real-time RT-PCR. Upregulation of miR-16-5p, miR-20a-5p, miR-146a-5p, miR-155-5p, miR-181a-5p, and miR-195-5p was observed in SGA or FGR pregnancies at 10.0% false positive rate (FPR). Upregulation of miR-1-3p, miR-20b-5p, miR-126-3p, miR-130b-3p, and miR-499a-5p was observed in SGA pregnancies only at 10.0% FPR. Upregulation of miR-145-5p, miR-342-3p, and miR-574-3p was detected in FGR pregnancies at 10.0% FPR. The combination of four microRNA biomarkers (miR-1-3p, miR-20a-5p, miR-146a-5p, and miR-181a-5p) was able to identify 75.68% SGA pregnancies at 10.0% FPR in early stages of gestation. The detection rate of SGA pregnancies without PE increased 4.67-fold (75.68% vs. 16.22%) when compared with the routine first-trimester screening for PE and/or FGR based on the criteria of the Fetal Medicine Foundation. The combination of seven microRNA biomarkers (miR-16-5p, miR-20a-5p, miR-145-5p, miR-146a-5p, miR-181a-5p, miR-342-3p, and miR-574-3p) was able to identify 42.68% FGR pregnancies at 10.0% FPR in early stages of gestation. The detection rate of FGR pregnancies without PE increased 1.52-fold (42.68% vs. 28.05%) when compared with the routine first-trimester screening for PE and/or FGR based on the criteria of the Fetal Medicine Foundation. Cardiovascular disease-associated microRNAs represent promising early biomarkers with very suitable predictive potential for SGA or FGR without PE to be implemented into the routine screening programs.
Collapse
Affiliation(s)
- Ilona Hromadnikova
- Department of Molecular Biology and Cell Pathology, Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic;
- Correspondence: ; Tel.: +420-296-511-336
| | - Katerina Kotlabova
- Department of Molecular Biology and Cell Pathology, Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic;
| | - Ladislav Krofta
- Institute for the Care of the Mother and Child, Third Faculty of Medicine, Charles University, 147 00 Prague, Czech Republic;
| |
Collapse
|
124
|
Zhang X, Yuan S, Liu J, Tang Y, Wang Y, Zhan J, Fan J, Nie X, Zhao Y, Wen Z, Li H, Chen C, Wang DW. Overexpression of cytosolic long noncoding RNA cytb protects against pressure-overload-induced heart failure via sponging microRNA-103-3p. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:1127-1145. [PMID: 35251768 PMCID: PMC8881631 DOI: 10.1016/j.omtn.2022.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 02/06/2022] [Indexed: 12/13/2022]
Abstract
Long noncoding RNAs (lncRNAs) play crucial roles in cardiovascular diseases. To date, only limited studies have reported the role of mitochondria-derived lncRNAs in heart failure (HF). In the current study, recombinant adeno-associated virus 9 was used to manipulate lncRNA cytb (lnccytb) expression in vivo. Fluorescence in situ hybridization (FISH) assay was used to determine the location of lnccytb, while microRNA (miRNA) sequencing and bioinformatics analyses were applied to identify the downstream targets. The competitive endogenous RNA (ceRNA) function of lnccytb was evaluated by biotin-coupled miRNA pull-down assays and luciferase reporter assays. Results showed that lnccytb expression was decreased in the heart of mice with transverse aortic constriction (TAC), as well as in the heart and plasma of patients with HF. FISH assay and absolute RNA quantification via real-time reverse transcription PCR suggested that the reduction of the lnccytb transcripts mainly occurred in the cytosol. Upregulation of cytosolic lnccytb attenuated cardiac dysfunction in TAC mice. Moreover, overexpression of cytosolic lnccytb in cardiomyocytes alleviated isoprenaline-induced reactive oxidative species (ROS) production and hypertrophy. Mechanistically, lnccytb acted as a ceRNA via sponging miR-103-3p, ultimately mitigating the suppression of PTEN by miR-103-3p. In summary, we demonstrated that the overexpression of cytosolic lnccytb could ameliorate HF.
Collapse
Affiliation(s)
- Xudong Zhang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan 430030, China
| | - Shuai Yuan
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan 430030, China
| | - Jingbo Liu
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan 430030, China
| | - Yuyan Tang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan 430030, China
| | - Yan Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan 430030, China
| | - Jiabing Zhan
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan 430030, China
| | - Jiahui Fan
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan 430030, China
| | - Xiang Nie
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan 430030, China
| | - Yanru Zhao
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan 430030, China
| | - Zheng Wen
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan 430030, China
| | - Huaping Li
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan 430030, China
| | - Chen Chen
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan 430030, China
- Corresponding author Chen Chen, Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan 430030, China.
| | - Dao Wen Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan 430030, China
- Corresponding author Dao Wen Wang, Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan 430030, China.
| |
Collapse
|
125
|
Wonnacott A, Denby L, Coward RJM, Fraser DJ, Bowen T. MicroRNAs and their delivery in diabetic fibrosis. Adv Drug Deliv Rev 2022; 182:114045. [PMID: 34767865 DOI: 10.1016/j.addr.2021.114045] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 09/21/2021] [Accepted: 11/04/2021] [Indexed: 12/11/2022]
Abstract
The global prevalence of diabetes mellitus was estimated to be 463 million people in 2019 and is predicted to rise to 700 million by 2045. The associated financial and societal costs of this burgeoning epidemic demand an understanding of the pathology of this disease, and its complications, that will inform treatment to enable improved patient outcomes. Nearly two decades after the sequencing of the human genome, the significance of noncoding RNA expression is still being assessed. The family of functional noncoding RNAs known as microRNAs regulates the expression of most genes encoded by the human genome. Altered microRNA expression profiles have been observed both in diabetes and in diabetic complications. These transcripts therefore have significant potential and novelty as targets for therapy, therapeutic agents and biomarkers.
Collapse
Affiliation(s)
- Alexa Wonnacott
- Wales Kidney Research Unit, Division of Infection & Immunity, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Laura Denby
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Richard J M Coward
- Bristol Renal, Dorothy Hodgkin Building, Bristol Medical School, University of Bristol, Bristol BS1 3NY, UK
| | - Donald J Fraser
- Wales Kidney Research Unit, Division of Infection & Immunity, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Timothy Bowen
- Wales Kidney Research Unit, Division of Infection & Immunity, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| |
Collapse
|
126
|
Zogg H, Singh R, Ro S. Current Advances in RNA Therapeutics for Human Diseases. Int J Mol Sci 2022; 23:2736. [PMID: 35269876 PMCID: PMC8911101 DOI: 10.3390/ijms23052736] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 12/11/2022] Open
Abstract
Following the discovery of nucleic acids by Friedrich Miescher in 1868, DNA and RNA were recognized as the genetic code containing the necessary information for proper cell functioning. In the years following these discoveries, vast knowledge of the seemingly endless roles of RNA have become better understood. Additionally, many new types of RNAs were discovered that seemed to have no coding properties (non-coding RNAs), such as microRNAs (miRNAs). The discovery of these new RNAs created a new avenue for treating various human diseases. However, RNA is relatively unstable and is degraded fairly rapidly once administered; this has led to the development of novel delivery mechanisms, such as nanoparticles to increase stability as well as to prevent off-target effects of these molecules. Current advances in RNA-based therapies have substantial promise in treating and preventing many human diseases and disorders through fixing the pathology instead of merely treating the symptomology similarly to traditional therapeutics. Although many RNA therapeutics have made it to clinical trials, only a few have been FDA approved thus far. Additionally, the results of clinical trials for RNA therapeutics have been ambivalent to date, with some studies demonstrating potent efficacy, whereas others have limited effectiveness and/or toxicity. Momentum is building in the clinic for RNA therapeutics; future clinical care of human diseases will likely comprise promising RNA therapeutics. This review focuses on the current advances of RNA therapeutics and addresses current challenges with their development.
Collapse
Affiliation(s)
| | | | - Seungil Ro
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, 1664 North Virginia Street, Reno, NV 89557, USA; (H.Z.); (R.S.)
| |
Collapse
|
127
|
He L, Bao T, Yang Y, Wang H, Gu C, Chen J, Zhai T, He X, Wu M, Zhao L, Tong X. Exploring the pathogenesis of type 2 diabetes mellitus intestinal damp-heat syndrome and the therapeutic effect of Gegen Qinlian Decoction from the perspective of exosomal miRNA. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114786. [PMID: 34763043 DOI: 10.1016/j.jep.2021.114786] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/14/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetes is a common, complex, chronic metabolic disease. A randomized, double-blind, placebo-parallel controlled clinical study has shown that Gegen Qinlian Decoction (GQD) can reduce glycosylated hemoglobin in type 2 diabetes mellitus (T2DM) intestinal damp-heat syndrome patients in a dose-dependent manner. AIM To explore the pathogenesis of T2DM intestinal damp-heat syndrome and the therapeutic effect of GQD from the perspective of exosomal microRNA (miRNA). METHODS Eligible patients were selected and treated with GQD for 3 months to evaluate their clinical efficacy. Effective cases were matched with healthy volunteers, and saliva samples were collected. Exosomal miRNA was extracted from saliva and analyzed by chip sequencing. Subsequently, the function of the differential gene and the signal transduction pathway were analyzed using bioinformatics technology. Finally, three target miRNAs were randomly selected from the T2DM group/healthy group, and two target miRNAs in the T2DM before treatment/after treatment group were randomly selected for qPCR verification. Finally, we conducted a correlation analysis of the miRNAs and clinical indicators. The registration number for this research is ChiCTR-IOR-15006626. RESULTS (1) The expression of exosomal miRNA chips showed that there were 14 differentially expressed miRNAs in the T2DM group/healthy group, and 26 differentially expressed miRNAs in the T2DM before treatment/after treatment group. (2) Enrichment results showed that in the T2DM group/healthy group, it was primarily related to cell development, body metabolism, TGF-β, and ErbB signaling pathways. In the T2DM before treatment/after treatment group, it was mainly related to cellular metabolic regulation processes, and insulin, Wnt, and AMPK signaling pathways. (3) The qPCR verification showed that the expressions of hsa-miR-9-5p, hsa-miR-150-5p, and hsa-miR-216b-5p in the T2DM group was higher (P<0.05). Following GQD treatment, hsa-miR-342-3p and hsa-miR-221-3p were significantly downregulated (P<0.05). (4) hsa-miR-9-5p was positively correlated with BMI (P<0.05), and hsa-miR-150-5p was positively correlated with total cholesterol and triglycerides (P<0.05). The GQD efficacy-related gene hsa-miR-342-3p was positively correlated with the patient's initial blood glucose level (P<0.05), and hsa-miR-221-3p was positively correlated with total cholesterol and triglycerides (P<0.05). CONCLUSION The exosomal miRNA expression profile and signaling pathways related to T2DM intestinal damp-heat syndrome and the efficacy of GQD were established, which provides an alternative strategy for precision traditional Chinese medicine treatment.
Collapse
Affiliation(s)
- LiSha He
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tingting Bao
- Graduate College, Beijing University of Chinese Medicine, Beijing, 100029, China; Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yingying Yang
- Graduate College, Beijing University of Chinese Medicine, Beijing, 100029, China; Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Han Wang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Chengjuan Gu
- Shenzhen Hospital of Guang Zhou University of Chinese Medicine (Futian), Shenzhen, 518000, China
| | - Jia Chen
- Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Tiangang Zhai
- Graduate College, Beijing University of Chinese Medicine, Beijing, 100029, China; Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xinhui He
- Yunnan Provincial Hospital of Traditional Chinese Medicine, Kunming, 650000, China
| | - Mengyi Wu
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Linhua Zhao
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Xiaolin Tong
- Endocrinology Department, Affiliated Hospital to Changchun University of Chinese Medicine, Jilin, 130117, China.
| |
Collapse
|
128
|
Sørensen AE, van Poppel MNM, Desoye G, Simmons D, Damm P, Jensen DM, Dalgaard LT. The Temporal Profile of Circulating miRNAs during Gestation in Overweight and Obese Women with or without Gestational Diabetes Mellitus. Biomedicines 2022; 10:biomedicines10020482. [PMID: 35203692 PMCID: PMC8962411 DOI: 10.3390/biomedicines10020482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Circulating non-coding microRNAs (miRNAs) are important for placentation, but their expression profiles across gestation in pregnancies, which are complicated by gestational diabetes mellitus (GDM), have not been fully established. Investigating a single time point is insufficient, as pregnancy is dynamic, involving several processes, including placenta development, trophoblast proliferation and differentiation and oxygen sensing. Thus, the aim of this study was to compare the temporal expression of serum miRNAs in pregnant women with and without GDM. This is a nested case-control study of longitudinal data obtained from a multicentric European study (the ‘DALI’ study). All women (n = 82) were overweight/obese (BMI ≥ 29 kg/m2) and were normal glucose tolerant (NGT) at baseline (before 20 weeks of gestation). We selected women (n = 41) who were diagnosed with GDM at 24–28 weeks, according to the IADPSG/WHO2013 criteria. They were matched with 41 women who remained NGT in their pregnancy. miRNA (miR-16-5p, -29a-3p, -103-3p, -134-5p, -122-5p, -223-3p, -330-3p and miR-433-3p) were selected based on their suggested importance for placentation, and measurements were performed at baseline and at 24–28 and 35–37 weeks of gestation. Women with GDM presented with overall miRNA levels above those observed for women remaining NGT. In both groups, levels of miR-29a-3p and miR-134-5p increased consistently with progressing gestation. The change over time only differed for miR-29a-3p when comparing women with GDM with those remaining NGT (p = 0.044). Our findings indicate that among overweight/obese women who later develop GDM, miRNA levels are already elevated early in pregnancy and remain above those of women who remain NGT during their pregnancy. Maternal circulating miRNAs may provide further insight into placentation and the cross talk between the maternal and fetal compartments.
Collapse
Affiliation(s)
- Anja Elaine Sørensen
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark;
- Correspondence: ; Tel.: +45-4674-3994
| | - Mireille N. M. van Poppel
- Faculty of Environmental and Regional Sciences and Education, Institute of Human Movement Science, Sport and Health, University of Graz, 8010 Graz, Austria;
| | - Gernot Desoye
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria;
- Center for Pregnant Women with Diabetes, Department of Obstetrics, Rigshospitalet, 2100 Copenhagen, Denmark;
| | - David Simmons
- Macarthur Clinical School, School of Medicine, Western Sydney University, Campbelltown, NSE 2560, Australia;
| | - Peter Damm
- Center for Pregnant Women with Diabetes, Department of Obstetrics, Rigshospitalet, 2100 Copenhagen, Denmark;
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Dorte Møller Jensen
- Department of Gynecology and Obstetrics, Odense University Hospital, 5000 Odense, Denmark;
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, 5000 Odense, Denmark
- Steno Diabetes Center Odense, Department of Gynecology and Obstetrics, Odense University Hospital, 5000 Odense, Denmark
| | - Louise Torp Dalgaard
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark;
| | | |
Collapse
|
129
|
Emerging Roles of Non-Coding RNAs in the Feed Efficiency of Livestock Species. Genes (Basel) 2022; 13:genes13020297. [PMID: 35205343 PMCID: PMC8872339 DOI: 10.3390/genes13020297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 01/27/2023] Open
Abstract
A global population of already more than seven billion people has led to an increased demand for food and water, and especially the demand for meat. Moreover, the cost of feed used in animal production has also increased dramatically, which requires animal breeders to find alternatives to reduce feed consumption. Understanding the biology underlying feed efficiency (FE) allows for a better selection of feed-efficient animals. Non-coding RNAs (ncRNAs), especially micro RNAs (miRNAs) and long non-coding RNAs (lncRNAs), play important roles in the regulation of bio-logical processes and disease development. The functions of ncRNAs in the biology of FE have emerged as they participate in the regulation of many genes and pathways related to the major FE indicators, such as residual feed intake and feed conversion ratio. This review provides the state of the art studies related to the ncRNAs associated with FE in livestock species. The contribution of ncRNAs to FE in the liver, muscle, and adipose tissues were summarized. The research gap of the function of ncRNAs in key processes for improved FE, such as the nutrition, heat stress, and gut–brain axis, was examined. Finally, the potential uses of ncRNAs for the improvement of FE were discussed.
Collapse
|
130
|
Abstract
An extensive literature base combined with advances in sequencing technologies demonstrate microRNA levels correlate with various metabolic diseases. Mechanistic studies also establish microRNAs regulate central metabolic pathways and thus play vital roles in maintaining organismal energy balance and metabolic homeostasis. This review highlights research progress on the roles and regulation of microRNAs in the peripheral tissues that confer insulin sensitivity. We discuss sequencing technologies used to comprehensively define the target spectrum of microRNAs in metabolic disease that complement studies reporting physiologic roles for microRNAs in the regulation of glucose and lipid metabolism in animal models. We also discuss the emerging roles of exosomal microRNAs as endocrine signals to regulate lipid and carbohydrate metabolism.
Collapse
Affiliation(s)
- Kang Ho Kim
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sean M Hartig
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: Sean M. Hartig, PhD, Baylor College of Medicine, One Baylor Plaza, BCM185, Houston, TX 77030, USA.
| |
Collapse
|
131
|
Pérez-García A, Torrecilla-Parra M, Fernández-de Frutos M, Martín-Martín Y, Pardo-Marqués V, Ramírez CM. Posttranscriptional Regulation of Insulin Resistance: Implications for Metabolic Diseases. Biomolecules 2022; 12:biom12020208. [PMID: 35204710 PMCID: PMC8961590 DOI: 10.3390/biom12020208] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/14/2022] Open
Abstract
Insulin resistance defines an impairment in the biologic response to insulin action in target tissues, primarily the liver, muscle, adipose tissue, and brain. Insulin resistance affects physiology in many ways, causing hyperglycemia, hypertension, dyslipidemia, visceral adiposity, hyperinsulinemia, elevated inflammatory markers, and endothelial dysfunction, and its persistence leads to the development metabolic disease, including diabetes, obesity, cardiovascular disease, or nonalcoholic fatty liver disease (NAFLD), as well as neurological disorders such as Alzheimer’s disease. In addition to classical transcriptional factors, posttranscriptional control of gene expression exerted by microRNAs and RNA-binding proteins constitutes a new level of regulation with important implications in metabolic homeostasis. In this review, we describe miRNAs and RBPs that control key genes involved in the insulin signaling pathway and related regulatory networks, and their impact on human metabolic diseases at the molecular level, as well as their potential use for diagnosis and future therapeutics.
Collapse
|
132
|
Yu Z, Luo R, Li Y, Li X, Yang Z, Peng J, Huang K. ADAR1 inhibits adipogenesis and obesity by interacting with dicer to promote the maturation of miR-155-5P. J Cell Sci 2022; 135:274090. [PMID: 35067718 DOI: 10.1242/jcs.259333] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/08/2022] [Indexed: 11/20/2022] Open
Abstract
Adipogenesis is closely related to various metabolic diseases, such as obesity, type 2 diabetes, cardiovascular diseases, and cancer. This cellular process is highly dependent on the expression and sequential activation of a diverse group of transcription factors. Here, we report that ADAR1 could inhibit adipogenesis through binding with Dicer, resulting in enhanced production of miR-155-5p, which downregulates the adipogenic early transcription factor C/EBPβ. Consequently, the expression levels of late transcription factors (C/ebpα and PPARγ) are reduced and adipogenesis is inhibited. More importantly, in vivo studies reveal that overexpression of ADAR1 suppresses white adipose tissue expansion in high fat diet-induced obese mice, leading to improved metabolic phenotypes such as insulin sensitivity and glucose tolerance.
Collapse
Affiliation(s)
- Zuying Yu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruijie Luo
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yutian Li
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, USA
| | - Xiaoguang Li
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengrui Yang
- Department of Cardiology, The 2nd people's Hospital of Lincang city, Lincang, China
| | - Jiangtong Peng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Cardiology, The 2nd people's Hospital of Lincang city, Lincang, China
| | - Kai Huang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
133
|
Zhang D, Niu S, Ma Y, Chen H, Wen Y, Li M, Zhou B, Deng Y, Shi C, Pu G, Yang M, Wang X, Zou C, Chen Y, Ma L. Fenofibrate Improves Insulin Resistance and Hepatic Steatosis and Regulates the Let-7/SERCA2b Axis in High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease Mice. Front Pharmacol 2022; 12:770652. [PMID: 35126113 PMCID: PMC8807641 DOI: 10.3389/fphar.2021.770652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/27/2021] [Indexed: 12/20/2022] Open
Abstract
Fenofibrate is widely used in clinical therapy to effectively ameliorate the development of non-alcoholic fatty liver disease (NAFLD); however, its specific molecular mechanism of action remains largely unknown. MicroRNAs (miRNAs) are key mediators in regulating endoplasmic reticulum (ER) stress during NAFLD, and the deregulation of miRNAs has been demonstrated in NAFLD pathophysiology. The present study aimed to identify whether fenofibrate could influence miRNA expression in NAFLD and investigate the specific mechanism of action of fenofibrate in lipid metabolism disorder-associated diseases. We found that fenofibrate alleviated ER stress and increased the levels of SERCA2b, which serves as a regulator of ER stress. Additionally, the levels of let-7 miRNA were regulated by fenofibrate; let-7 was found to target the 3′ untranslated region of SERCA2b. The present data suggest that the protective effects of fenofibrate against insulin resistance and its suppressive activity against excessive hepatic lipid accumulation may be related to the alteration of the let-7/SERCA2b axis and alleviation of ER stress.
Collapse
Affiliation(s)
- Dan Zhang
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, China
| | - Shanzhuang Niu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Yicheng Ma
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Hang Chen
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, China
| | - Yu Wen
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, China
| | - Mingke Li
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, China
| | - Bo Zhou
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, China
| | - Yi Deng
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, China
| | - Chunjing Shi
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, China
| | - Guangyu Pu
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, China
| | - Meng Yang
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, China
| | - Xianmei Wang
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, China
| | - Chenggang Zou
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Yuanli Chen
- Faculty of Basic Medicine, Kunming Medical University, Kunming, China
- *Correspondence: Yuanli Chen, ; Lanqing Ma,
| | - Lanqing Ma
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, China
- *Correspondence: Yuanli Chen, ; Lanqing Ma,
| |
Collapse
|
134
|
Emergent Roles of Circular RNAs in Metabolism and Metabolic Disorders. Int J Mol Sci 2022; 23:ijms23031032. [PMID: 35162956 PMCID: PMC8834750 DOI: 10.3390/ijms23031032] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 12/24/2022] Open
Abstract
Circular RNAs (circRNAs) are an emerging group of long non-coding RNAs (lncRNAs) and have attracted attention again according to the progress in high-throughput sequencing in recent years. circRNAs are genome transcripts produced from pre-messenger (m)RNA regions in a specific process called “back-splicing,” which forms covalently closed continuous loops. Due to their lack of a 5’ cap and 3’ poly-adenylated tails, circRNAs are remarkably more stable than linear RNAs. Functionally, circRNAs can endogenously sponge to microRNAs, interact with RNA-binding proteins (RBPs), or translate themselves. Moreover, circRNAs can be expressed in cell type- or tissue-specific expression patterns. Therefore, they are proposed to play essential roles in fine-tuning our body’s homeostasis by regulating transcription and translation processes. Indeed, there has been accumulating emergent evidence showing that dysregulation of circRNAs can lead to metabolic disorders. This study explored the current knowledge of circRNAs that regulate molecular processes associated with glucose and lipid homeostasis and related pathogeneses of metabolic disorders. We also suggest the potential role of circRNAs as disease biomarkers and therapeutic targets.
Collapse
|
135
|
MicroRNA Transcriptomics Analysis Identifies Dysregulated Hedgehog Signaling Pathway in a Mouse Model of Acute Intracerebral Hemorrhage Exposed to Hyperglycemia. J Stroke Cerebrovasc Dis 2022; 31:106281. [PMID: 35026495 DOI: 10.1016/j.jstrokecerebrovasdis.2021.106281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/22/2021] [Accepted: 12/19/2021] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE Hyperglycemia is often observed in the patients after acute stroke. This study aims to elucidate the potential effect and mechanism of hyperglycemia by screening microRNAs expression in intracerebral hemorrhage mice. METHODS We employed the collagenase model of intracerebral hemorrhage. Twenty male C57BL/6 mice were used and randomly divided in normo- and hyperglycemic. The hyperglycemia was induced by intraperitoneally injection of 50% of Dextrose (8 mL/kg) 3 hours after intracerebral hemorrhage. The neurologic impairment was investigated by neurologic deficit scale. To study the specific mechanisms of hyperglycemia, microRNAs expression in perihematomal area was investigated by RNA sequencing. MicroRNAs expression in hyperglycemic intracerebral hemorrhage animals were compared normoglycemic mice. Functional annotation analysis was used to indicate potential pathological pathway, underlying observed effects. Finally, polymerase chain reaction validation was administered. RESULTS Intraperitoneal injection of dextrose significantly increased blood glucose level. That was associated with aggravation of neurological deficits in hyperglycemic compared to normoglycemic animals. A total of 73 differentially expressed microRNAs were identified via transcriptomics analysis. Bioinformatics analyses showed that these microRNAs were significantly altered in several signaling pathways, of which the hedgehog signaling pathway was regarded as the most potential pathway associated with the effect of hyperglycemia on acute intracerebral hemorrhage. Furthermore, polymerase chain reaction results validated the correlation between microRNAs and hedgehog signaling pathway. CONCLUSIONS MicroRNA elevated in hyperglycemia group may be involved in worsening the neurological function via inhibiting the hedgehog signaling, which provides a novel molecular physiological mechanism and lays the foundation for treatment of intracerebral hemorrhage.
Collapse
|
136
|
Chalmers JA, Dalvi PS, Loganathan N, McIlwraith EK, Wellhauser L, Nazarians-Armavil A, Eversley JA, Mohan H, Stahel P, Dash S, Wheeler MB, Belsham DD. Hypothalamic miR-1983 Targets Insulin Receptor β and the Insulin-mediated miR-1983 Increase Is Blocked by Metformin. Endocrinology 2022; 163:6433013. [PMID: 34919671 PMCID: PMC8682955 DOI: 10.1210/endocr/bqab241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Indexed: 01/13/2023]
Abstract
MicroRNAs (miRNAs) expressed in the hypothalamus are capable of regulating energy balance and peripheral metabolism by inhibiting translation of target messenger RNAs (mRNAs). Hypothalamic insulin resistance is known to precede that in the periphery, thus a critical unanswered question is whether central insulin resistance creates a specific hypothalamic miRNA signature that can be identified and targeted. Here we show that miR-1983, a unique miRNA, is upregulated in vitro in 2 insulin-resistant immortalized hypothalamic neuronal neuropeptide Y-expressing models, and in vivo in hyperinsulinemic mice, with a concomitant decrease of insulin receptor β subunit protein, a target of miR-1983. Importantly, we demonstrate that miR-1983 is detectable in human blood serum and that its levels significantly correlate with blood insulin and the homeostatic model assessment of insulin resistance. Levels of miR-1983 are normalized with metformin exposure in mouse hypothalamic neuronal cell culture. Our findings provide evidence for miR-1983 as a unique biomarker of cellular insulin resistance, and a potential therapeutic target for prevention of human metabolic disease.
Collapse
Affiliation(s)
- Jennifer A Chalmers
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Prasad S Dalvi
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Current Affiliation: Prasad S. Dalvi is now at Morosky College of Health Professions and Sciences, Gannon University, Erie, Pennsylvania 16541, USA
| | - Neruja Loganathan
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Emma K McIlwraith
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Leigh Wellhauser
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | - Judith A Eversley
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Haneesha Mohan
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Priska Stahel
- Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Satya Dash
- Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Toronto General Hospital, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Michael B Wheeler
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Toronto General Hospital, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Denise D Belsham
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Correspondence: Denise D. Belsham, PhD, Department of Physiology, University of Toronto, Medical Sciences Bldg 3247A, 1 Kings College Cir, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
137
|
Kong D, Duan Y, Wang J, Liu Y. A functional polymorphism of microRNA-143 is associated with the risk of type 2 diabetes mellitus in the northern Chinese Han population. Front Endocrinol (Lausanne) 2022; 13:994953. [PMID: 36213264 PMCID: PMC9538736 DOI: 10.3389/fendo.2022.994953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE To explore the association between two polymorphisms of microRNA-143 (miR-143) and the risk of type 2 diabetes mellitus (T2DM) in the northern Chinese Han population. STUDY DESIGN This case-control study involved 326 patients with T2DM and 342 healthy controls. Two genetic variants (rs4705342 and rs353292) of miR-143 were genotyped by the polymerase chain reaction/ligase detection reaction (PCR-LDR) method. The levels of miR-143 in the serum from 52 T2DM patients and 55 healthy subjects were investigated by quantitative real-time PCR (qRT-PCR). RESULTS The CC genotype frequency of rs4705342 was significantly higher in the T2DM patients than in the healthy controls (P = 0.012). After adjusting for sex, age, and body mass index, the rs4705342 CC genotype was also related to a significantly increased risk of T2DM compared with the TT genotype (adjusted OR: 1.87; 95% CI = 1.09-3.19; P = 0.022). Stratified analyses demonstrated that T2DM patients with the rs4705342 CC genotype had significantly higher levels of low-density lipoprotein cholesterol (LDL-C), fasting blood glucose (FBG), and glycated haemoglobin (HbA1C) than those carrying the rs4705342 TT genotype. The qRT-PCR results showed that the expression levels of miR-143 were significantly higher in the serum of cases than in the serum of controls (P < 0.001). Furthermore, the levels of miR-143 were significantly higher in the serum of T2DM patients carrying the rs4705342 CC genotype than in those carrying the TC and TT genotypes of rs4705342 (P = 0.005 and 0.003, respectively). CONCLUSION The CC genotype of rs4705342 might be a risk factor for developing T2DM by increasing the expression of miRNA-143 in the northern Chinese Han population.
Collapse
Affiliation(s)
- Dexian Kong
- Department of Endocrinology, Fourth Affiliated Hospital, Hebei Medical University, Shijiazhuang, China
| | - Ya Duan
- Department of Obstetrics, Hebei General Hospital, Shijiazhuang, China
| | - Jinli Wang
- Department of Infirmary, Hebei Public Security Police Vocational College, Shijiazhuang, China
| | - Yabin Liu
- Department of General Surgery, Fourth Affiliated Hospital, Hebei Medical University, Shijiazhuang, China
- *Correspondence: Yabin Liu,
| |
Collapse
|
138
|
Bardhi E, McDaniels J, Rousselle T, Maluf DG, Mas VR. Nucleic acid biomarkers to assess graft injury after liver transplantation. JHEP REPORTS : INNOVATION IN HEPATOLOGY 2022; 4:100439. [PMID: 35243279 PMCID: PMC8856989 DOI: 10.1016/j.jhepr.2022.100439] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023]
Abstract
Many risk factors and complications impact the success of liver transplantation, such as ischaemia-reperfusion injury, acute rejection, and primary graft dysfunction. Molecular biomarkers have the potential to accurately diagnose, predict, and monitor injury progression or organ failure. There is a critical opportunity for reliable and non-invasive biomarkers to reduce the organ shortage by enabling i) the assessment of donor organ quality, ii) the monitoring of short- and long-term graft function, and iii) the prediction of acute and chronic disease development. To date, no established molecular biomarkers have been used to guide clinical decision-making in transplantation. In this review, we outline the recent advances in cell-free nucleic acid biomarkers for monitoring graft injury in liver transplant recipients. Prior work in this area can be divided into two categories: biomarker discovery and validation studies. Circulating nucleic acids (CNAs) can be found in the extracellular environment pertaining to different biological fluids such as bile, blood, urine, and perfusate. CNAs that are packaged into extracellular vesicles may facilitate intercellular and interorgan communication. Thus, decoding their biological function, cellular origins and molecular composition is imperative for diagnosing causes of graft injury, guiding immunosuppression and improving overall patient survival. Herein, we discuss the most promising molecular biomarkers, their state of development, and the critical aspects of study design in biomarker research for early detection of post-transplant liver injury. Future advances in biomarker studies are expected to personalise post-transplant therapy, leading to improved patient care and outcomes.
Collapse
|
139
|
Yildiz MT, Tutar L, Giritlioğlu NI, Bayram B, Tutar Y. MicroRNAs and Heat Shock Proteins in Breast Cancer Biology. Methods Mol Biol 2022; 2257:293-310. [PMID: 34432285 DOI: 10.1007/978-1-0716-1170-8_15] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Breast cancer has five major immune types; luminal A, luminal B, HER2, Basal-like, and normal-like. Cells produce a family of protein called heat shock proteins (Hsps) in response to exposure to thermal and other proteotoxic stresses play essential roles in cancer metabolism and this large family shows a diverse set of Hsp involvement in different breast cancer immune types. Recently, Hsp members categorized according to their immune type roles. Hsp family consists of several subtypes formed by molecular weight; Hsp70, Hsp90, Hsp100, Hsp40, Hsp60, and small molecule Hsps. Cancer cells employ Hsps as survival factors since most of these proteins prevent apoptosis. Several studies monitored Hsp roles in breast cancer cells and reported Hsp27 involvement in drug resistance, Hsp70 in tumor cell transformation-progression, and interaction with p53. Furthermore, the association of Hsp90 with steroid receptors and signaling proteins in patients with breast cancer directed research to focus on Hsp-based treatments. miRNAs are known to play key roles in all types of cancer that are upregulated or downregulated in cancer which respectively referred to as oncogenes (oncomirs) or tumor suppressors. Expression profiles of miRNAs may be used to classify, diagnose, and predict different cancer types. It is clear that miRNAs play regulatory roles in gene expression and this work reveals miRNA correlation to Hsp depending on specific breast cancer immune types. Deregulation of specific Hsp genes in breast cancer subtypes allows for identification of new targets for drug design and cancer treatment. Here, we performed miRNA network analysis by recruiting Hsp genes detected in breast cancer subtypes and reviewed some of the miRNAs related to aforementioned Hsp genes.
Collapse
Affiliation(s)
- Mehmet Taha Yildiz
- Division of Molecular Medicine, Hamidiye Institute of Health Sciences, University of Health Sciences, Istanbul, Turkey
| | - Lütfi Tutar
- Department of Molecular Biology and Genetics, Faculty of Art and Sciences, Kırşehir Ahi Evran University, Kırşehir, Turkey
| | - Nazlı Irmak Giritlioğlu
- Department of Molecular Medicine, Hamidiye Institute of Health Sciences, University of Health Sciences, Istanbul, Turkey
| | - Banu Bayram
- Department of Nutrition and Dietetics, Hamidiye Faculty of Health Sciences, University of Health Sciences, Istanbul, Turkey
| | - Yusuf Tutar
- Division of Molecular Medicine, Hamidiye Institute of Health Sciences, University of Health Sciences, Istanbul, Turkey.
- Division of Biochemistry, Department of Basic Pharmaceutical Sciences, Hamidiye Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey.
| |
Collapse
|
140
|
Takahashi K, Jia H, Takahashi S, Kato H. Comprehensive miRNA and DNA Microarray Analyses Reveal the Response of Hepatic miR-203 and Its Target Gene to Protein Malnutrition in Rats. Genes (Basel) 2021; 13:genes13010075. [PMID: 35052415 PMCID: PMC8774329 DOI: 10.3390/genes13010075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/18/2021] [Accepted: 12/23/2021] [Indexed: 12/25/2022] Open
Abstract
Adequate protein nutrition is essential for good health. Effects of protein malnutrition in animals have been widely studied at the mRNA level with the development of DNA microarray technology. Although microRNAs (miRNAs) have attracted attention for their function in regulating gene expression and have been studied in several disciplines, fewer studies have clarified the effects of protein malnutrition on miRNA alterations. The present study aimed to elucidate the relationship between protein malnutrition and miRNAs. Six-week old Wistar male rats were fed a control diet (20% casein) or a low-protein diet (5% casein) for two weeks, and their livers were subjected to both DNA microarray and miRNA array analysis. miR-203 was downregulated and its putative target Hadhb (hydroxyacyl-CoA dehydrogenase β subunit), known to regulate β-oxidation of fatty acids, was upregulated by the low-protein diet. In an in vitro experiment, miR-203 or its inhibitor were transfected in HepG2 cells, and the pattern of Hadhb expression was opposite to that of miR-203 expression. In addition, to clarifying the hepatic miRNA profile in response to protein malnutrition, these results showed that a low-protein diet increased Hadhb expression through downregulation of miR-203 and induced β-oxidation of fatty acids.
Collapse
|
141
|
Sakshi S, Jayasuriya R, Ganesan K, Xu B, Ramkumar KM. Role of circRNA-miRNA-mRNA interaction network in diabetes and its associated complications. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:1291-1302. [PMID: 34853728 PMCID: PMC8609106 DOI: 10.1016/j.omtn.2021.11.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/15/2021] [Accepted: 11/04/2021] [Indexed: 12/17/2022]
Abstract
The majority of the non-protein-coding RNAs are being identified with diversified functions that participate in cellular homeostasis. The circular RNAs (circRNAs) are emerging as noncoding transcripts with a key role in the initiation and development of many physiological and pathological conditions. The advancements in high-throughput RNA sequencing and bioinformatics tools help us to identify several circRNA regulatory pathways, one of which is microRNA (miRNA)-mediated regulation. Besides the direct influence over mRNA transcription, the circRNA can also control the target's expression via sponging miRNAs or the RNA-binding proteins. Studies have demonstrated the dysregulation of the circRNA-miRNA-mRNA interaction network in the pathogenesis of many diseases, including diabetes. This intricate mechanism is associated with the pathogenesis of diabetes and its complications. This review will focus on the circRNA-miRNA-mRNA interaction network that influences the gene expression in the progression of diabetes and its associated complications.
Collapse
Affiliation(s)
- Shukla Sakshi
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203 Tamil Nadu, India
| | - Ravichandran Jayasuriya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203 Tamil Nadu, India
| | - Kumar Ganesan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai 519087, China
| | - Baojun Xu
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai 519087, China
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203 Tamil Nadu, India
| |
Collapse
|
142
|
Becker-Greene D, Li H, Perez-Cremades D, Wu W, Bestepe F, Ozdemir D, Niosi CE, Aydogan C, Orgill DP, Feinberg MW, Icli B. MiR-409-3p targets a MAP4K3-ZEB1-PLGF signaling axis and controls brown adipose tissue angiogenesis and insulin resistance. Cell Mol Life Sci 2021; 78:7663-7679. [PMID: 34698882 PMCID: PMC8655847 DOI: 10.1007/s00018-021-03960-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/09/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
Endothelial cells (ECs) within the microvasculature of brown adipose tissue (BAT) are important in regulating the plasticity of adipocytes in response to increased metabolic demand by modulating the angiogenic response. However, the mechanism of EC-adipocyte crosstalk during this process is not completely understood. We used RNA sequencing to profile microRNAs derived from BAT ECs of obese mice and identified an anti-angiogenic microRNA, miR-409-3p. MiR-409-3p overexpression inhibited EC angiogenic properties; whereas, its inhibition had the opposite effects. Mechanistic studies revealed that miR-409-3p targets ZEB1 and MAP4K3. Knockdown of ZEB1/MAP4K3 phenocopied the angiogenic effects of miR-409-3p. Adipocytes co-cultured with conditioned media from ECs deficient in miR-409-3p showed increased expression of BAT markers, UCP1 and CIDEA. We identified a pro-angiogenic growth factor, placental growth factor (PLGF), released from ECs in response to miR-409-3p inhibition. Deficiency of ZEB1 or MAP4K3 blocked the release of PLGF from ECs and PLGF stimulation of 3T3-L1 adipocytes increased UCP1 expression in a miR-409-3p dependent manner. MiR-409-3p neutralization improved BAT angiogenesis, glucose and insulin tolerance, and energy expenditure in mice with diet-induced obesity. These findings establish miR-409-3p as a critical regulator of EC-BAT crosstalk by modulating a ZEB1-MAP4K3-PLGF signaling axis, providing new insights for therapeutic intervention in obesity.
Collapse
Affiliation(s)
- Dakota Becker-Greene
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Louis Pasteur Avenue 77, Boston, MA, 02115, USA
| | - Hao Li
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Louis Pasteur Avenue 77, Boston, MA, 02115, USA
| | - Daniel Perez-Cremades
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Louis Pasteur Avenue 77, Boston, MA, 02115, USA
- Department of Physiology, University of Valencia and INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Winona Wu
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Louis Pasteur Avenue 77, Boston, MA, 02115, USA
| | - Furkan Bestepe
- Molecular Cardiology Research Institute, Tufts University School of Medicine, 800 Washington St, Boston, MA, 02111, USA
| | - Denizhan Ozdemir
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Louis Pasteur Avenue 77, Boston, MA, 02115, USA
- Department of Medical Biology, Hacettepe University, Ankara, Turkey
| | - Carolyn E Niosi
- Molecular Cardiology Research Institute, Tufts University School of Medicine, 800 Washington St, Boston, MA, 02111, USA
| | - Ceren Aydogan
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Louis Pasteur Avenue 77, Boston, MA, 02115, USA
- Cerrahpasa Faculty of Medicine, Istanbul, Turkey
| | - Dennis P Orgill
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Mark W Feinberg
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Louis Pasteur Avenue 77, Boston, MA, 02115, USA.
| | - Basak Icli
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Louis Pasteur Avenue 77, Boston, MA, 02115, USA.
- Molecular Cardiology Research Institute, Tufts University School of Medicine, 800 Washington St, Boston, MA, 02111, USA.
| |
Collapse
|
143
|
Mantilla-Escalante DC, López de Las Hazas MC, Crespo MC, Martín-Hernández R, Tomé-Carneiro J, Del Pozo-Acebo L, Salas-Salvadó J, Bulló M, Dávalos A. Mediterranean diet enriched in extra-virgin olive oil or nuts modulates circulating exosomal non-coding RNAs. Eur J Nutr 2021; 60:4279-4293. [PMID: 34027583 DOI: 10.1007/s00394-021-02594-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 05/14/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE Exosomes are extracellular vesicles secreted by cells, which can transport different molecules, including nucleic acids. Dietary habits may induce gene regulation through the modulation of exosomal RNAs. We aimed at characterizing exosomal lncRNAs, mRNA and miRNAs modulation after a 1-year adherence to a low-fat diet (LFD) or to Mediterranean-based diets enriched in extra-virgin olive oil (MedDiet + EVOO) or in a mixture of nuts (MedDiet + Nuts). METHODS Plasma samples were collected, at baseline and after 1 year of dietary interventions, from 150 participants included in the PREDIMED study (Reus Center). LncRNAs, mRNAs and miRNAs were isolated from plasma exosomes and screened. RT-qPCR validation was performed for miRNAs. RESULTS Compared with LFD, 413 lncRNAs and 188 mRNAs, and 476 lncRNAs and 235 mRNAs were differentially modulated in response to the MedDiet + EVOO and MedDiet + Nuts interventions, respectively. In addition, after 1 year of dietary interventions, 26 circulating miRNAs were identified as differentially expressed between groups. After 1 year of intervention, 11 miRNAs significantly changed in LFD group, while 8 and 21 were modulated in response to the MedDiet enriched with EVOO or nuts, respectively. Bioinformatic analyses of differentially expressed miRNAs and their validated target genes suggest certain metabolic pathways are modulated by LFD (PI3K-Akt and AMPK), MedDiet + EVOO (PI3K-Akt, NF-kappa B, HIF-1, and insulin resistance), and MedDiet-Nuts (FoxO, PI3K-Akt, AMPK, p53 and HIF-1) interventions. CONCLUSION Results show that 1-year MedDiet + Nuts and MedDiet + EVOO dietary interventions modulate exosomal RNA content, with the former affecting a higher number of miRNAs. The modulation of exosomal RNAs could help explain how the adherence to a Mediterranean diet may lead to beneficial effects and deserves further investigation.
Collapse
Affiliation(s)
- Diana C Mantilla-Escalante
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)-Food, IMDEA Food Institute, CEI UAM + CSIC, Ctra. De Cantoblanco 8, 28049, Madrid, Spain
| | - María-Carmen López de Las Hazas
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)-Food, IMDEA Food Institute, CEI UAM + CSIC, Ctra. De Cantoblanco 8, 28049, Madrid, Spain
| | - M Carmen Crespo
- Laboratory of Functional Foods, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM + CSIC, 28049, Madrid, Spain
| | - Roberto Martín-Hernández
- Bioinformatics and Biostatistics Unit, IMDEA Food Institute, CEI UAM+CSIC, Ctra. De Canto Blanco 8, 28049, Madrid, Spain
| | - Joao Tomé-Carneiro
- Laboratory of Functional Foods, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM + CSIC, 28049, Madrid, Spain
| | - Lorena Del Pozo-Acebo
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)-Food, IMDEA Food Institute, CEI UAM + CSIC, Ctra. De Cantoblanco 8, 28049, Madrid, Spain
| | - Jordi Salas-Salvadó
- Institut d'Investigació Sanitària Pere Virgili, 43204, Reus, Spain
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43201, Reus, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Nutrition Unit, University Hospital of Sant Joan de Reus, 43204, Reus, Spain
| | - Mónica Bulló
- Institut d'Investigació Sanitària Pere Virgili, 43204, Reus, Spain
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43201, Reus, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Alberto Dávalos
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)-Food, IMDEA Food Institute, CEI UAM + CSIC, Ctra. De Cantoblanco 8, 28049, Madrid, Spain.
| |
Collapse
|
144
|
Schönberg J, Borlak J. Reliable miRNA biomarker quantification in clinical practice - are we there yet? Anal Biochem 2021; 634:114431. [PMID: 34695390 DOI: 10.1016/j.ab.2021.114431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 10/20/2022]
Abstract
Blood-borne miRNAs serve as disease diagnostic biomarkers and await clinical validation. Here, we evaluated Cel-miR-39-3p and miRNA16-5p as calibrator for the quantification of 15 miRNAs linked to hepatic impairment. We added defined copy numbers of Cel-miR-39-3p to plasma of healthy controls (N = 5) and patient samples undergoing liver resection (N = 51). The miRNAs were isolated according to SOPs and quantified by RT-qPCR using the 2-(ΔΔ-CT)-method. Although miRNA16-5p and the spike-in control behaved similar in qPCR assays (R2 = 0.8591) the spike-in control suffered from high inter-patient variability (median 7.6-fold) and low recoveries (median 5.6%, 95% CI 1.5-11.8%). Adding Cel-miR-39-3p to blood samples prior to RNA-isolation improved the recoveries (median 105.7%; 95% CI 29.9-219.9%), yet the inter-patient variability remained high (median 7.2-fold). Alike, we observed significant variability in CT-values for miRNA16-5p (range 14.7-fold) thus rendering this internal, blood-borne reference gene unacceptable as comparator. Specifically, 10 out of 15 diagnostic miRNAs failed the criteria R2 ≥ 0.8 even though we added a defined copy number of Cel-miR-39-3p. This suggests interference of the spike-in control with individual miRNAs in the assay. Our study highlights current limitations in the quantification of blood-borne miRNAs that is of particularly importance when used for disease diagnostic and therapeutic interventions.
Collapse
Affiliation(s)
- Juliette Schönberg
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
145
|
microRNAs in Human Adipose Tissue Physiology and Dysfunction. Cells 2021; 10:cells10123342. [PMID: 34943849 PMCID: PMC8699244 DOI: 10.3390/cells10123342] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/20/2021] [Accepted: 11/26/2021] [Indexed: 12/11/2022] Open
Abstract
In recent years, there has been a large amount of evidence on the role of microRNA (miRNA) in regulating adipose tissue physiology. Indeed, miRNAs control critical steps in adipocyte differentiation, proliferation and browning, as well as lipolysis, lipogenesis and adipokine secretion. Overnutrition leads to a significant change in the adipocyte miRNOME, resulting in adipose tissue dysfunction. Moreover, via secreted mediators, dysfunctional adipocytes may impair the function of other organs and tissues. However, given their potential to control cell and whole-body energy expenditure, miRNAs also represent critical therapeutic targets for treating obesity and related metabolic complications. This review attempts to integrate present concepts on the role miRNAs play in adipose tissue physiology and obesity-related dysfunction and data from pre-clinical and clinical studies on the diagnostic or therapeutic potential of miRNA in obesity and its related complications.
Collapse
|
146
|
Du L, Qi R, Wang J, Liu Z, Wu Z. Indole-3-Propionic Acid, a Functional Metabolite of Clostridium sporogenes, Promotes Muscle Tissue Development and Reduces Muscle Cell Inflammation. Int J Mol Sci 2021; 22:ijms222212435. [PMID: 34830317 PMCID: PMC8619491 DOI: 10.3390/ijms222212435] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 02/06/2023] Open
Abstract
Clostridium sporogenes (C. sporogenes), as a potential probiotic, metabolizes tryptophan and produces an anti-inflammatory metabolite, indole-3-propionic acid (IPA). Herein, we studied the effects of C. sporogenes and its bioactive metabolite, IPA, on skeletal muscle development and chronic inflammation in mice. In the in vivo study, the muscle tissues and serum samples of mice with C. sporogenes supplementation were used to analyze the effects of C. sporogenes on muscle metabolism; the IPA content was determined by metabonomics and ELISA. In an in vitro study, C2C12 cells were exposed to lipopolysaccharide (LPS) alone or LPS + IPA to verify the effect of IPA on muscle cell inflammation by transcriptome, and the involved mechanism was revealed by different functional assays. We observed that C. sporogenes colonization significantly increased the body weight and muscle weight gain, as well as the myogenic regulatory factors' (MRFs) expression. In addition, C. sporogenes significantly improved host IPA content and decreased pro-inflammatory cytokine levels in the muscle tissue of mice. Subsequently, we confirmed that IPA promoted C2C12 cells' proliferation by activating MRF signaling. IPA also effectively protected against LPS-induced C2C12 cells inflammation by activating Pregnane X Receptor and restoring the inhibited miR-26a-2-3p expression. miR-26a-2-3p serves as a novel muscle inflammation regulatory factor that could directly bind to the 3'-UTR of IL-1β, a key initiator factor in inflammation. The results suggested that C. sporogenes with its functional metabolite IPA not only helps muscle growth development, but also protects against inflammation, partly by the IPA/ miR-26a-2-3p /IL-1β cascade.
Collapse
Affiliation(s)
- Lei Du
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing 402460, China; (R.Q.); (J.W.)
| | - Renli Qi
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing 402460, China; (R.Q.); (J.W.)
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing 402460, China
| | - Jing Wang
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing 402460, China; (R.Q.); (J.W.)
| | - Zuohua Liu
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing 402460, China; (R.Q.); (J.W.)
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing 402460, China
- Correspondence: (Z.L.); (Z.W.); Tel.: +86-23-4679–2097 (Z.L.); +86-10-6273–1003 (Z.W.)
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
- Correspondence: (Z.L.); (Z.W.); Tel.: +86-23-4679–2097 (Z.L.); +86-10-6273–1003 (Z.W.)
| |
Collapse
|
147
|
Nettore IC, Franchini F, Palatucci G, Macchia PE, Ungaro P. Epigenetic Mechanisms of Endocrine-Disrupting Chemicals in Obesity. Biomedicines 2021; 9:biomedicines9111716. [PMID: 34829943 PMCID: PMC8615468 DOI: 10.3390/biomedicines9111716] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023] Open
Abstract
The incidence of obesity has dramatically increased over the last decades. Recently, there has been a growing interest in the possible association between the pandemics of obesity and some endocrine-disrupting chemicals (EDCs), termed “obesogens”. These are a heterogeneous group of exogenous compounds that can interfere in the endocrine regulation of energy metabolism and adipose tissue structure. Oral intake, inhalation, and dermal absorption represent the major sources of human exposure to these EDCs. Recently, epigenetic changes such as the methylation of cytosine residues on DNA, post-translational modification of histones, and microRNA expression have been considered to act as an intermediary between deleterious effects of EDCs and obesity development in susceptible individuals. Specifically, EDCs exposure during early-life development can detrimentally affect individuals via inducing epigenetic modifications that can permanently change the epigenome in the germline, enabling changes to be transmitted to the next generations and predisposing them to a multitude of diseases. The purpose of this review is to analyze the epigenetic alterations putatively induced by chemical exposures and their ability to interfere with the control of energy metabolism and adipose tissue regulation, resulting in imbalances in the control of body weight, which can lead to obesity.
Collapse
Affiliation(s)
- Immacolata Cristina Nettore
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via S. Pansini, 80131 Naples, Italy; (I.C.N.); (F.F.); (G.P.); (P.E.M.)
| | - Fabiana Franchini
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via S. Pansini, 80131 Naples, Italy; (I.C.N.); (F.F.); (G.P.); (P.E.M.)
| | - Giuseppe Palatucci
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via S. Pansini, 80131 Naples, Italy; (I.C.N.); (F.F.); (G.P.); (P.E.M.)
| | - Paolo Emidio Macchia
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via S. Pansini, 80131 Naples, Italy; (I.C.N.); (F.F.); (G.P.); (P.E.M.)
| | - Paola Ungaro
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale del CNR “G. Salvatore”, Via S. Pansini, 80131 Naples, Italy
- Correspondence: ; Tel.: +39-081-770-4795
| |
Collapse
|
148
|
Wu H, Pula T, Tews D, Amri EZ, Debatin KM, Wabitsch M, Fischer-Posovszky P, Roos J. microRNA-27a-3p but Not -5p Is a Crucial Mediator of Human Adipogenesis. Cells 2021; 10:cells10113205. [PMID: 34831427 PMCID: PMC8625276 DOI: 10.3390/cells10113205] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs), a class of small, non-coding RNA molecules, play an important role in the posttranscriptional regulation of gene expression, thereby influencing important cellular functions. In adipocytes, miRNAs show import regulatory features and are described to influence differentiation as well as metabolic, endocrine, and inflammatory functions. We previously identified miR-27a being upregulated under inflammatory conditions in human adipocytes and aimed to elucidate its function in adipocyte biology. Both strands of miR-27a, miR-27a-3p and -5p, were downregulated during the adipogenic differentiation of Simpson–Golabi–Behmel syndrome (SGBS) cells, human multipotent adipose-derived stem cells (hMADS), and human primary adipose-derived stromal cells (hASCs). Using miRNA-mimic transfection, we observed that miR-27a-3p is a crucial regulator of adipogenesis, while miR-27a-5p did not alter the differentiation capacity in SGBS cells. In silico screening predicted lipoprotein lipase (LPL) and peroxisome proliferator activated receptor γ (PPARγ) as potential targets of miR-27a-3p. The downregulation of both genes was verified in vitro, and the interaction of miR-27-3p with target sites in the 3′ UTRs of both genes was confirmed via a miRNA-reporter-gene assay. Here, the knockdown of LPL did not interfere with adipogenic differentiation, while PPARγ knockdown decreased adipogenesis significantly, suggesting that miR-27-3p exerts its inhibitory effect on adipogenesis by repressing PPARγ. Taken together, we identified and validated a crucial role for miR-27a-3p in human adipogenesis played by targeting the essential adipogenic transcription factor PPARγ. Though we confirmed LPL as an additional target of miR-27a-3p, it does not appear to be involved in regulating human adipogenesis. Thereby, our findings call the conclusions drawn from previous studies, which identified LPL as a crucial regulator for murine and human adipogenesis, into question.
Collapse
Affiliation(s)
- Hang Wu
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89075 Ulm, Germany; (H.W.); (T.P.); (K.-M.D.); (P.F.-P.)
| | - Taner Pula
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89075 Ulm, Germany; (H.W.); (T.P.); (K.-M.D.); (P.F.-P.)
| | - Daniel Tews
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89075 Ulm, Germany; (D.T.); (M.W.)
| | - Ez-Zoubir Amri
- Inserm, CNRS, iBV, Université Côte d’Azur, 06103 Nice, France;
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89075 Ulm, Germany; (H.W.); (T.P.); (K.-M.D.); (P.F.-P.)
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89075 Ulm, Germany; (D.T.); (M.W.)
| | - Pamela Fischer-Posovszky
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89075 Ulm, Germany; (H.W.); (T.P.); (K.-M.D.); (P.F.-P.)
| | - Julian Roos
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89075 Ulm, Germany; (H.W.); (T.P.); (K.-M.D.); (P.F.-P.)
- Correspondence: ; Tel.: +49-731-500-57255
| |
Collapse
|
149
|
Lee H, Lee J. Anti-diabetic effect of hydroxybenzoic acid derivatives in free fatty acid-induced HepG2 cells via miR-1271/IRS1/PI3K/AKT/FOXO1 pathway. J Food Biochem 2021; 45:e13993. [PMID: 34730253 DOI: 10.1111/jfbc.13993] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/16/2021] [Accepted: 10/12/2021] [Indexed: 01/22/2023]
Abstract
Type 2 diabetes is characterized by insulin resistance (IR) and increased hepatic glucose production. MicroRNAs (miRs) are considered regulators of glucose metabolism. This study evaluated anti-diabetic activity of hydroxybenzoic acid derivatives and determined the involvement of miR-1271. Among the hydroxybenzoic acid derivatives, gallic acid (GA) showed the best anti-diabetic activity. GA improved free fatty acid (FFA)-induced hepatic IR, increased glucose consumption, and decreased reactive oxygen species. GA inhibited the upregulation of miR-1271 induced by FFA and upregulated its targets such as p-IRS, p-PI3K, p-AKT, and p-FOXO1, accompanied by the regulation of glucose metabolism genes. The involvement of miR-1271 in the protective effect of GA against IR was further confirmed in the presence of miR-1271 mimic or miR-1271 inhibitor. Our results suggest that GA attenuates IR via the miR-1271/IRS/PI3K/AKT/FOXO1 pathway and thus might be considered for the management of IR. PRACTICAL APPLICATIONS: MicroRNAs can regulate insulin resistance by affecting protein expressions involved in insulin signaling. Experimental data suggest that some phytochemicals regulate the expression of various microRNAs. However, it is not clear whether phenolic acids play any role in the hepatic insulin signaling pathway through the regulation of microRNA expression. This study assessed the anti-diabetic activity of hydroxybenzoic acid derivatives through down-regulation of microRNA-1271 and its association with the IRS1/PI3K/AKT/FOXO1 pathways. This research will be able to offer basic information regarding a potential therapeutic strategy to control hepatic insulin resistance.
Collapse
Affiliation(s)
- Hana Lee
- Department of Food Science and Biotechnology, College of Agriculture, Life, & Environmental Sciences, Chungbuk National University, Cheongju, Korea
| | - Junsoo Lee
- Department of Food Science and Biotechnology, College of Agriculture, Life, & Environmental Sciences, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
150
|
Sasani N, Kazemi A, Rezaiyan M, Amiri-Ardekani E, Akhlaghi M, Babajafari S, Mazloomi SM. Effect of Artemisia extract on glycemic control: A systematic review and meta-analysis of randomized controlled trial. Int J Clin Pract 2021; 75:e14719. [PMID: 34390100 DOI: 10.1111/ijcp.14719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 08/09/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND AIM Animal and human studies have indicated anti-diabetic effect of Asteraceae. The present study aimed to systematically review and analyse randomized controlled trials assessing the effect of Artemisia extract on glycemic status in patients with impaired glycemic control. METHODS Web of Science, Cochrane library, EMBASE and PubMed databases were searched from the earliest possible date up to 7th October 2020. RESULTS Six studies were included in the meta-analysis. Analysis showed that supplementation with Artemisia extract decreased homeostatic model assessment of insulin resistance (HOMA-IR) (-0.734, 95% CI: -1.236 to -0.232, P = .019) in comparison to placebo. However, reductions in fasting blood glucose (FBG) (-0.595, 95% CI: -1.566 to 0.376, P = .164), insulin (-0.322, 95% CI: -1.047 to 0.404, P = .286) and glycated haemoglobin (-0.106, 95% CI: -0.840 to 0.629, P = .678) were not statistically significant. CONCLUSION Supplementation with Artemisia extract may reduce HOMA-IR, but beneficial effects on other markers such as FBG requires further investigations.
Collapse
Affiliation(s)
- Najmeh Sasani
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asma Kazemi
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Rezaiyan
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ehsan Amiri-Ardekani
- Department of Phytopharmaceuticals (Traditional Pharmacy), Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Association of Indigenous Knowledge, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoumeh Akhlaghi
- Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Siavash Babajafari
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Mazloomi
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|