101
|
Justice AE, Chittoor G, Gondalia R, Melton PE, Lim E, Grove ML, Whitsel EA, Liu CT, Cupples LA, Fernandez-Rhodes L, Guan W, Bressler J, Fornage M, Boerwinkle E, Li Y, Demerath E, Heard-Costa N, Levy D, Stewart JD, Baccarelli A, Hou L, Conneely K, Mori TA, Beilin LJ, Huang RC, Gordon-Larsen P, Howard AG, North KE. Methylome-wide association study of central adiposity implicates genes involved in immune and endocrine systems. Epigenomics 2020; 12:1483-1499. [PMID: 32901515 PMCID: PMC7923253 DOI: 10.2217/epi-2019-0276] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 05/22/2020] [Indexed: 12/14/2022] Open
Abstract
Aim: We conducted a methylome-wide association study to examine associations between DNA methylation in whole blood and central adiposity and body fat distribution, measured as waist circumference, waist-to-hip ratio and waist-to-height ratio adjusted for body mass index, in 2684 African-American adults in the Atherosclerosis Risk in Communities study. Materials & methods: We validated significantly associated cytosine-phosphate-guanine methylation sites (CpGs) among adults using the Women's Health Initiative and Framingham Heart Study participants (combined n = 5743) and generalized associations in adolescents from The Raine Study (n = 820). Results & conclusion: We identified 11 CpGs that were robustly associated with one or more central adiposity trait in adults and two in adolescents, including CpG site associations near TXNIP, ADCY7, SREBF1 and RAP1GAP2 that had not previously been associated with obesity-related traits.
Collapse
Affiliation(s)
- Anne E Justice
- Department of Population Health Sciences, Geisinger, Danville, PA 17822, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Geetha Chittoor
- Department of Population Health Sciences, Geisinger, Danville, PA 17822, USA
| | - Rahul Gondalia
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Phillip E Melton
- School of Biomedical Science, Faculty of Health & Medical Sciences, The University of Western Australia, Perth, WA 6000, Australia
- School of Pharmacy & Biomedical Sciences, Faculty of Health Sciences, Curtin University, MRF Building, Perth, WA 6000, Australia
- Menzies Institute for Medical Research, College of Health & Medicine, University of Tasmania, Hobart, TA, 7000 Australia
| | - Elise Lim
- Department of Biostatistics, Boston University, Boston, MA 02118, USA
| | - Megan L Grove
- Human Genetics Center, Department of Epidemiology, Human Genetics & Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Eric A Whitsel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University, Boston, MA 02118, USA
| | - L Adrienne Cupples
- Department of Biostatistics, Boston University, Boston, MA 02118, USA
- Framingham Heart Study, Framingham, MA, 01701, USA
| | - Lindsay Fernandez-Rhodes
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biobehavioral Health, Pennsylvania State University, University Park, PA 16802, USA
| | - Weihua Guan
- Division of Biostatistics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jan Bressler
- Human Genetics Center, Department of Epidemiology, Human Genetics & Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Myriam Fornage
- Center for Human Genetics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics & Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yun Li
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Ellen Demerath
- Division of Epidemiology & Community Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nancy Heard-Costa
- Framingham Heart Study, Framingham, MA, 01701, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Dan Levy
- Population sciences branch, NHLBI Framingham Heart Study, Framingham, MA 01702, USA
- Department of Medicine, Boston University, Boston, MA 02118, USA
| | - James D Stewart
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Andrea Baccarelli
- Laboratory of Environmental Epigenetics, Departments of Environmental Health Sciences & Epidemiology, Columbia University Mailman School of Public Health, New York, NY 10032, USA
| | - Lifang Hou
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University Chicago, Evanston, IL, USA
| | - Karen Conneely
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Trevor A Mori
- Medical School, University of Western Australia, Perth, Australia
| | | | - Rae-Chi Huang
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Penny Gordon-Larsen
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, NC 27599, USA
- Carolina Population Center, University of North Carolina at Chapel Hill, NC 27516, USA
| | - Annie Green Howard
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Carolina Population Center, University of North Carolina at Chapel Hill, NC 27516, USA
| | - Kari E North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Carolina Population Center, University of North Carolina at Chapel Hill, NC 27516, USA
| |
Collapse
|
102
|
Poveda A, Atabaki‐Pasdar N, Ahmad S, Hallmans G, Renström F, Franks PW. Association of Established Blood Pressure Loci With 10-Year Change in Blood Pressure and Their Ability to Predict Incident Hypertension. J Am Heart Assoc 2020; 9:e014513. [PMID: 32805198 PMCID: PMC7660819 DOI: 10.1161/jaha.119.014513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 06/11/2020] [Indexed: 01/11/2023]
Abstract
Background Genome-wide association studies have identified >1000 genetic variants cross-sectionally associated with blood pressure variation and prevalent hypertension. These discoveries might aid the early identification of subpopulations at risk of developing hypertension or provide targets for drug development, amongst other applications. The aim of the present study was to analyze the association of blood pressure-associated variants with long-term changes (10 years) in blood pressure and also to assess their ability to predict hypertension incidence compared with traditional risk variables in a Swedish population. Methods and Results We constructed 6 genetic risk scores (GRSs) by summing the dosage of the effect allele at each locus of genetic variants previously associated with blood pressure traits (systolic blood pressure GRS (GRSSBP): 554 variants; diastolic blood pressure GRS (GRSDBP): 481 variants; mean arterial pressure GRS (GRSMAP): 20 variants; pulse pressure GRS (GRSPP): 478 variants; hypertension GRS (GRSHTN): 22 variants; combined GRS (GRScomb): 1152 variants). Each GRS was longitudinally associated with its corresponding blood pressure trait, with estimated effects per GRS SD unit of 0.50 to 1.21 mm Hg for quantitative traits and odds ratios (ORs) of 1.10 to 1.35 for hypertension incidence traits. The GRScomb was also significantly associated with hypertension incidence defined according to European guidelines (OR, 1.22 per SD; 95% CI, 1.10‒1.35) but not US guidelines (OR, 1.11 per SD; 95% CI, 0.99‒1.25) while controlling for traditional risk factors. The addition of GRScomb to a model containing traditional risk factors only marginally improved discrimination (Δarea under the ROC curve = 0.001-0.002). Conclusions GRSs based on discovered blood pressure-associated variants are associated with long-term changes in blood pressure traits and hypertension incidence, but the inclusion of genetic factors in a model composed of conventional hypertension risk factors did not yield a material increase in predictive ability.
Collapse
Affiliation(s)
- Alaitz Poveda
- Genetic and Molecular Epidemiology UnitDepartment of Clinical SciencesLund University Diabetes CentreLund UniversityMalmöSweden
| | - Naeimeh Atabaki‐Pasdar
- Genetic and Molecular Epidemiology UnitDepartment of Clinical SciencesLund University Diabetes CentreLund UniversityMalmöSweden
| | - Shafqat Ahmad
- Preventive Medicine DivisionBrigham and Women's HospitalHarvard Medical SchoolBostonMA
- Department of Medical SciencesMolecular EpidemiologyUppsala UniversityUppsalaSweden
| | - Göran Hallmans
- Section for Nutritional ResearchDepartment of Public Health and Clinical MedicineUmeå UniversityUmeåSweden
| | - Frida Renström
- Genetic and Molecular Epidemiology UnitDepartment of Clinical SciencesLund University Diabetes CentreLund UniversityMalmöSweden
- Section for Nutritional ResearchDepartment of Public Health and Clinical MedicineUmeå UniversityUmeåSweden
- Division of Endocrinology and DiabetesCantonal Hospital St. GallenSt. GallenSwitzerland
| | - Paul W. Franks
- Genetic and Molecular Epidemiology UnitDepartment of Clinical SciencesLund University Diabetes CentreLund UniversityMalmöSweden
- Section for Nutritional ResearchDepartment of Public Health and Clinical MedicineUmeå UniversityUmeåSweden
- Department of NutritionHarvard Chan School of Public HealthBostonMA
| |
Collapse
|
103
|
Jian X, Sofer T, Tarraf W, Bressler J, Faul JD, Zhao W, Ratliff SM, Lamar M, Launer LJ, Laurie CC, Schneiderman N, Weir DR, Wright CB, Yaffe K, Zeng D, DeCarli C, Mosley TH, Smith JA, González HM, Fornage M. Genome-wide association study of cognitive function in diverse Hispanics/Latinos: results from the Hispanic Community Health Study/Study of Latinos. Transl Psychiatry 2020; 10:245. [PMID: 32699239 PMCID: PMC7376098 DOI: 10.1038/s41398-020-00930-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/19/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022] Open
Abstract
Cognitive function such as reasoning, attention, memory, and language is strongly correlated with brain aging. Compared to non-Hispanic whites, Hispanics/Latinos have a higher risk of cognitive impairment and dementia. The genetic determinants of cognitive function have not been widely explored in this diverse and admixed population. We conducted a genome-wide association analysis of cognitive function in up to 7600 middle aged and older Hispanics/Latinos (mean = 55 years) from the Hispanic Community Health Study / Study of Latinos (HCHS/SOL). Four cognitive measures were examined: the Brief Spanish English Verbal Learning Test (B-SEVLT), the Word Fluency Test (WFT), the Digit Symbol Substitution Test (DSST), the Six-Item Screener (SIS). Four novel loci were identified: one for B-SEVLT at 4p14, two for WFT at 3p14.1 and 6p21.32, and one for DSST at 10p13. These loci implicate genes highly expressed in brain and previously connected to neurological diseases (UBE2K, FRMD4B, the HLA gene complex). By applying tissue-specific gene expression prediction models to our genotype data, additional genes highly expressed in brain showed suggestive associations with cognitive measures possibly indicating novel biological mechanisms, including IFT122 in the hippocampus for SIS, SNX31 in the basal ganglia for B-SEVLT, RPS6KB2 in the frontal cortex for WFT, and CSPG5 in the hypothalamus for DSST. These findings provide new information about the genetic determinants of cognitive function in this unique population. In addition, we derived a measure of general cognitive function based on these cognitive tests and generated genome-wide association summary results, providing a resource to the research community for comparison, replication, and meta-analysis in future genetic studies in Hispanics/Latinos.
Collapse
Affiliation(s)
- Xueqiu Jian
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Tamar Sofer
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wassim Tarraf
- Institute of Gerontology and Department of Health Care Sciences, Wayne State University, Detroit, MI, USA
| | - Jan Bressler
- Department of Epidemiology, Human Genetics and Environmental Sciences and Human Genetics Center, The University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA
| | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Wei Zhao
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Scott M Ratliff
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Melissa Lamar
- Department of Behavioral Sciences, Rush Medical College, Chicago, IL, USA
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Science, National Institute on Aging, Bethesda, MD, USA
| | - Cathy C Laurie
- Department of Biostatistics, University of Washington School of Public Health, Seattle, WA, USA
| | - Neil Schneiderman
- Department of Psychology, University of Miami, Coral Gables, FL, USA
| | - David R Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Clinton B Wright
- Division of Clinical Research, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Kristine Yaffe
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Donglin Zeng
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Charles DeCarli
- Department of Neurology, School of Medicine and Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California, Davis, Sacramento, CA, USA
| | - Thomas H Mosley
- Memory Impairment and Neurodegenerative Dementia (MIND) Center and Department of Medicine, The University of Mississippi Medical Center, Jackson, MS, USA
| | - Jennifer A Smith
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Hector M González
- Department of Neurosciences and Shiley-Marcos Alzheimer's Disease Research Center, University of California, San Diego, La Jolla, CA, USA
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Department of Epidemiology, Human Genetics and Environmental Sciences and Human Genetics Center, The University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA.
| |
Collapse
|
104
|
Associations between PHACTR1 gene polymorphisms and pulse pressure in Chinese Han population. Biosci Rep 2020; 40:224380. [PMID: 32420588 PMCID: PMC7276519 DOI: 10.1042/bsr20193779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 11/25/2022] Open
Abstract
A genome-wide association study (GWAS) in Chinese twins was performed to explore associations between genes and pulse pressure (PP) in 2012, and detected a suggestive association in the phosphatase and actin regulator 1 (PHACTR1) gene on chromosome 6p24.1 (rs1223397, P=1.04e−07). The purpose of the present study was to investigate associations of PHACTR1 gene polymorphisms with PP in a Chinese population. We recruited 347 subjects with PP ≥ 65 mmHg as cases and 359 subjects with 30 ≤ PP ≤ 45 mmHg as controls. Seven single nucleotide polymorphisms (SNPs) in the PHACTR1 gene were genotyped. Logistic regression was performed to explore associations between SNPs and PP in codominant, additive, dominant, recessive and overdominant models. The Pearson’s χ2 test was applied to assess the relationships of haplotypes and PP. The A allele of rs9349379 had a positive effect on high PP. Multivariate logistic regression analysis showed that rs9349379 was significantly related to high PP in codominant [AA vs GG, 2.255 (1.132–4.492)], additive [GG vs GA vs AA, 1.368 (1.049–1.783)] and recessive [AA vs GA + GG, 2.062 (1.051–4.045)] models. The positive association between rs499818 and high PP was significant in codominant [AA vs GG, 3.483 (1.044–11.613)] and recessive [AA vs GG + GA, 3.716 (1.119–12.339)] models. No significant association of haplotypes with PP was detected. There was no significant interaction between six SNPs without strong linkage. In conclusion, the present study presents that rs9349379 and rs499818 in the PHACTR1 gene were significantly associated with PP in Chinese population. Future research should be conducted to confirm them.
Collapse
|
105
|
Microbiota-governed microRNA-204 impairs endothelial function and blood pressure decline during inactivity in db/db mice. Sci Rep 2020; 10:10065. [PMID: 32572127 PMCID: PMC7308358 DOI: 10.1038/s41598-020-66786-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/15/2020] [Indexed: 01/05/2023] Open
Abstract
An impaired decline in blood pressure at rest is typical in people with diabetes, reflects endothelial dysfunction, and increases the risk of end-organ damage. Here we report that microRNA-204 (miR-204) promotes endothelial dysfunction and impairment in blood pressure decline during inactivity. We show that db/db mice overexpress miR-204 in the aorta, and its absence rescues endothelial dysfunction and impaired blood pressure decline during inactivity despite obesity. The vascular miR-204 is sensitive to microbiota, and microbial suppression reversibly decreases aortic miR-204 and improves endothelial function, while the endothelial function of mice lacking miR-204 remained indifferent to the microbial alterations. We also show that the circulating miR-122 regulates vascular miR-204 as miR-122 inhibition decreases miR-204 in endothelial cells and aorta. This study establishes that miR-204 impairs endothelial function, promotes impairment in blood pressure decline during rest, and opens avenues for miR-204 inhibition strategies against vascular dysfunction.
Collapse
|
106
|
Fernandez-Rhodes L, Young KL, Lilly AG, Raffield LM, Highland HM, Wojcik GL, Agler C, M Love SA, Okello S, Petty LE, Graff M, Below JE, Divaris K, North KE. Importance of Genetic Studies of Cardiometabolic Disease in Diverse Populations. Circ Res 2020; 126:1816-1840. [PMID: 32496918 PMCID: PMC7285892 DOI: 10.1161/circresaha.120.315893] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Genome-wide association studies have revolutionized our understanding of the genetic underpinnings of cardiometabolic disease. Yet, the inadequate representation of individuals of diverse ancestral backgrounds in these studies may undercut their ultimate potential for both public health and precision medicine. The goal of this review is to describe the imperativeness of studying the populations who are most affected by cardiometabolic disease, to the aim of better understanding the genetic underpinnings of the disease. We support this premise by describing the current variation in the global burden of cardiometabolic disease and emphasize the importance of building a globally and ancestrally representative genetics evidence base for the identification of population-specific variants, fine-mapping, and polygenic risk score estimation. We discuss the important ethical, legal, and social implications of increasing ancestral diversity in genetic studies of cardiometabolic disease and the challenges that arise from the (1) lack of diversity in current reference populations and available analytic samples and the (2) unequal generation of health-associated genomic data and their prediction accuracies. Despite these challenges, we conclude that additional, unprecedented opportunities lie ahead for public health genomics and the realization of precision medicine, provided that the gap in diversity can be systematically addressed. Achieving this goal will require concerted efforts by social, academic, professional and regulatory stakeholders and communities, and these efforts must be based on principles of equity and social justice.
Collapse
Affiliation(s)
- Lindsay Fernandez-Rhodes
- Department of Biobehavioral Health, College of Health and Human Development, Pennsylvania State University, University Park, PA
| | - Kristin L Young
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Adam G Lilly
- Department of Sociology, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Heather M Highland
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Genevieve L Wojcik
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Cary Agler
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Pediatric and Public Health, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Shelly-Ann M Love
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Samson Okello
- Department of Internal Medicine, Mbarara University of Science and Technology, Uganda
- University of Virginia, Charlottesville, VA
- Harvard TH Chan School of Public Health, Boston, MA
| | - Lauren E Petty
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Vanderbilt, TN
- Department of Genetic Medicine, Vanderbilt University, Vanderbilt, TN
| | - Mariaelisa Graff
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jennifer E Below
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Vanderbilt, TN
- Department of Genetic Medicine, Vanderbilt University, Vanderbilt, TN
| | - Kimon Divaris
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Pediatric and Public Health, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Kari E. North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Carolina Center for Genome Sciences, Chapel Hill, NC
| |
Collapse
|
107
|
Affiliation(s)
- Colin Baigent
- MRC Population Health Research Unit, Nuffield Department of Population Health, Oxford, UK
| | - Michael V Holmes
- MRC Population Health Research Unit, Nuffield Department of Population Health, Oxford, UK
| |
Collapse
|
108
|
Nuotio J, Suvila K, Cheng S, Langén V, Niiranen T. Longitudinal blood pressure patterns and cardiovascular disease risk. Ann Med 2020; 52:43-54. [PMID: 32077328 PMCID: PMC7877994 DOI: 10.1080/07853890.2020.1733648] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Observational and interventional studies have unequivocally demonstrated that "present", i.e. single-occasion, blood pressure is one of the key determinants of cardiovascular disease risk. Over the past two decades, however, numerous publications have suggested that longitudinal blood pressure data and assessment of long-term blood pressure exposure provide incremental prognostic value over present blood pressure. These studies have used several different indices to quantify the overall exposure to blood pressure, such as time-averaged blood pressure, cumulative blood pressure, blood pressure trajectory patterns, and age of hypertension onset. This review summarises existing research on the association between these indices and hard cardiovascular outcomes, outlines the strengths and weaknesses of these indices, and provides an overview of how longitudinal blood pressure changes can be measured and used to improve cardiovascular disease risk prediction.KEY MESSAGESNumerous recent publications have examined the relation between cardiovascular disease and long-term blood pressure (BP) exposure, quantified using indices such as time-averaged BP, cumulative BP, BP trajectory patterns, and age of hypertension onset.This review summarises existing research on the association between these indices and hard cardiovascular outcomes, outlines the strengths and weaknesses of these indices, and provides an overview of how longitudinal BP changes can be measured and used to improve cardiovascular disease risk prediction.Although longitudinal BP indices seem to predict cardiovascular outcomes better than present BP, there are considerable differences in the clinical feasibility of these indices along with a limited number of prospective data.
Collapse
Affiliation(s)
- Joel Nuotio
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland.,Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland.,Department of Heart Center, Turku University Hospital and University of Turku, Turku, Finland.,Murdoch Children's Research Institute, Melbourne, Australia
| | - Karri Suvila
- Division of Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Susan Cheng
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,The Framingham Heart Study, Framingham, MA, USA
| | - Ville Langén
- Division of Medicine, Turku University Hospital and University of Turku, Turku, Finland.,Department of Geriatrics, University of Turku, Turku, Finland
| | - Teemu Niiranen
- Division of Medicine, Turku University Hospital and University of Turku, Turku, Finland.,Department of Health, The Finnish Institute for Health and Welfare, Helsinki, Finland
| |
Collapse
|
109
|
Abstract
This article is a comprehensive document on the diagnosis and management of fibromuscular dysplasia (FMD) which was commissioned by the Working Group 'Hypertension and the Kidney' of the European Society of Hypertension (ESH) and the Society for Vascular Medicine (SVM). This document updates previous consensus documents/scientific statements on FMD published in 2014 with full harmonization of the position of European and US experts. In addition to practical consensus-based clinical recommendations, including a consensus protocol for catheter-based angiography and percutaneous angioplasty for renal FMD, the document also includes the first analysis of the European/International FMD Registry and provides updated data from the US Registry for FMD. Finally, it provides insights on ongoing research programs and proposes future research directions for understanding this multifaceted arterial disease.
Collapse
|
110
|
Zekavat SM, Aragam K, Emdin C, Khera AV, Klarin D, Zhao H, Natarajan P. Genetic Association of Finger Photoplethysmography-Derived Arterial Stiffness Index With Blood Pressure and Coronary Artery Disease. Arterioscler Thromb Vasc Biol 2020; 39:1253-1261. [PMID: 31070453 DOI: 10.1161/atvbaha.119.312626] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective- Arterial stiffness index (ASI) is independently associated with blood pressure (BP) and coronary artery disease (CAD) epidemiologically. However, it is unknown whether these associations represent causal relationships. Here, we assess whether genetic predisposition to increased ASI is associated with elevated BP and CAD risk. Approach and Results- We first performed a large-scale epidemiological association of finger photoplethysmography-derived ASI in the UK Biobank, finding significant associations with systolic BP (β=0.55 mm Hg; [95% CI, 0.45-0.65]; P=5.77×10-24; N=137 858), diastolic BP (β=1.05 mm Hg; [95% CI, 0.99-1.11]; P=7.27×10-272; N=137 862), and incident CAD (hazard ratio, 1.08; [95% CI, 1.04-1.11]; P=1.5×10-6; N=3692 cases, 126 615 controls) in multivariable models. We then performed an ASI genome-wide association study analysis in 131 686 participants from the UK Biobank. Across participants not in the ASI genome-wide association study, a 6-variant ASI polygenic risk score was calculated. Each SD increase in genetic ASI was associated with systolic BP (β=4.63 mm Hg; [95% CI, 2.1-7.2]; P=3.37×10-4; N=208 897), and diastolic BP (β=2.61 mm Hg; [95% CI, 1.2-4.0]; P=2.85×10-4; N=208 897); however, no association was observed with incident CAD (hazard ratio, 1.12; [95% CI, 0.55-2.3]; P=0.75; N=223 061; 7534 cases). The lack of CAD association observed was replicated among 184 305 participants (60 810 cases) from the CARDIOGRAMplusC4D (Coronary Artery Disease Genetics Consortium; odds ratio, 0.56; [95% CI, 0.26-1.24]; P=0.15). Conclusions- Our data support the conclusion that finger photoplethysmography-derived ASI is an independent, genetically causal risk factor for BP, but do not support the notion that ASI is a suitable surrogate for CAD risk.
Collapse
Affiliation(s)
- Seyedeh M Zekavat
- From the Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA (S.M.Z., K.A., C.E., A.V.K., D.K., P.N.).,Yale School of Medicine, New Haven, CT (S.M.Z.).,Computational Biology and Bioinformatics Program, Yale University, New Haven, CT (S.M.Z., H.Z.).,Center for Genomic Medicine (S.M.Z., K.A., A.V.K., D.K., P.N.), Massachusetts General Hospital, Boston.,Cardiovascular Research Center (S.M.Z., K.A., P.N.), Massachusetts General Hospital, Boston
| | - Krishna Aragam
- From the Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA (S.M.Z., K.A., C.E., A.V.K., D.K., P.N.).,Center for Genomic Medicine (S.M.Z., K.A., A.V.K., D.K., P.N.), Massachusetts General Hospital, Boston.,Cardiovascular Research Center (S.M.Z., K.A., P.N.), Massachusetts General Hospital, Boston.,Harvard Medical School, Boston, MA (K.A., C.E., A.V.K., D.K., P.N.)
| | - Connor Emdin
- From the Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA (S.M.Z., K.A., C.E., A.V.K., D.K., P.N.).,Harvard Medical School, Boston, MA (K.A., C.E., A.V.K., D.K., P.N.)
| | - Amit V Khera
- From the Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA (S.M.Z., K.A., C.E., A.V.K., D.K., P.N.).,Center for Genomic Medicine (S.M.Z., K.A., A.V.K., D.K., P.N.), Massachusetts General Hospital, Boston.,Harvard Medical School, Boston, MA (K.A., C.E., A.V.K., D.K., P.N.)
| | - Derek Klarin
- From the Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA (S.M.Z., K.A., C.E., A.V.K., D.K., P.N.).,Center for Genomic Medicine (S.M.Z., K.A., A.V.K., D.K., P.N.), Massachusetts General Hospital, Boston.,Harvard Medical School, Boston, MA (K.A., C.E., A.V.K., D.K., P.N.)
| | - Hongyu Zhao
- Computational Biology and Bioinformatics Program, Yale University, New Haven, CT (S.M.Z., H.Z.).,Department of Biostatistics, Yale School of Public Health, New Haven, CT (H.Z.)
| | - Pradeep Natarajan
- From the Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA (S.M.Z., K.A., C.E., A.V.K., D.K., P.N.).,Center for Genomic Medicine (S.M.Z., K.A., A.V.K., D.K., P.N.), Massachusetts General Hospital, Boston.,Cardiovascular Research Center (S.M.Z., K.A., P.N.), Massachusetts General Hospital, Boston.,Harvard Medical School, Boston, MA (K.A., C.E., A.V.K., D.K., P.N.)
| |
Collapse
|
111
|
Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Delling FN, Djousse L, Elkind MSV, Ferguson JF, Fornage M, Khan SS, Kissela BM, Knutson KL, Kwan TW, Lackland DT, Lewis TT, Lichtman JH, Longenecker CT, Loop MS, Lutsey PL, Martin SS, Matsushita K, Moran AE, Mussolino ME, Perak AM, Rosamond WD, Roth GA, Sampson UKA, Satou GM, Schroeder EB, Shah SH, Shay CM, Spartano NL, Stokes A, Tirschwell DL, VanWagner LB, Tsao CW. Heart Disease and Stroke Statistics-2020 Update: A Report From the American Heart Association. Circulation 2020; 141:e139-e596. [PMID: 31992061 DOI: 10.1161/cir.0000000000000757] [Citation(s) in RCA: 5393] [Impact Index Per Article: 1078.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The American Heart Association, in conjunction with the National Institutes of Health, annually reports on the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure, and glucose control) that contribute to cardiovascular health. The Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, heart failure, valvular disease, venous disease, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The American Heart Association, through its Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the annual Statistical Update. The 2020 Statistical Update is the product of a full year's worth of effort by dedicated volunteer clinicians and scientists, committed government professionals, and American Heart Association staff members. This year's edition includes data on the monitoring and benefits of cardiovascular health in the population, metrics to assess and monitor healthy diets, an enhanced focus on social determinants of health, a focus on the global burden of cardiovascular disease, and further evidence-based approaches to changing behaviors, implementation strategies, and implications of the American Heart Association's 2020 Impact Goals. RESULTS Each of the 26 chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policy makers, media professionals, clinicians, healthcare administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
112
|
Pendergrass SA, Buyske S, Jeff JM, Frase A, Dudek S, Bradford Y, Ambite JL, Avery CL, Buzkova P, Deelman E, Fesinmeyer MD, Haiman C, Heiss G, Hindorff LA, Hsu CN, Jackson RD, Lin Y, Le Marchand L, Matise TC, Monroe KR, Moreland L, North KE, Park SL, Reiner A, Wallace R, Wilkens LR, Kooperberg C, Ritchie MD, Crawford DC. A phenome-wide association study (PheWAS) in the Population Architecture using Genomics and Epidemiology (PAGE) study reveals potential pleiotropy in African Americans. PLoS One 2019; 14:e0226771. [PMID: 31891604 PMCID: PMC6938343 DOI: 10.1371/journal.pone.0226771] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/11/2022] Open
Abstract
We performed a hypothesis-generating phenome-wide association study (PheWAS) to identify and characterize cross-phenotype associations, where one SNP is associated with two or more phenotypes, between thousands of genetic variants assayed on the Metabochip and hundreds of phenotypes in 5,897 African Americans as part of the Population Architecture using Genomics and Epidemiology (PAGE) I study. The PAGE I study was a National Human Genome Research Institute-funded collaboration of four study sites accessing diverse epidemiologic studies genotyped on the Metabochip, a custom genotyping chip that has dense coverage of regions in the genome previously associated with cardio-metabolic traits and outcomes in mostly European-descent populations. Here we focus on identifying novel phenome-genome relationships, where SNPs are associated with more than one phenotype. To do this, we performed a PheWAS, testing each SNP on the Metabochip for an association with up to 273 phenotypes in the participating PAGE I study sites. We identified 133 putative pleiotropic variants, defined as SNPs associated at an empirically derived p-value threshold of p<0.01 in two or more PAGE study sites for two or more phenotype classes. We further annotated these PheWAS-identified variants using publicly available functional data and local genetic ancestry. Amongst our novel findings is SPARC rs4958487, associated with increased glucose levels and hypertension. SPARC has been implicated in the pathogenesis of diabetes and is also known to have a potential role in fibrosis, a common consequence of multiple conditions including hypertension. The SPARC example and others highlight the potential that PheWAS approaches have in improving our understanding of complex disease architecture by identifying novel relationships between genetic variants and an array of common human phenotypes.
Collapse
Affiliation(s)
| | - Steven Buyske
- Department of Statistics, Rutgers University, Piscataway, New Jersey, United States of America
- Department of Genetics, Rutgers University, Piscataway, New Jersey, United States of America
| | - Janina M. Jeff
- Illumina, Inc., San Diego, California, United States of America
| | - Alex Frase
- Department of Genetics, Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Scott Dudek
- Department of Genetics, Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Yuki Bradford
- Department of Genetics, Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jose-Luis Ambite
- Information Sciences Institute; University of Southern California, Marina del Rey, California, United States of America
| | - Christy L. Avery
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Petra Buzkova
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Ewa Deelman
- Information Sciences Institute; University of Southern California, Marina del Rey, California, United States of America
| | | | - Christopher Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, California, United States of America
| | - Gerardo Heiss
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Lucia A. Hindorff
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Chun-Nan Hsu
- Center for Research in Biological Systems, Department of Neurosciences, University of California, San Diego, La Jolla, California, United States of America
| | | | - Yi Lin
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, United States of America
| | - Tara C. Matise
- Department of Genetics, Rutgers University, Piscataway, New Jersey, United States of America
| | - Kristine R. Monroe
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, California, United States of America
| | - Larry Moreland
- University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Kari E. North
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Sungshim L. Park
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, California, United States of America
| | - Alex Reiner
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
| | - Robert Wallace
- Departments of Epidemiology and Internal Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Lynne R. Wilkens
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, United States of America
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Marylyn D. Ritchie
- Department of Genetics, Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Dana C. Crawford
- Cleveland Institute for Computational Biology, Cleveland, Ohio, United States of America
- Departments of Population and Quantitative Health Sciences and Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
113
|
Abraham G, Malik R, Yonova-Doing E, Salim A, Wang T, Danesh J, Butterworth AS, Howson JMM, Inouye M, Dichgans M. Genomic risk score offers predictive performance comparable to clinical risk factors for ischaemic stroke. Nat Commun 2019; 10:5819. [PMID: 31862893 PMCID: PMC6925280 DOI: 10.1038/s41467-019-13848-1] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/28/2019] [Indexed: 01/17/2023] Open
Abstract
Recent genome-wide association studies in stroke have enabled the generation of genomic risk scores (GRS) but their predictive power has been modest compared to established stroke risk factors. Here, using a meta-scoring approach, we develop a metaGRS for ischaemic stroke (IS) and analyse this score in the UK Biobank (n = 395,393; 3075 IS events by age 75). The metaGRS hazard ratio for IS (1.26, 95% CI 1.22-1.31 per metaGRS standard deviation) doubles that of a previous GRS, identifying a subset of individuals at monogenic levels of risk: the top 0.25% of metaGRS have three-fold risk of IS. The metaGRS is similarly or more predictive compared to several risk factors, such as family history, blood pressure, body mass index, and smoking. We estimate the reductions needed in modifiable risk factors for individuals with different levels of genomic risk and suggest that, for individuals with high metaGRS, achieving risk factor levels recommended by current guidelines may be insufficient to mitigate risk.
Collapse
Affiliation(s)
- Gad Abraham
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- Department of Clinical Pathology, University of Melbourne, Parkville, VIC, Australia.
| | - Rainer Malik
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Ekaterina Yonova-Doing
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Agus Salim
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Mathematics and Statistics, La Trobe University, Melbourne, VIC, Australia
| | - Tingting Wang
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - John Danesh
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Adam S Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Joanna M M Howson
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, UK
| | - Michael Inouye
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- Department of Clinical Pathology, University of Melbourne, Parkville, VIC, Australia.
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK.
- The Alan Turing Institute, London, UK.
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilians-Universität LMU, Munich, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
114
|
Tam V, Patel N, Turcotte M, Bossé Y, Paré G, Meyre D. Benefits and limitations of genome-wide association studies. Nat Rev Genet 2019; 20:467-484. [PMID: 31068683 DOI: 10.1038/s41576-019-0127-1] [Citation(s) in RCA: 1119] [Impact Index Per Article: 186.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Genome-wide association studies (GWAS) involve testing genetic variants across the genomes of many individuals to identify genotype-phenotype associations. GWAS have revolutionized the field of complex disease genetics over the past decade, providing numerous compelling associations for human complex traits and diseases. Despite clear successes in identifying novel disease susceptibility genes and biological pathways and in translating these findings into clinical care, GWAS have not been without controversy. Prominent criticisms include concerns that GWAS will eventually implicate the entire genome in disease predisposition and that most association signals reflect variants and genes with no direct biological relevance to disease. In this Review, we comprehensively assess the benefits and limitations of GWAS in human populations and discuss the relevance of performing more GWAS.
Collapse
Affiliation(s)
- Vivian Tam
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Nikunj Patel
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Michelle Turcotte
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Yohan Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec-Université Laval, Québec City, Québec, Canada.,Department of Molecular Medicine, Laval University, Québec City, Quebec, Canada
| | - Guillaume Paré
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - David Meyre
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada. .,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada. .,Inserm UMRS 954 N-GERE (Nutrition-Genetics-Environmental Risks), University of Lorraine, Faculty of Medicine, Nancy, France.
| |
Collapse
|
115
|
Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Das SR, Delling FN, Djousse L, Elkind MSV, Ferguson JF, Fornage M, Jordan LC, Khan SS, Kissela BM, Knutson KL, Kwan TW, Lackland DT, Lewis TT, Lichtman JH, Longenecker CT, Loop MS, Lutsey PL, Martin SS, Matsushita K, Moran AE, Mussolino ME, O'Flaherty M, Pandey A, Perak AM, Rosamond WD, Roth GA, Sampson UKA, Satou GM, Schroeder EB, Shah SH, Spartano NL, Stokes A, Tirschwell DL, Tsao CW, Turakhia MP, VanWagner LB, Wilkins JT, Wong SS, Virani SS. Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation 2019; 139:e56-e528. [PMID: 30700139 DOI: 10.1161/cir.0000000000000659] [Citation(s) in RCA: 5812] [Impact Index Per Article: 968.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
116
|
Li M, Wang A, Quek LE, Vernon S, Figtree GA, Yang J, O'Sullivan JF. Metabolites downstream of predicted loss-of-function variants inform relationship to disease. Mol Genet Metab 2019; 128:476-482. [PMID: 31679996 DOI: 10.1016/j.ymgme.2019.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/26/2019] [Accepted: 10/06/2019] [Indexed: 11/21/2022]
Abstract
A small minority (< 3%) of protein-coding genetic variants are predicted to lead to loss of protein function. However, these predicted loss-of-function (pLOF) variants can provide insight into mode of transcriptional effect. To examine how these changes are propagated to phenotype, we determined associations with downstream metabolites. We performed association analyses of 37 pLOF variants - previously reported to be significantly associated with disease in >400,000 subjects in UK Biobank - with metabolites. We conducted these analyses in three community-based cohorts: the Framingham Heart Study (FHS) Offspring Cohort, FHS Generation 3, and the KORA F4 cohort. We identified 19 new low-frequency or rare (minor allele frequency (MAF) <5%) pLOF variant-metabolite associations, and 12 new common (MAF > 5%) pLOF variant-metabolite associations. Rare pLOF variants in the genes BTN3A2, ENPEP, and GEM that have been associated with blood pressure in UK Biobank, were associated with vasoactive metabolites indoxyl sulfate, asymmetric dimethylarginine (ADMA), and with niacinamide, respectively. A common pLOF variant in gene CCHCR1, associated with asthma in UK Biobank, was associated with histamine and niacinamide in FHS Generation 3, both reported to play a role in this disease. Common variants in olfactory receptor gene OX4C11 that associated with blood pressure in UK Biobank were associated with the nicotine metabolite cotinine, suggesting an interaction between altered olfaction, smoking behaviour, and blood pressure. These findings provide biological validity for pLOF variant-disease associations, and point to the effector roles of common metabolites. Such an approach may provide novel disease markers and therapeutic targets.
Collapse
Affiliation(s)
- Mengbo Li
- The University of Sydney, School of Mathematics and Statistics, Sydney, NSW 2006, Australia; The University of Sydney, Charles Perkins Centre, Sydney, NSW 2065, Australia
| | - Andy Wang
- The University of Sydney, School of Mathematics and Statistics, Sydney, NSW 2006, Australia; The University of Sydney, Royal North Shore Hospital, Sydney, NSW 2065, Australia
| | - Lake-Ee Quek
- The University of Sydney, School of Mathematics and Statistics, Sydney, NSW 2006, Australia
| | - Stephen Vernon
- The University of Sydney, Royal North Shore Hospital, Sydney, NSW 2065, Australia; The University of Sydney, Kolling Research Institute, Royal North Shore Hospital, Sydney, NSW 2064, Australia
| | - Gemma A Figtree
- The University of Sydney, Royal North Shore Hospital, Sydney, NSW 2065, Australia; The University of Sydney, Kolling Research Institute, Royal North Shore Hospital, Sydney, NSW 2064, Australia
| | - Jean Yang
- The University of Sydney, School of Mathematics and Statistics, Sydney, NSW 2006, Australia; The University of Sydney, Charles Perkins Centre, Sydney, NSW 2065, Australia
| | - John F O'Sullivan
- The University of Sydney, Charles Perkins Centre, Sydney, NSW 2065, Australia; The University of Sydney, Heart Research Institute, Sydney, NSW 2042, Australia; The University of Sydney, Department of Cardiology, Royal Prince Alfred Hospital, NSW 2050, Australia.
| |
Collapse
|
117
|
Espregueira Themudo G, Leerschool AR, Rodriguez-Proano C, Christiansen SL, Andersen JD, Busch JR, Christensen MR, Banner J, Morling N. Targeted exon sequencing in deceased schizophrenia patients in Denmark. Int J Legal Med 2019; 134:135-147. [PMID: 31773318 DOI: 10.1007/s00414-019-02212-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/13/2019] [Indexed: 12/26/2022]
Abstract
Schizophrenia patients have higher mortality rates and lower life expectancy than the general population. However, forensic investigations of their deaths often fail to determine the cause of death, hindering prevention. As schizophrenia is a highly heritable condition and given recent advances in our understanding of the genetics of schizophrenia, it is now possible to investigate how genetic factors may contribute to mortality. We made use of findings from genome-wide association studies (GWAS) to design a targeted panel (PsychPlex) for sequencing of exons of 451 genes near index single nucleotide polymorphisms (SNPs) identified with GWAS. We sequenced the DNA of 95 deceased schizophrenia patients included in SURVIVE, a prospective, autopsy-based study of mentally ill persons in Denmark. We compared the allele frequencies of 1039 SNPs in these cases with the frequencies of 2000 Danes without psychiatric diseases and calculated their deleteriousness (CADD) scores. For 81 SNPs highly associated with schizophrenia and CADD scores above 15, expression profiles in the Genotype-Tissue Expression (GTEx) Project indicated that these variants were in exons, whose expressions are increased in several types of brain tissues, particularly in the cerebellum. Molecular pathway analysis indicated the involvement of 163 different pathways. As for rare SNP variants, most variants were scored as either benign or likely benign with an average of 17 variants of unknown significance per individual and no pathogenic variant. Our results highlight the potential of DNA sequencing of an exon panel to discover genetic factors that may be involved in the development of schizophrenia.
Collapse
Affiliation(s)
- Gonçalo Espregueira Themudo
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. .,CIIMAR - Interdisciplinary Centre of Marine and Environmental Research of the University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal.
| | - Anna-Roos Leerschool
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Complex Genetics, Maastricht University, PO Box 616 6200, MD, Maastricht, The Netherlands
| | - Carla Rodriguez-Proano
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Clinical Laboratory, Ambulatory Clinical Surgical Center and Day Hospital "El Batán", Quito, Ecuador
| | - Sofie Lindgren Christiansen
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jeppe Dyrberg Andersen
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Johannes Rødbro Busch
- Section of Forensic Pathology, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin Roest Christensen
- Section of Forensic Pathology, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jytte Banner
- Section of Forensic Pathology, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Morling
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
118
|
Cabrera CP, Ng FL, Nicholls HL, Gupta A, Barnes MR, Munroe PB, Caulfield MJ. Over 1000 genetic loci influencing blood pressure with multiple systems and tissues implicated. Hum Mol Genet 2019; 28:R151-R161. [PMID: 31411675 PMCID: PMC6872427 DOI: 10.1093/hmg/ddz197] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/26/2019] [Accepted: 08/05/2019] [Indexed: 12/12/2022] Open
Abstract
High blood pressure (BP) remains the major heritable and modifiable risk factor for cardiovascular disease. Persistent high BP, or hypertension, is a complex trait with both genetic and environmental interactions. Despite swift advances in genomics, translating new discoveries to further our understanding of the underlying molecular mechanisms remains a challenge. More than 500 loci implicated in the regulation of BP have been revealed by genome-wide association studies (GWAS) in 2018 alone, taking the total number of BP genetic loci to over 1000. Even with the large number of loci now associated to BP, the genetic variance explained by all loci together remains low (~5.7%). These genetic associations have elucidated mechanisms and pathways regulating BP, highlighting potential new therapeutic and drug repurposing targets. A large proportion of the BP loci were discovered and reported simultaneously by multiple research groups, creating a knowledge gap, where the reported loci to date have not been investigated in a harmonious way. Here, we review the BP-associated genetic variants reported across GWAS studies and investigate their potential impact on the biological systems using in silico enrichment analyses for pathways, tissues, gene ontology and genetic pleiotropy.
Collapse
Affiliation(s)
- Claudia P Cabrera
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
- Centre for Translational Bioinformatics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Fu Liang Ng
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Hannah L Nicholls
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
- Centre for Translational Bioinformatics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Ajay Gupta
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Michael R Barnes
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
- Centre for Translational Bioinformatics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Patricia B Munroe
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Mark J Caulfield
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| |
Collapse
|
119
|
Irvin MR, Sitlani CM, Floyd JS, Psaty BM, Bis JC, Wiggins KL, Whitsel EA, Sturmer T, Stewart J, Raffield L, Sun F, Liu CT, Xu H, Cupples AL, Tanner RM, Rossing P, Smith A, Zilhão NR, Launer LJ, Noordam R, Rotter JI, Yao J, Li X, Guo X, Limdi N, Sundaresan A, Lange L, Correa A, Stott DJ, Ford I, Jukema JW, Gudnason V, Mook-Kanamori DO, Trompet S, Palmas W, Warren HR, Hellwege JN, Giri A, O'donnell C, Hung AM, Edwards TL, Ahluwalia TS, Arnett DK, Avery CL. Genome-Wide Association Study of Apparent Treatment-Resistant Hypertension in the CHARGE Consortium: The CHARGE Pharmacogenetics Working Group. Am J Hypertens 2019; 32:1146-1153. [PMID: 31545351 PMCID: PMC6856621 DOI: 10.1093/ajh/hpz150] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/10/2019] [Accepted: 09/13/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Only a handful of genetic discovery efforts in apparent treatment-resistant hypertension (aTRH) have been described. METHODS We conducted a case-control genome-wide association study of aTRH among persons treated for hypertension, using data from 10 cohorts of European ancestry (EA) and 5 cohorts of African ancestry (AA). Cases were treated with 3 different antihypertensive medication classes and had blood pressure (BP) above goal (systolic BP ≥ 140 mm Hg and/or diastolic BP ≥ 90 mm Hg) or 4 or more medication classes regardless of BP control (nEA = 931, nAA = 228). Both a normotensive control group and a treatment-responsive control group were considered in separate analyses. Normotensive controls were untreated (nEA = 14,210, nAA = 2,480) and had systolic BP/diastolic BP < 140/90 mm Hg. Treatment-responsive controls (nEA = 5,266, nAA = 1,817) had BP at goal (<140/90 mm Hg), while treated with one antihypertensive medication class. Individual cohorts used logistic regression with adjustment for age, sex, study site, and principal components for ancestry to examine the association of single-nucleotide polymorphisms with case-control status. Inverse variance-weighted fixed-effects meta-analyses were carried out using METAL. RESULTS The known hypertension locus, CASZ1, was a top finding among EAs (P = 1.1 × 10-8) and in the race-combined analysis (P = 1.5 × 10-9) using the normotensive control group (rs12046278, odds ratio = 0.71 (95% confidence interval: 0.6-0.8)). Single-nucleotide polymorphisms in this locus were robustly replicated in the Million Veterans Program (MVP) study in consideration of a treatment-responsive control group. There were no statistically significant findings for the discovery analyses including treatment-responsive controls. CONCLUSION This genomic discovery effort for aTRH identified CASZ1 as an aTRH risk locus.
Collapse
Affiliation(s)
- Marguerite R Irvin
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Colleen M Sitlani
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - James S Floyd
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
- Department of Health Services, University of Washington, Seattle, Washington, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, Washington, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Kerri L Wiggins
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Eric A Whitsel
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Til Sturmer
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - James Stewart
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Laura Raffield
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Fangui Sun
- Department of Biostatistics, Boston University, Boston, Maryland, USA
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University, Boston, Maryland, USA
| | - Hanfei Xu
- Department of Biostatistics, Boston University, Boston, Maryland, USA
| | | | - Rikki M Tanner
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Albert Smith
- Icelandic Heart Association, Kopavogur, Iceland
- University of Iceland, Reykjavik, Iceland
| | | | - Lenore J Launer
- Laboratory of Epidemiology and Population Science, Intramural Research Program, National Institute on Aging, Bethesda, Maryland, USA
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Departments of Pediatrics and Medicine, LABioMed at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Jie Yao
- Institute for Translational Genomics and Population Sciences, Departments of Pediatrics and Medicine, LABioMed at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Xiaohui Li
- Institute for Translational Genomics and Population Sciences, Departments of Pediatrics and Medicine, LABioMed at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Xiuqing Guo
- Institute for Translational Genomics and Population Sciences, Departments of Pediatrics and Medicine, LABioMed at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Nita Limdi
- Department of Neurology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Aishwarya Sundaresan
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Leslie Lange
- Department of Medicine, University of Colorado–Denver, Aurora, Colorado, USA
| | - Adolfo Correa
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - David J Stott
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Ian Ford
- Robertson Center for Biostatistics, University of Glasgow, Glasgow, UK
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Vilmundur Gudnason
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, The Netherlands
| | - Dennis O Mook-Kanamori
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Stella Trompet
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Walter Palmas
- Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Helen R Warren
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, UK
| | - Jacklyn N Hellwege
- Biomedical Laboratory Research and Development, Tennessee Valley Healthcare System (626)/Vanderbilt University, Nashville, Tennessee, USA
- Division of Genetic Medicine, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ayush Giri
- Biomedical Laboratory Research and Development, Tennessee Valley Healthcare System (626)/Vanderbilt University, Nashville, Tennessee, USA
- Division of Quantitative Sciences, Department of Obstetrics and Gynecology, Vanderbilt Genetics Institute, Vanderbilt Epidemiology Center, Institute for Medicine and Public Health, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Christopher O'donnell
- VA Boston Health Care System, Boston, Massachusetts, USA
- Section of Cardiology and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Adriana M Hung
- Biomedical Laboratory Research and Development, Tennessee Valley Healthcare System (626)/Vanderbilt University, Nashville, Tennessee, USA
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Todd L Edwards
- Biomedical Laboratory Research and Development, Tennessee Valley Healthcare System (626)/Vanderbilt University, Nashville, Tennessee, USA
- Division of Epidemiology, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Tarunveer S Ahluwalia
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Donna K Arnett
- Deans Office, School of Public Health, University of Kentucky, Lexington, Kentucky, USA
| | - Christy L Avery
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
120
|
Gene Expression Profiles Induced by a Novel Selective Peroxisome Proliferator-Activated Receptor α Modulator (SPPARMα) Pemafibrate. Int J Mol Sci 2019; 20:ijms20225682. [PMID: 31766193 PMCID: PMC6888257 DOI: 10.3390/ijms20225682] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/05/2019] [Accepted: 11/11/2019] [Indexed: 12/16/2022] Open
Abstract
Pemafibrate is the first clinically-available selective peroxisome proliferator-activated receptor α modulator (SPPARMα) that has been shown to effectively improve hypertriglyceridemia and low high-density lipoprotein cholesterol (HDL-C) levels. Global gene expression analysis reveals that the activation of PPARα by pemafibrate induces fatty acid (FA) uptake, binding, and mitochondrial or peroxisomal oxidation as well as ketogenesis in mouse liver. Pemafibrate most profoundly induces HMGCS2 and PDK4, which regulate the rate-limiting step of ketogenesis and glucose oxidation, respectively, compared to other fatty acid metabolic genes in human hepatocytes. This suggests that PPARα plays a crucial role in nutrient flux in the human liver. Additionally, pemafibrate induces clinically favorable genes, such as ABCA1, FGF21, and VLDLR. Furthermore, pemafibrate shows anti-inflammatory effects in vascular endothelial cells. Pemafibrate is predicted to exhibit beneficial effects in patients with atherogenic dyslipidemia and diabetic microvascular complications.
Collapse
|
121
|
Chen D, Willis-Parker M, Lundberg GP. Migraine headache: Is it only a neurological disorder? Links between migraine and cardiovascular disorders. Trends Cardiovasc Med 2019; 30:424-430. [PMID: 31679956 DOI: 10.1016/j.tcm.2019.10.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 10/19/2019] [Accepted: 10/19/2019] [Indexed: 12/22/2022]
Abstract
Migraine headache (MH) is a common disorder affecting millions of people in the United States. MH is substantially more prevalent in women compared to men. An association between migraine with or without aura and risk of cardiovascular disease (CVD) has been extensively reported. There are several proposed theories that may explain the pathophysiologic relationship between MH and CVD. This review will summarize the recent literature on this topic and provide an evidence-based perspective regarding the current knowledge and controversies regarding association of MH and CVD.
Collapse
Affiliation(s)
- Dandan Chen
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA 30322, United States
| | | | - Gina Price Lundberg
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA 30322, United States; Emory Women's Heart Center, Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA 30322, United States.
| |
Collapse
|
122
|
Lule SA, Mentzer AJ, Namara B, Muwenzi AG, Nassanga B, kizito D, Akurut H, Lubyayi L, Tumusiime J, Zziwa C, Akello F, Gurdasani D, Sandhu M, Smeeth L, Elliott AM, Webb EL. A genome-wide association and replication study of blood pressure in Ugandan early adolescents. Mol Genet Genomic Med 2019; 7:e00950. [PMID: 31469255 PMCID: PMC6785527 DOI: 10.1002/mgg3.950] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/30/2019] [Accepted: 06/14/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Genetic association studies of blood pressure (BP) have mostly been conducted in non-African populations. Using the Entebbe Mother and Baby Study (EMaBS), we aimed to identify genetic variants associated with BP among Ugandan adolescents. METHODS Systolic and diastolic BP were measured among 10- and 11-year olds. Whole-genome genotype data were generated using Illumina omni 2.5M arrays and untyped variants were imputed. Genome-wide association study (GWAS) was conducted using linear mixed model regression to account for population structure. Linear regression analysis was used to assess whether variants previously associated with BP (p < 5.0 × 10-8 ) in published BP GWASs were replicated in our study. RESULTS Of the 14 million variants analyzed among 815 adolescents, none reached genome-wide significance (p < 5.0×10-8 ) for association with systolic or diastolic BP. The most strongly associated variants were rs181430167 (p = 6.8 × 10-7 ) for systolic BP and rs12991132 (p = 4.0 × 10-7 ) for diastolic BP. Thirty-three (17 single nucleotide polymorphisms (SNPs) for systolic BP, 15 SNPs for diastolic BP and one SNP for both) of 330 variants previously identified as associated with BP were replicated in this study, but none remained significant after accounting for multiple testing. CONCLUSION Variants showing suggestive associations are worthy of future investigation. Replication results suggest that variants influencing adolescent BP may overlap somewhat with those already established in previous studies, largely based on adults in Western settings.
Collapse
Affiliation(s)
- Swaib A. Lule
- London School of Hygiene and Tropical MedicineLondonUK
- MRC/UVRI & LSHTM Uganda Research UnitEntebbeUganda
| | - Alexander J. Mentzer
- Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUK
- Big Data Institute, Li Ka Shing Centre for Health Information and DiscoveryUniversity of OxfordOxfordUK
| | | | | | | | | | - Helen Akurut
- MRC/UVRI & LSHTM Uganda Research UnitEntebbeUganda
| | | | | | | | | | - Deept Gurdasani
- Wellcome Trust Sanger InstituteCambridgeUK
- University of CambridgeCambridgeUK
| | - Manjinder Sandhu
- Wellcome Trust Sanger InstituteCambridgeUK
- University of CambridgeCambridgeUK
| | - Liam Smeeth
- London School of Hygiene and Tropical MedicineLondonUK
| | - Alison M. Elliott
- London School of Hygiene and Tropical MedicineLondonUK
- MRC/UVRI & LSHTM Uganda Research UnitEntebbeUganda
| | - Emily L. Webb
- London School of Hygiene and Tropical MedicineLondonUK
| |
Collapse
|
123
|
Dai J, Lv J, Zhu M, Wang Y, Qin N, Ma H, He YQ, Zhang R, Tan W, Fan J, Wang T, Zheng H, Sun Q, Wang L, Huang M, Ge Z, Yu C, Guo Y, Wang TM, Wang J, Xu L, Wu W, Chen L, Bian Z, Walters R, Millwood I, Li XZ, Wang X, Hung RJ, Chen H, Wang M, Wang C, Jiang Y, Chen K, Chen Z, Jin G, Wu T, Lin D, Hu Z, Amos CI, Wu C, Wei Q, Jia WH, Li L, Shen H. Identification of risk loci and a polygenic risk score for lung cancer: a large-scale prospective cohort study in Chinese populations. THE LANCET. RESPIRATORY MEDICINE 2019; 7:881-891. [PMID: 31326317 PMCID: PMC7015703 DOI: 10.1016/s2213-2600(19)30144-4] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/18/2019] [Accepted: 03/25/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Genetic variation has an important role in the development of non-small-cell lung cancer (NSCLC). However, genetic factors for lung cancer have not been fully identified, especially in Chinese populations, which limits the use of existing polygenic risk scores (PRS) to identify subpopulations at high risk of lung cancer for prevention. We therefore aimed to identify novel loci associated with NSCLC risk, and generate a PRS and evaluate its utility and effectiveness in the prediction of lung cancer risk in Chinese populations. METHODS To systematically identify genetic variants for NSCLC risk, we newly genotyped 19 546 samples from Chinese NSCLC cases and controls from the Nanjing Medical University Global Screening Array Project and did a meta-analysis of genome-wide association studies (GWASs) of 27 120 individuals with NSCLC and 27 355 without NSCLC (13 327 cases and 13 328 controls of Chinese descent as well as 13 793 cases and 14 027 controls of European descent). We then built a PRS for Chinese populations from all reported single-nucleotide polymorphisms that have been reported to be associated with lung cancer risk at genome-wide significance level. We evaluated the utility and effectiveness of the generated PRS in predicting subpopulations at high-risk of lung cancer in an independent prospective cohort of 95 408 individuals from the China Kadoorie Biobank (CKB) with more than 10 years' follow-up. FINDINGS We identified 19 susceptibility loci to be significantly associated with NSCLC risk at p≤5·0 × 10-8, including six novel loci. When applied to the CKB cohort, the PRS of the risk loci successfully predicted lung cancer incident cases in a dose-response manner in participants at a high genetic risk (top 10%) than those at a low genetic risk (bottom 10%; adjusted hazard ratio 1·96, 95% CI 1·53-2·51; ptrend=2·02 × 10-9). Specially, we observed consistently separated curves of lung cancer events in individuals at low, intermediate, and high genetic risk, respectively, and PRS was an independent effective risk stratification indicator beyond age and smoking pack-years. INTERPRETATION We have shown for the first time that GWAS-derived PRS can be effectively used in discriminating subpopulations at high risk of lung cancer, who might benefit from a practically feasible PRS-based lung cancer screening programme for precision prevention in Chinese populations. FUNDING National Natural Science Foundation of China, the Priority Academic Program for the Development of Jiangsu Higher Education Institutions, National Key R&D Program of China, Science Foundation for Distinguished Young Scholars of Jiangsu, and China's Thousand Talents Program.
Collapse
Affiliation(s)
- Juncheng Dai
- Department of Epidemiology and Biostatistics, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Jun Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Meng Zhu
- Department of Epidemiology and Biostatistics, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Yuzhuo Wang
- Department of Epidemiology and Biostatistics, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Na Qin
- Department of Epidemiology and Biostatistics, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hongxia Ma
- Department of Epidemiology and Biostatistics, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Yong-Qiao He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ruoxin Zhang
- Cancer Institute, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wen Tan
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingyi Fan
- Department of Epidemiology and Biostatistics, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Tianpei Wang
- Department of Epidemiology and Biostatistics, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hong Zheng
- Department of Epidemiology and Biostatistics, Key Laboratory of Cancer Prevention and Therapy, Tianjin Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Qi Sun
- Department of Epidemiology and Biostatistics, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lijuan Wang
- Department of Epidemiology and Biostatistics, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Mingtao Huang
- Department of Epidemiology and Biostatistics, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zijun Ge
- Department of Epidemiology and Biostatistics, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Canqing Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Yu Guo
- Chinese Academy of Medical Sciences, Beijing, China
| | - Tong-Min Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jie Wang
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research; Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Lin Xu
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research; Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Weibing Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liang Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zheng Bian
- Chinese Academy of Medical Sciences, Beijing, China
| | - Robin Walters
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, United Kingdom
| | - Iona Millwood
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, United Kingdom
| | - Xi-Zhao Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xin Wang
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Rayjean J. Hung
- Lunenfeld-Tanenbaum Research Institute of Sinai Health System, University of Toronto, Toronto, Canada
| | - Haiquan Chen
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mengyun Wang
- Cancer Institute, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cheng Wang
- Department of Epidemiology and Biostatistics, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Bioinformatics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yue Jiang
- Department of Epidemiology and Biostatistics, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Kexin Chen
- Department of Epidemiology and Biostatistics, Key Laboratory of Cancer Prevention and Therapy, Tianjin Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhengming Chen
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, United Kingdom
| | - Guangfu Jin
- Department of Epidemiology and Biostatistics, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Tangchun Wu
- Department of Occupational and Environmental Health and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhibin Hu
- Department of Epidemiology and Biostatistics, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Christopher I. Amos
- Baylor College of Medicine, Institute for Clinical and Translational Research, Houston, Texas, United States of America
| | - Chen Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qingyi Wei
- Cancer Institute, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States of America
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, United States of America
| | - Wei-Hua Jia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Hongbing Shen
- Department of Epidemiology and Biostatistics, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
124
|
Samorodskaya NA, Polischuk LV, Eliseeva LN. Complex assessment of blood pressure regulation system in hypertension patients. RESEARCH RESULTS IN PHARMACOLOGY 2019. [DOI: 10.3897/rrpharmacology.5.39130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction. There are almost no studies characterizing the integrative level of blood pressure (BP) regulation.
Materials and methods. 277 people of both genders aged 58.6±6.4 with stage II hypertension disease were randomized into six groups. The monotherapy of hypertension disease was conducted in five groups, using nebivolol, lisinopril, indapamide, amlodipine, and losartan. The sixth group had a combined therapy (lisinopril/indapamide). The therapy effectiveness was assessed at four levels of blood pressure regulation, using the following methods: 1) laser Doppler flowmetry, determination of the level of tumor necrosis factor-α and interleukin-10; 2) echocardiography and Doppler sonography, ultrasound examination of the renal blood flow, ECG, Holter monitoring of ECG; 3) an examination of the heart rate variability level and a quantitative assessment of beta-adrenoreception of erythrocyte cell membranes; 4) the regulatory and adaptive status was assessed, using the method of cardio-respiratory synchronism.
Results and discussion. A more significant BP decrease was revealed during a combination therapy (by 20.4% of the baseline daily value). At the integrative level, an index of the regulatory and adaptive status (iRAS) increased in the treatment with lisinopril/indapamide combination (by 40.5%), amlodipine (by 40.5%), losartan (by 35.3%), and lisinopril (by 30.2%). Nebivolol administration resulted in a 13.5% decrease in iRAS. Indapamide therapy had no significant effect on iRAS.
Conclusion. A comprehensive assessment of the blood pressure regulation system makes it possible to control the effectiveness of the therapy not only on a target organ or function, but also on the condition of the organism as an integral system.
Collapse
|
125
|
Hendriks T, Said MA, Janssen LMA, van der Ende MY, van Veldhuisen DJ, Verweij N, van der Harst P. Effect of Systolic Blood Pressure on Left Ventricular Structure and Function: A Mendelian Randomization Study. Hypertension 2019; 74:826-832. [PMID: 31476911 DOI: 10.1161/hypertensionaha.119.12679] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We aimed to estimate the effects of a lifelong exposure to high systolic blood pressure (SBP) on left ventricular (LV) structure and function using Mendelian randomization. A total of 5596 participants of the UK Biobank were included for whom cardiovascular magnetic resonance imaging and genetic data were available. Major exclusion criteria included nonwhite ethnicity, major cardiovascular disease, and body mass index >30 or <18.5 kg/m2. A genetic risk score to estimate genetically predicted SBP (gSBP) was constructed based on 107 previously established genetic variants. Manual cardiovascular magnetic resonance imaging postprocessing analyses were performed in 300 individuals at the extremes of gSBP (150 highest and lowest). Multivariable linear regression analyses of imaging biomarkers were performed using gSBP as continuous independent variable. All analyses except myocardial strain were validated using previously derived imaging parameters in 2530 subjects. The mean (SD) age of the study population was 62 (7) years, and 52% of subjects were female. Corrected for age, sex, and body surface area, each 10 mm Hg increase in gSBP was significantly (P<0.0056) associated with 4.01 g (SE, 1.28; P=0.002) increase in LV mass and with 2.80% (SE, 0.97; P=0.004) increase in LV global radial strain. In the validation cohort, after correction for age, sex, and body surface area, each 10 mm Hg increase in gSBP was associated with 5.27 g (SE, 1.50; P<0.001) increase in LV mass. Our study provides a novel line of evidence for a causal relationship between SBP and increased LV mass and with increased LV global radial strain.
Collapse
Affiliation(s)
- Tom Hendriks
- From the Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - M Abdullah Said
- From the Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Lara M A Janssen
- From the Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - M Yldau van der Ende
- From the Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Dirk J van Veldhuisen
- From the Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Niek Verweij
- From the Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Pim van der Harst
- From the Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands
| |
Collapse
|
126
|
D'Haens GR, Jobin C. Fecal Microbial Transplantation for Diseases Beyond Recurrent Clostridium Difficile Infection. Gastroenterology 2019; 157:624-636. [PMID: 31220424 PMCID: PMC7179251 DOI: 10.1053/j.gastro.2019.04.053] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 04/15/2019] [Accepted: 04/20/2019] [Indexed: 02/08/2023]
Abstract
As microbiome research has moved from associative to mechanistic studies, the activities of specific microbes and their products have been investigated in the development of inflammatory bowel diseases, cancer, metabolic syndrome, and neuropsychiatric disorders. Findings from microbiome research have already been applied to the clinic, such as in fecal microbiota transplantation for treatment of recurrent Clostridium difficile infection. We review the evidence for associations between alterations in the intestinal microbiome and gastrointestinal diseases and findings from clinical trials of fecal microbiota transplantation. We discuss opportunities for treatment of other diseases with fecal microbiota transplantation, based on findings from small clinical and preclinical studies.
Collapse
Affiliation(s)
- Geert R D'Haens
- Department of Gastroenterology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Christian Jobin
- Departments of Medicine, Anatomy and Cell Biology, and Infectious Diseases and Immunology, University of Florida, Gainesville, Florida.
| |
Collapse
|
127
|
Vandenwijngaert S, Ledsky CD, Lahrouchi N, Khan MAF, Wunderer F, Ames L, Honda T, Diener JL, Bezzina CR, Buys ES, Bloch DB, Newton-Cheh C. Blood Pressure-Associated Genetic Variants in the Natriuretic Peptide Receptor 1 Gene Modulate Guanylate Cyclase Activity. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019; 12:e002472. [PMID: 31430210 DOI: 10.1161/circgen.119.002472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Human genetic variation in the NPR1 (natriuretic peptide receptor 1 gene, encoding NPR-A, atrial natriuretic peptide receptor 1) was recently shown to affect blood pressure (BP). NPR-A catalyzes the intracellular conversion of guanosine triphosphate to cGMP (cyclic 3',5'-guanosine monophosphate) on binding of ANP, BNP (atrial or brain natriuretic peptide). Increased levels of cGMP decrease BP by inducing natriuresis, diuresis, and vasodilation. METHODS We performed a meta-analysis of low-frequency and rare NPR1 variants for BP association in up to 491 584 unrelated individuals. To examine whether the identified BP-associated variants affect NPR-A function, the cGMP response to ANP and BNP was measured in cells expressing wild-type NPR1 and cells expressing the NPR1 variants. RESULTS In this study, we identified BP associations of 3 amino acid altering variants of NPR1. The minor alleles of rs35479618 (p.E967K, gnomAD non-Finnish European allele frequency 0.017) and rs116245325 (p.L1034F, allele frequency 0.0007) were associated with higher BP (P=4.0×10-25 and P=9.9×10-8, respectively), while the minor allele of rs61757359 (p.G541S, allele frequency 0.003) was associated with lower BP (P=1.8×10-9). Cells transiently expressing 967K or 1034F NPR-A displayed decreased cGMP production in response to ANP and BNP (all P<10-6), while cells expressing 541S NPR-A produced more cGMP compared with cells expressing wild-type NPR-A (P≤4.13×10-5 for ANP and P≤4.24×10-3 for BNP). CONCLUSIONS In summary, the loss or gain of guanylate cyclase activity for these NPR1 allelic variants could explain the higher or lower BP observed for carriers in large population-based studies.
Collapse
Affiliation(s)
- Sara Vandenwijngaert
- Department of Anesthesia, Critical Care, and Pain Medicine (S.V., C.D.L., F.W., E.S.B., D.B.B.), Massachusetts General Hospital Research Institute and Harvard Medical School, Boston
| | - Clara D Ledsky
- Department of Anesthesia, Critical Care, and Pain Medicine (S.V., C.D.L., F.W., E.S.B., D.B.B.), Massachusetts General Hospital Research Institute and Harvard Medical School, Boston
| | - Najim Lahrouchi
- Center for Genomic Medicine (N.L., C.N.-C.), Massachusetts General Hospital Research Institute and Harvard Medical School, Boston.,Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, the Netherlands (N.L., M.A.F.K., C.R.B.)
| | - Mohsin A F Khan
- Amsterdam UMC, University of Amsterdam, Heart Center (M.A.F.K., C.R.B.).,Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, the Netherlands (N.L., M.A.F.K., C.R.B.)
| | - Florian Wunderer
- Department of Anesthesia, Critical Care, and Pain Medicine (S.V., C.D.L., F.W., E.S.B., D.B.B.), Massachusetts General Hospital Research Institute and Harvard Medical School, Boston.,Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, UniversityHospital Frankfurt, Germany (F.W.)
| | - Lisa Ames
- Novartis Institutes for BioMedical Research (L.A., T.H., J.L.D.)
| | - Toshiyuki Honda
- Novartis Institutes for BioMedical Research (L.A., T.H., J.L.D.)
| | - John L Diener
- Novartis Institutes for BioMedical Research (L.A., T.H., J.L.D.)
| | - Connie R Bezzina
- Amsterdam UMC, University of Amsterdam, Heart Center (M.A.F.K., C.R.B.).,Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, the Netherlands (N.L., M.A.F.K., C.R.B.)
| | - Emmanuel S Buys
- Department of Anesthesia, Critical Care, and Pain Medicine (S.V., C.D.L., F.W., E.S.B., D.B.B.), Massachusetts General Hospital Research Institute and Harvard Medical School, Boston
| | - Donald B Bloch
- Department of Anesthesia, Critical Care, and Pain Medicine (S.V., C.D.L., F.W., E.S.B., D.B.B.), Massachusetts General Hospital Research Institute and Harvard Medical School, Boston.,Division of Rheumatology, Allergy and Immunology, Department of Medicine (D.B.B.), Massachusetts General Hospital Research Institute and Harvard Medical School, Boston
| | - Christopher Newton-Cheh
- Center for Genomic Medicine (N.L., C.N.-C.), Massachusetts General Hospital Research Institute and Harvard Medical School, Boston.,Cardiovascular Research Center, Department of Medicine (C.N.-C.), Massachusetts General Hospital Research Institute and Harvard Medical School, Boston.,Program in Medical and Population Genetics, Broad Institute, Cambridge, MA (C.N.-C.)
| | | |
Collapse
|
128
|
Locke AE, Steinberg KM, Chiang CWK, Service SK, Havulinna AS, Stell L, Pirinen M, Abel HJ, Chiang CC, Fulton RS, Jackson AU, Kang CJ, Kanchi KL, Koboldt DC, Larson DE, Nelson J, Nicholas TJ, Pietilä A, Ramensky V, Ray D, Scott LJ, Stringham HM, Vangipurapu J, Welch R, Yajnik P, Yin X, Eriksson JG, Ala-Korpela M, Järvelin MR, Männikkö M, Laivuori H, Dutcher SK, Stitziel NO, Wilson RK, Hall IM, Sabatti C, Palotie A, Salomaa V, Laakso M, Ripatti S, Boehnke M, Freimer NB. Exome sequencing of Finnish isolates enhances rare-variant association power. Nature 2019; 572:323-328. [PMID: 31367044 PMCID: PMC6697530 DOI: 10.1038/s41586-019-1457-z] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 07/02/2019] [Indexed: 12/30/2022]
Abstract
Exome-sequencing studies have generally been underpowered to identify deleterious alleles with a large effect on complex traits as such alleles are mostly rare. Because the population of northern and eastern Finland has expanded considerably and in isolation following a series of bottlenecks, individuals of these populations have numerous deleterious alleles at a relatively high frequency. Here, using exome sequencing of nearly 20,000 individuals from these regions, we investigate the role of rare coding variants in clinically relevant quantitative cardiometabolic traits. Exome-wide association studies for 64 quantitative traits identified 26 newly associated deleterious alleles. Of these 26 alleles, 19 are either unique to or more than 20 times more frequent in Finnish individuals than in other Europeans and show geographical clustering comparable to Mendelian disease mutations that are characteristic of the Finnish population. We estimate that sequencing studies of populations without this unique history would require hundreds of thousands to millions of participants to achieve comparable association power.
Collapse
Affiliation(s)
- Adam E Locke
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, USA
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Karyn Meltz Steinberg
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, USA
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA
| | - Charleston W K Chiang
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Quantitative and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Susan K Service
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Aki S Havulinna
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- National Institute for Health and Welfare, Helsinki, Finland
| | - Laurel Stell
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Matti Pirinen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Helsinki Institute for Information Technology HIIT and Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - Haley J Abel
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
| | - Colby C Chiang
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, USA
| | - Robert S Fulton
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
| | - Anne U Jackson
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Chul Joo Kang
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, USA
| | - Krishna L Kanchi
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, USA
| | - Daniel C Koboldt
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, USA
- The Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - David E Larson
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
| | - Joanne Nelson
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, USA
| | - Thomas J Nicholas
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, USA
- USTAR Center for Genetic Discovery and Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Arto Pietilä
- National Institute for Health and Welfare, Helsinki, Finland
| | - Vasily Ramensky
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
- Federal State Institution "National Medical Research Center for Preventive Medicine" of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Debashree Ray
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Departments of Epidemiology and Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Laura J Scott
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Heather M Stringham
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Jagadish Vangipurapu
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
| | - Ryan Welch
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Pranav Yajnik
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Xianyong Yin
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Johan G Eriksson
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Department of General Practice and Primary Health Care, University of Helsinki, Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mika Ala-Korpela
- Systems Epidemiology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, University of Oulu, Oulu, Finland
- NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Faculty of Medicine, Nursing and Health Sciences, The Alfred Hospital, Monash University, Melbourne, Victoria, Australia
| | - Marjo-Riitta Järvelin
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Unit of Primary Health Care, Oulu University Hospital, Oulu, Finland
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, UK
| | - Minna Männikkö
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Northern Finland Birth Cohorts, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Hannele Laivuori
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Obstetrics and Gynecology, Tampere University Hospital and University of Tampere, Faculty of Medicine and Health Technology, Tampere, Finland
| | - Susan K Dutcher
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
| | - Nathan O Stitziel
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, USA
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Richard K Wilson
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, USA
- The Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Ira M Hall
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, USA
| | - Chiara Sabatti
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
- Department of Statistics, Stanford University, Stanford, CA, USA
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Analytical and Translational Genetics Unit (ATGU), Psychiatric & Neurodevelopmental Genetics Unit, Departments of Psychiatry and Neurology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Veikko Salomaa
- National Institute for Health and Welfare, Helsinki, Finland
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| | - Nelson B Freimer
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
129
|
Sung YJ, de las Fuentes L, Winkler TW, Chasman DI, Bentley AR, Kraja AT, Ntalla I, Warren HR, Guo X, Schwander K, Manning AK, Brown MR, Aschard H, Feitosa MF, Franceschini N, Lu Y, Cheng CY, Sim X, Vojinovic D, Marten J, Musani SK, Kilpeläinen TO, Richard MA, Aslibekyan S, Bartz TM, Dorajoo R, Li C, Liu Y, Rankinen T, Smith AV, Tajuddin SM, Tayo BO, Zhao W, Zhou Y, Matoba N, Sofer T, Alver M, Amini M, Boissel M, Chai JF, Chen X, Divers J, Gandin I, Gao C, Giulianini F, Goel A, Harris SE, Hartwig FP, He M, Horimoto ARVR, Hsu FC, Jackson AU, Kammerer CM, Kasturiratne A, Komulainen P, Kühnel B, Leander K, Lee WJ, Lin KH, Luan J, Lyytikäinen LP, McKenzie CA, Nelson CP, Noordam R, Scott RA, Sheu WHH, Stančáková A, Takeuchi F, van der Most PJ, Varga TV, Waken RJ, Wang H, Wang Y, Ware EB, Weiss S, Wen W, Yanek LR, Zhang W, Zhao JH, Afaq S, Alfred T, Amin N, Arking DE, Aung T, Barr RG, Bielak LF, Boerwinkle E, Bottinger EP, Braund PS, Brody JA, Broeckel U, Cade B, Campbell A, Canouil M, Chakravarti A, Cocca M, Collins FS, Connell JM, de Mutsert R, de Silva HJ, et alSung YJ, de las Fuentes L, Winkler TW, Chasman DI, Bentley AR, Kraja AT, Ntalla I, Warren HR, Guo X, Schwander K, Manning AK, Brown MR, Aschard H, Feitosa MF, Franceschini N, Lu Y, Cheng CY, Sim X, Vojinovic D, Marten J, Musani SK, Kilpeläinen TO, Richard MA, Aslibekyan S, Bartz TM, Dorajoo R, Li C, Liu Y, Rankinen T, Smith AV, Tajuddin SM, Tayo BO, Zhao W, Zhou Y, Matoba N, Sofer T, Alver M, Amini M, Boissel M, Chai JF, Chen X, Divers J, Gandin I, Gao C, Giulianini F, Goel A, Harris SE, Hartwig FP, He M, Horimoto ARVR, Hsu FC, Jackson AU, Kammerer CM, Kasturiratne A, Komulainen P, Kühnel B, Leander K, Lee WJ, Lin KH, Luan J, Lyytikäinen LP, McKenzie CA, Nelson CP, Noordam R, Scott RA, Sheu WHH, Stančáková A, Takeuchi F, van der Most PJ, Varga TV, Waken RJ, Wang H, Wang Y, Ware EB, Weiss S, Wen W, Yanek LR, Zhang W, Zhao JH, Afaq S, Alfred T, Amin N, Arking DE, Aung T, Barr RG, Bielak LF, Boerwinkle E, Bottinger EP, Braund PS, Brody JA, Broeckel U, Cade B, Campbell A, Canouil M, Chakravarti A, Cocca M, Collins FS, Connell JM, de Mutsert R, de Silva HJ, Dörr M, Duan Q, Eaton CB, Ehret G, Evangelou E, Faul JD, Forouhi NG, Franco OH, Friedlander Y, Gao H, Gigante B, Gu CC, Gupta P, Hagenaars SP, Harris TB, He J, Heikkinen S, Heng CK, Hofman A, Howard BV, Hunt SC, Irvin MR, Jia Y, Katsuya T, Kaufman J, Kerrison ND, Khor CC, Koh WP, Koistinen HA, Kooperberg CB, Krieger JE, Kubo M, Kutalik Z, Kuusisto J, Lakka TA, Langefeld CD, Langenberg C, Launer LJ, Lee JH, Lehne B, Levy D, Lewis CE, Li Y, Lifelines Cohort Study, Lim SH, Liu CT, Liu J, Liu J, Liu Y, Loh M, Lohman KK, Louie T, Mägi R, Matsuda K, Meitinger T, Metspalu A, Milani L, Momozawa Y, Mosley, Jr TH, Nalls MA, Nasri U, O'Connell JR, Ogunniyi A, Palmas WR, Palmer ND, Pankow JS, Pedersen NL, Peters A, Peyser PA, Polasek O, Porteous D, Raitakari OT, Renström F, Rice TK, Ridker PM, Robino A, Robinson JG, Rose LM, Rudan I, Sabanayagam C, Salako BL, Sandow K, Schmidt CO, Schreiner PJ, Scott WR, Sever P, Sims M, Sitlani CM, Smith BH, Smith JA, Snieder H, Starr JM, Strauch K, Tang H, Taylor KD, Teo YY, Tham YC, Uitterlinden AG, Waldenberger M, Wang L, Wang YX, Wei WB, Wilson G, Wojczynski MK, Xiang YB, Yao J, Yuan JM, Zonderman AB, Becker DM, Boehnke M, Bowden DW, Chambers JC, Chen YDI, Weir DR, de Faire U, Deary IJ, Esko T, Farrall M, Forrester T, Freedman BI, Froguel P, Gasparini P, Gieger C, Horta BL, Hung YJ, Jonas JB, Kato N, Kooner JS, Laakso M, Lehtimäki T, Liang KW, Magnusson PKE, Oldehinkel AJ, Pereira AC, Perls T, Rauramaa R, Redline S, Rettig R, Samani NJ, Scott J, Shu XO, van der Harst P, Wagenknecht LE, Wareham NJ, Watkins H, Wickremasinghe AR, Wu T, Kamatani Y, Laurie CC, Bouchard C, Cooper RS, Evans MK, Gudnason V, Hixson J, Kardia SLR, Kritchevsky SB, Psaty BM, van Dam RM, Arnett DK, Mook-Kanamori DO, Fornage M, Fox ER, Hayward C, van Duijn CM, Tai ES, Wong TY, Loos RJF, Reiner AP, Rotimi CN, Bierut LJ, Zhu X, Cupples LA, Province MA, Rotter JI, Franks PW, Rice K, Elliott P, Caulfield MJ, Gauderman WJ, Munroe PB, Rao DC, Morrison AC. A multi-ancestry genome-wide study incorporating gene-smoking interactions identifies multiple new loci for pulse pressure and mean arterial pressure. Hum Mol Genet 2019; 28:2615-2633. [PMID: 31127295 PMCID: PMC6644157 DOI: 10.1093/hmg/ddz070] [Show More Authors] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/24/2022] Open
Abstract
Elevated blood pressure (BP), a leading cause of global morbidity and mortality, is influenced by both genetic and lifestyle factors. Cigarette smoking is one such lifestyle factor. Across five ancestries, we performed a genome-wide gene-smoking interaction study of mean arterial pressure (MAP) and pulse pressure (PP) in 129 913 individuals in stage 1 and follow-up analysis in 480 178 additional individuals in stage 2. We report here 136 loci significantly associated with MAP and/or PP. Of these, 61 were previously published through main-effect analysis of BP traits, 37 were recently reported by us for systolic BP and/or diastolic BP through gene-smoking interaction analysis and 38 were newly identified (P < 5 × 10-8, false discovery rate < 0.05). We also identified nine new signals near known loci. Of the 136 loci, 8 showed significant interaction with smoking status. They include CSMD1 previously reported for insulin resistance and BP in the spontaneously hypertensive rats. Many of the 38 new loci show biologic plausibility for a role in BP regulation. SLC26A7 encodes a chloride/bicarbonate exchanger expressed in the renal outer medullary collecting duct. AVPR1A is widely expressed, including in vascular smooth muscle cells, kidney, myocardium and brain. FHAD1 is a long non-coding RNA overexpressed in heart failure. TMEM51 was associated with contractile function in cardiomyocytes. CASP9 plays a central role in cardiomyocyte apoptosis. Identified only in African ancestry were 30 novel loci. Our findings highlight the value of multi-ancestry investigations, particularly in studies of interaction with lifestyle factors, where genomic and lifestyle differences may contribute to novel findings.
Collapse
Affiliation(s)
- Yun Ju Sung
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Lisa de las Fuentes
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
- Cardiovascular Division, Department of Medicine, Washington University, St. Louis, MO, USA
| | - Thomas W Winkler
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Daniel I Chasman
- Preventive Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Amy R Bentley
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Aldi T Kraja
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Ioanna Ntalla
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Helen R Warren
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, London, UK
| | - Xiuqing Guo
- Division of Genomic Outcomes, Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Karen Schwander
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Alisa K Manning
- Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michael R Brown
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hugues Aschard
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
- Centre de Bioinformatique, Biostatistique et Biologie Intégrative (C3BI), Institut Pasteur, Paris, France
| | - Mary F Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Nora Franceschini
- Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, USA
| | - Yingchang Lu
- Icahn School of Medicine at Mount Sinai, The Charles Bronfman Institute for Personalized Medicine, New York, NY, USA
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University Health System and National University of Singapore, Singapore, Singapore
| | - Dina Vojinovic
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jonathan Marten
- Medical Research Council Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Solomon K Musani
- Jackson Heart Study, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Tuomas O Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Environmental Medicine and Public Health, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Melissa A Richard
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Stella Aslibekyan
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Traci M Bartz
- Cardiovascular Health Research Unit, Biostatistics and Medicine, University of Washington, Seattle, WA, USA
| | - Rajkumar Dorajoo
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
| | - Changwei Li
- Epidemiology and Biostatistics, University of Georgia at Athens College of Public Health, Athens, GA, USA
| | - Yongmei Liu
- Public Health Sciences, Epidemiology and Prevention, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Tuomo Rankinen
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Albert Vernon Smith
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Salman M Tajuddin
- Health Disparities Research Section, Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Bamidele O Tayo
- Department of Public Health Sciences, Loyola University Chicago, Maywood, IL, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Yanhua Zhou
- Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Nana Matoba
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Tamar Sofer
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, USA
| | - Maris Alver
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Marzyeh Amini
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen RB, The Netherlands
| | - Mathilde Boissel
- CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, Lille, France
| | - Jin Fang Chai
- Saw Swee Hock School of Public Health, National University Health System and National University of Singapore, Singapore, Singapore
| | - Xu Chen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Stockholm, Sweden
| | - Jasmin Divers
- Biostatistical Sciences, Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Ilaria Gandin
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Chuan Gao
- Molecular Genetics and Genomics Program, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - Anuj Goel
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire, UK
| | - Sarah E Harris
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, UK
- Medical Genetics Section, University of Edinburgh Centre for Genomic and Experimental Medicine and MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Fernando P Hartwig
- Postgraduate Programme in Epidemiology, Federal University of Pelotas, Pelotas, RS, Brazil
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Meian He
- Lab Genetics and Molecular Cardiology, Cardiology, Heart Institute, University of Sao Paulo, Sao Paulo, CA, USA
| | - Andrea R V R Horimoto
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Fang-Chi Hsu
- Biostatistical Sciences, Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Anne U Jackson
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Candace M Kammerer
- Department of Public Health, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka
| | - Anuradhani Kasturiratne
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Pirjo Komulainen
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Brigitte Kühnel
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Karin Leander
- Medical Research, Taichung Veterans General Hospital, Department of Social Work, Tunghai University, Taichung, Taiwan
| | - Wen-Jane Lee
- Ophthalmology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Keng-Hung Lin
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Jian’an Luan
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center—Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- Tropical Metabolism Research Unit, Tropical Medicine Research Institute, University of the West Indies, Mona, Jamaica
| | - Colin A McKenzie
- School of Public Health, Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, Tongi Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Christopher P Nelson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Raymond Noordam
- Internal Medicine, Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Robert A Scott
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
| | - Wayne H H Sheu
- Endocrinology and Metabolism, Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, National Yang-ming University, Taipei, Taiwan
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
- Institute of Medical Technology, National Chung-Hsing University, Taichung, Taiwan
| | - Alena Stančáková
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
| | - Fumihiko Takeuchi
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Peter J van der Most
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen RB, The Netherlands
| | - Tibor V Varga
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Skåne University Hospital, Malmö, Sweden
| | - Robert J Waken
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Heming Wang
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, USA
| | - Yajuan Wang
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, USA
| | - Erin B Ware
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Stefan Weiss
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Ernst Moritz Arndt University Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Health), Partner Site Greifswald, Greifswald, Germany
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Lisa R Yanek
- General Internal Medicine, GeneSTAR Research Program, Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Weihua Zhang
- MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Department of Cardiology, Ealing Hospital, Middlesex, UK
| | - Jing Hua Zhao
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
| | - Saima Afaq
- MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Tamuno Alfred
- Icahn School of Medicine at Mount Sinai, The Charles Bronfman Institute for Personalized Medicine, New York, NY, USA
| | - Najaf Amin
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Dan E Arking
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tin Aung
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - R Graham Barr
- Departments of Medicine and Epidemiology, Columbia University Medical Center, New York, NY, USA
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Erwin P Bottinger
- Icahn School of Medicine at Mount Sinai, The Charles Bronfman Institute for Personalized Medicine, New York, NY, USA
| | - Peter S Braund
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Medicine, University of Washington, Seattle, WA, USA
| | - Ulrich Broeckel
- Section of Genomic Pediatrics, Department of Pediatrics, Medicine and Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brian Cade
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, USA
| | - Archie Campbell
- Centre for Genomic & Experimental Medicine, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Mickaël Canouil
- CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, Lille, France
| | - Aravinda Chakravarti
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Francis S Collins
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - John M Connell
- Ninewells Hospital & Medical School, University of Dundee, Dundee, Scotland, UK
| | - Renée de Mutsert
- Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - H Janaka de Silva
- Department of Medicine, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka
| | - Marcus Dörr
- DZHK (German Centre for Cardiovascular Health), Partner Site Greifswald, Greifswald, Germany
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Qing Duan
- Department of Genetics, University of North Carolina, Chapel Hill, USA
| | - Charles B Eaton
- Department of Family Medicine and Epidemiology, Alpert Medical School of Brown University, Providence, RI, USA
| | - Georg Ehret
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cardiology, Department of Specialties of Medicine, Geneva University Hospital, Geneva, Switzerland
| | - Evangelos Evangelou
- MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Nita G Forouhi
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
| | - Oscar H Franco
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Yechiel Friedlander
- Braun School of Public Health, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - He Gao
- MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Bruna Gigante
- Medical Research, Taichung Veterans General Hospital, Department of Social Work, Tunghai University, Taichung, Taiwan
| | - C Charles Gu
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Preeti Gupta
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Saskia P Hagenaars
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, UK
- Psychology, The University of Edinburgh, Edinburgh, UK
| | - Tamara B Harris
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Jiang He
- Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
- Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Sami Heikkinen
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio Campus, Finland
| | - Chew-Kiat Heng
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Khoo Teck Puat—National University Children’s Medical Institute, National University Health System, Singapore, Singapore
| | - Albert Hofman
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Barbara V Howard
- MedStar Health Research Institute, Hyattsville, MD, USA
- Center for Clinical and Translational Sciences and Department of Medicine, Georgetown–Howard Universities, Washington, DC, USA
| | - Steven C Hunt
- Division of Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Genetic Medicine, Weill Cornell Medicine, Doha, Qatar
| | - Marguerite R Irvin
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yucheng Jia
- Division of Genomic Outcomes, Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Tomohiro Katsuya
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Geriatric Medicine and Nephrology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Joel Kaufman
- Epidemiology, Occupational and Environmental Medicine Program, University of Washington, Seattle, WA, USA
| | - Nicola D Kerrison
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
| | - Chiea Chuen Khor
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Woon-Puay Koh
- Saw Swee Hock School of Public Health, National University Health System and National University of Singapore, Singapore, Singapore
- Health Services and Systems Research, Duke–NUS Medical School, Singapore, Singapore
| | - Heikki A Koistinen
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
- Department of Medicine and Abdominal Center: Endocrinology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki Finland
| | - Charles B Kooperberg
- Fred Hutchinson Cancer Research Center, University of Washington School of Public Health, Seattle, WA, USA
| | - Jose E Krieger
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Zoltan Kutalik
- Institute of Social Preventive Medicine, Lausanne University Hospital, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Johanna Kuusisto
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
| | - Timo A Lakka
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio Campus, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Carl D Langefeld
- Biostatistical Sciences, Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Joseph H Lee
- Sergievsky Center, College of Physicians and Surgeons, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Benjamin Lehne
- MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Daniel Levy
- NHLBI Framingham Heart Study, Framingham, MA, USA
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cora E Lewis
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yize Li
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Sing Hui Lim
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Ching-Ti Liu
- Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Jianjun Liu
- Saw Swee Hock School of Public Health, National University Health System and National University of Singapore, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
| | - Jingmin Liu
- WHI CCC, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Yeheng Liu
- Division of Genomic Outcomes, Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Marie Loh
- MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore
| | - Kurt K Lohman
- Biostatistical Sciences, Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Tin Louie
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Reedik Mägi
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Koichi Matsuda
- Laboratory for Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Minato-ku, Japan
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Human Genetics, Technische Universität München, Munich, Germany
| | - Andres Metspalu
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Lili Milani
- Cardiovascular Division, Department of Medicine, Washington University, St. Louis, MO, USA
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | | | - Mike A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Ubaydah Nasri
- Division of Genomic Outcomes, Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jeff R O'Connell
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
- Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | | - James S Pankow
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, MN, USA
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Stockholm, Sweden
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Neuherberg, Germany
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Ozren Polasek
- Department of Public Health, Department of Medicine, University of Split, Split, Croatia
- Psychiatric Hospital ‘Sveti Ivan’, Zagreb, Croatia
- Gen-info Ltd, Zagreb, Croatia
| | - David Porteous
- Centre for Genomic & Experimental Medicine, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Olli T Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Frida Renström
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Skåne University Hospital, Malmö, Sweden
- Department of Biobank Research, Umeå University, Umeå, Västerbotten, Sweden
| | - Treva K Rice
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Paul M Ridker
- Preventive Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Antonietta Robino
- Institute for Maternal and Child Health—IRCCS ‘Burlo Garofolo’, Trieste, Italy
| | - Jennifer G Robinson
- Department of Epidemiology and Medicine, University of Iowa, Iowa City, IA, USA
| | - Lynda M Rose
- Preventive Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Igor Rudan
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Charumathi Sabanayagam
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
| | | | - Kevin Sandow
- Division of Genomic Outcomes, Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Carsten O Schmidt
- DZHK (German Centre for Cardiovascular Health), Partner Site Greifswald, Greifswald, Germany
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Pamela J Schreiner
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, MN, USA
| | - William R Scott
- MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Peter Sever
- International Centre for Circulatory Health, Imperial College London, London, UK
| | - Mario Sims
- Jackson Heart Study, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Colleen M Sitlani
- Cardiovascular Health Research Unit, Medicine, University of Washington, Seattle, WA, USA
| | - Blair H Smith
- Division of Population Health Sciences, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen RB, The Netherlands
| | - John M Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, UK
- Alzheimer Scotland Dementia Research Centre, The University of Edinburgh, Edinburgh, UK
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Genetic Epidemiology, IBE, Faculty of Medicine, LMU, Munich, Germany
| | - Hua Tang
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Kent D Taylor
- Division of Genomic Outcomes, Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Yik Ying Teo
- Saw Swee Hock School of Public Health, National University Health System and National University of Singapore, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
- Life Sciences Institute, National University of Singapore, Singapore, Singapore
- NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore, Singapore
- Department of Statistics and Applied Probability, National University of Singapore, Singapore, Singapore
| | - Yih Chung Tham
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Lihua Wang
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Ya Xing Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Ophthalmology and Visual Science Key Lab, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Wen Bin Wei
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Gregory Wilson
- Jackson Heart Study, School of Public Health, Jackson State University, Jackson, MS, USA
| | - Mary K Wojczynski
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Yong-Bing Xiang
- State Key Laboratory of Oncogene and Related Genes & Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Jie Yao
- Division of Genomic Outcomes, Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jian-Min Yuan
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alan B Zonderman
- Behavioral Epidemiology Section, Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Diane M Becker
- General Internal Medicine, GeneSTAR Research Program, Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Donald W Bowden
- Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - John C Chambers
- MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Department of Cardiology, Ealing Hospital, Middlesex, UK
| | - Yii-Der Ida Chen
- Division of Genomic Outcomes, Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - David R Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Ulf de Faire
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, UK
- Psychology, The University of Edinburgh, Edinburgh, UK
| | - Tõnu Esko
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Boston, MA, USA
| | - Martin Farrall
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire, UK
| | - Terrence Forrester
- Tropical Metabolism Research Unit, Tropical Medicine Research Institute, University of the West Indies, Mona, Jamaica
| | - Barry I Freedman
- Nephrology, Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Philippe Froguel
- CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, Lille, France
- Department of Genomics of Common Disease, Imperial College London, London, UK
| | - Paolo Gasparini
- Department of Medical Sciences, University of Trieste, Trieste, Italy
- Department of Genetic Medicine, Weill Cornell Medicine, Doha, Qatar
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Bernardo Lessa Horta
- Postgraduate Programme in Epidemiology, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Yi-Jen Hung
- Endocrinology and Metabolism, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taipei, Taiwan
| | - Jost Bruno Jonas
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Department of Ophthalmology, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - Norihiro Kato
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Jaspal S Kooner
- Department of Cardiology, Ealing Hospital, Middlesex, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center—Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Kae-Woei Liang
- School of Medicine, National Yang-ming University, Taipei, Taiwan
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Medicine, China Medical University, Taichung, Taiwan
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Stockholm, Sweden
| | - Albertine J Oldehinkel
- Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen RB, The Netherlands
| | - Alexandre C Pereira
- Lab Genetics and Molecular Cardiology, Cardiology, Heart Institute, University of Sao Paulo, Sao Paulo, CA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Thomas Perls
- Geriatrics Section, Boston University Medical Center, Boston, MA, USA
| | - Rainer Rauramaa
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, USA
| | - Rainer Rettig
- DZHK (German Centre for Cardiovascular Health), Partner Site Greifswald, Greifswald, Germany
- Institute of Physiology, University of Medicine Greifswald, Greifswald, Germany
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - James Scott
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Pim van der Harst
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen RB, The Netherlands
| | - Lynne E Wagenknecht
- Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - Hugh Watkins
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire, UK
| | | | - Tangchun Wu
- School of Public Health, Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, Tongi Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Cathy C Laurie
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Claude Bouchard
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Richard S Cooper
- Department of Public Health Sciences, Loyola University Chicago, Maywood, IL, USA
| | - Michele K Evans
- Health Disparities Research Section, Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - James Hixson
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Stephen B Kritchevsky
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Epidemiology, Medicine and Health Services, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Rob M van Dam
- Saw Swee Hock School of Public Health, National University Health System and National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Donna K Arnett
- Dean’s Office, University of Kentucky College of Public Health, Lexington, KY, USA
| | - Dennis O Mook-Kanamori
- Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Public Health and Primary Care, Leiden University Medical Center, Leiden, The Netherlands
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ervin R Fox
- Cardiology, Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - E Shyong Tai
- Saw Swee Hock School of Public Health, National University Health System and National University of Singapore, Singapore, Singapore
- Health Services and Systems Research, Duke–NUS Medical School, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tien Yin Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ruth J F Loos
- Icahn School of Medicine at Mount Sinai, The Charles Bronfman Institute for Personalized Medicine, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, The Mindich Child Health and Development Institute, New York, NY, USA
| | - Alex P Reiner
- Fred Hutchinson Cancer Research Center, University of Washington School of Public Health, Seattle, WA, USA
| | - Charles N Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Laura J Bierut
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaofeng Zhu
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, USA
| | - L Adrienne Cupples
- Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Michael A Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Jerome I Rotter
- Division of Genomic Outcomes, Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Paul W Franks
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Skåne University Hospital, Malmö, Sweden
- Harvard T. H. Chan School of Public Health, Department of Nutrition, Harvard University, Boston, MA, USA
- Department of Public Health & Clinical Medicine, Umeå University, Umeå, Västerbotten, Sweden
| | - Kenneth Rice
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Paul Elliott
- MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Mark J Caulfield
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, London, UK
| | - W James Gauderman
- Biostatistics, Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Patricia B Munroe
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, London, UK
| | - Dabeeru C Rao
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
130
|
Wang X, Williams C, Liu ZH, Croghan J. Big data management challenges in health research-a literature review. Brief Bioinform 2019; 20:156-167. [PMID: 28968677 DOI: 10.1093/bib/bbx086] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Indexed: 12/12/2022] Open
Abstract
Big data management for information centralization (i.e. making data of interest findable) and integration (i.e. making related data connectable) in health research is a defining challenge in biomedical informatics. While essential to create a foundation for knowledge discovery, optimized solutions to deliver high-quality and easy-to-use information resources are not thoroughly explored. In this review, we identify the gaps between current data management approaches and the need for new capacity to manage big data generated in advanced health research. Focusing on these unmet needs and well-recognized problems, we introduce state-of-the-art concepts, approaches and technologies for data management from computing academia and industry to explore improvement solutions. We explain the potential and significance of these advances for biomedical informatics. In addition, we discuss specific issues that have a great impact on technical solutions for developing the next generation of digital products (tools and data) to facilitate the raw-data-to-knowledge process in health research.
Collapse
Affiliation(s)
- Xiaoming Wang
- National Institute of Infectious and Allergy Diseases, NIH, Rockville, Maryland, USA
| | - Carolyn Williams
- National Institute of Infectious and Allergy Diseases, NIH, Rockville, Maryland, USA
| | | | - Joe Croghan
- National Institute of Infectious and Allergy Diseases, NIH, Rockville, Maryland, USA
| |
Collapse
|
131
|
Zilbermint M, Gaye A, Berthon A, Hannah‐Shmouni F, Faucz FR, Lodish MB, Davis AR, Gibbons GH, Stratakis CA. ARMC 5 Variants and Risk of Hypertension in Blacks: MH- GRID Study. J Am Heart Assoc 2019; 8:e012508. [PMID: 31266387 PMCID: PMC6662143 DOI: 10.1161/jaha.119.012508] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/29/2019] [Indexed: 12/31/2022]
Abstract
Background We recently found that ARMC 5 variants may be associated with primary aldosteronism in blacks. We investigated a cohort from the MH - GRID (Minority Health Genomics and Translational Research Bio-Repository Database) and tested the association between ARMC 5 variants and blood pressure in black s. Methods and Results Whole exome sequencing data of 1377 black s were analyzed. Target single-variant and gene-based association analyses of hypertension were performed for ARMC 5, and replicated in a subset of 3015 individuals of African descent from the UK Biobank cohort. Sixteen rare variants were significantly associated with hypertension ( P=0.0402) in the gene-based (optimized sequenced kernel association test) analysis; the 16 and one other, rs116201073, together, showed a strong association ( P=0.0003) with blood pressure in this data set. The presence of the rs116201073 variant was associated with lower blood pressure. We then used human embryonic kidney 293 and adrenocortical H295R cells transfected with an ARMC 5 construct containing rs116201073 (c.*920T>C). The latter was common in both the discovery ( MH - GRID ) and replication ( UK Biobank) data and reached statistical significance ( P=0.044 [odds ratio, 0.7] and P=0.007 [odds ratio, 0.76], respectively). The allele carrying rs116201073 increased levels of ARMC5 mRNA , consistent with its protective effect in the epidemiological data. Conclusions ARMC 5 shows an association with hypertension in black s when rare variants within the gene are considered. We also identified a protective variant of the ARMC 5 gene with an effect on ARMC 5 expression confirmed in vitro. These results extend our previous report of ARMC 5's possible involvement in the determination of blood pressure in blacks.
Collapse
Affiliation(s)
- Mihail Zilbermint
- Section on Endocrinology and GeneticsEunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMD
- Division of Endocrinology, Diabetes, and MetabolismJohns Hopkins University School of MedicineBaltimoreMD
- Johns Hopkins Community Physicians at Suburban HospitalBethesdaMD
- Johns Hopkins University Carey Business SchoolBaltimoreMD
| | - Amadou Gaye
- Genomics of Metabolic, Cardiovascular and Inflammatory Disease Branch, Cardiovascular SectionNational Human Genome Research InstituteBethesdaMD
| | - Annabel Berthon
- Section on Endocrinology and GeneticsEunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMD
| | - Fady Hannah‐Shmouni
- Section on Endocrinology and GeneticsEunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMD
| | - Fabio R. Faucz
- Section on Endocrinology and GeneticsEunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMD
| | - Maya B. Lodish
- Section on Endocrinology and GeneticsEunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMD
| | - Adam R. Davis
- Technological Research and InnovationUniformed Services UniversityBethesdaMD
| | - Gary H. Gibbons
- Genomics of Metabolic, Cardiovascular and Inflammatory Disease Branch, Cardiovascular SectionNational Human Genome Research InstituteBethesdaMD
- National Heart, Lung, and Blood InstituteBethesdaMD
| | - Constantine A. Stratakis
- Section on Endocrinology and GeneticsEunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMD
| |
Collapse
|
132
|
Examination of the associations between m6A-associated single-nucleotide polymorphisms and blood pressure. Hypertens Res 2019; 42:1582-1589. [DOI: 10.1038/s41440-019-0277-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 04/25/2019] [Accepted: 05/06/2019] [Indexed: 01/10/2023]
|
133
|
Lindström S, Brody JA, Turman C, Germain M, Bartz TM, Smith EN, Chen MH, Puurunen M, Chasman D, Hassler J, Pankratz N, Basu S, Guan W, Gyorgy B, Ibrahim M, Empana JP, Olaso R, Jackson R, Brækkan SK, McKnight B, Deleuze JF, O’Donnell CJ, Jouven X, Frazer KA, Psaty BM, Wiggins KL, Taylor K, Reiner AP, Heckbert SR, Kooperberg C, Ridker P, Hansen JB, Tang W, Johnson AD, Morange PE, Trégouët DA, Kraft P, Smith NL, Kabrhel C. A large-scale exome array analysis of venous thromboembolism. Genet Epidemiol 2019; 43:449-457. [PMID: 30659681 PMCID: PMC6520188 DOI: 10.1002/gepi.22187] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/26/2018] [Accepted: 12/11/2019] [Indexed: 01/12/2023]
Abstract
Although recent Genome-Wide Association Studies have identified novel associations for common variants, there has been no comprehensive exome-wide search for low-frequency variants that affect the risk of venous thromboembolism (VTE). We conducted a meta-analysis of 11 studies comprising 8,332 cases and 16,087 controls of European ancestry and 382 cases and 1,476 controls of African American ancestry genotyped with the Illumina HumanExome BeadChip. We used the seqMeta package in R to conduct single variant and gene-based rare variant tests. In the single variant analysis, we limited our analysis to the 64,794 variants with at least 40 minor alleles across studies (minor allele frequency [MAF] ~0.08%). We confirmed associations with previously identified VTE loci, including ABO, F5, F11, and FGA. After adjusting for multiple testing, we observed no novel significant findings in single variant or gene-based analysis. Given our sample size, we had greater than 80% power to detect minimum odds ratios greater than 1.5 and 1.8 for a single variant with MAF of 0.01 and 0.005, respectively. Larger studies and sequence data may be needed to identify novel low-frequency and rare variants associated with VTE risk.
Collapse
Affiliation(s)
- Sara Lindström
- Department of Epidemiology, University of Washington, Seattle, United States
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Jennifer A. Brody
- Department of Medicine, University of Washington, Seattle, United States
| | - Constance Turman
- Department of Epidemiology Harvard TH Chan School of Public Health, Boston, United States
| | - Marine Germain
- University of Bordeaux, Inserm 1219, Bordeaux Population Health Research Center, Bordeaux, France
| | - Traci M. Bartz
- Department of Medicine, University of Washington, Seattle, United States
- Department of Biostatistics University of Washington, Seattle, United States
| | - Erin N. Smith
- Department of Pediatrics and Rady Children’s Hospital University of California, San Diego, La Jolla, United State
- Department of Clinical Medicine, UiT - The Arctic University of Norway, K.G. Jebsen Thrombosis Research and Expertise Center (TREC), Tromsø, Norway
| | - Ming-Huei Chen
- Population Sciences Branch, National Heart, Lung and Blood Institute’s The Framingham Heart Study, Framingham, United States
| | - Marja Puurunen
- School of Medicine, Boston University, Boston, United States
| | - Daniel Chasman
- Division of Preventive Medicine, Brigham and Women’s Hospital, Boston, United States
| | - Jeffrey Hassler
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Minnesota, Minneapolis, USA
| | - Saonli Basu
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, USA
| | - Weihua Guan
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, USA
| | - Beata Gyorgy
- Team Genomics & Pathophysiology of Cardiovascular Diseases, Sorbonne Universités, UPMC Univ. Paris 06, INSERM, UMR_S 1166, Paris, France
- ICAN Institute for Cardiometabolism and Nutrition, Paris, France
| | - Manal Ibrahim
- Laboratory of Haematology, La Timone Hospital, Marseille, France
- Aix-Marseille University, INSERM, INSERM, INRA, C2VN, Marseille, France
- CRB Assistance Publique Hopitaux de Marseille HemoVasc, Marseille, France
| | - Jean-Philippe Empana
- Department of Epidemiology, Université Paris Descartes, Sorbonne Paris Cité, INSERM UMR_S 970, Paris, France
- Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Robert Olaso
- Centre National de Recherche en Génomique Humaine (CNRGH), Direction de la Recherche Fondamentale, CEA, Institut de Biologie François Jacob, Evry, France
| | | | - Sigrid K. Brækkan
- Department of Clinical Medicine, UiT - The Arctic University of Norway, K.G. Jebsen Thrombosis Research and Expertise Center (TREC), Tromsø, Norway
- Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Barbara McKnight
- Department of Biostatistics University of Washington, Seattle, United States
| | - Jean-Francois Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Direction de la Recherche Fondamentale, CEA, Institut de Biologie François Jacob, Evry, France
| | | | - Xavier Jouven
- Department of Epidemiology, Université Paris Descartes, Sorbonne Paris Cité, INSERM UMR_S 970, Paris, France
- Department of Cardiology, Georges Pompidou European Hospital, APHP, Paris, France
| | - Kelly A. Frazer
- Department of Pediatrics and Rady Children’s Hospital University of California, San Diego, La Jolla, United State
- Department of Clinical Medicine, UiT - The Arctic University of Norway, K.G. Jebsen Thrombosis Research and Expertise Center (TREC), Tromsø, Norway
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, United States
| | - Bruce M. Psaty
- Department of Epidemiology, University of Washington, Seattle, United States
- Department of Medicine, University of Washington, Seattle, United States
- Department of Health Services, University of Washington, Seattle, United States
- Kaiser Permanente Washington Research Institute, Kaiser Permanente Washington, Seattle, United States
| | - Kerri L. Wiggins
- Department of Medicine, University of Washington, Seattle, United States
| | | | - Alexander P. Reiner
- Department of Epidemiology, University of Washington, Seattle, United States
| | - Susan R. Heckbert
- Department of Epidemiology, University of Washington, Seattle, United States
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Paul Ridker
- Division of Preventive Medicine, Brigham and Women’s Hospital, Boston, United States
| | - John-Bjarne Hansen
- Department of Clinical Medicine, UiT - The Arctic University of Norway, K.G. Jebsen Thrombosis Research and Expertise Center (TREC), Tromsø, Norway
- Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Weihong Tang
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, United States
| | - Andrew D. Johnson
- Population Sciences Branch, National Heart, Lung and Blood Institute’s The Framingham Heart Study, Framingham, United States
| | - Pierre-Emmanuel Morange
- Laboratory of Haematology, La Timone Hospital, Marseille, France
- Aix-Marseille University, INSERM, INSERM, INRA, C2VN, Marseille, France
- CRB Assistance Publique Hopitaux de Marseille HemoVasc, Marseille, France
| | - David A. Trégouët
- University of Bordeaux, Inserm 1219, Bordeaux Population Health Research Center, Bordeaux, France
| | - Peter Kraft
- Department of Epidemiology Harvard TH Chan School of Public Health, Boston, United States
- Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, United States
| | - Nicholas L. Smith
- Department of Epidemiology, University of Washington, Seattle, United States
- Kaiser Permanente Washington Research Institute, Kaiser Permanente Washington, Seattle, United States
- Department of Veteran Affairs Office of Research and Development, Seattle Epidemiologic Research and Information Center, Seattle, United States
| | - Christopher Kabrhel
- Center for Vascular Emergencies, Department of Emergency Medicine, Massachusetts General Hospital, Boston, United States
- Channing Network Medicine, Brigham and Women’s Hospital, Boston, United States
- Harvard Medical School, Boston, United States
| |
Collapse
|
134
|
Larson ED, Magno JPM, Steritz MJ, Llanes EGDV, Cardwell J, Pedro M, Roberts TB, Einarsdottir E, Rosanes RAQ, Greenlee C, Santos RAP, Yousaf A, Streubel SO, Santos ATR, Ruiz AG, Lagrana-Villagracia SM, Ray D, Yarza TKL, Scholes MA, Anderson CB, Acharya A, Gubbels SP, Bamshad MJ, Cass SP, Lee NR, Shaikh RS, Nickerson DA, Mohlke KL, Prager JD, Cruz TLG, Yoon PJ, Abes GT, Schwartz DA, Chan AL, Wine TM, Cutiongco-de la Paz EM, Friedman N, Kechris K, Kere J, Leal SM, Yang IV, Patel JA, Tantoco MLC, Riazuddin S, Chan KH, Mattila PS, Reyes-Quintos MRT, Ahmed ZM, Jenkins HA, Chonmaitree T, Hafrén L, Chiong CM, Santos-Cortez RLP. A2ML1 and otitis media: novel variants, differential expression, and relevant pathways. Hum Mutat 2019; 40:1156-1171. [PMID: 31009165 DOI: 10.1002/humu.23769] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/26/2019] [Accepted: 04/18/2019] [Indexed: 12/16/2022]
Abstract
A genetic basis for otitis media is established, however, the role of rare variants in disease etiology is largely unknown. Previously a duplication variant within A2ML1 was identified as a significant risk factor for otitis media in an indigenous Filipino population and in US children. In this report exome and Sanger sequencing was performed using DNA samples from the indigenous Filipino population, Filipino cochlear implantees, US probands, Finnish, and Pakistani families with otitis media. Sixteen novel, damaging A2ML1 variants identified in otitis media patients were rare or low-frequency in population-matched controls. In the indigenous population, both gingivitis and A2ML1 variants including the known duplication variant and the novel splice variant c.4061 + 1 G>C were independently associated with otitis media. Sequencing of salivary RNA samples from indigenous Filipinos demonstrated lower A2ML1 expression according to the carriage of A2ML1 variants. Sequencing of additional salivary RNA samples from US patients with otitis media revealed differentially expressed genes that are highly correlated with A2ML1 expression levels. In particular, RND3 is upregulated in both A2ML1 variant carriers and high-A2ML1 expressors. These findings support a role for A2ML1 in keratinocyte differentiation within the middle ear as part of otitis media pathology and the potential application of ROCK inhibition in otitis media.
Collapse
Affiliation(s)
- Eric D Larson
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| | - Jose Pedrito M Magno
- Department of Otorhinolaryngology, University of the Philippines Manila College of Medicine - Philippine General Hospital, Manila, Philippines
| | - Matthew J Steritz
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| | - Erasmo Gonzalo D V Llanes
- Department of Otorhinolaryngology, University of the Philippines Manila College of Medicine - Philippine General Hospital, Manila, Philippines.,Philippine National Ear Institute, University of the Philippines Manila - National Institutes of Health, Manila, Philippines
| | - Jonathan Cardwell
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Melquiadesa Pedro
- Philippine National Ear Institute, University of the Philippines Manila - National Institutes of Health, Manila, Philippines
| | - Tori Bootpetch Roberts
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| | - Elisabet Einarsdottir
- Folkhälsan Institute of Genetics and Molecular Neurology Research Program, University of Helsinki, Helsinki, Finland.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Rose Anne Q Rosanes
- Department of Community Dentistry, College of Dentistry, University of the Philippines Manila, Manila, Philippines
| | - Christopher Greenlee
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Pediatric Otolaryngology, Children's Hospital Colorado, Aurora, Colorado
| | | | - Ayesha Yousaf
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Sven-Olrik Streubel
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Pediatric Otolaryngology, Children's Hospital Colorado, Aurora, Colorado
| | | | - Amanda G Ruiz
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Pediatric Otolaryngology, Children's Hospital Colorado, Aurora, Colorado
| | - Sheryl Mae Lagrana-Villagracia
- Philippine National Ear Institute, University of the Philippines Manila - National Institutes of Health, Manila, Philippines
| | - Dylan Ray
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| | - Talitha Karisse L Yarza
- Philippine National Ear Institute, University of the Philippines Manila - National Institutes of Health, Manila, Philippines.,Newborn Hearing Screening Reference Center, University of the Philippines Manila - National Institutes of Health (NIH), Manila, Philippines
| | - Melissa A Scholes
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Pediatric Otolaryngology, Children's Hospital Colorado, Aurora, Colorado
| | - Catherine B Anderson
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| | - Anushree Acharya
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | | | - Samuel P Gubbels
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| | - Michael J Bamshad
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Stephen P Cass
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| | - Nanette R Lee
- USC-Office of Population Studies Foundation, Inc. and Department of Anthropology, Sociology and History, University of San Carlos, Cebu, Philippines
| | - Rehan S Shaikh
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina
| | - Jeremy D Prager
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Pediatric Otolaryngology, Children's Hospital Colorado, Aurora, Colorado
| | - Teresa Luisa G Cruz
- Department of Otorhinolaryngology, University of the Philippines Manila College of Medicine - Philippine General Hospital, Manila, Philippines.,Philippine National Ear Institute, University of the Philippines Manila - National Institutes of Health, Manila, Philippines
| | - Patricia J Yoon
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Pediatric Otolaryngology, Children's Hospital Colorado, Aurora, Colorado
| | - Generoso T Abes
- Department of Otorhinolaryngology, University of the Philippines Manila College of Medicine - Philippine General Hospital, Manila, Philippines.,Philippine National Ear Institute, University of the Philippines Manila - National Institutes of Health, Manila, Philippines
| | - David A Schwartz
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Abner L Chan
- Department of Otorhinolaryngology, University of the Philippines Manila College of Medicine - Philippine General Hospital, Manila, Philippines.,Philippine National Ear Institute, University of the Philippines Manila - National Institutes of Health, Manila, Philippines
| | - Todd M Wine
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Pediatric Otolaryngology, Children's Hospital Colorado, Aurora, Colorado
| | - Eva Maria Cutiongco-de la Paz
- Philippine Genome Center, University of the Philippines, Quezon City, Philippines.,University of the Philippines Manila - National Institutes of Health, Manila, Philippines
| | - Norman Friedman
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Pediatric Otolaryngology, Children's Hospital Colorado, Aurora, Colorado
| | - Katerina Kechris
- Department of Biostatistics and Bioinformatics, Colorado School of Public Health, Aurora, Colorado
| | - Juha Kere
- Folkhälsan Institute of Genetics and Molecular Neurology Research Program, University of Helsinki, Helsinki, Finland.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Suzanne M Leal
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Ivana V Yang
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Janak A Patel
- Division of Infectious Diseases, Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas
| | - Ma Leah C Tantoco
- Department of Otorhinolaryngology, University of the Philippines Manila College of Medicine - Philippine General Hospital, Manila, Philippines.,Philippine National Ear Institute, University of the Philippines Manila - National Institutes of Health, Manila, Philippines
| | - Saima Riazuddin
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kenny H Chan
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Pediatric Otolaryngology, Children's Hospital Colorado, Aurora, Colorado
| | - Petri S Mattila
- Department of Otorhinolaryngology, Head & Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Maria Rina T Reyes-Quintos
- Department of Otorhinolaryngology, University of the Philippines Manila College of Medicine - Philippine General Hospital, Manila, Philippines.,Philippine National Ear Institute, University of the Philippines Manila - National Institutes of Health, Manila, Philippines.,Newborn Hearing Screening Reference Center, University of the Philippines Manila - National Institutes of Health (NIH), Manila, Philippines.,University of the Philippines Manila - National Institutes of Health, Manila, Philippines
| | - Zubair M Ahmed
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Herman A Jenkins
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| | - Tasnee Chonmaitree
- Division of Infectious Diseases, Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas
| | - Lena Hafrén
- Department of Otorhinolaryngology, Head & Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Charlotte M Chiong
- Department of Otorhinolaryngology, University of the Philippines Manila College of Medicine - Philippine General Hospital, Manila, Philippines.,Philippine National Ear Institute, University of the Philippines Manila - National Institutes of Health, Manila, Philippines.,Newborn Hearing Screening Reference Center, University of the Philippines Manila - National Institutes of Health (NIH), Manila, Philippines
| | - Regie Lyn P Santos-Cortez
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.,Philippine National Ear Institute, University of the Philippines Manila - National Institutes of Health, Manila, Philippines.,Center for Children's Surgery, Children's Hospital Colorado, Aurora, Colorado
| |
Collapse
|
135
|
Carey RM, Calhoun DA, Bakris GL, Brook RD, Daugherty SL, Dennison-Himmelfarb CR, Egan BM, Flack JM, Gidding SS, Judd E, Lackland DT, Laffer CL, Newton-Cheh C, Smith SM, Taler SJ, Textor SC, Turan TN, White WB. Resistant Hypertension: Detection, Evaluation, and Management: A Scientific Statement From the American Heart Association. Hypertension 2019; 72:e53-e90. [PMID: 30354828 DOI: 10.1161/hyp.0000000000000084] [Citation(s) in RCA: 664] [Impact Index Per Article: 110.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Resistant hypertension (RH) is defined as above-goal elevated blood pressure (BP) in a patient despite the concurrent use of 3 antihypertensive drug classes, commonly including a long-acting calcium channel blocker, a blocker of the renin-angiotensin system (angiotensin-converting enzyme inhibitor or angiotensin receptor blocker), and a diuretic. The antihypertensive drugs should be administered at maximum or maximally tolerated daily doses. RH also includes patients whose BP achieves target values on ≥4 antihypertensive medications. The diagnosis of RH requires assurance of antihypertensive medication adherence and exclusion of the "white-coat effect" (office BP above goal but out-of-office BP at or below target). The importance of RH is underscored by the associated risk of adverse outcomes compared with non-RH. This article is an updated American Heart Association scientific statement on the detection, evaluation, and management of RH. Once antihypertensive medication adherence is confirmed and out-of-office BP recordings exclude a white-coat effect, evaluation includes identification of contributing lifestyle issues, detection of drugs interfering with antihypertensive medication effectiveness, screening for secondary hypertension, and assessment of target organ damage. Management of RH includes maximization of lifestyle interventions, use of long-acting thiazide-like diuretics (chlorthalidone or indapamide), addition of a mineralocorticoid receptor antagonist (spironolactone or eplerenone), and, if BP remains elevated, stepwise addition of antihypertensive drugs with complementary mechanisms of action to lower BP. If BP remains uncontrolled, referral to a hypertension specialist is advised.
Collapse
|
136
|
Prevalence of endothelial nitric oxide synthase (ENOS) gene G894T polymorphism and its association with hypertension: a population-based study with Brazilian women. ACTA ACUST UNITED AC 2019; 4:e63-e73. [PMID: 31211272 PMCID: PMC6549039 DOI: 10.5114/amsad.2019.84539] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/18/2019] [Indexed: 11/29/2022]
Abstract
Introduction Hypertension is one of the most prevalent diseases in the world, accounting for millions of deaths each year. The reduction in the concentration of nitric oxide (NO) produced by the catalysis of endothelial nitric oxide synthase (eNOS) is associated with higher blood pressure (BP) levels. This reduction might be because of genetic polymorphisms. This study investigated the prevalence of the eNOS gene G894T polymorphism in women from northeast Brazil and its association with hypertension. Material and methods This cross-sectional study included 810 women (aged 19–49 years). Sociodemographic, health, anthropometric, and BP data were collected. Hypertension was defined according to the following criteria: systolic BP ≥ 140 mm Hg, diastolic BP ≥ 90 mm Hg, the regular use of antihypertensive medication, or some combination thereof. Epithelial cells from the cheek mucosa were obtained for DNA extraction. Genotyping was performed via real-time PCR. The measure of association was the prevalence ratio (PR) and its 95% CI as calculated via Poisson regression. Results The frequencies of the GG, GT, and TT genotypes were 57.1%, 35.7%, and 7.2%, respectively. For each of these genotypes, the prevalence of hypertension in women was 17.9%, 23.6%, and 34.4%, respectively. Relative to the GG genotype, the PRs after adjusting for cofounding factors were 1.24 (95% CI: 0.95–1.61, p = 0.11) for GT and 1.76 (95% CI: 1.16–2.67, p < 0.01) for TT. Conclusions The T allele of the G894T polymorphisms is associated with hypertension in women. This may have implications for prevention and treatment.
Collapse
|
137
|
Kolifarhood G, Daneshpour MS, Khayat BS, Saadati HM, Guity K, Khosravi N, Akbarzadeh M, Sabour S. Generality of genomic findings on blood pressure traits and its usefulness in precision medicine in diverse populations: A systematic review. Clin Genet 2019; 96:17-27. [PMID: 30820929 DOI: 10.1111/cge.13527] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/14/2019] [Accepted: 02/21/2019] [Indexed: 01/01/2023]
Abstract
Remarkable findings from genome-wide association studies (GWAS) on blood pressure (BP) traits have made new insights for developing precision medicine toward more effective screening measures. However, generality of GWAS findings in diverse populations is hampered by some technical limitations. There is no comprehensive study to evaluate source(s) of the non-generality of GWAS results on BP traits, so to fill the gap, this systematic review study was carried out. Using MeSH terms, 1545 records were detected through searching in five databases and 49 relevant full-text articles were included in our review. Overall, 749 unique variants were reported, of those, majority of variants have been detected in Europeans and were associated to systolic and diastolic BP traits. Frequency of genetic variants with same position was low in European and non-European populations (n = 38). However, more than 200 (>25%) single nucleotide polymorphisms were found on same loci or linkage disequilibrium blocks (r2 ≥ 80%). Investigating for locus position and linkage disequilibrium of infrequent unique variants showed modest to high reproducibility of findings in Europeans that in some extent was generalizable in other populations. Beyond theoretical limitations, our study addressed other possible sources of non-generality of GWAS findings for BP traits in the same and different origins.
Collapse
Affiliation(s)
- Goodarz Kolifarhood
- Department of Epidemiology, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam S Daneshpour
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahareh S Khayat
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein M Saadati
- Department of Epidemiology, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamran Guity
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasim Khosravi
- Department of Community Health Nursing, School of Nursing and Midwifery, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdi Akbarzadeh
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Siamak Sabour
- Department of Epidemiology, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Safety Promotion and Injury Prevention Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
138
|
Petty LE, Highland HM, Gamazon ER, Hu H, Karhade M, Chen HH, de Vries PS, Grove ML, Aguilar D, Bell GI, Huff CD, Hanis CL, Doddapaneni H, Munzy DM, Gibbs RA, Ma J, Parra EJ, Cruz M, Valladares-Salgado A, Arking DE, Barbeira A, Im HK, Morrison AC, Boerwinkle E, Below JE. Functionally oriented analysis of cardiometabolic traits in a trans-ethnic sample. Hum Mol Genet 2019; 28:1212-1224. [PMID: 30624610 PMCID: PMC6423424 DOI: 10.1093/hmg/ddy435] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 11/13/2018] [Accepted: 11/20/2018] [Indexed: 01/02/2023] Open
Abstract
Interpretation of genetic association results is difficult because signals often lack biological context. To generate hypotheses of the functional genetic etiology of complex cardiometabolic traits, we estimated the genetically determined component of gene expression from common variants using PrediXcan (1) and determined genes with differential predicted expression by trait. PrediXcan imputes tissue-specific expression levels from genetic variation using variant-level effect on gene expression in transcriptome data. To explore the value of imputed genetically regulated gene expression (GReX) models across different ancestral populations, we evaluated imputed expression levels for predictive accuracy genome-wide in RNA sequence data in samples drawn from European-ancestry and African-ancestry populations and identified substantial predictive power using European-derived models in a non-European target population. We then tested the association of GReX on 15 cardiometabolic traits including blood lipid levels, body mass index, height, blood pressure, fasting glucose and insulin, RR interval, fibrinogen level, factor VII level and white blood cell and platelet counts in 15 755 individuals across three ancestry groups, resulting in 20 novel gene-phenotype associations reaching experiment-wide significance across ancestries. In addition, we identified 18 significant novel gene-phenotype associations in our ancestry-specific analyses. Top associations were assessed for additional support via query of S-PrediXcan (2) results derived from publicly available genome-wide association studies summary data. Collectively, these findings illustrate the utility of transcriptome-based imputation models for discovery of cardiometabolic effect genes in a diverse dataset.
Collapse
Affiliation(s)
- Lauren E Petty
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Heather M Highland
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Eric R Gamazon
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
- Clare Hall, University of Cambridge, Cambridge, UK
| | - Hao Hu
- Department of Epidemiology, MD Anderson Cancer Center, Houston, TX, USA
| | - Mandar Karhade
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hung-Hsin Chen
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Paul S de Vries
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Megan L Grove
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - David Aguilar
- Department of Cardiology, Baylor College of Medicine Houston, TX, USA
| | - Graeme I Bell
- Departments of Medicine and Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Chad D Huff
- Department of Epidemiology, MD Anderson Cancer Center, Houston, TX, USA
| | - Craig L Hanis
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Donna M Munzy
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Richard A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Jianzhong Ma
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Esteban J Parra
- Department of Anthropology, University of Toronto at Mississauga, Mississauga, Ontario, Canada
| | - Miguel Cruz
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, IMSS, Mexico City, Mexico
| | - Adan Valladares-Salgado
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, IMSS, Mexico City, Mexico
| | - Dan E Arking
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alvaro Barbeira
- Section of Genetic Medicine, Department of Medicine, University of Chicago, IL, USA
| | - Hae Kyung Im
- Section of Genetic Medicine, Department of Medicine, University of Chicago, IL, USA
| | - Alanna C Morrison
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Eric Boerwinkle
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jennifer E Below
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
139
|
Zhao JV, Kwok MK, Schooling CM. Effect of glutamate and aspartate on ischemic heart disease, blood pressure, and diabetes: a Mendelian randomization study. Am J Clin Nutr 2019; 109:1197-1206. [PMID: 30949673 DOI: 10.1093/ajcn/nqy362] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 11/29/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Evolutionary biology suggests reproduction trades off against longevity. Genetic selection in favor of fertility and ischemic heart disease (IHD) exists in humans. Observationally, soy protects against IHD. Soy amino acids, glutamate and aspartate, may lower androgens. No large randomized controlled trials testing their health effects exist. OBJECTIVE Using Mendelian randomization, we assessed how genetically predicted glutamate and aspartate affected IHD, blood pressure, and diabetes. METHODS A separate sample instrumental variable analysis with genetic instruments was used to obtain unconfounded estimates using genetic variants strongly (P < 5 × 10(-8)) and solely associated with glutamate or aspartate applied to an IHD case (n ≤76,014)-control (n ≤ 264,785) study (based on a meta-analysis of CARDIoGRAMplusC4D 1000 Genomes, UK Biobank CAD SOFT GWAS and Myocardial Infarction Genetics and CARDIoGRAM Exome), blood pressure from the UK Biobank (n ≤ 361,194), and the DIAbetes Genetics Replication And Meta-analysis diabetes case (n = 26,676)-control (n = 132,532) study. A weighted median and MR-Egger were used for a sensitivity analysis. RESULTS Glutamate was not associated with IHD, blood pressure, or diabetes after correction for multiple comparisons. Aspartate was inversely associated with IHD (odds ratio (OR) 0.92 per log-transformed standard deviation (SD); 95% confidence interval (CI) 0.88, 0.96) and diastolic blood pressure (-0.03; 95% CI -0.04, -0.02) using inverse variance weighting, but not diabetes (OR 1.00; 95% CI 0.91, 1.09). Associations were robust to the sensitivity analysis. CONCLUSIONS Our findings suggest aspartate may play a role in IHD and blood pressure, potentially underlying cardiovascular benefits of soy. Clarifying the mechanisms would be valuable for IHD prevention and for defining a healthy diet.
Collapse
Affiliation(s)
- Jie V Zhao
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - M K Kwok
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - C Mary Schooling
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.,City University of New York, School of Public Health and Health Policy, New York, NY
| |
Collapse
|
140
|
Justice AE, Karaderi T, Highland HM, Young KL, Graff M, Lu Y, Turcot V, Auer PL, Fine RS, Guo X, Schurmann C, Lempradl A, Marouli E, Mahajan A, Winkler TW, Locke AE, Medina-Gomez C, Esko T, Vedantam S, Giri A, Lo KS, Alfred T, Mudgal P, Ng MCY, Heard-Costa NL, Feitosa MF, Manning AK, Willems SM, Sivapalaratnam S, Abecasis G, Alam DS, Allison M, Amouyel P, Arzumanyan Z, Balkau B, Bastarache L, Bergmann S, Bielak LF, Blüher M, Boehnke M, Boeing H, Boerwinkle E, Böger CA, Bork-Jensen J, Bottinger EP, Bowden DW, Brandslund I, Broer L, Burt AA, Butterworth AS, Caulfield MJ, Cesana G, Chambers JC, Chasman DI, Chen YDI, Chowdhury R, Christensen C, Chu AY, Collins FS, Cook JP, Cox AJ, Crosslin DS, Danesh J, de Bakker PIW, Denus SD, Mutsert RD, Dedoussis G, Demerath EW, Dennis JG, Denny JC, Di Angelantonio E, Dörr M, Drenos F, Dubé MP, Dunning AM, Easton DF, Elliott P, Evangelou E, Farmaki AE, Feng S, Ferrannini E, Ferrieres J, Florez JC, Fornage M, Fox CS, Franks PW, Friedrich N, Gan W, Gandin I, Gasparini P, Giedraitis V, Girotto G, Gorski M, Grallert H, Grarup N, Grove ML, Gustafsson S, Haessler J, Hansen T, Hattersley AT, et alJustice AE, Karaderi T, Highland HM, Young KL, Graff M, Lu Y, Turcot V, Auer PL, Fine RS, Guo X, Schurmann C, Lempradl A, Marouli E, Mahajan A, Winkler TW, Locke AE, Medina-Gomez C, Esko T, Vedantam S, Giri A, Lo KS, Alfred T, Mudgal P, Ng MCY, Heard-Costa NL, Feitosa MF, Manning AK, Willems SM, Sivapalaratnam S, Abecasis G, Alam DS, Allison M, Amouyel P, Arzumanyan Z, Balkau B, Bastarache L, Bergmann S, Bielak LF, Blüher M, Boehnke M, Boeing H, Boerwinkle E, Böger CA, Bork-Jensen J, Bottinger EP, Bowden DW, Brandslund I, Broer L, Burt AA, Butterworth AS, Caulfield MJ, Cesana G, Chambers JC, Chasman DI, Chen YDI, Chowdhury R, Christensen C, Chu AY, Collins FS, Cook JP, Cox AJ, Crosslin DS, Danesh J, de Bakker PIW, Denus SD, Mutsert RD, Dedoussis G, Demerath EW, Dennis JG, Denny JC, Di Angelantonio E, Dörr M, Drenos F, Dubé MP, Dunning AM, Easton DF, Elliott P, Evangelou E, Farmaki AE, Feng S, Ferrannini E, Ferrieres J, Florez JC, Fornage M, Fox CS, Franks PW, Friedrich N, Gan W, Gandin I, Gasparini P, Giedraitis V, Girotto G, Gorski M, Grallert H, Grarup N, Grove ML, Gustafsson S, Haessler J, Hansen T, Hattersley AT, Hayward C, Heid IM, Holmen OL, Hovingh GK, Howson JMM, Hu Y, Hung YJ, Hveem K, Ikram MA, Ingelsson E, Jackson AU, Jarvik GP, Jia Y, Jørgensen T, Jousilahti P, Justesen JM, Kahali B, Karaleftheri M, Kardia SLR, Karpe F, Kee F, Kitajima H, Komulainen P, Kooner JS, Kovacs P, Krämer BK, Kuulasmaa K, Kuusisto J, Laakso M, Lakka TA, Lamparter D, Lange LA, Langenberg C, Larson EB, Lee NR, Lee WJ, Lehtimäki T, Lewis CE, Li H, Li J, Li-Gao R, Lin LA, Lin X, Lind L, Lindström J, Linneberg A, Liu CT, Liu DJ, Luan J, Lyytikäinen LP, MacGregor S, Mägi R, Männistö S, Marenne G, Marten J, Masca NGD, McCarthy MI, Meidtner K, Mihailov E, Moilanen L, Moitry M, Mook-Kanamori DO, Morgan A, Morris AP, Müller-Nurasyid M, Munroe PB, Narisu N, Nelson CP, Neville M, Ntalla I, O'Connell JR, Owen KR, Pedersen O, Peloso GM, Pennell CE, Perola M, Perry JA, Perry JRB, Pers TH, Ewing A, Polasek O, Raitakari OT, Rasheed A, Raulerson CK, Rauramaa R, Reilly DF, Reiner AP, Ridker PM, Rivas MA, Robertson NR, Robino A, Rudan I, Ruth KS, Saleheen D, Salomaa V, Samani NJ, Schreiner PJ, Schulze MB, Scott RA, Segura-Lepe M, Sim X, Slater AJ, Small KS, Smith BH, Smith JA, Southam L, Spector TD, Speliotes EK, Stefansson K, Steinthorsdottir V, Stirrups KE, Strauch K, Stringham HM, Stumvoll M, Sun L, Surendran P, Swart KMA, Tardif JC, Taylor KD, Teumer A, Thompson DJ, Thorleifsson G, Thorsteinsdottir U, Thuesen BH, Tönjes A, Torres M, Tsafantakis E, Tuomilehto J, Uitterlinden AG, Uusitupa M, van Duijn CM, Vanhala M, Varma R, Vermeulen SH, Vestergaard H, Vitart V, Vogt TF, Vuckovic D, Wagenknecht LE, Walker M, Wallentin L, Wang F, Wang CA, Wang S, Wareham NJ, Warren HR, Waterworth DM, Wessel J, White HD, Willer CJ, Wilson JG, Wood AR, Wu Y, Yaghootkar H, Yao J, Yerges-Armstrong LM, Young R, Zeggini E, Zhan X, Zhang W, Zhao JH, Zhao W, Zheng H, Zhou W, Zillikens MC, Rivadeneira F, Borecki IB, Pospisilik JA, Deloukas P, Frayling TM, Lettre G, Mohlke KL, Rotter JI, Kutalik Z, Hirschhorn JN, Cupples LA, Loos RJF, North KE, Lindgren CM. Protein-coding variants implicate novel genes related to lipid homeostasis contributing to body-fat distribution. Nat Genet 2019; 51:452-469. [PMID: 30778226 PMCID: PMC6560635 DOI: 10.1038/s41588-018-0334-2] [Show More Authors] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 12/17/2018] [Indexed: 02/02/2023]
Abstract
Body-fat distribution is a risk factor for adverse cardiovascular health consequences. We analyzed the association of body-fat distribution, assessed by waist-to-hip ratio adjusted for body mass index, with 228,985 predicted coding and splice site variants available on exome arrays in up to 344,369 individuals from five major ancestries (discovery) and 132,177 European-ancestry individuals (validation). We identified 15 common (minor allele frequency, MAF ≥5%) and nine low-frequency or rare (MAF <5%) coding novel variants. Pathway/gene set enrichment analyses identified lipid particle, adiponectin, abnormal white adipose tissue physiology and bone development and morphology as important contributors to fat distribution, while cross-trait associations highlight cardiometabolic traits. In functional follow-up analyses, specifically in Drosophila RNAi-knockdowns, we observed a significant increase in the total body triglyceride levels for two genes (DNAH10 and PLXND1). We implicate novel genes in fat distribution, stressing the importance of interrogating low-frequency and protein-coding variants.
Collapse
Affiliation(s)
- Anne E Justice
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
- Weis Center for Research, Geisinger Health System, Danville, PA, USA
| | - Tugce Karaderi
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Department of Biological Sciences, Faculty of Arts and Sciences, Eastern Mediterranean University, Famagusta, Cyprus
| | - Heather M Highland
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kristin L Young
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Mariaelisa Graff
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Yingchang Lu
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Genetics of Obesity and Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Valérie Turcot
- Montreal Heart Institute, Universite de Montreal, Montreal, Quebec, Canada
| | - Paul L Auer
- Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Rebecca S Fine
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, USA
| | - Xiuqing Guo
- Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Claudia Schurmann
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Genetics of Obesity and Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adelheid Lempradl
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Eirini Marouli
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Anubha Mahajan
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Thomas W Winkler
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Adam E Locke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
- McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, MO, USA
| | - Carolina Medina-Gomez
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Tõnu Esko
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, USA
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Sailaja Vedantam
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, USA
| | - Ayush Giri
- Department of Obstetrics and Gynecology, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| | - Ken Sin Lo
- Montreal Heart Institute, Universite de Montreal, Montreal, Quebec, Canada
- Department of Obstetrics and Gynecology, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| | - Tamuno Alfred
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Poorva Mudgal
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Maggie C Y Ng
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Nancy L Heard-Costa
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- NHLBI Framingham Heart Study, Framingham, MA, USA
| | - Mary F Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Alisa K Manning
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard University Medical School, Boston, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Sara M Willems
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Suthesh Sivapalaratnam
- Massachusetts General Hospital, Boston, MA, USA
- Department of Vascular Medicine, AMC, Amsterdam, The Netherlands
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Goncalo Abecasis
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
- School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Dewan S Alam
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, Canada
| | - Matthew Allison
- Department of Family Medicine & Public Health, University of California, San Diego, La Jolla, CA, USA
| | - Philippe Amouyel
- INSERM U1167, Lille, France
- Institut Pasteur de Lille, U1167, Lille, France
- U1167-RID-AGE, Universite de Lille - Risk factors and molecular determinants of aging-related diseases, Lille, France
| | - Zorayr Arzumanyan
- Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Beverley Balkau
- INSERM U1018, Centre de recherche en Épidemiologie et Sante des Populations (CESP), Villejuif, France
| | - Lisa Bastarache
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN, USA
| | - Sven Bergmann
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Matthias Blüher
- IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Heiner Boeing
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Carsten A Böger
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Jette Bork-Jensen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Erwin P Bottinger
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Donald W Bowden
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Ivan Brandslund
- Department of Clinical Biochemistry, Lillebaelt Hospital, Vejle, Denmark
- Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Linda Broer
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Amber A Burt
- Department of Medicine (Medical Genetics), University of Washington, Seattle, WA, USA
| | - Adam S Butterworth
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- NIHR Blood and Transplant Research Unit in Donor Health and Genomics, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Mark J Caulfield
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Research Centre, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Giancarlo Cesana
- Research Centre on Public Health, University of Milano-Bicocca, Monza, Italy
| | - John C Chambers
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Cardiology, London North West Healthcare NHS Trust, Ealing Hospital, Middlesex, UK
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Imperial College Healthcare NHS Trust, London, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
| | - Daniel I Chasman
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Preventive Medicine, Brigham and Women's and Harvard Medical School, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Yii-Der Ida Chen
- Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Rajiv Chowdhury
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | | | - Audrey Y Chu
- Division of Preventive Medicine, Brigham and Women's and Harvard Medical School, Boston, MA, USA
| | - Francis S Collins
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - James P Cook
- Department of Biostatistics, University of Liverpool, Liverpool, UK
| | - Amanda J Cox
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia
| | - David S Crosslin
- Department of Biomedical Infomatics and Medical Education, University of Washington, Seattle, WA, USA
| | - John Danesh
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- NIHR Blood and Transplant Research Unit in Donor Health and Genomics, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Wellcome Trust Sanger Institute, Hinxton, UK
- British Heart Foundation Cambridge Centre of Excellence, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Paul I W de Bakker
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Simon de Denus
- Montreal Heart Institute, Universite de Montreal, Montreal, Quebec, Canada
- Faculty of Pharmacy, Universite de Montreal, Montreal, Quebec, Canada
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - George Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Ellen W Demerath
- Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Joe G Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Josh C Denny
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN, USA
| | - Emanuele Di Angelantonio
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- NIHR Blood and Transplant Research Unit in Donor Health and Genomics, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Cambridge Centre of Excellence, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Marcus Dörr
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Fotios Drenos
- Institute of Cardiovascular Science, University College London, London, UK
- MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, UK
- Department of Life Sciences, Brunel University London, Uxbridge, UK
| | - Marie-Pierre Dubé
- Montreal Heart Institute, Universite de Montreal, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Universite de Montreal, Montreal, Quebec, Canada
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Evangelos Evangelou
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Aliki-Eleni Farmaki
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Shuang Feng
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Ele Ferrannini
- CNR Institute of Clinical Physiology, Pisa, Italy
- Department of Clinical & Experimental Medicine, University of Pisa, Pisa, Italy
| | - Jean Ferrieres
- Toulouse University School of Medicine, Toulouse, France
| | - Jose C Florez
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard University Medical School, Boston, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Myriam Fornage
- Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Paul W Franks
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Malmo, Sweden
- Department of Nutrition, Harvard School of Public Health, Boston, MA, USA
- Department of Public Health and Clinical Medicine, Unit of Medicine, Umeå University, Umeå, Sweden
| | - Nele Friedrich
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Wei Gan
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Ilaria Gandin
- Ilaria Gandin, Research Unit, AREA Science Park, Trieste, Italy
| | - Paolo Gasparini
- Department of Medical Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy
| | | | - Giorgia Girotto
- Department of Medical Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy
| | - Mathias Gorski
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Harald Grallert
- German Center for Diabetes Research, München-Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Niels Grarup
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Megan L Grove
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Stefan Gustafsson
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jeff Haessler
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle WA, USA
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Iris M Heid
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
- Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Oddgeir L Holmen
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - G Kees Hovingh
- Department of Vascular Medicine, AMC, Amsterdam, The Netherlands
| | - Joanna M M Howson
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Yao Hu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yi-Jen Hung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital Songshan Branch, Taipei, Taiwan
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Center, Department of Public Health, Norwegian University of Science and Technology, Levanger, Norway
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Radiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Erik Ingelsson
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Anne U Jackson
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Gail P Jarvik
- Department of Medicine (Medical Genetics), University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Yucheng Jia
- Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Torben Jørgensen
- Faculty of Medicine, Aalborg University, Aalborg, Denmark
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Research Center for Prevention and Health, Capital Region of Denmark, Glostrup, Denmark
| | | | - Johanne M Justesen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bratati Kahali
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
| | | | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
| | - Frank Kee
- UKCRC Centre of Excellence for Public Health Research, Queens University Belfast, Belfast, UK
| | - Hidetoshi Kitajima
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Pirjo Komulainen
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Jaspal S Kooner
- Department of Cardiology, London North West Healthcare NHS Trust, Ealing Hospital, Middlesex, UK
- Imperial College Healthcare NHS Trust, London, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
- National Heart and Lung Institute, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Peter Kovacs
- IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany
| | - Bernhard K Krämer
- University Medical Centre Mannheim, 5th Medical Department, University of Heidelberg, Mannheim, Germany
| | - Kari Kuulasmaa
- National Institute for Health and Welfare, Helsinki, Finland
| | - Johanna Kuusisto
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Timo A Lakka
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio Campus, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - David Lamparter
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Verge Genomics, San Fransico, CA, USA
| | - Leslie A Lange
- Division of Biomedical and Personalized Medicine, Department of Medicine, University of Colorado-Denver, Aurora, CO, USA
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Eric B Larson
- Department of Medicine (Medical Genetics), University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
- Department of Health Services, University of Washington, Seattle, WA, USA
| | - Nanette R Lee
- Department of Anthropology, Sociology, and History, University of San Carlos, Cebu City, Philippines
- USC-Office of Population Studies Foundation, Inc., University of San Carlos, Cebu City, Philippines
| | - Wen-Jane Lee
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Social Work, Tunghai University, Taichung, Taiwan
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Cora E Lewis
- Division of Preventive Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Huaixing Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jin Li
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Li-An Lin
- Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xu Lin
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | - Jaana Lindström
- National Institute for Health and Welfare, Helsinki, Finland
| | - Allan Linneberg
- Research Center for Prevention and Health, Capital Region of Denmark, Glostrup, Denmark
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Frederiksberg, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Dajiang J Liu
- Department of Public Health Sciences, Institute for Personalized Medicine, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Jian'an Luan
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Stuart MacGregor
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Reedik Mägi
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Satu Männistö
- National Institute for Health and Welfare, Helsinki, Finland
| | | | - Jonathan Marten
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Nicholas G D Masca
- Department of Cardiovascular Sciences, Univeristy of Leicester, Glenfield Hospital, Leicester, UK
- NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Mark I McCarthy
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
| | - Karina Meidtner
- German Center for Diabetes Research, München-Neuherberg, Germany
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | | | - Leena Moilanen
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Marie Moitry
- Department of Epidemiology and Public Health, University of Strasbourg, Strasbourg, France
- Department of Public Health, University Hospital of Strasbourg, Strasbourg, France
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, The Netherlands
| | - Anna Morgan
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Andrew P Morris
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Department of Biostatistics, University of Liverpool, Liverpool, UK
| | - Martina Müller-Nurasyid
- Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Department of Medicine I, University Hospital Grosshadern, Ludwig-Maximilians-Universitat, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Patricia B Munroe
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Research Centre, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Narisu Narisu
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christopher P Nelson
- Department of Cardiovascular Sciences, Univeristy of Leicester, Glenfield Hospital, Leicester, UK
- NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Matt Neville
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
| | - Ioanna Ntalla
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jeffrey R O'Connell
- Program for Personalized and Genomic Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Katharine R Owen
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
| | - Oluf Pedersen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gina M Peloso
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Craig E Pennell
- Division of Obstetric and Gynaecology, School of Medicine, The University of Western Australia, Perth, Western Australia, Australia
- School of Medicine and Public Health, Faculty of Medicine and Health, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Markus Perola
- National Institute for Health and Welfare, Helsinki, Finland
- Institute for Molecular Medicine (FIMM) and Diabetes and Obesity Research Program, University of Helsinki, Helsinki, Finland
| | - James A Perry
- Program for Personalized and Genomic Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - John R B Perry
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Tune H Pers
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Ailith Ewing
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Ozren Polasek
- School of Medicine, University of Split, Split, Croatia
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Olli T Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Asif Rasheed
- Centre for Non-Communicable Diseases, Karachi, Pakistan
| | | | - Rainer Rauramaa
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio Campus, Finland
| | - Dermot F Reilly
- Genetics and Pharmacogenomics, Merck & Co., Inc., Boston, MA, USA
| | - Alex P Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Paul M Ridker
- Division of Preventive Medicine, Brigham and Women's and Harvard Medical School, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Manuel A Rivas
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Neil R Robertson
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Antonietta Robino
- Institute for Maternal and Child Health, IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Igor Rudan
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Katherine S Ruth
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Danish Saleheen
- Centre for Non-Communicable Diseases, Karachi, Pakistan
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Veikko Salomaa
- National Institute for Health and Welfare, Helsinki, Finland
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, Univeristy of Leicester, Glenfield Hospital, Leicester, UK
- NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Pamela J Schreiner
- Division of Epidemiology & Community Health, University of Minnesota, Minneapolis, MN, USA
| | - Matthias B Schulze
- German Center for Diabetes Research, München-Neuherberg, Germany
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | - Robert A Scott
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Marcelo Segura-Lepe
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Xueling Sim
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
- Saw Swee Hock School of Public Health, National University Health System, National University of Singapore, Singapore, Singapore
| | - Andrew J Slater
- Genetics, Target Sciences, GlaxoSmithKline, Research Triangle Park, NC, USA
- OmicSoft a QIAGEN Company, Cary, NC, USA
| | - Kerrin S Small
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Blair H Smith
- Division of Population Health Sciences, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
- Generation Scotland, Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, UK
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Lorraine Southam
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Wellcome Trust Sanger Institute, Hinxton, UK
| | - Timothy D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Elizabeth K Speliotes
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | - Kari Stefansson
- deCODE Genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | | | - Kathleen E Stirrups
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Genetic Epidemiology, IBE, Faculty of Medicine, LMU Munich, Germany
| | - Heather M Stringham
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Michael Stumvoll
- IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Liang Sun
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Praveen Surendran
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Karin M A Swart
- Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, The Netherlands
| | - Jean-Claude Tardif
- Montreal Heart Institute, Universite de Montreal, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Universite de Montreal, Montreal, Quebec, Canada
| | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Deborah J Thompson
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | | | - Unnur Thorsteinsdottir
- deCODE Genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Betina H Thuesen
- Research Center for Prevention and Health, Capital Region of Denmark, Glostrup, Denmark
| | - Anke Tönjes
- Center for Pediatric Research, Department for Women's and Child Health, University of Leipzig, Leipzig, Germany
| | - Mina Torres
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | | | - Jaakko Tuomilehto
- National Institute for Health and Welfare, Helsinki, Finland
- Centre for Vascular Prevention, Danube-University Krems, Krems, Austria
- Dasman Diabetes Institute, Dasman, Kuwait
- Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - André G Uitterlinden
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Matti Uusitupa
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | | | - Mauno Vanhala
- Central Finland Central Hospital, Jyvaskyla, Finland
- University of Eastern Finland, Kuopio, Finland
| | - Rohit Varma
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Sita H Vermeulen
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Henrik Vestergaard
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Veronique Vitart
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Thomas F Vogt
- Cardiometabolic Disease, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Dragana Vuckovic
- Department of Medical Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy
| | - Lynne E Wagenknecht
- Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Mark Walker
- Institute of Cellular Medicine, The Medical School, Newcastle University, Newcastle, UK
| | - Lars Wallentin
- Department of Medical Sciences, Cardiology, Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | - Feijie Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Carol A Wang
- Division of Obstetric and Gynaecology, School of Medicine, The University of Western Australia, Perth, Western Australia, Australia
- School of Medicine and Public Health, Faculty of Medicine and Health, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Shuai Wang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Nicholas J Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Helen R Warren
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Research Centre, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | | | - Jennifer Wessel
- Departments of Epidemiology & Medicine, Diabetes Translational Research Center, Fairbanks School of Public Health & School of Medicine, Indiana University, Indiana, IN, USA
| | - Harvey D White
- Green Lane Cardiovascular Service, Auckland City Hospital and University of Auckland, Auckland, New Zealand
| | - Cristen J Willer
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - James G Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Andrew R Wood
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Ying Wu
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Hanieh Yaghootkar
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Jie Yao
- Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Laura M Yerges-Armstrong
- Program for Personalized and Genomic Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- GlaxoSmithKline, King of Prussia, PA, USA
| | - Robin Young
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- University of Glasgow, Glasgow, UK
| | | | - Xiaowei Zhan
- Department of Clinical Sciences, Quantitative Biomedical Research Center, Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Weihua Zhang
- Department of Cardiology, London North West Healthcare NHS Trust, Ealing Hospital, Middlesex, UK
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Jing Hua Zhao
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Wei Zhao
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - He Zheng
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wei Zhou
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - M Carola Zillikens
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Fernando Rivadeneira
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ingrid B Borecki
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Panos Deloukas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Timothy M Frayling
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Guillaume Lettre
- Montreal Heart Institute, Universite de Montreal, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Universite de Montreal, Montreal, Quebec, Canada
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Zoltán Kutalik
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Institute of Social and Preventive Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Joel N Hirschhorn
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, USA
- Departments of Pediatrics and Genetics, Harvard Medical School, Boston, MA, USA
| | - L Adrienne Cupples
- NHLBI Framingham Heart Study, Framingham, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Genetics of Obesity and Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kari E North
- Department of Epidemiology and Carolina Center of Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Cecilia M Lindgren
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.
- Li Ka Shing Centre for Health Information and Discovery, The Big Data Institute, University of Oxford, Oxford, UK.
| |
Collapse
|
141
|
Lim JE, Kim HO, Rhee SY, Kim MK, Kim YJ, Oh B. Gene-environment interactions related to blood pressure traits in two community-based Korean cohorts. Genet Epidemiol 2019; 43:402-413. [PMID: 30770579 DOI: 10.1002/gepi.22195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/08/2018] [Accepted: 11/26/2018] [Indexed: 01/11/2023]
Abstract
Hypertension is a complex disorder caused by genetic and environmental risk factors. Recently, genome-wide association studies (GWASs) identified more than 100 genetic variants for blood pressure traits and hypertension. However, the interactions between these genetic variants and environmental factors have not been systematically investigated. Therefore, we examined the interaction between genetic and environmental risk factors in blood pressure traits using the genetic risk score (GRS). Two Korean community-based cohorts, Cohort I (KARE; N = 8,840) and Cohort II (CAVAS; N = 9,599), were used for this study, and GRSs were calculated from 42 GWAS single-nucleotide polymorphisms (SNPs) that were validated for their association in these cohorts. We calculated GRSs in both ways by considering the effect sizes of each SNP (weighted GRS) and not considering the effect sizes (unweighted GRS). The unweighted GRS was strongly associated with systolic blood pressure, diastolic blood pressure, and hypertension (p = 9.03 × 10 -47 , p = 9.41 × 10 -48 , and p = 3.22 × 10 -55 by meta-analysis, respectively) and the weighted GRS showed the similar results. The environmental factors of body mass index, waist circumference, and drinking status were significantly associated with blood pressure traits, and the interaction between these factors and GRSs were examined. However, no interactions were found with either the GRS or the individual SNPs considered for the GRS. Our findings show that it is challenging to find GRS-environment interactions regarding blood pressure traits.
Collapse
Affiliation(s)
- Ji Eun Lim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hye Ok Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Sang Youl Rhee
- Department of Endocrinology and Metabolism, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Mi Kyung Kim
- Institute for Health and Society, Hanyang University, Seoul, Republic of Korea.,Department of Preventive Medicine, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Yeon-Jung Kim
- Division of Biobank for Health Science, Center for Genome Science, Korea National Institute of Health, Chungcheongbuk-do, Republic of Korea
| | - Bermseok Oh
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
142
|
Paige E, Clément M, Lareyre F, Sweeting M, Raffort J, Grenier C, Finigan A, Harrison J, Peters JE, Sun BB, Butterworth AS, Harrison SC, Bown MJ, Lindholt JS, Badger SA, Kullo IJ, Powell J, Norman PE, Scott DJA, Bailey MA, Rose-John S, Danesh J, Freitag DF, Paul DS, Mallat Z. Interleukin-6 Receptor Signaling and Abdominal Aortic Aneurysm Growth Rates. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2019; 12:e002413. [PMID: 30657332 PMCID: PMC6383754 DOI: 10.1161/circgen.118.002413] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/15/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND The Asp358Ala variant (rs2228145; A>C) in the IL (interleukin)-6 receptor ( IL6R) gene has been implicated in the development of abdominal aortic aneurysms (AAAs), but its effect on AAA growth over time is not known. We aimed to investigate the clinical association between the IL6R-Asp358Ala variant and AAA growth and to assess the effect of blocking the IL-6 signaling pathway in mouse models of aortic aneurysm rupture or dissection. METHODS Using data from 2863 participants with AAA from 9 prospective cohorts, age- and sex-adjusted mixed-effects linear regression models were used to estimate the association between the IL6R-Asp358Ala variant and annual change in AAA diameter (mm/y). In a series of complementary randomized trials in mice, the effect of blocking the IL-6 signaling pathways was assessed on plasma biomarkers, systolic blood pressure, aneurysm diameter, and time to aortic rupture and death. RESULTS After adjusting for age and sex, baseline aneurysm size was 0.55 mm (95% CI, 0.13-0.98 mm) smaller per copy of the minor allele [C] of the Asp358Ala variant. Change in AAA growth was -0.06 mm per year (-0.18 to 0.06) per copy of the minor allele; a result that was not statistically significant. Although all available worldwide data were used, the genetic analyses were not powered for an effect size as small as that observed. In 2 mouse models of AAA, selective blockage of the IL-6 trans-signaling pathway, but not combined blockage of both, the classical and trans-signaling pathways, was associated with improved survival ( P<0.05). CONCLUSIONS Our proof-of-principle data are compatible with the concept that IL-6 trans-signaling is relevant to AAA growth, encouraging larger-scale evaluation of this hypothesis.
Collapse
Affiliation(s)
- Ellie Paige
- National Centre for Epidemiology and Population Health, Research School of Population Health, The Australian National University, Canberra, Australia (E.P.)
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care (E.P., M.S., J.E.P., B.B.S., A.S.B., J.D., D.F.F., D.S.P.), University of Cambridge, United Kingdom
| | - Marc Clément
- Division of Cardiovascular Medicine (M.C., F.L., J.R., C.G., A.F., J.H., Z.M.), University of Cambridge, United Kingdom
| | - Fabien Lareyre
- Division of Cardiovascular Medicine (M.C., F.L., J.R., C.G., A.F., J.H., Z.M.), University of Cambridge, United Kingdom
- Université Côte d’Azur, Institut National de la Sante et de la Recherche Medicale, Centre Mediterranéen de Recherche Moleculaire (F.L., J.R.)
- University Hospital of Nice, France (F.L., J.R.)
| | - Michael Sweeting
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care (E.P., M.S., J.E.P., B.B.S., A.S.B., J.D., D.F.F., D.S.P.), University of Cambridge, United Kingdom
- Department of Health Sciences (M.S.), University of Leicester
| | - Juliette Raffort
- Division of Cardiovascular Medicine (M.C., F.L., J.R., C.G., A.F., J.H., Z.M.), University of Cambridge, United Kingdom
- Université Côte d’Azur, Institut National de la Sante et de la Recherche Medicale, Centre Mediterranéen de Recherche Moleculaire (F.L., J.R.)
- University Hospital of Nice, France (F.L., J.R.)
| | - Céline Grenier
- Division of Cardiovascular Medicine (M.C., F.L., J.R., C.G., A.F., J.H., Z.M.), University of Cambridge, United Kingdom
| | - Alison Finigan
- Division of Cardiovascular Medicine (M.C., F.L., J.R., C.G., A.F., J.H., Z.M.), University of Cambridge, United Kingdom
| | - James Harrison
- Division of Cardiovascular Medicine (M.C., F.L., J.R., C.G., A.F., J.H., Z.M.), University of Cambridge, United Kingdom
| | - James E. Peters
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care (E.P., M.S., J.E.P., B.B.S., A.S.B., J.D., D.F.F., D.S.P.), University of Cambridge, United Kingdom
- British Heart Foundation Centre of Excellence, Division of Cardiovascular Medicine, Addenbrooke’s Hospital, Cambridge, UK (J.E.P., A.S.B., S.C.H., J.D., D.F.F., D.S.P., Z.M.)
| | - Benjamin B. Sun
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care (E.P., M.S., J.E.P., B.B.S., A.S.B., J.D., D.F.F., D.S.P.), University of Cambridge, United Kingdom
| | - Adam S. Butterworth
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care (E.P., M.S., J.E.P., B.B.S., A.S.B., J.D., D.F.F., D.S.P.), University of Cambridge, United Kingdom
- British Heart Foundation Centre of Excellence, Division of Cardiovascular Medicine, Addenbrooke’s Hospital, Cambridge, UK (J.E.P., A.S.B., S.C.H., J.D., D.F.F., D.S.P., Z.M.)
- NIHR Blood and Transplant Research Unit in Donor Health and Genomics, Cambridge, United Kingdom (A.S.B., J.D.)
| | - Seamus C. Harrison
- Department of Cardiovascular Sciences, NIHR Leicester Biomedical Research Centre (S.C.H., M.J.B.), University of Leicester
- British Heart Foundation Centre of Excellence, Division of Cardiovascular Medicine, Addenbrooke’s Hospital, Cambridge, UK (J.E.P., A.S.B., S.C.H., J.D., D.F.F., D.S.P., Z.M.)
| | - Matthew J. Bown
- Department of Cardiovascular Sciences, NIHR Leicester Biomedical Research Centre (S.C.H., M.J.B.), University of Leicester
| | - Jes S. Lindholt
- Department of Cardiovascular and Thoracic Surgery, Elitary Research Centre of Individualised Medicine in Arterial Disease, Odense University Hospital, Denmark (J.S.L.)
| | - Stephen A. Badger
- Regional Vascular Surgery Unit, Belfast Health and Social Care Trust, United Kingdom (S.A.B.)
| | - Iftikhar J. Kullo
- Department of Cardiovascular Medicine, Gonda Vascular Center, Mayo Clinic, Rochester, MN (I.J.K.)
| | - Janet Powell
- Faculty of Medicine, Department of Surgery and Cancer, Imperial College London, United Kingdom (J.P.)
| | - Paul E. Norman
- Medical School, University of Western Australia, Perth, Australia (P.E.N.)
| | - D. Julian A. Scott
- Leeds Vascular Institute, Leeds General Infirmary (D.J.A.S., M.A.B.)
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom (D.J.A.S., M.A.B.)
| | - Marc A. Bailey
- Leeds Vascular Institute, Leeds General Infirmary (D.J.A.S., M.A.B.)
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom (D.J.A.S., M.A.B.)
| | - Stefan Rose-John
- Department of Biochemistry, Christian-Albrechts-University, Kiel, Germany (S.R.-J.)
| | - John Danesh
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care (E.P., M.S., J.E.P., B.B.S., A.S.B., J.D., D.F.F., D.S.P.), University of Cambridge, United Kingdom
- British Heart Foundation Centre of Excellence, Division of Cardiovascular Medicine, Addenbrooke’s Hospital, Cambridge, UK (J.E.P., A.S.B., S.C.H., J.D., D.F.F., D.S.P., Z.M.)
- NIHR Blood and Transplant Research Unit in Donor Health and Genomics, Cambridge, United Kingdom (A.S.B., J.D.)
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, United Kingdom (J.D.)
| | - Daniel F. Freitag
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care (E.P., M.S., J.E.P., B.B.S., A.S.B., J.D., D.F.F., D.S.P.), University of Cambridge, United Kingdom
- British Heart Foundation Centre of Excellence, Division of Cardiovascular Medicine, Addenbrooke’s Hospital, Cambridge, UK (J.E.P., A.S.B., S.C.H., J.D., D.F.F., D.S.P., Z.M.)
| | - Dirk S. Paul
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care (E.P., M.S., J.E.P., B.B.S., A.S.B., J.D., D.F.F., D.S.P.), University of Cambridge, United Kingdom
- British Heart Foundation Centre of Excellence, Division of Cardiovascular Medicine, Addenbrooke’s Hospital, Cambridge, UK (J.E.P., A.S.B., S.C.H., J.D., D.F.F., D.S.P., Z.M.)
| | - Ziad Mallat
- Division of Cardiovascular Medicine (M.C., F.L., J.R., C.G., A.F., J.H., Z.M.), University of Cambridge, United Kingdom
- British Heart Foundation Centre of Excellence, Division of Cardiovascular Medicine, Addenbrooke’s Hospital, Cambridge, UK (J.E.P., A.S.B., S.C.H., J.D., D.F.F., D.S.P., Z.M.)
- Institut National de la Santé et de la Recherche Médicale, Paris Cardiovascular Research Center, France (Z.M.)
| |
Collapse
|
143
|
Tagetti A, Bonafini S, Ohlsson T, Engström G, Almgren P, Minuz P, Smith G, Melander O, Fava C. A genetic risk score for hypertension is associated with risk of thoracic aortic aneurysm. J Hum Hypertens 2019; 33:658-663. [PMID: 30659280 DOI: 10.1038/s41371-018-0159-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/17/2018] [Accepted: 12/17/2018] [Indexed: 12/30/2022]
Abstract
A genetic risk score (GRS) based on 29 single nucleotide polymorpysms (SNPs) associated with high blood pressure (BP) was prospectively associated with development of hypertension, stroke and cardiovascular events. The aim of the present study was to evaluate the impact of this GRS on the incidence of aortic disease, including aortic dissection (AD), rupture or surgery of a thoracic (TAA) or abdominal (AAA) aortic aneurysm. More than 25,000 people from the Swedish Malmo Diet and Cancer Study had information on at least 24 SNPs and were followed up for a median ≥ 18 years. The number of BP elevating alleles of each SNPs, weighted by their effect size in the discovery studies, was summed into a BP-GRS. In Cox regression models, adjusted for traditional cardiovascular risk factors including hypertension, we found significant associations of the BP-GRS, prospectively, with incident TAA (hazard ratio (HR) 1.64 (95% confidence interval (CI) 1.081-2.475 comparing the third vs. the first tertile; p = 0.020) but not with either AAA or aortic dissection. Calibration, discrimination and reclassification analyses show modest improvement in prediction using the BP-GRS in addition to the model which used only traditional risk factors. A GRS for hypertension associates with TAA suggesting a link between genetic determinants of BP and aortic disease. The effect size is small but the addition of more SNPs to the GRS might improve its discriminatory capability.
Collapse
Affiliation(s)
- A Tagetti
- Department of Medicine, University of Verona, Section of General Medicine and Hypertension, Verona, Italy
| | - S Bonafini
- Department of Medicine, University of Verona, Section of General Medicine and Hypertension, Verona, Italy
| | - T Ohlsson
- Department of Clinical Sciences, Lund University, University Hospital of Malmö, Verona, Sweden
| | - G Engström
- Department of Clinical Sciences, Lund University, University Hospital of Malmö, Verona, Sweden
| | - P Almgren
- Department of Clinical Sciences, Lund University, University Hospital of Malmö, Verona, Sweden
| | - P Minuz
- Department of Medicine, University of Verona, Section of General Medicine and Hypertension, Verona, Italy
| | - G Smith
- Department of Cardiology, Clinical Sciences, Lund University and Skåne University Hospital, Lund, Sweden
| | - O Melander
- Department of Clinical Sciences, Lund University, University Hospital of Malmö, Verona, Sweden
| | - C Fava
- Department of Medicine, University of Verona, Section of General Medicine and Hypertension, Verona, Italy. .,Department of Clinical Sciences, Lund University, University Hospital of Malmö, Verona, Sweden.
| |
Collapse
|
144
|
Gornik HL, Persu A, Adlam D, Aparicio LS, Azizi M, Boulanger M, Bruno RM, de Leeuw P, Fendrikova-Mahlay N, Froehlich J, Ganesh SK, Gray BH, Jamison C, Januszewicz A, Jeunemaitre X, Kadian-Dodov D, Kim ESH, Kovacic JC, Mace P, Morganti A, Sharma A, Southerland AM, Touzé E, van der Niepen P, Wang J, Weinberg I, Wilson S, Olin JW, Plouin PF. First International Consensus on the diagnosis and management of fibromuscular dysplasia. Vasc Med 2019; 24:164-189. [DOI: 10.1177/1358863x18821816] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This article is a comprehensive document on the diagnosis and management of fibromuscular dysplasia (FMD), which was commissioned by the working group ‘Hypertension and the Kidney’ of the European Society of Hypertension (ESH) and the Society for Vascular Medicine (SVM). This document updates previous consensus documents/scientific statements on FMD published in 2014 with full harmonization of the position of European and US experts. In addition to practical consensus-based clinical recommendations, including a consensus protocol for catheter-based angiography and percutaneous angioplasty for renal FMD, the document also includes the first analysis of the European/International FMD Registry and provides updated data from the US Registry for FMD. Finally, it provides insights on ongoing research programs and proposes future research directions for understanding this multifaceted arterial disease.
Collapse
Affiliation(s)
- Heather L Gornik
- Division of Cardiovascular Medicine, University Hospitals Cleveland Medical Center and UH Harrington Heart and Vascular Institute, Cleveland, OH, USA
| | - Alexandre Persu
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires Saint-Luc and Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - David Adlam
- Department of Cardiovascular Sciences, Glenfield Hospital, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Lucas S Aparicio
- Hypertension Section, Internal Medicine Department, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Michel Azizi
- Paris Descartes University, Paris, France
- Assistance-Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Hypertension Unit, Paris, France
- Institut national de la santé et de la recherche médicale, Centre d’Investigation Clinique 1418, Paris, France
| | - Marion Boulanger
- Normandie Université, UNICAEN, Inserm U1237, CHU Caen Normandie, Caen, France
| | - Rosa Maria Bruno
- Department of Clinical and Experimental Medicine University of Pisa, Pisa, Italy
| | - Peter de Leeuw
- Department of Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Natalia Fendrikova-Mahlay
- Department of Cardiovascular Medicine, Cleveland Clinic Heart and Vascular Institute, Cleveland, OH, USA
| | - James Froehlich
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, USA
| | - Santhi K Ganesh
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, USA
| | - Bruce H Gray
- University of South Carolina School of Medicine/Greenville, Greenville, SC, USA
| | - Cathlin Jamison
- Association belge de patients atteints de Dysplasie Fibromusculaire/FMD Groep België (FMD-Be), Brussels, Belgium
| | | | - Xavier Jeunemaitre
- APHP, Department of Genetics and Centre for Rare Vascular Diseases, Hôpital Européen Georges Pompidou, Paris, France
- INSERM, U970 – PARCC, University Paris Descartes, Sorbonne Paris
Cité, Paris, France
| | - Daniella Kadian-Dodov
- Zena and Michael A Wiener Cardiovascular Institute and Marie-Josée and Henry R. Kravis Center for Cardiovascular Health; Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Esther SH Kim
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jason C Kovacic
- Zena and Michael A Wiener Cardiovascular Institute and Marie-Josée and Henry R. Kravis Center for Cardiovascular Health; Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pamela Mace
- Fibromuscular Dysplasia Society of America (FMDSA), North Olmsted, OH, USA
| | - Alberto Morganti
- Centro Fisiologia Clinica e Ipertensione, Policlinico Hospital, University of Milan, Milan, Italy
| | - Aditya Sharma
- Department of Medicine, Cardiovascular Medicine Division, University of Virginia, Charlottesville, VA, USA
| | | | - Emmanuel Touzé
- Normandie Université, UNICAEN, Inserm U1237, CHU Caen Normandie, Caen, France
| | - Patricia van der Niepen
- Department of Nephrology & Hypertension Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Jiguang Wang
- Shanghai Institute of Hypertension and Center for Epidemiological Studies and Clinical Trials, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ido Weinberg
- Vascular Medicine Section and Vascular Center, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Scott Wilson
- Monash University (Central Clinical School of Medicine), Melbourne, VIC, Australia
- Department of Renal Medicine, Alfred Health, Melbourne, VIC, Australia
| | - Jeffrey W Olin
- Zena and Michael A Wiener Cardiovascular Institute and Marie-Josée and Henry R. Kravis Center for Cardiovascular Health; Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pierre-Francois Plouin
- Paris Descartes University, Paris, France
- Assistance-Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Hypertension Unit, Paris, France
- Institut national de la santé et de la recherche médicale, Centre d’Investigation Clinique 1418, Paris, France
| |
Collapse
|
145
|
Rodriguez-Iturbe B, Johnson RJ. Genetic Polymorphisms in Hypertension: Are We Missing the Immune Connection? Am J Hypertens 2019; 32:113-122. [PMID: 30418477 DOI: 10.1093/ajh/hpy168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 11/06/2018] [Indexed: 01/11/2023] Open
Affiliation(s)
- Bernardo Rodriguez-Iturbe
- Renal Hospital Universitario, Universidad del Zulia, Maracaibo, Zulia, Venezuela
- Instituto Venezolano de Investigaciones Científicas (IVIC)-Zulia, Maracaibo, Zulia, Venezuela
| | - Richard J Johnson
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
146
|
Karpe F, Vasan SK, Humphreys SM, Miller J, Cheeseman J, Dennis AL, Neville MJ. Cohort Profile: The Oxford Biobank. Int J Epidemiol 2019; 47:21-21g. [PMID: 29040543 PMCID: PMC5837504 DOI: 10.1093/ije/dyx132] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2017] [Indexed: 11/18/2022] Open
Affiliation(s)
- Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford.,Oxford National Institute for Health Research, Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | - Senthil K Vasan
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford
| | - Sandy M Humphreys
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford.,Oxford National Institute for Health Research, Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | - John Miller
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford.,Oxford National Institute for Health Research, Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | - Jane Cheeseman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford.,Oxford National Institute for Health Research, Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | - A Louise Dennis
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford.,Oxford National Institute for Health Research, Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | - Matt J Neville
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford.,Oxford National Institute for Health Research, Biomedical Research Centre, Churchill Hospital, Oxford, UK
| |
Collapse
|
147
|
Giri A, Hellwege JN, Keaton JM, Park J, Qiu C, Warren HR, Torstenson ES, Kovesdy CP, Sun YV, Wilson OD, Robinson-Cohen C, Roumie CL, Chung CP, Birdwell KA, Damrauer SM, DuVall SL, Klarin D, Cho K, Wang Y, Evangelou E, Cabrera CP, Wain LV, Shrestha R, Mautz BS, Akwo EA, Sargurupremraj M, Debette S, Boehnke M, Scott LJ, Luan J, Zhao JH, Willems SM, Thériault S, Shah N, Oldmeadow C, Almgren P, Li-Gao R, Verweij N, Boutin TS, Mangino M, Ntalla I, Feofanova E, Surendran P, Cook JP, Karthikeyan S, Lahrouchi N, Liu C, Sepúlveda N, Richardson TG, Kraja A, Amouyel P, Farrall M, Poulter NR, Laakso M, Zeggini E, Sever P, Scott RA, Langenberg C, Wareham NJ, Conen D, Palmer CNA, Attia J, Chasman DI, Ridker PM, Melander O, Mook-Kanamori DO, Harst PVD, Cucca F, Schlessinger D, Hayward C, Spector TD, Jarvelin MR, Hennig BJ, Timpson NJ, Wei WQ, Smith JC, Xu Y, Matheny ME, Siew EE, Lindgren C, Herzig KH, Dedoussis G, Denny JC, Psaty BM, Howson JMM, Munroe PB, Newton-Cheh C, Caulfield MJ, Elliott P, Gaziano JM, Concato J, Wilson PWF, Tsao PS, Velez Edwards DR, Susztak K, O'Donnell CJ, Hung AM, Edwards TL. Trans-ethnic association study of blood pressure determinants in over 750,000 individuals. Nat Genet 2019; 51:51-62. [PMID: 30578418 PMCID: PMC6365102 DOI: 10.1038/s41588-018-0303-9] [Citation(s) in RCA: 301] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 10/31/2018] [Indexed: 12/15/2022]
Abstract
In this trans-ethnic multi-omic study, we reinterpret the genetic architecture of blood pressure to identify genes, tissues, phenomes and medication contexts of blood pressure homeostasis. We discovered 208 novel common blood pressure SNPs and 53 rare variants in genome-wide association studies of systolic, diastolic and pulse pressure in up to 776,078 participants from the Million Veteran Program (MVP) and collaborating studies, with analysis of the blood pressure clinical phenome in MVP. Our transcriptome-wide association study detected 4,043 blood pressure associations with genetically predicted gene expression of 840 genes in 45 tissues, and mouse renal single-cell RNA sequencing identified upregulated blood pressure genes in kidney tubule cells.
Collapse
Affiliation(s)
- Ayush Giri
- Division of Quantitative Sciences, Department of Obstetrics & Gynecology, Vanderbilt Genetics Institute, Vanderbilt Epidemiology Center, Institute for Medicine and Public Health, Vanderbilt University Medical Center, Nashville, TN, USA
- Biomedical Laboratory Research and Development, Tennessee Valley Healthcare System (626)/Vanderbilt University, Nashville, TN, USA
| | - Jacklyn N Hellwege
- Biomedical Laboratory Research and Development, Tennessee Valley Healthcare System (626)/Vanderbilt University, Nashville, TN, USA
- Division of Epidemiology, Department of Medicine, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN, USA
| | - Jacob M Keaton
- Biomedical Laboratory Research and Development, Tennessee Valley Healthcare System (626)/Vanderbilt University, Nashville, TN, USA
- Division of Epidemiology, Department of Medicine, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN, USA
| | - Jihwan Park
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA
| | - Chengxiang Qiu
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA
| | - Helen R Warren
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, UK
| | - Eric S Torstenson
- Biomedical Laboratory Research and Development, Tennessee Valley Healthcare System (626)/Vanderbilt University, Nashville, TN, USA
- Division of Epidemiology, Department of Medicine, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN, USA
| | - Csaba P Kovesdy
- Nephrology Section, Memphis VA Medical Center, Memphis, TN, USA
| | - Yan V Sun
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
| | - Otis D Wilson
- Biomedical Laboratory Research and Development, Tennessee Valley Healthcare System (626)/Vanderbilt University, Nashville, TN, USA
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cassianne Robinson-Cohen
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christianne L Roumie
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Geriatrics Research Education and Clinical Center, Tennessee Valley Health System, Veteran's Health Administration, Nashville, TN, USA
| | - Cecilia P Chung
- Division of Rheumatology and Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kelly A Birdwell
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Nephrology, Department of Medicine, Nashville Veteran Affairs Hospital, Nashville, TN, USA
| | - Scott M Damrauer
- Department of Surgery, Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Scott L DuVall
- VA Salt Lake City Health Care System, Salt Lake City, UT, USA
- University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Derek Klarin
- VA Boston Health Care System, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kelly Cho
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
- Division of Aging, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Yu Wang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Evangelos Evangelou
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Claudia P Cabrera
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, UK
| | - Louise V Wain
- Department of Health Sciences, University of Leicester, Leicester, UK
- National Institute for Health Research, Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Rojesh Shrestha
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA
| | - Brian S Mautz
- Division of Epidemiology, Department of Medicine, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN, USA
| | - Elvis A Akwo
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Stéphanie Debette
- University of Bordeaux, Bordeaux Population Health Research Center, INSERM UMR 1219, Bordeaux, France
- Department of Neurology, Bordeaux University Hospital, Bordeaux, France
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Laura J Scott
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Jian'an Luan
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Jing-Hua Zhao
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Sara M Willems
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Sébastien Thériault
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Quebec City, Quebec, Canada
| | - Nabi Shah
- Division of Molecular and Clinical Medicine, Pat Macpherson Centre for Pharmacogenetics and Pharmacogenomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
| | | | - Peter Almgren
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Ruifang Li-Gao
- Leiden University Medical Center, Leiden, the Netherlands
| | - Niek Verweij
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Thibaud S Boutin
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, Kings College London, London, UK
- NIHR Biomedical Research Centre at Guy's and St Thomas' Foundation Trust, London, UK
| | - Ioanna Ntalla
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Elena Feofanova
- Human Genetics Center, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Praveen Surendran
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - James P Cook
- Department of Biostatistics, University of Liverpool, Liverpool, UK
| | - Savita Karthikeyan
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Najim Lahrouchi
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cardiovascular Research Center, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Chunyu Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Nuno Sepúlveda
- Immunology and Infection Department, London School of Hygiene & Tropical Medicine, London, UK
| | - Tom G Richardson
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School (Population Health Sciences), University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
| | - Aldi Kraja
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Division of Statistical Genomics, Washington University School of Medicine, St. Louis, MO, USA
| | - Philippe Amouyel
- Risk Factors and Molecular Determinants of Aging-Related Diseases (RID-AGE), University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167, Lille, France
| | - Martin Farrall
- Department of Cardiovascular Medicine, The Wellcome Trust Centre for Human Genetics, Oxford, UK
| | - Neil R Poulter
- International Centre for Circulatory Health, Imperial College London, London, UK
| | - Markku Laakso
- University of Eastern Finland, School of Medicine, Kuopio, Finland
| | | | - Peter Sever
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, London, UK
| | - Robert A Scott
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Nicholas J Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - David Conen
- Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Colin Neil Alexander Palmer
- Division of Molecular and Clinical Medicine, Pat Macpherson Centre for Pharmacogenetics and Pharmacogenomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - John Attia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- Faculty of Health, University of Newcastle, Newcastle, New South Wales, Australia
| | - Daniel I Chasman
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Paul M Ridker
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Olle Melander
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | | | - Pim van der Harst
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato, Cagliari, Italy
- Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Sassari, Italy
| | - David Schlessinger
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, Kings College London, London, UK
| | - Marjo-Riitta Jarvelin
- MRC-PHE Centre for Environment & Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Unit of Primary Health Care, Oulu University Hospital, OYS, Oulu, Finland
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, Middlesex, UK
| | - Branwen J Hennig
- Wellcome Trust, London, UK
- MRC Unit The Gambia, Atlantic Boulevard, Fajara, Banjul, The Gambia
- London School of Hygiene & Tropical Medicine, London, UK
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School (Population Health Sciences), University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
| | - Wei-Qi Wei
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joshua C Smith
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yaomin Xu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael E Matheny
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Geriatrics Research Education and Clinical Center, Tennessee Valley Health System, Veteran's Health Administration, Nashville, TN, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Edward E Siew
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Geriatrics Research Education and Clinical Center, Tennessee Valley Health System, Veteran's Health Administration, Nashville, TN, USA
| | - Cecilia Lindgren
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Karl-Heinz Herzig
- Institute of Biomedicine, Biocenter of Oulu, Medical Research Center, Oulu University and Oulu University Hospital, Oulu, Finland
- Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, Poznan, Poland
| | - George Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Joshua C Denny
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bruce M Psaty
- Departments of Medicine, University of Washington, Seattle, WA, USA
- Departments of Epidemiology, University of Washington, Seattle, WA, USA
- Departments of Health Services, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Joanna M M Howson
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Patricia B Munroe
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, UK
| | - Christopher Newton-Cheh
- Cardiovascular Research Center, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Mark J Caulfield
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, UK
| | - Paul Elliott
- MRC-PHE Centre for Environment & Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare NHS Trust, Imperial College London, London, UK
- UK Dementia Research Institute at Imperial College London, London, UK
| | - J Michael Gaziano
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - John Concato
- Clinical Epidemiology Research Center (CERC), VA Cooperative Studies Program, VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Peter W F Wilson
- Atlanta VA Medical Center, Atlanta, GA, USA
- Emory Clinical Cardiovascular Research Institute, Atlanta, GA, USA
| | - Philip S Tsao
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Digna R Velez Edwards
- Division of Quantitative Sciences, Department of Obstetrics & Gynecology, Vanderbilt Genetics Institute, Vanderbilt Epidemiology Center, Institute for Medicine and Public Health, Vanderbilt University Medical Center, Nashville, TN, USA
- Biomedical Laboratory Research and Development, Tennessee Valley Healthcare System (626)/Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Katalin Susztak
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Christopher J O'Donnell
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- VA Boston Healthcare, Section of Cardiology and Department of Medicine, Boston, MA, USA
| | - Adriana M Hung
- Biomedical Laboratory Research and Development, Tennessee Valley Healthcare System (626)/Vanderbilt University, Nashville, TN, USA.
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Todd L Edwards
- Biomedical Laboratory Research and Development, Tennessee Valley Healthcare System (626)/Vanderbilt University, Nashville, TN, USA.
- Division of Epidemiology, Department of Medicine, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
148
|
Lukács Krogager M, Skals RK, Appel EVR, Schnurr TM, Engelbrechtsen L, Have CT, Pedersen O, Engstrøm T, Roden DM, Gislason G, Poulsen HE, Køber L, Stender S, Hansen T, Grarup N, Andersson C, Torp-Pedersen C, Weeke PE. Hypertension genetic risk score is associated with burden of coronary heart disease among patients referred for coronary angiography. PLoS One 2018; 13:e0208645. [PMID: 30566436 PMCID: PMC6300273 DOI: 10.1371/journal.pone.0208645] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/16/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Recent GWAS studies have identified more than 300 SNPs associated with variation in blood pressure. We investigated whether a genetic risk score constructed from these variants is associated with burden of coronary heart disease. METHODS From 2010-2014, 4,809 individuals admitted to coronary angiography in Capital Region of Copenhagen were genotyped. We calculated hypertension GRS comprised of GWAS identified SNPs associated with blood pressure. We performed logistic regression analyses to estimate the risk of hypertension and prevalent CHD. We also assessed the severity of CHD associated with the GRS. The analyses were performed using GRS quartiles. We used the Inter99 cohort to validate our results and to investigate for possible pleiotropy for the GRS with other CHD risk factors. RESULTS In COGEN, adjusted odds ratios comparing the 2nd, 3rd and 4th cumulative GRS quartiles with the reference were 1.12(95% CI 0.95-1.33), 1.35(95% CI 1.14-1.59) and 1.29(95% CI 1.09-1.53) respectively, for prevalent CHD. The adjusted multinomial logistic regression showed that 3rd and 4th GRS quartiles were associated with increased odds of developing two(OR 1.33, 95% CI 1.04-1.71 and OR 1.36, 95% CI 1.06-1.75, respectively) and three coronary vessel disease(OR 1.77, 95% CI 1.36-2.30 and OR 1.65, 95% CI 1.26-2.15, respectively). Similar results for incident CHD were observed in the Inter99 cohort. The hypertension GRS did not associate with type 2 diabetes, smoking, BMI or hyperlipidemia. CONCLUSION Hypertension GRS quartiles were associated with an increased risk of hypertension, prevalent CHD, and burden of coronary vessel disease in a dose-response pattern. We showed no evidence for pleiotropy with other risk factors for CHD.
Collapse
Affiliation(s)
- Maria Lukács Krogager
- Unit of Epidemiology and Biostatistics, Aalborg University Hospital, Aalborg, Denmark
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark
| | - Regitze Kuhr Skals
- Unit of Epidemiology and Biostatistics, Aalborg University Hospital, Aalborg, Denmark
| | - Emil Vincent R. Appel
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Theresia M. Schnurr
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Line Engelbrechtsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian Theil Have
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Engstrøm
- Department of Cardiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Dan M. Roden
- Departments of Medicine, Pharmacology, and Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Gunnar Gislason
- Department of Cardiology, Copenhagen University Hospital, Herlev and Gentofte, Hellerup, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Danish Heart Foundation, Copenhagen, Denmark
- The National Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Henrik Enghusen Poulsen
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Laboratory of Clinical Pharmacology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Pharmacology, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Lars Køber
- Department of Cardiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Steen Stender
- Department of Nutrition, Exercize and Sports, Copenhagen University, Frederiksberg, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Christian Torp-Pedersen
- Unit of Epidemiology and Biostatistics, Aalborg University Hospital, Aalborg, Denmark
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter E. Weeke
- Department of Cardiology, Bispebjerg and Frederiksberg Hospital, Denmark
| |
Collapse
|
149
|
Carey RM, Muntner P, Bosworth HB, Whelton PK. Reprint of: Prevention and Control of Hypertension. J Am Coll Cardiol 2018; 72:2996-3011. [DOI: 10.1016/j.jacc.2018.10.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/26/2018] [Accepted: 07/02/2018] [Indexed: 12/12/2022]
|
150
|
Interethnic analyses of blood pressure loci in populations of East Asian and European descent. Nat Commun 2018; 9:5052. [PMID: 30487518 PMCID: PMC6261994 DOI: 10.1038/s41467-018-07345-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 10/29/2018] [Indexed: 01/11/2023] Open
Abstract
Blood pressure (BP) is a major risk factor for cardiovascular disease and more than 200 genetic loci associated with BP are known. Here, we perform a multi-stage genome-wide association study for BP (max N = 289,038) principally in East Asians and meta-analysis in East Asians and Europeans. We report 19 new genetic loci and ancestry-specific BP variants, conforming to a common ancestry-specific variant association model. At 10 unique loci, distinct non-rare ancestry-specific variants colocalize within the same linkage disequilibrium block despite the significantly discordant effects for the proxy shared variants between the ethnic groups. The genome-wide transethnic correlation of causal-variant effect-sizes is 0.898 and 0.851 for systolic and diastolic BP, respectively. Some of the ancestry-specific association signals are also influenced by a selective sweep. Our results provide new evidence for the role of common ancestry-specific variants and natural selection in ethnic differences in complex traits such as BP. Blood pressure (BP) is a major risk factor for cardiovascular disease and more than 200 genetic loci associated with BP are known. Here, the authors perform discovery GWAS for BP in East Asians and meta-analysis in East Asians and Europeans and report ancestry-specific BP SNPs and selection signals.
Collapse
|