101
|
Mascaretti L, Chen Y, Henrotte O, Yesilyurt O, Shalaev VM, Naldoni A, Boltasseva A. Designing Metasurfaces for Efficient Solar Energy Conversion. ACS PHOTONICS 2023; 10:4079-4103. [PMID: 38145171 PMCID: PMC10740004 DOI: 10.1021/acsphotonics.3c01013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 12/26/2023]
Abstract
Metasurfaces have recently emerged as a promising technological platform, offering unprecedented control over light by structuring materials at the nanoscale using two-dimensional arrays of subwavelength nanoresonators. These metasurfaces possess exceptional optical properties, enabling a wide variety of applications in imaging, sensing, telecommunication, and energy-related fields. One significant advantage of metasurfaces lies in their ability to manipulate the optical spectrum by precisely engineering the geometry and material composition of the nanoresonators' array. Consequently, they hold tremendous potential for efficient solar light harvesting and conversion. In this Review, we delve into the current state-of-the-art in solar energy conversion devices based on metasurfaces. First, we provide an overview of the fundamental processes involved in solar energy conversion, alongside an introduction to the primary classes of metasurfaces, namely, plasmonic and dielectric metasurfaces. Subsequently, we explore the numerical tools used that guide the design of metasurfaces, focusing particularly on inverse design methods that facilitate an optimized optical response. To showcase the practical applications of metasurfaces, we present selected examples across various domains such as photovoltaics, photoelectrochemistry, photocatalysis, solar-thermal and photothermal routes, and radiative cooling. These examples highlight the ways in which metasurfaces can be leveraged to harness solar energy effectively. By tailoring the optical properties of metasurfaces, significant advancements can be expected in solar energy harvesting technologies, offering new practical solutions to support an emerging sustainable society.
Collapse
Affiliation(s)
- Luca Mascaretti
- Czech
Advanced Technology and Research Institute, Regional Centre of Advanced
Technologies and Materials, Palacký
University Olomouc, Šlechtitelů 27, 77900 Olomouc, Czech Republic
- Department
of Physical Electronics, Faculty of Nuclear Sciences and Physical
Engineering, Czech Technical University
in Prague, Břehová
7, 11519 Prague, Czech Republic
| | - Yuheng Chen
- Elmore
Family School of Electrical and Computer Engineering, Birck Nanotechnology
Center, and Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, United States
- The
Quantum Science Center (QSC), a National Quantum Information Science
Research Center of the U.S. Department of Energy (DOE), Oak Ridge, Tennessee 37931, United States
| | - Olivier Henrotte
- Czech
Advanced Technology and Research Institute, Regional Centre of Advanced
Technologies and Materials, Palacký
University Olomouc, Šlechtitelů 27, 77900 Olomouc, Czech Republic
| | - Omer Yesilyurt
- Elmore
Family School of Electrical and Computer Engineering, Birck Nanotechnology
Center, and Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, United States
- The
Quantum Science Center (QSC), a National Quantum Information Science
Research Center of the U.S. Department of Energy (DOE), Oak Ridge, Tennessee 37931, United States
| | - Vladimir M. Shalaev
- Elmore
Family School of Electrical and Computer Engineering, Birck Nanotechnology
Center, and Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, United States
- The
Quantum Science Center (QSC), a National Quantum Information Science
Research Center of the U.S. Department of Energy (DOE), Oak Ridge, Tennessee 37931, United States
| | - Alberto Naldoni
- Department
of Chemistry and NIS Centre, University
of Turin, Turin 10125, Italy
| | - Alexandra Boltasseva
- Elmore
Family School of Electrical and Computer Engineering, Birck Nanotechnology
Center, and Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, United States
- The
Quantum Science Center (QSC), a National Quantum Information Science
Research Center of the U.S. Department of Energy (DOE), Oak Ridge, Tennessee 37931, United States
| |
Collapse
|
102
|
Zerbato E, Farris R, Fronzoni G, Neyman KM, Stener M, Bruix A. Effects of Oxygen Adsorption on the Optical Properties of Ag Nanoparticles. J Phys Chem A 2023; 127:10412-10424. [PMID: 38039331 PMCID: PMC10726366 DOI: 10.1021/acs.jpca.3c05801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 12/03/2023]
Abstract
Plasmonic metal nanoparticles are efficient light harvesters with a myriad of sensing- and energy-related applications. For such applications, the optical properties of nanoparticles of metals such as Cu, Ag, and Au can be tuned by controlling the composition, particle size, and shape, but less is known about the effects of oxidation on the plasmon resonances. In this work, we elucidate the effects of O adsorption on the optical properties of Ag particles by evaluating the thermodynamic properties of O-decorated Ag particles with calculations based on the density functional theory and subsequently computing the photoabsorption spectra with a computationally efficient time-dependent density functional theory approach. We identify stable Ag nanoparticle structures with oxidized edges and a quenching of the plasmonic character of the metal particles upon oxidation and trace back this effect to the sp orbitals (or bands) of Ag particles being involved both in the plasmonic excitation and in the hybridization to form bonds with the adsorbed O atoms. Our work has important implications for the understanding and application of plasmonic metal nanoparticles and plasmon-mediated processes under oxidizing environments.
Collapse
Affiliation(s)
- Elena Zerbato
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Università
di Trieste, Via L. Giorgieri 1, Trieste 34127, Italy
| | - Riccardo Farris
- Departament
de Ciència del Materials i Química Física &
Institut de Química Teòrica i Computacional, Universitat de Barcelona, Barcelona 08028, Spain
| | - Giovanna Fronzoni
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Università
di Trieste, Via L. Giorgieri 1, Trieste 34127, Italy
| | - Konstantin M. Neyman
- Departament
de Ciència del Materials i Química Física &
Institut de Química Teòrica i Computacional, Universitat de Barcelona, Barcelona 08028, Spain
- ICREA
(Institució Catalana de Recerca i Estudis Avançats), Barcelona 08010, Spain
| | - Mauro Stener
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Università
di Trieste, Via L. Giorgieri 1, Trieste 34127, Italy
| | - Albert Bruix
- Departament
de Ciència del Materials i Química Física &
Institut de Química Teòrica i Computacional, Universitat de Barcelona, Barcelona 08028, Spain
| |
Collapse
|
103
|
Stoll S, Zhang W, Yang Y, Gil K, Kim K, Lee WH. Photodegradation of MC-LR using a novel Au-decorated Ni metal-organic framework (Au/Ni-MOF). CHEMOSPHERE 2023; 344:140404. [PMID: 37827467 DOI: 10.1016/j.chemosphere.2023.140404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Microcystins (MCs) are toxins produced by cyanobacteria commonly found in harmful algal blooms (HAB) occurring in many surface waters. Conventional methods for removing MC-LR such as membrane filtration and activated carbon are only phase change removal methods and are often expensive in operation and maintenance. It is urgent to develop a rapid, easy-to-use, and cost-effective method for the degradation of MC-LR. In this study, a novel Au-decorated Ni-metal-organic framework (Au/Ni-MOF) was newly developed on a hydrophilic carbon fiber paper (2 cm × 2 cm) using an air spraying method. The Au/Ni-MOF was then applied for the photodegradation of MC-LR in water under UV-Vis. The addition of Au onto the surface of the Ni-MOF resulted in a nearly fivefold enhancement in the reaction rate coefficient (k), reaching a value of 0.0599 min-1 for the photodegradation of MC-LR (initial concentration of 20 ppb). It was found that 94.2% of MC-LR removal was attributed to photodegradation, with the remaining 5.8% from adsorption. The rate coefficient of 20 ppb of MC-LR in the surface water sample (pH 6.0) was 0.06 min-1 likely due to the presence of other contaminates including scavenger agents within the sample which inhibits the degradation reaction of the MC-LR. Overall, this study demonstrated the potential for the novel Au/Ni-MOF to effectively reduce the concentration of the MC-LR toxin in the contaminated water.
Collapse
Affiliation(s)
- Stephanie Stoll
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL, 32816, United States.
| | - Wei Zhang
- NanoScience Technology Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, 32826, United States.
| | - Yang Yang
- NanoScience Technology Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, 32826, United States; Department of Chemistry, Renewable Energy and Chemical Transformation Cluster, The Stephen W. Hawking Center for Microgravity Research and Education, University of Central Florida, Orlando, FL, 32826, United States.
| | - Kyungik Gil
- Department of Civil Engineering, Seoul National University of Science and Technology, Nowon-gu, Seoul, 01811, South Korea.
| | - Keugtae Kim
- Department of Biological and Environmental Science, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do, Republic of Korea.
| | - Woo Hyoung Lee
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL, 32816, United States.
| |
Collapse
|
104
|
Shen B, Chen D, Li R, Qi Y, Gao A, Zhong H. Mass spectrometric monitoring of ligand-bridged hot electron transfer and anaerobic oxidization on auto renewable droplet-based plasmonic nanoreactors under visible light illumination. Anal Chim Acta 2023; 1283:341965. [PMID: 37977789 DOI: 10.1016/j.aca.2023.341965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/21/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Abstract
The light induced hot-electron on plasmonic nanostructures has been recognized as a breakthrough discovery for photovoltaic and photocatalytic applications. With mass spectrometry, we demonstrate the dynamics of hot electron transfers of anaerobic oxidization reactions on Au decorated TiO2 plasmonic nanoparticles, which were coated on the inner surface of a flask. Those nanoparticles were covered by continuously renewed liquid droplets of solvent and reactants that were transported through a Venturi jet mixer with auto-spray. In addition to intensive mass transfer in such droplet-based nanoreactors, as well as strong adsorption of reactants and rapid desorption of products on materials surfaces, the localized surface plasmon resonance (LSPR) excitation upon visible light illumination, by which accumulated energies of plasmons are transferred to electrons in the conduction band of the material, attributes to the efficient photocatalytic transformation. Mass spectrometric detection of intermediate radical anions and negative ions with stable isotope labeling unambiguously identifies that highly energetic hot electrons can escape from the plasmonic nanostructures, be collected by adsorbed molecules, and initiate bond cleavages. It was demonstrated that losses of two H atoms result in the anaerobic oxidization of each benzyl alcohol molecule to a benzyl aldehyde molecule in the absence of molecular oxygen with more than 90 % yields. The well recyclable plasmonic nanoreactors implicate the injection of transferred electrons eventually back to electronically depleted Au+ positive ions. Bridged by adsorbed molecules, electrons were repeatedly circulated back and forth in plasmonic nanoreactors, where the collected light was eventually converted into chemical energy.
Collapse
Affiliation(s)
- Baojie Shen
- Laboratory of Mass Spectrometry, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, PR China
| | - Disong Chen
- Laboratory of Mass Spectrometry, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, PR China
| | - Rui Li
- Laboratory of Mass Spectrometry, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, PR China
| | - Yinghua Qi
- Laboratory of Mass Spectrometry, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, PR China
| | - Anji Gao
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Hongying Zhong
- Center for Instrumental Analysis, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, PR China.
| |
Collapse
|
105
|
Weight BM, Li X, Zhang Y. Theory and modeling of light-matter interactions in chemistry: current and future. Phys Chem Chem Phys 2023; 25:31554-31577. [PMID: 37842818 DOI: 10.1039/d3cp01415k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Light-matter interaction not only plays an instrumental role in characterizing materials' properties via various spectroscopic techniques but also provides a general strategy to manipulate material properties via the design of novel nanostructures. This perspective summarizes recent theoretical advances in modeling light-matter interactions in chemistry, mainly focusing on plasmon and polariton chemistry. The former utilizes the highly localized photon, plasmonic hot electrons, and local heat to drive chemical reactions. In contrast, polariton chemistry modifies the potential energy curvatures of bare electronic systems, and hence their chemistry, via forming light-matter hybrid states, so-called polaritons. The perspective starts with the basic background of light-matter interactions, molecular quantum electrodynamics theory, and the challenges of modeling light-matter interactions in chemistry. Then, the recent advances in modeling plasmon and polariton chemistry are described, and future directions toward multiscale simulations of light-matter interaction-mediated chemistry are discussed.
Collapse
Affiliation(s)
- Braden M Weight
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
- Department of Physics and Astronomy, University of Rochester, Rochester, NY, 14627, USA
| | - Xinyang Li
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| | - Yu Zhang
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| |
Collapse
|
106
|
Sun L, Qu S, Xu W. A retinomorphic neuron for artificial vision and iris accommodation. MATERIALS HORIZONS 2023; 10:5753-5762. [PMID: 37807818 DOI: 10.1039/d3mh01036h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The iris of an eye automatically optimizes the amount of light that strikes the retina by accommodating the intensity of ambient light. Here, we describe a retinomorphic neuron using neuromorphic photoreceptors for artificial vision and iris accommodation that mimics the biological structure and processing functions of retinal neurons for light sensing and signal transduction. The system consists of a neuromorphic photoreceptor, an electrochromic device as a light filter, and a spike-generation unit. In particular, the Au nanoparticle (NP) decorated ITO fiber photoreceptor with a well-aligned array structure is able to rely on its own light-tunable synaptic plasticity and the plasmon-enhanced light absorption. Therefore, it allows real-time feedback about light intensity, emits a higher-frequency electrical stimulus to stronger light, flash, or prolonged light illumination time, and drives the electrochromic filter to work, allowing mild light to pass through. Compared with traditional artificial irises or artificial photoreceptors, our design introduces neural pathways and neuromorphic devices, which are closer to biological functions in simulation. To our knowledge, this is the first time that a retinal neuron with neuromorphic photoreceptors has been used for artificial iris vision. Furthermore, we demonstrate direct and consensual pupillary light reflexes. The design of artificial iris vision has potential applications in biomimetic engineering, smart interaction, and visual prostheses.
Collapse
Affiliation(s)
- Lin Sun
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, College of Electrical Information and Optical Engineering, Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
- Shenzhen Research Institute of Nankai University, Shenzhen 518000, China
| | - Shangda Qu
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, College of Electrical Information and Optical Engineering, Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
- Shenzhen Research Institute of Nankai University, Shenzhen 518000, China
| | - Wentao Xu
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, College of Electrical Information and Optical Engineering, Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
- Shenzhen Research Institute of Nankai University, Shenzhen 518000, China
| |
Collapse
|
107
|
Günaydın B, Gülmez M, Torabfam M, Pehlivan ZS, Tütüncüoğlu A, Kayalan CI, Saatçioğlu E, Bayazıt MK, Yüce M, Kurt H. Plasmonic Titanium Nitride Nanohole Arrays for Refractometric Sensing. ACS APPLIED NANO MATERIALS 2023; 6:20612-20622. [PMID: 38037604 PMCID: PMC10684111 DOI: 10.1021/acsanm.3c03050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023]
Abstract
Group IVB metal nitrides have attracted great interest as alternative plasmonic materials. Among them, titanium nitride (TiN) stands out due to the ease of deposition and relative abundance of Ti compared to those of Zr and Hf metals. Even though they do not have Au or Ag-like plasmonic characteristics, they offer many advantages, from high mechanical stability to refractory behavior and complementary metal oxide semiconductor-compatible fabrication to tunable electrical/optical properties. In this study, we utilized reactive RF magnetron sputtering to deposit plasmonic TiN thin films. The flow rate and ratio of Ar/N2 and oxygen scavenging methods were optimized to improve the plasmonic performance of TiN thin films. The stoichiometry and structure of the TiN thin films were thoroughly investigated to assess the viability of the optimized operation procedures. To assess the plasmonic performance of TiN thin films, periodic nanohole arrays were perforated on TiN thin films by using electron beam lithography and reactive ion etching methods. The resulting TiN periodic nanohole array with varying periods was investigated by using a custom microspectroscopy setup for both reflection and transmission characteristics in various media to underline the efficacy of TiN for refractometric sensing.
Collapse
Affiliation(s)
- Beyza
Nur Günaydın
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Tuzla, Istanbul 34956, Turkey
- SUNUM
Nanotechnology Research and Application Centre, Sabanci University, Tuzla, Istanbul 34956, Turkey
| | - Mert Gülmez
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Tuzla, Istanbul 34956, Turkey
| | - Milad Torabfam
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Tuzla, Istanbul 34956, Turkey
- SUNUM
Nanotechnology Research and Application Centre, Sabanci University, Tuzla, Istanbul 34956, Turkey
| | - Zeki Semih Pehlivan
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Tuzla, Istanbul 34956, Turkey
- SUNUM
Nanotechnology Research and Application Centre, Sabanci University, Tuzla, Istanbul 34956, Turkey
- Department
of Materials Science and Metallurgy, University
of Cambridge, Cambridge CB2 3EQ, U.K.
| | - Atacan Tütüncüoğlu
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Tuzla, Istanbul 34956, Turkey
- SUNUM
Nanotechnology Research and Application Centre, Sabanci University, Tuzla, Istanbul 34956, Turkey
| | - Cemre Irmak Kayalan
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Tuzla, Istanbul 34956, Turkey
- SUNUM
Nanotechnology Research and Application Centre, Sabanci University, Tuzla, Istanbul 34956, Turkey
| | - Erhan Saatçioğlu
- Research
Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Beykoz, Istanbul 34810, Turkey
| | - Mustafa Kemal Bayazıt
- SUNUM
Nanotechnology Research and Application Centre, Sabanci University, Tuzla, Istanbul 34956, Turkey
| | - Meral Yüce
- SUNUM
Nanotechnology Research and Application Centre, Sabanci University, Tuzla, Istanbul 34956, Turkey
- Department
of Bioengineering, Royal School of Mines, Imperial College London, London SW7 2AZ, U.K.
| | - Hasan Kurt
- Research
Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Beykoz, Istanbul 34810, Turkey
- School
of Engineering and Natural Sciences, Istanbul
Medipol University, Beykoz, Istanbul 34810, Turkey
- Department
of Bioengineering, Royal School of Mines, Imperial College London, London SW7 2AZ, U.K.
| |
Collapse
|
108
|
Ju S, Kim H, Kwak H, Kang C, Jung I, Oh S, Lee SG, Kim J, Park HJ, Lee KT. Dielectric light-trapping nanostructure for enhanced light absorption in organic solar cells. Sci Rep 2023; 13:20649. [PMID: 38001140 PMCID: PMC10673921 DOI: 10.1038/s41598-023-47898-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023] Open
Abstract
Dielectric scatterers where Mie resonances can be excited in both electric and magnetic modes have emerged as a promising candidate for efficient light trapping (LT) in thin-film solar cells. We present that light absorption in organic solar cells (OSCs) can be significantly enhanced by a front-sided incorporation of a core-shell nanostructure consisting of a high-refractive-index dielectric nanosphere array conformally coated with a low-refractive-index dielectric layer. Strong forward light scattering of the all-dielectric LT structure enables the absorption in an organic semiconductor to be remarkably boosted over a broad range of wavelengths, which is attributed to interference of a simultaneous excitation of the electric and magnetic dipole resonant modes. The OSC with the LT structure shows the short-circuit current density (Jsc) of 28.23 mA/cm2, which is 10% higher than that of a flat OSC. We also explore how the LT structure affects scattering cross-sections, spectral multipole resonances, and far-field radiation patterns. The approach described in this work could offer the possibility for the improvement of characteristic performances of various applications, such as other thin-film solar cells, photodiodes, light-emitting diodes, and absorbers.
Collapse
Affiliation(s)
- Seongcheol Ju
- Department of Physics, Inha University, Incheon, 22212, Republic of Korea
| | - Hyeonwoo Kim
- Department of Physics, Inha University, Incheon, 22212, Republic of Korea
| | - Hojae Kwak
- Department of Physics, Inha University, Incheon, 22212, Republic of Korea
| | - Cheolhun Kang
- Department of Physics, Inha University, Incheon, 22212, Republic of Korea
| | - Incheol Jung
- Department of Physics, Inha University, Incheon, 22212, Republic of Korea
| | - Seunghyun Oh
- Department of Physics, Inha University, Incheon, 22212, Republic of Korea
| | - Seung Gol Lee
- Department of Information and Communication Engineering, Inha University, Incheon, 22212, Republic of Korea
| | - Jeonghyun Kim
- Department of Electronic Convergence Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea.
| | - Hui Joon Park
- Department of Organic and Nano Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Kyu-Tae Lee
- Department of Physics, Inha University, Incheon, 22212, Republic of Korea.
| |
Collapse
|
109
|
Ghasemi L, Ahmadi A, Abedini R, Kazemi F, Kaboudin B. Practical photocatalytic and sonophotocatalytic reduction of nitroarenes in water under blue LED irradiation using β-CD modified TiO 2 as a green nest photocatalyst. RSC Adv 2023; 13:34733-34738. [PMID: 38035234 PMCID: PMC10683045 DOI: 10.1039/d3ra06530h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023] Open
Abstract
Photocatalysis using natural photosynthesis is a green technology that is gaining popularity in a number of industries due to its potential for environmental applications and the use of solar energy. Focus is being placed on using inexpensive materials and light-emitting diodes (LEDs) of various wavelengths in photocatalytic reactions in order to improve the performance of solar-driven photocatalysts at a lower cost. In this study, a scalable, highly efficient photocatalytic and sonophotocatalytic method was investigated for the reduction of nitro-compounds by a water/titania/β-cyclodextrin system under sunlight and blue LED irradiation, using sodium sulfide as a sacrificial electron donor. β-Cyclodextrin, chemically bound to TiO2 nanoparticles as an encapsulating agent, hosted nitro compounds in aqueous media and formed an inclusion complex. In addition, this method was used to successfully carry out one-pot reduction-amidation of nitroarene compounds in the presence of acetic anhydride. Interestingly, it was found that ultrasound has a synergistic effect on photocatalytic reduction and considerably reduces the duration time. In this regard, a fast, practical sonophotocatalytic reduction of nitroarenes was carried out in an ultrasound bath.
Collapse
Affiliation(s)
- Leila Ghasemi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan 45137-66731 Iran
| | - Ayub Ahmadi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan 45137-66731 Iran
| | - Raheleh Abedini
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan 45137-66731 Iran
| | - Foad Kazemi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan 45137-66731 Iran
- Center of Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan Iran
| | - Babak Kaboudin
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan 45137-66731 Iran
| |
Collapse
|
110
|
Cordaro A, Müller R, Tabernig SW, Tucher N, Schygulla P, Höhn O, Bläsi B, Polman A. Nanopatterned Back-Reflector with Engineered Near-Field/Far-Field Light Scattering for Enhanced Light Trapping in Silicon-Based Multijunction Solar Cells. ACS PHOTONICS 2023; 10:4061-4070. [PMID: 38027248 PMCID: PMC10655497 DOI: 10.1021/acsphotonics.3c01124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023]
Abstract
Multijunction solar cells provide a path to overcome the efficiency limits of standard silicon solar cells by harvesting a broader range of the solar spectrum more efficiently. However, Si-based multijunction architectures are hindered by incomplete harvesting in the near-infrared (near-IR) spectral range as Si subcells have weak absorption close to the band gap. Here, we introduce an integrated near-field/far-field light trapping scheme to enhance the efficiency of silicon-based multijunction solar cells in the near-IR range. To achieve this, we design a nanopatterned diffractive silver back-reflector featuring a scattering matrix that optimizes trapping of multiply scattered light into a range of diffraction angles. We minimize reflection to the zeroth order and parasitic plasmonic absorption in silver by engineering destructive interference in the patterned back-contact. Numerical and experimental assessment of the optimal design on the performance of single-junction Si TOPCon solar cells highlights an improved external quantum efficiency over a planar back-reflector (+1.52 mA/cm2). Nanopatterned metagrating back-reflectors are fabricated on GaInP/GaInAsP//Si two-terminal triple-junction solar cells via substrate conformal imprint lithography and characterized optically and electronically, demonstrating a power conversion efficiency improvement of +0.9%abs over the planar reference. Overall, our work demonstrates the potential of nanophotonic light trapping for enhancing the efficiency of silicon-based multijunction solar cells, paving the way for more efficient and sustainable solar energy technologies.
Collapse
Affiliation(s)
- Andrea Cordaro
- Institute
of Physics, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
- Center
for Nanophotonics, NWO-Institute AMOLF, Science Park 104, Amsterdam 1098 XG, The Netherlands
| | - Ralph Müller
- Fraunhofer
ISE, Heidenhofstr. 2, Freiburg 79110, Germany
| | - Stefan Wil Tabernig
- Center
for Nanophotonics, NWO-Institute AMOLF, Science Park 104, Amsterdam 1098 XG, The Netherlands
| | - Nico Tucher
- Fraunhofer
ISE, Heidenhofstr. 2, Freiburg 79110, Germany
| | | | - Oliver Höhn
- Fraunhofer
ISE, Heidenhofstr. 2, Freiburg 79110, Germany
| | - Benedikt Bläsi
- Fraunhofer
ISE, Heidenhofstr. 2, Freiburg 79110, Germany
| | - Albert Polman
- Center
for Nanophotonics, NWO-Institute AMOLF, Science Park 104, Amsterdam 1098 XG, The Netherlands
| |
Collapse
|
111
|
Chen T, Qiu M, Peng Y, Yi C, Xu Z. Colloidal Polymer-Templated Formation of Inorganic Nanocrystals and their Emerging Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303282. [PMID: 37409416 DOI: 10.1002/smll.202303282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/10/2023] [Indexed: 07/07/2023]
Abstract
Inorganic nanocrystals possess unique physicochemical properties compared to their bulk counterparts. Stabilizing agents are commonly used for the preparation of inorganic nanocrystals with controllable properties. Particularly, colloidal polymers have emerged as general and robust templates for in situ formation and confinement of inorganic nanocrystals. In addition to templating and stabilizing inorganic nanocrystals, colloidal polymers can tailor their physicochemical properties such as size, shape, structure, composition, surface chemistry, and so on. By incorporating functional groups into colloidal polymers, desired functions can be integrated with inorganic nanocrystals, advancing their potential applications. Here, recent advances in the colloidal polymer-templated formation of inorganic nanocrystals are reviewed. Seven types of colloidal polymers, including dendrimer, polymer micelle, stare-like block polymer, bottlebrush polymer, spherical polyelectrolyte brush, microgel, and single-chain nanoparticle, have been extensively applied for the synthesis of inorganic nanocrystals. Different strategies for the development of these colloidal polymer-templated inorganic nanocrystals are summarized. Then, their emerging applications in the fields of catalysis, biomedicine, solar cells, sensing, light-emitting diodes, and lithium-ion batteries are highlighted. Last, the remaining issues and future directions are discussed. This review will stimulate the development and application of colloidal polymer-templated inorganic nanocrystals.
Collapse
Affiliation(s)
- Tianyou Chen
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Meishuang Qiu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Yan Peng
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Changfeng Yi
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Zushun Xu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| |
Collapse
|
112
|
Bae M, Jo J, Lee M, Kang J, Boriskina SV, Chung H. Inverse design and optical vortex manipulation for thin-film absorption enhancement. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:4239-4254. [PMID: 39634235 PMCID: PMC11501524 DOI: 10.1515/nanoph-2023-0583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/12/2023] [Indexed: 12/07/2024]
Abstract
Optical vortices (OVs) have rapidly varying spatial phase and optical energy that circulates around points or lines of zero optical intensity. Manipulation of OVs offers innovative approaches for various fields, such as optical sensing, communication, and imaging. In this work, we demonstrate the correlation between OVs and absorption enhancement in two types of structures. First, we introduce a simple planar one-dimensional (1D) structure that manipulates OVs using two coherent light sources. The structure shows a maximum of 6.05-fold absorption gap depending on the presence of OVs. Even a slight difference in the incidence angle can influence the generation/annihilation of OVs, which implies the high sensitivity of angular light detection. Second, we apply inverse design to optimize two-dimensional (2D) perfect ultrathin absorbers. The optimized free-form structure achieves 99.90 % absorptance, and the fabricable grating structure achieves 97.85 % at 775 nm wavelength. To evaluate OV fields and their contribution to achieving absorption enhancement, we introduce a new parameter, OV circularity. The optimized structures generate numerous OVs with a maximum circularity of 95.37 % (free-form) and 96.14 % (grating), superior to our 1D structure. Our study reveals the role of high-circularity localized OVs in optimizing nano-structured absorbers and devices for optical sensing, optical communication, and many other applications.
Collapse
Affiliation(s)
- Munseong Bae
- Department of Mechanical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA02139, USA
- Department of Electronic Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Jaegang Jo
- Department of Electronic Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Myunghoo Lee
- Department of Physics and Department of Electronic Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Joonho Kang
- Department of Electronic Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Svetlana V. Boriskina
- Department of Mechanical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA02139, USA
| | - Haejun Chung
- Department of Electronic Engineering and Department of Artificial Intelligence, Hanyang University, Seoul, 04763, South Korea
| |
Collapse
|
113
|
Mokkath JH. Interface plasmon damping in the Cd 33Se 33/Ti 2C MXene heterostructure. Phys Chem Chem Phys 2023; 25:28761-28769. [PMID: 37850362 DOI: 10.1039/d3cp02644b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
MXenes, a class of two-dimensional materials, have shown immense potential in various applications such as energy storage, electromagnetic shielding, solar cells, smart fabrics, optoelectronics, and plasmonics. In this study, we employ first-principles density functional theory (DFT) and time-dependent DFT calculations to investigate a semiconductor-metal heterostructure composed of a Cd33Se33 cluster and Ti2C MXene monolayer flakes. Our research focuses on the formation and damping of localized surface plasmon resonances (LSPRs) within this heterostructure. We discover that the Cd33Se33/Ti2C interface gives rise to a Schottky barrier. Importantly, this interface formation results in the damping of the Ti2C LSPR, thereby facilitating the transfer of electrons into the Cd33Se33 cluster. By directly visualizing the LSPR damping phenomenon, our study enhances our understanding of the semiconductor-MXene interface and provides novel insights for the design of MXene-based photocatalysts.
Collapse
Affiliation(s)
- Junais Habeeb Mokkath
- Quantum Nanophotonics Simulations Lab, Department of Physics, Kuwait College of Science and Technology, Doha Area, 7th Ring Road, P.O. Box 27235, Kuwait.
| |
Collapse
|
114
|
Lv J, Ren Y, Wang D, Xu X, Liu W, Wang J, Liu C, Chu PK. Multi-wavelength unidirectional forward scattering properties of the arrow-shaped gallium phosphide nanoantenna. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2023; 40:2034-2044. [PMID: 38038069 DOI: 10.1364/josaa.496501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/30/2023] [Indexed: 12/02/2023]
Abstract
An arrow-shaped gallium phosphide nanoantenna exhibits both near-field electric field enhancement and far-field unidirectional scattering, and the interference conditions involve electric and magnetic quadrupoles as well as toroidal dipoles. By using long-wavelength approximation and exact multipole decomposition, the interference conditions required for far-field unidirectional transverse light scattering and backward near-zero scattering at multiple wavelengths are determined. The near-field properties are excellent, as exemplified by large Purcell factors of 4.5×109 for electric dipole source excitation, 464.68 for magnetic dipole source excitation, and 700 V/m for the field enhancement factor. The degree of enhancement of unidirectional scattering is affected by structural parameters such as the angle and thickness of the nanoantenna. The arrow-shaped nanoantenna is an efficient platform to enhance the electric field and achieve high directionality of light scattering. Moreover, the nanostructure enables flexible manipulation of light waves and materials, giving rise to superior near-field and far-field performances, which are of great importance pertaining to the practicability and application potential of optical antennas in applications such as spectroscopy, sensing, displays, and optoelectronic devices.
Collapse
|
115
|
Gohar A, Yan J, Xu Z, Shen K, Anwar H, Shi X, Iqbal N, Zhai T. Tunable random laser based on hybrid plasmonic enhancement. OPTICS EXPRESS 2023; 31:36150-36160. [PMID: 38017770 DOI: 10.1364/oe.503031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/30/2023] [Indexed: 11/30/2023]
Abstract
This research investigates the hybridized plasmonic response of silver film combined with dispersed silver (Ag) nanowires (NWs) to random laser emission. The mixture of Rhodamine B (RhB) dye and polyvinyl alcohol (PVA) matrix is taken as the gain medium for random lasing, and the silver combination provides feedback mechanisms for light trapping. Importantly, film roughness and the coupling between localized and extended (delocalized) surface plasmons play a vital role in RL performance evaluation. The laser threshold is strongly influenced by film thickness attributed to surface roughness. Furthermore, the variation in film thickness also supports the wavelength modulation of 9 nm (597 nm to 606 nm), which results from the reabsorption of RhB. Additionally, the intriguing capability of emission wavelength tuning under the variation of temperature facilitates exciting prospects for precise wavelength control in plasmonic devices.
Collapse
|
116
|
Basyooni-M. Kabatas MA, Zaki SE, Rahmani K, En-nadir R, Eker YR. Negative Photoconductivity in 2D α-MoO 3/Ir Self-Powered Photodetector: Impact of Post-Annealing. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6756. [PMID: 37895738 PMCID: PMC10608330 DOI: 10.3390/ma16206756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/07/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023]
Abstract
Surface plasmon technology is regarded as having significant potential for the enhancement of the performance of 2D oxide semiconductors, especially in terms of improving the light absorption of 2D MoO3 photodetectors. An ultrathin MoO3/Ir/SiO2/Si heterojunction Schottky self-powered photodetector is introduced here to showcase positive photoconductivity. In wafer-scale production, the initial un-annealed Mo/2 nm Ir/SiO2/Si sample displays a sheet carrier concentration of 5.76 × 1011/cm², which subsequently increases to 6.74 × 1012/cm² after annealing treatment, showing a negative photoconductivity behavior at a 0 V bias voltage. This suggests that annealing enhances the diffusion of Ir into the MoO3 layer, resulting in an increased phonon scattering probability and, consequently, an extension of the negative photoconductivity behavior. This underscores the significance of negative photoconductive devices in the realm of optoelectronic applications.
Collapse
Affiliation(s)
- Mohamed A. Basyooni-M. Kabatas
- Department of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
- Department of Nanotechnology and Advanced Materials, Graduate School of Applied and Natural Science, Selçuk University, Konya 42030, Turkey
| | - Shrouk E. Zaki
- Department of Nanotechnology and Advanced Materials, Graduate School of Applied and Natural Science, Selçuk University, Konya 42030, Turkey
| | - Khalid Rahmani
- Department of Physics, Ecole Normale Supérieure (ENS), Mohammed V University, Rabat 10140, Morocco
| | - Redouane En-nadir
- Laboratory of Solid-State Physics, Faculty of Sciences Dhar el Mahraz, University Sidi Mohammed Ben Abdellah, P.O. Box 1796, Atlas Fez 30000, Morocco
| | - Yasin Ramazan Eker
- Department of Basic Sciences, Faculty of Engineering, Necmettin Erbakan University, Konya 42090, Turkey;
- Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, Konya 42090, Turkey
| |
Collapse
|
117
|
Singh P, Kundu K, Seçkin S, Bhardwaj K, König TAF, Jaiswal A. The Rise of Structurally Anisotropic Plasmonic Janus Gold Nanostars. Chemistry 2023; 29:e202302100. [PMID: 37461223 DOI: 10.1002/chem.202302100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Indexed: 09/12/2023]
Abstract
Nanostructures intrinsically possessing two different structural or functional features, often called Janus nanoparticles, are emerging as a potential material for sensing, catalysis, and biomedical applications. Herein, we report the synthesis of plasmonic gold Janus nanostars (NSs) possessing a smooth concave pentagonal morphology with sharp tips and edges on one side and, contrastingly, a crumbled morphology on the other. The methodology reported herein for their synthesis - a single-step growth reaction - is different from any other Janus nanoparticle preparation involving either template-assisted growth or a masking technique. Interestingly, the coexistence of lower- and higher-index facets was found in these Janus NSs. The general paradigm for synthesizing gold Janus NSs was investigated by understanding the kinetic control mechanism with the combinatorial effect of all the reagents responsible for the structure. The optical properties of the Janus NSs were realized by corelating their extinction spectra with the simulated data. The size-dependent surface-enhanced Raman scattering (SERS) activity of these Janus NSs was studied with 1,4-BDT as the model analyte. Finite-difference time-domain simulations for differently sized particles revealed the distribution of electromagnetic hot-spots over the particles resulting in enhancement of the SERS signal in a size-dependent manner.
Collapse
Affiliation(s)
- Prem Singh
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Koustav Kundu
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Sezer Seçkin
- Leibniz-Institut für Polymerforschung Dresden e.V. (IPF), Hohe Straße 6, 01069, Dresden, Germany
| | - Keshav Bhardwaj
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Tobias A F König
- Leibniz-Institut für Polymerforschung Dresden e.V. (IPF), Hohe Straße 6, 01069, Dresden, Germany
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Helmholtzstraße 18, 01062, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Bergstraße 66, 01069, Dresden, Germany
| | - Amit Jaiswal
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| |
Collapse
|
118
|
Brewer J, Kulkarni S, Raman AP. Resonant Anti-Reflection Metasurfaces for Infrared Transmission Optics. NANO LETTERS 2023; 23:8940-8946. [PMID: 37733604 PMCID: PMC10571145 DOI: 10.1021/acs.nanolett.3c02375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/13/2023] [Indexed: 09/23/2023]
Abstract
A fundamental capability needed for any transmissive optical component is anti-reflection, yet this capability can be challenging to achieve in a cost-effective manner over longer infrared wavelengths. We demonstrate that Mie-resonant photonic structures can enable high transmission through a high-index optical component, allowing it to function effectively over long-wavelength infrared wavelengths. Using silicon as a model system, we demonstrate a resonant metasurface that enables a window optic with transmission up to 40% greater than that of unpatterned Si. Imaging comparisons with unpatterned Si and off-the-shelf germanium optics are shown as well as modulation transfer function measurements, showing excellent performance and suitability for imaging applications. Our results show how resonant photonic structures can be used to improve optical transmission through high-index optical components and highlight their possible use in infrared imaging applications.
Collapse
Affiliation(s)
- John Brewer
- Department of Materials Science
and Engineering, University of California,
Los Angeles, Los Angeles, California 90095, United States of America
| | - Sachin Kulkarni
- Department of Materials Science
and Engineering, University of California,
Los Angeles, Los Angeles, California 90095, United States of America
| | - Aaswath P. Raman
- Department of Materials Science
and Engineering, University of California,
Los Angeles, Los Angeles, California 90095, United States of America
| |
Collapse
|
119
|
Pacheco PGF, Ferreira DL, Pereira RS, Vivas MG. Physicochemical properties of ultrasmall colloidal silver nanoparticles: an experimental and computational approach. Analyst 2023; 148:5262-5269. [PMID: 37740327 DOI: 10.1039/d3an01319g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Silver nanoparticles (AgNPs) exhibit very interesting properties that have been employed in several kinds of applications spanning from antibacterial activity to plasmon-polaritons generation. Nanoparticle size strongly influences these applications. However, the characterization of ultrasmall AgNPs (particle diameter < 10 nm) encompassing different aspects such as average size, polydispersion, shape (anisotropy), concentration, and density remains a challenging task. To address these challenges, we combined TEM measurements with a computational framework based on Mie-Gans theory. This allowed us to describe the aforementioned AgNP features accurately. The synthesis of AgNPs in an aqueous medium involved the use of silver nitrate as a chemical precursor and sodium borohydride as a reducing agent, with polyvinylpyrrolidone acting as a stabilizing agent. Our outcomes showed that increasing the concentration of the precursor and reducing agent with a fixed 1 : 2 molar ratio tends to yield ultrasmall AgNPs with low to moderate polydispersion, a nearly spherical shape (low anisotropy), concentration in the nanomolar range and density close to silver bulk. Also, we established an analytical expression that correlates the extinction molar absorptivity to AgNP size considering the nanoparticle shape. Notably, the computational framework proved to be highly effective in extracting crucial information about the AgNPs from UV-vis spectroscopy data. In conclusion, our study sheds light on the unique properties of ultrasmall AgNPs and presents a comprehensive approach for properly characterizing these nanoparticles, paving the way for further advancements in their applications.
Collapse
Affiliation(s)
| | - Diego Lourençoni Ferreira
- Laboratório de Espectroscopia Óptica e Fotônica, Universidade Federal de Alfenas, Poços de Caldas, MG, Brazil.
| | - Richard Silveira Pereira
- Laboratório de Espectroscopia Óptica e Fotônica, Universidade Federal de Alfenas, Poços de Caldas, MG, Brazil.
| | - Marcelo Gonçalves Vivas
- Laboratório de Espectroscopia Óptica e Fotônica, Universidade Federal de Alfenas, Poços de Caldas, MG, Brazil.
| |
Collapse
|
120
|
Malik P, Sarker D, Kumar D, Schwartzkopf M, Srivastava P, Ghosh S. Tuning LSPR of Thermal Spike-Induced Shape-Engineered Au Nanoparticles Embedded in Si 3N 4 Thin-Film Matrix for SERS Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45426-45440. [PMID: 37712830 DOI: 10.1021/acsami.3c08834] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
While gold nanoparticles (Au NPs) are widely used as surface-enhanced Raman spectroscopy (SERS) substrates, their agglomeration and dynamic movement under laser irradiation result in the major drawback in SERS applications, viz., the repeatability of SERS signals. We tune the optical and structural properties of size- and shape-modified Au NPs embedded in a thin silicon nitride (Si3N4) matrix by intense electronic excitation with swift heavy ion (SHI) irradiation with the aim of overcoming this classical SERS disadvantage. We demonstrate the shape evolution of a single layer of Au NPs inserted between amorphous Si3N4 thin films under fluences of 120 MeV Au9+ ions ranging between 1 × 1011 and 1 × 1013 ions cm-2. This shape modification results in the gradual blue shift of the localized surface plasmon resonance (LSPR) dip until 1 × 1012 ions/cm2 and then a sudden diminishment at 1 × 1013 ions/cm2. Finite domain time difference (FDTD) simulations further justify our experimental optical spectra. The dynamical NP aggregation and dissolution, in addition to NP elongation and deformation at different fluences, are noted from 2D grazing incidence small-angle X-ray scattering (GISAXS) profiles, as well as cross-sectional transmission electron microscopy (X-TEM). The systematic shape evolution of metal NPs embedded in the insulating matrix is shown to be due to thermal spike-induced localized melting and a localized pressure hike upon SHI irradiation. Utilizing this specific control over the characteristics of Au NPs, viz., shape, size, interparticle gap, and corresponding optical response via SHI irradiation, we demonstrate their applications as very stable SERS substrates, where the separation between NPs and analyte does not alter under laser illumination. Thus, these irradiated SERS active substrates with controlled NP size and gap provide the optimal conditions for creating localized electromagnetic hotspots that amplify the SERS signals, which do not alter with time or laser exposure. We found that the film irradiated with 1 × 1011 exhibits the highest SERS intensity due to its optimal NP size distribution and shape. Thus, not only our study provides a SERS substrate for stable and repeatable signals but also the understanding depicted here opens new research avenues in designing SERS substrates, photovoltaics, optoelectronic devices, etc. with ion beam irradiation.
Collapse
Affiliation(s)
- Pariksha Malik
- Nanostech Lab., Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Debalaya Sarker
- UGC-DAE Consortium for Scientific Research, Indore, Madhya Pradesh 452001, India
| | - Dileep Kumar
- UGC-DAE Consortium for Scientific Research, Indore, Madhya Pradesh 452001, India
| | | | - Pankaj Srivastava
- Nanostech Lab., Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Santanu Ghosh
- Nanostech Lab., Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
121
|
Zhang N, Yang Z, Zhang Z, Wang J. Relationship Between Stress Modulated Metallicity and Plasmon in Graphene Nanoribbons. Chemphyschem 2023:e202300348. [PMID: 37731169 DOI: 10.1002/cphc.202300348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/22/2023]
Abstract
Nanoscale quantum plasmon is an important technology that restricts the application of optics, electricity, and graphene photoelectric devices. Establishing a structure-effect relationship between the structure of graphene nanoribbons (GNRs) under stress regulation and the properties of plasmons is a key scientific issue for promoting the application of plasmons in micro-nano photoelectric devices. In this study, zigzag graphene nanoribbon (Z-GNR) and armchair graphene nanoribbon (A-GNR) models of specific widths were constructed, and density functional theory (DFT) was used to study their lattice structure, energy band, absorption spectrum, and plasmon effects under different stresses. The results showed that the Z-GNR band gap decreased with increasing stress, and the A-GNR band gap changed periodically with increasing stress. The plasmon effects of the A-GNRs and Z-GNRs appeared in the visible region, whereas the absorption spectrum showed a redshift trend, indicating the range of the plasmon spectrum also underwent significant changes. This study provides a theoretical basis for the application of graphene nanoribbons in the field of optoelectronics under strain-engineering conditions.
Collapse
Affiliation(s)
- Na Zhang
- College of Science, Liaoning Provincial Key Laboratory of Novel Micro-Nano Functional Materials, Liaoning Petrochemical University, Fushun, 113001, China
| | - Zhiyuan Yang
- College of Science, Liaoning Provincial Key Laboratory of Novel Micro-Nano Functional Materials, Liaoning Petrochemical University, Fushun, 113001, China
| | - Zhongyuan Zhang
- College of Science, Liaoning Provincial Key Laboratory of Novel Micro-Nano Functional Materials, Liaoning Petrochemical University, Fushun, 113001, China
| | - Jingang Wang
- College of Science, Liaoning Provincial Key Laboratory of Novel Micro-Nano Functional Materials, Liaoning Petrochemical University, Fushun, 113001, China
| |
Collapse
|
122
|
Jones A, Searles EK, Mayer M, Hoffmann M, Gross N, Oh H, Fery A, Link S, Landes CF. Active Control of Energy Transfer in Plasmonic Nanorod-Polyaniline Hybrids. J Phys Chem Lett 2023; 14:8235-8243. [PMID: 37676024 DOI: 10.1021/acs.jpclett.3c01990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
The hybridization of plasmonic energy and charge donors with polymeric acceptors is a possible means to overcome fast internal relaxation that limits potential photocatalytic applications for plasmonic nanomaterials. Polyaniline (PANI) readily hybridizes onto gold nanorods (AuNRs) and has been used for the sensitive monitoring of local refractive index changes. Here, we use single-particle spectroscopy to quantify a previously unreported plasmon damping mechanism in AuNR-PANI hybrids while actively tuning the PANI chemical structure. By eliminating contributions from heterogeneous line width broadening and refractive index changes, we identify efficient resonance energy transfer (RET) between AuNRs and PANI. We find that RET dominates the optical response in our AuNR-PANI hybrids during the dynamic tuning of the spectral overlap of the AuNR donor and PANI acceptor. Harnessing RET between plasmonic nanomaterials and an affordable and processable polymer such as PANI offers an alternate mechanism toward efficient photocatalysis with plasmonic nanoparticle antennas.
Collapse
Affiliation(s)
- Annette Jones
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Emily K Searles
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Martin Mayer
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics, 01069 Dresden, Germany
| | - Marisa Hoffmann
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics, 01069 Dresden, Germany
| | - Niklas Gross
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Hyuncheol Oh
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics, 01069 Dresden, Germany
| | - Stephan Link
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Smalley-Curl Institute, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Christy F Landes
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Smalley-Curl Institute, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
123
|
Pritom YA, Sikder DK, Zaman S, Hossain M. Plasmon-enhanced parabolic nanostructures for broadband absorption in ultra-thin crystalline Si solar cells. NANOSCALE ADVANCES 2023; 5:4986-4995. [PMID: 37705791 PMCID: PMC10496899 DOI: 10.1039/d3na00436h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/23/2023] [Indexed: 09/15/2023]
Abstract
Sub-wavelength plasmonic light trapping nanostructures are promising candidates for achieving enhanced broadband absorption in ultra-thin silicon (Si) solar cells. In this work, we use finite-difference time-domain (FDTD) simulations to demonstrate the light harvesting properties of periodic and parabola shaped Si nanostructures, decorated with metallic gold (Au) nanoparticles (NPs). The active medium of absorption is a 2 μm thick crystalline-silicon (c-Si), on top of which the parabolic nanotextures couple incident sunlight into guided modes. The parabola shape provides a graded refractive index profile and high diffraction efficiencies at higher order modes leading to excellent antireflection effects. The Au NPs scatter light into the Si layer and offer strong localized surface plasmon resonance (LSPR) resulting in broadband absorption with high conversion efficiency. For wavelengths (λ) ranging between 300 nm and 1600 nm, the structure is optimized for maximum absorption by adjusting the geometry and periodicity of the nanostructures and the size of the Au NPs. For parabola coated with 40 nm Au NPs, the average absorption enhancements are 7% (between λ = 300 nm and 1600 nm) and 28% (between λ = 800 nm and 1600 nm) when compared with bare parabola. Furthermore, device simulations show that the proposed solar cell can achieve a power conversion efficiency (PCE) as high as 21.39%, paving the way for the next generation of highly efficient, ultra-thin and low-cost Si solar cells.
Collapse
Affiliation(s)
- Yeasin Arafat Pritom
- Department of Electrical and Electronic Engineering, University of Dhaka Dhaka 1000 Bangladesh
| | - Dipayon Kumar Sikder
- Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology Dhaka 1205 Bangladesh
| | - Sameia Zaman
- Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology Dhaka 1205 Bangladesh
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Mainul Hossain
- Department of Electrical and Electronic Engineering, University of Dhaka Dhaka 1000 Bangladesh
| |
Collapse
|
124
|
Hati S, Yang X, Gupta P, Muhoberac BB, Pu J, Zhang J, Sardar R. Hybrid Metal-Ligand Interfacial Dipole Engineering of Functional Plasmonic Nanostructures for Extraordinary Responses of Optoelectronic Properties. ACS NANO 2023; 17:17499-17515. [PMID: 37579222 DOI: 10.1021/acsnano.3c06047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Programmable manipulation of inorganic-organic interfacial electronic properties of ligand-functionalized plasmonic nanoparticles (NPs) is the key parameter dictating their applications such as catalysis, photovoltaics, and biosensing. Here we report the localized surface plasmon resonance (LSPR) properties of gold triangular nanoprisms (Au TNPs) in solid state that are functionalized with dipolar, conjugated ligands. A library of thiocinnamate ligands with varying surface dipole moments were used to functionalize TNPs, which results in ∼150 nm reversible tunability of LSPR peak wavelength with significant peak broadening (∼230 meV). The highly adjustable chemical system of thiocinnamate ligands is capable of shifting the Au work function down to 2.4 eV versus vacuum, i.e., ∼2.9 eV lower than a clean Au (111) surface, and this work function can be modulated up to 3.3 eV, the largest value reported to date through the formation of organothiolate SAMs on Au. Interestingly, the magnitude of plasmonic responses and work function modulation is NP shape dependent. By combining first-principles calculations and experiments, we have established the mechanism of direct wave function delocalization of electrons residing near the Fermi level into hybrid electronic states that are mostly dictated by the inorganic-organic interfacial dipole moments. We determine that both interfacial dipole and hybrid electronic states, and vinyl conjugation together are the key to achieving such extraordinary changes in the optoelectronic properties of ligand-functionalized, plasmonic NPs. The present study provides a quantitative relationship describing how specifically constructed organic ligands can be used to control the interfacial properties of NPs and thus the plasmonic and electronic responses of these functional plasmonics for a wide range of plasmon-driven applications.
Collapse
Affiliation(s)
- Sumon Hati
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Xuehui Yang
- Department of Mechanical and Energy engineering, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Prashant Gupta
- Department of Mechanical Engineering, Washington University, St. Louis, Missouri 63130, United States
| | - Barry B Muhoberac
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Jingzhi Pu
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Jing Zhang
- Department of Mechanical and Energy engineering, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Rajesh Sardar
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| |
Collapse
|
125
|
Das PK, Dhawan A. Plasmonic enhancement of photovoltaic characteristics of organic solar cells by employing parabola nanostructures at the back of the solar cell. RSC Adv 2023; 13:26780-26792. [PMID: 37681038 PMCID: PMC10481644 DOI: 10.1039/d3ra03637e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023] Open
Abstract
In this paper, we demonstrate the enhanced performance of organic solar cells (OSCs) comprising low band gap photoactive layers (PMDPP3T:PC70BM) and 2-dimensional (2D) arrays of either Ag nano-spheres, nano-hemispheres, or nano-parabolas embedded at the back of the OSCs. Finite-difference time-domain (FDTD) simulations were performed to compare the performance of the OSCs containing the different plasmonic nanostructures, in terms of optical absorption, short circuit current density (JSC) and power conversion efficiency (PCE). The results demonstrate that single junction OSCs consisting of this new active layer polymer (PMDPP3T), blended with PC70BM, and plasmonic nanostructures at the back of the OSC can enhance the optical absorption in the visible and the NIR region. We demonstrate that the aspect ratio of the nanoparticles embedded at the back of OSCs is a vital parameter for light absorption enhancement. It is observed that the performance in terms of JSC and PCE enhancement of OSC having 2D arrays of Ag nano-parabola at the back of the solar cell improved by 26.41% and 26.37%, respectively, compared to a planar OSC. The enhancement in photon absorption can be attributed due to the enhancement of light scattering from metallic nanostructures near their localized plasmon resonance.
Collapse
Affiliation(s)
- Pankaj Kumar Das
- Department of Electrical Engineering, Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Anuj Dhawan
- Department of Electrical Engineering, Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| |
Collapse
|
126
|
Lee JY, Shin J, Kim K, Ju JE, Dutta A, Kim TS, Cho YU, Kim T, Hu L, Min WK, Jung HS, Park YS, Won SM, Yeo WH, Moon J, Khang DY, Kim HJ, Ahn JH, Cheng H, Yu KJ, Rogers JA. Ultrathin Crystalline Silicon Nano and Micro Membranes with High Areal Density for Low-Cost Flexible Electronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302597. [PMID: 37246255 DOI: 10.1002/smll.202302597] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/14/2023] [Indexed: 05/30/2023]
Abstract
Ultrathin crystalline silicon is widely used as an active material for high-performance, flexible, and stretchable electronics, from simple passive and active components to complex integrated circuits, due to its excellent electrical and mechanical properties. However, in contrast to conventional silicon wafer-based devices, ultrathin crystalline silicon-based electronics require an expensive and rather complicated fabrication process. Although silicon-on-insulator (SOI) wafers are commonly used to obtain a single layer of crystalline silicon, they are costly and difficult to process. Therefore, as an alternative to SOI wafers-based thin layers, here, a simple transfer method is proposed for printing ultrathin multiple crystalline silicon sheets with thicknesses between 300 nm to 13 µm and high areal density (>90%) from a single mother wafer. Theoretically, the silicon nano/micro membrane can be generated until the mother wafer is completely consumed. In addition, the electronic applications of silicon membranes are successfully demonstrated through the fabrication of a flexible solar cell and flexible NMOS transistor arrays.
Collapse
Affiliation(s)
- Ju Young Lee
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemungu, Seoul, 03722, Republic of Korea
| | - Jongwoon Shin
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemungu, Seoul, 03722, Republic of Korea
| | - Kyubeen Kim
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemungu, Seoul, 03722, Republic of Korea
| | - Jeong Eun Ju
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemungu, Seoul, 03722, Republic of Korea
| | - Ankan Dutta
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Tae Soo Kim
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemungu, Seoul, 03722, Republic of Korea
- Center for Opto-Electronic Materials and Devices, Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology (KIST), Seongbuk-gu, Seoul, 02792, South Korea
| | - Young Uk Cho
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemungu, Seoul, 03722, Republic of Korea
| | - Taemin Kim
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemungu, Seoul, 03722, Republic of Korea
| | - Luhing Hu
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemungu, Seoul, 03722, Republic of Korea
| | - Won Kyung Min
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemungu, Seoul, 03722, Republic of Korea
| | - Hyun-Suh Jung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Young Sun Park
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Sang Min Won
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Seongbuk-gu, Suwon, 16419, Republic of Korea
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- IEN Center for Human-Centric Interfaces and Engineering at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Institute for Materials, Neural Engineering Center, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jooho Moon
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Dahl-Young Khang
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Hyun Jae Kim
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemungu, Seoul, 03722, Republic of Korea
| | - Jong-Hyun Ahn
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemungu, Seoul, 03722, Republic of Korea
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ki Jun Yu
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemungu, Seoul, 03722, Republic of Korea
- YU-Korea Institute of Science and Technology (KIST) Institute, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| |
Collapse
|
127
|
Kim M, Ahn HJ, Silalahi VC, Heo D, Adhikari S, Jang Y, Lee J, Lee D. Dual-Dewetting Process for Self-Assembled Nanoparticle Clusters in Wafer Scale. Int J Mol Sci 2023; 24:13102. [PMID: 37685909 PMCID: PMC10488070 DOI: 10.3390/ijms241713102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/08/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Plasmonic molecules, which are geometrically well-defined plasmonic metal nanoparticle clusters, have attracted significant attention due to their enhancement of light-matter interactions owing to a stronger electric field enhancement than that by single particles. High-resolution lithography techniques provide precise positioning of plasmonic nanoparticles, but their fabrication costs are excessively high. In this study, we propose a lithography-free, self-assembly fabrication method, termed the dual-dewetting process, which allows the control of the size and density of gold nanoparticles. This process involves depositing a gold thin film on a substrate and inducing dewetting through thermal annealing, followed by a second deposition and annealing. The method achieves a uniform distribution of particle size and density, along with increased particle density, across a 6-inch wafer. The superiority of the method is confirmed by a 30-fold increase in the signal intensity of surface-enhanced Raman scattering following the additional dewetting with an 8 nm film, compared to single dewetting alone. Our findings indicate that the dual-dewetting method provides a simple and efficient approach to enable a variety of plasmonic applications through efficient plasmonic molecule large-area fabrication.
Collapse
Affiliation(s)
- Minjun Kim
- Department of Physics, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyun-Ju Ahn
- Department of Physics, Chungnam National University, Daejeon 34134, Republic of Korea
| | | | - Damun Heo
- School of Semiconductor Display Technology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Samir Adhikari
- Department of Physics, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yudong Jang
- Institute of Quantum Systems (IQS), Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jongmin Lee
- School of Semiconductor Display Technology, Hallym University, Chuncheon 24252, Republic of Korea
- Nano Convergence Technology Center, Hallym University, Chuncheon 24252, Republic of Korea
| | - Donghan Lee
- Department of Physics, Chungnam National University, Daejeon 34134, Republic of Korea
- Institute of Quantum Systems (IQS), Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
128
|
Dixit KP, Gregory DA. Nanoscale modeling of dynamically tunable planar optical absorbers utilizing InAs and InSb in metal-oxide-semiconductor-metal configurations. DISCOVER NANO 2023; 18:100. [PMID: 37566175 PMCID: PMC10421843 DOI: 10.1186/s11671-023-03879-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023]
Abstract
The attainment of dynamic tunability in spectrally selective optical absorption has been a longstanding objective in modern optics. Typically, Fabry-Perot resonators comprising metal and semiconductor thin films have been employed for spectrally selective light absorption. In such resonators, the resonance wavelength can be altered via structural modifications. The research has progressed further with the advent of specialized patterning of thin films and the utilization of metasurfaces. Nonetheless, achieving dynamic tuning of the absorption wavelength without altering the geometry of the thin film or without resorting to lithographic fabrication still poses a challenge. In this study, the incorporation of a metal-oxide-semiconductor (MOS) architecture into the Fabry-Perot nanocavity is shown to yield dynamic spectral tuning in a perfect narrowband light absorber within the visible range. Such spectral tuning is achieved using n-type-doped indium antimonide and n-type-doped indium arsenide as semiconductors in a MOS-type structure. These semiconductors offer significant tuning of their optical properties via electrically induced carrier accumulation. The planar structure of the absorber models presented facilitates simple thin-film fabrication. With judicious material selection and appropriate bias voltage, a spectral shift of 47 nm can be achieved within the visible range, thus producing a discernible color change.
Collapse
Affiliation(s)
- Kirtan P. Dixit
- Department of Physics and Astronomy, The University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, AL 35899 USA
| | - Don A. Gregory
- Department of Physics and Astronomy, The University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, AL 35899 USA
| |
Collapse
|
129
|
Gelija D, Loka C, Goddati M, Bak NH, Lee J, Kim MD. Integration of Ag Plasmonic Metal and WO 3/InGaN Heterostructure for Photoelectrochemical Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37452743 DOI: 10.1021/acsami.3c05141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
In this study, a Ag/WO3/InGaN hybrid heterostructure was successfully developed by sputtering and molecular beam epitaxy techniques, to obtain unique Ag nanospheres adorned with cauliflower-like WO3 nanostructure over the InGaN nanorods (NRs). Exploiting the localized surface plasmon resonance of Ag, the Ag/WO3/InGaN heterostructure exhibited superior photoabsorption ability in the visible region (400-700 nm) of the solar spectrum, with a surface plasmon resonance band centered around 440 nm. Comprehensive analysis through photoluminescence spectroscopy, photocurrent measurements, and electrochemical impedance spectroscopy revealed that the Ag/WO3/InGaN hybrid heterostructure significantly enhances the charge carrier separation and transfer kinetics leading to improved overall photoelectrochemical (PEC) performance. The photocurrent density of the Ag/WO3/InGaN photoanode is 1.17 mA/cm2, which is about 2.72 times higher than that of pure InGaN NRs under visible light irradiation. The photoanode exhibited excellent stability for about 12 h. From the study, it has been found that the maximum applied bias photon-to-current efficiency (ABPE) is ∼1.67% at the applied bias of 0.6 V. The improved PEC water splitting efficiency of the Ag/WO3/InGaN photoanode is attributed to the synergistic effects of localized surface plasmon resonance (LSPR), efficient charge carrier separation and transport, and the presence of a Schottky junction. Consequently, the plasmonic metal-assisted heterojunction-based semiconductor Ag/WO3/InGaN demonstrates immense potential for practical applications in photoelectrochemical water splitting.
Collapse
Affiliation(s)
- Devarajulu Gelija
- Institute of Quantum Systems (IQS), Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Chadrasekhar Loka
- Department of Advanced Materials Engineering & Smart Natural Space Research Centre, Kongju National University, Cheonan 31080, South Korea
| | - Mahendra Goddati
- Department of Chemistry, Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Na-Hyun Bak
- Department of Physics, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Jaebeom Lee
- Department of Chemistry, Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Moon-Deock Kim
- Institute of Quantum Systems (IQS), Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- Department of Physics, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| |
Collapse
|
130
|
Wu JZ, Ghopry SA, Liu B, Shultz A. Metallic and Non-Metallic Plasmonic Nanostructures for LSPR Sensors. MICROMACHINES 2023; 14:1393. [PMID: 37512705 PMCID: PMC10386751 DOI: 10.3390/mi14071393] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/27/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023]
Abstract
Localized surface plasmonic resonance (LSPR) provides a unique scheme for light management and has been demonstrated across a large variety of metallic nanostructures. More recently, non-metallic nanostructures of two-dimensional atomic materials and heterostructures have emerged as a promising, low-cost alternative in order to generate strong LSPR. In this paper, a review of the recent progress made on non-metallic LSPR nanostructures will be provided in comparison with their metallic counterparts. A few applications in optoelectronics and sensors will be highlighted. In addition, the remaining challenges and future perspectives will be discussed.
Collapse
Affiliation(s)
- Judy Z Wu
- Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045, USA
| | - Samar Ali Ghopry
- Department of Physics, Jazan University, Jazan 45142, Saudi Arabia
| | - Bo Liu
- Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045, USA
| | - Andrew Shultz
- Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
131
|
Bae S, Duff M, Hong JY, Lee JK. Optical engineering of PbS colloidal quantum dot solar cells via Fabry-Perot resonance and distributed Bragg reflectors. NANO CONVERGENCE 2023; 10:31. [PMID: 37402935 DOI: 10.1186/s40580-023-00379-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/07/2023] [Indexed: 07/06/2023]
Abstract
A tradeoff between light absorption and charge transport is a well-known issue in PbS colloidal quantum dot (CQD) solar cells because the carrier diffusion length in PbS CQD films is comparable to the thickness of CQD film. We reduce the tradeoff between light absorption and charge transport by combining a Fabry-Perot (FP) resonator and a distributed Bragg reflector (DBR). A FP resonance is formed between the DBR and a dielectric-metal-dielectric film as a top transparent electrode. A SiO2-TiO2 multilayer is used to form a DBR. The FP resonance enhances light absorption near the resonant wavelength of the DBR without changing the CQD film thickness. The light absorption near the FP resonance wavelength is further boosted by coupling the FP resonance with the high reflectivity of the Ag-coated DBR. When the FP resonance and DBR are combined, the power conversion efficiency (PCE) of PbS CQD solar cells increases by 54%. Moreover, the DBR assisted FP resonance enables a very thin PbS layer to absorb near infrared light four times more. The overall PCE of the thin PbS CQD solar cell increases by 24% without sacrificing the average visible transmittance (AVT). Our results show how to overcome the inherence problem of the CQD and develop a semi-transparent solar cell where the wavelength-selective absorption and the transparency for visible light are important.
Collapse
Affiliation(s)
- Sumin Bae
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Matthew Duff
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Jun Young Hong
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Jung-Kun Lee
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
132
|
McPolin CPT, Vila YN, Krasavin AV, Llorca J, Zayats AV. Multimode hybrid gold-silicon nanoantennas for tailored nanoscale optical confinement. NANOPHOTONICS 2023; 12:2997-3005. [PMID: 37457505 PMCID: PMC10344444 DOI: 10.1515/nanoph-2023-0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/25/2023] [Indexed: 07/18/2023]
Abstract
High-index dielectric nanoantennas, which provide an interplay between electric and magnetic modes, have been widely used as building blocks for a variety of devices and metasurfaces, both in linear and nonlinear regimes. Here, we investigate hybrid metal-semiconductor nanoantennas, consisting of a multimode silicon nanopillar core coated with a gold layer, that offer an enhanced degree of control over the mode selection and confinement, and emission of light on the nanoscale exploiting high-order electric and magnetic resonances. Cathodoluminescence spectra revealed a multitude of resonant modes supported by the nanoantennas due to hybridization of the Mie resonances of the core and the plasmonic resonances of the shell. Eigenmode analysis revealed the modes that exhibit enhanced field localization at the gold interface, together with high confinement within the nanopillar volume. Consequently, this architecture provides a flexible means of engineering nanoscale components with tailored optical modes and field confinement for a plethora of applications, including sensing, hot-electron photodetection and nanophotonics with cylindrical vector beams.
Collapse
Affiliation(s)
- Cillian P. T. McPolin
- Department of Physics and London Centre for Nanotechnology, King’s College London, Strand, LondonWC2R 2LS, UK
| | - Yago N. Vila
- Department of Physics and London Centre for Nanotechnology, King’s College London, Strand, LondonWC2R 2LS, UK
- Universitat Politècnica de Catalunya, Escola Tècnica Superior d’Enginyeria de Telecomunicacions de Barcelona, Barcelona, Spain
| | - Alexey V. Krasavin
- Department of Physics and London Centre for Nanotechnology, King’s College London, Strand, LondonWC2R 2LS, UK
| | - Jordi Llorca
- Department of Chemical Engineering, Universitat Politècnica de Catalunya, EEBE, Barcelona, Spain
| | - Anatoly V. Zayats
- Department of Physics and London Centre for Nanotechnology, King’s College London, Strand, LondonWC2R 2LS, UK
| |
Collapse
|
133
|
Deeb C, Toudert J, Pelouard JL. Electrically driven nanogap antennas and quantum tunneling regime. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:3029-3051. [PMID: 39635058 PMCID: PMC11501410 DOI: 10.1515/nanoph-2023-0099] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/15/2023] [Indexed: 12/07/2024]
Abstract
The optical and electrical characteristics of electrically-driven nanogap antennas are extremely sensitive to the nanogap region where the fields are tightly confined and electrons and photons can interplay. Upon injecting electrons in the nanogap, a conductance channel opens between the metal surfaces modifying the plasmon charge distribution and therefore inducing an electrical tuning of the gap plasmon resonance. Electron tunneling across the nanogap can be harnessed to induce broadband photon emission with boosted quantum efficiency. Under certain conditions, the energy of the emitted photons exceeds the energy of electrons, and this overbias light emission is due to spontaneous emission of the hot electron distribution in the electrode. We conclude with the potential of electrically controlled nanogap antennas for faster on-chip communication.
Collapse
Affiliation(s)
- Claire Deeb
- Almae Technologies, Route de Nozay, 91460Marcoussis, France
| | | | - Jean-Luc Pelouard
- Centre for Nanoscience and Nanotechnology, CNRS, Université Paris-Saclay, 10 Bvd T. Gobert, 91120Palaiseau, France
| |
Collapse
|
134
|
Jangjoy A, Matloub S. Theoretical study of Ag and Au triple core-shell spherical plasmonic nanoparticles in ultra-thin film perovskite solar cells. OPTICS EXPRESS 2023; 31:19102-19115. [PMID: 37381334 DOI: 10.1364/oe.491461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/05/2023] [Indexed: 06/30/2023]
Abstract
This work demonstrates the enhancement of the power conversion efficiency of thin film organic-inorganic halide perovskites solar cells by embedding triple-core-shell spherical plasmonic nanoparticles into the absorber layer. A dielectric-metal-dielectric nanoparticle can be substituted for embedded metallic nanoparticles in the absorbing layer to modify their chemical and thermal stability. By solving Maxwell's equations with the three-dimensional finite difference time domain method, the proposed high-efficiency perovskite solar cell has been optically simulated. Additionally, the electrical parameters have been determined through numerical simulations of coupled Poisson and continuity equations. Based on electro-optical simulation results, the short-circuit current density of the proposed perovskite solar cell with triple core-shell nanoparticles consisting of dielectric-gold-dielectric and dielectric-silver-dielectric nanoparticles has been enhanced by approximately 25% and 29%, respectively, as compared to a perovskite solar cell without nanoparticles. By contrast, for pure gold and silver nanoparticles, the generated short-circuit current density increased by nearly 9% and 12%, respectively. Furthermore, in the optimal case of the perovskite solar cell the open-circuit voltage, the short-circuit current density, the fill factor, and the power conversion efficiency have been achieved at 1.06 V, 25 mAcm-2, 0.872, and 23.00%, respectively. Last but not least, lead toxicity has been reduced due to the ultra-thin perovskite absorber layer, and this study provides a detailed roadmap for the use of low-cost triple core-shell nanoparticles for efficient ultra-thin-film perovskite solar cells.
Collapse
|
135
|
Yezekyan T, Zenin VA, Thomaschewski M, Malureanu R, Bozhevolnyi SI. Germanium metasurface assisted broadband detectors. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:2171-2177. [PMID: 39634050 PMCID: PMC11502065 DOI: 10.1515/nanoph-2023-0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/01/2023] [Indexed: 12/07/2024]
Abstract
The demand on broadband near-infrared photodetections with high responsivity is becoming increasingly eminent; however its realization remains a significant technological challenge. Here we design, fabricate, and characterize a broadband Ge photodetector (1000-1600 nm), composed of densely packed 230-nm-thick Ge disks of different diameters (255 nm, 320 nm, and 500 nm), placed on top of a 105-nm-thin Ge layer. Using experimentally measured and calculated transmission and absorption spectra, we demonstrate that the absorption and detector responsivity are increased by nearly 2 orders of magnitude, compared to the unstructured Ge photodetector, due to the excitation of magnetic dipole resonances in Ge disks, while preserving a relatively low dark current. Our approach is simple and can be easily adapted to other semiconductor material platforms and operation wavelengths to enable performance improvements of broadband photodetector devices.
Collapse
Affiliation(s)
- Torgom Yezekyan
- Centre for Nano Optics, University of Southern Denmark, Campusvey 55, 5230, Odense, Denmark
| | - Vladimir A. Zenin
- Centre for Nano Optics, University of Southern Denmark, Campusvey 55, 5230, Odense, Denmark
| | - Martin Thomaschewski
- The George Washington University, 800 22nd St NW, Washington, 20052, Washington, DC, USA
| | - Radu Malureanu
- DTU Electro, Technical University of Denmark, Oersteds Plads, Bldg 345V Rm 173, 2800, Kgs Lyngby, Denmark
| | - Sergey I. Bozhevolnyi
- Centre for Nano Optics, University of Southern Denmark, Campusvey 55, 5230, Odense, Denmark
| |
Collapse
|
136
|
Mohsin AS, Mondal S, Mobashera M, Malik A, Islam M, Rubaiat M. Efficiency improvement of thin film solar cell using silver pyramids array and antireflective layer. Heliyon 2023; 9:e16749. [PMID: 37303542 PMCID: PMC10250809 DOI: 10.1016/j.heliyon.2023.e16749] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/13/2023] Open
Abstract
In recent years, plasmonics has been widely employed to improve light trapping in solar cells. Silver nanospheres have been used in several research works to improve the capability of solar absorption. In this paper, we use silver pyramid-shaped nanoparticles, a noble plasmonic nanoparticle, inside thin-film silicon and InP solar cells to increase light absorption compared to previously published topologies. The proposed structure consists of a TiO2 pyramid structure placed at the top of the surface working as an anti-reflective layer, silicon/indium phosphate as an absorption layer, silver pyramid-shaped nanoparticles incorporated inside the absorption layer, and an aluminum reflecting layer at the bottom. In this research, we used finite difference time domain (FDTD) simulation to model the thin-film solar cell (TFSC). Optimizing the shape and placement of the silver pyramids, we have achieved an efficiency of 17.08% and 18.58% using silicon and InP as the absorbing layers respectively, which is significantly better than previously reported studies. The open-circuit voltages are 0.58 V and 0.92 V respectively, which is the highest among other configurations. To conclude, the findings of this study laid the foundation to create an efficient thin-film solar cell utilizing the light-trapping mechanism of noble plasmonic nanoparticles.
Collapse
|
137
|
Jamil S, Saha U, Alam MK. Surface plasmon enhanced ultrathin Cu 2ZnSnS 4/crystalline-Si tandem solar cells. NANOSCALE ADVANCES 2023; 5:2887-2896. [PMID: 37260479 PMCID: PMC10228359 DOI: 10.1039/d2na00826b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 04/11/2023] [Indexed: 06/02/2023]
Abstract
Thin-film silicon solar cells have sparked a great deal of research interest because of their low material usage and cost-effective processing. Despite the potential benefits, thin-film silicon solar cells have low power-conversion efficiency, which limits their commercial usage and mass production. To solve this problem, we design an ultrathin dual junction tandem solar cell with Cu2ZnSnS4 (CZTS) and crystalline silicon (c-Si) as the main absorbing layer for the top and bottom cells, respectively, through optoelectronic simulation. To enhance light absorption in thin-film crystalline silicon, we use silver nanoparticles at the rear end of the bottom cell. We utilize amorphous Si with a c-Si heterojunction to boost the carrier collection efficiency. Computational analyses show that within 9 μm thin-film c-Si, we achieve 28.28% power conversion efficiency with a 220 nm top CZTS layer. These findings will help reduce the amount of Si (∼10 vs. ∼180 μm) in silicon-based solar cells while maintaining high power conversion efficiency.
Collapse
Affiliation(s)
- Shafayeth Jamil
- Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology Dhaka 1205 Bangladesh
| | - Uday Saha
- Department of Electrical and Computer Engineering and Institute of Research in Electronics and Applied Physics (IREAP), University of Maryland College Park Maryland 20742 USA
| | - Md Kawsar Alam
- Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology Dhaka 1205 Bangladesh
| |
Collapse
|
138
|
Cheng F, Wang C, Xu Y, Ma W, Liu Y. Multiphysics Modeling of Plasmon-Enhanced All-Optical Helicity-Dependent Switching. ACS PHOTONICS 2023; 10:1259-1267. [PMID: 37928963 PMCID: PMC10621044 DOI: 10.1021/acsphotonics.2c01815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Indexed: 11/07/2023]
Abstract
In this work, we propose a multiphysics approach to simulate all-optical helicity-dependent switching induced by the local hot spots of plasmonic nanostructures. Due to the plasmonic resonance of an array of gold nanodisks, strong electromagnetic fields are generated within the magnetic recording media underneath the gold nanodisks. We construct a multiphysics framework considering the opto-magnetic and opto-thermal effects, and then model the magnetization switching using the Monte Carlo method. Our approach bridges the gap between plasmonic nanostructure design and magnetization switching modeling, allowing for the simulation of helicity-dependent, nanoscale magnetization switching in the presence of localized surface plasmons.
Collapse
Affiliation(s)
- Feng Cheng
- Department
of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Chuangtang Wang
- Department
of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Yihao Xu
- Department
of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Wei Ma
- Department
of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Yongmin Liu
- Department
of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115, United States
- Department
of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
139
|
Anvarhaghighi N, Habibzadeh-Sharif A. Modified transmission line model for grating solar cells. OPTICS EXPRESS 2023; 31:16315-16329. [PMID: 37157713 DOI: 10.1364/oe.486511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Due to the wide range of applications of plasmonic diffraction gratings, it has become essential to provide an analytical method for modeling performance of the devices designed based on these structures. An analytical technique, in addition to greatly reducing the simulation time, can become a useful tool for designing these devices and predicting their performance. However, one of the major challenges of the analytical techniques is to improve the accuracy of their results compared to those of the numerical methods. So, here, a modified transmission line model (TLM) has been presented for the one-dimensional grating solar cell considering diffracted reflections in order to improve the accuracy of TLM results. Formulation of this model has been developed for the normal incidence of both TE and TM polarizations taking into account diffraction efficiencies. The modified TLM results for a silicon solar cell consisting of silver gratings considering different grating widths and heights have shown that lower order diffractions have dominant effects on the accuracy improvement in the modified TLM, while the results have been converged considering higher order diffractions. In addition, our proposed model has been verified by comparing its results to those of the finite element method-based full-wave numerical simulations.
Collapse
|
140
|
Ran X, Yang J, Ali MA, Yang L, Chen Y. Rational Design of Lewis Base Electron Transport Materials for Improved Interface Property in Inverted Perovskite Solar Cells: A Theoretical Investigation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091560. [PMID: 37177105 PMCID: PMC10180708 DOI: 10.3390/nano13091560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
Electron transport materials (ETMs) play a vital role in electron extraction and transport at the perovskite/ETM interface of inverted perovskite solar cells (PSCs) and are useful in power conversion efficiency (PCE), which is limited by interface carrier recombination. However, strategies for passivating undercoordinated Pb2+ at the perovskite/ETM interface employing ETMs remain a challenge. In this work, a variety of heteroatoms were used to strengthen the Lewis base property of new ETMs (asymmetrical perylene-diimide), aimed at deactivating non-bonded Pb2+ at the perovskite surface through Lewis acid-base coordination. Quantum chemical analysis revealed that novel ETMs have matched the energy level of perovskite, which enables electron extraction at the perovskite/ETM interface. The results also suggest that the large electron mobility (0.57~5.94 cm2 V-1 s-1) of designed ETMs shows excellent electron transporting ability. More importantly, reinforced interaction between new ETMs and Pb2+ was found, which is facilitating to passivation of the defects induced by unsaturated Pb2+ at the perovskite/ETM interface. Furthermore, it is found that MA (CH3NH3+), Pb, and IPb (iodine substituted on the Pb site) defects at the perovskite/ETM interface could be effectively deactivated by the new ETMs. This study provides a useful strategy to design ETMs for improving the interface property in PSCs.
Collapse
Affiliation(s)
- Xueqin Ran
- Key Laboratory of Flexible Electronics (KLOFE) & Institution of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Jixuan Yang
- Key Laboratory of Flexible Electronics (KLOFE) & Institution of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Mohamad Akbar Ali
- Advanced Materials Chemistry Center (AMCC), Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Department of Chemistry, College of Art and Science, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Lei Yang
- Centre for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yonghua Chen
- Key Laboratory of Flexible Electronics (KLOFE) & Institution of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| |
Collapse
|
141
|
Darminto D, Asih R, Priyanto B, Baqiya MA, Ardiani IS, Nadiyah K, Laila AZ, Prayogi S, Tunmee S, Nakajima H, Fauzi AD, Naradipa MA, Diao C, Rusydi A. Unrevealing tunable resonant excitons and correlated plasmons and their coupling in new amorphous carbon-like for highly efficient photovoltaic devices. Sci Rep 2023; 13:7262. [PMID: 37142605 PMCID: PMC10160088 DOI: 10.1038/s41598-023-31552-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 03/14/2023] [Indexed: 05/06/2023] Open
Abstract
An understanding on roles of excitons and plasmons is important in excitonic solar cells and photovoltaic (PV) technologies. Here, we produce new amorphous carbon (a-C) like films on Indium Tin Oxide (ITO) generating PV cells with efficiency three order of magnitude higher than the existing biomass-derived a-C. The amorphous carbon films are prepared from the bioproduct of palmyra sap with a simple, environmentally friendly, and highly reproducible method. Using spectroscopic ellipsometry, we measure simultaneously complex dielectric function, loss function as well as reflectivity and reveal coexistence of many-body resonant excitons and correlated-plasmons occurring due to strong electronic correlations. X-ray absorption and photoemission spectroscopies show the nature of electron and hole in defining the energy of the excitons and plasmons as a function of N or B doping. Our result shows new a-C like films and the importance of the coupling of resonant excitons and correlated plasmons in determining efficiency of photovoltaic devices.
Collapse
Affiliation(s)
- D Darminto
- Department of Physics, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia.
| | - Retno Asih
- Department of Physics, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia
| | - Budhi Priyanto
- Department of Physics, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia
- Department of Electrical Engineering, Muhammadiyah University, Malang, 65145, Indonesia
| | - Malik A Baqiya
- Department of Physics, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia
| | - Irma S Ardiani
- Department of Physics, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia
| | - Khoirotun Nadiyah
- Department of Physics, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia
| | - Anna Z Laila
- Department of Physics, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia
| | - Soni Prayogi
- Department of Physics, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia
| | - Sarayut Tunmee
- Synchrotron Light Research Institute, 111 University Avenue, Muang District, Nakhon Ratchasima, 30000, Thailand
| | - Hideki Nakajima
- Synchrotron Light Research Institute, 111 University Avenue, Muang District, Nakhon Ratchasima, 30000, Thailand
| | - Angga D Fauzi
- Advanced Research initiative for Correlated-Electron Systems (ARiCES), Department of Physics, National University of Singapore, Singapore, 117542, Singapore
- Singapore Synchrotron Light Source, National University of Singapore, 5 Research Link, Singapore, 117603, Singapore
| | - Muhammad A Naradipa
- Advanced Research initiative for Correlated-Electron Systems (ARiCES), Department of Physics, National University of Singapore, Singapore, 117542, Singapore
- Singapore Synchrotron Light Source, National University of Singapore, 5 Research Link, Singapore, 117603, Singapore
| | - Caozheng Diao
- Singapore Synchrotron Light Source, National University of Singapore, 5 Research Link, Singapore, 117603, Singapore
| | - Andrivo Rusydi
- Advanced Research initiative for Correlated-Electron Systems (ARiCES), Department of Physics, National University of Singapore, Singapore, 117542, Singapore.
- Singapore Synchrotron Light Source, National University of Singapore, 5 Research Link, Singapore, 117603, Singapore.
| |
Collapse
|
142
|
Bykov AY, Xie Y, Krasavin AV, Zayats AV. Broadband Transient Response and Wavelength-Tunable Photoacoustics in Plasmonic Hetero-nanoparticles. NANO LETTERS 2023; 23:2786-2791. [PMID: 36926927 PMCID: PMC10103169 DOI: 10.1021/acs.nanolett.3c00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/06/2023] [Indexed: 06/18/2023]
Abstract
The optically driven acoustic modes and nonlinear response of plasmonic nanoparticles are important in many applications, but are strongly resonant, which restricts their excitation to predefined wavelengths. Here, we demonstrate that multilayered spherical plasmonic hetero-nanoparticles, formed by alternating layers of gold and silica, provide a platform for a broadband nonlinear optical response from visible to near-infrared wavelengths. They also act as a tunable optomechanical system with mechanically decoupled layers in which different acoustic modes can be selectively switched on/off by tuning the excitation wavelength. These observations not only expand the knowledge about the internal structure of composite plasmonic nanoparticles but also allow for an additional degree of freedom for controlling their nonlinear optical and mechanical properties.
Collapse
|
143
|
Sherman ZM, Kim K, Kang J, Roman BJ, Crory HSN, Conrad DL, Valenzuela SA, Lin E, Dominguez MN, Gibbs SL, Anslyn EV, Milliron DJ, Truskett TM. Plasmonic Response of Complex Nanoparticle Assemblies. NANO LETTERS 2023; 23:3030-3037. [PMID: 36989531 DOI: 10.1021/acs.nanolett.3c00429] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Optical properties of nanoparticle assemblies reflect distinctive characteristics of their building blocks and spatial organization, giving rise to emergent phenomena. Integrated experimental and computational studies have established design principles connecting the structure to properties for assembled clusters and superlattices. However, conventional electromagnetic simulations are too computationally expensive to treat more complex assemblies. Here we establish a fast, materials agnostic method to simulate the optical response of large nanoparticle assemblies incorporating both structural and compositional complexity. This many-bodied, mutual polarization method resolves limitations of established approaches, achieving rapid, accurate convergence for configurations including thousands of nanoparticles, with some overlapping. We demonstrate these capabilities by reproducing experimental trends and uncovering far- and near-field mechanisms governing the optical response of plasmonic semiconductor nanocrystal assemblies including structurally complex gel networks and compositionally complex mixed binary superlattices. This broadly applicable framework will facilitate the design of complex, hierarchically structured, and dynamic assemblies for desired optical characteristics.
Collapse
Affiliation(s)
- Zachary M Sherman
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, 78712, Texas United States
| | - Kihoon Kim
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, 78712, Texas United States
| | - Jiho Kang
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, 78712, Texas United States
| | - Benjamin J Roman
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, 78712, Texas United States
| | - Hannah S N Crory
- Department of Chemistry, University of Texas at Austin, Austin, 78712, Texas United States
| | - Diana L Conrad
- Department of Chemistry, University of Texas at Austin, Austin, 78712, Texas United States
| | - Stephanie A Valenzuela
- Department of Chemistry, University of Texas at Austin, Austin, 78712, Texas United States
| | - Emily Lin
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, 78712, Texas United States
| | - Manuel N Dominguez
- Department of Chemistry, University of Texas at Austin, Austin, 78712, Texas United States
| | - Stephen L Gibbs
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, 78712, Texas United States
| | - Eric V Anslyn
- Department of Chemistry, University of Texas at Austin, Austin, 78712, Texas United States
| | - Delia J Milliron
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, 78712, Texas United States
- Department of Chemistry, University of Texas at Austin, Austin, 78712, Texas United States
| | - Thomas M Truskett
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, 78712, Texas United States
- Department of Physics, University of Texas at Austin, Austin, 78712, Texas United States
| |
Collapse
|
144
|
Goerlitzer ESA, Zhan M, Choi S, Vogel N. How Colloidal Lithography Limits the Optical Quality of Plasmonic Nanohole Arrays. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5222-5229. [PMID: 36989478 DOI: 10.1021/acs.langmuir.3c00328] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Colloidal lithography utilizes self-assembled particle monolayers as lithographic masks to fabricate arrays of nanostructures by combination of directed evaporation and etching steps. This process provides complex nanostructures over macroscopic areas in a simple, convenient, and parallel fashion without requiring clean-room infrastructure and specialized equipment. The appeal of the method comes at the price of imperfections impairing the optical quality, especially for arrayed nanostructures relying on well-ordered lattices. Imperfections are often generically mentioned to rationalize the discrepancy between experimental and simulated resonances. Yet, little attention is given to detailed structure-property relationships connecting typical defects directly with the optical properties. Here, we use a correlative approach to connect nano- and microscopic defects occurring from the colloidal lithography process with the resulting local optical properties. We use nanohole arrays as a common plasmonic structure known to be sensitive to lattice imperfections. Correlative optical and electron microscopies reveal the individual role of packing order, organic impurities, and solid polymer bridges. Our findings show that simple cleaning processes with solvents and oxygen plasma already improve the optical quality but also highlight how well-controlled self-assembly processes are required for predictable optical properties of such nanostructures.
Collapse
Affiliation(s)
- Eric S A Goerlitzer
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstraße 4, D-91058 Erlangen, Germany
| | - Meichen Zhan
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstraße 4, D-91058 Erlangen, Germany
| | - Sukyung Choi
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstraße 4, D-91058 Erlangen, Germany
| | - Nicolas Vogel
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstraße 4, D-91058 Erlangen, Germany
| |
Collapse
|
145
|
Sen R, Gordon TM, Millheim SL, Smith JH, Gan XY, Millstone JE. Multimetallic post-synthetic modifications of copper selenide nanoparticles. NANOSCALE 2023; 15:6655-6663. [PMID: 36892483 DOI: 10.1039/d3nr00441d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In this report, we investigate the addition of two metal cations, simultaneously and sequentially to Cu2-xSe nanoparticles. The metal combinations (Ag-Au, Ag-Pt, Hg-Au and Hg-Pt) are chosen such that one metal adds to the structure via cation exchange and the other adds to the structure via metal deposition when added individually to Cu2-xSe nanoparticles. Surprisingly, we find that for each metal combination, across all three synthesis routes, cation exchange and metal deposition products are obtained without deviation from the outcomes seen in the binary metal systems. However, within those outcomes the data show several types of heterogeneities in the morphologies formed including extent and composition of cation exchange products as well as the extent and composition of the metal deposited products. Taken together, these results suggest a hierarchical control for nanoheterostructure morphologies where the pathways of cation exchange or metal deposition in post-synthetic modification of Cu2-xSe exhibit relatively general outcomes as a function of metal, regardless of synthetic approach or metal combination. However, the detailed composition and interface populations of the resulting materials are more sensitive to both metal identities and synthetic procedure (e.g. order of reagent addition), suggesting that certain principles of metal chalcogenide post-synthetic modification are excitingly robust, while also revealing new avenues for both mechanistic discovery and structural control.
Collapse
Affiliation(s)
- Riti Sen
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| | - Tyler Masato Gordon
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| | - Shelby Liz Millheim
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| | - Jacob Harrison Smith
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| | - Xing Yee Gan
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| | - Jill Erin Millstone
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| |
Collapse
|
146
|
Loiko NA, Miskevich AA, Loiko VA. Optical characteristics of a monolayer of identical spherical particles in an absorbing host medium. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2023; 40:682-691. [PMID: 37132961 DOI: 10.1364/josaa.476765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The problem of light interaction with a 2D ensemble of homogeneous spherical particles embedded into an unbounded homogeneous absorbing host medium is considered. Based on the statistical approach, the equations are derived to characterize optical response of such a system with taking into account multiple scattering of light. Numerical data are presented for the spectral behavior of coherent transmission and reflection, incoherent scattering, and absorption coefficients of thin dielectric, semiconductor, and metal films containing a monolayer of particles with various spatial organization. The results are compared with the characteristics of the inverse structure: particles consist of the host medium material and vice versa. Data for the redshift of the surface plasmon resonance of the monolayer of gold (Au) nanoparticles in the fullerene (C 60) matrix are presented as a function of the monolayer filling factor. They are in qualitative agreement with the known experimental results. The findings have potential applications in the development of new electro-optical and photonic devices.
Collapse
|
147
|
Zhou Z, Sang M, Zhang J, Wen Z, Qiu Q, Xu Q, Tan C, Zhou D, Qiao H, Li X, Sun Y, Dai N, Chu J, Hao J. Narrowband HgCdTe infrared photodetector with integrated plasmonic structure. OPTICS LETTERS 2023; 48:1882-1885. [PMID: 37221790 DOI: 10.1364/ol.486788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/05/2023] [Indexed: 05/25/2023]
Abstract
The application of plasmonic structure has been demonstrated to improve the performance of infrared photodetectors. However, the successful experimental realization of the incorporation of such optical engineering structure into HgCdTe-based photodetectors has rarely been reported. In this paper, we present a HgCdTe infrared photodetector with integrated plasmonic structure. The experimental results show that the device with plasmonic structure has a distinct narrowband effect with a peak response rate close to 2 A/W, which is nearly 34% higher compared with the reference device. The simulation results are in good agreement with the experiment, and an analysis of the effect of the plasmonic structure is given, demonstrating the crucial role of the plasmonic structure in the enhancement of the device performance.
Collapse
|
148
|
Kumar P, Kuramochi H, Takeuchi S, Tahara T. Photoexcited Plasmon-Driven Ultrafast Dynamics of the Adsorbate Probed by Femtosecond Time-Resolved Surface-Enhanced Time-Domain Raman Spectroscopy. J Phys Chem Lett 2023; 14:2845-2853. [PMID: 36916655 PMCID: PMC10042161 DOI: 10.1021/acs.jpclett.2c03813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Metal nanoparticles have high potential in light-harvesting applications by transferring absorbed photon energy to the adsorbates. However, photoexcited plasmon-driven ultrafast dynamics of the adsorbate on metal nanoparticles have not been clearly understood. We studied ultrafast plasmon-driven processes of trans-1,2-bis(4-pyridyl)ethylene (BPE) adsorbed on gold nanoparticle assemblies (GNAs) using time-resolved surface-enhanced impulsive stimulated Raman spectroscopy (TR-SE-ISRS). After photoexciting the localized surface plasmon resonance (LSPR) band of the GNAs, we measured femtosecond time-resolved surface-enhanced Raman spectra of the adsorbate, which exhibited transient bleach in the Raman signal and following biphasic recovery that proceeds on the time scale of a few tens of picoseconds. The TR-SE-ISRS data were analyzed with singular value decomposition, and the obtained species-associated Raman spectra indicated that photoexcitation of the LSPR band alters chemical interaction between BPE and the GNAs on an ultrafast time scale; initial steady-state BPE is recovered through a precursor state that has weaker interaction with the GNAs.
Collapse
Affiliation(s)
- Pardeep Kumar
- Molecular
Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast
Spectroscopy Research Team, RIKEN Center
for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
| | - Hikaru Kuramochi
- Molecular
Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast
Spectroscopy Research Team, RIKEN Center
for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
| | - Satoshi Takeuchi
- Molecular
Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast
Spectroscopy Research Team, RIKEN Center
for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
| | - Tahei Tahara
- Molecular
Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast
Spectroscopy Research Team, RIKEN Center
for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
| |
Collapse
|
149
|
Abstract
A significant challenge in the development of functional materials is understanding the growth and transformations of anisotropic colloidal metal nanocrystals. Theory and simulations can aid in the development and understanding of anisotropic nanocrystal syntheses. The focus of this review is on how results from first-principles calculations and classical techniques, such as Monte Carlo and molecular dynamics simulations, have been integrated into multiscale theoretical predictions useful in understanding shape-selective nanocrystal syntheses. Also, examples are discussed in which machine learning has been useful in this field. There are many areas at the frontier in condensed matter theory and simulation that are or could be beneficial in this area and these prospects for future progress are discussed.
Collapse
Affiliation(s)
- Kristen A Fichthorn
- Department of Chemical Engineering and Department of Physics The Pennsylvania State University University Park, Pennsylvania 16803 United States
| |
Collapse
|
150
|
Weatherspoon H, Peters B. Broken bond models, magic-sized clusters, and nucleation theory in nanoparticle synthesis. J Chem Phys 2023; 158:114306. [PMID: 36948834 DOI: 10.1063/5.0132601] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Magic clusters are metastable faceted nanoparticles that are thought to be important and, sometimes, observable intermediates in the nucleation of certain faceted crystallites. This work develops a broken bond model for spheres with a face-centered-cubic packing that form tetrahedral magic clusters. With just one bond strength parameter, statistical thermodynamics yield a chemical potential driving force, an interfacial free energy, and free energy vs magic cluster size. These properties exactly correspond to those from a previous model by Mule et al. [J. Am. Chem. Soc. 143, 2037 (2021)]. Interestingly, a Tolman length emerges (for both models) when the interfacial area, density, and volume are treated consistently. To describe the kinetic barriers between magic cluster sizes, Mule et al. invoked an energy parameter to penalize the two-dimensional nucleation and growth of new layers in each facet of the tetrahedra. According to the broken bond model, barriers between magic clusters are insignificant without the additional edge energy penalty. We estimate the overall nucleation rate without predicting the rates of formation for intermediate magic clusters by using the Becker-Döring equations. Our results provide a blueprint for constructing free energy models and rate theories for nucleation via magic clusters starting from only atomic-scale interactions and geometric considerations.
Collapse
Affiliation(s)
- Howard Weatherspoon
- Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Baron Peters
- Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|