101
|
Sacco KA, Milner JD. Gene-environment interactions in primary atopic disorders. Curr Opin Immunol 2019; 60:148-155. [PMID: 31302571 DOI: 10.1016/j.coi.2019.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/14/2019] [Indexed: 12/18/2022]
Abstract
Environmental factors modify disease presentation and severity in allergic disorders. Primary atopic disorders (PADs) are a heterogenous group of single gene disorders that lead to significant atopic and allergic disease manifestations. However, a number of these monogenic diseases have variable penetrance suggesting that gene-gene and/or gene-environment interactions could modulate the clinical phenotype. Environmental factors such as diet, the microbiome at the epithelial-environment interface, the presence and/or extent of infection, and psychologic stress can alter disease phenotypic expression of allergic diseases, and PADs provide discrete contexts in which to understand these influences. We outline how gene-environment interactions likely contribute to a variable penetrance and expressivity in PADs. Dietary modifications of both macronutrients and/or micronutrients alter T-cell metabolism and may influence effector T-cell function. The mucosal microbiome may affect local inflammation and may remotely influence regulatory elements, while psychologic stress can affect mast cell and other allergic effector cell function. Understanding gene-environment interactions in PADs can hopefully provide a foundation for interrogating gene-environment interactions to common allergic disorders, and also present opportunities for personalized interventions based on the altered pathways and environmental influences in affected individuals.
Collapse
Affiliation(s)
- Keith A Sacco
- Laboratory of Allergic Diseases, NIAID, NIH, 9000 Rockville Pike, NIH Building 10 Room 11N240A, United States
| | - Joshua D Milner
- Laboratory of Allergic Diseases, NIAID, NIH, 9000 Rockville Pike, NIH Building 10 Room 11N240A, United States.
| |
Collapse
|
102
|
van Dongen JJM, van der Burg M, Kalina T, Perez-Andres M, Mejstrikova E, Vlkova M, Lopez-Granados E, Wentink M, Kienzler AK, Philippé J, Sousa AE, van Zelm MC, Blanco E, Orfao A. EuroFlow-Based Flowcytometric Diagnostic Screening and Classification of Primary Immunodeficiencies of the Lymphoid System. Front Immunol 2019; 10:1271. [PMID: 31263462 PMCID: PMC6585843 DOI: 10.3389/fimmu.2019.01271] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/17/2019] [Indexed: 12/16/2022] Open
Abstract
Guidelines for screening for primary immunodeficiencies (PID) are well-defined and several consensus diagnostic strategies have been proposed. These consensus proposals have only partially been implemented due to lack of standardization in laboratory procedures, particularly in flow cytometry. The main objectives of the EuroFlow Consortium were to innovate and thoroughly standardize the flowcytometric techniques and strategies for reliable and reproducible diagnosis and classification of PID of the lymphoid system. The proposed EuroFlow antibody panels comprise one orientation tube and seven classification tubes and corresponding databases of normal and PID samples. The 8-color 12-antibody PID Orientation tube (PIDOT) aims at identification and enumeration of the main lymphocyte and leukocyte subsets; this includes naïve pre-germinal center (GC) and antigen-experienced post-GC memory B-cells and plasmablasts. The seven additional 8(-12)-color tubes can be used according to the EuroFlow PID algorithm in parallel or subsequently to the PIDOT for more detailed analysis of B-cell and T-cell subsets to further classify PID of the lymphoid system. The Pre-GC, Post-GC, and immunoglobulin heavy chain (IgH)-isotype B-cell tubes aim at identification and enumeration of B-cell subsets for evaluation of B-cell maturation blocks and specific defects in IgH-subclass production. The severe combined immunodeficiency (SCID) tube and T-cell memory/effector subset tube aim at identification and enumeration of T-cell subsets for assessment of T-cell defects, such as SCID. In case of suspicion of antibody deficiency, PIDOT is preferably directly combined with the IgH isotype tube(s) and in case of SCID suspicion (e.g., in newborn screening programs) the PIDOT is preferably directly combined with the SCID T-cell tube. The proposed ≥8-color antibody panels and corresponding reference databases combined with the EuroFlow PID algorithm are designed to provide fast, sensitive and cost-effective flowcytometric diagnosis of PID of the lymphoid system, easily applicable in multicenter diagnostic settings world-wide.
Collapse
Affiliation(s)
- Jacques J M van Dongen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Mirjam van der Burg
- Department of Immunology, Erasmus MC, Rotterdam, Netherlands.,Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Tomas Kalina
- Department of Pediatric Hematology and Oncology, University Hospital Motol, Charles University, Prague, Czechia
| | - Martin Perez-Andres
- Department of Medicine, Cancer Research Centre (IBMCC, USAL-CSIC), Cytometry Service (NUCLEUS), University of Salamanca (USAL), Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), CB/16/12/00233, Instituto Carlos III, Madrid, Spain
| | - Ester Mejstrikova
- Department of Pediatric Hematology and Oncology, University Hospital Motol, Charles University, Prague, Czechia
| | - Marcela Vlkova
- Institute of Clinical Immunology and Allergology, St. Anne's University Hospital Brno, Masaryk University, Brno, Czechia
| | | | | | - Anne-Kathrin Kienzler
- Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jan Philippé
- Department of Laboratory Medicine, University Hospital Ghent, Ghent, Belgium
| | - Ana E Sousa
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| | - Menno C van Zelm
- Department of Immunology, Erasmus MC, Rotterdam, Netherlands.,Department of Immunology and Pathology, Central Clinical School, Alfred Hospital, Monash University, Melbourne, VIC, Australia
| | - Elena Blanco
- Department of Medicine, Cancer Research Centre (IBMCC, USAL-CSIC), Cytometry Service (NUCLEUS), University of Salamanca (USAL), Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), CB/16/12/00233, Instituto Carlos III, Madrid, Spain
| | - Alberto Orfao
- Department of Medicine, Cancer Research Centre (IBMCC, USAL-CSIC), Cytometry Service (NUCLEUS), University of Salamanca (USAL), Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), CB/16/12/00233, Instituto Carlos III, Madrid, Spain
| |
Collapse
|
103
|
Revy P, Kannengiesser C, Fischer A. Somatic genetic rescue in Mendelian haematopoietic diseases. Nat Rev Genet 2019; 20:582-598. [DOI: 10.1038/s41576-019-0139-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2019] [Indexed: 12/30/2022]
|
104
|
Network Analysis of the Potential Role of DNA Methylation in the Relationship between Plasma Carotenoids and Lipid Profile. Nutrients 2019; 11:nu11061265. [PMID: 31167428 PMCID: PMC6628241 DOI: 10.3390/nu11061265] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 12/17/2022] Open
Abstract
Variability in plasma carotenoids may be attributable to several factors including genetic variants and lipid profile. Until now, the impact of DNA methylation on this variability has not been widely studied. Weighted gene correlation network analysis (WGCNA) is a systems biology method used for finding gene clusters (modules) with highly correlated methylation levels and for relating them to phenotypic traits. The objective of the present study was to examine the role of DNA methylation in the relationship between plasma total carotenoid concentrations and lipid profile using WGCNA in 48 healthy subjects. Genome-wide DNA methylation levels of 20,687 out of 472,245 CpG sites in blood leukocytes were associated with total carotenoid concentrations. Using WGCNA, nine co-methylation modules were identified. A total of 2734 hub genes (17 unique top hub genes) were potentially related to lipid profile. This study provides evidence for the potential implications of gene co-methylation in the relationship between plasma carotenoids and lipid profile. Further studies and validation of the hub genes are needed.
Collapse
|
105
|
Boillat L, Angelini F, Crucis-Armengaud A, Asner SA, Rochat I. Pneumocystis jirovecii Pneumonia in an Infant: The Tip of the Iceberg. Clin Pediatr (Phila) 2019; 58:578-581. [PMID: 30658532 DOI: 10.1177/0009922818825141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Laurence Boillat
- 1 University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Federica Angelini
- 1 University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | | | - Sandra A Asner
- 1 University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Isabelle Rochat
- 1 University Hospital Center and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
106
|
Zhao Y, Liu P, Xin Z, Shi C, Bai Y, Sun X, Zhao Y, Wang X, Liu L, Zhao X, Chen Z, Zhang H. Biological Characteristics of Severe Combined Immunodeficient Mice Produced by CRISPR/Cas9-Mediated Rag2 and IL2rg Mutation. Front Genet 2019; 10:401. [PMID: 31134127 PMCID: PMC6524690 DOI: 10.3389/fgene.2019.00401] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 04/12/2019] [Indexed: 12/31/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas)9 is a novel and convenient gene editing system that can be used to construct genetically modified animals. Recombination activating gene 2 (Rag2) is a core component that is involved in the initiation of V(D)J recombination during T- and B-cells maturation. Separately, the interleukin-2 receptor gamma chain gene (IL2rg) encoded the protein-regulated activity of natural killer (NK) cells and shared common receptors of some cytokines. Rag2 and IL2rg mutations cause immune system disorders associated with T-, B-, and NK cell function and some cytokine activities. In the present study, 2 single-guide RNAs (sgRNAs) targeted on Rag2 and IL2rg genes were microinjected into the zygotes of BALB/c mice with Cas9 messenger RNA (mRNA) to create Rag2/IL2rg-/- double knockout mice, and the biological characteristics of the mutated mice were subsequently analyzed. The results showed that CRISPR/Cas9-induced indel mutation displaced the frameshift of Rag2 and IL2rg genes, resulting in a decrease in the number of T-, B-, and NK cells and the destruction of immune-related tissues like the thymus and spleen. Mycobacterium tuberculosis 85B antigen could not induce cellular and humoral immune response in mice. However, this aberrant immune activity compromised the growth of several tumor heterogenous grafts in the mutated mice, including orthotopic and subcutaneous transplantation tumors. Thus, Rag2/IL2rg-/- knockout mice possessed features of severe combined immunodeficiency (SCID), which is an ideal model for human xenograft.
Collapse
Affiliation(s)
- Yong Zhao
- Laboratory Animal Center, Air Force Medical University, Xi'an, China
| | - Peijuan Liu
- Laboratory Animal Center, Air Force Medical University, Xi'an, China
| | - Zhiqian Xin
- Laboratory Animal Center, Air Force Medical University, Xi'an, China
| | - Changhong Shi
- Laboratory Animal Center, Air Force Medical University, Xi'an, China
| | - Yinlan Bai
- Department of Microbiology, Air Force Medical University, Xi'an, China
| | - Xiuxuan Sun
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Air Force Medical University, Xi'an, China
| | - Ya Zhao
- Laboratory Animal Center, Air Force Medical University, Xi'an, China
| | - Xiaoya Wang
- Laboratory Animal Center, Air Force Medical University, Xi'an, China.,College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Li Liu
- Laboratory Animal Center, Air Force Medical University, Xi'an, China.,Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Xuan Zhao
- Laboratory Animal Center, Air Force Medical University, Xi'an, China.,College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Zhinan Chen
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Air Force Medical University, Xi'an, China
| | - Hai Zhang
- Laboratory Animal Center, Air Force Medical University, Xi'an, China.,National Translational Science Center for Molecular Medicine, Air Force Medical University, Xi'an, China
| |
Collapse
|
107
|
Cifaldi C, Brigida I, Barzaghi F, Zoccolillo M, Ferradini V, Petricone D, Cicalese MP, Lazarevic D, Cittaro D, Omrani M, Attardi E, Conti F, Scarselli A, Chiriaco M, Di Cesare S, Licciardi F, Davide M, Ferrua F, Canessa C, Pignata C, Giliani S, Ferrari S, Fousteri G, Barera G, Merli P, Palma P, Cesaro S, Gattorno M, Trizzino A, Moschese V, Chini L, Villa A, Azzari C, Finocchi A, Locatelli F, Rossi P, Sangiuolo F, Aiuti A, Cancrini C, Di Matteo G. Targeted NGS Platforms for Genetic Screening and Gene Discovery in Primary Immunodeficiencies. Front Immunol 2019; 10:316. [PMID: 31031743 PMCID: PMC6470723 DOI: 10.3389/fimmu.2019.00316] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/06/2019] [Indexed: 12/22/2022] Open
Abstract
Background: Primary Immunodeficiencies (PIDs) are a heterogeneous group of genetic immune disorders. While some PIDs can manifest with more than one phenotype, signs, and symptoms of various PIDs overlap considerably. Recently, novel defects in immune-related genes and additional variants in previously reported genes responsible for PIDs have been successfully identified by Next Generation Sequencing (NGS), allowing the recognition of a broad spectrum of disorders. Objective: To evaluate the strength and weakness of targeted NGS sequencing using custom-made Ion Torrent and Haloplex (Agilent) panels for diagnostics and research purposes. Methods: Five different panels including known and candidate genes were used to screen 105 patients with distinct PID features divided in three main PID categories: T cell defects, Humoral defects and Other PIDs. The Ion Torrent sequencing platform was used in 73 patients. Among these, 18 selected patients without a molecular diagnosis and 32 additional patients were analyzed by Haloplex enrichment technology. Results: The complementary use of the two custom-made targeted sequencing approaches allowed the identification of causative variants in 28.6% (n = 30) of patients. Twenty-two out of 73 (34.6%) patients were diagnosed by Ion Torrent. In this group 20 were included in the SCID/CID category. Eight out of 50 (16%) patients were diagnosed by Haloplex workflow. Ion Torrent method was highly successful for those cases with well-defined phenotypes for immunological and clinical presentation. The Haloplex approach was able to diagnose 4 SCID/CID patients and 4 additional patients with complex and extended phenotypes, embracing all three PID categories in which this approach was more efficient. Both technologies showed good gene coverage. Conclusions: NGS technology represents a powerful approach in the complex field of rare disorders but its different application should be weighted. A relatively small NGS target panel can be successfully applied for a robust diagnostic suspicion, while when the spectrum of clinical phenotypes overlaps more than one PID an in-depth NGS analysis is required, including also whole exome/genome sequencing to identify the causative gene.
Collapse
Affiliation(s)
- Cristina Cifaldi
- Unit of Immune and Infectious Diseases, University Department of Pediatrics (DPUO), Scientific Institute for Research and Healthcare (IRCCS) Childrens' Hospital Bambino Gesù, Rome, Italy
| | - Immacolata Brigida
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Barzaghi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, Scientific Institute for Research and Healthcare (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Matteo Zoccolillo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Valentina Ferradini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Davide Petricone
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Maria Pia Cicalese
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, Scientific Institute for Research and Healthcare (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Vita Salute San Raffaele University, Milan, Italy
| | - Dejan Lazarevic
- Center for Translational Genomics and BioInformatics, San Raffaele Scientific Institute, Milan, Italy
| | - Davide Cittaro
- Center for Translational Genomics and BioInformatics, San Raffaele Scientific Institute, Milan, Italy
| | - Maryam Omrani
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Enrico Attardi
- Unit of Immune and Infectious Diseases, University Department of Pediatrics (DPUO), Scientific Institute for Research and Healthcare (IRCCS) Childrens' Hospital Bambino Gesù, Rome, Italy
| | - Francesca Conti
- Unit of Immune and Infectious Diseases, University Department of Pediatrics (DPUO), Scientific Institute for Research and Healthcare (IRCCS) Childrens' Hospital Bambino Gesù, Rome, Italy
| | - Alessia Scarselli
- Unit of Immune and Infectious Diseases, University Department of Pediatrics (DPUO), Scientific Institute for Research and Healthcare (IRCCS) Childrens' Hospital Bambino Gesù, Rome, Italy
| | - Maria Chiriaco
- Unit of Immune and Infectious Diseases, University Department of Pediatrics (DPUO), Scientific Institute for Research and Healthcare (IRCCS) Childrens' Hospital Bambino Gesù, Rome, Italy
| | - Silvia Di Cesare
- Unit of Immune and Infectious Diseases, University Department of Pediatrics (DPUO), Scientific Institute for Research and Healthcare (IRCCS) Childrens' Hospital Bambino Gesù, Rome, Italy
| | - Francesco Licciardi
- Division of Immunology and Rheumatology, Department of Paediatric Infectious Diseases, Regina Margherita Children's Hospital, University of Turin, Turin, Italy
| | - Montin Davide
- Division of Immunology and Rheumatology, Department of Paediatric Infectious Diseases, Regina Margherita Children's Hospital, University of Turin, Turin, Italy
| | - Francesca Ferrua
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, Scientific Institute for Research and Healthcare (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Vita Salute San Raffaele University, Milan, Italy
| | - Clementina Canessa
- Pediatric Immunology, Department of Health Sciences, University of Florence, Florence, Italy
- Meyer Children's Hospital, Florence, Italy
| | - Claudio Pignata
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Silvia Giliani
- Department of Molecular and Translational Medicine, A. Nocivelli Institute for Molecular Medicine, University of Brescia, Brescia, Italy
| | - Simona Ferrari
- Unit of Medical Genetics, St. Orsola-Malpighi University Hospital, University of Bologna, Bologna, Italy
| | - Georgia Fousteri
- Division of Immunology Transplantation and Infectious Diseases (DITID), Diabetes Research Institute (DRI) IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Graziano Barera
- Pediatric Department, San Raffaele Scientific Institute, Milan, Italy
| | - Pietro Merli
- Department of Onco-Hematology and Cell and Gene Therapy, Scientific Institute for Research and Healthcare (IRCCS) Childrens' Hospital Bambino Gesù, Rome, Italy
| | - Paolo Palma
- Unit of Immune and Infectious Diseases, University Department of Pediatrics (DPUO), Scientific Institute for Research and Healthcare (IRCCS) Childrens' Hospital Bambino Gesù, Rome, Italy
| | - Simone Cesaro
- Paediatric Hematology-Oncology, “Ospedale della Donna e del Bambino”, Verona, Italy
| | - Marco Gattorno
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Giannina Gaslini, Genoa, Italy
| | - Antonio Trizzino
- Department of Pediatric Hematology and Oncology, “ARNAS Civico Di Cristina Benfratelli” Hospital, Palermo, Italy
| | - Viviana Moschese
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Pediatric Immunopathology and Allergology Unit, University of Rome Tor Vergata Policlinico Tor Vergata, Rome, Italy
| | - Loredana Chini
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Pediatric Immunopathology and Allergology Unit, University of Rome Tor Vergata Policlinico Tor Vergata, Rome, Italy
| | - Anna Villa
- Milan Unit, National Research Council (CNR) Institute for Genetic and Biomedical Research (IRGB), Milan, Italy
- Humanitas Clinical and Research Institute, Rozzano, Italy
| | - Chiara Azzari
- Pediatric Immunology, Department of Health Sciences, University of Florence, Florence, Italy
- Meyer Children's Hospital, Florence, Italy
| | - Andrea Finocchi
- Unit of Immune and Infectious Diseases, University Department of Pediatrics (DPUO), Scientific Institute for Research and Healthcare (IRCCS) Childrens' Hospital Bambino Gesù, Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Scientific Institute for Research and Healthcare (IRCCS) Childrens' Hospital Bambino Gesù, University of Rome La Sapienza, Rome, Italy
| | - Paolo Rossi
- Unit of Immune and Infectious Diseases, University Department of Pediatrics (DPUO), Scientific Institute for Research and Healthcare (IRCCS) Childrens' Hospital Bambino Gesù, Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Federica Sangiuolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, Scientific Institute for Research and Healthcare (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Vita Salute San Raffaele University, Milan, Italy
| | - Caterina Cancrini
- Unit of Immune and Infectious Diseases, University Department of Pediatrics (DPUO), Scientific Institute for Research and Healthcare (IRCCS) Childrens' Hospital Bambino Gesù, Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Gigliola Di Matteo
- Unit of Immune and Infectious Diseases, University Department of Pediatrics (DPUO), Scientific Institute for Research and Healthcare (IRCCS) Childrens' Hospital Bambino Gesù, Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
108
|
Dorjbal B, Stinson JR, Ma CA, Weinreich MA, Miraghazadeh B, Hartberger JM, Frey-Jakobs S, Weidinger S, Moebus L, Franke A, Schäffer AA, Bulashevska A, Fuchs S, Ehl S, Limaye S, Arkwright PD, Briggs TA, Langley C, Bethune C, Whyte AF, Alachkar H, Nejentsev S, DiMaggio T, Nelson CG, Stone KD, Nason M, Brittain EH, Oler AJ, Veltri DP, Leahy TR, Conlon N, Poli MC, Borzutzky A, Cohen JI, Davis J, Lambert MP, Romberg N, Sullivan KE, Paris K, Freeman AF, Lucas L, Chandrakasan S, Savic S, Hambleton S, Patel SY, Jordan MB, Theos A, Lebensburger J, Atkinson TP, Torgerson TR, Chinn IK, Milner JD, Grimbacher B, Cook MC, Snow AL. Hypomorphic caspase activation and recruitment domain 11 (CARD11) mutations associated with diverse immunologic phenotypes with or without atopic disease. J Allergy Clin Immunol 2019; 143:1482-1495. [PMID: 30170123 PMCID: PMC6395549 DOI: 10.1016/j.jaci.2018.08.013] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/02/2018] [Accepted: 08/13/2018] [Indexed: 01/26/2023]
Abstract
BACKGROUND Caspase activation and recruitment domain 11 (CARD11) encodes a scaffold protein in lymphocytes that links antigen receptor engagement with downstream signaling to nuclear factor κB, c-Jun N-terminal kinase, and mechanistic target of rapamycin complex 1. Germline CARD11 mutations cause several distinct primary immune disorders in human subjects, including severe combined immune deficiency (biallelic null mutations), B-cell expansion with nuclear factor κB and T-cell anergy (heterozygous, gain-of-function mutations), and severe atopic disease (loss-of-function, heterozygous, dominant interfering mutations), which has focused attention on CARD11 mutations discovered by using whole-exome sequencing. OBJECTIVES We sought to determine the molecular actions of an extended allelic series of CARD11 and to characterize the expanding range of clinical phenotypes associated with heterozygous CARD11 loss-of-function alleles. METHODS Cell transfections and primary T-cell assays were used to evaluate signaling and function of CARD11 variants. RESULTS Here we report on an expanded cohort of patients harboring novel heterozygous CARD11 mutations that extend beyond atopy to include other immunologic phenotypes not previously associated with CARD11 mutations. In addition to (and sometimes excluding) severe atopy, heterozygous missense and indel mutations in CARD11 presented with immunologic phenotypes similar to those observed in signal transducer and activator of transcription 3 loss of function, dedicator of cytokinesis 8 deficiency, common variable immunodeficiency, neutropenia, and immune dysregulation, polyendocrinopathy, enteropathy, X-linked-like syndrome. Pathogenic variants exhibited dominant negative activity and were largely confined to the CARD or coiled-coil domains of the CARD11 protein. CONCLUSION These results illuminate a broader phenotypic spectrum associated with CARD11 mutations in human subjects and underscore the need for functional studies to demonstrate that rare gene variants encountered in expected and unexpected phenotypes must nonetheless be validated for pathogenic activity.
Collapse
Affiliation(s)
- Batsukh Dorjbal
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Md
| | - Jeffrey R Stinson
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Md
| | - Chi A Ma
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Michael A Weinreich
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Bahar Miraghazadeh
- Department of Immunology, Canberra Hospital, Canberra, Australia; Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Julia M Hartberger
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stefanie Frey-Jakobs
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stephan Weidinger
- Department of Dermatology, Venereology and Allergology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Lena Moebus
- Department of Dermatology, Venereology and Allergology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Alejandro A Schäffer
- National Center for Biotechnology Information, National Institutes of Health, Department of Health and Human Services, Bethesda, Md
| | - Alla Bulashevska
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sebastian Fuchs
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stephan Ehl
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Peter D Arkwright
- Paediatric Allergy and Immunology & the Manchester Center for Genomic Medicine, University of Manchester, Manchester, United Kingdom
| | - Tracy A Briggs
- Paediatric Allergy and Immunology & the Manchester Center for Genomic Medicine, University of Manchester, Manchester, United Kingdom
| | - Claire Langley
- Paediatric Allergy and Immunology & the Manchester Center for Genomic Medicine, University of Manchester, Manchester, United Kingdom
| | - Claire Bethune
- Department of Clinical Immunology, Plymouth Hospitals NHS Trust, Plymouth, United Kingdom
| | - Andrew F Whyte
- Department of Clinical Immunology, Plymouth Hospitals NHS Trust, Plymouth, United Kingdom
| | - Hana Alachkar
- Immunology, Salford Royal Foundation Trust, Manchester, United Kingdom
| | - Sergey Nejentsev
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Thomas DiMaggio
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Celeste G Nelson
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Kelly D Stone
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Martha Nason
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Erica H Brittain
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Andrew J Oler
- Bioinformatics and Computational Sciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Daniel P Veltri
- Bioinformatics and Computational Sciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - T Ronan Leahy
- Department of Paediatric Immunology and ID, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - Niall Conlon
- Department of Immunology, St James's Hospital, Dublin, Ireland
| | - Maria C Poli
- Department of Pediatrics, Baylor College of Medicine, and the Section of Immunology, Allergy, and Rheumatology, Texas Children's Hospital, Houston, Tex
| | - Arturo Borzutzky
- Department of Pediatrics, School of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Jeffrey I Cohen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Joie Davis
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Michele P Lambert
- Division of Immunology and Allergy, Children's Hospital of Philadelphia, and the Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pa
| | - Neil Romberg
- Division of Immunology and Allergy, Children's Hospital of Philadelphia, and the Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pa
| | - Kathleen E Sullivan
- Division of Immunology and Allergy, Children's Hospital of Philadelphia, and the Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pa
| | - Kenneth Paris
- Louisiana State University Health Sciences Center and Children's Hospital, New Orleans, La
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Laura Lucas
- Division of Bone Marrow Transplant, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Ga
| | - Shanmuganathan Chandrakasan
- Division of Bone Marrow Transplant, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Ga
| | - Sinisa Savic
- Leeds Institute for Rheumatic and Musculoskeletal Medicine, St James University Hospital, Leeds, United Kingdom
| | - Sophie Hambleton
- Primary Immunodeficiency Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Smita Y Patel
- Oxford University Hospitals NHS Trust and NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Michael B Jordan
- Division of Bone Marrow Transplantation and Immune Deficiency, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Amy Theos
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Ala
| | - Jeffrey Lebensburger
- Department of Pediatric Hematology Oncology, University of Alabama at Birmingham, Birmingham, Ala
| | - T Prescott Atkinson
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Ala
| | - Troy R Torgerson
- University of Washington School of Medicine and Seattle Children's Hospital, Seattle, Wash
| | - Ivan K Chinn
- Department of Pediatrics, Baylor College of Medicine, and the Section of Immunology, Allergy, and Rheumatology, Texas Children's Hospital, Houston, Tex
| | - Joshua D Milner
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Bodo Grimbacher
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Matthew C Cook
- Department of Immunology, Canberra Hospital, Canberra, Australia; Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Andrew L Snow
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Md.
| |
Collapse
|
109
|
Jin Y, Lee A, Oh JH, Lee HW, Ha SJ. The R229Q mutation of Rag2 does not characterize severe immunodeficiency in mice. Sci Rep 2019; 9:4415. [PMID: 30872621 PMCID: PMC6418226 DOI: 10.1038/s41598-019-39496-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/27/2018] [Indexed: 02/05/2023] Open
Abstract
RAG1 or RAG2 mutations are associated with defects in V(D)J recombination activity, causing severe immunodeficiency with a wide spectrum of clinical phenotypes. A R229Q mutation of RAG2 was identified in patients with severe combined immunodeficiency (SCID) or Omenn syndrome (OS). Although some factors determining the clinical features between SCID and OS were not clear, the molecular mechanism of OS was studied in a mouse model in which an EGFP tag is fused to Rag2 with the R229Q mutation. To design the human disease model mimicking severe immunodeficiency, we generated Rag2-R229Q knock-in mice without an epitope tag. Mutant mice showed impaired T and B cell differentiation with reduced V(D)J recombination activity; however, the extent to which the R229Q mutation affects severe immunodeficiency was not severe. While Rag2-R229Q mutation under some conditions may cause severe immunological and clinical phenotypes similar to human SCID or OS, R229Q mutation per se did not cause severe immunodeficiency in mice, suggesting that additional factors other than R229Q mutation are required to induce severe immunodeficiency. Thus, our report implies that the effects of genetic background and/or a tagged protein sequence may alter the mouse immune system, revealing the mechanism of phenotypic heterogeneity arising from an identical mutation.
Collapse
Affiliation(s)
- Young Jin
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Ara Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Ja Hyun Oh
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Han-Woong Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
110
|
van der Burg M, Kalina T, Perez-Andres M, Vlkova M, Lopez-Granados E, Blanco E, Bonroy C, Sousa AE, Kienzler AK, Wentink M, Mejstríková E, Šinkorova V, Stuchly J, van Zelm MC, Orfao A, van Dongen JJM. The EuroFlow PID Orientation Tube for Flow Cytometric Diagnostic Screening of Primary Immunodeficiencies of the Lymphoid System. Front Immunol 2019; 10:246. [PMID: 30886612 PMCID: PMC6410673 DOI: 10.3389/fimmu.2019.00246] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/29/2019] [Indexed: 11/13/2022] Open
Abstract
In the rapidly evolving field of primary immunodeficiencies (PID), the EuroFlow consortium decided to develop a PID orientation and screening tube that facilitates fast, standardized, and validated immunophenotypic diagnosis of lymphoid PID, and allows full exchange of data between centers. Our aim was to develop a tool that would be universal for all lymphoid PIDs and offer high sensitivity to identify a lymphoid PID (without a need for specificity to diagnose particular PID) and to guide and prioritize further diagnostic modalities and clinical management. The tube composition has been defined in a stepwise manner through several cycles of design-testing-evaluation-redesign in a multicenter setting. Equally important appeared to be the standardized pre-analytical procedures (sample preparation and instrument setup), analytical procedures (immunostaining and data acquisition), the software analysis (a multidimensional view based on a reference database in Infinicyt software), and data interpretation. This standardized EuroFlow concept has been tested on 250 healthy controls and 99 PID patients with defined genetic defects. In addition, an application of new EuroFlow software tools with multidimensional pattern recognition was designed with inclusion of maturation pathways in multidimensional patterns (APS plots). The major advantage of the EuroFlow approach is that data can be fully exchanged between different laboratories in any country of the world, which is especially of interest for the PID field, with generally low numbers of cases per center.
Collapse
Affiliation(s)
- Mirjam van der Burg
- Department of Immunology, Erasmus MC, Rotterdam, Netherlands.,Department of Pediatrics, Laboratory for Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Tomas Kalina
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Martin Perez-Andres
- Department of Medicine, Cancer Research Centre (IBMCC, USAL-CSIC), Cytometry Service (NUCLEUS), University of Salamanca (USAL), Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Marcela Vlkova
- Institute of Clinical Immunology and Allergology, St Anne's University Hospital, Brno, Czechia
| | | | - Elena Blanco
- Department of Medicine, Cancer Research Centre (IBMCC, USAL-CSIC), Cytometry Service (NUCLEUS), University of Salamanca (USAL), Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Carolien Bonroy
- Laboratory for Clinical Biology and Hematology, University Hospital Ghent, Ghent, Belgium
| | - Ana E Sousa
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| | | | | | - Ester Mejstríková
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Vendula Šinkorova
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Jan Stuchly
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Menno C van Zelm
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Alberto Orfao
- Department of Medicine, Cancer Research Centre (IBMCC, USAL-CSIC), Cytometry Service (NUCLEUS), University of Salamanca (USAL), Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Jacques J M van Dongen
- Department of Immunology, Erasmus MC, Rotterdam, Netherlands.,Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
111
|
Aluri J, Desai M, Gupta M, Dalvi A, Terance A, Rosenzweig SD, Stoddard JL, Niemela JE, Tamankar V, Mhatre S, Bargir U, Kulkarni M, Shah N, Aggarwal A, Lashkari HP, Krishna V, Govindaraj G, Kalra M, Madkaikar M. Clinical, Immunological, and Molecular Findings in 57 Patients With Severe Combined Immunodeficiency (SCID) From India. Front Immunol 2019; 10:23. [PMID: 30778343 PMCID: PMC6369708 DOI: 10.3389/fimmu.2019.00023] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/07/2019] [Indexed: 12/24/2022] Open
Abstract
Severe combined immunodeficiency (SCID) represents one of the most severe forms of primary immunodeficiency (PID) disorders characterized by impaired cellular and humoral immune responses. Here, we report the clinical, immunological, and molecular findings in 57 patients diagnosed with SCID from India. Majority of our patients (89%) presented within 6 months of age. The most common clinical manifestations observed were recurrent pneumonia (66%), failure to thrive (60%), chronic diarrhea (35%), gastrointestinal infection (21%), and oral candidiasis (21%). Hematopoietic Stem Cell Transplantation (HSCT) is the only curative therapy available for treating these patients. Four patients underwent HSCT in our cohort but had a poor survival outcome. Lymphopenia (absolute lymphocyte counts/μL <2,500) was noted in 63% of the patients. Based on immunophenotypic pattern, majority of the cases were T−B− SCID (39%) followed by T−B+ SCID (28%). MHC class II deficiency accounted for 10.5% of our patient group. A total of 49 patients were molecularly characterized in this study and 32 novel variants were identified in our cohort. The spectrum of genetic defects in our cohort revealed a wide genetic heterogeneity with the major genetic cause being RAG1/2 gene defect (n = 12) followed by IL2RG (n = 9) and JAK3 defects (n = 9). Rare forms of SCID like Purine nucleoside phosphorylase (PNP) deficiency, reticular dysgenesis, DNA-Protein Kinase (DNA-PKcs) deficiency, six cases of MHC class II deficiency and two ZAP70 deficiency were also identified in our cohort. Fourteen percent of the defects still remained uncharacterized despite the application of next generation sequencing. With the exception of MHC class II deficiency and ZAP70 deficiency, all SCID patients had extremely low T cell receptor excision (TRECs) (<18 copies/μL).
Collapse
Affiliation(s)
- Jahnavi Aluri
- Department of Pediatric Immunology and Leukocyte Biology, National Institute of Immunohaematology (ICMR), Mumbai, India
| | - Mukesh Desai
- Division of Immunology, Bai Jerbai Wadia Children's Hospital, Mumbai, India
| | - Maya Gupta
- Department of Pediatric Immunology and Leukocyte Biology, National Institute of Immunohaematology (ICMR), Mumbai, India
| | - Aparna Dalvi
- Department of Pediatric Immunology and Leukocyte Biology, National Institute of Immunohaematology (ICMR), Mumbai, India
| | - Antony Terance
- Department of Pediatric Pulmonology, G. Kuppuswamy Naidu Memorial Hospital, Coimbatore, India
| | - Sergio D Rosenzweig
- Department of Laboratory Medicine, NIH Clinical Center, Bethesda, MD, United States
| | - Jennifer L Stoddard
- Department of Laboratory Medicine, NIH Clinical Center, Bethesda, MD, United States
| | - Julie E Niemela
- Department of Laboratory Medicine, NIH Clinical Center, Bethesda, MD, United States
| | | | - Snehal Mhatre
- Department of Pediatric Immunology and Leukocyte Biology, National Institute of Immunohaematology (ICMR), Mumbai, India
| | - Umair Bargir
- Department of Pediatric Immunology and Leukocyte Biology, National Institute of Immunohaematology (ICMR), Mumbai, India
| | - Manasi Kulkarni
- Department of Pediatric Immunology and Leukocyte Biology, National Institute of Immunohaematology (ICMR), Mumbai, India
| | - Nitin Shah
- Pediatric Hematology-Oncology, P. D. Hinduja National Hospital & Research Center, Mumbai, India
| | - Amita Aggarwal
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | | | - Vidya Krishna
- Department of Pediatrics, Sri Ramachandra Medical College and Research Institute, Chennai, India
| | - Geeta Govindaraj
- Department of Pediatrics, Institute of Maternal and Child Health, Government Medical College, Kozhikode, India
| | - Manas Kalra
- Department of Pediatrics Hematology and Oncology, Indraprastha Apollo Hospital, New Delhi, India
| | - Manisha Madkaikar
- Department of Pediatric Immunology and Leukocyte Biology, National Institute of Immunohaematology (ICMR), Mumbai, India
| |
Collapse
|
112
|
Srikanth S, Woo JS, Wu B, El-Sherbiny YM, Leung J, Chupradit K, Rice L, Seo GJ, Calmettes G, Ramakrishna C, Cantin E, An DS, Sun R, Wu TT, Jung JU, Savic S, Gwack Y. The Ca 2+ sensor STIM1 regulates the type I interferon response by retaining the signaling adaptor STING at the endoplasmic reticulum. Nat Immunol 2019; 20:152-162. [PMID: 30643259 PMCID: PMC6340781 DOI: 10.1038/s41590-018-0287-8] [Citation(s) in RCA: 268] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 11/19/2018] [Indexed: 12/17/2022]
Abstract
Stimulator of interferon genes (STING) is an endoplasmic reticulum (ER) signaling adaptor that is essential for the type I interferon response to DNA pathogens. Aberrant activation of STING is linked to the pathology of autoimmune and autoinflammatory diseases. The rate-limiting step for the activation of STING is its translocation from the ER to the ER-Golgi intermediate compartment. Here, we found that deficiency in the Ca2+ sensor stromal interaction molecule 1 (STIM1) caused spontaneous activation of STING and enhanced expression of type I interferons under resting conditions in mice and a patient with combined immunodeficiency. Mechanistically, STIM1 associated with STING to retain it in the ER membrane, and coexpression of full-length STIM1 or a STING-interacting fragment of STIM1 suppressed the function of dominant STING mutants that cause autoinflammatory diseases. Furthermore, deficiency in STIM1 strongly enhanced the expression of type I interferons after viral infection and prevented the lethality of infection with a DNA virus in vivo. This work delineates a STIM1-STING circuit that maintains the resting state of the STING pathway.
Collapse
Affiliation(s)
- Sonal Srikanth
- Department of Physiology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
| | - Jin Seok Woo
- Department of Physiology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Beibei Wu
- Department of Physiology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Yasser M El-Sherbiny
- National Institute for Health Research-Leeds Biomedical Research Centre and Leeds Institute of Rheumatic and Musculoskeletal Medicine, Wellcome Trust Brenner Building, St James's University Hospital, Leeds, UK
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- School of Science and Technology, Department of Biosciences, Nottingham Trent University, Nottingham, UK
| | - Jennifer Leung
- Department of Physiology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Koollawat Chupradit
- Division of Hematology-Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- School of Nursing, University of California at Los Angeles, Los Angeles, CA, USA
- UCLA AIDS Institute, Los Angeles, CA, USA
| | - Laura Rice
- Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Wellcome Trust Brenner Building, St James's University Hospital, Leeds, UK
| | - Gil Ju Seo
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Guillaume Calmettes
- Department of Medicine (Cardiology), David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Chandran Ramakrishna
- Department of Molecular Immunology, City of Hope Beckman Research Institute, Duarte, CA, USA
| | - Edouard Cantin
- Department of Molecular Immunology, City of Hope Beckman Research Institute, Duarte, CA, USA
| | - Dong Sung An
- Division of Hematology-Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- School of Nursing, University of California at Los Angeles, Los Angeles, CA, USA
- UCLA AIDS Institute, Los Angeles, CA, USA
| | - Ren Sun
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA, USA
| | - Ting-Ting Wu
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA, USA
| | - Jae U Jung
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sinisa Savic
- National Institute for Health Research-Leeds Biomedical Research Centre and Leeds Institute of Rheumatic and Musculoskeletal Medicine, Wellcome Trust Brenner Building, St James's University Hospital, Leeds, UK
- Department of Clinical Immunology and Allergy, St James's University Hospital, Leeds, UK
| | - Yousang Gwack
- Department of Physiology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
113
|
Meshaal SS, El Hawary RE, Abd Elaziz DS, Eldash A, Alkady R, Lotfy S, Mauracher AA, Opitz L, Pachlopnik Schmid J, van der Burg M, Chou J, Galal NM, Boutros JA, Geha R, Elmarsafy AM. Phenotypical heterogeneity in RAG-deficient patients from a highly consanguineous population. Clin Exp Immunol 2019; 195:202-212. [PMID: 30307608 PMCID: PMC6330646 DOI: 10.1111/cei.13222] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2018] [Indexed: 12/16/2022] Open
Abstract
Mutations affecting recombination activation genes RAG1 and RAG2 are associated with variable phenotypes, depending on the residual recombinase activity. The aim of this study is to describe a variety of clinical phenotypes in RAG-deficient patients from the highly consanguineous Egyptian population. Thirty-one patients with RAG mutations (from 28 families) were included from 2013 to 2017. On the basis of clinical, immunological and genetic data, patients were subdivided into three groups; classical T- B- severe combined immunodeficiency (SCID), Omenn syndrome (OS) and atypical SCID. Nineteen patients presented with typical T- B- SCID; among these, five patients carried a homozygous RAG2 mutation G35V and five others carried two homozygous RAG2 mutations (T215I and R229Q) that were detected together. Four novel mutations were reported in the T- B- SCID group; three in RAG1 (A565P, N591Pfs*14 and K621E) and one in RAG2 (F29S). Seven patients presented with OS and a novel RAG2 mutation (C419W) was documented in one patient. The atypical SCID group comprised five patients. Two had normal B cell counts; one had a previously undescribed RAG2 mutation (V327D). The other three patients presented with autoimmune cytopaenias and features of combined immunodeficiency and were diagnosed at a relatively late age and with a substantial diagnostic delay; one patient had a novel RAG1 mutation (C335R). PID disorders are frequent among Egyptian children because of the high consanguinity. RAG mutations stand behind several variable phenotypes, including classical SCID, OS, atypical SCID with autoimmunity and T- B+ CID.
Collapse
Affiliation(s)
- S. S. Meshaal
- Clinical Pathology Department, Faculty of MedicineCairo UniversityCairoEgypt
| | - R. E. El Hawary
- Clinical Pathology Department, Faculty of MedicineCairo UniversityCairoEgypt
| | - D. S. Abd Elaziz
- Pediatrics Department, Faculty of MedicineCairo UniversityCairoEgypt
| | - A. Eldash
- Clinical Pathology Department, Faculty of MedicineCairo UniversityCairoEgypt
| | - R. Alkady
- Pediatrics Department, Faculty of MedicineCairo UniversityCairoEgypt
| | - S. Lotfy
- Pediatrics Department, Faculty of MedicineCairo UniversityCairoEgypt
| | - A. A. Mauracher
- Division of ImmunologyUniversity Children’s Hospital ZurichZurichSwitzerland
| | - L. Opitz
- Functional Genomics Center ZürichUniversity of Zurich, ETH ZurichZurichSwitzerland
| | | | - M. van der Burg
- Department of ImmunologyErasmus MC, University Medical Center RotterdamRotterdamNetherlands
| | - J. Chou
- Division of ImmunologyBoston Children’s Hospital, Harvard Medical SchoolBostonMAUSA
| | - N. M. Galal
- Pediatrics Department, Faculty of MedicineCairo UniversityCairoEgypt
| | - J. A. Boutros
- Pediatrics Department, Faculty of MedicineCairo UniversityCairoEgypt
| | - R. Geha
- Division of ImmunologyBoston Children’s Hospital, Harvard Medical SchoolBostonMAUSA
| | - A. M. Elmarsafy
- Pediatrics Department, Faculty of MedicineCairo UniversityCairoEgypt
| |
Collapse
|
114
|
Abstract
PURPOSE OF REVIEW Natural killer cells are innate lymphoid cells (ILCs) that play critical roles in human host defense and are especially useful in combating viral pathogens and malignancy. RECENT FINDINGS The NK cell deficiency (NKD) is particularly underscored in patients with a congenital immunodeficiency in which NK cell development or function is affected. The classical NK cell deficiency (cNKD) is a result of absent or a profound decrease in the number of circulating NK cells. In contrast, functional NKD (fNKD) is characterized by abnormal NK cell function but with normal number of NK cells. The combined immune deficiencies with significant impact on NK cells are not considered classical or functional NK cell deficiencies. In these disorders, the impairment of NK cells represents an important aspect of the overall immunodeficiency. In turn, this leads to improved insights on the NK cell development and function. Here, we detail the NK cell biology based upon recent natural killer cell defects described in combined immune deficiencies.
Collapse
|
115
|
Tanita K, Hoshino A, Imadome KI, Kamiya T, Inoue K, Okano T, Yeh TW, Yanagimachi M, Shiraishi A, Ishimura M, Schober T, Rohlfs M, Takagi M, Imai K, Takada H, Ohga S, Klein C, Morio T, Kanegane H. Epstein-Barr Virus-Associated γδ T-Cell Lymphoproliferative Disorder Associated With Hypomorphic IL2RG Mutation. Front Pediatr 2019; 7:15. [PMID: 30778380 PMCID: PMC6369201 DOI: 10.3389/fped.2019.00015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/15/2019] [Indexed: 12/11/2022] Open
Abstract
Chronic active Epstein-Barr virus (EBV) infection (CAEBV) is an EBV-associated lymphoproliferative disease characterized by repeated or sustainable infectious mononucleosis (IM)-like symptoms. EBV is usually detected in B cells in patients who have IM or Burkitt's lymphoma and even in patients with X-linked lymphoproliferative syndrome, which is confirmed to have vulnerability to EBV infection. In contrast, EBV infects T cells (CD4+ T, CD8+ T, and γδT) or NK cells mono- or oligoclonally in CAEBV patients. It is known that the CAEBV phenotypes differ depending on which cells are infected with EBV. CAEBV is postulated to be associated with a genetic immunological abnormality, although its cause remains undefined. Here we describe a case of EBV-related γδT-cell proliferation with underlying hypomorphic IL2RG mutation. The immunological phenotype consisted of γδT-cell proliferation in the peripheral blood. A presence of EBV-infected B cells and γδT cells mimicked γδT-cell-type CAEBV. Although the patient had normal expression of CD132 (common γ chain), the phosphorylation of STAT was partially defective, indicating impaired activation of the downstream signal of the JAK/STAT pathway. Although the patient was not diagnosed as having CAEBV, this observation shows that CAEBV might be associated with immunological abnormality.
Collapse
Affiliation(s)
- Kay Tanita
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akihiro Hoshino
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ken-Ichi Imadome
- Department of Advanced Medicine for Virus Infections, National Center for Child Health and Development, Tokyo, Japan
| | - Takahiro Kamiya
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kento Inoue
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tsubasa Okano
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tzu-Wen Yeh
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masakatsu Yanagimachi
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akira Shiraishi
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masataka Ishimura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tilmann Schober
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Meino Rohlfs
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kohsuke Imai
- Department of Community Pediatrics, Perinatal and Maternal Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hidetoshi Takada
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
116
|
Castagnoli R, Delmonte OM, Calzoni E, Notarangelo LD. Hematopoietic Stem Cell Transplantation in Primary Immunodeficiency Diseases: Current Status and Future Perspectives. Front Pediatr 2019; 7:295. [PMID: 31440487 PMCID: PMC6694735 DOI: 10.3389/fped.2019.00295] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/03/2019] [Indexed: 12/29/2022] Open
Abstract
Primary immunodeficiencies (PID) are disorders that for the most part result from mutations in genes involved in immune host defense and immunoregulation. These conditions are characterized by various combinations of recurrent infections, autoimmunity, lymphoproliferation, inflammatory manifestations, atopy, and malignancy. Most PID are due to genetic defects that are intrinsic to hematopoietic cells. Therefore, replacement of mutant cells by healthy donor hematopoietic stem cells (HSC) represents a rational therapeutic approach. Full or partial ablation of the recipient's marrow with chemotherapy is often used to allow stable engraftment of donor-derived HSCs, and serotherapy may be added to the conditioning regimen to reduce the risks of graft rejection and graft versus host disease (GVHD). Initially, hematopoietic stem cell transplantation (HSCT) was attempted in patients with severe combined immunodeficiency (SCID) as the only available curative treatment. It was a challenging procedure, associated with elevated rates of morbidity and mortality. Overtime, outcome of HSCT for PID has significantly improved due to availability of high-resolution HLA typing, increased use of alternative donors and new stem cell sources, development of less toxic, reduced-intensity conditioning (RIC) regimens, and cellular engineering techniques for graft manipulation. Early identification of infants affected by SCID, prior to infectious complication, through newborn screening (NBS) programs and prompt genetic diagnosis with Next Generation Sequencing (NGS) techniques, have also ameliorated the outcome of HSCT. In addition, HSCT has been applied to treat a broader range of PID, including disorders of immune dysregulation. Yet, the broad spectrum of clinical and immunological phenotypes associated with PID makes it difficult to define a universal transplant regimen. As such, integration of knowledge between immunologists and transplant specialists is necessary for the development of innovative transplant protocols and to monitor their results during follow-up. Despite the improved outcome observed after HSCT, patients with severe forms of PID still face significant challenges of short and long-term transplant-related complications. To address this issue, novel HSCT strategies are being implemented aiming to improve both survival and long-term quality of life. This article will discuss the current status and latest developments in HSCT for PID, and present data regarding approach and outcome of HSCT in recently described PID, including disorders associated with immune dysregulation.
Collapse
Affiliation(s)
- Riccardo Castagnoli
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States.,Department of Pediatrics, Foundation IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Ottavia Maria Delmonte
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Enrica Calzoni
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States.,Department of Molecular and Translational Medicine, A. Nocivelli Institute for Molecular Medicine, University of Brescia, Brescia, Italy
| | - Luigi Daniele Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
117
|
Wu KY, Purswani P, Ujhazi B, Csomos K, Snezhina M, Elissaveta N, Stefanov S, Sharapova S, Ellison M, Milojevic D, Savic S, Sargur R, Walter JE. Arthritis in Two Patients With Partial Recombination Activating Gene Deficiency. Front Pediatr 2019; 7:235. [PMID: 31334206 PMCID: PMC6625222 DOI: 10.3389/fped.2019.00235] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 05/23/2019] [Indexed: 02/03/2023] Open
Abstract
Autoimmunity is becoming an increasingly recognized complication in patients with primary immunodeficiencies (PIDs), including a variety of combined immune deficiencies such as Recombination Activating Gene (RAG) defects. The approach to treating autoimmunity in PID patients is complex, requiring a balance between immunosuppression and susceptibility to infection. Inflammatory arthritis is a feature of immune dysregulation in many PIDs, and the optimal treatment may differ from first line therapies that usually consist of disease-modifying anti rheumatic drugs (DMARDs). An example of mechanism-based therapy of arthritis in PID uses blockade of IL-6 signaling with tocilizumab for patients with STAT 3 gain-of-function (GOF) mutation and augmented IL-6 pathway. Herein, we describe two PID cases with arthritis who were found to have defects in RAG. One patient with refractory inflammatory arthritis experienced remarkable improvement in symptoms with tocilizumab therapy. Arthritis can be a clinical feature of immune dysregulation in RAG deficiency, and tocilizumab therapy has been suggested to have utility in treatment of arthritis in RAG deficiency.
Collapse
Affiliation(s)
- Kevin Y Wu
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, University of South Florida, St. Petersburg, FL, United States
| | - Pooja Purswani
- Johns Hopkins All Children's Hospital Children's Research Institute, St. Petersburg, FL, United States
| | - Boglarka Ujhazi
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, University of South Florida, St. Petersburg, FL, United States
| | - Krisztian Csomos
- Department of Pediatrics, University of South Florida, St. Petersburg, FL, United States
| | - Mihailova Snezhina
- Department of Clinical Immunology, University Hospital Alexandrovska, Medical University, Sofia, Bulgaria
| | - Naumova Elissaveta
- Department of Clinical Immunology, University Hospital Alexandrovska, Medical University, Sofia, Bulgaria
| | - Stefan Stefanov
- Clinic of Rheumatology, Cardiology and Hematology, University Pediatric Hospital, Medical University, Sofia, Bulgaria
| | | | - Maryssa Ellison
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, University of South Florida, St. Petersburg, FL, United States
| | - Diana Milojevic
- Division of Rheumatology, Department of Medicine, Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States
| | - Sinisa Savic
- Department of Clinical Immunology and Allergy, Leeds Institute of Rheumatic and Musculoskeletal Medicine, St. James's University Hospital, Leeds, United Kingdom
| | - Ravishankar Sargur
- Department of Clinical Immunology and Allergy, Leeds Institute of Rheumatic and Musculoskeletal Medicine, St. James's University Hospital, Leeds, United Kingdom.,Sheffield Teaching Hospitals Foundation NHS Trust, Leeds, United Kingdom
| | - Jolan E Walter
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, University of South Florida, St. Petersburg, FL, United States.,Johns Hopkins All Children's Hospital Children's Research Institute, St. Petersburg, FL, United States
| |
Collapse
|
118
|
Dorna MB, Barbosa PFA, Rangel-Santos A, Csomos K, Ujhazi B, Dasso JF, Thwaites D, Boyes J, Savic S, Walter JE. Combined Immunodeficiency With Late-Onset Progressive Hypogammaglobulinemia and Normal B Cell Count in a Patient With RAG2 Deficiency. Front Pediatr 2019; 7:122. [PMID: 31058115 PMCID: PMC6477099 DOI: 10.3389/fped.2019.00122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/12/2019] [Indexed: 11/13/2022] Open
Abstract
Proteins expressed by recombination activating genes 1 and 2 (RAG1/2) are essential in the process of V(D)J recombination that leads to generation of the T and B cell repertoires. Clinical and immunological phenotypes of patients with RAG deficiencies correlate well to the degree of impaired RAG activity and this has been expanding to variants of combined immunodeficiency (CID) or even milder antibody deficiency syndromes. Pathogenic variants that severely impair recombinase activity of RAG1/2 determine a severe combined immunodeficiency (SCID) phenotype, whereas hypomorphic variants result in leaky (partial) SCID and other immunodeficiencies. We report a patient with novel pathogenic compound heterozygous RAG2 variants that result in a CID phenotype with two distinctive characteristics: late-onset progressive hypogammaglobulinemia and highly elevated B cell count. In addition, the patient had early onset of infections, T cell lymphopenia and expansion of lymphocytes after exposure to herpes family viruses. This case highlights the importance of considering pathogenic RAG variants among patients with preserved B cell count and CID phenotype.
Collapse
Affiliation(s)
- Mayra B Dorna
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Pamela F A Barbosa
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Andréia Rangel-Santos
- Laboratory of Medical Investigation (LIM 36), Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo, Hospital das Clínicas, São Paulo, Brazil
| | - Krisztian Csomos
- Division of Allergy and Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Boglarka Ujhazi
- Division of Allergy and Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Joseph F Dasso
- Division of Allergy and Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Department of Biology, University of Tampa, Tampa, FL, United States
| | - Daniel Thwaites
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Joan Boyes
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Sinisa Savic
- Department of Clinical Immunology and Allergy, Leeds Institute of Rheumatic and Musculoskeletal Medicine, St. James's University Hospital, Leeds, United Kingdom
| | - Jolan E Walter
- Division of Allergy and Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States.,Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
119
|
Henrickson SE, Andre-Schmutz I, Lagresle-Peyrou C, Deardorff MA, Jyonouchi H, Neven B, Bunin N, Heimall JR. Hematopoietic Stem Cell Transplant for the Treatment of X-MAID. Front Pediatr 2019; 7:170. [PMID: 31139601 PMCID: PMC6527778 DOI: 10.3389/fped.2019.00170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 04/12/2019] [Indexed: 12/27/2022] Open
Abstract
We report outcomes after hematopoietic stem cell transplant for three patients with X-MAID, including 1 patient from the originally described cohort and two brothers with positive TREC newborn screening for SCID who were found to have a T-B-NK+ SCID phenotype attributable to X-linked moesin associated immunodeficiency (X-MAID). A c.511C>T variant in moesin was identified via exome sequencing in the older of these siblings in the setting of low lymphocyte counts and poor proliferative responses consistent with SCID. He received reduced intensity conditioning due to CMV, and was transplanted with a T-depleted haploidentical (maternal) donor. His post-transplant course was complicated by hemolytic anemia, neutropenia, and sepsis. He had poor engraftment, requiring a 2nd transplant. His younger brother presented with the same clinical phenotype and was treated with umbilical cord blood transplant following myeloablative conditioning, has engrafted and is doing well. The third case also presented with severe lymphopenia in infancy, received a matched related bone marrow transplant following myeloablative conditioning, has engrafted and is doing well. These cases represent a novel manifestation of non-radiosensitive X-linked form of T-B-NK+ SCID that is able to be detected by TREC based newborn screening and effectively treated with HCT.
Collapse
Affiliation(s)
- Sarah E Henrickson
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA, United States
| | - Isabelle Andre-Schmutz
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Paris, France.,Imagine Institute, Paris Descartes - Sorbonne Paris Cité University, Paris, France
| | - Chantal Lagresle-Peyrou
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Paris, France.,Imagine Institute, Paris Descartes - Sorbonne Paris Cité University, Paris, France
| | - Matthew A Deardorff
- The Children's Hospital of Philadelphia, Department of Human Genetics, Philadelphia, PA, United States
| | - Harumi Jyonouchi
- Division of Allergy/Immunology and Infectious Diseases, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - Benedicte Neven
- Imagine Institute, Paris Descartes - Sorbonne Paris Cité University, Paris, France.,Pediatric Immuno-Hematology Unit, Necker Children Hospital, Assistance-Publique Hopitaux de Paris, Paris, France
| | - Nancy Bunin
- Division of Oncology, Bone Marrow Transplant and Cellular Therapy, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Jennifer R Heimall
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| |
Collapse
|
120
|
Villa A, Notarangelo LD. RAG gene defects at the verge of immunodeficiency and immune dysregulation. Immunol Rev 2019; 287:73-90. [PMID: 30565244 PMCID: PMC6309314 DOI: 10.1111/imr.12713] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 08/21/2018] [Indexed: 12/18/2022]
Abstract
Mutations of the recombinase activating genes (RAG) in humans underlie a broad spectrum of clinical and immunological phenotypes that reflect different degrees of impairment of T- and B-cell development and alterations of mechanisms of central and peripheral tolerance. Recent studies have shown that this phenotypic heterogeneity correlates, albeit imperfectly, with different levels of recombination activity of the mutant RAG proteins. Furthermore, studies in patients and in newly developed animal models carrying hypomorphic RAG mutations have disclosed various mechanisms underlying immune dysregulation in this condition. Careful annotation of clinical outcome and immune reconstitution in RAG-deficient patients who have received hematopoietic stem cell transplantation has shown that progress has been made in the treatment of this disease, but new approaches remain to be tested to improve stem cell engraftment and durable immune reconstitution. Finally, initial attempts have been made to treat RAG deficiency with gene therapy.
Collapse
Affiliation(s)
- Anna Villa
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Division of Regenerative Medicine, Stem Cell and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
121
|
Tyagi RK, Tandel N, Deshpande R, Engelman RW, Patel SD, Tyagi P. Humanized Mice Are Instrumental to the Study of Plasmodium falciparum Infection. Front Immunol 2018; 9:2550. [PMID: 30631319 PMCID: PMC6315153 DOI: 10.3389/fimmu.2018.02550] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/17/2018] [Indexed: 02/05/2023] Open
Abstract
Research using humanized mice has advanced our knowledge and understanding of human haematopoiesis, non-adaptive and adaptive immunity, autoimmunity, infectious disease, cancer biology, and regenerative medicine. Challenges posed by the human-malaria parasite Plasmodium falciparum include its complex life cycle, the evolution of drug resistance against anti-malarials, poor diagnosis, and a lack of effective vaccines. Advancements in genetically engineered and immunodeficient mouse strains, have allowed for studies of the asexual blood stage, exoerythrocytic stage and the transition from liver-to-blood stage infection, in a single vertebrate host. This review discusses the process of "humanization" of various immunodeficient/transgenic strains and their contribution to translational biomedical research. Our work reviews the strategies employed to overcome the remaining-limitations of the developed human-mouse chimera(s).
Collapse
Affiliation(s)
- Rajeev K. Tyagi
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Biomedical parasitology Unit, Institute Pasteur, Paris, France
- Department of Global Health, College of Public Health, University of South Florida, Tampa, FL, United States
| | - Nikunj Tandel
- Institute of Science, Nirma University, Ahmedabad, India
| | | | - Robert W. Engelman
- Department of Pediatrics, Pathology and Cell Biology, University of South Florida, Tampa, FL, United States
| | | | - Priyanka Tyagi
- Department of Basic and Applied Sciences, School of Engineering, GD Goenka University, Gurgaon, India
| |
Collapse
|
122
|
A novel RAG1 mutation reveals a critical in vivo role for HMGB1/2 during V(D)J recombination. Blood 2018; 133:820-829. [PMID: 30538136 DOI: 10.1182/blood-2018-07-866939] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/04/2018] [Indexed: 01/01/2023] Open
Abstract
The Recombination Activating Genes, RAG1 and RAG2, are essential for V(D)J recombination and adaptive immunity. Mutations in these genes often cause immunodeficiency, the severity of which reflects the importance of the altered residue or residues during recombination. Here, we describe a novel RAG1 mutation that causes immunodeficiency in an unexpected way: The mutated protein severely disrupts binding of the accessory protein, HMGB1. Although HMGB1 enhances RAG cutting in vitro, its role in vivo was controversial. We show here that reduced HMGB1 binding by the mutant protein dramatically reduces RAG cutting in vitro and almost completely eliminates recombination in vivo. The RAG1 mutation, R401W, places a bulky tryptophan opposite the binding site for HMG Box A at both 12- and 23-spacer recombination signal sequences, disrupting stable binding of HMGB1. Replacement of R401W with leucine and then lysine progressively restores HMGB1 binding, correlating with increased RAG cutting and recombination in vivo. We show further that knockdown of HMGB1 significantly reduces recombination by wild-type RAG1, whereas its re-addition restores recombination with wild-type, but not the mutant, RAG1 protein. Together, these data provide compelling evidence that HMGB1 plays a critical role during V(D)J recombination in vivo.
Collapse
|
123
|
Maffucci P, Chavez J, Jurkiw TJ, O’Brien PJ, Abbott JK, Reynolds PR, Worth A, Notarangelo LD, Felgentreff K, Cortes P, Boisson B, Radigan L, Cobat A, Dinakar C, Ehlayel M, Ben-Omran T, Gelfand EW, Casanova JL, Cunningham-Rundles C. Biallelic mutations in DNA ligase 1 underlie a spectrum of immune deficiencies. J Clin Invest 2018; 128:5489-5504. [PMID: 30395541 PMCID: PMC6264644 DOI: 10.1172/jci99629] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 09/04/2018] [Indexed: 12/30/2022] Open
Abstract
We report the molecular, cellular, and clinical features of 5 patients from 3 kindreds with biallelic mutations in the autosomal LIG1 gene encoding DNA ligase 1. The patients exhibited hypogammaglobulinemia, lymphopenia, increased proportions of circulating γδT cells, and erythrocyte macrocytosis. Clinical severity ranged from a mild antibody deficiency to a combined immunodeficiency requiring hematopoietic stem cell transplantation. Using engineered LIG1-deficient cell lines, we demonstrated chemical and radiation defects associated with the mutant alleles, which variably impaired the DNA repair pathway. We further showed that these LIG1 mutant alleles are amorphic or hypomorphic, and exhibited variably decreased enzymatic activities, which lead to premature release of unligated adenylated DNA. The variability of the LIG1 genotypes in the patients was consistent with that of their immunological and clinical phenotypes. These data suggest that different forms of autosomal recessive, partial DNA ligase 1 deficiency underlie an immunodeficiency of variable severity.
Collapse
Affiliation(s)
- Patrick Maffucci
- Division of Clinical Immunology, Departments of Medicine and Pediatrics, and
- Graduate School of Biomedical Sciences, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jose Chavez
- Division of Clinical Immunology, Departments of Medicine and Pediatrics, and
| | - Thomas J. Jurkiw
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Patrick J. O’Brien
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Jordan K. Abbott
- Immunodeficiency Diagnosis and Treatment Program, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Paul R. Reynolds
- Immunodeficiency Diagnosis and Treatment Program, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Austen Worth
- Department of Pediatric Medicine, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kerstin Felgentreff
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Patricia Cortes
- Department of Molecular, Cellular and Biomedical Science, CUNY School of Medicine, City College of New York, New York, New York, USA
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
- Paris Descartes University, Imagine Institute, Paris, France
| | - Lin Radigan
- Division of Clinical Immunology, Departments of Medicine and Pediatrics, and
| | - Aurélie Cobat
- Paris Descartes University, Imagine Institute, Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
| | - Chitra Dinakar
- Allergy, Asthma & Immunodeficiency, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Mohammad Ehlayel
- Section of Pediatric Allergy-Immunology, Department of Pediatrics, Weill Cornell Medical College, Hamad Medical Corporation, Doha, Qatar
| | - Tawfeg Ben-Omran
- Department of Clinical and Metabolic Genetics, Department of Pediatrics, Weill Cornell Medical College, Hamad Medical Corporation, Doha, Qatar
| | - Erwin W. Gelfand
- Immunodeficiency Diagnosis and Treatment Program, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
- Paris Descartes University, Imagine Institute, Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, New York, USA
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris, France
| | - Charlotte Cunningham-Rundles
- Division of Clinical Immunology, Departments of Medicine and Pediatrics, and
- Graduate School of Biomedical Sciences, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
124
|
Henrickson SE, Walter JE, Quinn C, Kanakry JA, Bardakjian T, Dimitrova D, Ujhazi B, Csomos K, Bosticardo M, Dobbs K, Nasrallah M, Notarangelo LD, Holland SM, Fadugba O. Adult-Onset Myopathy in a Patient with Hypomorphic RAG2 Mutations and Combined Immune Deficiency. J Clin Immunol 2018; 38:642-645. [PMID: 30159811 DOI: 10.1007/s10875-018-0538-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/30/2018] [Indexed: 11/25/2022]
Affiliation(s)
- Sarah E Henrickson
- The Children's Hospital of Philadelphia, Division of Allergy and Immunology and Institute for Immunology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Jolan E Walter
- Morsani College of Medicine, Division of Allergy and Immunology, University of South Florida, Tampa, FL, 33620, USA
- Johns Hopkins All Children's Hospital, St. Petersburg, FL, 33701, USA
| | - Colin Quinn
- Perelman School of Medicine, Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jennifer A Kanakry
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tanya Bardakjian
- Perelman School of Medicine, Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dimana Dimitrova
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Boglarka Ujhazi
- Morsani College of Medicine, Division of Allergy and Immunology, University of South Florida, Tampa, FL, 33620, USA
- Johns Hopkins All Children's Hospital, St. Petersburg, FL, 33701, USA
| | - Krisztian Csomos
- Morsani College of Medicine, Division of Allergy and Immunology, University of South Florida, Tampa, FL, 33620, USA
- Johns Hopkins All Children's Hospital, St. Petersburg, FL, 33701, USA
| | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, NIH, Bethesda, MD, USA
| | - Kerry Dobbs
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, NIH, Bethesda, MD, USA
| | - MacLean Nasrallah
- Perelman School of Medicine, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, NIH, Bethesda, MD, USA
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, NIH, Bethesda, MD, USA
| | - Olajumoke Fadugba
- Perelman School of Medicine, Division of Pulmonary, Allergy and Critical Care, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
125
|
Delmonte OM, Schuetz C, Notarangelo LD. RAG Deficiency: Two Genes, Many Diseases. J Clin Immunol 2018; 38:646-655. [PMID: 30046960 PMCID: PMC6643099 DOI: 10.1007/s10875-018-0537-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 07/17/2018] [Indexed: 12/12/2022]
Abstract
PURPOSE To review the clinical and laboratory spectrum of RAG gene defects in humans, and discuss the mechanisms underlying phenotypic heterogeneity, the basis of immune dysregulation, and the current and perspective treatment modalities. METHODS Literature review and analysis of medical records RESULTS: RAG gene defects in humans are associated with a surprisingly broad spectrum of clinical and immunological phenotypes. Correlation between in vitro recombination activity of the mutant RAG proteins and the clinical phenotype has been observed. Altered T and B cell development in this disease is associated with defects of immune tolerance. Hematopoietic cell transplantation is the treatment of choice for the most severe forms of the disease, but a high rate of graft failure has been observed. CONCLUSIONS Phenotypic heterogeneity of RAG gene defects in humans may represent a diagnostic challenge. There is a need to improve treatment for severe, early-onset forms of the disease. Optimal treatment modalities for patients with delayed-onset disease presenting with autoimmunity and/or inflammation remain to be defined.
Collapse
Affiliation(s)
- Ottavia M Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Catharina Schuetz
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
126
|
Tirosh I, Yamazaki Y, Frugoni F, Ververs FA, Allenspach EJ, Zhang Y, Burns S, Al-Herz W, Noroski L, Walter JE, Gennery AR, van der Burg M, Notarangelo LD, Lee YN. Recombination activity of human recombination-activating gene 2 (RAG2) mutations and correlation with clinical phenotype. J Allergy Clin Immunol 2018; 143:726-735. [PMID: 29772310 DOI: 10.1016/j.jaci.2018.04.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 04/22/2018] [Accepted: 04/27/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Mutations in recombination-activating gene (RAG) 1 and RAG2 are associated with a broad range of clinical and immunologic phenotypes in human subjects. OBJECTIVE Using a flow cytometry-based assay, we aimed to measure the recombinase activity of naturally occurring RAG2 mutant proteins and to correlate our results with the severity of the clinical and immunologic phenotype. METHODS Abelson virus-transformed Rag2-/- pro-B cells engineered to contain an inverted green fluorescent protein (GFP) cassette flanked by recombination signal sequences were transduced with retroviruses encoding either wild-type or 41 naturally occurring RAG2 variants. Bicistronic vectors were used to introduce compound heterozygous RAG2 variants. The percentage of GFP-expressing cells was evaluated by using flow cytometry, and high-throughput sequencing was used to analyze rearrangements at the endogenous immunoglobulin heavy chain (Igh) locus. RESULTS The RAG2 variants showed a wide range of recombination activity. Mutations associated with severe combined immunodeficiency and Omenn syndrome had significantly lower activity than those detected in patients with less severe clinical presentations. Four variants (P253R, F386L, N474S, and M502V) previously thought to be pathogenic were found to have wild-type levels of activity. Use of bicistronic vectors permitted us to assess more carefully the effect of compound heterozygous mutations, with good correlation between GFP expression and the number and diversity of Igh rearrangements. CONCLUSIONS Our data support genotype-phenotype correlation in the setting of RAG2 deficiency. The assay described can be used to define the possible disease-causing role of novel RAG2 variants and might help predict the severity of the clinical phenotype.
Collapse
Affiliation(s)
- Irit Tirosh
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Yasuhiro Yamazaki
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Francesco Frugoni
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Francesca A Ververs
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Eric J Allenspach
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Wash; Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash
| | - Yu Zhang
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Siobhan Burns
- Institute for Immunity and Transplantation, University College London, London, United Kingdom; Department of Immunology, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Waleed Al-Herz
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Lenora Noroski
- Division of Allergy and Immunology, Baylor College of Medicine, Texas Children's Hospital, Houston, Tex
| | - Jolan E Walter
- Division of Pediatric Allergy/Immunology, University of South Florida and Johns Hopkins All Children's Hospital, St Petersburg, Fla
| | - Andrew R Gennery
- Department of Pediatric Immunology, Newcastle Upon Tyne Hospital, NHS Foundation Trust, United Kingdom and Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Mirjam van der Burg
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| | - Yu Nee Lee
- Pediatric Department A and the Immunology Service, "Edmond and Lily Safra" Children's Hospital, Jeffrey Modell Foundation Center, Sheba Medical Center, Tel Hashomer, Ramat-Gan and Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
127
|
PROMIDISα: A T-cell receptor α signature associated with immunodeficiencies caused by V(D)J recombination defects. J Allergy Clin Immunol 2018; 143:325-334.e2. [PMID: 29906526 DOI: 10.1016/j.jaci.2018.05.028] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 04/17/2018] [Accepted: 05/25/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND V(D)J recombination ensures the diversity of the adaptive immune system. Although its complete defect causes severe combined immunodeficiency (ie, T-B- severe combined immunodeficiency), its suboptimal activity is associated with a broad spectrum of immune manifestations, such as late-onset combined immunodeficiency and autoimmunity. The earliest molecular diagnosis of these patients is required to adopt the best therapy strategy, particularly when it involves a myeloablative conditioning regimen for hematopoietic stem cell transplantation. OBJECTIVE We aimed at developing biomarkers based on analysis of the T-cell receptor (TCR) α repertoire to assist in the diagnosis of patients with primary immunodeficiencies with V(D)J recombination and DNA repair deficiencies. METHODS We used flow cytometric (fluorescence-activated cell sorting) analysis to quantify TCR-Vα7.2-expressing T lymphocytes in peripheral blood and developed PROMIDISα, a multiplex RT-PCR/next-generation sequencing assay, to evaluate a subset of the TCRα repertoire in T lymphocytes. RESULTS The combined fluorescence-activated cell sorting and PROMIDISα analyses revealed specific signatures in patients with V(D)J recombination-defective primary immunodeficiencies or ataxia telangiectasia/Nijmegen breakage syndromes. CONCLUSION Analysis of the TCRα repertoire is particularly appropriate in a prospective way to identify patients with partial immune defects caused by suboptimal V(D)J recombination activity, a DNA repair defect, or both. It also constitutes a valuable tool for the retrospective in vivo functional validation of variants identified through exome or panel sequencing. Its broader implementation might be of interest to assist early diagnosis of patients presenting with hypomorphic DNA repair defects inclined to experience acute toxicity during prehematopoietic stem cell transplantation conditioning.
Collapse
|
128
|
Monogenic systemic lupus erythematosus: insights in pathophysiology. Rheumatol Int 2018; 38:1763-1775. [DOI: 10.1007/s00296-018-4048-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 05/10/2018] [Indexed: 01/02/2023]
|
129
|
Hypomorphic Rag1 mutations alter the preimmune repertoire at early stages of lymphoid development. Blood 2018; 132:281-292. [PMID: 29743177 DOI: 10.1182/blood-2017-12-820985] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 04/30/2018] [Indexed: 12/13/2022] Open
Abstract
Hypomorphic RAG1 mutations allowing residual T- and B-cell development have been found in patients presenting with delayed-onset combined immune deficiency with granulomas and/or autoimmunity (CID-G/AI) and abnormalities of the peripheral T- and B-cell repertoire. To examine how hypomorphic Rag1 mutations affect the earliest stages of lymphocyte development, we used CRISPR/Cas9 to generate mouse models with mutations equivalent to those found in patients with CID-G/AI. Immunological characterization showed partial development of T and B lymphocytes, with persistence of naïve cells and preserved serum immunoglobulin but impaired antibody responses and presence of autoantibodies, thereby recapitulating the phenotype seen in patients with CID-G/AI. By using high-throughput sequencing, we identified marked skewing of Igh V and Trb V gene usage in early progenitors, with a bias for productive Igh and Trb rearrangements after selection occurred and increased apoptosis of B-cell progenitors. Rearrangement at the Igk locus was impaired, and polyreactive immunoglobulin M antibodies were detected. This study provides novel insights into how hypomorphic Rag1 mutations alter the primary repertoire of T and B cells, setting the stage for immune dysregulation frequently seen in patients.
Collapse
|
130
|
Gupta K, Rawat A, Agrawal P, Jindal A, Nada R, Saikia B, Chan KW, Lau YL, Minz RW, Singh S. Infectious and non-infectious complications in primary immunodeficiency disorders: an autopsy study from North India. J Clin Pathol 2018; 71:425-435. [PMID: 28970295 DOI: 10.1136/jclinpath-2017-204708] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/12/2017] [Accepted: 09/12/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND Primary immunodeficiency disorders (PID) include a wide spectrum of inherited disorders characterised by functional abnormalities of one or more components of the immune system. Recent updates from the genomic data have contributed significantly to its better understanding with identification of new entities. Diagnosis is always challenging due to their variable clinical presentation. With the evolution of molecular diagnosis, many of these children are being diagnosed early and offered appropriate therapy. However, in developing countries, early diagnosis is still not being made: as a result these patients succumb to their disease. Autopsy data on PID is notably lacking in the literature with histopathological evaluation of PID being limited to rare case reports. OBJECTIVE To analyse the clinical, immunologic (including mutational) and morphologic features at autopsy in 10 proven and suspected cases of primary immunodeficiency disorders diagnosed at our Institute over the past decade. METHODS Study includes a detailed clinico-pathological analysis of 10 proven and suspected cases of primary immunodeficiency disorders. RESULTS A varied spectrum of infectious and non-infectious complications were identified in these cases of which fungal infections were found to be more frequent compared with viral or bacterial infections. Rare and novel morphological findings, like granulomatous involvement of the heart in a patient with chronic granulomatous disease, systemic amyloidosis in a teenage girl with X-linked agammaglobulinemia, are highlighted which is distinctly lacking in the literature. CONCLUSIONS The present study is perhaps the first autopsy series on PID. Even in the molecular era, such analysis is still important, as correlation of pathological features with clinical symptoms provides clues for a timely diagnosis and appropriate therapeutic intervention.
Collapse
Affiliation(s)
- Kirti Gupta
- Department of Histopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Amit Rawat
- Department of Paediatrics (Allergy and Immunology Unit), Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Parimal Agrawal
- Department of Histopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Ankur Jindal
- Department of Paediatrics (Allergy and Immunology Unit), Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Ritambhra Nada
- Department of Histopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Biman Saikia
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, (PGIMER), Chandigarh, India
| | - Koon Wing Chan
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong
| | - Yu Lung Lau
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong
| | - Ranjana Walker Minz
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, (PGIMER), Chandigarh, India
| | - Surjit Singh
- Department of Paediatrics (Allergy and Immunology Unit), Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| |
Collapse
|
131
|
Casanova JL, Abel L. Human genetics of infectious diseases: Unique insights into immunological redundancy. Semin Immunol 2018; 36:1-12. [PMID: 29254755 PMCID: PMC5910248 DOI: 10.1016/j.smim.2017.12.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/13/2017] [Indexed: 01/18/2023]
Abstract
For almost any given human-tropic virus, bacterium, fungus, or parasite, the clinical outcome of primary infection is enormously variable, ranging from asymptomatic to lethal infection. This variability has long been thought to be largely determined by the germline genetics of the human host, and this is increasingly being demonstrated to be the case. The number and diversity of known inborn errors of immunity is continually increasing, and we focus here on autosomal and X-linked recessive traits underlying complete deficiencies of the encoded protein. Schematically, four types of infectious phenotype have been observed in individuals with such deficiencies, each providing information about the redundancy of the corresponding human gene, in terms of host defense in natural conditions. The lack of a protein can confer vulnerability to a broad range of microbes in most, if not all patients, through the disruption of a key immunological component. In such cases, the gene concerned is of low redundancy. However, the lack of a protein may also confer vulnerability to a narrow range of microbes, sometimes a single pathogen, and not necessarily in all patients. In such cases, the gene concerned is highly redundant. Conversely, the deficiency may be apparently neutral, conferring no detectable predisposition to infection in any individual. In such cases, the gene concerned is completely redundant. Finally, the lack of a protein may, paradoxically, be advantageous to the host, conferring resistance to one or more infections. In such cases, the gene is considered to display beneficial redundancy. These findings reflect the current state of evolution of humans and microbes, and should not be considered predictive of redundancy, or of a lack of redundancy, in the distant future. Nevertheless, these observations are of potential interest to present-day biologists testing immunological hypotheses experimentally and physicians managing patients with immunological or infectious conditions.
Collapse
Affiliation(s)
- Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Howard Hughes Medical Institute, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France, EU; Paris Descartes University, Imagine Institute, Paris, France, EU; Pediatric Hematology and Immunology Unit, Necker Hospital for Sick Children, Paris, France, EU.
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France, EU; Paris Descartes University, Imagine Institute, Paris, France, EU.
| |
Collapse
|
132
|
Abstract
Proper regulation of the immune system is required for protection against pathogens and preventing autoimmune disorders. Inborn errors of the immune system due to inherited or de novo germline mutations can lead to the loss of protective immunity, aberrant immune homeostasis, and the development of autoimmune disease, or combinations of these. Forward genetic screens involving clinical material from patients with primary immunodeficiencies (PIDs) can vary in severity from life-threatening disease affecting multiple cell types and organs to relatively mild disease with susceptibility to a limited range of pathogens or mild autoimmune conditions. As central mediators of innate and adaptive immune responses, T cells are critical orchestrators and effectors of the immune response. As such, several PIDs result from loss of or altered T cell function. PID-associated functional defects range from complete absence of T cell development to uncontrolled effector cell activation. Furthermore, the gene products of known PID causal genes are involved in diverse molecular pathways ranging from T cell receptor signaling to regulators of protein glycosylation. Identification of the molecular and biochemical cause of PIDs can not only guide the course of treatment for patients, but also inform our understanding of the basic biology behind T cell function. In this chapter, we review PIDs with known genetic causes that intrinsically affect T cell function with particular focus on perturbations of biochemical pathways.
Collapse
Affiliation(s)
- William A Comrie
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; Clinical Genomics Program, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, United States
| | - Michael J Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; Clinical Genomics Program, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, United States.
| |
Collapse
|
133
|
Prevalence and clinical challenges among adults with primary immunodeficiency and recombination-activating gene deficiency. J Allergy Clin Immunol 2018; 141:2303-2306. [PMID: 29477728 DOI: 10.1016/j.jaci.2018.02.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/05/2018] [Accepted: 02/11/2018] [Indexed: 12/17/2022]
|
134
|
Goda V, Malik A, Kalmar T, Maroti Z, Patel B, Ujhazi B, Csomos K, Hale JE, Chen K, Bleesing J, Palma P, Cancrini C, Comeau AM, Krivan G, Walter JE. Partial RAG deficiency in a patient with varicella infection, autoimmune cytopenia, and anticytokine antibodies. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2018; 6:1769-1771.e2. [PMID: 29410113 DOI: 10.1016/j.jaip.2018.01.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/14/2017] [Accepted: 01/15/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Vera Goda
- Department of Pediatric Hematology and Stem Cell Transplantation, United Saint Istvan and Saint Laszlo Hospital, Budapest, Hungary
| | - Aniko Malik
- Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Tibor Kalmar
- Genetic Diagnostic Laboratory, Department of Pediatrics, Albert Szent-Györgyi Medical Center, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Zoltan Maroti
- Genetic Diagnostic Laboratory, Department of Pediatrics, Albert Szent-Györgyi Medical Center, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Bhumika Patel
- Division of Pediatric Allergy & Immunology, Department of Pediatrics, University of South Florida, Tampa, Fla
| | - Boglarka Ujhazi
- Division of Pediatric Allergy & Immunology, Department of Pediatrics, University of South Florida, Tampa, Fla
| | - Krisztian Csomos
- Division of Pediatric Allergy & Immunology, Department of Pediatrics, University of South Florida, Tampa, Fla
| | - Jaime E Hale
- New England Newborn Screening Program, Department of Pediatrics, University of Massachusetts Medical School, Jamaica Plain, Mass
| | - Karin Chen
- Division of Allergy and Immunology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Jacob Bleesing
- Division of Bone Marrow Transplantation and Immunodeficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Paolo Palma
- University Department of Pediatrics, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Caterina Cancrini
- University Department of Pediatrics, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Anne M Comeau
- New England Newborn Screening Program, Department of Pediatrics, University of Massachusetts Medical School, Jamaica Plain, Mass
| | - Gergely Krivan
- Department of Pediatric Hematology and Stem Cell Transplantation, United Saint Istvan and Saint Laszlo Hospital, Budapest, Hungary
| | - Jolan E Walter
- Division of Pediatric Allergy & Immunology, Department of Pediatrics, University of South Florida, Tampa, Fla; Division of Pediatric Allergy Immunology, Massachusetts General Hospital for Children, Boston, Mass.
| |
Collapse
|
135
|
Ettinger M, Schreml J, Wirsching K, Berneburg M, Schreml S. Skin signs of primary immunodeficiencies: how to find the genes to check. Br J Dermatol 2018; 178:335-349. [DOI: 10.1111/bjd.15870] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2017] [Indexed: 12/11/2022]
Affiliation(s)
- M. Ettinger
- Department of Dermatology; University Medical Center Regensburg; Franz-Josef-Strauss-Allee 11 93053 Regensburg Germany
| | - J. Schreml
- Department of Otorhinolaryngology; University Medical Center Regensburg; Franz-Josef-Strauss-Allee 11 93053 Regensburg Germany
| | - K. Wirsching
- Institute of Human Genetics; University Hospital of Cologne; Cologne Germany
| | - M. Berneburg
- Department of Dermatology; University Medical Center Regensburg; Franz-Josef-Strauss-Allee 11 93053 Regensburg Germany
| | - S. Schreml
- Department of Dermatology; University Medical Center Regensburg; Franz-Josef-Strauss-Allee 11 93053 Regensburg Germany
| |
Collapse
|
136
|
Affiliation(s)
- Dae Chul Jeong
- Division of Pediatric Rheumatology and Clinical Immunology, Department of Pediatrics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
137
|
Eriksson D, Dalin F, Eriksson GN, Landegren N, Bianchi M, Hallgren Å, Dahlqvist P, Wahlberg J, Ekwall O, Winqvist O, Catrina SB, Rönnelid J, Hulting AL, Lindblad-Toh K, Alimohammadi M, Husebye ES, Knappskog PM, Rosengren Pielberg G, Bensing S, Kämpe O. Cytokine Autoantibody Screening in the Swedish Addison Registry Identifies Patients With Undiagnosed APS1. J Clin Endocrinol Metab 2018; 103:179-186. [PMID: 29069385 DOI: 10.1210/jc.2017-01957] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 10/16/2017] [Indexed: 12/30/2022]
Abstract
CONTEXT Autoimmune polyendocrine syndrome type 1 (APS1) is a monogenic disorder that features autoimmune Addison disease as a major component. Although APS1 accounts for only a small fraction of all patients with Addison disease, early identification of these individuals is vital to prevent the potentially lethal complications of APS1. OBJECTIVE To determine whether available serological and genetic markers are valuable screening tools for the identification of APS1 among patients diagnosed with Addison disease. DESIGN We systematically screened 677 patients with Addison disease enrolled in the Swedish Addison Registry for autoantibodies against interleukin-22 and interferon-α4. Autoantibody-positive patients were investigated for clinical manifestations of APS1, additional APS1-specific autoantibodies, and DNA sequence and copy number variations of AIRE. RESULTS In total, 17 patients (2.5%) displayed autoantibodies against interleukin-22 and/or interferon-α4, of which nine were known APS1 cases. Four patients previously undiagnosed with APS1 fulfilled clinical, genetic, and serological criteria. Hence, we identified four patients with undiagnosed APS1 with this screening procedure. CONCLUSION We propose that patients with Addison disease should be routinely screened for cytokine autoantibodies. Clinical or serological support for APS1 should warrant DNA sequencing and copy number analysis of AIRE to enable early diagnosis and prevention of lethal complications.
Collapse
Affiliation(s)
- Daniel Eriksson
- Center for Molecular Medicine, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
- Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
| | - Frida Dalin
- Center for Molecular Medicine, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | | | - Nils Landegren
- Center for Molecular Medicine, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Matteo Bianchi
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Åsa Hallgren
- Center for Molecular Medicine, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Per Dahlqvist
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Jeanette Wahlberg
- Department of Endocrinology, Linköping University, Linköping, Sweden
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Olov Ekwall
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ola Winqvist
- Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Sergiu-Bogdan Catrina
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Johan Rönnelid
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | - Anna-Lena Hulting
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Kerstin Lindblad-Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | | | - Eystein S Husebye
- Center for Molecular Medicine, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, University of Bergen, Bergen, Norway
- K.G. Jebsen Center for Autoimmune Disorders, Bergen, Norway
| | - Per Morten Knappskog
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Gerli Rosengren Pielberg
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Sophie Bensing
- Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Olle Kämpe
- Center for Molecular Medicine, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
- Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
- Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- K.G. Jebsen Center for Autoimmune Disorders, Bergen, Norway
| |
Collapse
|
138
|
Schmidt RE, Grimbacher B, Witte T. Autoimmunity and primary immunodeficiency: two sides of the same coin? Nat Rev Rheumatol 2017; 14:7-18. [PMID: 29255211 DOI: 10.1038/nrrheum.2017.198] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Autoimmunity and immunodeficiency were previously considered to be mutually exclusive conditions; however, increased understanding of the complex immune regulatory and signalling mechanisms involved, coupled with the application of genetic analysis, is revealing the complex relationships between primary immunodeficiency syndromes and autoimmune diseases. Single-gene defects can cause rare diseases that predominantly present with autoimmune symptoms. Such genetic defects also predispose individuals to recurrent infections (a hallmark of immunodeficiency) and can cause primary immunodeficiencies, which can also lead to immune dysregulation and autoimmunity. Moreover, risk factors for polygenic rheumatic diseases often exist in the same genes as the mutations that give rise to primary immunodeficiency syndromes. In this Review, various primary immunodeficiency syndromes are presented, along with their pathogenetic mechanisms and relationship to autoimmune diseases, in an effort to increase awareness of immunodeficiencies that occur concurrently with autoimmune diseases and to highlight the need to initiate appropriate genetic tests. The growing knowledge of various genetically determined pathologic mechanisms in patients with immunodeficiencies who have autoimmune symptoms opens up new avenues for personalized molecular therapies that could potentially treat immunodeficiency and autoimmunity at the same time, and that could be further explored in the context of autoimmune rheumatic diseases.
Collapse
Affiliation(s)
- Reinhold E Schmidt
- Klinik für Immunologie und Rheumatologie, Medizinische Hochschule Hannover (MHH), Carl-Neuberg Straße 1, D-30625 Hannover, Germany
| | - Bodo Grimbacher
- Centre for Chronic Immunodeficiency, University Medical Centre, University of Freiburg, Faculty of Medicine, Breisacher Straße 115, D-79106 Freiburg, Germany
| | - Torsten Witte
- Klinik für Immunologie und Rheumatologie, Medizinische Hochschule Hannover (MHH), Carl-Neuberg Straße 1, D-30625 Hannover, Germany
| |
Collapse
|
139
|
Capo V, Castiello MC, Fontana E, Penna S, Bosticardo M, Draghici E, Poliani LP, Sergi Sergi L, Rigoni R, Cassani B, Zanussi M, Carrera P, Uva P, Dobbs K, Sacchetti N, Notarangelo LD, van Til NP, Wagemaker G, Villa A. Efficacy of lentivirus-mediated gene therapy in an Omenn syndrome recombination-activating gene 2 mouse model is not hindered by inflammation and immune dysregulation. J Allergy Clin Immunol 2017; 142:928-941.e8. [PMID: 29241731 DOI: 10.1016/j.jaci.2017.11.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 10/02/2017] [Accepted: 11/01/2017] [Indexed: 11/25/2022]
Abstract
BACKGROUND Omenn syndrome (OS) is a rare severe combined immunodeficiency associated with autoimmunity and caused by defects in lymphoid-specific V(D)J recombination. Most patients carry hypomorphic mutations in recombination-activating gene (RAG) 1 or 2. Hematopoietic stem cell transplantation is the standard treatment; however, gene therapy (GT) might represent a valid alternative, especially for patients lacking a matched donor. OBJECTIVE We sought to determine the efficacy of lentiviral vector (LV)-mediated GT in the murine model of OS (Rag2R229Q/R229Q) in correcting immunodeficiency and autoimmunity. METHODS Lineage-negative cells from mice with OS were transduced with an LV encoding the human RAG2 gene and injected into irradiated recipients with OS. Control mice underwent transplantation with wild-type or OS-untransduced lineage-negative cells. Immunophenotyping, T-dependent and T-independent antigen challenge, immune spectratyping, autoantibody detection, and detailed tissue immunohistochemical analyses were performed. RESULTS LV-mediated GT allowed immunologic reconstitution, although it was suboptimal compared with that seen in wild-type bone marrow (BM)-transplanted OS mice in peripheral blood and hematopoietic organs, such as the BM, thymus, and spleen. We observed in vivo variability in the efficacy of GT correlating with the levels of transduction achieved. Immunoglobulin levels and T-cell repertoire normalized, and gene-corrected mice responded properly to challenges in vivo. Autoimmune manifestations, such as skin infiltration and autoantibodies, dramatically improved in GT mice with a vector copy number/genome higher than 1 in the BM and 2 in the thymus. CONCLUSIONS Our data show that LV-mediated GT for patients with OS significantly ameliorates the immunodeficiency, even in an inflammatory environment.
Collapse
Affiliation(s)
- Valentina Capo
- San Raffaele Telethon Institute for Gene Therapy (TIGET), Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
| | - Maria Carmina Castiello
- San Raffaele Telethon Institute for Gene Therapy (TIGET), Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
| | - Elena Fontana
- Humanitas Clinical and Research Center, Rozzano, Milan, Italy; Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Sara Penna
- San Raffaele Telethon Institute for Gene Therapy (TIGET), Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
| | - Marita Bosticardo
- San Raffaele Telethon Institute for Gene Therapy (TIGET), Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
| | - Elena Draghici
- San Raffaele Telethon Institute for Gene Therapy (TIGET), Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
| | - Luigi P Poliani
- Institute of Molecular Medicine "A. Nocivelli," University Hospital "Spedali Civili," Brescia, Italy
| | - Lucia Sergi Sergi
- San Raffaele Telethon Institute for Gene Therapy (TIGET), Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
| | - Rosita Rigoni
- Humanitas Clinical and Research Center, Rozzano, Milan, Italy; Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Barbara Cassani
- Humanitas Clinical and Research Center, Rozzano, Milan, Italy; Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Monica Zanussi
- Genomics for the Diagnosis of Human Pathologies, San Raffaele Scientific Institute, Milan, Italy
| | - Paola Carrera
- Genomics for the Diagnosis of Human Pathologies, San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Uva
- CRS4, Science and Technology Park Polaris, Pula, Italy
| | - Kerry Dobbs
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Nicolò Sacchetti
- San Raffaele Telethon Institute for Gene Therapy (TIGET), Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Luigi D Notarangelo
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Niek P van Til
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands; Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gerard Wagemaker
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands; Stem Cell Research and Development Center, Hacettepe University, Ankara, Turkey; Raisa Gorbacheva Memorial Research Institute for Pediatric Oncology and Hematology, Saint Petersburg, Russia
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy (TIGET), Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy; Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy.
| |
Collapse
|
140
|
Gomez-Tourino I, Kamra Y, Baptista R, Lorenc A, Peakman M. T cell receptor β-chains display abnormal shortening and repertoire sharing in type 1 diabetes. Nat Commun 2017; 8:1792. [PMID: 29176645 PMCID: PMC5702608 DOI: 10.1038/s41467-017-01925-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 10/25/2017] [Indexed: 01/10/2023] Open
Abstract
Defects in T cell receptor (TCR) repertoire are proposed to predispose to autoimmunity. Here we show, by analyzing >2 × 108TCRB sequences of circulating naive, central memory, regulatory and stem cell-like memory CD4+ T cell subsets from patients with type 1 diabetes and healthy donors, that patients have shorter TCRB complementarity-determining region 3s (CDR3), in all cell subsets, introduced by increased deletions/reduced insertions during VDJ rearrangement. High frequency of short CDR3s is also observed in unproductive TCRB sequences, which are not subjected to thymic culling, suggesting that the shorter CDR3s arise independently of positive/negative selection. Moreover, TCRB CDR3 clonotypes expressed by autoantigen-specific CD4+ T cells are shorter compared with anti-viral T cells, and with those from healthy donors. Thus, early events in thymic T cell development and repertoire generation are abnormal in type 1 diabetes, which suggest that short CDR3s increase the potential for self-recognition, conferring heightened risk of autoimmune disease. T cell receptors are generated by somatic gene recombination, and are normally selected against autoreactivity. Here the authors show that CD4 T cells from patients with autoimmune type 1 diabetes have shorter TCRβ sequences, broader repertoire diversity, and more repertoire sharing than those from healthy individuals.
Collapse
Affiliation(s)
- Iria Gomez-Tourino
- Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London, 2nd Floor, Borough Wing, Guy's Hospital, London, SE1 9RT, UK.,National Institute for Health Research, Biomedical Research Centre at Guy's and St Thomas' Hospital Foundation Trust and King's College London, Guy's Hospital, London, SE1 9RT, UK.,Immunology Laboratory, Biomedical Research Center (CINBIO), Centro Singular de Investigación de Galicia, University of Vigo, Campus Universitario de Vigo, Pontevedra, 36310, Spain
| | - Yogesh Kamra
- Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London, 2nd Floor, Borough Wing, Guy's Hospital, London, SE1 9RT, UK
| | - Roman Baptista
- Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London, 2nd Floor, Borough Wing, Guy's Hospital, London, SE1 9RT, UK.,National Institute for Health Research, Biomedical Research Centre at Guy's and St Thomas' Hospital Foundation Trust and King's College London, Guy's Hospital, London, SE1 9RT, UK
| | - Anna Lorenc
- Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London, 2nd Floor, Borough Wing, Guy's Hospital, London, SE1 9RT, UK
| | - Mark Peakman
- Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London, 2nd Floor, Borough Wing, Guy's Hospital, London, SE1 9RT, UK. .,National Institute for Health Research, Biomedical Research Centre at Guy's and St Thomas' Hospital Foundation Trust and King's College London, Guy's Hospital, London, SE1 9RT, UK.
| |
Collapse
|
141
|
Maciocia PM, Wawrzyniecka PA, Philip B, Ricciardelli I, Akarca AU, Onuoha SC, Legut M, Cole DK, Sewell AK, Gritti G, Somja J, Piris MA, Peggs KS, Linch DC, Marafioti T, Pule MA. Targeting the T cell receptor β-chain constant region for immunotherapy of T cell malignancies. Nat Med 2017; 23:1416-1423. [PMID: 29131157 DOI: 10.1038/nm.4444] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/18/2017] [Indexed: 12/19/2022]
Abstract
Mature T cell cancers are typically aggressive, treatment resistant and associated with poor prognosis. Clinical application of immunotherapeutic approaches has been limited by a lack of target antigens that discriminate malignant from healthy (normal) T cells. Unlike B cell depletion, pan-T cell aplasia is prohibitively toxic. We report a new targeting strategy based on the mutually exclusive expression of T cell receptor β-chain constant domains 1 and 2 (TRBC1 and TRBC2). We identify an antibody with unique TRBC1 specificity and use it to demonstrate that normal and virus-specific T cell populations contain both TRBC1+ and TRBC2+ compartments, whereas malignancies are restricted to only one. As proof of concept for anti-TRBC immunotherapy, we developed anti-TRBC1 chimeric antigen receptor (CAR) T cells, which recognized and killed normal and malignant TRBC1+, but not TRBC2+, T cells in vitro and in a disseminated mouse model of leukemia. Unlike nonselective approaches targeting the entire T cell population, TRBC-targeted immunotherapy could eradicate a T cell malignancy while preserving sufficient normal T cells to maintain cellular immunity.
Collapse
Affiliation(s)
| | | | - Brian Philip
- Cancer Institute, University College London, London, UK
| | - Ida Ricciardelli
- Institute of Child Health, University College London, London, UK
| | - Ayse U Akarca
- Cancer Institute, University College London, London, UK
| | | | - Mateusz Legut
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - David K Cole
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Andrew K Sewell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Giuseppe Gritti
- Hematology and Bone Marrow Transplant Units, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Joan Somja
- Department of Anatomy and Cellular Pathology, University of Liège, Liège, Belgium
| | - Miguel A Piris
- Department of Pathology, Fundación Jiménez Díaz, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Karl S Peggs
- Cancer Institute, University College London, London, UK
| | - David C Linch
- Cancer Institute, University College London, London, UK
| | | | - Martin A Pule
- Cancer Institute, University College London, London, UK.,Autolus, Ltd., London, UK
| |
Collapse
|
142
|
Taşkıran EZ, Sönmez HE, Ayvaz DÇ, Koşukcu C, Batu ED, Esenboğa S, Topaloğlu R, Orhan D, Bilginer Y, Alikaşifoğlu M, Özen S, Tezcan İ. Hypomorphic RAG1 defect in a child presented with pulmonary hemorrhage and digital necrosis. Clin Immunol 2017; 187:92-94. [PMID: 29107076 DOI: 10.1016/j.clim.2017.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 10/23/2017] [Accepted: 10/23/2017] [Indexed: 01/18/2023]
Affiliation(s)
- Ekim Z Taşkıran
- Department of Medical Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey.
| | - Hafize E Sönmez
- Department of Pediatrics, Division of Rheumatology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Deniz Ç Ayvaz
- Department of Pediatrics, Division of Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Can Koşukcu
- Department of Bioinformatics, Institute of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Ezgi D Batu
- Department of Pediatrics, Division of Rheumatology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Saliha Esenboğa
- Department of Pediatrics, Division of Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Rezan Topaloğlu
- Department of Pediatrics, Division of Nephrology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Diclehan Orhan
- Department of Pediatrics, Division of Pathology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Yelda Bilginer
- Department of Pediatrics, Division of Rheumatology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Mehmet Alikaşifoğlu
- Department of Medical Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Seza Özen
- Department of Pediatrics, Division of Rheumatology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - İlhan Tezcan
- Department of Pediatrics, Division of Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
143
|
Breden F, Luning Prak ET, Peters B, Rubelt F, Schramm CA, Busse CE, Vander Heiden JA, Christley S, Bukhari SAC, Thorogood A, Matsen Iv FA, Wine Y, Laserson U, Klatzmann D, Douek DC, Lefranc MP, Collins AM, Bubela T, Kleinstein SH, Watson CT, Cowell LG, Scott JK, Kepler TB. Reproducibility and Reuse of Adaptive Immune Receptor Repertoire Data. Front Immunol 2017; 8:1418. [PMID: 29163494 PMCID: PMC5671925 DOI: 10.3389/fimmu.2017.01418] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/12/2017] [Indexed: 12/22/2022] Open
Abstract
High-throughput sequencing (HTS) of immunoglobulin (B-cell receptor, antibody) and T-cell receptor repertoires has increased dramatically since the technique was introduced in 2009 (1–3). This experimental approach explores the maturation of the adaptive immune system and its response to antigens, pathogens, and disease conditions in exquisite detail. It holds significant promise for diagnostic and therapy-guiding applications. New technology often spreads rapidly, sometimes more rapidly than the understanding of how to make the products of that technology reliable, reproducible, or usable by others. As complex technologies have developed, scientific communities have come together to adopt common standards, protocols, and policies for generating and sharing data sets, such as the MIAME protocols developed for microarray experiments. The Adaptive Immune Receptor Repertoire (AIRR) Community formed in 2015 to address similar issues for HTS data of immune repertoires. The purpose of this perspective is to provide an overview of the AIRR Community’s founding principles and present the progress that the AIRR Community has made in developing standards of practice and data sharing protocols. Finally, and most important, we invite all interested parties to join this effort to facilitate sharing and use of these powerful data sets (join@airr-community.org).
Collapse
Affiliation(s)
- Felix Breden
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Eline T Luning Prak
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Bjoern Peters
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Florian Rubelt
- Department of Microbiology and Immunology, Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, United States
| | - Chaim A Schramm
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Christian E Busse
- Division of B Cell Immunology, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Jason A Vander Heiden
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States
| | - Scott Christley
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | | | - Adrian Thorogood
- entre of Genomics and Policy, McGill University, Montreal, QC, Canada
| | - Frederick A Matsen Iv
- Public Health Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Yariv Wine
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Uri Laserson
- Department of Genetics and Genome Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - David Klatzmann
- Immunology-Immunopathology-Immunotherapy (i3 & i2B), Sorbonne Université, Paris, France
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Marie-Paule Lefranc
- IMGT, LIGM, Institut de Génétique Humaine IGH, CNRS, University of Montpellier, Montpellier, France
| | - Andrew M Collins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW, Australia
| | - Tania Bubela
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Steven H Kleinstein
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
| | - Corey T Watson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, United States
| | - Lindsay G Cowell
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Jamie K Scott
- Faculty of Health Sciences, Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Thomas B Kepler
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States.,Department of Mathematics and Statistics, Boston University, Boston, MA, United States
| |
Collapse
|
144
|
The role of the immune system in Alzheimer disease: Etiology and treatment. Ageing Res Rev 2017; 40:84-94. [PMID: 28941639 DOI: 10.1016/j.arr.2017.08.005] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/25/2017] [Accepted: 08/31/2017] [Indexed: 12/24/2022]
Abstract
The immune system is now considered a major factor in Alzheimer Disease (AD). This review seeks to demonstrate how various aspects of the immune system, both in the brain and peripherally, interact to contribute to AD. We highlight classical nervous system immune components, such as complement and microglia, as well as novel aspects of the peripheral immune system that can influence disease, such as monocytes and lymphocytes. By detailing the roles of various immune cells in AD, we summarize an emerging perspective for disease etiology and future therapeutic targets.
Collapse
|
145
|
Walter JE, Farmer JR, Foldvari Z, Torgerson TR, Cooper MA. Mechanism-Based Strategies for the Management of Autoimmunity and Immune Dysregulation in Primary Immunodeficiencies. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2017; 4:1089-1100. [PMID: 27836058 DOI: 10.1016/j.jaip.2016.08.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/01/2016] [Accepted: 08/19/2016] [Indexed: 01/27/2023]
Abstract
A broad spectrum of autoimmunity is now well described in patients with primary immunodeficiencies (PIDs). Management of autoimmune disease in the background of PID is particularly challenging given the seemingly discordant goals of immune support and immune suppression. Our growing ability to define the molecular underpinnings of immune dysregulation has facilitated novel targeted therapeutics. This review focuses on mechanism-based treatment strategies for the most common autoimmune and inflammatory complications of PID including autoimmune cytopenias, rheumatologic disease, and gastrointestinal disease. We aim to provide guidance regarding the rational use of these agents in the complex PID patient population.
Collapse
Affiliation(s)
- Jolan E Walter
- Department of Pediatrics & Medicine, University of South Florida at Johns Hopkins All Children's Hospital, St Petersburg, Fla; Division of Pediatric Allergy & Immunology, Massachusetts General Hospital for Children, Boston, Mass; Division of Immunology, Boston Children's Hospital, Boston, Mass.
| | - Jocelyn R Farmer
- Department of Allergy & Immunology, Massachusetts General Hospital, Boston, Mass
| | - Zsofia Foldvari
- Department of Cancer Immunology, Oslo University Hospital Radiumhospitalet, Oslo, Norway; K. G. Jebsen Centers for Cancer Immunotherapy and for Inflammation Research, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Troy R Torgerson
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Wash
| | - Megan A Cooper
- Department of Pediatrics, Division of Rheumatology, Washington University School of Medicine, St Louis, Mo
| |
Collapse
|
146
|
Abstract
PURPOSE OF REVIEW Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease known for its clinical heterogeneity. Over time, new insights into the complex genetic origin of SLE have started to explain some of this clinical variability. These findings, reviewed here, have also yielded important understanding in the immune mechanisms behind SLE pathogenesis. RECENT FINDINGS Several new monogenic disorders with lupus-like phenotype have been described. These can be organized into physiologic pathways that parallel mechanisms of disease in SLE. Examples include genes important for DNA damage repair (e.g., TREX1), nucleic acid sensing and type I interferon overproduction (e.g., STING, TREX1), apoptosis (FASLG), tolerance (PRKCD), and clearance of self-antigen (DNASE1L3). Further study of monogenic lupus may lead to better genotype/phenotype correlations in SLE. Eventually, the ability to understand individual patients according to their genetic profile may allow the development of more targeted and personalized approaches to therapy.
Collapse
Affiliation(s)
- Mindy S Lo
- Division of Immunology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
147
|
DNA recombination defects in Kuwait: Clinical, immunologic and genetic profile. Clin Immunol 2017; 187:68-75. [PMID: 29051008 PMCID: PMC5826831 DOI: 10.1016/j.clim.2017.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 12/30/2022]
Abstract
Defects in DNA Recombination due to mutations in RAG1/2 or DCLRE1C result in combined immunodeficiency (CID) with a range of disease severity. We present the clinical, immunologic and molecular characteristics of 21 patients with defects in RAG1, RAG2 or DCLRE1C, who accounted for 24% of combined immune deficiency cases in the Kuwait National Primary Immunodeficiency Disorders Registry. The distribution of the patients was as follow: 8 with RAG1 deficiency, 6 with RAG2 deficiency and 7 with DCLRE1C deficiency. Nine patients presented with SCID, 6 with OS, 2 with leaky SCID and 4 with CID and granuloma and/or autoimmunity (CID-G/AI). Eight patients [(7 SCID and 1 OS) (38%)] received hematopoietic stem cell transplant (HSCT). The median age of HSCT was 11.5 months and the median time from diagnosis to HSCT was 6 months. Fifty percent of the transplanted patients are alive while only 23% of the untransplanted ones are alive. Defects in V(D)J recombination result in combined immunodeficiency. Pediatricians awareness about the spectrum of CID presentation is crucial for better outcome. International collaboration is needed to study HSCT outcome for different genetic causes of CID.
Collapse
|
148
|
Pathogenesis of infections in HIV-infected individuals: insights from primary immunodeficiencies. Curr Opin Immunol 2017; 48:122-133. [PMID: 28992464 PMCID: PMC5682227 DOI: 10.1016/j.coi.2017.09.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/14/2017] [Accepted: 09/17/2017] [Indexed: 12/12/2022]
Abstract
Following infection with almost any given microorganism other than an emerging pathogen, only a minority of individuals develop life-threatening clinical disease, implying that these individuals have some form of immunodeficiency. A growing number of inherited and acquired immunodeficiencies have been deciphered over the last 50 years. HIV infection is probably the best-known acquired immunodeficiency. It emerged about 40 years ago and precipitates various severe infections, the occurrence of which is associated with a fall in circulating CD4+ T cells. However, despite the strength of this correlation, infection rates differ between patients with similar levels and durations of CD4+ T lymphopenia in the presence or absence of antiretroviral treatment. Moreover, a few infections seem to be less dependent on total CD4+ T-cell levels. The fine detail of the mechanisms underlying these infections is unknown. We discuss here how studies of the human genetics and immunology of some of these infections in patients with primary immunodeficiencies (PIDs) have provided unique insights into their molecular and cellular basis. Defects of specific CD4+ Th-cell subsets account for some of these infections, as best exemplified by Th1* for mycobacteriosis and Th17 for candidiasis. PIDs are individually rare, but collectively much more common than initially thought, with new disorders being discovered at an ever-increasing pace and a global prevalence worldwide approaching that of HIV infection. Studies of known and new PIDs should make it possible to dissect the pathogenesis of most human infections at an unprecedented level of molecular and cellular precision. The predictive, preventive, and therapeutic implications of studies of immunity to infection in PIDs may extend to HIV-infected patients and patients with infectious diseases in other settings.
Collapse
|
149
|
Song J, Yang D, Ruan J, Zhang J, Chen YE, Xu J. Production of immunodeficient rabbits by multiplex embryo transfer and multiplex gene targeting. Sci Rep 2017; 7:12202. [PMID: 28939872 PMCID: PMC5610260 DOI: 10.1038/s41598-017-12201-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/05/2017] [Indexed: 12/14/2022] Open
Abstract
Immunodeficient mice have been used predominantly in biomedical research. Realizing that large animal species may have an enhanced ability to predict clinical outcome relative to mice, we worked to develop immunodeficient rabbits by CRISPR/Cas9. We first demonstrated that multiplex embryo transfer efficiently produced multiple lines of single-gene mutant (SGM) founders. Embryos microinjected with single sgRNA targeting FOXN1, RAG2, IL2RG or PRKDC were pooled for embryo transfer. As few as three recipients were used to produce twenty SGM founders for four genes. We then demonstrated the powerful multiplex targeting capacity of CRISPR/Cas9. First, two genes on the same chromosome were targeted simultaneously, resulting in three RAG1/RAG2 double-gene mutant (DGM) founders. Next we microinjected forty-five embryos each with five sgRNAs targeting FOXN1, RAG1, RAG2, IL2RG and PRKDC, and transferred them to two recipients. Five founders were produced: one SGM, two DGM, one triple-gene mutant and one quadruple-gene mutant. The present work demonstrates that multiplex embryo transfer and multiplex gene targeting can be used to quickly and efficiently generate mutant rabbit founders. Four lines of SGM (e.g. FOXN1, RAG2, IL2RG, and PRKDC) immunodeficient rabbits, as well as multigenic mutant immunodeficient rabbits have been produced. These animals may prove useful for biomedical research.
Collapse
Affiliation(s)
- Jun Song
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, Michigan, 48109, USA
| | - Dongshan Yang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, Michigan, 48109, USA
| | - Jinxue Ruan
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, Michigan, 48109, USA
| | - Jifeng Zhang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, Michigan, 48109, USA
| | - Yuqing Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, Michigan, 48109, USA.
| | - Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, Michigan, 48109, USA.
| |
Collapse
|
150
|
Neutropenia in Patients with Common Variable Immunodeficiency: a Rare Event Associated with Severe Outcome. J Clin Immunol 2017; 37:715-726. [PMID: 28842786 DOI: 10.1007/s10875-017-0434-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/15/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Common variable immunodeficiency (CVID) is characterized by infections and hypogammaglobulinemia. Neutropenia is rare during CVID. METHODS The French DEFI study enrolled patients with primary hypogammaglobulinemia. Patients with CVID and neutropenia were retrospectively analyzed. RESULTS Among 473 patients with CVID, 16 patients displayed neutropenia (lowest count [0-1400]*106/L). Sex ratio (M/F) was 10/6. Five patients died during the follow-up (11 years) with an increased percentage of deaths compared to the whole DEFI group (31.3 vs 3.4%, P < 0.05). Neutropenia was diagnosed for 10 patients before 22 years old. The most frequent symptoms, except infections, were autoimmune cytopenia, i.e., thrombopenia or anemia (11/16). Ten patients were affected with lymphoproliferative diseases. Two patients were in the infection only group and the others belonged to one or several other CVID groups. The median level of IgG was 2.6 g/L [0.35-4.4]. Most patients presented increased numbers of CD21low CD38low B cell, as already described in CVID autoimmune cytopenia group. Neutropenia was considered autoimmune in 11 cases. NGS for 52 genes of interest was performed on 8 patients. No deleterious mutations were found in LRBA, CTLA4, and PIK3. More than one potentially damaging variant in other genes associated with CVID were present in most patients arguing for a multigene process. CONCLUSION Neutropenia is generally associated with another cytopenia and presumably of autoimmune origin during CVID. In the DEFI study, neutropenia is coupled with more severe clinical outcomes. It appears as an "alarm bell" considering patients' presentation and the high rate of deaths. Whole exome sequencing diagnosis should improve management.
Collapse
|