101
|
Belshan M, Holbrook A, George JW, Durant HE, Callahan M, Jaquet S, West JT, Siedlik J, Ciborowski P. Discovery of candidate HIV-1 latency biomarkers using an OMICs approach. Virology 2021; 558:86-95. [PMID: 33735754 PMCID: PMC10171037 DOI: 10.1016/j.virol.2021.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/24/2021] [Accepted: 03/04/2021] [Indexed: 11/19/2022]
Abstract
Infection with HIV-1 remains uncurable due to reservoirs of latently infected cells. Any potential cure for HIV will require a mechanism to identify and target these cells in vivo. We created a panel of Jurkat cell lines latently infected with the HIV DuoFlo virus to identify candidate biomarkers of latency. SWATH mass spectrometry was used to compare the membrane proteomes of one of the cell lines to parental Jurkat cells. Several candidate proteins with significantly altered expression were identified. The differential expression of several candidates was validated in multiple latently infected cell lines. Three factors (LAG-3, CD147,CD231) were altered across numerous cell lines, but the expression of most candidate biomarkers was variable. These results confirm that phenotypic differences in latently infected cells exists and identify additional novel biomarkers. The variable expression of biomarkers across different cell clones suggests universal antigen-based detection of latently infected cells may require a multiplex approach.
Collapse
Affiliation(s)
- Michael Belshan
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE, USA.
| | - Alexander Holbrook
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE, USA
| | - Joseph W George
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE, USA
| | - Hannah E Durant
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE, USA
| | - Michael Callahan
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE, USA
| | - Spencer Jaquet
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - John T West
- Department of Biochemistry, And the Nebraska Center for Virology, University of Nebraska, Lincoln, NE, USA
| | - Jacob Siedlik
- Department of Exercise Science and Pre-Health Professions, Creighton University, Omaha, NE, USA
| | - Pawel Ciborowski
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
102
|
Assessment of nivolumab in HIV-Infected patients with advanced non-small cell lung cancer after prior chemotherapy. The IFCT-1602 CHIVA2 phase 2 clinical trial. Lung Cancer 2021; 158:146-150. [PMID: 34217967 DOI: 10.1016/j.lungcan.2021.05.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 11/22/2022]
Abstract
IMPORTANCE Therapies targeting immune checkpoints, such as the programmed cell death 1 (PD-1) receptor, have become the standard-of-care for patients with non-small cell lung cancer (NSCLC), but people living with HIV (PLWH) were excluded from these studies. OBJECTIVE To evaluate the efficacy and tolerability of nivolumab in PLWH with advanced NSCLC. DESIGN The CHIVA2 study was a nonrandomized, open-label, phase 2 clinical trial in PLWH with previously treated advanced NSCLC. SETTING National multicenter prospective study. PARTICIPANTS patients had viral load of <200 copies/mL, regardless of their CD4+ T-cell count. INTERVENTION Nivolumab was administered in second or third line, as monotherapy intravenously at 3 mg/kg every 2 weeks, until disease progression or limiting toxicity. MAIN OUTCOMES AND MEASURES The primary endpoint was disease control rate, evaluated using the Response Evaluation Criteria in Solid Tumors, version 1.1. Adverse events were graded using the National Cancer Institute Common Terminology Criteria for Adverse Events, version 4.0. RESULTS Sixteen patients with advanced NSCLC were enrolled: 14 (88 %) were men, median age was 58 years (range: 44-71), and all were smokers. The median duration of nivolumab treatment was 3.5 months (range: 0.5-26.5). The median follow-up was 23.6 months. Disease control rate was 62.5 % for 15 evaluable patients at 8 weeks (2 with partial response, 8 with stable disease, and 5 with disease progression). Twelve (75 %) patients had treatment-related adverse events, which were mild or moderate, except for one patient experiencing severe pruritus, onycholysis, and pemphigoid. There were no opportunistic infections or unexpected immune-related events. HIV viral load was stable during treatment. An increase in proliferating CD8+ and CD4+ T-cells was observed after 3 nivolumab cycles in a subgroup of 9 patients. CONCLUSIONS AND RELEVANCE Second/third-line nivolumab treatment was well-tolerated and beneficial in PLWH with NSCLC. Future trials should investigate immune checkpoint inhibitors in first-line settings. TRIAL REGISTRATION EudraCT.ema.europa.eu registration number: 2016-003796-22.
Collapse
|
103
|
Kula-Pacurar A, Rodari A, Darcis G, Van Lint C. Shocking HIV-1 with immunomodulatory latency reversing agents. Semin Immunol 2021; 51:101478. [PMID: 33972164 DOI: 10.1016/j.smim.2021.101478] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
The "shock-and-kill" strategy is one of the most explored HIV-1 cure approaches to eliminate latent virus. This strategy is based on HIV-1 reactivation using latency reversing agents (LRAs) to reactivate latent proviruses (the "shock" phase) and to induce subsequent elimination of the reactivated cells by immune responses or virus-induced cytopathic effects (the "kill" phase). Studies using immunomodulatory LRAs such as blockers of immune checkpoint molecules, toll-like receptor agonists, cytokines and CD8+ T cell depleting antibodies showed promising potential as LRAs inducing directly or indirectly cellular pathways known to control HIV transcription. However, the precise molecular mechanisms by which these immunomodulatory LRAs reverse latency remain incompletely understood. Together with the heterogenous nature of HIV-1 latency, this lack of understanding complicates efforts to develop more efficient and safer cure strategies. Hence, deciphering those mechanisms is pivotal in designing approaches to eliminate latent HIV infection.
Collapse
Affiliation(s)
- Anna Kula-Pacurar
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| | - Anthony Rodari
- Service of Molecular Virology, Department of Molecular Virology (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Gilles Darcis
- Infectious Diseases Department, Liège University Hospital, Liège, Belgium
| | - Carine Van Lint
- Service of Molecular Virology, Department of Molecular Virology (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium.
| |
Collapse
|
104
|
Svensson JP. Targeting Epigenetics to Cure HIV-1: Lessons From (and for) Cancer Treatment. Front Cell Infect Microbiol 2021; 11:668637. [PMID: 34026665 PMCID: PMC8137950 DOI: 10.3389/fcimb.2021.668637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/21/2021] [Indexed: 11/17/2022] Open
Abstract
The Human Immunodeficiency Virus type 1 (HIV-1) integrates in the host genome as a provirus resulting in a long-lived reservoir of infected CD4 cells. As a provirus, HIV-1 has several aspects in common with an oncogene. Both the HIV-1 provirus and oncogenes only cause disease when expressed. A successful cure of both cancer and HIV-1 includes elimination of all cells with potential to regenerate the disease. For over two decades, epigenetic drugs developed against cancer have been used in the HIV-1 field to modulate the state of the proviral chromatin. Cells with an intact HIV-1 provirus exist in three states of infection: productive, inducible latent, and non-inducible latent. Here focus is on HIV-1, transcription control and chromatin structure; how the inducible proviruses are maintained in a chromatin structure that allows reactivation of transcription; and how transcription switches between different stages to allow for an abundance of different transcripts from a single promoter. Recently it was shown that a functional cure of HIV can be achieved by encapsulating all intact HIV-1 proviruses in heterochromatin, giving hope that epigenetic interventions may be used to end the HIV-1 epidemic.
Collapse
Affiliation(s)
- J Peter Svensson
- Department of Biosciences and Nutrition, Karolinska Institutet (KI), Huddinge, Sweden
| |
Collapse
|
105
|
T cell immune discriminants of HIV reservoir size in a pediatric cohort of perinatally infected individuals. PLoS Pathog 2021; 17:e1009533. [PMID: 33901266 PMCID: PMC8112655 DOI: 10.1371/journal.ppat.1009533] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 05/11/2021] [Accepted: 04/04/2021] [Indexed: 12/15/2022] Open
Abstract
The size of the latent HIV reservoir is associated with the timing of therapeutic interventions and overall health of the immune system. Here, we demonstrate that T cell phenotypic signatures associate with viral reservoir size in a cohort of HIV vertically infected children and young adults under durable viral control, and who initiated anti-retroviral therapy (ART) <2 years old. Flow cytometry was used to measure expression of immune activation (IA), immune checkpoint (ICP) markers, and intracellular cytokine production after stimulation with GAG peptides in CD4 and CD8 T cells from cross-sectional peripheral blood samples. We also evaluated the expression of 96 genes in sort-purified total CD4 and CD8 T cells along with HIV-specific CD4 and CD8 T cells using a multiplexed RT-PCR approach. As a measure of HIV reservoir, total HIV-DNA quantification by real-time PCR was performed. Poisson regression modeling for predicting reservoir size using phenotypic markers revealed a signature that featured frequencies of PD-1+CD4 T cells, TIGIT+CD4 T cells and HIV-specific (CD40L+) CD4 T cells as important predictors and it also shows that time of ART initiation strongly affects their association with HIV-DNA. Further, gene expression analysis showed that the frequencies of PD-1+CD4 T cells associated with a CD4 T cell molecular profile skewed toward an exhausted Th1 profile. Our data provide a link between immune checkpoint molecules and HIV persistence in a pediatric cohort as has been demonstrated in adults. Frequencies of PD-1+ and TIGIT+CD4 T cells along with the frequency of HIV-specific CD4 T cells could be associated with the mechanism of viral persistence and may provide insight into potential targets for therapeutic intervention. Low HIV reservoir size is associated with positive outcomes of therapeutic approaches and better immune function. Here, we identified a 9-marker T cell immune signature based on phenotypic flow cytometry data that associated with total HIV DNA measurements in a pediatric cohort of 34 perinatally infected participants with sustained viral control. Notably, frequencies of PD-1+ CD4 T cells and TIGIT+ CD4 T cells were positively correlated and HIV-specific (CD40L+) CD4 T cells were negatively correlated with HIV DNA, and were impacted by time of ART initiation. Gene expression analysis by multiplex RT-PCR showed that the frequencies of PD-1+ CD4 T cells associated with an exhausted Th1 molecular profile in CD4 T cells. This signature could inform future therapeutic studies and provide mechanistic insight on HIV persistence in perinatally infected HIV.
Collapse
|
106
|
Bănică L, Vlaicu O, Jipa R, Abagiu A, Nicolae I, Neaga E, Oţelea D, Paraschiv S. Exhaustion and senescence of CD4 and CD8 T cells that express co-stimulatory molecules CD27 and CD28 in subjects that acquired HIV by drug use or by sexual route. Germs 2021; 11:66-77. [PMID: 33898343 DOI: 10.18683/germs.2021.1242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 12/31/2022]
Abstract
Introduction The human immunodeficiency virus (HIV) infection leads to immune activation, senescence and exhaustion of T cells. Co-stimulatory molecules play important roles in controlling these processes. The CD28 signaling triggers efficient T cell activation, while CD27 provides survival signals to CD28- T cells. Loss of these molecules was associated with senescent phenotype and resistance to checkpoint inhibitors.Romania has faced an HIV outbreak among people who inject drugs (PWID), most of them chronically infected with hepatitis C virus (HCV). HIV/HCV co-infection was associated with increased immune activation and rapid disease progression. Methods We evaluated by flow cytometry the expression of CD27, CD28, CD38, HLA-DR, CD57 and PD-1 on CD4 and CD8 T cells from 34 subjected infected with HIV (22 PWID and 12 people who acquired HIV by sexual route - PWHS) and 18 HIV-negative individuals (controls). Results We found that as compared to controls, HIV patients, regardless of infection route, have high percentages of intermediately differentiated (CD27+CD28-) and low percentages of less differentiated (CD27+CD28+) CD8 T cells. Significantly higher levels of CD8+CD27+CD28- T cells were found in PWHS than in PWID. A lower percentage of intermediately and highly differentiated (CD27-CD28-) CD8 T cells express CD57 in people living with HIV (PLWH) than in controls. Increased levels of less and intermediately differentiated CD4 and CD8 T cells expressing PD-1 were identified in PLWH, especially in PWID; these directly correlated with HIV viral load and T cell activation and negatively correlated with CD4 counts. Conclusions Our data show that induction of PD-1 on T cells expressing co-stimulatory molecules CD27 and/or CD28 might contribute to poor control of HIV infection and to immune activation.
Collapse
Affiliation(s)
- Leontina Bănică
- PhD, Molecular Diagnostics Laboratory, National Institute for Infectious Diseases "Prof. Dr. Matei Balş", No. 1 Dr. Calistrat Grozovici street, Bucharest 021105, Romania
| | - Ovidiu Vlaicu
- PhD, Molecular Diagnostics Laboratory, National Institute for Infectious Diseases "Prof. Dr. Matei Balş", No. 1 Dr. Calistrat Grozovici street, Bucharest 021105, Romania
| | - Raluca Jipa
- MD, Clinical Department, National Institute for Infectious Diseases "Prof. Dr. Matei Balş", No. 1 Dr. Calistrat Grozovici street, Bucharest 021105, Romania
| | - Adrian Abagiu
- MD, Clinical Department, National Institute for Infectious Diseases "Prof. Dr. Matei Balş", No. 1 Dr. Calistrat Grozovici street, Bucharest 021105, Romania
| | - Ionelia Nicolae
- MSc, Molecular Diagnostics Laboratory, National Institute for Infectious Diseases "Prof. Dr. Matei Balş", No. 1 Dr. Calistrat Grozovici street, Bucharest 021105, Romania
| | - Emil Neaga
- PhD, Molecular Diagnostics Laboratory, National Institute for Infectious Diseases "Prof. Dr. Matei Balş", No. 1 Dr. Calistrat Grozovici street, Bucharest 021105, Romania
| | - Dan Oţelea
- MD, PhD, Molecular Diagnostics Laboratory, National Institute for Infectious Diseases "Prof. Dr. Matei Balş", No. 1 Dr. Calistrat Grozovici street, Bucharest 021105, Romania
| | - Simona Paraschiv
- PhD, Molecular Diagnostics Laboratory, National Institute for Infectious Diseases "Prof. Dr. Matei Balş", No. 1 Dr. Calistrat Grozovici street, Bucharest 021105, Romania, Virology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
107
|
Garcia de Moura R, Covre LP, Fantecelle CH, Gajardo VAT, Cunha CB, Stringari LL, Belew AT, Daniel CB, Zeidler SVV, Tadokoro CE, de Matos Guedes HL, Zanotti RL, Mosser D, Falqueto A, Akbar AN, Gomes DCO. PD-1 Blockade Modulates Functional Activities of Exhausted-Like T Cell in Patients With Cutaneous Leishmaniasis. Front Immunol 2021; 12:632667. [PMID: 33767700 PMCID: PMC7985249 DOI: 10.3389/fimmu.2021.632667] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/20/2021] [Indexed: 01/17/2023] Open
Abstract
Patients infected by Leishmania braziliensis develop debilitating skin lesions. The role of inhibitory checkpoint receptors (ICRs) that induce T cell exhaustion during this disease is not known. Transcriptional profiling identified increased expression of ICRs including PD-1, PDL-1, PDL-2, TIM-3, and CTLA-4 in skin lesions of patients that was confirmed by immunohistology where there was increased expression of PD-1, TIM-3, and CTLA-4 in both CD4+ and CD8+ T cell subsets. Moreover, PDL-1/PDL-2 ligands were increased on skin macrophages compared to healthy controls. The proportions PD1+, but not TIM-3 or CTLA-4 expressing T cells in the circulation were positively correlated with those in the lesions of the same patients, suggesting that PD-1 may regulate T cell function equally in both compartments. Blocking PD-1 signaling in circulating T cells enhanced their proliferative capacity and IFN-γ production, but not TNF-α secretion in response to L. braziliensis recall antigen challenge in vitro. While we previously showed a significant correlation between the accumulation of senescent CD8+CD45RA+CD27- T cells in the circulation and skin lesion size in the patients, there was no such correlation between the extent of PD-1 expression by circulating on T cells and the magnitude of skin lesions suggesting that exhausted-like T cells may not contribute to the cutaneous immunopathology. Nevertheless, we identified exhausted-like T cells in both skin lesions and in the blood. Targeting this population by PD-1 blockade may improve T cell function and thus accelerate parasite clearance that would reduce the cutaneous pathology in cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Renan Garcia de Moura
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitoria, Brazil
| | - Luciana Polaco Covre
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitoria, Brazil,Division of Medicine, University College London, London, United Kingdom
| | | | | | - Carla Baroni Cunha
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitoria, Brazil
| | | | - Ashton Trey Belew
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States,Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, United States
| | | | | | | | - Herbert Leonel de Matos Guedes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil,Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - David Mosser
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Aloisio Falqueto
- Departamento de Medicina Social, Universidade Federal do Espírito Santo, Vitoria, Brazil
| | - Arne N. Akbar
- Division of Medicine, University College London, London, United Kingdom
| | - Daniel Claudio Oliveira Gomes
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitoria, Brazil,Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Vitoria, Brazil,*Correspondence: Daniel Claudio Oliveira Gomes,
| |
Collapse
|
108
|
Rasmussen TA, Rajdev L, Rhodes A, Dantanarayana A, Tennakoon S, Chea S, Spelman T, Lensing S, Rutishauser R, Bakkour S, Busch M, Siliciano JD, Siliciano RF, Einstein MH, Dittmer DP, Chiao E, Deeks S, Durand C, Lewin SR. Impact of anti-PD-1 and anti-CTLA-4 on the HIV reservoir in people living with HIV with cancer on antiretroviral therapy: The AIDS Malignancy Consortium-095 study. Clin Infect Dis 2021; 73:e1973-e1981. [PMID: 33677480 DOI: 10.1093/cid/ciaa1530] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Antibodies to PD-1 and CTLA-4 may perturb HIV persistence during antiretroviral therapy (ART) by reversing HIV-latency and/or boosting HIV-specific immunity leading to clearance of infected cells. We tested this hypothesis in a clinical trial of anti-PD-1 alone or in combination with anti-CTLA-4 in people living with HIV (PLWH) and cancer. METHODS This was a substudy of the AIDS Malignancy Consortium-095 Study. ART-suppressed PLWH with advanced malignancies were assigned to nivolumab (anti-PD-1) with or without ipilimumab (anti-CTLA-4). In samples obtained pre-infusion and one and seven days after the first and fourth dose of immune checkpoint blockade (ICB), we quantified cell-associated unspliced (CA-US) HIV-RNA and HIV-DNA. Plasma HIV-RNA was quantified during the first treatment cycle. Quantitative viral outgrowth assay (QVOA) to estimate the frequency of replication-competent HIV was performed before and after ICB for participants with samples available. RESULTS Of forty participants, 33 received nivolumab and seven nivolumab plus ipilimumab. Whereas CA-US HIV RNA did not change with nivolumab monotherapy, we detected a median 1.44 fold-increase (IQR 1.16-1.89) after the first dose of nivolumab and ipilimumab combination therapy (P=0.031). There was no decrease in the frequency of cells containing replication-competent HIV, but in the two individuals on combination ICB for whom we had longitudinal QVOA, we detected decreases of 97% and 64% compared to baseline. CONCLUSION Anti-PD-1 alone showed no effect on HIV-latency or the latent HIV-reservoir, but the combination of anti-PD-1 and anti-CTL-4 induced a modest increase in CA-US HIV RNA and may potentially eliminate cells containing replication-competent HIV.
Collapse
Affiliation(s)
- Thomas A Rasmussen
- The Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Lakshmi Rajdev
- Department of Haematology and Oncology, Lennox Hill Hospital, New York, USA
| | - Ajantha Rhodes
- The Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Ashanti Dantanarayana
- The Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Surekha Tennakoon
- The Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Socheata Chea
- The Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Tim Spelman
- The Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Shelly Lensing
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Rachel Rutishauser
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Sonia Bakkour
- Vitalant Research Institute and Department of Laboratory Medicine, University of California, San Francisco, California, USA
| | - Michael Busch
- Vitalant Research Institute and Department of Laboratory Medicine, University of California, San Francisco, California, USA
| | - Janet D Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mark H Einstein
- Department of Obstetrics, Gynecology, & Reproductive Health, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Dirk P Dittmer
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Steven Deeks
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Christine Durand
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sharon R Lewin
- The Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia.,Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia
| |
Collapse
|
109
|
HIV-1 Latency and Viral Reservoirs: Existing Reversal Approaches and Potential Technologies, Targets, and Pathways Involved in HIV Latency Studies. Cells 2021; 10:cells10020475. [PMID: 33672138 PMCID: PMC7926981 DOI: 10.3390/cells10020475] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/14/2021] [Accepted: 02/20/2021] [Indexed: 02/07/2023] Open
Abstract
Eradication of latent human immunodeficiency virus (HIV) infection is a global health challenge. Reactivation of HIV latency and killing of virus-infected cells, the so-called "kick and kill" or "shock and kill" approaches, are a popular strategy for HIV cure. While antiretroviral therapy (ART) halts HIV replication by targeting multiple steps in the HIV life cycle, including viral entry, integration, replication, and production, it cannot get rid of the occult provirus incorporated into the host-cell genome. These latent proviruses are replication-competent and can rebound in cases of ART interruption or cessation. In general, a very small population of cells harbor provirus, serve as reservoirs in ART-controlled HIV subjects, and are capable of expressing little to no HIV RNA or proteins. Beyond the canonical resting memory CD4+ T cells, HIV reservoirs also exist within tissue macrophages, myeloid cells, brain microglial cells, gut epithelial cells, and hematopoietic stem cells (HSCs). Despite a lack of active viral production, latently HIV-infected subjects continue to exhibit aberrant cellular signaling and metabolic dysfunction, leading to minor to major cellular and systemic complications or comorbidities. These include genomic DNA damage; telomere attrition; mitochondrial dysfunction; premature aging; and lymphocytic, cardiac, renal, hepatic, or pulmonary dysfunctions. Therefore, the arcane machineries involved in HIV latency and its reversal warrant further studies to identify the cryptic mechanisms of HIV reservoir formation and clearance. In this review, we discuss several molecules and signaling pathways, some of which have dual roles in maintaining or reversing HIV latency and reservoirs, and describe some evolving strategies and possible approaches to eliminate viral reservoirs and, ultimately, cure/eradicate HIV infection.
Collapse
|
110
|
Cryptococcal Immune Reconstitution Inflammatory Syndrome: From Blood and Cerebrospinal Fluid Biomarkers to Treatment Approaches. Life (Basel) 2021; 11:life11020095. [PMID: 33514007 PMCID: PMC7912256 DOI: 10.3390/life11020095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/20/2021] [Accepted: 01/23/2021] [Indexed: 12/31/2022] Open
Abstract
Immune reconstitution inflammatory syndrome (IRIS) presents as an exaggerated immune reaction that occurs during dysregulated immune restoration in immunocompromised patients in late-stage human immunodeficiency virus (HIV) infection who have commenced antiretroviral treatments (ART). Virtually any opportunistic pathogen can provoke this type of immune restoration disorder. In this review, we focus on recent developments in the identification of risk factors for Cryptococcal IRIS and on advancements in our understanding of C-IRIS immunopathogenesis. We overview new findings in blood and cerebrospinal fluid which can potentially be useful in the prediction and diagnosis of cryptococcal meningitis IRIS (CM-IRIS). We assess current therapeutic regimens and novel treatment approaches to combat CM-IRIS. We discuss the utility of biomarkers for clinical monitoring and adjusting treatment modalities in acquired immunodeficiency syndrome (AIDS) patients co-infected with Cryptococcus who have initiated ART.
Collapse
|
111
|
Gonzalez-Cao M, Morán T, Dalmau J, Garcia-Corbacho J, Bracht JWP, Bernabe R, Juan O, de Castro J, Blanco R, Drozdowskyj A, Argilaguet J, Meyerhans A, Blanco J, Prado JG, Carrillo J, Clotet B, Massuti B, Provencio M, Molina-Vila MA, Mayo de Las Casa C, Garzon M, Cao P, Huang CY, Martinez-Picado J, Rosell R. Assessment of the Feasibility and Safety of Durvalumab for Treatment of Solid Tumors in Patients With HIV-1 Infection: The Phase 2 DURVAST Study. JAMA Oncol 2021; 6:1063-1067. [PMID: 32271353 DOI: 10.1001/jamaoncol.2020.0465] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Importance Therapies targeting the programmed cell death 1 (PD-1) receptor or its ligand (PD-L1), such as the humanized monoclonal antibody durvalumab, have shown durable clinical responses in several tumor types. However, concerns about the safety and feasibility of PD-1/PD-L1 blockade in HIV-1-infected individuals have led to the exclusion of these patients from clinical trials on cancer immunotherapies. Objective To evaluate the feasibility and safety of durvalumab treatment in patients with advanced cancer and virologically controlled HIV-1 infection. Design, Setting, and Participants The DURVAST study was a nonrandomized, open-label, phase 2 clinical trial in patients with any solid tumor type in which anti-PD-1 or anti-PD-L1 antibodies have approved indications or for which there are data of antitumoral activity with no other available curative therapy. All patients had basal undetectable plasma viremia while undergoing combination antiretroviral therapy. Interventions Treatment consisted of intravenous infusion of durvalumab (1500 mg every 4 weeks) until disease progression or unacceptable toxic effects. Main Outcomes and Measures Adverse events were graded with the use of the National Cancer Institute Common Terminology Criteria for Adverse Events, version 4.03. Tumor response was evaluated using the Response Evaluation Criteria in Solid Tumors version 1.1. Results A total of 20 HIV-1-infected patients with advanced cancer were enrolled; 16 (80%) were male, the median (range) age was 54 (30-73) years, and 12 (60%) had progressed with previous cancer treatment lines. A median (range) of 4 (1-16) cycles of durvalumab were administered. Drug-related adverse events were observed in 50% of patients, and all were grade 1 and 2 (mainly diarrhea, asthenia, and arthromyalgia). Four of 16 response-evaluable patients (25%) had a partial response. Five patients (31%) had stable disease, including 4 with durable stable disease (disease control rate of 50%). CD4+ and CD8+ T-cell counts and plasma HIV-1 viremia remained stable throughout the study. Conclusions and Relevance Durvalumab treatment was feasible and safe in HIV-1-infected patients with cancer receiving combination antiretroviral therapy. HIV-1-infected patients on suppressive antiretroviral therapy with advanced cancer should have access to cancer immunotherapy treatments. Trial Registration ClinicalTrials.gov Identifier: NCT03094286.
Collapse
Affiliation(s)
- Maria Gonzalez-Cao
- Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Dexeus University Hospital, Barcelona, Spain
| | - Teresa Morán
- Medical Oncology Department, Catalan Institute of Oncology (ICO), Germans Trias i Pujol Hospital, Badalona, Spain
| | - Judith Dalmau
- IrsiCaixa AIDS Research Institute, University Hospital Germans Trias i Pujol, Badalona, Spain
| | | | - Jillian W P Bracht
- Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Dexeus University Hospital, Barcelona, Spain
| | - Reyes Bernabe
- Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Oscar Juan
- Hospital Universitario la Fe de Valencia, Valencia, Spain
| | | | | | - Ana Drozdowskyj
- Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Dexeus University Hospital, Barcelona, Spain
| | - Jordi Argilaguet
- Infection Biology Laboratory, University Pompeu Fabra, Barcelona, Spain
| | - Andreas Meyerhans
- Infection Biology Laboratory, University Pompeu Fabra, Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Julia Blanco
- IrsiCaixa AIDS Research Institute, University Hospital Germans Trias i Pujol, Badalona, Spain.,University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain.,Germans Trias i Pujol Research Institute and Hospital (IGTP), Badalona, Spain
| | - Julia G Prado
- IrsiCaixa AIDS Research Institute, University Hospital Germans Trias i Pujol, Badalona, Spain.,Germans Trias i Pujol Research Institute and Hospital (IGTP), Badalona, Spain
| | - Jorge Carrillo
- IrsiCaixa AIDS Research Institute, University Hospital Germans Trias i Pujol, Badalona, Spain
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute, University Hospital Germans Trias i Pujol, Badalona, Spain.,University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
| | | | | | - Miguel A Molina-Vila
- Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Dexeus University Hospital, Barcelona, Spain
| | - Clara Mayo de Las Casa
- Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Dexeus University Hospital, Barcelona, Spain
| | - Monica Garzon
- Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Dexeus University Hospital, Barcelona, Spain
| | - Peng Cao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | | | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute, University Hospital Germans Trias i Pujol, Badalona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.,Germans Trias i Pujol Research Institute and Hospital (IGTP), Badalona, Spain
| | - Rafael Rosell
- Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Dexeus University Hospital, Barcelona, Spain.,Germans Trias i Pujol Research Institute and Hospital (IGTP), Badalona, Spain
| |
Collapse
|
112
|
Horn C, Augustin M, Ercanoglu MS, Heger E, Knops E, Bondet V, Duffy D, Chon SH, Nierhoff D, Oette M, Schäfer H, Vivaldi C, Held K, Anderson J, Geldmacher C, Suárez I, Rybniker J, Klein F, Fätkenheuer G, Müller-Trutwin M, Lehmann C. HIV DNA reservoir and elevated PD-1 expression of CD4 T-cell subsets particularly persist in the terminal ileum of HIV-positive patients despite cART. HIV Med 2021; 22:397-408. [PMID: 33421299 DOI: 10.1111/hiv.13031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 08/23/2020] [Accepted: 11/04/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Despite its importance as an HIV anatomic sanctuary, little is known about the characteristics of the HIV reservoir in the terminal ileum (TI). In blood, the immune checkpoint inhibitor programmed-death-1 (PD-1) has been linked to the HIV reservoir and T-cell immune dysfunction. We thus evaluated PD-1 expression and cell-associated HIV DNA in memory CD4 T-cell subsets from TI, peripheral blood (PB) and rectum (RE) of untreated and treated HIV-positive patients to identify associations between PD-1 and HIV reservoir in other sites. METHODS Using mononuclear cells from PB, TI and RE of untreated HIV-positive (N = 6), treated (n = 18) HIV-positive and uninfected individuals (n = 16), we identified and sorted distinct memory CD4 T-cell subsets by flow cytometry, quantified their cell-associated HIV DNA using quantitative PCR and assessed PD-1 expression levels using geometric mean fluorescence intensity. Combined HIV-1 RNA in situ hybridization and immunohistochemistry was performed on ileal biopsy sections. RESULTS Combined antiretroviral therapy (cART)-treated patients with undetectable HIV RNA and significantly lower levels of HIV DNA in PB showed particularly high PD-1 expression in PB and TI, and high HIV DNA levels in TI, irrespective of clinical characteristics. By contrast, in treatment-naïve patients HIV DNA levels in memory CD4 T-cell subsets were high in PB and TI. CONCLUSION Elevated PD-1 expression on memory CD4 T-cells in PB and TI despite treatment points to continuous immune dysfunction and underlines the importance of evaluating immunotherapy in reversing HIV latency and T-cell reconstitution. As HIV DNA particularly persists in TI despite cART, investigating samples from TI is crucial in understanding HIV immunopathogenesis.
Collapse
Affiliation(s)
- C Horn
- Division of Infectious Diseases, Department I of Internal Medicine, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), Cologne, Germany
| | - M Augustin
- Division of Infectious Diseases, Department I of Internal Medicine, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), Cologne, Germany
| | - M S Ercanoglu
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - E Heger
- Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - E Knops
- Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - V Bondet
- Immunobiology of Dendritic Cells Unit, Inserm U1223, Institut Pasteur, Paris Cedex 15, France
| | - D Duffy
- Immunobiology of Dendritic Cells Unit, Inserm U1223, Institut Pasteur, Paris Cedex 15, France
| | - S-H Chon
- Department of General, Visceral Surgery and Cancer Surgery, University Hospital Cologne, Cologne, Germany
| | - D Nierhoff
- Clinic for Gastroenterology and Hepatology, University Hospital of Cologne, Cologne, Germany
| | - M Oette
- Clinic for Coloproctology, PanKlinik, Cologne, Germany
| | - H Schäfer
- Clinic for Coloproctology, PanKlinik, Cologne, Germany
| | - C Vivaldi
- Clinic for Coloproctology, PanKlinik, Cologne, Germany
| | - K Held
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany.,German Center for Infection Research (DZIF), Munich, Germany
| | - J Anderson
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany
| | - C Geldmacher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany.,German Center for Infection Research (DZIF), Munich, Germany
| | - I Suárez
- Division of Infectious Diseases, Department I of Internal Medicine, University of Cologne, Cologne, Germany
| | - J Rybniker
- Division of Infectious Diseases, Department I of Internal Medicine, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), Cologne, Germany
| | - F Klein
- German Center for Infection Research (DZIF), Cologne, Germany.,Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - G Fätkenheuer
- Division of Infectious Diseases, Department I of Internal Medicine, University of Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), Cologne, Germany
| | - M Müller-Trutwin
- Unité HIV, Inflammation & Persistence, Institut Pasteur, Paris Cedex 15, France
| | - C Lehmann
- Division of Infectious Diseases, Department I of Internal Medicine, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), Cologne, Germany
| |
Collapse
|
113
|
Chew GM, Padua AJP, Chow DC, Souza SA, Clements DM, Corley MJ, Pang AP, Alejandria MM, Gerschenson M, Shikuma CM, Ndhlovu LC. Effects of Brief Adjunctive Metformin Therapy in Virologically Suppressed HIV-Infected Adults on Polyfunctional HIV-Specific CD8 T Cell Responses to PD-L1 Blockade. AIDS Res Hum Retroviruses 2021; 37:24-33. [PMID: 33019813 DOI: 10.1089/aid.2020.0172] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Targeting inhibitory immune checkpoint receptor pathways has shown remarkable success in improving anticancer T cell responses for the elimination of tumors. Such immunotherapeutic strategies are being pursued for HIV remission. Metformin has shown favorable clinical outcomes in enhancing the efficacy of programmed cell death-1 (PD-1) blockade and restoring antitumor T cell immunity. Furthermore, monocytes are known to be a strong predictor of progression-free survival in response to anti-PD-1 immunotherapy. In a single-arm clinical trial, we evaluated the immunological effects over an 8-week course of metformin therapy in seven euglycemic, virally suppressed HIV-infected participants on combination antiretroviral therapy (cART). We assessed changes in peripheral HIV-Gag-specific T cell responses to immune checkpoint blockade (ICB) with anti-PD-L1 and anti-T cell immunoreceptor with immunoglobulin and ITIM domain (TIGIT) monoclonal antibodies (mAbs) and changes in CD8 T cell and monocyte subsets using flow cytometry. Study participants were all male, 71% (5/7) Caucasian, with a median age of 61 years, CD4 count of 739 cells/μL, and plasma HIV RNA of <50 copies/mL on stable cART for >1 year. Ex vivo polyfunctional HIV-Gag-specific CD8 T cell responses to anti-PD-L1 mAb significantly improved (p < .05) over the 8-week course of metformin therapy. Moreover, frequencies of both intermediate (CD14+CD16+; r = 0.89, p = .01) and nonclassical (CD14lowCD16+; r = 0.92, p = .01) monocytes at entry were predictive of the magnitude of the anti-HIV CD8 T cell responses to PD-L1 blockade. Collectively, these findings highlight that 8-week course of metformin increases the polyfunctionality of CD8 T cells and that baseline monocyte subset frequencies may be a potential determinant of PD-L1 blockade efficacy. These data provide valuable information for HIV remission trials that utilize ICB strategies to enhance anti-HIV CD8 T cell immunity.
Collapse
Affiliation(s)
- Glen M. Chew
- John A. Burns School of Medicine, University of Hawai'i, Honolulu, Hawaii, USA
| | - Ana Joy P. Padua
- College of Medicine, University of the Philippines, Manila, Philippines
| | - Dominic C. Chow
- John A. Burns School of Medicine, University of Hawai'i, Honolulu, Hawaii, USA
| | - Scott A. Souza
- John A. Burns School of Medicine, University of Hawai'i, Honolulu, Hawaii, USA
| | | | - Michael J. Corley
- John A. Burns School of Medicine, University of Hawai'i, Honolulu, Hawaii, USA
| | - Alina P.S. Pang
- John A. Burns School of Medicine, University of Hawai'i, Honolulu, Hawaii, USA
| | | | - Mariana Gerschenson
- John A. Burns School of Medicine, University of Hawai'i, Honolulu, Hawaii, USA
| | - Cecilia M. Shikuma
- John A. Burns School of Medicine, University of Hawai'i, Honolulu, Hawaii, USA
| | - Lishomwa C. Ndhlovu
- John A. Burns School of Medicine, University of Hawai'i, Honolulu, Hawaii, USA
| |
Collapse
|
114
|
Fromentin R, Chomont N. HIV persistence in subsets of CD4+ T cells: 50 shades of reservoirs. Semin Immunol 2021; 51:101438. [PMID: 33272901 PMCID: PMC8164644 DOI: 10.1016/j.smim.2020.101438] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/19/2020] [Indexed: 12/16/2022]
Abstract
Antiretroviral therapy controls HIV replication but does not eliminate the virus from the infected host. The persistence of a small pool of cells harboring integrated and replication-competent HIV genomes impedes viral eradication efforts. The HIV reservoir was originally described as a relatively homogeneous pool of resting memory CD4+ T cells. Over the past 20 years, the identification of multiple cellular subsets of CD4+ T cells endowed with distinct biological properties shed new lights on the heterogeneity of HIV reservoirs. It is now clear that HIV persists in a large variety of CD4+ T cells, which contribute to HIV persistence through different mechanisms. In this review, we summarize recent findings indicating that specific biological features of well-characterized subsets of CD4+ T cells individually contribute to the persistence of HIV. These include an increased sensitivity to HIV infection, specific tissue locations, enhanced survival and heightened capacity to proliferate. We also discuss the relative abilities of these cellular reservoirs to contribute to viral rebound upon ART interruption. Together, these findings reveal that the HIV reservoir is not homogeneous and should be viewed as a mosaic of multiple cell types that all contribute to HIV persistence through different mechanisms.
Collapse
Affiliation(s)
- Rémi Fromentin
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Nicolas Chomont
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada; Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
115
|
Cohn LB, Chomont N, Deeks SG. The Biology of the HIV-1 Latent Reservoir and Implications for Cure Strategies. Cell Host Microbe 2020; 27:519-530. [PMID: 32272077 DOI: 10.1016/j.chom.2020.03.014] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Antiretroviral therapy (ART) inhibits HIV replication but is not curative. During ART, the integrated HIV genome persists indefinitely within CD4+ T cells and perhaps other cells. Here, we describe the mechanisms thought to contribute to its persistence during treatment and highlight findings from numerous recent studies describing the importance of cell proliferation in that process. Continued progress elucidating the biology will enhance our ability to develop effective curative interventions.
Collapse
Affiliation(s)
- Lillian B Cohn
- Chan Zuckerberg Biohub, San Francisco, CA; Department of Medicine, University of California, San Francisco, CA
| | - Nicolas Chomont
- Centre de recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC, Canada
| | - Steven G Deeks
- Department of Medicine, University of California, San Francisco, CA.
| |
Collapse
|
116
|
Yukl SA, Khan S, Chen TH, Trapecar M, Wu F, Xie G, Telwatte S, Fulop D, Pico AR, Laird GM, Ritter KD, Jones NG, Lu CM, Siliciano RF, Roan NR, Milush JM, Somsouk M, Deeks SG, Hunt PW, Sanjabi S. Shared Mechanisms Govern HIV Transcriptional Suppression in Circulating CD103 + and Gut CD4 + T Cells. J Virol 2020; 95:e01331-20. [PMID: 33115867 PMCID: PMC7944458 DOI: 10.1128/jvi.01331-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/23/2020] [Indexed: 12/22/2022] Open
Abstract
Latent HIV infection is the main barrier to cure, and most HIV-infected cells reside in the gut, where distinct but unknown mechanisms may promote viral latency. Transforming growth factor β (TGF-β), which induces the expression of CD103 on tissue-resident memory T cells, has been implicated in HIV latency. Using CD103 as a surrogate marker to identify cells that have undergone TGF-β signaling, we compared the HIV RNA/DNA contents and cellular transcriptomes of CD103+ and CD103- CD4 T cells from the blood and rectum of HIV-negative (HIV-) and antiretroviral therapy (ART)-suppressed HIV-positive (HIV+) individuals. Like gut CD4+ T cells, circulating CD103+ cells harbored more HIV DNA than did CD103- cells but transcribed less HIV RNA per provirus. Circulating CD103+ cells also shared a gene expression profile that is closer to that of gut CD4 T cells than to that of circulating CD103- cells, with significantly lower expression levels of ribosomal proteins and transcriptional and translational pathways associated with HIV expression but higher expression levels of a subset of genes implicated in suppressing HIV transcription. These findings suggest that blood CD103+ CD4 T cells can serve as a model to study the molecular mechanisms of HIV latency in the gut and reveal new cellular factors that may contribute to HIV latency.IMPORTANCE The ability of HIV to establish a reversibly silent, "latent" infection is widely regarded as the main barrier to curing HIV. Most HIV-infected cells reside in tissues such as the gut, but it is unclear what mechanisms maintain HIV latency in the blood or gut. We found that circulating CD103+ CD4+ T cells are enriched for HIV-infected cells in a latent-like state. Using RNA sequencing (RNA-seq), we found that CD103+ T cells share a cellular transcriptome that more closely resembles that of CD4+ T cells from the gut, suggesting that they are homing to or from the gut. We also identified the cellular genes whose expression distinguishes gut CD4+ or circulating CD103+ T cells from circulating CD103- T cells, including some genes that have been implicated in HIV expression. These genes may contribute to latent HIV infection in the gut and may serve as new targets for therapies aimed at curing HIV.
Collapse
Affiliation(s)
- Steven A Yukl
- San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
- Department of Medicine, University of California, San Francisco, School of Medicine, San Francisco, California, USA
| | - Shahzada Khan
- Gladstone Institutes, San Francisco, California, USA
| | - Tsui-Hua Chen
- San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
- University of California, San Francisco, San Francisco, California, USA
| | | | - Frank Wu
- Gladstone Institutes, San Francisco, California, USA
| | - Guorui Xie
- Gladstone Institutes, San Francisco, California, USA
- Department of Urology, University of California, San Francisco, San Francisco, California, USA
| | - Sushama Telwatte
- San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
- Department of Medicine, University of California, San Francisco, School of Medicine, San Francisco, California, USA
| | - Daniel Fulop
- Gladstone Institutes, San Francisco, California, USA
| | | | | | | | - Norman G Jones
- Department of Medicine, University of California, San Francisco, School of Medicine, San Francisco, California, USA
| | - Chuanyi M Lu
- San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
- University of California, San Francisco, San Francisco, California, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Howard Hughes Medical Institute, Baltimore, Maryland, USA
| | - Nadia R Roan
- Gladstone Institutes, San Francisco, California, USA
- Department of Urology, University of California, San Francisco, San Francisco, California, USA
| | - Jeffrey M Milush
- Department of Medicine, University of California, San Francisco, School of Medicine, San Francisco, California, USA
| | - Ma Somsouk
- Division of Gastroenterology, University of California, San Francisco, San Francisco, California, USA
| | - Steven G Deeks
- Department of Medicine, University of California, San Francisco, School of Medicine, San Francisco, California, USA
| | - Peter W Hunt
- Department of Medicine, University of California, San Francisco, School of Medicine, San Francisco, California, USA
| | - Shomyseh Sanjabi
- Gladstone Institutes, San Francisco, California, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
117
|
HIV Infection and Persistence in Pulmonary Mucosal Double Negative T Cells In Vivo. J Virol 2020; 94:JVI.01788-20. [PMID: 32967958 PMCID: PMC7925170 DOI: 10.1128/jvi.01788-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 09/12/2020] [Indexed: 11/20/2022] Open
Abstract
The lungs are relatively unexplored anatomical human immunodeficiency virus (HIV) reservoirs in the antiretroviral therapy (ART) era. Double negative (DN) T cells are a subset of T cells that lack expression of CD4 and CD8 (CD4- CD8-) and may have both regulatory and effector functions during HIV infection. Notably, circulating DN T cells were previously described as cellular HIV reservoirs. Here, we undertook a thorough analysis of pulmonary versus blood DN T cells of people living with HIV (PLWH) under ART. Bronchoalveolar lavage (BAL) fluid and matched peripheral blood were collected from 35 PLWH on ART and 16 uninfected volunteers without respiratory symptoms. Both PLWH and HIV-negative (HIV-) adults displayed higher frequencies of DN T cells in BAL versus blood, and these cells mostly exhibited an effector memory phenotype. In PLWH, pulmonary mucosal DN T cells expressed higher levels of HLA-DR and several cellular markers associated with HIV persistence (CCR6, CXCR3, and PD-1) than blood. We also observed that DN T cells were less senescent (CD28- CD57+) and expressed less immunosuppressive ectonucleotidase (CD73/CD39), granzyme B, and perforin in the BAL fluid than in the blood of PLWH. Importantly, fluorescence-activated cell sorter (FACS)-sorted DN T cells from the BAL fluid of PLWH under suppressive ART harbored HIV DNA. Using the humanized bone marrow-liver-thymus (hu-BLT) mouse model of HIV infection, we observed higher infection frequencies of lung DN T cells than those of the blood and spleen in both early and late HIV infection. Overall, our findings show that HIV is seeded in pulmonary mucosal DN T cells early following infection and persists in these potential cellular HIV reservoirs even during long-term ART.IMPORTANCE Reservoirs of HIV during ART are the primary reasons why HIV/AIDS remains an incurable disease. Indeed, HIV remains latent and unreachable by antiretrovirals in cellular and anatomical sanctuaries, preventing its eradication. The lungs have received very little attention compared to other anatomical reservoirs despite being immunological effector sites exhibiting characteristics ideal for HIV persistence. Furthermore, PLWH suffer from a high burden of pulmonary non-opportunistic infections, suggesting impaired pulmonary immunity despite ART. Meanwhile, various immune cell populations have been proposed to be cellular reservoirs in blood, including CD4- CD8- DN T cells, a subset that may originate from CD4 downregulation by HIV proteins. The present study aims to describe DN T cells in human and humanized mice lungs in relation to intrapulmonary HIV burden. The characterization of DN T cells as cellular HIV reservoirs and the lungs as an anatomical HIV reservoir will contribute to the development of targeted HIV eradication strategies.
Collapse
|
118
|
Sun S, Yang Q, Sheng Y, Fu Y, Sun C, Deng C. Investigational drugs with dual activity against HBV and HIV (Review). Exp Ther Med 2020; 21:35. [PMID: 33262821 PMCID: PMC7690342 DOI: 10.3892/etm.2020.9467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/14/2020] [Indexed: 12/17/2022] Open
Abstract
Chronic hepatitis B (CHB) and acquired immunodeficiency syndrome (AIDS) are global public health problems that pose a significant health burden. Human immunodeficiency virus (HIV) and hepatitis B virus (HBV) coinfection is common, as these viruses have similar transmission routes, such as blood transmission, sexual transmission and mother-to-child transmission. Coinfection frequently leads to accelerated disease progression. For individuals coinfected with HIV/HBV, combination antiretroviral therapy containing dual anti-HBV drugs is recommended. Certain studies have also indicated the benefits of antiretroviral drugs with anti-HBV activity in patients with coinfection. A total of four Food and Drug Administration-approved HIV drugs also have anti-HBV activity; namely, emtricitabine, lamivudine, tenofovir disoproxil fumarate and tenofovir alafenamide, which are all nucleoside reverse transcriptase inhibitors. However, various issues, including drug resistance and side effects, limit their application. Therefore, it is necessary to develop more drugs with dual activity against HBV and HIV. The present review outlines the mechanisms, safety and efficacy of certain drugs that have been investigated for this purpose.
Collapse
Affiliation(s)
- Shiyu Sun
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Tuberculosis, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Infection and Immunity Laboratory, Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Qing Yang
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Tuberculosis, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Infection and Immunity Laboratory, Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yunjian Sheng
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Tuberculosis, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Infection and Immunity Laboratory, Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yi Fu
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Gastrointestinal Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Changfeng Sun
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Tuberculosis, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Infection and Immunity Laboratory, Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Cunliang Deng
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Tuberculosis, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Infection and Immunity Laboratory, Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
119
|
Dufour I, Duprez T, Wertz M, Saussoy P, Ackermans N, El Sankari S, van Pesch V, Van Den Neste E. Improvement in progressive multifocal leukoencephalopathy after pembrolizumab-induced immune reconstruction inflammatory syndrome in a patient with follicular lymphoma. EJHAEM 2020; 1:585-588. [PMID: 35845001 PMCID: PMC9175693 DOI: 10.1002/jha2.56] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022]
Abstract
Progressive multifocal leukoencephalopathy (PML) may develop in follicular lymphoma patients treated with bendamustine-rituximab. In this report, treatment with pembrolizumab successfully inhibited the clinical progression of PML by promoting radiologically demonstrated immune restoration inflammatory syndrome (IRIS), allowing complete clearance of the virus. These findings may further support the use of pembrolizumab in PML with special consideration for the potential occurrence of IRIS.
Collapse
Affiliation(s)
- Inès Dufour
- Department of HematologyUniversité catholique de Louvain, Cliniques universitaires Saint‐LucBrusselsBelgium
| | - Thierry Duprez
- Department of Radiology and Medical ImagingUniversité catholique de Louvain, Cliniques universitaires Saint‐LucBrusselsBelgium
| | - Marie Wertz
- Department of NeurologyClinique Notre‐Dame de GrâceGosseliesBelgium
| | - Pascale Saussoy
- Hematology LaboratoryUniversité catholique de Louvain, Cliniques universitaires Saint‐LucBrusselsBelgium
| | - Nathalie Ackermans
- Department of NeurologyUniversité catholique de Louvain, Cliniques universitaires Saint‐LucBrusselsBelgium
| | - Souraya El Sankari
- Department of NeurologyUniversité catholique de Louvain, Cliniques universitaires Saint‐LucBrusselsBelgium
| | - Vincent van Pesch
- Department of NeurologyUniversité catholique de Louvain, Cliniques universitaires Saint‐LucBrusselsBelgium
| | - Eric Van Den Neste
- Department of HematologyUniversité catholique de Louvain, Cliniques universitaires Saint‐LucBrusselsBelgium
| |
Collapse
|
120
|
Durrechou Q, Domblides C, Sionneau B, Lefort F, Quivy A, Ravaud A, Gross-Goupil M, Daste A. Management of Immune Checkpoint Inhibitor Toxicities. Cancer Manag Res 2020; 12:9139-9158. [PMID: 33061607 PMCID: PMC7533913 DOI: 10.2147/cmar.s218756] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have radically changed the clinical outcome of several cancers with durable responses. CTLA-4 (cytotoxic T lymphocyte antigen-4), PD-1 (programmed cell death protein 1) or PDL-1 (programmed cell death ligand protein 1) represent ICIs that can be used as monotherapy or in combination with other agents. The toxicity p\rofiles of ICIs differ from the side effects of cytotoxic agents and come with new toxicities like immune-related adverse events. Typically, these toxicities occur in all organs. However, the main organs affected are the skin, digestive, hepatic, lungs, rheumatologic, and endocrine. Most of the immune toxicity that occurs is low grade but some more severe toxicities can occur that require a rapid diagnosis and appropriate treatment. The recognition of symptoms by physicians and patient is necessary to resolve them rapidly and adapt treatment to allow the toxicity to resolve.
Collapse
Affiliation(s)
- Quentin Durrechou
- Department of Medical Oncology, Hôpital Saint-André, CHU Bordeaux-University of Bordeaux, Bordeaux, France
| | - Charlotte Domblides
- Department of Medical Oncology, Hôpital Saint-André, CHU Bordeaux-University of Bordeaux, Bordeaux, France.,ImmunoConcEpt, CNRS UMR 5164, Bordeaux University, Bordeaux 33076, France
| | - Baptiste Sionneau
- Department of Medical Oncology, Hôpital Saint-André, CHU Bordeaux-University of Bordeaux, Bordeaux, France
| | - Felix Lefort
- Department of Medical Oncology, Hôpital Saint-André, CHU Bordeaux-University of Bordeaux, Bordeaux, France
| | - Amandine Quivy
- Department of Medical Oncology, Hôpital Saint-André, CHU Bordeaux-University of Bordeaux, Bordeaux, France
| | - Alain Ravaud
- Department of Medical Oncology, Hôpital Saint-André, CHU Bordeaux-University of Bordeaux, Bordeaux, France
| | - Marine Gross-Goupil
- Department of Medical Oncology, Hôpital Saint-André, CHU Bordeaux-University of Bordeaux, Bordeaux, France
| | - Amaury Daste
- Department of Medical Oncology, Hôpital Saint-André, CHU Bordeaux-University of Bordeaux, Bordeaux, France
| |
Collapse
|
121
|
Goshu BA, Chen H, Moussa M, Cheng J, Catalfamo M. Combination rhIL-15 and Anti-PD-L1 (Avelumab) Enhances HIVGag-Specific CD8 T-Cell Function. J Infect Dis 2020; 222:1540-1549. [PMID: 32433762 PMCID: PMC7529035 DOI: 10.1093/infdis/jiaa269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/15/2020] [Indexed: 12/13/2022] Open
Abstract
In chronic HIV infection, virus-specific cytotoxic CD8 T cells showed expression of checkpoint receptors and impaired function. Therefore, restoration of CD8 T-cell function is critical in cure strategies. Here, we show that in vitro blockade of programmed cell death ligand 1 (PD-L1) by an anti-PD-L1 antibody (avelumab) in combination with recombinant human interleukin-15 (rhIL-15) synergistically enhanced cytokine secretion by proliferating HIVGag-specific CD8 T cells. In addition, these CD8 T cells have a CXCR3+PD1-/low phenotype, suggesting a potential to traffic into peripheral tissues. In vitro, proliferating CD8 T cells express PD-L1 suggesting that anti-PD-L1 treatment also targets virus-specific CD8 T cells. Together, these data indicate that rhIL-15/avelumab combination therapy could be a useful strategy to enhance CD8 T-cell function in cure strategies.
Collapse
Affiliation(s)
- Bruktawit A Goshu
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, District of Columbia, USA
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Hui Chen
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, District of Columbia, USA
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Maha Moussa
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, District of Columbia, USA
| | - Jie Cheng
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, District of Columbia, USA
| | - Marta Catalfamo
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, District of Columbia, USA
| |
Collapse
|
122
|
Immune Checkpoints in Viral Infections. Viruses 2020; 12:v12091051. [PMID: 32967229 PMCID: PMC7551039 DOI: 10.3390/v12091051] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
As evidence has mounted that virus-infected cells, such as cancer cells, negatively regulate the function of T-cells via immune checkpoints, it has become increasingly clear that viral infections similarly exploit immune checkpoints as an immune system escape mechanism. Although immune checkpoint therapy has been successfully used in cancer treatment, numerous studies have suggested that such therapy may also be highly relevant for treating viral infection, especially chronic viral infections. However, it has not yet been applied in this manner. Here, we reviewed recent findings regarding immune checkpoints in viral infections, including COVID-19, and discussed the role of immune checkpoints in different viral infections, as well as the potential for applying immune checkpoint blockades as antiviral therapy.
Collapse
|
123
|
Fukuda R, Sugawara S, Kondo Y. Immune Checkpoint Inhibitor Can Reduce HCV-RNA without Liver Damage. Intern Med 2020; 59:2245-2248. [PMID: 32522918 PMCID: PMC7578607 DOI: 10.2169/internalmedicine.3726-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 03/18/2020] [Indexed: 12/23/2022] Open
Abstract
Recently, immune checkpoint inhibitors (iCIs) have been used to treat cancers. Once some of the iCIs for the treatment of hepatocellular carcinoma (HCC) are certified in clinical trials, they are likely be administered to HCC patients with hepatitis C virus (HCV). However, the immunopathogenesis of HCV after the administration of iCIs has not been clarified. We experienced a lung cancer patient with HCV infection treated by nivolumab, programmed cell death 1 (PD-1) antibody. HCV-RNA gradually decreased after the start of nivolumab treatment. However, no increase in transaminase was observed during the decline of HCV-RNA. It was thought that HCV-specific cytotoxic T lymphocytes (CTLs) were activated by iCIs.
Collapse
Affiliation(s)
- Ryo Fukuda
- Department of Hepatology, Sendai Kousei Hospital, Japan
- Treatment Center for Liver Cancer, Sendai Kousei Hospital, Japan
| | | | - Yasuteru Kondo
- Department of Hepatology, Sendai Kousei Hospital, Japan
- Treatment Center for Liver Cancer, Sendai Kousei Hospital, Japan
| |
Collapse
|
124
|
Zhang LX, Jiao YM, Zhang C, Song JW, Fan X, Xu RN, Huang HH, Zhang JY, Wang LF, Zhou CB, Jin L, Shi M, Wang FS. HIV Reservoir Decay and CD4 Recovery Associated With High CD8 Counts in Immune Restored Patients on Long-Term ART. Front Immunol 2020; 11:1541. [PMID: 32793212 PMCID: PMC7390854 DOI: 10.3389/fimmu.2020.01541] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/11/2020] [Indexed: 11/16/2022] Open
Abstract
Background: Whether varying CD8 counts influence the human immunodeficiency virus (HIV) reservoir and CD4 restoration in patients with CD4 counts ≥ 500 cells/μL after long-term antiretroviral therapy (ART) remains unknown. In this study, we analyzed relationships between CD8 levels and viral reservoir decay or CD4 recovery in immune restored patients on long-term ART. Methods: Chronic HIV-infected patients who received 5 years of ART with CD4 counts ≥ 500 cells/μL were grouped according to CD8 counts: CD8 <500 (Group 1), 500–1,000 (Group 2), and ≥1,000 cells/μL (Group 3). CD4 recovery, viral decay, CD8 T-cell function, and their correlations were analyzed during ART among the three groups. Results: Dynamics of viral decay and CD4 recovery were different among the three groups. Both viral decay and CD4 recovery were higher in Group 3 than the other two groups after 5 years of ART, mainly during years 3–5 of ART. Higher expression levels of Ki67 while PD-1 levels were lower on CD8 T-cells in Group 3 compared with the other groups, and Group 3 showed stronger CD8 T-cells functional capacity after 3 years of ART. Reduced HIV DNA levels and increased CD4 counts between years 3 and 5 of ART were positively correlated with CD8 counts and function. Conclusions: High CD8 counts are beneficial for persistent viral decay and CD4 recovery in immune restored patients during long-term ART.
Collapse
Affiliation(s)
- Lu-Xue Zhang
- Peking University 302 Clinical Medical School, Beijing, China
| | - Yan-Mei Jiao
- Treatment and Research Center for Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chao Zhang
- Treatment and Research Center for Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jin-Wen Song
- Treatment and Research Center for Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xing Fan
- Treatment and Research Center for Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ruo-Nan Xu
- Treatment and Research Center for Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hui-Huang Huang
- Treatment and Research Center for Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ji-Yuan Zhang
- Treatment and Research Center for Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Li-Feng Wang
- Treatment and Research Center for Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chun-Bao Zhou
- Treatment and Research Center for Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lei Jin
- Treatment and Research Center for Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ming Shi
- Treatment and Research Center for Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Fu-Sheng Wang
- Peking University 302 Clinical Medical School, Beijing, China.,Treatment and Research Center for Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
125
|
Prodger JL, Capoferri AA, Yu K, Lai J, Reynolds SJ, Kasule J, Kityamuweesi T, Buule P, Serwadda D, Kwon KJ, Schlusser K, Martens C, Scully E, Choi YH, Redd AD, Quinn TC. Reduced HIV-1 latent reservoir outgrowth and distinct immune correlates among women in Rakai, Uganda. JCI Insight 2020; 5:139287. [PMID: 32544096 DOI: 10.1172/jci.insight.139287] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/03/2020] [Indexed: 01/22/2023] Open
Abstract
HIV-1 infection remains incurable owing to the persistence of a viral reservoir that harbors integrated provirus within host cellular DNA. Increasing evidence links sex-based differences in HIV-1 immune responses and pathogenesis; however, little is known about differences in HIV-1 infection persistence. Here, we quantified persistent HIV-1 infection in 90 adults on suppressive antiretroviral therapy in Rakai, Uganda (57 female patients). Total HIV-1 DNA was quantified by PCR, and replication-competent provirus by quantitative viral outgrowth assay (QVOA). Immune phenotyping of T cell subsets and plasma biomarkers was also performed. We found that whereas both sexes had similar total HIV DNA levels, female patients had significantly fewer resting CD4+ T cells harboring replication-competent virus, as measured by viral outgrowth in the QVOA. Factors associated with viral outgrowth differed by sex; notably, frequency of programmed cell death 1 (PD1+) CD4+ T cells correlated with reservoir size in male but not female patients. The sex-based differences in HIV-1 persistence observed in this cohort warrant additional research, especially given the widespread use of the QVOA to assess reservoir size and current explorations of PD1 agonists in cure protocols. Efforts should be made to power future cure studies to assess outcomes in both male and female patients.
Collapse
Affiliation(s)
- Jessica L Prodger
- Department of Microbiology and Immunology and.,Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Adam A Capoferri
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Katherine Yu
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Jun Lai
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Steven J Reynolds
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA.,Rakai Health Sciences Program, Kalisizo, Uganda
| | | | | | - Paul Buule
- Rakai Health Sciences Program, Kalisizo, Uganda
| | - David Serwadda
- Rakai Health Sciences Program, Kalisizo, Uganda.,Makerere University, Kampala, Uganda
| | - Kyungyoon J Kwon
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Katherine Schlusser
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Craig Martens
- Genomic Unit, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA
| | - Eileen Scully
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yun-Hee Choi
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Andrew D Redd
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Thomas C Quinn
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| |
Collapse
|
126
|
Chen H, Moussa M, Catalfamo M. The Role of Immunomodulatory Receptors in the Pathogenesis of HIV Infection: A Therapeutic Opportunity for HIV Cure? Front Immunol 2020; 11:1223. [PMID: 32714317 PMCID: PMC7343933 DOI: 10.3389/fimmu.2020.01223] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 05/15/2020] [Indexed: 12/12/2022] Open
Abstract
Immune activation is the hallmark of HIV infection and plays a role in the pathogenesis of the disease. In the context of suppressed HIV RNA replication by combination antiretroviral therapy (cART), there remains immune activation which is associated to the HIV reservoirs. Persistent virus contributes to a sustained inflammatory environment promoting accumulation of "activated/exhausted" T cells with diminished effector function. These T cells show increased expression of immunomodulatory receptors including Programmed cell death protein (PD1), Cytotoxic T Lymphocyte Associated Protein 4 (CTLA4), Lymphocyte activation gene 3 (LAG3), T cell immunoglobulin and ITIM domain (TIGIT), T cell immunoglobulin and mucin domain containing 3 (TIM3) among others. More importantly, recent reports had demonstrated that, HIV infected T cells express checkpoint receptors, contributing to their survival and promoting maintenance of the viral reservoir. Therapeutic strategies are focused on viral reservoir elimination and/or those to achieve sustained cART-free virologic remission. In this review, we will discuss the immunological basis and the latest advances of the use of checkpoint inhibitors to treat HIV infection.
Collapse
Affiliation(s)
- Hui Chen
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, DC, United States
- CMRS/Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Maha Moussa
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, DC, United States
| | - Marta Catalfamo
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, DC, United States
| |
Collapse
|
127
|
Virologic and Immunologic Features of Simian Immunodeficiency Virus Control Post-ART Interruption in Rhesus Macaques. J Virol 2020; 94:JVI.00338-20. [PMID: 32350073 DOI: 10.1128/jvi.00338-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/17/2020] [Indexed: 02/08/2023] Open
Abstract
Antiretroviral therapy (ART) cannot eradicate human immunodeficiency virus (HIV) and a rapid rebound of virus replication follows analytical treatment interruption (ATI) in the vast majority of HIV-infected individuals. Sustained control of HIV replication without ART has been documented in a subset of individuals, defined as posttreatment controllers (PTCs). The key determinants of post-ART viral control remain largely unclear. Here, we identified 7 SIVmac239-infected rhesus macaques (RMs), defined as PTCs, who started ART 8 weeks postinfection, continued ART for >7 months, and controlled plasma viremia at <104 copies/ml for up to 8 months after ATI and <200 copies/ml at the latest time point. We characterized immunologic and virologic features associated with post-ART SIV control in blood, lymph node (LN), and colorectal (RB) biopsy samples compared to 15 noncontroller (NC) RMs. Before ART initiation, PTCs had higher CD4 T cell counts, lower plasma viremia, and SIV-DNA content in blood and LN compared to NCs, but had similar CD8 T cell function. While levels of intestinal CD4 T cells were similar, PTCs had higher frequencies of Th17 cells. On ART, PTCs had significantly lower levels of residual plasma viremia and SIV-DNA content in blood and tissues. After ATI, SIV-DNA content rapidly increased in NCs, while it remained stable or even decreased in PTCs. Finally, PTCs showed immunologic benefits of viral control after ATI, including higher CD4 T cell levels and reduced immune activation. Overall, lower plasma viremia, reduced cell-associated SIV-DNA, and preserved Th17 homeostasis, including at pre-ART, are the main features associated with sustained viral control after ATI in SIV-infected RMs.IMPORTANCE While effective, antiretroviral therapy is not a cure for HIV infection. Therefore, there is great interest in achieving viral remission in the absence of antiretroviral therapy. Posttreatment controllers represent a small subset of individuals who are able to control HIV after cessation of antiretroviral therapy, but characteristics associated with these individuals have been largely limited to peripheral blood analysis. Here, we identified 7 SIV-infected rhesus macaques that mirrored the human posttreatment controller phenotype and performed immunologic and virologic analysis of blood, lymph node, and colorectal biopsy samples to further understand the characteristics that distinguish them from noncontrollers. Lower viral burden and preservation of immune homeostasis, including intestinal Th17 cells, both before and after ART, were shown to be two major factors associated with the ability to achieve posttreatment control. Overall, these results move the field further toward understanding of important characteristics of viral control in the absence of antiretroviral therapy.
Collapse
|
128
|
Abstract
OBJECTIVES Immunomodulatory drugs (IMDs) are crucial for treating autoimmune, inflammatory, and oncologic conditions. Data regarding the safety of IMDs in people living with HIV (PLWH) are limited. We describe outcomes in all PLWH prescribed these agents from 2000--2019 at two academic medical centers. DESIGN Retrospective cohort study. METHODS We systematically identified and reviewed charts of all PLWH receiving IMDs. We defined a treatment episode as an uninterrupted period on an IMD regimen. We quantified infections, blips (detectable plasma HIV RNA following an undetectable result), and virologic failure (progression from plasma HIV RNA <200 copies/ml to two consecutive values >200 copies/ml despite ART). RESULTS Seventy-seven patients contributed 110 treatment episodes. Rheumatologic comorbidities were the most frequent indication. The most common IMD classes were TNF inhibitors, antimetabolites, and checkpoint inhibitors. Ninety percent of treatment episodes involved concomitant ART. Median pretreatment CD4 T-cell count was 609 cells/μl (IQR 375--861). Among 51 treatment episodes on ART with undetectable pretreatment plasma HIV RNA, HIV became detectable within 1 year in 21 of 51 cases (41.2%); there were no instances of virologic failure. Compared with other agents, treatment episodes involving checkpoint inhibitors were more likely to involve a blip (77.8 vs. 33.3%, P = 0.015). Thirteen treatment episodes (11.8%) were associated with concomitant infection; none was attributed to IMDs by the treating clinician. CONCLUSION PLWH treated with IMDs should be monitored carefully for virologic blips and incident infections. Checkpoint inhibitors may be associated with a higher rate of viral blips, although the clinical significance is unclear.
Collapse
|
129
|
Abstract
Although antiretroviral therapies (ARTs) potently inhibit HIV replication, they do not eradicate the virus. HIV persists in cellular and anatomical reservoirs that show minimal decay during ART. A large number of studies conducted during the past 20 years have shown that HIV persists in a small pool of cells harboring integrated and replication-competent viral genomes. The majority of these cells do not produce viral particles and constitute what is referred to as the latent reservoir of HIV infection. Therefore, although HIV is not considered as a typical latent virus, it can establish a state of nonproductive infection under rare circumstances, particularly in memory CD4+ T cells, which represent the main barrier to HIV eradication. While it was originally thought that the pool of latently infected cells was largely composed of cells harboring transcriptionally silent genomes, recent evidence indicates that several blocks contribute to the nonproductive state of these cells. Here, we describe the virological and immunological factors that play a role in the establishment and persistence of the pool of latently infected cells and review the current approaches aimed at eliminating the latent HIV reservoir.
Collapse
Affiliation(s)
| | - Pierre Gantner
- Department of Microbiology, Infectiology and Immunology and
| | - Rémi Fromentin
- Centre de Recherche du Centre Hospitalier, Université de Montréal, Montreal, Quebec, Canada
| | - Nicolas Chomont
- Department of Microbiology, Infectiology and Immunology and
- Centre de Recherche du Centre Hospitalier, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
130
|
Lima NS, Takata H, Huang SH, Haregot A, Mitchell J, Blackmore S, Garland A, Sy A, Cartwright P, Routy JP, Michael NL, Appay V, Jones RB, Trautmann L. CTL Clonotypes with Higher TCR Affinity Have Better Ability to Reduce the HIV Latent Reservoir. THE JOURNAL OF IMMUNOLOGY 2020; 205:699-707. [PMID: 32591402 DOI: 10.4049/jimmunol.1900811] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 05/23/2020] [Indexed: 01/09/2023]
Abstract
The success of the shock and kill strategy for the HIV cure depends both on the reactivation of the latent reservoir and on the ability of the immune system to eliminate infected cells. As latency reversal alone has not shown any impact in the size of the latent reservoir, ensuring that effector CTLs are able to recognize and kill HIV-infected cells could contribute to reservoir reduction. In this study, we investigated which functional aspects of human CTLs are associated with a better capacity to kill HIV-infected CD4+ T cells. We isolated Gag- and Nef-specific CTL clones with different TCR sequences from the PBMC of donors in acute and chronic infection. High-affinity clonotypes that showed IFN-γ production preserved even when the CD8 coreceptor was blocked, and clones with high Ag sensitivity exhibited higher efficiency at reducing the latent reservoir. Although intrinsic cytotoxic capacity did not differ according to TCR affinity, clonotypes with high TCR affinity showed a better ability to kill HIV-infected CD4+ T cells obtained from in vivo-infected PBMC and subjected to viral reactivation. Strategies aiming to specifically boost and maintain long-living memory CTLs with high TCR affinity in vivo prior to latency-reversing treatment might improve the efficacy of the shock and kill approach to reduce the latent reservoir.
Collapse
Affiliation(s)
- Noemia S Lima
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817.,Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814
| | - Hiroshi Takata
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817.,Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
| | - Szu-Han Huang
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY 10021.,Department of Microbiology, Immunology, and Tropical Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC 20037
| | - Alexander Haregot
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817
| | - Julie Mitchell
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817.,Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
| | - Stephen Blackmore
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817
| | - Ayanna Garland
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817
| | - Aaron Sy
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817
| | | | - Jean-Pierre Routy
- Division of Hematology and Chronic Viral Illness Service, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Nelson L Michael
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910
| | - Victor Appay
- Centre d'Immunologie et des Maladies Infectieuses, Sorbonne Université, INSERM, Paris 75005, France; and.,International Research Center of Medical Sciences, Kumamoto University, Kumamoto 860-8555, Japan
| | - R Brad Jones
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY 10021.,Department of Microbiology, Immunology, and Tropical Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC 20037
| | - Lydie Trautmann
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910; .,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817.,Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
| |
Collapse
|
131
|
Protiere C, Fressard L, Mora M, Meyer L, Préau M, Suzan-Monti M, Lelièvre JD, Lambotte O, Spire B, the APSEC Study Group. Characterization of Physicians That Might Be Reluctant to Propose HIV Cure-Related Clinical Trials with Treatment Interruption to Their Patients? The ANRS-APSEC Study. Vaccines (Basel) 2020; 8:vaccines8020334. [PMID: 32585921 PMCID: PMC7350235 DOI: 10.3390/vaccines8020334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/04/2020] [Accepted: 06/17/2020] [Indexed: 12/25/2022] Open
Abstract
HIV cure-related clinical trials (HCRCT) with analytical antiretroviral treatment interruptions (ATIs) have become unavoidable. However, the limited benefits for participants and the risk of HIV transmission during ATI might negatively impact physicians’ motivations to propose HCRCT to patients. Between October 2016 and March 2017, 164 French HIV physicians were asked about their level of agreement with four viewpoints regarding HCRCT. A reluctance score was derived from their answers and factors associated with reluctance identified. Results showed the highest reluctance to propose HCRCT was among physicians with a less research-orientated professional activity, those not informing themselves about cure trials through scientific literature, and those who participated in trials because their department head asked them. Physicians’ perceptions of the impact of HIV on their patients’ lives were also associated with their motivation to propose HCRCT: those who considered that living with HIV means living with a secret were more motivated, while those worrying about the negative impact on person living with HIV’s professional lives were more reluctant. Our study highlighted the need to design a HCRCT that minimizes constraints for participants and for continuous training programs to help physicians keep up-to-date with recent advances in HIV cure research.
Collapse
Affiliation(s)
- Christel Protiere
- Aix Marseille University, INSERM, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l’Information Médicale, 13005 Marseille, France; (L.F.); (M.M.); (M.S.-M.); (B.S.)
- Correspondence:
| | - Lisa Fressard
- Aix Marseille University, INSERM, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l’Information Médicale, 13005 Marseille, France; (L.F.); (M.M.); (M.S.-M.); (B.S.)
| | - Marion Mora
- Aix Marseille University, INSERM, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l’Information Médicale, 13005 Marseille, France; (L.F.); (M.M.); (M.S.-M.); (B.S.)
| | - Laurence Meyer
- INSERM, U1018, Université Paris-Sud 11, AP-HP, Hôpital de Bicêtre, Département D’épidémiologie, 94270 Le Kremlin-Bicêtre, France;
| | - Marie Préau
- GRePS, Lyon 2 Université, 69676 Bron, France;
| | - Marie Suzan-Monti
- Aix Marseille University, INSERM, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l’Information Médicale, 13005 Marseille, France; (L.F.); (M.M.); (M.S.-M.); (B.S.)
| | - Jean-Daniel Lelièvre
- INSERM, U955, Equipe 16, Université Paris Est, Faculté de médecine, Vaccine Research Institute, 94000 Créteil, France;
| | - Olivier Lambotte
- Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Service de Médecine Interne et Immunologie Clinique, INSERM, U1184, 94270 Le Kremlin-Bicêtre, France;
- Immunology of Viral Infections and Autoimmune Diseases, Université Paris Sud, UMR 1184, 94270 Le Kremlin-Bicêtre, France
- CEA, DSV/iMETI, IDMIT, 92260 Fontenay-aux-Roses, France
| | - Bruno Spire
- Aix Marseille University, INSERM, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l’Information Médicale, 13005 Marseille, France; (L.F.); (M.M.); (M.S.-M.); (B.S.)
| | | |
Collapse
|
132
|
Who are the persons living with HIV who might refuse to participate in HIV cure-related clinical trials with treatment interruption? AIDS 2020; 34:1095-1099. [PMID: 32287066 DOI: 10.1097/qad.0000000000002530] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
: Achieving a HIV cure has become a research priority. As any improvement of knowledge, which could help scientists design new HIV cure-related clinical trials (HCRCT) depends on the risks potential participants are willing to accept, it is important to understand who will agree or refuse to participate and in which proportions. By providing insights into factors associated with reluctance toward HCRCT participation, our results may help clinicians in patient recruitment.
Collapse
|
133
|
Nguyen NP, Vinh-Hung V, Baumert BG, Zamagni A, Arenas M, Motta M, Lara PC, Myint AS, Bonet M, Popescu T, Vuong T, Appalanaido GK, Trigo L, Karlsson U, Thariat J. Older Cancer Patients during the COVID-19 Epidemic: Practice Proposal of the International Geriatric Radiotherapy Group. Cancers (Basel) 2020; 12:E1287. [PMID: 32438703 PMCID: PMC7281232 DOI: 10.3390/cancers12051287] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 12/16/2022] Open
Abstract
The coronavirus disease 19 (COVID-19) pandemic is unprecedented as it reached all countries in the world within a record short period of time. Even though COVID-19 infection may be just severe in any adults, older adults (65-year-old or older) may experience a higher mortality rate. Among those affected, cancer patients may have a worse outcome compared to the general population because of their depressed immune status. As the health resources of most countries are limited, clinicians may face painful decisions about which patients to save if they require artificial ventilation. Cancer patients, especially the older ones, may be denied supportive care because of their shorter life expectancy. Thus, special considerations should be taken to prevent infection of older cancer patients and to provide them with adequate social support during their cancer treatment. The following proposal was reached: (1) Education of health care providers about the special needs of older cancer patients and their risks of infection. (2) Special consideration such as surgical masks and separate scheduling should be made to protect them from being infected. (3) Social services such as patient navigators should be provided to ensure adequate medical supply, food, and daily transportation to cancer centers. (4) Close monitoring through phone calls, telecommunication to ensure social distancing and psychological support from patient family to prevent anxiety and depression. (5) Shorter course of radiotherapy by use of hypofractionation where possible to decrease the needs for daily transportation and exposure to infection. (6) Enrollment of older cancer patients in clinical trials for potential antiviral medications if infection does occur. (7) Home health care telemedicine may be an effective strategy for older cancer patients with COVID-19 infection to avoid hospital admission when health care resources become restricted. (8) For selected patients, immunotherapy and targeted therapy may become the systemic therapy of choice for older cancer patients and need to be tested in clinical trials.
Collapse
Affiliation(s)
- Nam P. Nguyen
- Department of Radiation Oncology, Howard University, Washington, DC 20060, USA
| | - Vincent Vinh-Hung
- Department of Radiation Oncology, University Hospital of Martinique, 97200 Fort-de-France, France;
| | - Brigitta G. Baumert
- Institute of Radiation Oncology, Cantonal Hospital Graubuenden, 7000 Chur, Switzerland;
| | - Alice Zamagni
- Radiation Oncology Center, Department of Experimental, Diagnostic and Specialty Medicine, Sant’Orsola-Malpighi Hospital, University of Bologna, 40138 Bologna, Italy;
| | - Meritxell Arenas
- Department of Radiation Oncology, Sant Joan de Reus University, University Rovira I Virgili, 43201 Tarragona, Spain;
| | - Micaela Motta
- Department of Radiation Oncology, Hospital Papa Giovanni XXIII, 24127 Bergamo, Italy;
| | - Pedro Carlos Lara
- Department of Radiation Oncology, Fernando Pessoa Canarias Las Palmas University, 35001 Las Palmas, Spain;
| | - Arthur Sun Myint
- Department of Radiation Oncology, Clatterbridge Cancer Center, Liverpool CH63 4JY, UK;
| | - Marta Bonet
- Department of Radiation Oncology, Arnau de Vilanova University Hospital, 25198 Lleida, Spain;
| | - Tiberiu Popescu
- Department of Radiation Oncology, Prof. Dr. Ion Chricuta Oncology Institute, 400015 Cluj-Napoca, Romania;
| | - Te Vuong
- Department of Radiation Oncology, McGill University, Jewish General Hospital, Montreal, QC H3T1E2, Canada;
| | | | - Lurdes Trigo
- Department of Radiation Oncology, Instituto Portugues de Oncologia do Porto Francisco Martins Porto E.P.E, 4200-072 Porto, Portugal;
| | - Ulf Karlsson
- Department of Radiation Oncology, International Geriatric Group, Washington, DC 20001, USA;
| | - Juliette Thariat
- Department of Radiation Oncology, Baclesse Cancer Center, 14000 Caen, France;
| |
Collapse
|
134
|
Zhang Y, Planas D, Raymond Marchand L, Massanella M, Chen H, Wacleche VS, Gosselin A, Goulet JP, Filion M, Routy JP, Chomont N, Ancuta P. Improving HIV Outgrowth by Optimizing Cell-Culture Conditions and Supplementing With all-trans Retinoic Acid. Front Microbiol 2020; 11:902. [PMID: 32499767 PMCID: PMC7243435 DOI: 10.3389/fmicb.2020.00902] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 04/16/2020] [Indexed: 01/25/2023] Open
Abstract
The persistence of replication-competent HIV reservoirs in people living with HIV (PLWH) receiving antiretroviral therapy (ART) is a barrier to cure. Therefore, their accurate quantification is essential for evaluating the efficacy of new therapeutic interventions and orienting the decision to interrupt ART. Quantitative viral outgrowth assays (QVOAs) represent the "gold standard" for measuring the size of replication-competent HIV reservoirs. However, they require large numbers of cells and are technically challenging. This justifies the need for the development of novel simplified methods adapted for small biological samples. Herein, we sought to simplify the viral outgrowth procedure (VOP) by (i) using memory CD4+ T-cells, documented to be enriched in HIV reservoirs (ii) optimizing cell-culture conditions, and (iii) supplementing with all-trans retinoic acid (ATRA), a positive regulator of HIV replication. Memory CD4+ T-cells were sorted from the peripheral blood of ART-treated (HIV+ART; n = 14) and untreated (HIV+; n = 5) PLWH. The VOP was first performed with one original replicate of 1 × 106 cells/well in 48-well plates. Cells were stimulated via CD3/CD28 for 3 days, washed to remove residual CD3/CD28 Abs, split every 3 days for optimal cell density, and cultured in the presence or the absence of ATRA for 12 days. Soluble and intracellular HIV-p24 levels were quantified by ELISA and flow cytometry, respectively. Optimal cell-culture density achieved by splitting improved HIV outgrowth detection. ATRA promoted superior/accelerated detection of replication-competent HIV in all HIV+ART individuals tested, including those with low/undetectable viral outgrowth in the absence of ATRA. Finally, this VOP was used to design a simplified ATRA-based QVOA by including 4 and 6 original replicates of 1 × 106 cells/well in 48-well plates and 2 × 105 cells/well in 96-well plates, respectively. Consistently, the number of infectious units per million cells (IUPM) was significantly increased in the presence of ATRA. In conclusion, we demonstrate that memory CD4+ T-cell splitting for optimal density in culture and ATRA supplementation significantly improved the efficacy of HIV outgrowth in a simplified ATRA-based QVOA performed in the absence of feeder/target cells or indicator cell lines.
Collapse
Affiliation(s)
- Yuwei Zhang
- Département de microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montréal, Montreal, QC, Canada.,Centre hospitalier de l'Université de Montréal (CHUM)-Research Centre, Montreal, QC, Canada
| | - Delphine Planas
- Département de microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montréal, Montreal, QC, Canada.,Centre hospitalier de l'Université de Montréal (CHUM)-Research Centre, Montreal, QC, Canada
| | | | - Marta Massanella
- Département de microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montréal, Montreal, QC, Canada.,Centre hospitalier de l'Université de Montréal (CHUM)-Research Centre, Montreal, QC, Canada
| | - Huicheng Chen
- Département de microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montréal, Montreal, QC, Canada.,Centre hospitalier de l'Université de Montréal (CHUM)-Research Centre, Montreal, QC, Canada
| | - Vanessa Sue Wacleche
- Département de microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montréal, Montreal, QC, Canada.,Centre hospitalier de l'Université de Montréal (CHUM)-Research Centre, Montreal, QC, Canada
| | - Annie Gosselin
- Centre hospitalier de l'Université de Montréal (CHUM)-Research Centre, Montreal, QC, Canada
| | | | | | | | - Nicolas Chomont
- Département de microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montréal, Montreal, QC, Canada.,Centre hospitalier de l'Université de Montréal (CHUM)-Research Centre, Montreal, QC, Canada
| | - Petronela Ancuta
- Département de microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montréal, Montreal, QC, Canada.,Centre hospitalier de l'Université de Montréal (CHUM)-Research Centre, Montreal, QC, Canada
| |
Collapse
|
135
|
Holder KA, Grant MD. TIGIT Blockade: A Multipronged Approach to Target the HIV Reservoir. Front Cell Infect Microbiol 2020; 10:175. [PMID: 32432050 PMCID: PMC7214612 DOI: 10.3389/fcimb.2020.00175] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/02/2020] [Indexed: 12/17/2022] Open
Abstract
During chronic human immunodeficiency virus type 1 (HIV-1) infection, upregulation of inhibitory molecules contributes to effector cell dysfunction and exhaustion. This, in combination with the ability of HIV-1 to reside dormant in cellular reservoirs and escape immune recognition, makes the pathway to HIV-1 cure particularly challenging. An idealized strategy to achieve HIV-1 cure proposes combined viral and immune activation by "shock"ing HIV-1 out of latency and into an immunologically visible state to be recognized and "kill"ed by immune effector cells. Here we outline the potential for blockade of the inhibitory immune checkpoint T cell immunoreceptor with immunoglobulin and ITIM domains (TIGIT) to overcome natural killer (NK) cell and T cell inhibition associated with HIV-1 infection and invigorate antiviral effector cell responses against HIV-1 reactivated from the latent cellular reservoir.
Collapse
Affiliation(s)
- Kayla A Holder
- Immunology and Infectious Diseases Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Michael D Grant
- Immunology and Infectious Diseases Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
136
|
Thomas J, Ruggiero A, Paxton WA, Pollakis G. Measuring the Success of HIV-1 Cure Strategies. Front Cell Infect Microbiol 2020; 10:134. [PMID: 32318356 PMCID: PMC7154081 DOI: 10.3389/fcimb.2020.00134] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/13/2020] [Indexed: 01/10/2023] Open
Abstract
HIV-1 eradication strategies aim to achieve viral remission in the absence of antiretroviral therapy (ART). The development of an HIV-1 cure remains challenging due to the latent reservoir (LR): long-lived CD4 T cells that harbor transcriptionally silent HIV-1 provirus. The LR is stable despite years of suppressive ART and is the source of rebound viremia following therapy interruption. Cure strategies such as "shock and kill" aim to eliminate or reduce the LR by reversing latency, exposing the infected cells to clearance via the immune response or the viral cytopathic effect. Alternative strategies include therapeutic vaccination, which aims to prime the immune response to facilitate control of the virus in the absence of ART. Despite promising advances, these strategies have been unable to significantly reduce the LR or increase the time to viral rebound but have provided invaluable insight in the field of HIV-1 eradication. The development and assessment of an HIV-1 cure requires robust assays that can measure the LR with sufficient sensitivity to detect changes that may occur following treatment. The viral outgrowth assay (VOA) is considered the gold standard method for LR quantification due to its ability to distinguish intact and defective provirus. However, the VOA is time consuming and resource intensive, therefore several alternative assays have been developed to bridge the gap between practicality and accuracy. Whilst a cure for HIV-1 infection remains elusive, recent advances in our understanding of the LR and methods for its eradication have offered renewed hope regarding achieving ART free viral remission.
Collapse
Affiliation(s)
- Jordan Thomas
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Alessandra Ruggiero
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom.,Immune and Infectious Disease Division, Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, Rome, Italy
| | - William A Paxton
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Georgios Pollakis
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
137
|
High levels of genetically intact HIV in HLA-DR+ memory T cells indicates their value for reservoir studies. AIDS 2020; 34:659-668. [PMID: 31913161 DOI: 10.1097/qad.0000000000002465] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The contribution of HLA-DR+ memory CD4 T cells to the HIV reservoir during prolonged antiretroviral therapy is unclear as these cells are commonly excluded when assessing for replication-competent HIV. To address this issue, we examined the distribution of genetically intact HIV DNA within HLA-DR- and HLA-DR+ memory CD4 T cells and the RNA transcriptional profile of these cells during antiretroviral therapy. DESIGN/METHODS Full-length DNA sequencing was used to examine the HIV DNA landscape within HLA-DR+ and HLA-DR- memory CD4 T cells. RNA quantification and sequencing was used to interrogate the relationship between HLA-DR status and HIV RNA transcription. RESULTS HLA-DR+ CD4 T cells contained a high frequency of genetically intact HIV genomes, contributing over half of the genetically intact viral sequences to the reservoir. Expansions of genetically identical sequences were identified in all T-cell subsets, indicating that cellular proliferation maintains genetically intact and defective viral DNA during therapy. Intracellular HIV RNA levels in HLA-DR+ and HLA-DR- T cells were not statistically different by either long terminal repeat quantitative PCR quantification or single-genome RNA sequencing of the p6-RT region. CONCLUSION The high proportion of intact viral DNA sequences in the proliferative HLA-DR+ subset suggests they are critical in maintaining HIV infection during effective therapy. As such, these cells should be included in any immune intervention targeting HIV during effective therapy.
Collapse
|
138
|
Harper J, Gordon S, Chan CN, Wang H, Lindemuth E, Galardi C, Falcinelli SD, Raines SLM, Read JL, Nguyen K, McGary CS, Nekorchuk M, Busman-Sahay K, Schawalder J, King C, Pino M, Micci L, Cervasi B, Jean S, Sanderson A, Johns B, Koblansky AA, Amrine-Madsen H, Lifson J, Margolis DM, Silvestri G, Bar KJ, Favre D, Estes JD, Paiardini M. CTLA-4 and PD-1 dual blockade induces SIV reactivation without control of rebound after antiretroviral therapy interruption. Nat Med 2020; 26:519-528. [PMID: 32284611 PMCID: PMC7790171 DOI: 10.1038/s41591-020-0782-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 01/28/2020] [Indexed: 12/20/2022]
Abstract
The primary human immunodeficiency virus (HIV) reservoir is composed of resting memory CD4+ T cells, which often express the immune checkpoint receptors programmed cell death protein 1 (PD-1) and cytotoxic T lymphocyte-associated protein 4 (CTLA-4), which limit T cell activation via synergistic mechanisms. Using simian immunodeficiency virus (SIV)-infected, long-term antiretroviral therapy (ART)-treated rhesus macaques, we demonstrate that PD-1, CTLA-4 and dual CTLA-4/PD-1 immune checkpoint blockade using monoclonal antibodies is well tolerated, with evidence of bioactivity in blood and lymph nodes. Dual blockade was remarkably more effective than PD-1 blockade alone in enhancing T cell cycling and differentiation, expanding effector-memory T cells and inducing robust viral reactivation in plasma and peripheral blood mononuclear cells. In lymph nodes, dual CTLA-4/PD-1 blockade, but not PD-1 alone, decreased the total and intact SIV-DNA in CD4+ T cells, and SIV-DNA and SIV-RNA in B cell follicles, a major site of viral persistence during ART. None of the tested interventions enhanced SIV-specific CD8+ T cell responses during ART or viral control after ART interruption. Thus, despite CTLA-4/PD-1 blockade inducing robust latency reversal and reducing total levels of integrated virus, the degree of reservoir clearance was still insufficient to achieve viral control. These results suggest that immune checkpoint blockade regimens targeting PD-1 and/or CTLA-4, if performed in people living with HIV with sustained aviremia, are unlikely to induce HIV remission in the absence of additional interventions.
Collapse
Affiliation(s)
- Justin Harper
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Shari Gordon
- HIV Discovery Performance Unit, GlaxoSmithKline, Research Triangle Park, NC, USA
- UNC HIV Cure Center and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chi Ngai Chan
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Hong Wang
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Emily Lindemuth
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cristin Galardi
- UNC HIV Cure Center and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- HIV Discovery, ViiV Healthcare, Research Triangle Park, NC, USA
| | - Shane D Falcinelli
- UNC HIV Cure Center and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Samuel L M Raines
- UNC HIV Cure Center and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jenna L Read
- UNC HIV Cure Center and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kevin Nguyen
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Colleen S McGary
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Michael Nekorchuk
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Kathleen Busman-Sahay
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - James Schawalder
- UNC HIV Cure Center and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- HIV Discovery, ViiV Healthcare, Research Triangle Park, NC, USA
| | - Colin King
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Maria Pino
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Luca Micci
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Barbara Cervasi
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Sherrie Jean
- Division of Animal Resources, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | | | - Brian Johns
- HIV Discovery Performance Unit, GlaxoSmithKline, Research Triangle Park, NC, USA
- UNC HIV Cure Center and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - A Alicia Koblansky
- UNC HIV Cure Center and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- HIV Discovery, ViiV Healthcare, Research Triangle Park, NC, USA
| | - Heather Amrine-Madsen
- UNC HIV Cure Center and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- HIV Discovery, ViiV Healthcare, Research Triangle Park, NC, USA
| | - Jeffrey Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - David M Margolis
- UNC HIV Cure Center and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Guido Silvestri
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Katharine J Bar
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David Favre
- HIV Discovery Performance Unit, GlaxoSmithKline, Research Triangle Park, NC, USA
- UNC HIV Cure Center and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jacob D Estes
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
139
|
Jubel JM, Barbati ZR, Burger C, Wirtz DC, Schildberg FA. The Role of PD-1 in Acute and Chronic Infection. Front Immunol 2020; 11:487. [PMID: 32265932 PMCID: PMC7105608 DOI: 10.3389/fimmu.2020.00487] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 03/03/2020] [Indexed: 12/26/2022] Open
Abstract
PD-1 as an immune checkpoint molecule down-regulates T cell activity during immune responses in order to prevent autoimmune tissue damage. In chronic infections or tumors, lasting antigen-exposure leads to permanent PD-1 expression that can limit immune-mediated clearance of pathogens or degenerated cells. Blocking PD-1 can enhance T cell function; in cancer treatment PD-1 blockade is already used as a successful therapy. However, the role of PD-1 expression and blocking in the context of acute and chronic infections is less defined. Building on its success in cancer therapy leads to the hypothesis that blocking PD-1 in infectious diseases is also beneficial in acute or chronic infections. This review will focus on the role of PD-1 expression in acute and chronic infections with virus, bacteria, and parasites, with a particular focus on recent studies regarding PD-1 blockade in infectious diseases.
Collapse
Affiliation(s)
- Jil M Jubel
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | | | - Christof Burger
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Dieter C Wirtz
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Frank A Schildberg
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
140
|
Boucau J, Das J, Joshi N, Le Gall S. Latency reversal agents modulate HIV antigen processing and presentation to CD8 T cells. PLoS Pathog 2020; 16:e1008442. [PMID: 32196533 PMCID: PMC7112239 DOI: 10.1371/journal.ppat.1008442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 04/01/2020] [Accepted: 02/28/2020] [Indexed: 01/03/2023] Open
Abstract
Latency reversal agents (LRA) variably induce HIV re-expression in CD4 T cells but reservoirs are not cleared. Whether HIV epitope presentation is similar between latency reversal and initial infection of CD4 T cells is unknown yet crucial to define immune responses able to detect HIV-infected CD4 T cells after latency reversal. HIV peptides displayed by MHC comes from the intracellular degradation of proteins by proteasomes and post-proteasomal peptidases but the impact of LRAs on antigen processing is not known. Here we show that HDAC inhibitors (HDCAi) reduced cytosolic proteolytic activities while PKC agonists (PKCa) increased them to a lesser extent than that induced by TCR activation. During the cytosolic degradation of long HIV peptides in LRA-treated CD4 T cells extracts, HDACi and PKCa modulated degradation patterns of peptides and altered the production of HIV epitopes in often opposite ways. Beyond known HIV epitopes, HDACi narrowed the coverage of HIV antigenic fragments by 8-11aa degradation peptides while PKCa broadened it. LRAs altered HIV infection kinetics and modulated CD8 T cell activation in an epitope- and time-dependent manner. Interestingly the efficiency of endogenous epitope processing and presentation to CD8 T cells was increased by PKCa Ingenol at early time points despite low levels of antigens. LRA-induced modulations of antigen processing should be considered and exploited to enhance and broaden HIV peptide presentation by CD4 T cells and to improve immune recognition after latency reversal. This property of LRAs, if confirmed with other antigens, might be exploited to improve immune detection of diseased cells beyond HIV. Latently HIV-infected CD4 T cells persist and remain invisible to the immune system. Strategies to flush out HIV reservoirs propose to re-express HIV with latency reversal agents (LRAs), leading to CD4 T cell death or clearance by HIV-specific immune responses. LRAs tested so far variably induced HIV re-expression but did not eliminate reservoirs. The activation of HIV-specific immune responses is triggered by HIV peptides displayed by infected cells after HIV intracellular degradation. Whether HIV antigens are similarly degraded and displayed by CD4 T cells after latency reversal or during initial infection is unknown. We showed that LRAs altered the activities of the degradation machinery and changed the degradation patterns of HIV into peptides. LRA-treated HIV-infected CD4 T cells were variably recognized by immune cells in a time- and peptide-dependent manner. Some LRAs increased the efficiency of HIV peptide presentation despite low levels of HIV antigens inside CD4 T cells. The modulation of HIV peptide presentation by current or future LRAs should be accounted for and exploited to improve HIV peptide presentation and enhance immune detection of HIV-infected CD4 T cells after latency reversal.
Collapse
Affiliation(s)
- Julie Boucau
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital and Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Jishnu Das
- Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Neelambari Joshi
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital and Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Sylvie Le Gall
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital and Harvard Medical School, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
141
|
The safety and efficacy of immune checkpoint inhibitors in patients with advanced cancers and pre-existing chronic viral infections (Hepatitis B/C, HIV): A review of the available evidence. Cancer Treat Rev 2020; 86:102011. [PMID: 32213376 DOI: 10.1016/j.ctrv.2020.102011] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/15/2020] [Accepted: 03/15/2020] [Indexed: 12/30/2022]
Abstract
The treatment paradigm of several cancers has dramatically changed in recent years with the introduction of immunotherapy. Most oncology trials involving immune checkpoint inhibitors (ICIPs) have routinely excluded patients with HIV infection and chronic viral hepatitis B (HBV) and C (HCV) due to concerns about viral reactivation, fears of increased toxicity, and the potential lack of efficacy in these patient subgroups. However, with current antiviral therapies, HIV and HBV infections have become chronic diseases and HCV infections can even be cured. Broadening cancer trial eligibility criteria in order to include cancer patients with chronic viral infections can maximize the ecological validity of study results and the ability to understand the ICPIs' benefit-risk profile in patients with these comorbidities. In this review, we examined the evidence on the efficacy and safety of using ICPIs in cancer patients with concurrent chronic viral infections.
Collapse
|
142
|
Dhummakupt A, Rubens JH, Anderson T, Powell L, Nonyane BA, Siems LV, Collinson-Streng A, Nilles T, Jones RB, Tepper V, Agwu A, Persaud D. Differences in inducibility of the latent HIV reservoir in perinatal and adult infection. JCI Insight 2020; 5:134105. [PMID: 31999647 DOI: 10.1172/jci.insight.134105] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
The HIV latent reservoir in resting memory CD4+ T cells precludes cure. Therapeutics to reactivate and eliminate this reservoir are in clinical trials in adults, but not yet in pediatric populations. We determined, ex vivo, the inducibility of the latent reservoir in perinatal infection as compared with adult infections using the Tat/rev induced limiting dilution assay (TILDA), in which a single round (12 hours) of CD4+ T cell stimulation with PMA/ionomycin maximally activates T cells and leads to proviral expression with multiply spliced HIV RNA production. Markers of immune activation and exhaustion were measured to assess interactions with inducibility. Although rates of T cell activation with PMA/ionomycin were similar, the latent reservoir in perinatal infection was slower to reactivate and of lower magnitude compared with adult infection, independent of proviral load. An enhanced TILDA with the addition of phytohemagglutin and a duration of 18 hours augmented proviral expression in perinatal but not adult infection. The baseline HLA-DR+CD4+ T cell level was significantly lower in perinatal compared with adult infections, but not correlated with induced reservoir size. These data support the hypothesis that there are differences in kinetics of latency reversal and baseline immune activation in perinatal compared with adult infections, with implications for latency reversal strategies toward reservoir clearance and remission.
Collapse
Affiliation(s)
- Adit Dhummakupt
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine
| | - Jessica H Rubens
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine
| | - Thuy Anderson
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine
| | - Laura Powell
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine
| | - Bareng As Nonyane
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Lilly V Siems
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine
| | | | - Tricia Nilles
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - R Brad Jones
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Vicki Tepper
- Department of Pediatrics, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Allison Agwu
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine
| | - Deborah Persaud
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine
| |
Collapse
|
143
|
Song CB, Zhang LL, Wu X, Fu YJ, Jiang YJ, Shang H, Zhang ZN. CD4 +CD38 + central memory T cells contribute to HIV persistence in HIV-infected individuals on long-term ART. J Transl Med 2020; 18:95. [PMID: 32093678 PMCID: PMC7038621 DOI: 10.1186/s12967-020-02245-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/28/2020] [Indexed: 02/07/2023] Open
Abstract
Background Despite the effective antiretroviral treatment (ART) of HIV-infected individuals, HIV persists in a small pool. Central memory CD4+ T cells (Tcm) make a major contribution to HIV persistence. We found that unlike HLA-DR, CD38 is highly expressed on the Tcm of HIV-infected subjects receiving ART for > 5 years. It has been reported that the half-life of total and episomal HIV DNA in the CD4+CD38+ T cell subset, exhibits lower decay rates at 12 weeks of ART. Whether CD38 contributes to HIV latency in HIV-infected individuals receiving long-term ART is yet to be addressed. Methods Peripheral blood mononuclear cells (PBMCs) were isolated from the whole blood of HIV-infected subjects receiving suppressive ART. The immunophenotyping, proliferation and apoptosis of CD4+ T cell subpopulations were detected by flow cytometry, and the level of CD38 mRNA and total HIV DNA were measured using real-time PCR and digital droplet PCR, respectively. A negative binomial regression model was used to determine the correlation between CD4+CD38+ Tcm and total HIV DNA in CD4+ T cells. Results CD38 was highly expressed on CD4+ Tcm cells from HIV infected individuals on long-term ART. Comparing with HLA-DR−Tcm and CD4+HLA-DR+ T cells, CD4+CD38+ Tcm cells displayed lower levels of activation (CD25 and CD69) and higher levels of CD127 expression. The proportion of CD38+ Tcm, but not CD38− Tcm cells can predict the total HIV DNA in the CD4+ T cells and the CD38+ Tcm subset harbored higher total HIV DNA copy numbers than the CD38− Tcm subset. After transfected with CD38 si-RNA in CD4+ T cells, the proliferation of CD4+ T cells was inhibited. Conclusion The current date indicates that CD4+CD38+ Tcm cells contribute to HIV persistence in HIV-infected individuals on long-term ART. Our study provides a potential target to resolve HIV persistence.
Collapse
Affiliation(s)
- Cheng-Bo Song
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjingbei Street, Heping District, Shenyang, 110001, Liaoning Province, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003, China
| | - Le-Le Zhang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjingbei Street, Heping District, Shenyang, 110001, Liaoning Province, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003, China
| | - Xian Wu
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjingbei Street, Heping District, Shenyang, 110001, Liaoning Province, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003, China
| | - Ya-Jing Fu
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjingbei Street, Heping District, Shenyang, 110001, Liaoning Province, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003, China
| | - Yong-Jun Jiang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjingbei Street, Heping District, Shenyang, 110001, Liaoning Province, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003, China
| | - Hong Shang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjingbei Street, Heping District, Shenyang, 110001, Liaoning Province, China. .,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China. .,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China. .,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003, China.
| | - Zi-Ning Zhang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjingbei Street, Heping District, Shenyang, 110001, Liaoning Province, China. .,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China. .,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China. .,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003, China.
| |
Collapse
|
144
|
Pham HT, Yoo S, Mesplède T. Combination therapies currently under investigation in phase I and phase II clinical trials for HIV-1. Expert Opin Investig Drugs 2020; 29:273-283. [PMID: 31994943 DOI: 10.1080/13543784.2020.1724281] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: HIV infection is manageable through the use of antiretroviral drugs. However, HIV reservoirs that are constituted early during infection are resistant to treatment. HIV persistence under treatment necessitates life-long treatment and is associated with various co-morbidities. Two significant research avenues are explored through the development of either new antiretroviral drugs or interventions aimed at stimulating the immune system to eradicate HIV reservoirs.Areas covered: This report provides a review of investigational drugs and cell-based interventions against HIV infection that are currently under Phase I or Phase II clinical trials. We report on new antiretroviral drugs, antibodies directed against viral or host targets, reactivating agents, immune modulators and immune checkpoint inhibitors, and cell-based interventions. These new therapies are often tested in combination, including with current antiretroviral drugs.Expert opinion: Islatravir and GS-6207 are promising antiretroviral drugs that are expected to perform well in phase III trials. Whether the host immune system can be activated sufficiently to reduce HIV reservoirs remains unknown. Additional research is needed to identify surrogate markers of success for curative interventions. Given the current safety and efficacy of antiretroviral treatment, risk-benefits should be carefully evaluated before interventions that risk triggering high levels of immune stimulation.
Collapse
Affiliation(s)
- Hanh Thi Pham
- McGill AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Subin Yoo
- McGill AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Thibault Mesplède
- McGill AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| |
Collapse
|
145
|
Protiere C, Arnold M, Fiorentino M, Fressard L, Lelièvre JD, Mimi M, Raffi F, Mora M, Meyer L, Sagaon‐Teyssier L, Zucman D, Préau M, Lambotte O, Spire B, Suzan‐Monti M, the APSEC Study Group. Differences in HIV cure clinical trial preferences of French people living with HIV and physicians in the ANRS-APSEC study: a discrete choice experiment. J Int AIDS Soc 2020; 23:e25443. [PMID: 32077248 PMCID: PMC7048214 DOI: 10.1002/jia2.25443] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 12/04/2019] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Despite the advent of HIV cure-related clinical trials (HCRCT) for people living with HIV (PLWH), the risks and uncertainty involved raise ethical issues. Although research has provided insights into the levers and barriers to PLWH and physicians' participation in these trials, no information exists about stakeholders' preferences for HCRCT attributes, about the different ways PLWH and physicians value future HCRCT, or about how personal characteristics affect these preferences. The results from the present study will inform researchers' decisions about the most suitable HCRCT strategies to implement, and help them ensure ethical recruitment and well-designed informed consent. METHODS Between October 2016 and March 2017, a discrete choice experiment was conducted among 195 virally controlled PLWH and 160 physicians from 24 French HIV centres. Profiles within each group, based on individual characteristics, were obtained using hierarchical clustering. Trade-offs between five HCRCT attributes (trial duration, consultation frequency, moderate (digestive disorders, flu-type syndrome, fatigue) and severe (allergy, infections, risk of cancer) side effects (SE), outcomes) and utilities associated with four HCRCT candidates (latency reactivation, immunotherapy, gene therapy and a combination of latency reactivation and immunotherapy), were estimated using a mixed logit model. RESULTS Apart from severe SE - the most decisive attribute in both groups - PLWH and physicians made different trade-offs between HCRCT attributes, the latter being more concerned about outcomes, the former about the burden of participation (consultation frequency and moderate SE). These different trades-offs resulted in differences in preferences regarding the four candidate HCRCT. PLWH significantly preferred immunotherapy, whereas physicians preferred immunotherapy and combined therapy. Despite the heterogeneity of characteristics within the PLWH and physician profiles, results show some homogeneity in trade-offs and utilities regarding HCRCT. CONCLUSIONS Severe SE, not outcomes, was the most decisive attribute determining future HCRCT participation. Particular attention should be paid to providing clear information, in particular on severe SE, to potential participants. Immunotherapy would appear to be the best HCRCT candidate for both PLWH and physicians. However, if the risk of cancer could be avoided, gene therapy would become the preferred strategy for the latter and the second choice for the former.
Collapse
Affiliation(s)
- Christel Protiere
- INSERM, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l'Information MédicaleAix Marseille UnivMarseilleFrance
- ORS PACAObservatoire régional de la santé Provence‐Alpes‐Côte d'AzurMarseilleFrance
| | | | - Marion Fiorentino
- INSERM, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l'Information MédicaleAix Marseille UnivMarseilleFrance
- ORS PACAObservatoire régional de la santé Provence‐Alpes‐Côte d'AzurMarseilleFrance
| | - Lisa Fressard
- ORS PACAObservatoire régional de la santé Provence‐Alpes‐Côte d'AzurMarseilleFrance
| | - Jean D Lelièvre
- INSERMCréteilFrance
- Faculté de médecineUniversité Paris EstCréteilFrance
- Vaccine Research InstituteCréteilFrance
| | - Mohamed Mimi
- INSERM, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l'Information MédicaleAix Marseille UnivMarseilleFrance
- ORS PACAObservatoire régional de la santé Provence‐Alpes‐Côte d'AzurMarseilleFrance
| | - François Raffi
- Department of Infectious DiseasesHotel‐Dieu Hospital ‐ INSERM CIC 1413Nantes University HospitalNantesFrance
| | - Marion Mora
- INSERM, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l'Information MédicaleAix Marseille UnivMarseilleFrance
- ORS PACAObservatoire régional de la santé Provence‐Alpes‐Côte d'AzurMarseilleFrance
| | - Laurence Meyer
- Département d'épidémiologie, INSERM, U1018Université Paris‐Sud 11AP‐HPHôpital de BicêtreLe Kremlin‐BicêtreFrance
| | - Luis Sagaon‐Teyssier
- INSERM, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l'Information MédicaleAix Marseille UnivMarseilleFrance
- ORS PACAObservatoire régional de la santé Provence‐Alpes‐Côte d'AzurMarseilleFrance
| | - David Zucman
- Hôpital Foch, service de médecine interneSuresnesFrance
| | | | - Olivier Lambotte
- Assistance Publique ‐ Hôpitaux de ParisHôpital BicêtreService de Médecine Interne et Immunologie cliniqueLe Kremlin‐BicêtreFrance
- Immunology of Viral Infections and Autoimmune DiseasesINSERM, U1184Le Kremlin‐BicêtreFrance
- UMR 1184Université Paris SudLe Kremlin‐BicêtreFrance
- CEADSV/iMETIIDMITFontenay‐aux‐RosesFrance
| | - Bruno Spire
- INSERM, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l'Information MédicaleAix Marseille UnivMarseilleFrance
- ORS PACAObservatoire régional de la santé Provence‐Alpes‐Côte d'AzurMarseilleFrance
| | - Marie Suzan‐Monti
- INSERM, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l'Information MédicaleAix Marseille UnivMarseilleFrance
- ORS PACAObservatoire régional de la santé Provence‐Alpes‐Côte d'AzurMarseilleFrance
| | | |
Collapse
|
146
|
Abbar B, Baron M, Katlama C, Marcelin AG, Veyri M, Autran B, Guihot A, Spano JP. Immune checkpoint inhibitors in people living with HIV: what about anti-HIV effects? AIDS 2020; 34:167-175. [PMID: 31634190 DOI: 10.1097/qad.0000000000002397] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
: Immune checkpoint inhibitors (ICPi) have shown major therapeutic successes when used in various cancers. In the HIV field a double benefit of such ICPi should result from their dual ability to restore in-vitro HIV-specific CD8 T-cell functions and to enhance HIV production from reservoir cells, thus fulfilling the goals of the 'shock and kill' concept proposed as an HIV cure therapeutic strategy. We conducted a systematic review to identify studies reporting the tolerance profile of ICPi and their effects on HIV plasma loads (pVL), CD4 cell count, HIV reservoirs (cell-associated HIV-DNA) and/or HIV-specific CD8 T cells in PLWH. Thirty-one articles were included for a total 176 participants. Twelve percent of the participants experienced severe adverse events and 49% nonsevere adverse events. pVL remained stable in 91.9% participant, showed increases in 5.8% participant, and decreases in 2.3%. CD4 cell count remained stable in 60.7% participants, showed increases in 24.6%, and decreases in 14.7%. Regarding ICPi effects on HIV-DNA and HIV-specific immunity, we identified three distinct profiles: profile I, transient pVL increases followed by a boost in HIV-specific CD8 T cells concomitant to a decrease in HIV-DNA, reported in one participant. Profile II: increase in HIV-specific CD8 T cells without changes in pVL or HIV-DNA, reported in three participants. III: no effect, reported in five participants. In conclusion, the clinical, virological and immunological safety profiles of ICPi reported in about 200 PLWH appear to be favorable but there are still modest results in terms of HIV cure strategy.
Collapse
Affiliation(s)
- Baptiste Abbar
- Department of Immunology, Pitié Salpêtrière Hospital, AP-HP, CIMI, UMR 1135
| | - Marine Baron
- Department of Immunology, Pitié Salpêtrière Hospital, AP-HP, CIMI, UMR 1135
| | | | | | - Marianne Veyri
- Department of Medical Oncology, Pitié Salpêtrière Hospital, AP-HP, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), INSERM, Sorbonne Université, Paris, France
| | - Brigitte Autran
- Department of Immunology, Pitié Salpêtrière Hospital, AP-HP, CIMI, UMR 1135
| | - Amélie Guihot
- Department of Immunology, Pitié Salpêtrière Hospital, AP-HP, CIMI, UMR 1135
| | - Jean-Philippe Spano
- Department of Medical Oncology, Pitié Salpêtrière Hospital, AP-HP, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), INSERM, Sorbonne Université, Paris, France
| |
Collapse
|
147
|
Van der Sluis RM, Kumar NA, Pascoe RD, Zerbato JM, Evans VA, Dantanarayana AI, Anderson JL, Sékaly RP, Fromentin R, Chomont N, Cameron PU, Lewin SR. Combination Immune Checkpoint Blockade to Reverse HIV Latency. THE JOURNAL OF IMMUNOLOGY 2020; 204:1242-1254. [PMID: 31988180 DOI: 10.4049/jimmunol.1901191] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022]
Abstract
In people living with HIV on antiretroviral therapy, HIV latency is the major barrier to a cure. HIV persists preferentially in CD4+ T cells expressing multiple immune checkpoint (IC) molecules, including programmed death (PD)-1, T cell Ig and mucin domain-containing protein 3 (TIM-3), lymphocyte associated gene 3 (LAG-3), and T cell immunoreceptor with Ig and ITIM domains (TIGIT). We aimed to determine whether these and other IC molecules have a functional role in maintaining HIV latency and whether blocking IC molecules with Abs reverses HIV latency. Using an in vitro model that establishes latency in both nonproliferating and proliferating human CD4+ T cells, we show that proliferating cells express multiple IC molecules at high levels. Latent infection was enriched in proliferating cells expressing PD-1. In contrast, nonproliferating cells expressed IC molecules at significantly lower levels, but latent infection was enriched in cells expressing PD-1, TIM-3, CTL-associated protein 4 (CTLA-4), or B and T lymphocyte attenuator (BTLA). In the presence of an additional T cell-activating stimulus, staphylococcal enterotoxin B, Abs to CTLA-4 and PD-1 reversed HIV latency in proliferating and nonproliferating CD4+ T cells, respectively. In the absence of staphylococcal enterotoxin B, only the combination of Abs to PD-1, CTLA-4, TIM-3, and TIGIT reversed latency. The potency of latency reversal was significantly higher following combination IC blockade compared with other latency-reversing agents, including vorinostat and bryostatin. Combination IC blockade should be further explored as a strategy to reverse HIV latency.
Collapse
Affiliation(s)
- Renée M Van der Sluis
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria 3000, Australia
| | - Nitasha A Kumar
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria 3000, Australia
| | - Rachel D Pascoe
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria 3000, Australia
| | - Jennifer M Zerbato
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria 3000, Australia
| | - Vanessa A Evans
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria 3000, Australia
| | - Ashanti I Dantanarayana
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria 3000, Australia
| | - Jenny L Anderson
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria 3000, Australia
| | | | - Rémi Fromentin
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec H2X 3E4, Canada
| | - Nicolas Chomont
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec H2X 3E4, Canada.,Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada; and
| | - Paul U Cameron
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria 3000, Australia.,Department of Infectious Diseases, Monash University and the Alfred Hospital, Melbourne, Victoria 3000, Australia
| | - Sharon R Lewin
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria 3000, Australia; .,Department of Infectious Diseases, Monash University and the Alfred Hospital, Melbourne, Victoria 3000, Australia
| |
Collapse
|
148
|
Oni O, Glynn TR, Antoni MH, Jemison D, Rodriguez A, Sharkey M, Salinas J, Stevenson M, Carrico AW. Post-traumatic Stress Disorder, Cocaine Use, and HIV Persistence. Int J Behav Med 2019; 26:542-550. [PMID: 31313251 DOI: 10.1007/s12529-019-09804-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Post-traumatic stress disorder (PTSD) and stimulant use disorders are highly prevalent, commonly co-occur, and predict faster clinical HIV progression. However, scant research has examined if PTSD and cocaine use are associated with the HIV reservoir that persists in immune cells, lymphoid tissue, and organs of people living with HIV that are receiving effective treatment. METHOD This cross-sectional study enrolled 48 HIV-positive persons with sustained undetectable viral load (< 20 copies/mL) in the past year to examine the associations of PTSD and recent cocaine use with two measures of HIV persistence in immune cells: (1) proviral HIV DNA and (2) cell-associated (CA)-HIV RNA. RESULTS Greater PTSD symptoms were significantly associated with lower proviral HIV DNA (r = - 0.30, p = 0.041) but not with CA-HIV RNA. Greater severity of PTSD symptom clusters for intrusions (Standardized Beta = - 0.30, p = 0.038) and hyperarousal (Standardized Beta = - 0.30, p = 0.047) were independently associated with lower proviral HIV DNA. Although participants with recent cocaine use had a significantly shorter duration of sustained undetectable HIV viral load (19.9 versus 26.9 months; p = 0.047), cocaine use was not significantly associated with proviral HIV DNA or CA-HIV RNA. CONCLUSION Further research is needed to examine the potentially bi-directional pathways linking PTSD symptom severity and HIV persistence.
Collapse
Affiliation(s)
- Olorunleke Oni
- Department of Family and Community Health, School of Medicine, University of Miami, Coral Gables, FL, USA
| | - Tiffany R Glynn
- Department of Psychology, College of Arts and Sciences, University of Miami, Coral Gables, FL, USA
| | - Michael H Antoni
- Department of Psychology, College of Arts and Sciences, University of Miami, Coral Gables, FL, USA
| | - Danita Jemison
- Department of Public Health Sciences, School of Medicine, University of Miami, Coral Gables, FL, USA
| | - Allan Rodriguez
- Department of Medicine, School of Medicine, University of Miami, Coral Gables, FL, USA
| | - Mark Sharkey
- Department of Medicine, School of Medicine, University of Miami, Coral Gables, FL, USA
| | - Jessica Salinas
- Department of Medicine, School of Medicine, University of Miami, Coral Gables, FL, USA
| | - Mario Stevenson
- Department of Medicine, School of Medicine, University of Miami, Coral Gables, FL, USA
| | - Adam W Carrico
- Department of Public Health Sciences, School of Medicine, University of Miami, Coral Gables, FL, USA.
- University of Miami Miller School of Medicine, 1120 NW 14th Street, Office 1005, Miami, FL, 33136, USA.
| |
Collapse
|
149
|
Why and where an HIV cure is needed and how it might be achieved. Nature 2019; 576:397-405. [PMID: 31853080 DOI: 10.1038/s41586-019-1841-8] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 11/14/2019] [Indexed: 12/22/2022]
Abstract
Despite considerable global investment, only 60% of people who live with HIV currently receive antiretroviral therapy. The sustainability of current programmes remains unknown and key incidence rates are declining only modestly. Given the complexities and expenses associated with lifelong medication, developing an effective curative intervention is now a global priority. Here we review why and where a cure is needed, and how it might be achieved. We argue for expanding these efforts from resource-rich regions to sub-Saharan Africa and elsewhere: for any intervention to have an effect, region-specific biological, therapeutic and implementation issues must be addressed.
Collapse
|
150
|
Blanch-Lombarte O, Gálvez C, Revollo B, Jiménez-Moyano E, Llibre JM, Manzano JL, Boada A, Dalmau J, E. Speiser D, Clotet B, G. Prado J, Martinez-Picado J. Enhancement of Antiviral CD8 + T-Cell Responses and Complete Remission of Metastatic Melanoma in an HIV-1-Infected Subject Treated with Pembrolizumab. J Clin Med 2019; 8:jcm8122089. [PMID: 31805700 PMCID: PMC6947580 DOI: 10.3390/jcm8122089] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/14/2019] [Accepted: 11/22/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Pembrolizumab is an immune checkpoint inhibitor against programmed cell death protein-1 (PD-1) approved for therapy in metastatic melanoma. PD-1 expression is associated with a diminished functionality in HIV-1 specific-CD8+ T cells. It is thought that PD-1 blockade could contribute to reinvigorate antiviral immunity and reduce the HIV-1 reservoir. METHODS Upon metastatic melanoma diagnosis, an HIV-1-infected individual on stable suppressive antiretroviral regimen was treated with pembrolizumab. A PET-CT was performed before and one year after pembrolizumab initiation. We monitored changes in the immunophenotype and HIV-1 specific-CD8+ T-cell responses during 36 weeks of treatment. Furthermore, we assessed changes in the viral reservoir by total HIV-1 DNA, cell-associated HIV-1 RNA, and ultrasensitive plasma viral load. RESULTS Complete metabolic response was achieved after pembrolizumab treatment of metastatic melanoma. Activated CD8+ T-cells expressing HLA-DR+/CD38+ transiently increased over the first nine weeks of treatment. Concomitantly, there was an augmented response of HIV-1 specific-CD8+ T cells with TNF production and poly-functionality, transitioning from TNF to an IL-2 profile. Furthermore, a transient reduction of 24% and 32% in total HIV-1 DNA was observed at weeks 3 and 27, respectively, without changes in other markers of viral persistence. CONCLUSIONS These data demonstrate that pembrolizumab may enhance the HIV-1 specific-CD8+ T-cell response, marginally affecting the HIV-1 reservoir. A transient increase of CD8+ T-cell activation, TNF production, and poly-functionality resulted from PD-1 blockade. However, the lack of sustained changes in the viral reservoir suggests that viral reactivation is needed concomitantly with HIV-1-specific immune enhancement.
Collapse
Affiliation(s)
- Oscar Blanch-Lombarte
- IrsiCaixa AIDS Research Institute, 08916 Badalona, Spain; (O.B.-L.); (C.G.); (E.J.-M.); (J.D.); (B.C.)
- Autonomous University of Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain;
| | - Cristina Gálvez
- IrsiCaixa AIDS Research Institute, 08916 Badalona, Spain; (O.B.-L.); (C.G.); (E.J.-M.); (J.D.); (B.C.)
- Autonomous University of Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain;
| | - Boris Revollo
- Infectious Diseases Department, University Hospital “Germans Trias i Pujol”, 08916 Badalona, Spain; (B.R.); (J.M.L.)
| | - Esther Jiménez-Moyano
- IrsiCaixa AIDS Research Institute, 08916 Badalona, Spain; (O.B.-L.); (C.G.); (E.J.-M.); (J.D.); (B.C.)
| | - Josep M. Llibre
- Infectious Diseases Department, University Hospital “Germans Trias i Pujol”, 08916 Badalona, Spain; (B.R.); (J.M.L.)
| | - José Luís Manzano
- Medical Oncology Service—Badalona Applied Research Group in Oncology (B-ARGO Group), University Hospital “Germans Trias i Pujol”—Catalan Insitute of Oncology (ICO), 08916 Badalona, Spain;
| | - Aram Boada
- Autonomous University of Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain;
- Department of Dermatology, University Hospital “Germans Trias i Pujol”, 08916 Badalona, Spain
| | - Judith Dalmau
- IrsiCaixa AIDS Research Institute, 08916 Badalona, Spain; (O.B.-L.); (C.G.); (E.J.-M.); (J.D.); (B.C.)
| | - Daniel E. Speiser
- Department of Oncology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute, 08916 Badalona, Spain; (O.B.-L.); (C.G.); (E.J.-M.); (J.D.); (B.C.)
- Autonomous University of Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain;
- Infectious Diseases Department, University Hospital “Germans Trias i Pujol”, 08916 Badalona, Spain; (B.R.); (J.M.L.)
- Chair in Infectious Diseases and Immunity, Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), 08500 Vic, Spain
| | - Julia G. Prado
- IrsiCaixa AIDS Research Institute, 08916 Badalona, Spain; (O.B.-L.); (C.G.); (E.J.-M.); (J.D.); (B.C.)
- Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- Correspondence: (J.G.P.); (J.M.-P.)
| | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute, 08916 Badalona, Spain; (O.B.-L.); (C.G.); (E.J.-M.); (J.D.); (B.C.)
- Chair in Infectious Diseases and Immunity, Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), 08500 Vic, Spain
- Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
- Correspondence: (J.G.P.); (J.M.-P.)
| |
Collapse
|