101
|
Handler JS, Li Z, Dveirin RK, Fang W, Goodarzi H, Fertig EJ, Kalhor R. Identifying a gene signature of metastatic potential by linking pre-metastatic state to ultimate metastatic fate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.14.607813. [PMID: 39185156 PMCID: PMC11343111 DOI: 10.1101/2024.08.14.607813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Identifying the key molecular pathways that enable metastasis by analyzing the eventual metastatic tumor is challenging because the state of the founder subclone likely changes following metastatic colonization. To address this challenge, we labeled primary mouse pancreatic ductal adenocarcinoma (PDAC) subclones with DNA barcodes to characterize their pre-metastatic state using ATAC-seq and RNA-seq and determine their relative in vivo metastatic potential prospectively. We identified a gene signature separating metastasis-high and metastasis-low subclones orthogonal to the normal-to-PDAC and classical-to-basal axes. The metastasis-high subclones feature activation of IL-1 pathway genes and high NF-κB and Zeb/Snail family activity and the metastasis-low subclones feature activation of neuroendocrine, motility, and Wnt pathway genes and high CDX2 and HOXA13 activity. In a functional screen, we validated novel mediators of PDAC metastasis in the IL-1 pathway, including the NF-κB targets Fos and Il23a, and beyond the IL-1 pathway including Myo1b and Tmem40. We scored human PDAC tumors for our signature of metastatic potential from mouse and found that metastases have higher scores than primary tumors. Moreover, primary tumors with higher scores are associated with worse prognosis. We also found that our metastatic potential signature is enriched in other human carcinomas, suggesting that it is conserved across epithelial malignancies. This work establishes a strategy for linking cancer cell state to future behavior, reveals novel functional regulators of PDAC metastasis, and establishes a method for scoring human carcinomas based on metastatic potential.
Collapse
Affiliation(s)
- Jesse S Handler
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zijie Li
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Rachel K Dveirin
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Weixiang Fang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hani Goodarzi
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
- Arc Institute, Palo Alto 94305, USA
| | - Elana J Fertig
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Convergence Institute, Johns Hopkins Data Science and AI Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Reza Kalhor
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Molecular Biology and Genetics, Department of Neuroscience, Department of Medicine, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
102
|
Voronov D, Paganos P, Magri MS, Cuomo C, Maeso I, Gómez-Skarmeta JL, Arnone MI. Integrative multi-omics increase resolution of the sea urchin posterior gut gene regulatory network at single-cell level. Development 2024; 151:dev202278. [PMID: 39058236 DOI: 10.1242/dev.202278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
Drafting gene regulatory networks (GRNs) requires embryological knowledge pertaining to the cell type families, information on the regulatory genes, causal data from gene knockdown experiments and validations of the identified interactions by cis-regulatory analysis. We use multi-omics involving next-generation sequencing to obtain the necessary information for drafting the Strongylocentrotus purpuratus (Sp) posterior gut GRN. Here, we present an update to the GRN using: (1) a single-cell RNA-sequencing-derived cell atlas highlighting the 2 day-post-fertilization (dpf) sea urchin gastrula cell type families, as well as the genes expressed at the single-cell level; (2) a set of putative cis-regulatory modules and transcription factor-binding sites obtained from chromatin accessibility ATAC-seq data; and (3) interactions directionality obtained from differential bulk RNA sequencing following knockdown of the transcription factor Sp-Pdx1, a key regulator of gut patterning in sea urchins. Combining these datasets, we draft the GRN for the hindgut Sp-Pdx1-positive cells in the 2 dpf gastrula embryo. Overall, our data suggest the complex connectivity of the posterior gut GRN and increase the resolution of gene regulatory cascades operating within it.
Collapse
Affiliation(s)
- Danila Voronov
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Periklis Paganos
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Marta S Magri
- Centro Andaluz de Biología del Desarrollo, CSIC/Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Claudia Cuomo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Ignacio Maeso
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Jose Luis Gómez-Skarmeta
- Centro Andaluz de Biología del Desarrollo, CSIC/Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Maria Ina Arnone
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| |
Collapse
|
103
|
Levantovsky RM, Tastad C, Zhang J, Gettler K, Sabic K, Werner R, Chasteau C, Korie U, Paguay D, Bao M, Han H, Maskey N, Talware S, Patel M, Argmann C, Suarez-Farinas M, Harpaz N, Chuang LS, Cho JH. Multimodal single-cell analyses reveal mechanisms of perianal fistula in diverse patients with Crohn's disease. MED 2024; 5:886-908.e11. [PMID: 38663404 PMCID: PMC11317226 DOI: 10.1016/j.medj.2024.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 12/08/2023] [Accepted: 03/28/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Crohn's disease complicated by perianal fistulae is more prevalent and severe in patients of African ancestry. METHODS We profiled single cells from diverse patients with Crohn's disease with perianal fistula from colorectal mucosa and fistulous tracts. Immunofluorescence was performed to validate predicted cell-cell interactions. Unstimulated monocytes were chronically cultured in diverse cohorts. A subset was analyzed by single-nucleus RNA + ATAC sequencing. FINDINGS Fistulous tract cells from complete proctectomies demonstrated enrichment of myeloid cells compared to paired rectal tissues. Ligand-receptor analysis highlights myeloid-stromal cross-talk and cellular senescence, with cellular co-localization validated by immunofluorescence. Chitinase-3 like-protein-1 (CHI3L1) is a top upregulated gene in stromal cells from fistulae expressing both destructive and fibrotic gene signatures. Monocyte cultures from patients of African ancestry and controls demonstrated differences in CHI3L1 and oncostatin M (OSM) expression upon differentiation compared to individuals of European ancestry. Activating protein-1 footprints are present in ATAC-seq peaks in stress response genes, including CHI3L1 and OSM; genome-wide chromatin accessibility including JUN footprints was observed, consistent with reported mechanisms of inflammatory memory. Regulon analyses confirm known cell-specific transcription factor regulation and implicate novel ones in fibroblast subsets. All pseudo-bulked clusters demonstrate enrichment of genetic loci, establishing multicellular contributions. In the most significant African American Crohn's genetic locus, upstream of prostaglandin E receptor 4, lymphoid-predominant ATAC-seq peaks were observed, with predicted RORC footprints. CONCLUSIONS Population differences in myeloid-stromal cross-talk implicate fibrotic and destructive fibroblasts, senescence, epigenetic memory, and cell-specific enhancers in perianal fistula pathogenesis. The transcriptomic and epigenetic data provided here may guide optimization of promising mesenchymal stem cell therapies for perianal fistula. FUNDING This work was supported by grants U01DK062422, U24DK062429, and R01DK123758.
Collapse
Affiliation(s)
- Rachel M Levantovsky
- Department of Pathology, Molecular, and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Christopher Tastad
- Department of Pathology, Molecular, and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jiayu Zhang
- Department of Pathology, Molecular, and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kyle Gettler
- Department of Pathology, Molecular, and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ksenija Sabic
- Department of Pathology, Molecular, and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert Werner
- Department of Pathology, Molecular, and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Colleen Chasteau
- Department of Pathology, Molecular, and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ujunwa Korie
- Department of Pathology, Molecular, and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Diana Paguay
- Department of Pathology, Molecular, and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michelle Bao
- Division of Pediatric Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Huajun Han
- Department of Pathology, Molecular, and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Sayali Talware
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Manishkumar Patel
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carmen Argmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mayte Suarez-Farinas
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Noam Harpaz
- Department of Pathology, Molecular, and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ling-Shiang Chuang
- Department of Pathology, Molecular, and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Judy H Cho
- Department of Pathology, Molecular, and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
104
|
Patrick R, Naval-Sanchez M, Deshpande N, Huang Y, Zhang J, Chen X, Yang Y, Tiwari K, Esmaeili M, Tran M, Mohamed AR, Wang B, Xia D, Ma J, Bayliss J, Wong K, Hun ML, Sun X, Cao B, Cottle DL, Catterall T, Barzilai-Tutsch H, Troskie RL, Chen Z, Wise AF, Saini S, Soe YM, Kumari S, Sweet MJ, Thomas HE, Smyth IM, Fletcher AL, Knoblich K, Watt MJ, Alhomrani M, Alsanie W, Quinn KM, Merson TD, Chidgey AP, Ricardo SD, Yu D, Jardé T, Cheetham SW, Marcelle C, Nilsson SK, Nguyen Q, White MD, Nefzger CM. The activity of early-life gene regulatory elements is hijacked in aging through pervasive AP-1-linked chromatin opening. Cell Metab 2024; 36:1858-1881.e23. [PMID: 38959897 DOI: 10.1016/j.cmet.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/28/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024]
Abstract
A mechanistic connection between aging and development is largely unexplored. Through profiling age-related chromatin and transcriptional changes across 22 murine cell types, analyzed alongside previous mouse and human organismal maturation datasets, we uncovered a transcription factor binding site (TFBS) signature common to both processes. Early-life candidate cis-regulatory elements (cCREs), progressively losing accessibility during maturation and aging, are enriched for cell-type identity TFBSs. Conversely, cCREs gaining accessibility throughout life have a lower abundance of cell identity TFBSs but elevated activator protein 1 (AP-1) levels. We implicate TF redistribution toward these AP-1 TFBS-rich cCREs, in synergy with mild downregulation of cell identity TFs, as driving early-life cCRE accessibility loss and altering developmental and metabolic gene expression. Such remodeling can be triggered by elevating AP-1 or depleting repressive H3K27me3. We propose that AP-1-linked chromatin opening drives organismal maturation by disrupting cell identity TFBS-rich cCREs, thereby reprogramming transcriptome and cell function, a mechanism hijacked in aging through ongoing chromatin opening.
Collapse
Affiliation(s)
- Ralph Patrick
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Marina Naval-Sanchez
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Nikita Deshpande
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Yifei Huang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Jingyu Zhang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Xiaoli Chen
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Ying Yang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Kanupriya Tiwari
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Mohammadhossein Esmaeili
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Minh Tran
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Amin R Mohamed
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Binxu Wang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Di Xia
- Genome Innovation Hub, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Jun Ma
- Genome Innovation Hub, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Jacqueline Bayliss
- Department of Anatomy and Physiology, Faculty of Medicine Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Kahlia Wong
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Michael L Hun
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Xuan Sun
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Benjamin Cao
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Denny L Cottle
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Tara Catterall
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Hila Barzilai-Tutsch
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; Institut NeuroMyoGène, University Claude Bernard Lyon 1, 69008 Lyon, France
| | - Robin-Lee Troskie
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Zhian Chen
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Andrea F Wise
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Sheetal Saini
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Ye Mon Soe
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Snehlata Kumari
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Matthew J Sweet
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Helen E Thomas
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Ian M Smyth
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Anne L Fletcher
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Konstantin Knoblich
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Matthew J Watt
- Department of Anatomy and Physiology, Faculty of Medicine Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Majid Alhomrani
- Department of Clinical Laboratories Sciences, Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia; Research Centre for Health Sciences, Taif University, Taif, Saudi Arabia
| | - Walaa Alsanie
- Department of Clinical Laboratories Sciences, Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia; Research Centre for Health Sciences, Taif University, Taif, Saudi Arabia
| | - Kylie M Quinn
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Tobias D Merson
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ann P Chidgey
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Sharon D Ricardo
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Di Yu
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia; Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Thierry Jardé
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Cancer Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Department of Surgery, Cabrini Monash University, Malvern, VIC 3144, Australia
| | - Seth W Cheetham
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Christophe Marcelle
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; Institut NeuroMyoGène, University Claude Bernard Lyon 1, 69008 Lyon, France
| | - Susan K Nilsson
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Quan Nguyen
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; School of Biomedical Sciences, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Melanie D White
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; School of Biomedical Sciences, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Christian M Nefzger
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
105
|
Zhu T, Xia C, Yu R, Zhou X, Xu X, Wang L, Zong Z, Yang J, Liu Y, Ming L, You Y, Chen D, Xie W. Comprehensive mapping and modelling of the rice regulome landscape unveils the regulatory architecture underlying complex traits. Nat Commun 2024; 15:6562. [PMID: 39095348 PMCID: PMC11297339 DOI: 10.1038/s41467-024-50787-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 07/19/2024] [Indexed: 08/04/2024] Open
Abstract
Unraveling the regulatory mechanisms that govern complex traits is pivotal for advancing crop improvement. Here we present a comprehensive regulome atlas for rice (Oryza sativa), charting the chromatin accessibility across 23 distinct tissues from three representative varieties. Our study uncovers 117,176 unique open chromatin regions (OCRs), accounting for ~15% of the rice genome, a notably higher proportion compared to previous reports in plants. Integrating RNA-seq data from matched tissues, we confidently predict 59,075 OCR-to-gene links, with enhancers constituting 69.54% of these associations, including many known enhancer-to-gene links. Leveraging this resource, we re-evaluate genome-wide association study results and discover a previously unknown function of OsbZIP06 in seed germination, which we subsequently confirm through experimental validation. We optimize deep learning models to decode regulatory grammar, achieving robust modeling of tissue-specific chromatin accessibility. This approach allows to predict cross-variety regulatory dynamics from genomic sequences, shedding light on the genetic underpinnings of cis-regulatory divergence and morphological disparities between varieties. Overall, our study establishes a foundational resource for rice functional genomics and precision molecular breeding, providing valuable insights into regulatory mechanisms governing complex traits.
Collapse
Affiliation(s)
- Tao Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Nanjing Drum Tower Hospital, National Resource Center for Mutant Mice, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, China
| | - Chunjiao Xia
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ranran Yu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Nanjing Drum Tower Hospital, National Resource Center for Mutant Mice, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Xinkai Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Nanjing Drum Tower Hospital, National Resource Center for Mutant Mice, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Xingbing Xu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lin Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Nanjing Drum Tower Hospital, National Resource Center for Mutant Mice, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Zhanxiang Zong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junjiao Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yinmeng Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Luchang Ming
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuxin You
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Nanjing Drum Tower Hospital, National Resource Center for Mutant Mice, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Dijun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Nanjing Drum Tower Hospital, National Resource Center for Mutant Mice, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, China.
| | - Weibo Xie
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, 430070, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| |
Collapse
|
106
|
Loers JU, Vermeirssen V. A single-cell multimodal view on gene regulatory network inference from transcriptomics and chromatin accessibility data. Brief Bioinform 2024; 25:bbae382. [PMID: 39207727 PMCID: PMC11359808 DOI: 10.1093/bib/bbae382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/27/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Eukaryotic gene regulation is a combinatorial, dynamic, and quantitative process that plays a vital role in development and disease and can be modeled at a systems level in gene regulatory networks (GRNs). The wealth of multi-omics data measured on the same samples and even on the same cells has lifted the field of GRN inference to the next stage. Combinations of (single-cell) transcriptomics and chromatin accessibility allow the prediction of fine-grained regulatory programs that go beyond mere correlation of transcription factor and target gene expression, with enhancer GRNs (eGRNs) modeling molecular interactions between transcription factors, regulatory elements, and target genes. In this review, we highlight the key components for successful (e)GRN inference from (sc)RNA-seq and (sc)ATAC-seq data exemplified by state-of-the-art methods as well as open challenges and future developments. Moreover, we address preprocessing strategies, metacell generation and computational omics pairing, transcription factor binding site detection, and linear and three-dimensional approaches to identify chromatin interactions as well as dynamic and causal eGRN inference. We believe that the integration of transcriptomics together with epigenomics data at a single-cell level is the new standard for mechanistic network inference, and that it can be further advanced with integrating additional omics layers and spatiotemporal data, as well as with shifting the focus towards more quantitative and causal modeling strategies.
Collapse
Affiliation(s)
- Jens Uwe Loers
- Lab for Computational Biology, Integromics and Gene Regulation (CBIGR), Cancer Research Institute Ghent (CRIG), Corneel Heymanslaan 10, 9000 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Zwijnaarde-Technologiepark 71, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Vanessa Vermeirssen
- Lab for Computational Biology, Integromics and Gene Regulation (CBIGR), Cancer Research Institute Ghent (CRIG), Corneel Heymanslaan 10, 9000 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Zwijnaarde-Technologiepark 71, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| |
Collapse
|
107
|
Veerappa AM, Rowley MJ, Maggio A, Beaudry L, Hawkins D, Kim A, Sethi S, Sorgen PL, Guda C. CloudATAC: a cloud-based framework for ATAC-Seq data analysis. Brief Bioinform 2024; 25:bbae090. [PMID: 39041910 PMCID: PMC11264300 DOI: 10.1093/bib/bbae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/05/2024] [Accepted: 02/18/2024] [Indexed: 07/24/2024] Open
Abstract
Assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) generates genome-wide chromatin accessibility profiles, providing valuable insights into epigenetic gene regulation at both pooled-cell and single-cell population levels. Comprehensive analysis of ATAC-seq data involves the use of various interdependent programs. Learning the correct sequence of steps needed to process the data can represent a major hurdle. Selecting appropriate parameters at each stage, including pre-analysis, core analysis, and advanced downstream analysis, is important to ensure accurate analysis and interpretation of ATAC-seq data. Additionally, obtaining and working within a limited computational environment presents a significant challenge to non-bioinformatic researchers. Therefore, we present Cloud ATAC, an open-source, cloud-based interactive framework with a scalable, flexible, and streamlined analysis framework based on the best practices approach for pooled-cell and single-cell ATAC-seq data. These frameworks use on-demand computational power and memory, scalability, and a secure and compliant environment provided by the Google Cloud. Additionally, we leverage Jupyter Notebook's interactive computing platform that combines live code, tutorials, narrative text, flashcards, quizzes, and custom visualizations to enhance learning and analysis. Further, leveraging GPU instances has significantly improved the run-time of the single-cell framework. The source codes and data are publicly available through NIH Cloud lab https://github.com/NIGMS/ATAC-Seq-and-Single-Cell-ATAC-Seq-Analysis. This manuscript describes the development of a resource module that is part of a learning platform named ``NIGMS Sandbox for Cloud-based Learning'' https://github.com/NIGMS/NIGMS-Sandbox. The overall genesis of the Sandbox is described in the editorial NIGMS Sandbox [1] at the beginning of this Supplement. This module delivers learning materials on the analysis of bulk and single-cell ATAC-seq data in an interactive format that uses appropriate cloud resources for data access and analyses.
Collapse
Affiliation(s)
| | | | - Angela Maggio
- Deloitte Consulting LLP, Health Data and AI Arlington, VA, USA
| | - Laura Beaudry
- Google Google Public Sector, Professional Services Reston, VA, USA
| | - Dale Hawkins
- Google Google Public Sector, Professional Services Reston, VA, USA
| | - Allen Kim
- Google Google Public Sector, Professional Services Reston, VA, USA
| | - Sahil Sethi
- University of Nebraska Medical Center, Omaha, NE 68105 USA
| | - Paul L Sorgen
- University of Nebraska Medical Center, Omaha, NE 68105 USA
| | | |
Collapse
|
108
|
Do C, Jiang G, Cova G, Katsifis CC, Narducci DN, Yang J, Sakellaropoulos T, Vidal R, Lhoumaud P, Tsirigos A, Regis FFD, Kakabadze N, Nora EP, Noyes M, Cheng X, Hansen AS, Skok JA. Brain and cancer associated binding domain mutations provide insight into CTCF's relationship with chromatin and its ability to act as a chromatin organizer. RESEARCH SQUARE 2024:rs.3.rs-4670379. [PMID: 39070636 PMCID: PMC11275995 DOI: 10.21203/rs.3.rs-4670379/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Although only a fraction of CTCF motifs are bound in any cell type, and approximately half of the occupied sites overlap cohesin, the mechanisms underlying cell-type specific attachment and ability to function as a chromatin organizer remain unknown. To investigate the relationship between CTCF and chromatin we applied a combination of imaging, structural and molecular approaches, using a series of brain and cancer associated CTCF mutations that act as CTCF perturbations. We demonstrate that binding and the functional impact of WT and mutant CTCF depend not only on the unique properties of each protein, but also on the genomic context of bound sites. Our studies also highlight the reciprocal relationship between CTCF and chromatin, demonstrating that the unique binding properties of WT and mutant proteins have a distinct impact on accessibility, TF binding, cohesin overlap, chromatin interactivity and gene expression programs, providing insight into their cancer and brain related effects.
Collapse
Affiliation(s)
- Catherine Do
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Guimei Jiang
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Giulia Cova
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Christos C Katsifis
- MIT Department of Biological Engineering
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA, 02139, USA
| | - Domenic N Narducci
- MIT Department of Biological Engineering
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA, 02139, USA
| | - Jie Yang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Theodore Sakellaropoulos
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Raphael Vidal
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Priscillia Lhoumaud
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Aristotelis Tsirigos
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
- Applied Bioinformatics Laboratories, Office of Science & Research, NYU Grossman School of Medicine, New York, NY, USA
| | - Faye Fara D Regis
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Nata Kakabadze
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Elphege P Nora
- Cardiovascular Research Institute, and Department of Biochemistry and Biophysics, University of California San Francisco, CA, USA
| | - Marcus Noyes
- Institute for Systems Genetics, Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Anders S Hansen
- MIT Department of Biological Engineering
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA, 02139, USA
| | - Jane A Skok
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| |
Collapse
|
109
|
Hulett RE, Rivera-López C, Gehrke AR, Gompers A, Srivastava M. A wound-induced differentiation trajectory for neurons. Proc Natl Acad Sci U S A 2024; 121:e2322864121. [PMID: 38976727 PMCID: PMC11260127 DOI: 10.1073/pnas.2322864121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/03/2024] [Indexed: 07/10/2024] Open
Abstract
Animals capable of whole-body regeneration can replace any missing cell type and regenerate fully functional new organs, including new brains, de novo. The regeneration of a new brain requires the formation of diverse neural cell types and their assembly into an organized structure with correctly wired circuits. Recent work in various regenerative animals has revealed transcriptional programs required for the differentiation of distinct neural subpopulations, however, how these transcriptional programs are initiated in response to injury remains unknown. Here, we focused on the highly regenerative acoel worm, Hofstenia miamia, to study wound-induced transcriptional regulatory events that lead to the production of neurons and subsequently a functional brain. Footprinting analysis using chromatin accessibility data on a chromosome-scale genome assembly revealed that binding sites for the Nuclear Factor Y (NFY) transcription factor complex were significantly bound during regeneration, showing a dynamic increase in binding within one hour upon amputation specifically in tail fragments, which will regenerate a new brain. Strikingly, NFY targets were highly enriched for genes with neuronal function. Single-cell transcriptome analysis combined with functional studies identified soxC+ stem cells as a putative progenitor population for multiple neural subtypes. Further, we found that wound-induced soxC expression is likely under direct transcriptional control by NFY, uncovering a mechanism for the initiation of a neural differentiation pathway by early wound-induced binding of a transcriptional regulator.
Collapse
Affiliation(s)
- Ryan E. Hulett
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA02138
| | - Carlos Rivera-López
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA02138
- Department of Molecular and Cell Biology, Harvard University, Cambridge, MA02138
| | - Andrew R. Gehrke
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA02138
| | - Annika Gompers
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA02138
| | - Mansi Srivastava
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA02138
| |
Collapse
|
110
|
Poch T, Bahn J, Casar C, Krause J, Evangelakos I, Gilladi H, Kunzmann LK, Laschtowitz A, Iuso N, Schäfer AM, Liebig LA, Steinmann S, Sebode M, Folseraas T, Engesæter LK, Karlsen TH, Franke A, Hubner N, Schlein C, Galun E, Huber S, Lohse AW, Gagliani N, Schwinge D, Schramm C. Intergenic risk variant rs56258221 skews the fate of naive CD4 + T cells via miR4464-BACH2 interplay in primary sclerosing cholangitis. Cell Rep Med 2024; 5:101620. [PMID: 38901430 PMCID: PMC11293351 DOI: 10.1016/j.xcrm.2024.101620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 04/16/2024] [Accepted: 05/27/2024] [Indexed: 06/22/2024]
Abstract
Primary sclerosing cholangitis (PSC) is an immune-mediated liver disease of unknown pathogenesis, with a high risk to develop cirrhosis and malignancies. Functional dysregulation of T cells and association with genetic polymorphisms in T cell-related genes were previously reported for PSC. Here, we genotyped a representative PSC cohort for several disease-associated risk loci and identified rs56258221 (BACH2/MIR4464) to correlate with not only the peripheral blood T cell immunophenotype but also the functional capacities of naive CD4+ T (CD4+ TN) cells in people with PSC. Mechanistically, rs56258221 leads to an increased expression of miR4464, in turn causing attenuated translation of BACH2, a major gatekeeper of T cell quiescence. Thereby, the fate of CD4+ TN is skewed toward polarization into pro-inflammatory subsets. Clinically, people with PSC carrying rs56258221 show signs of accelerated disease progression. The data presented here highlight the importance of assigning functional outcomes to disease-associated genetic polymorphisms as potential drivers of diseases.
Collapse
Affiliation(s)
- Tobias Poch
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jonas Bahn
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Christian Casar
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; Bioinformatics Core, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jenny Krause
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; European Reference Network for Hepatological Diseases (ERN RARE-LIVER), 20246 Hamburg, Germany
| | - Ioannis Evangelakos
- Institute of Human Genetics, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Hilla Gilladi
- The Goldyne-Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem 91120, Israel
| | - Lilly K Kunzmann
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Alena Laschtowitz
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Nicola Iuso
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Anne-Marie Schäfer
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Laura A Liebig
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; Cardiovascular and Metabolic Sciences, Max Delbrück Centre for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Silja Steinmann
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; European Reference Network for Hepatological Diseases (ERN RARE-LIVER), 20246 Hamburg, Germany
| | - Marcial Sebode
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; European Reference Network for Hepatological Diseases (ERN RARE-LIVER), 20246 Hamburg, Germany
| | - Trine Folseraas
- European Reference Network for Hepatological Diseases (ERN RARE-LIVER), 20246 Hamburg, Germany; Norwegian PSC Research Centre, Department of Transplantation Medicine, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway
| | - Lise K Engesæter
- European Reference Network for Hepatological Diseases (ERN RARE-LIVER), 20246 Hamburg, Germany; Norwegian PSC Research Centre, Department of Transplantation Medicine, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway
| | - Tom H Karlsen
- European Reference Network for Hepatological Diseases (ERN RARE-LIVER), 20246 Hamburg, Germany; Norwegian PSC Research Centre, Department of Transplantation Medicine, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Norbert Hubner
- Cardiovascular and Metabolic Sciences, Max Delbrück Centre for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany; Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Christian Schlein
- Institute of Human Genetics, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Eithan Galun
- The Goldyne-Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem 91120, Israel
| | - Samuel Huber
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; European Reference Network for Hepatological Diseases (ERN RARE-LIVER), 20246 Hamburg, Germany; Hamburg Centre for Translational Immunology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Ansgar W Lohse
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; European Reference Network for Hepatological Diseases (ERN RARE-LIVER), 20246 Hamburg, Germany; Hamburg Centre for Translational Immunology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Nicola Gagliani
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; Hamburg Centre for Translational Immunology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; Department for General, Visceral and Thoracic Surgery, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institute, 17177 Solna, Sweden
| | - Dorothee Schwinge
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Christoph Schramm
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; European Reference Network for Hepatological Diseases (ERN RARE-LIVER), 20246 Hamburg, Germany; Hamburg Centre for Translational Immunology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; Martin Zeitz Centre for Rare Diseases, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
111
|
Schmidt C, Cohen S, Gudenas BL, Husain S, Carlson A, Westelman S, Wang L, Phillips JJ, Northcott PA, Weiss WA, Schwer B. PRDM6 promotes medulloblastoma by repressing chromatin accessibility and altering gene expression. Sci Rep 2024; 14:16074. [PMID: 38992221 PMCID: PMC11239875 DOI: 10.1038/s41598-024-66811-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024] Open
Abstract
SNCAIP duplication may promote Group 4 medulloblastoma via induction of PRDM6, a poorly characterized member of the PRDF1 and RIZ1 homology domain-containing (PRDM) family of transcription factors. Here, we investigated the function of PRDM6 in human hindbrain neuroepithelial stem cells and tested PRDM6 as a driver of Group 4 medulloblastoma. We report that human PRDM6 localizes predominantly to the nucleus, where it causes widespread repression of chromatin accessibility and complex alterations of gene expression patterns. Genome-wide mapping of PRDM6 binding reveals that PRDM6 binds to chromatin regions marked by histone H3 lysine 27 trimethylation that are located within, or proximal to, genes. Moreover, we show that PRDM6 expression in neuroepithelial stem cells promotes medulloblastoma. Surprisingly, medulloblastomas derived from PRDM6-expressing neuroepithelial stem cells match human Group 3, but not Group 4, medulloblastoma. We conclude that PRDM6 expression has oncogenic potential but is insufficient to drive Group 4 medulloblastoma from neuroepithelial stem cells. We propose that both PRDM6 and additional factors, such as specific cell-of-origin features, are required for Group 4 medulloblastoma. Given the lack of PRDM6 expression in normal tissues and its oncogenic potential shown here, we suggest that PRDM6 inhibition may have therapeutic value in PRDM6-expressing medulloblastomas.
Collapse
Affiliation(s)
- Christin Schmidt
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Sarah Cohen
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Brian L Gudenas
- Division of Brain Tumor Research, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sarah Husain
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Annika Carlson
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Samantha Westelman
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Linyu Wang
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Joanna J Phillips
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- UCSF Tumor SPORE Biorepository, University of California, San Francisco, San Francisco, CA, USA
| | - Paul A Northcott
- Division of Brain Tumor Research, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - William A Weiss
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| | - Bjoern Schwer
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
- Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
- Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA, USA.
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
112
|
Franco-Enzástiga Ú, Inturi NN, Natarajan K, Mwirigi JM, Mazhar K, Schlachetzki JC, Schumacher M, Price TJ. Epigenomic landscape of the human dorsal root ganglion: sex differences and transcriptional regulation of nociceptive genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.587047. [PMID: 38586055 PMCID: PMC10996669 DOI: 10.1101/2024.03.27.587047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Gene expression is influenced by chromatin architecture via controlled access of regulatory factors to DNA. To better understand gene regulation in the human dorsal root ganglion (hDRG) we used bulk and spatial transposase-accessible chromatin technology followed by sequencing (ATAC-seq). Using bulk ATAC-seq, we detected that in females diverse differentially accessible chromatin regions (DARs) mapped to the X chromosome and in males to autosomal genes. EGR1/3 and SP1/4 transcription factor binding motifs were abundant within DARs in females, and JUN, FOS and other AP-1 factors in males. To dissect the open chromatin profile in hDRG neurons, we used spatial ATAC-seq. The neuron cluster showed higher chromatin accessibility in GABAergic, glutamatergic, and interferon-related genes in females, and in Ca2+- signaling-related genes in males. Sex differences in transcription factor binding sites in neuron-proximal barcodes were consistent with the trends observed in bulk ATAC-seq data. We validated that EGR1 expression is biased to female hDRG compared to male. Strikingly, XIST, the long-noncoding RNA responsible for X inactivation, hybridization signal was found to be highly dispersed in the female neuronal but not non-neuronal nuclei suggesting weak X inactivation in female hDRG neurons. Our findings point to baseline epigenomic sex differences in the hDRG that likely underlie divergent transcriptional responses that determine mechanistic sex differences in pain.
Collapse
Affiliation(s)
- Úrzula Franco-Enzástiga
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Nikhil N. Inturi
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Keerthana Natarajan
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Juliet M. Mwirigi
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Khadija Mazhar
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Johannes C.M. Schlachetzki
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0651, USA
| | - Mark Schumacher
- Department of Anesthesia and Perioperative Care and the UCSF Pain and Addiction Research Center, University of California, San Francisco, California, 94143 USA
| | - Theodore J. Price
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| |
Collapse
|
113
|
Wang Q, Antone J, Alsop E, Reiman R, Funk C, Bendl J, Dudley JT, Liang WS, Karr TL, Roussos P, Bennett DA, De Jager PL, Serrano GE, Beach TG, Van Keuren-Jensen K, Mastroeni D, Reiman EM, Readhead BP. Single cell transcriptomes and multiscale networks from persons with and without Alzheimer's disease. Nat Commun 2024; 15:5815. [PMID: 38987616 PMCID: PMC11237088 DOI: 10.1038/s41467-024-49790-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/13/2024] [Indexed: 07/12/2024] Open
Abstract
The emergence of single nucleus RNA sequencing (snRNA-seq) offers to revolutionize the study of Alzheimer's disease (AD). Integration with complementary multiomics data such as genetics, proteomics and clinical data provides powerful opportunities to link cell subpopulations and molecular networks with a broader disease-relevant context. We report snRNA-seq profiles from superior frontal gyrus samples from 101 well characterized subjects from the Banner Brain and Body Donation Program in combination with whole genome sequences. We report findings that link common AD risk variants with CR1 expression in oligodendrocytes as well as alterations in hematological parameters. We observed an AD-associated CD83(+) microglial subtype with unique molecular networks and which is associated with immunoglobulin IgG4 production in the transverse colon. Our major observations were replicated in two additional, independent snRNA-seq data sets. These findings illustrate the power of multi-tissue molecular profiling to contextualize snRNA-seq brain transcriptomics and reveal disease biology.
Collapse
Affiliation(s)
- Qi Wang
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, 85281, USA
| | - Jerry Antone
- Division of Neurogenomics, The Translational Genomics Research Institute, Phoenix, AZ, 85004, USA
| | - Eric Alsop
- Division of Neurogenomics, The Translational Genomics Research Institute, Phoenix, AZ, 85004, USA
| | - Rebecca Reiman
- Division of Neurogenomics, The Translational Genomics Research Institute, Phoenix, AZ, 85004, USA
| | - Cory Funk
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Jaroslav Bendl
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Joel T Dudley
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, 85281, USA
| | - Winnie S Liang
- Division of Neurogenomics, The Translational Genomics Research Institute, Phoenix, AZ, 85004, USA
| | - Timothy L Karr
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, 85281, USA
| | - Panos Roussos
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Philip L De Jager
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Geidy E Serrano
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | - Thomas G Beach
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | | | - Diego Mastroeni
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, 85281, USA
| | - Eric M Reiman
- Banner Alzheimer's Institute, Phoenix, AZ, 85006, USA
| | - Benjamin P Readhead
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, 85281, USA.
| |
Collapse
|
114
|
Wang Z, Ke J, Guo Z, Wang Y, Lei K, Wang S, Chen G, Shen Z, Li W, Ou G. Transposase-assisted tagmentation: an economical and scalable strategy for single-worm whole-genome sequencing. G3 (BETHESDA, MD.) 2024; 14:jkae094. [PMID: 38856093 PMCID: PMC11228870 DOI: 10.1093/g3journal/jkae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/21/2024] [Indexed: 06/11/2024]
Abstract
AlphaMissense identifies 23 million human missense variants as likely pathogenic, but only 0.1% have been clinically classified. To experimentally validate these predictions, chemical mutagenesis presents a rapid, cost-effective method to produce billions of mutations in model organisms. However, the prohibitive costs and limitations in the throughput of whole-genome sequencing (WGS) technologies, crucial for variant identification, constrain its widespread application. Here, we introduce a Tn5 transposase-assisted tagmentation technique for conducting WGS in Caenorhabditis elegans, Escherichia coli, Saccharomyces cerevisiae, and Chlamydomonas reinhardtii. This method, demands merely 20 min of hands-on time for a single-worm or single-cell clones and incurs a cost below 10 US dollars. It effectively pinpoints causal mutations in mutants defective in cilia or neurotransmitter secretion and in mutants synthetically sterile with a variant analogous to the B-Raf Proto-oncogene, Serine/Threonine Kinase (BRAF) V600E mutation. Integrated with chemical mutagenesis, our approach can generate and identify missense variants economically and efficiently, facilitating experimental investigations of missense variants in diverse species.
Collapse
Affiliation(s)
- Zi Wang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences and MOE Key Laboratory for Protein Science, McGovern Institute for Brain Research, Tsinghua University, Beijing 100190, China
| | - Jingyi Ke
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences and MOE Key Laboratory for Protein Science, McGovern Institute for Brain Research, Tsinghua University, Beijing 100190, China
| | - Zhengyang Guo
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences and MOE Key Laboratory for Protein Science, McGovern Institute for Brain Research, Tsinghua University, Beijing 100190, China
| | - Yang Wang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences and MOE Key Laboratory for Protein Science, McGovern Institute for Brain Research, Tsinghua University, Beijing 100190, China
| | - Kexin Lei
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences and MOE Key Laboratory for Protein Science, McGovern Institute for Brain Research, Tsinghua University, Beijing 100190, China
| | - Shimin Wang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences and MOE Key Laboratory for Protein Science, McGovern Institute for Brain Research, Tsinghua University, Beijing 100190, China
| | - Guanghan Chen
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences and MOE Key Laboratory for Protein Science, McGovern Institute for Brain Research, Tsinghua University, Beijing 100190, China
| | - Zijie Shen
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences and MOE Key Laboratory for Protein Science, McGovern Institute for Brain Research, Tsinghua University, Beijing 100190, China
| | - Wei Li
- School of Medicine, Tsinghua University, Beijing 100190, China
| | - Guangshuo Ou
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences and MOE Key Laboratory for Protein Science, McGovern Institute for Brain Research, Tsinghua University, Beijing 100190, China
| |
Collapse
|
115
|
Mulet-Lazaro R, van Herk S, Nuetzel M, Sijs-Szabo A, Díaz N, Kelly K, Erpelinck-Verschueren C, Schwarzfischer-Pfeilschifter L, Stanewsky H, Ackermann U, Glatz D, Raithel J, Fischer A, Pohl S, Rijneveld A, Vaquerizas JM, Thiede C, Plass C, Wouters BJ, Delwel R, Rehli M, Gebhard C. Epigenetic alterations affecting hematopoietic regulatory networks as drivers of mixed myeloid/lymphoid leukemia. Nat Commun 2024; 15:5693. [PMID: 38972954 PMCID: PMC11228033 DOI: 10.1038/s41467-024-49811-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 06/19/2024] [Indexed: 07/09/2024] Open
Abstract
Leukemias with ambiguous lineage comprise several loosely defined entities, often without a clear mechanistic basis. Here, we extensively profile the epigenome and transcriptome of a subgroup of such leukemias with CpG Island Methylator Phenotype. These leukemias exhibit comparable hybrid myeloid/lymphoid epigenetic landscapes, yet heterogeneous genetic alterations, suggesting they are defined by their shared epigenetic profile rather than common genetic lesions. Gene expression enrichment reveals similarity with early T-cell precursor acute lymphoblastic leukemia and a lymphoid progenitor cell of origin. In line with this, integration of differential DNA methylation and gene expression shows widespread silencing of myeloid transcription factors. Moreover, binding sites for hematopoietic transcription factors, including CEBPA, SPI1 and LEF1, are uniquely inaccessible in these leukemias. Hypermethylation also results in loss of CTCF binding, accompanied by changes in chromatin interactions involving key transcription factors. In conclusion, epigenetic dysregulation, and not genetic lesions, explains the mixed phenotype of this group of leukemias with ambiguous lineage. The data collected here constitute a useful and comprehensive epigenomic reference for subsequent studies of acute myeloid leukemias, T-cell acute lymphoblastic leukemias and mixed-phenotype leukemias.
Collapse
Affiliation(s)
- Roger Mulet-Lazaro
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Stanley van Herk
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Margit Nuetzel
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Aniko Sijs-Szabo
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Noelia Díaz
- Max Planck Institute for Molecular Biomedicine, Muenster, Germany
- Renewable Marine Resources Department, Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain
| | - Katherine Kelly
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Claudia Erpelinck-Verschueren
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | | | - Hanna Stanewsky
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Ute Ackermann
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Dagmar Glatz
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Johanna Raithel
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Alexander Fischer
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Sandra Pohl
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Anita Rijneveld
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Juan M Vaquerizas
- Max Planck Institute for Molecular Biomedicine, Muenster, Germany
- MRC London Institute of Medical Sciences, London, United Kingdom
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital 8 Campus, London, United Kingdom
| | - Christian Thiede
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bas J Wouters
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.
- Oncode Institute, Utrecht, the Netherlands.
| | - Ruud Delwel
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.
- Oncode Institute, Utrecht, the Netherlands.
| | - Michael Rehli
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.
- Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany.
| | - Claudia Gebhard
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.
- Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany.
| |
Collapse
|
116
|
Sim N, Carter JM, Deka K, Tan BKT, Sim Y, Tan SM, Li Y. TWEAK/Fn14 signalling driven super-enhancer reprogramming promotes pro-metastatic metabolic rewiring in triple-negative breast cancer. Nat Commun 2024; 15:5638. [PMID: 38965263 PMCID: PMC11224303 DOI: 10.1038/s41467-024-50071-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 06/27/2024] [Indexed: 07/06/2024] Open
Abstract
Triple Negative Breast Cancer (TNBC) is the most aggressive breast cancer subtype suffering from limited targeted treatment options. Following recent reports correlating Fibroblast growth factor-inducible 14 (Fn14) receptor overexpression in Estrogen Receptor (ER)-negative breast cancers with metastatic events, we show that Fn14 is specifically overexpressed in TNBC patients and associated with poor survival. We demonstrate that constitutive Fn14 signalling rewires the transcriptomic and epigenomic landscape of TNBC, leading to enhanced tumour growth and metastasis. We further illustrate that such mechanisms activate TNBC-specific super enhancers (SE) to drive the transcriptional activation of cancer dependency genes via chromatin looping. In particular, we uncover the SE-driven upregulation of Nicotinamide phosphoribosyltransferase (NAMPT), which promotes NAD+ and ATP metabolic reprogramming critical for filopodia formation and metastasis. Collectively, our study details the complex mechanistic link between TWEAK/Fn14 signalling and TNBC metastasis, which reveals several vulnerabilities which could be pursued for the targeted treatment of TNBC patients.
Collapse
Affiliation(s)
- Nicholas Sim
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Jean-Michel Carter
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Kamalakshi Deka
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Benita Kiat Tee Tan
- Division of Surgery and Surgical Oncology, Department of Breast Surgery, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore, 168583, Singapore
- Division of Surgery and Surgical Oncology, Department of Breast Surgery, Singapore General Hospital, 31 Third Hospital Ave, Singapore, 168753, Singapore
- SingHealth Duke-NUS Breast Centre, Singapore, Singapore
| | - Yirong Sim
- Division of Surgery and Surgical Oncology, Department of Breast Surgery, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore, 168583, Singapore
- Division of Surgery and Surgical Oncology, Department of Breast Surgery, Singapore General Hospital, 31 Third Hospital Ave, Singapore, 168753, Singapore
- SingHealth Duke-NUS Breast Centre, Singapore, Singapore
| | - Suet-Mien Tan
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Yinghui Li
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
117
|
Gopalan SS, Perry BW, Francioli YZ, Schield DR, Guss HD, Bernstein JM, Ballard K, Smith CF, Saviola AJ, Adams RH, Mackessy SP, Castoe TA. Diverse Gene Regulatory Mechanisms Alter Rattlesnake Venom Gene Expression at Fine Evolutionary Scales. Genome Biol Evol 2024; 16:evae110. [PMID: 38753011 PMCID: PMC11243404 DOI: 10.1093/gbe/evae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 07/13/2024] Open
Abstract
Understanding and predicting the relationships between genotype and phenotype is often challenging, largely due to the complex nature of eukaryotic gene regulation. A step towards this goal is to map how phenotypic diversity evolves through genomic changes that modify gene regulatory interactions. Using the Prairie Rattlesnake (Crotalus viridis) and related species, we integrate mRNA-seq, proteomic, ATAC-seq and whole-genome resequencing data to understand how specific evolutionary modifications to gene regulatory network components produce differences in venom gene expression. Through comparisons within and between species, we find a remarkably high degree of gene expression and regulatory network variation across even a shallow level of evolutionary divergence. We use these data to test hypotheses about the roles of specific trans-factors and cis-regulatory elements, how these roles may vary across venom genes and gene families, and how variation in regulatory systems drive diversity in venom phenotypes. Our results illustrate that differences in chromatin and genotype at regulatory elements play major roles in modulating expression. However, we also find that enhancer deletions, differences in transcription factor expression, and variation in activity of the insulator protein CTCF also likely impact venom phenotypes. Our findings provide insight into the diversity and gene-specificity of gene regulatory features and highlight the value of comparative studies to link gene regulatory network variation to phenotypic variation.
Collapse
Affiliation(s)
- Siddharth S Gopalan
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Blair W Perry
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Yannick Z Francioli
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Drew R Schield
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Hannah D Guss
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Justin M Bernstein
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Kaas Ballard
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Cara F Smith
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80045, USA
| | - Anthony J Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80045, USA
| | - Richard H Adams
- Department of Entomology and Plant Pathology, University of Arkansas Agricultural Experimental Station, University of Arkansas, Fayetteville, AR 72701, USA
| | - Stephen P Mackessy
- Department of Biological Sciences, University of Northern Colorado, Greeley, CO 80639, USA
| | - Todd A Castoe
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| |
Collapse
|
118
|
Kubota S, Sun Y, Morii M, Bai J, Ideue T, Hirayama M, Sorin S, Eerdunduleng, Yokomizo-Nakano T, Osato M, Hamashima A, Iimori M, Araki K, Umemoto T, Sashida G. Chromatin modifier Hmga2 promotes adult hematopoietic stem cell function and blood regeneration in stress conditions. EMBO J 2024; 43:2661-2684. [PMID: 38811851 PMCID: PMC11217491 DOI: 10.1038/s44318-024-00122-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/31/2024] Open
Abstract
The molecular mechanisms governing the response of hematopoietic stem cells (HSCs) to stress insults remain poorly defined. Here, we investigated effects of conditional knock-out or overexpression of Hmga2 (High mobility group AT-hook 2), a transcriptional activator of stem cell genes in fetal HSCs. While Hmga2 overexpression did not affect adult hematopoiesis under homeostasis, it accelerated HSC expansion in response to injection with 5-fluorouracil (5-FU) or in vitro treatment with TNF-α. In contrast, HSC and megakaryocyte progenitor cell numbers were decreased in Hmga2 KO animals. Transcription of inflammatory genes was repressed in Hmga2-overexpressing mice injected with 5-FU, and Hmga2 bound to distinct regions and chromatin accessibility was decreased in HSCs upon stress. Mechanistically, we found that casein kinase 2 (CK2) phosphorylates the Hmga2 acidic domain, promoting its access and binding to chromatin, transcription of anti-inflammatory target genes, and the expansion of HSCs under stress conditions. Notably, the identified stress-regulated Hmga2 gene signature is activated in hematopoietic stem progenitor cells of human myelodysplastic syndrome patients. In sum, these results reveal a TNF-α/CK2/phospho-Hmga2 axis controlling adult stress hematopoiesis.
Collapse
Affiliation(s)
- Sho Kubota
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yuqi Sun
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Hematology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Mariko Morii
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Jie Bai
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takako Ideue
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Mayumi Hirayama
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Supannika Sorin
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Eerdunduleng
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takako Yokomizo-Nakano
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Motomi Osato
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of General Internal Medicine, Kumamoto Kenhoku Hospital, Kumamoto, Japan
| | - Ai Hamashima
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Mihoko Iimori
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kimi Araki
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, Japan
| | - Terumasa Umemoto
- Laboratory of Hematopoietic Stem Cell Engineering, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Goro Sashida
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
119
|
Yang Y, Pe’er D. REUNION: transcription factor binding prediction and regulatory association inference from single-cell multi-omics data. Bioinformatics 2024; 40:i567-i575. [PMID: 38940155 PMCID: PMC11211829 DOI: 10.1093/bioinformatics/btae234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024] Open
Abstract
MOTIVATION Profiling of gene expression and chromatin accessibility by single-cell multi-omics approaches can help to systematically decipher how transcription factors (TFs) regulate target gene expression via cis-region interactions. However, integrating information from different modalities to discover regulatory associations is challenging, in part because motif scanning approaches miss many likely TF binding sites. RESULTS We develop REUNION, a framework for predicting genome-wide TF binding and cis-region-TF-gene "triplet" regulatory associations using single-cell multi-omics data. The first component of REUNION, Unify, utilizes information theory-inspired complementary score functions that incorporate TF expression, chromatin accessibility, and target gene expression to identify regulatory associations. The second component, Rediscover, takes Unify estimates as input for pseudo semi-supervised learning to predict TF binding in accessible genomic regions that may or may not include detected TF motifs. Rediscover leverages latent chromatin accessibility and sequence feature spaces of the genomic regions, without requiring chromatin immunoprecipitation data for model training. Applied to peripheral blood mononuclear cell data, REUNION outperforms alternative methods in TF binding prediction on average performance. In particular, it recovers missing region-TF associations from regions lacking detected motifs, which circumvents the reliance on motif scanning and facilitates discovery of novel associations involving potential co-binding transcriptional regulators. Newly identified region-TF associations, even in regions lacking a detected motif, improve the prediction of target gene expression in regulatory triplets, and are thus likely to genuinely participate in the regulation. AVAILABILITY AND IMPLEMENTATION All source code is available at https://github.com/yangymargaret/REUNION.
Collapse
Affiliation(s)
- Yang Yang
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, United States
| | - Dana Pe’er
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, United States
| |
Collapse
|
120
|
Patra M, Klochendler A, Condiotti R, Kaffe B, Elgavish S, Drawshy Z, Avrahami D, Narita M, Hofree M, Drier Y, Meshorer E, Dor Y, Ben-Porath I. Senescence of human pancreatic beta cells enhances functional maturation through chromatin reorganization and promotes interferon responsiveness. Nucleic Acids Res 2024; 52:6298-6316. [PMID: 38682582 PMCID: PMC11194086 DOI: 10.1093/nar/gkae313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 05/01/2024] Open
Abstract
Senescent cells can influence the function of tissues in which they reside, and their propensity for disease. A portion of adult human pancreatic beta cells express the senescence marker p16, yet it is unclear whether they are in a senescent state, and how this affects insulin secretion. We analyzed single-cell transcriptome datasets of adult human beta cells, and found that p16-positive cells express senescence gene signatures, as well as elevated levels of beta-cell maturation genes, consistent with enhanced functionality. Senescent human beta-like cells in culture undergo chromatin reorganization that leads to activation of enhancers regulating functional maturation genes and acquisition of glucose-stimulated insulin secretion capacity. Strikingly, Interferon-stimulated genes are elevated in senescent human beta cells, but genes encoding senescence-associated secretory phenotype (SASP) cytokines are not. Senescent beta cells in culture and in human tissue show elevated levels of cytoplasmic DNA, contributing to their increased interferon responsiveness. Human beta-cell senescence thus involves chromatin-driven upregulation of a functional-maturation program, and increased responsiveness of interferon-stimulated genes, changes that could increase both insulin secretion and immune reactivity.
Collapse
Affiliation(s)
- Milan Patra
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Agnes Klochendler
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Reba Condiotti
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Binyamin Kaffe
- Department of Genetics, the Institute of Life Sciences and the Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sharona Elgavish
- Info-CORE, Bioinformatics Unit of the I-CORE at the Hebrew University of Jerusalem, Jerusalem, Israel
| | - Zeina Drawshy
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dana Avrahami
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Masashi Narita
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Matan Hofree
- The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yotam Drier
- The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eran Meshorer
- Department of Genetics, the Institute of Life Sciences and the Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ittai Ben-Porath
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
121
|
Vendrell X, de Castro P, Escrich L, Grau N, Gonzalez-Martin R, Quiñonero A, Escribá MJ, Domínguez F. Longitudinal profiling of human androgenotes through single-cell analysis unveils paternal gene expression dynamics in early embryo development. Hum Reprod 2024; 39:1186-1196. [PMID: 38622061 PMCID: PMC11145015 DOI: 10.1093/humrep/deae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/12/2024] [Indexed: 04/17/2024] Open
Abstract
STUDY QUESTION How do transcriptomics vary in haploid human androgenote embryos at single cell level in the first four cell cycles of embryo development? SUMMARY ANSWER Gene expression peaks at the fourth cell cycle, however some androcytes exhibit unique transcriptional behaviors. WHAT IS KNOWN ALREADY The developmental potential of an embryo is determined by the competence of the oocyte and the sperm. However, studies of the contribution of the paternal genome using pure haploid androgenotes are very scarce. STUDY DESIGN, SIZE, DURATION This study was performed analyzing the single-cell transcriptomic sequencing of 38 androcytes obtained from 10 androgenote bioconstructs previously produced in vitro (de Castro et al., 2023). These results were analyzed through different bioinformatics software such as g: Profiler, GSEA, Cytoscape, and Reactome. PARTICIPANTS/MATERIALS, SETTING, METHODS Single cell sequencing was used to obtain the transcriptomic profiles of the different androcytes. The results obtained were compared between the different cycles studied using the DESeq2 program and functional enrichment pathways using g: Profiler, Cytoscape, and Reactome. MAIN RESULTS AND THE ROLE OF CHANCE A wave of paternally driven transcriptomic activation was found during the third-cell cycle, with 1128 upregulated and 225 downregulated genes and the fourth-cell cycle, with 1373 upregulated and 286 downregulated genes, compared to first-cell cycle androcytes. Differentially expressed routes related to cell differentiation, DNA-binding transcription, RNA biosynthesis and RNA polymerase II transcription regulatory complex, and cell death were found in the third and fourth with respect to the first-cell cycle. Conversely, in the fourth cell cycle, 153 downregulated and 332 upregulated genes were found compared with third cell cycle, associated with differentially expressed processes related to E-box binding and zinc finger protein 652 (ZNF652) transcription factor. Further, significant overexpression of LEUTX, PRAMEF1, DUXA, RFPL4A, TRIM43, and ZNF675 found in androgenotes, compared to biparental embryos, highlights the paternal contributions to zygote genome activation. LARGE SCALE DATA All raw sequencing data are available through the Gene Expression Omnibus (GEO) under accessions number: GSE216501. LIMITATIONS, REASONS FOR CAUTION Extrapolation of biological events from uniparental constructs to biparental embryos should be done with caution. Maternal and paternal genomes do not act independently of each other in a natural condition. The absence of one genome may affect gene transcription of the other. In this sense, the haploid condition of the bioconstructs could mask the transcriptomic patterns of the single cells. WIDER IMPLICATIONS OF THE FINDINGS The results obtained demonstrated the level of involvement of the human paternal haploid genome in the early stages of embryo development as well as its evolution at the transcriptomic level, laying the groundwork for the use of these bioconstructs as reliable models to dispel doubts about the genetic role played by the paternal genome in the early cycles of embryo development. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by Instituto de Salud Carlos III (ISCIII) through the project 'PI22/00924', co-funded by European Regional Development Fund (ERDF); 'A way to make Europe'. F.D. was supported by the Spanish Ministry of Economy and Competitiveness through the Miguel Servet program (CPII018/00002). M.J.E. was supported by Instituto de Salud Carlos III (PI19/00577 [M.J.E.]) and FI20/00086. P.dC. was supported by a predoctoral grant for training in research into health (PFIS PI19/00577) from the Instituto de Salud Carlos III. All authors declare having no conflict of interest with regard to this trial.
Collapse
Affiliation(s)
- X Vendrell
- Reproductive Genetics Department, Sistemas Genómicos-Synlab, Valencia, Spain
| | - P de Castro
- Research Department, IVIRMA Global Research Alliance, IVI Foundation—Reproductive Biology and Bioengineering in Human Reproduction, IIS La Fe Health Research, Valencia, Spain
| | - L Escrich
- Embryology Department, IVIRMA Valencia, Valencia, Spain
| | - N Grau
- Embryology Department, IVIRMA Valencia, Valencia, Spain
| | - R Gonzalez-Martin
- Research Department, IVIRMA Global Research Alliance, IVI Foundation—Reproductive Biology and Bioengineering in Human Reproduction, IIS La Fe Health Research, Valencia, Spain
| | - A Quiñonero
- Research Department, IVIRMA Global Research Alliance, IVI Foundation—Reproductive Biology and Bioengineering in Human Reproduction, IIS La Fe Health Research, Valencia, Spain
| | - M J Escribá
- Research Department, IVIRMA Global Research Alliance, IVI Foundation—Reproductive Biology and Bioengineering in Human Reproduction, IIS La Fe Health Research, Valencia, Spain
- Embryology Department, IVIRMA Valencia, Valencia, Spain
| | - F Domínguez
- Research Department, IVIRMA Global Research Alliance, IVI Foundation—Reproductive Biology and Bioengineering in Human Reproduction, IIS La Fe Health Research, Valencia, Spain
| |
Collapse
|
122
|
Liu B, He Y, Wu X, Lin Z, Ma J, Qiu Y, Xiang Y, Kong F, Lai F, Pal M, Wang P, Ming J, Zhang B, Wang Q, Wu J, Xia W, Shen W, Na J, Torres-Padilla ME, Li J, Xie W. Mapping putative enhancers in mouse oocytes and early embryos reveals TCF3/12 as key folliculogenesis regulators. Nat Cell Biol 2024; 26:962-974. [PMID: 38839978 DOI: 10.1038/s41556-024-01422-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/11/2024] [Indexed: 06/07/2024]
Abstract
Dynamic epigenomic reprogramming occurs during mammalian oocyte maturation and early development. However, the underlying transcription circuitry remains poorly characterized. By mapping cis-regulatory elements using H3K27ac, we identified putative enhancers in mouse oocytes and early embryos distinct from those in adult tissues, enabling global transitions of regulatory landscapes around fertilization and implantation. Gene deserts harbour prevalent putative enhancers in fully grown oocytes linked to oocyte-specific genes and repeat activation. Embryo-specific enhancers are primed before zygotic genome activation and are restricted by oocyte-inherited H3K27me3. Putative enhancers in oocytes often manifest H3K4me3, bidirectional transcription, Pol II binding and can drive transcription in STARR-seq and a reporter assay. Finally, motif analysis of these elements identified crucial regulators of oogenesis, TCF3 and TCF12, the deficiency of which impairs activation of key oocyte genes and folliculogenesis. These data reveal distinctive regulatory landscapes and their interacting transcription factors that underpin the development of mammalian oocytes and early embryos.
Collapse
Affiliation(s)
- Bofeng Liu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Yuanlin He
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
- Innovation Center of Suzhou Nanjing Medical University, Suzhou, China
| | - Xiaotong Wu
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, China
| | - Zili Lin
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Jing Ma
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Yuexin Qiu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Yunlong Xiang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Feng Kong
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Fangnong Lai
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Mrinmoy Pal
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, Munich, Germany
| | - Peizhe Wang
- Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing, China
| | - Jia Ming
- Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing, China
| | - Bingjie Zhang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Qiujun Wang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Jingyi Wu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Weikun Xia
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Weimin Shen
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, China
| | - Jie Na
- Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing, China
| | | | - Jing Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China.
- Innovation Center of Suzhou Nanjing Medical University, Suzhou, China.
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
123
|
Nguyen CDK, Colón-Emeric BA, Murakami S, Shujath MNY, Yi C. PRMT1 promotes epigenetic reprogramming associated with acquired chemoresistance in pancreatic cancer. Cell Rep 2024; 43:114176. [PMID: 38691454 PMCID: PMC11238875 DOI: 10.1016/j.celrep.2024.114176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/01/2023] [Accepted: 04/16/2024] [Indexed: 05/03/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) carries a dismal prognosis due to therapeutic resistance. We show that PDAC cells undergo global epigenetic reprogramming to acquire chemoresistance, a process that is driven at least in part by protein arginine methyltransferase 1 (PRMT1). Genetic or pharmacological PRMT1 inhibition impairs adaptive epigenetic reprogramming and delays acquired resistance to gemcitabine and other common chemo drugs. Mechanistically, gemcitabine treatment induces translocation of PRMT1 into the nucleus, where its enzymatic activity limits the assembly of chromatin-bound MAFF/BACH1 transcriptional complexes. Cut&Tag chromatin profiling of H3K27Ac, MAFF, and BACH1 suggests a pivotal role for MAFF/BACH1 in global epigenetic response to gemcitabine, which is confirmed by genetically silencing MAFF. PRMT1 and MAFF/BACH1 signature genes identified by Cut&Tag analysis distinguish gemcitabine-resistant from gemcitabine-sensitive patient-derived xenografts of PDAC, supporting the PRMT1-MAFF/BACH1 epigenetic regulatory axis as a potential therapeutic avenue for improving the efficacy and durability of chemotherapies in patients of PDAC.
Collapse
Affiliation(s)
- Chan D K Nguyen
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Benjamín A Colón-Emeric
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Shigekazu Murakami
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Mia N Y Shujath
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Chunling Yi
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
124
|
Miranda AX, Kemp J, Davidson BA, Bellomo SE, Miranda VE, Manoni A, Marchiò C, Croessmann S, Park BH, Hodges E. Genomic dissection and mutation-specific target discovery for breast cancer PIK3CA hotspot mutations. BMC Genomics 2024; 25:519. [PMID: 38802751 PMCID: PMC11129441 DOI: 10.1186/s12864-024-10368-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/02/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Recent advancements in high-throughput genomics and targeted therapies have provided tremendous potential to identify and therapeutically target distinct mutations associated with cancers. However, to date the majority of targeted therapies are used to treat all functional mutations within the same gene, regardless of affected codon or phenotype. RESULTS In this study, we developed a functional genomic analysis workflow with a unique isogenic cell line panel bearing two distinct hotspot PIK3CA mutations, E545K and H1047R, to accurately identify targetable differences between mutations within the same gene. We performed RNA-seq and ATAC-seq and identified distinct transcriptomic and epigenomic differences associated with each PIK3CA hotspot mutation. We used this data to curate a select CRISPR knock out screen to identify mutation-specific gene pathway vulnerabilities. These data revealed AREG as a E545K-preferential target that was further validated through in vitro analysis and publicly available patient databases. CONCLUSIONS Using our multi-modal genomics framework, we discover distinct differences in genomic regulation between PIK3CA hotspot mutations, suggesting the PIK3CA mutations have different regulatory effects on the function and downstream signaling of the PI3K complex. Our results demonstrate the potential to rapidly uncover mutation specific molecular targets, specifically AREG and a proximal gene regulatory region, that may provide clinically relevant therapeutic targets. The methods outlined provide investigators with an integrative strategy to identify mutation-specific targets for the treatment of other oncogenic mutations in an isogenic system.
Collapse
Affiliation(s)
- Adam X Miranda
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Justin Kemp
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Brad A Davidson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Verda E Miranda
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Alexandra Manoni
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Caterina Marchiò
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, TO, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Sarah Croessmann
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ben H Park
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA.
| | - Emily Hodges
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA.
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
125
|
Wamsley B, Bicks L, Cheng Y, Kawaguchi R, Quintero D, Margolis M, Grundman J, Liu J, Xiao S, Hawken N, Mazariegos S, Geschwind DH. Molecular cascades and cell type-specific signatures in ASD revealed by single-cell genomics. Science 2024; 384:eadh2602. [PMID: 38781372 DOI: 10.1126/science.adh2602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 02/28/2024] [Indexed: 05/25/2024]
Abstract
Genomic profiling in postmortem brain from autistic individuals has consistently revealed convergent molecular changes. What drives these changes and how they relate to genetic susceptibility in this complex condition are not well understood. We performed deep single-nucleus RNA sequencing (snRNA-seq) to examine cell composition and transcriptomics, identifying dysregulation of cell type-specific gene regulatory networks (GRNs) in autism spectrum disorder (ASD), which we corroborated using single-nucleus assay for transposase-accessible chromatin with sequencing (snATAC-seq) and spatial transcriptomics. Transcriptomic changes were primarily cell type specific, involving multiple cell types, most prominently interhemispheric and callosal-projecting neurons, interneurons within superficial laminae, and distinct glial reactive states involving oligodendrocytes, microglia, and astrocytes. Autism-associated GRN drivers and their targets were enriched in rare and common genetic risk variants, connecting autism genetic susceptibility and cellular and circuit alterations in the human brain.
Collapse
Affiliation(s)
- Brie Wamsley
- Program in Neurobehavioral Genetics and Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lucy Bicks
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Psychiatry, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yuyan Cheng
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Riki Kawaguchi
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Diana Quintero
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael Margolis
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jennifer Grundman
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jianyin Liu
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shaohua Xiao
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Natalie Hawken
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Samantha Mazariegos
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Daniel H Geschwind
- Program in Neurobehavioral Genetics and Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Psychiatry, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
126
|
He J, Huo X, Pei G, Jia Z, Yan Y, Yu J, Qu H, Xie Y, Yuan J, Zheng Y, Hu Y, Shi M, You K, Li T, Ma T, Zhang MQ, Ding S, Li P, Li Y. Dual-role transcription factors stabilize intermediate expression levels. Cell 2024; 187:2746-2766.e25. [PMID: 38631355 DOI: 10.1016/j.cell.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/08/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
Precise control of gene expression levels is essential for normal cell functions, yet how they are defined and tightly maintained, particularly at intermediate levels, remains elusive. Here, using a series of newly developed sequencing, imaging, and functional assays, we uncover a class of transcription factors with dual roles as activators and repressors, referred to as condensate-forming level-regulating dual-action transcription factors (TFs). They reduce high expression but increase low expression to achieve stable intermediate levels. Dual-action TFs directly exert activating and repressing functions via condensate-forming domains that compartmentalize core transcriptional unit selectively. Clinically relevant mutations in these domains, which are linked to a range of developmental disorders, impair condensate selectivity and dual-action TF activity. These results collectively address a fundamental question in expression regulation and demonstrate the potential of level-regulating dual-action TFs as powerful effectors for engineering controlled expression levels.
Collapse
Affiliation(s)
- Jinnan He
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Xiangru Huo
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Gaofeng Pei
- State Key Laboratory of Membrane Biology, Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100084, China
| | - Zeran Jia
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Yiming Yan
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Jiawei Yu
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Haozhi Qu
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Yunxin Xie
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Junsong Yuan
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Yuan Zheng
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Yanyan Hu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100084, China
| | - Minglei Shi
- Bioinformatics Division, National Research Center for Information Science and Technology, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Kaiqiang You
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Tingting Li
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Tianhua Ma
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100084, China
| | - Michael Q Zhang
- Bioinformatics Division, National Research Center for Information Science and Technology, School of Medicine, Tsinghua University, Beijing 100084, China; Department of Biological Sciences, Center for Systems Biology, The University of Texas, Dallas, TX 75080-3021, USA
| | - Sheng Ding
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100084, China
| | - Pilong Li
- State Key Laboratory of Membrane Biology, Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100084, China.
| | - Yinqing Li
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
127
|
Ungerleider NA, Roberts C, O’Grady TM, Nguyen TT, Baddoo M, Wang J, Ishaq E, Concha M, Lam M, Bass J, Nguyen T, Van Otterloo N, Wickramarachchige-Dona N, Wyczechowska D, Morales M, Ma T, Dong Y, Flemington E. Viral reprogramming of host transcription initiation. Nucleic Acids Res 2024; 52:5016-5032. [PMID: 38471819 PMCID: PMC11109974 DOI: 10.1093/nar/gkae175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/13/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Viruses are master remodelers of the host cell environment in support of infection and virus production. For example, viruses typically regulate cell gene expression through modulating canonical cell promoter activity. Here, we show that Epstein Barr virus (EBV) replication causes 'de novo' transcription initiation at 29674 new transcription start sites throughout the cell genome. De novo transcription initiation is facilitated in part by the unique properties of the viral pre-initiation complex (vPIC) that binds a TATT[T/A]AA, TATA box-like sequence and activates transcription with minimal support by additional transcription factors. Other de novo promoters are driven by the viral transcription factors, Zta and Rta and are influenced by directional proximity to existing canonical cell promoters, a configuration that fosters transcription through existing promoters and transcriptional interference. These studies reveal a new way that viruses interact with the host transcriptome to inhibit host gene expression and they shed light on primal features driving eukaryotic promoter function.
Collapse
Affiliation(s)
- Nathan A Ungerleider
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Claire Roberts
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Tina M O’Grady
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Trang T Nguyen
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Melody Baddoo
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Jia Wang
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Eman Ishaq
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Monica Concha
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Meggie Lam
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Jordan Bass
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Truong D Nguyen
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Nick Van Otterloo
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | | | - Dorota Wyczechowska
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | | | - Tianfang Ma
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yan Dong
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Erik K Flemington
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| |
Collapse
|
128
|
Binder M, Szalat RE, Talluri S, Fulciniti M, Avet-Loiseau H, Parmigiani G, Samur MK, Munshi NC. Bone marrow stromal cells induce chromatin remodeling in multiple myeloma cells leading to transcriptional changes. Nat Commun 2024; 15:4139. [PMID: 38755155 PMCID: PMC11098817 DOI: 10.1038/s41467-024-47793-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/12/2024] [Indexed: 05/18/2024] Open
Abstract
The natural history of multiple myeloma is characterized by its localization to the bone marrow and its interaction with bone marrow stromal cells. The bone marrow stromal cells provide growth and survival signals, thereby promoting the development of drug resistance. Here, we show that the interaction between bone marrow stromal cells and myeloma cells (using human cell lines) induces chromatin remodeling of cis-regulatory elements and is associated with changes in the expression of genes involved in the cell migration and cytokine signaling. The expression of genes involved in these stromal interactions are observed in extramedullary disease in patients with myeloma and provides the rationale for survival of myeloma cells outside of the bone marrow microenvironment. Expression of these stromal interaction genes is also observed in a subset of patients with newly diagnosed myeloma and are akin to the transcriptional program of extramedullary disease. The presence of such adverse stromal interactions in newly diagnosed myeloma is associated with accelerated disease dissemination, predicts the early development of therapeutic resistance, and is of independent prognostic significance. These stromal cell induced transcriptomic and epigenomic changes both predict long-term outcomes and identify therapeutic targets in the tumor microenvironment for the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Moritz Binder
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Raphael E Szalat
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Department of Data Science, Dana Farber Cancer Institute, Boston, MA, USA
| | - Srikanth Talluri
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | | | - Hervé Avet-Loiseau
- University Cancer Center of Toulouse, Institut National de la Santé, Toulouse, France
| | - Giovanni Parmigiani
- Department of Data Science, Dana Farber Cancer Institute, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Mehmet K Samur
- Department of Data Science, Dana Farber Cancer Institute, Boston, MA, USA.
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Nikhil C Munshi
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
129
|
Fortelny N, Farlik M, Fife V, Gorki AD, Lassnig C, Maurer B, Meissl K, Dolezal M, Boccuni L, Ravi Sundar Jose Geetha A, Akagha MJ, Karjalainen A, Shoebridge S, Farhat A, Mann U, Jain R, Tikoo S, Zila N, Esser-Skala W, Krausgruber T, Sitnik K, Penz T, Hladik A, Suske T, Zahalka S, Senekowitsch M, Barreca D, Halbritter F, Macho-Maschler S, Weninger W, Neubauer HA, Moriggl R, Knapp S, Sexl V, Strobl B, Decker T, Müller M, Bock C. JAK-STAT signaling maintains homeostasis in T cells and macrophages. Nat Immunol 2024; 25:847-859. [PMID: 38658806 PMCID: PMC11065702 DOI: 10.1038/s41590-024-01804-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 03/07/2024] [Indexed: 04/26/2024]
Abstract
Immune cells need to sustain a state of constant alertness over a lifetime. Yet, little is known about the regulatory processes that control the fluent and fragile balance that is called homeostasis. Here we demonstrate that JAK-STAT signaling, beyond its role in immune responses, is a major regulator of immune cell homeostasis. We investigated JAK-STAT-mediated transcription and chromatin accessibility across 12 mouse models, including knockouts of all STAT transcription factors and of the TYK2 kinase. Baseline JAK-STAT signaling was detected in CD8+ T cells and macrophages of unperturbed mice-but abrogated in the knockouts and in unstimulated immune cells deprived of their normal tissue context. We observed diverse gene-regulatory programs, including effects of STAT2 and IRF9 that were independent of STAT1. In summary, our large-scale dataset and integrative analysis of JAK-STAT mutant and wild-type mice uncovered a crucial role of JAK-STAT signaling in unstimulated immune cells, where it contributes to a poised epigenetic and transcriptional state and helps prepare these cells for rapid response to immune stimuli.
Collapse
Affiliation(s)
- Nikolaus Fortelny
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Center for Tumor Biology and Immunology, Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Salzburg, Austria
| | - Matthias Farlik
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| | - Victoria Fife
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Anna-Dorothea Gorki
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Caroline Lassnig
- Animal Breeding and Genetics and VetBiomodels, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Barbara Maurer
- Pharmacology and Toxicology, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Katrin Meissl
- Animal Breeding and Genetics and VetBiomodels, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Marlies Dolezal
- Platform for Bioinformatics and Biostatistics, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Laura Boccuni
- Max Perutz Labs, University of Vienna, Vienna, Austria
| | | | - Mojoyinola Joanna Akagha
- Animal Breeding and Genetics and VetBiomodels, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Anzhelika Karjalainen
- Animal Breeding and Genetics and VetBiomodels, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Stephen Shoebridge
- Animal Breeding and Genetics and VetBiomodels, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Asma Farhat
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Ulrike Mann
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Rohit Jain
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Shweta Tikoo
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Nina Zila
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Esser-Skala
- Center for Tumor Biology and Immunology, Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Salzburg, Austria
| | - Thomas Krausgruber
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Institute of Artificial Intelligence, Center for Medical Data Science, Medical University of Vienna, Vienna, Austria
| | - Katarzyna Sitnik
- Animal Breeding and Genetics and VetBiomodels, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Thomas Penz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Anastasiya Hladik
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Tobias Suske
- Animal Breeding and Genetics and VetBiomodels, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Sophie Zahalka
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Martin Senekowitsch
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Daniele Barreca
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Florian Halbritter
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Sabine Macho-Maschler
- Animal Breeding and Genetics and VetBiomodels, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Wolfgang Weninger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Heidi A Neubauer
- Animal Breeding and Genetics and VetBiomodels, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Richard Moriggl
- Animal Breeding and Genetics and VetBiomodels, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Sylvia Knapp
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Veronika Sexl
- Pharmacology and Toxicology, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria
- University of Innsbruck, Innsbruck, Austria
| | - Birgit Strobl
- Animal Breeding and Genetics and VetBiomodels, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Thomas Decker
- Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Mathias Müller
- Animal Breeding and Genetics and VetBiomodels, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
- Institute of Artificial Intelligence, Center for Medical Data Science, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
130
|
Moreno-Oñate M, Gallardo-Fuentes L, Martínez-García PM, Naranjo S, Jiménez-Gancedo S, Tena JJ, Santos-Pereira JM. Rewiring of the epigenome and chromatin architecture by exogenously induced retinoic acid signaling during zebrafish embryonic development. Nucleic Acids Res 2024; 52:3682-3701. [PMID: 38321954 PMCID: PMC11040003 DOI: 10.1093/nar/gkae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/15/2024] [Accepted: 01/24/2024] [Indexed: 02/08/2024] Open
Abstract
Retinoic acid (RA) is the ligand of RA receptors (RARs), transcription factors that bind to RA response elements. RA signaling is required for multiple processes during embryonic development, including body axis extension, hindbrain antero-posterior patterning and forelimb bud initiation. Although some RA target genes have been identified, little is known about the genome-wide effects of RA signaling during in vivo embryonic development. Here, we stimulate the RA pathway by treating zebrafish embryos with all-trans-RA (atRA) and use a combination of RNA-seq, ATAC-seq, ChIP-seq and HiChIP to gain insight into the molecular mechanisms by which exogenously induced RA signaling controls gene expression. We find that RA signaling is involved in anterior/posterior patterning, central nervous system development, and the transition from pluripotency to differentiation. AtRA treatment also alters chromatin accessibility during early development and promotes chromatin binding of RARαa and the RA targets Hoxb1b, Meis2b and Sox3, which cooperate in central nervous system development. Finally, we show that exogenous RA induces a rewiring of chromatin architecture, with alterations in chromatin 3D interactions involving target genes. Altogether, our findings identify genome-wide targets of RA signaling and provide a molecular mechanism by which developmental signaling pathways regulate target gene expression by altering chromatin topology.
Collapse
Affiliation(s)
- Marta Moreno-Oñate
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Lourdes Gallardo-Fuentes
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Pedro M Martínez-García
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Silvia Naranjo
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Sandra Jiménez-Gancedo
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Juan J Tena
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - José M Santos-Pereira
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
- Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain
| |
Collapse
|
131
|
Schultheis H, Bentsen M, Heger V, Looso M. Uncovering uncharacterized binding of transcription factors from ATAC-seq footprinting data. Sci Rep 2024; 14:9275. [PMID: 38654130 DOI: 10.1038/s41598-024-59989-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
Transcription factors (TFs) are crucial epigenetic regulators, which enable cells to dynamically adjust gene expression in response to environmental signals. Computational procedures like digital genomic footprinting on chromatin accessibility assays such as ATACseq can be used to identify bound TFs in a genome-wide scale. This method utilizes short regions of low accessibility signals due to steric hindrance of DNA bound proteins, called footprints (FPs), which are combined with motif databases for TF identification. However, while over 1600 TFs have been described in the human genome, only ~ 700 of these have a known binding motif. Thus, a substantial number of FPs without overlap to a known DNA motif are normally discarded from FP analysis. In addition, the FP method is restricted to organisms with a substantial number of known TF motifs. Here we present DENIS (DE Novo motIf diScovery), a framework to generate and systematically investigate the potential of de novo TF motif discovery from FPs. DENIS includes functionality (1) to isolate FPs without binding motifs, (2) to perform de novo motif generation and (3) to characterize novel motifs. Here, we show that the framework rediscovers artificially removed TF motifs, quantifies de novo motif usage during an early embryonic development example dataset, and is able to analyze and uncover TF activity in organisms lacking canonical motifs. The latter task is exemplified by an investigation of a scATAC-seq dataset in zebrafish which covers different cell types during hematopoiesis.
Collapse
Affiliation(s)
- Hendrik Schultheis
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mette Bentsen
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Vanessa Heger
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mario Looso
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.
| |
Collapse
|
132
|
Sakamoto M, Ito A, Wakayama S, Sasaki H, Wakayama T, Ishiuchi T. Detection of newly synthesized RNA reveals transcriptional reprogramming during ZGA and a role of Obox3 in totipotency acquisition. Cell Rep 2024; 43:114118. [PMID: 38619966 DOI: 10.1016/j.celrep.2024.114118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/15/2024] [Accepted: 03/29/2024] [Indexed: 04/17/2024] Open
Abstract
Zygotic genome activation (ZGA) after fertilization enables the maternal-to-zygotic transition. However, the global view of ZGA, particularly at initiation, is incompletely understood. Here, we develop a method to capture and sequence newly synthesized RNA in early mouse embryos, providing a view of transcriptional reprogramming during ZGA. Our data demonstrate that major ZGA gene activation begins earlier than previously thought. Furthermore, we identify a set of genes activated during minor ZGA, the promoters of which show enrichment of the Obox factor motif, and find that Obox3 or Obox5 overexpression in mouse embryonic stem cells activates ZGA genes. Notably, the expression of Obox factors is severely impaired in somatic cell nuclear transfer (SCNT) embryos, and restoration of Obox3 expression corrects the ZGA profile and greatly improves SCNT embryo development. Hence, our study reveals dynamic transcriptional reprogramming during ZGA and underscores the crucial role of Obox3 in facilitating totipotency acquisition.
Collapse
Affiliation(s)
- Mizuki Sakamoto
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Aoi Ito
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Sayaka Wakayama
- Advanced Biotechnology Center, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Hiroyuki Sasaki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Teruhiko Wakayama
- Advanced Biotechnology Center, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Takashi Ishiuchi
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan.
| |
Collapse
|
133
|
Harvey TN, Gillard GB, Røsæg LL, Grammes F, Monsen Ø, Vik JO, Hvidsten TR, Sandve SR. The genome regulatory landscape of Atlantic salmon liver through smoltification. PLoS One 2024; 19:e0302388. [PMID: 38648207 PMCID: PMC11034671 DOI: 10.1371/journal.pone.0302388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/02/2024] [Indexed: 04/25/2024] Open
Abstract
The anadromous Atlantic salmon undergo a preparatory physiological transformation before seawater entry, referred to as smoltification. Key molecular developmental processes involved in this life stage transition, such as remodeling of gill functions, are known to be synchronized and modulated by environmental cues like photoperiod. However, little is known about the photoperiod influence and genome regulatory processes driving other canonical aspects of smoltification such as the large-scale changes in lipid metabolism and energy homeostasis in the developing smolt liver. Here we generate transcriptome, DNA methylation, and chromatin accessibility data from salmon livers across smoltification under different photoperiod regimes. We find a systematic reduction of expression levels of genes with a metabolic function, such as lipid metabolism, and increased expression of energy related genes such as oxidative phosphorylation, during smolt development in freshwater. However, in contrast to similar studies of the gill, smolt liver gene expression prior to seawater transfer was not impacted by photoperiodic history. Integrated analyses of gene expression, chromatin accessibility, and transcription factor (TF) binding signatures highlight chromatin remodeling and TF dynamics underlying smolt gene regulatory changes. Differential peak accessibility patterns largely matched differential gene expression patterns during smoltification and we infer that ZNF682, KLFs, and NFY TFs are important in driving a liver metabolic shift from synthesis to break down of organic compounds in freshwater. Overall, chromatin accessibility and TFBS occupancy were highly correlated to changes in gene expression. On the other hand, we identified numerous differential methylation patterns across the genome, but associated genes were not functionally enriched or correlated to observed gene expression changes across smolt development. Taken together, this work highlights the relative importance of chromatin remodeling during smoltification and demonstrates that metabolic remodeling occurs as a preadaptation to life at sea that is not to a large extent driven by photoperiod history.
Collapse
Affiliation(s)
- Thomas N. Harvey
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Gareth B. Gillard
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Line L. Røsæg
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | | | - Øystein Monsen
- Michael Sars Centre, University of Bergen, Bergen, Norway
| | - Jon Olav Vik
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Torgeir R. Hvidsten
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Simen R. Sandve
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
134
|
Wu X, Hou W, Zhao Z, Huang L, Sheng N, Yang Q, Zhang S, Wang Y. MMGAT: a graph attention network framework for ATAC-seq motifs finding. BMC Bioinformatics 2024; 25:158. [PMID: 38643066 PMCID: PMC11031952 DOI: 10.1186/s12859-024-05774-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/10/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND Motif finding in Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) data is essential to reveal the intricacies of transcription factor binding sites (TFBSs) and their pivotal roles in gene regulation. Deep learning technologies including convolutional neural networks (CNNs) and graph neural networks (GNNs), have achieved success in finding ATAC-seq motifs. However, CNN-based methods are limited by the fixed width of the convolutional kernel, which makes it difficult to find multiple transcription factor binding sites with different lengths. GNN-based methods has the limitation of using the edge weight information directly, makes it difficult to aggregate the neighboring nodes' information more efficiently when representing node embedding. RESULTS To address this challenge, we developed a novel graph attention network framework named MMGAT, which employs an attention mechanism to adjust the attention coefficients among different nodes. And then MMGAT finds multiple ATAC-seq motifs based on the attention coefficients of sequence nodes and k-mer nodes as well as the coexisting probability of k-mers. Our approach achieved better performance on the human ATAC-seq datasets compared to existing tools, as evidenced the highest scores on the precision, recall, F1_score, ACC, AUC, and PRC metrics, as well as finding 389 higher quality motifs. To validate the performance of MMGAT in predicting TFBSs and finding motifs on more datasets, we enlarged the number of the human ATAC-seq datasets to 180 and newly integrated 80 mouse ATAC-seq datasets for multi-species experimental validation. Specifically on the mouse ATAC-seq dataset, MMGAT also achieved the highest scores on six metrics and found 356 higher-quality motifs. To facilitate researchers in utilizing MMGAT, we have also developed a user-friendly web server named MMGAT-S that hosts the MMGAT method and ATAC-seq motif finding results. CONCLUSIONS The advanced methodology MMGAT provides a robust tool for finding ATAC-seq motifs, and the comprehensive server MMGAT-S makes a significant contribution to genomics research. The open-source code of MMGAT can be found at https://github.com/xiaotianr/MMGAT , and MMGAT-S is freely available at https://www.mmgraphws.com/MMGAT-S/ .
Collapse
Affiliation(s)
- Xiaotian Wu
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, 130012, China
- School of Artificial Intelligence, Jilin University, Changchun, 130012, China
| | - Wenju Hou
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, 130012, China
| | - Ziqi Zhao
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, 130012, China
| | - Lan Huang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, 130012, China
| | - Nan Sheng
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, 130012, China
| | - Qixing Yang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, 130012, China
| | - Shuangquan Zhang
- School of Cyber Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Yan Wang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, 130012, China.
- School of Artificial Intelligence, Jilin University, Changchun, 130012, China.
| |
Collapse
|
135
|
Kinyamu HK, Bennett BD, Ward JM, Archer TK. Proteasome Inhibition Reprograms Chromatin Landscape in Breast Cancer. CANCER RESEARCH COMMUNICATIONS 2024; 4:1082-1099. [PMID: 38625038 PMCID: PMC11019832 DOI: 10.1158/2767-9764.crc-23-0476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/26/2024] [Accepted: 03/22/2024] [Indexed: 04/17/2024]
Abstract
The 26S proteasome is the major protein degradation machinery in cells. Cancer cells use the proteasome to modulate gene expression networks that promote tumor growth. Proteasome inhibitors have emerged as effective cancer therapeutics, but how they work mechanistically remains unclear. Here, using integrative genomic analysis, we discovered unexpected reprogramming of the chromatin landscape and RNA polymerase II (RNAPII) transcription initiation in breast cancer cells treated with the proteasome inhibitor MG132. The cells acquired dynamic changes in chromatin accessibility at specific genomic loci termed differentially open chromatin regions (DOCR). DOCRs with decreased accessibility were promoter proximal and exhibited unique chromatin architecture associated with divergent RNAPII transcription. Conversely, DOCRs with increased accessibility were primarily distal to transcription start sites and enriched in oncogenic superenhancers predominantly accessible in non-basal breast tumor subtypes. These findings describe the mechanisms by which the proteasome modulates the expression of gene networks intrinsic to breast cancer biology. SIGNIFICANCE Our study provides a strong basis for understanding the mechanisms by which proteasome inhibitors exert anticancer effects. We find open chromatin regions that change during proteasome inhibition, are typically accessible in non-basal breast cancers.
Collapse
Affiliation(s)
- H. Karimi Kinyamu
- Chromatin and Gene Expression Section, National Institute of Environmental Health Sciences, Durham, North Carolina
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Durham, North Carolina
- National Institute of Environmental Health Sciences, Durham, North Carolina
| | - Brian D. Bennett
- National Institute of Environmental Health Sciences, Durham, North Carolina
- Integrative Bioinformatics Group, National Institute of Environmental Health Sciences, Durham, North Carolina
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, North Carolina
| | - James M. Ward
- National Institute of Environmental Health Sciences, Durham, North Carolina
- Integrative Bioinformatics Group, National Institute of Environmental Health Sciences, Durham, North Carolina
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, North Carolina
| | - Trevor K. Archer
- Chromatin and Gene Expression Section, National Institute of Environmental Health Sciences, Durham, North Carolina
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Durham, North Carolina
- National Institute of Environmental Health Sciences, Durham, North Carolina
| |
Collapse
|
136
|
Patty BJ, Hainer SJ. Widespread impact of nucleosome remodelers on transcription at cis-regulatory elements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.589208. [PMID: 38659863 PMCID: PMC11042195 DOI: 10.1101/2024.04.12.589208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Nucleosome remodeling complexes and other regulatory factors work in concert to build a chromatin environment that directs the expression of a distinct set of genes in each cell using cis-regulatory elements (CREs), such as promoters and enhancers, that drive transcription of both mRNAs and CRE-associated non-coding RNAs (ncRNAs). Two classes of CRE-associated ncRNAs include upstream antisense RNAs (uaRNAs), which are transcribed divergently from a shared mRNA promoter, and enhancer RNAs (eRNAs), which are transcribed bidirectionally from active enhancers. The complicated network of CRE regulation by nucleosome remodelers remains only partially explored, with a focus on a select, limited number of remodelers. We endeavored to elucidate a remodeler-based regulatory network governing CRE-associated transcription (mRNA, eRNA, and uaRNA) in murine embryonic stem (ES) cells to test the hypothesis that many SNF2-family nucleosome remodelers collaborate to regulate the coding and non-coding transcriptome via alteration of underlying nucleosome architecture. Using depletion followed by transient transcriptome sequencing (TT-seq), we identified thousands of misregulated mRNAs and CRE-associated ncRNAs across the remodelers examined, identifying novel contributions by understudied remodelers in the regulation of coding and noncoding transcription. Our findings suggest that mRNA and eRNA transcription are coordinately co-regulated, while mRNA and uaRNAs sharing a common promoter are independently regulated. Subsequent mechanistic studies suggest that while remodelers SRCAP and CHD8 modulate transcription through classical mechanisms such as transcription factors and histone variants, a broad set of remodelers including SMARCAL1 indirectly contribute to transcriptional regulation through maintenance of genomic stability and proper Integrator complex localization. This study systematically examines the contribution of SNF2-remodelers to the CRE-associated transcriptome, identifying at least two classes for remodeler action.
Collapse
Affiliation(s)
- Benjamin J. Patty
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA USA
| | - Sarah J. Hainer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA USA
| |
Collapse
|
137
|
Casey C, Fullard JF, Sleator RD. Unravelling the genetic basis of Schizophrenia. Gene 2024; 902:148198. [PMID: 38266791 DOI: 10.1016/j.gene.2024.148198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/07/2023] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Neuronal development is a highly regulated mechanism that is central to organismal function in animals. In humans, disruptions to this process can lead to a range of neurodevelopmental phenotypes, including Schizophrenia (SCZ). SCZ has a significant genetic component, whereby an individual with an SCZ affected family member is eight times more likely to develop the disease than someone with no family history of SCZ. By examining a combination of genomic, transcriptomic and epigenomic datasets, large-scale 'omics' studies aim to delineate the relationship between genetic variation and abnormal cellular activity in the SCZ brain. Herein, we provide a brief overview of some of the key omics methods currently being used in SCZ research, including RNA-seq, the assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) and high-throughput chromosome conformation capture (3C) approaches (e.g., Hi-C), as well as single-cell/nuclei iterations of these methods. We also discuss how these techniques are being employed to further our understanding of the genetic basis of SCZ, and to identify associated molecular pathways, biomarkers, and candidate drug targets.
Collapse
Affiliation(s)
- Clara Casey
- Department of Biological Sciences, Munster Technological University, Bishopstown, Cork, Ireland; Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - John F Fullard
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Roy D Sleator
- Department of Biological Sciences, Munster Technological University, Bishopstown, Cork, Ireland.
| |
Collapse
|
138
|
Arthur TD, Nguyen JP, D'Antonio-Chronowska A, Jaureguy J, Silva N, Henson B, Panopoulos AD, Belmonte JCI, D'Antonio M, McVicker G, Frazer KA. Multi-omic QTL mapping in early developmental tissues reveals phenotypic and temporal complexity of regulatory variants underlying GWAS loci. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588874. [PMID: 38645112 PMCID: PMC11030419 DOI: 10.1101/2024.04.10.588874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Most GWAS loci are presumed to affect gene regulation, however, only ∼43% colocalize with expression quantitative trait loci (eQTLs). To address this colocalization gap, we identify eQTLs, chromatin accessibility QTLs (caQTLs), and histone acetylation QTLs (haQTLs) using molecular samples from three early developmental (EDev) tissues. Through colocalization, we annotate 586 GWAS loci for 17 traits by QTL complexity, QTL phenotype, and QTL temporal specificity. We show that GWAS loci are highly enriched for colocalization with complex QTL modules that affect multiple elements (genes and/or peaks). We also demonstrate that caQTLs and haQTLs capture regulatory variations not associated with eQTLs and explain ∼49% of the functionally annotated GWAS loci. Additionally, we show that EDev-unique QTLs are strongly depleted for colocalizing with GWAS loci. By conducting one of the largest multi-omic QTL studies to date, we demonstrate that many GWAS loci exhibit phenotypic complexity and therefore, are missed by traditional eQTL analyses.
Collapse
|
139
|
Layden HM, Ellis JD, Bomber ML, Bartlett LN, Hiebert SW, Stengel KR. Mutant FOXO1 controls an oncogenic network via enhancer accessibility. CELL GENOMICS 2024; 4:100537. [PMID: 38604128 PMCID: PMC11019358 DOI: 10.1016/j.xgen.2024.100537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/21/2024] [Accepted: 03/13/2024] [Indexed: 04/13/2024]
Abstract
Transcriptional dysregulation is a hallmark of diffuse large B cell lymphoma (DLBCL), as transcriptional regulators are frequently mutated. However, our mechanistic understanding of how normal transcriptional programs are co-opted in DLBCL has been hindered by a lack of methodologies that provide the temporal resolution required to separate direct and indirect effects on transcriptional control. We applied a chemical-genetic approach to engineer the inducible degradation of the transcription factor FOXO1, which is recurrently mutated (mFOXO1) in DLBCL. The combination of rapid degradation of mFOXO1, nascent transcript detection, and assessment of chromatin accessibility allowed us to identify the direct targets of mFOXO1. mFOXO1 was required to maintain accessibility at specific enhancers associated with multiple oncogenes, and mFOXO1 degradation impaired RNA polymerase pause-release at some targets. Wild-type FOXO1 appeared to weakly regulate many of the same targets as mFOXO1 and was able to complement the degradation of mFOXO1 in the context of AKT inhibition.
Collapse
Affiliation(s)
- Hillary M Layden
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jacob D Ellis
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Monica L Bomber
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Luke N Bartlett
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Scott W Hiebert
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Nashville, TN 37232, USA.
| | - Kristy R Stengel
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA; Montefiore Einstein Cancer Center, Albert Einstein College of Medicine-Montefiore Health System, Bronx, NY, USA.
| |
Collapse
|
140
|
Hansen TJ, Fong SL, Day JK, Capra JA, Hodges E. Human gene regulatory evolution is driven by the divergence of regulatory element function in both cis and trans. CELL GENOMICS 2024; 4:100536. [PMID: 38604126 PMCID: PMC11019363 DOI: 10.1016/j.xgen.2024.100536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/03/2024] [Accepted: 03/10/2024] [Indexed: 04/13/2024]
Abstract
Gene regulatory divergence between species can result from cis-acting local changes to regulatory element DNA sequences or global trans-acting changes to the regulatory environment. Understanding how these mechanisms drive regulatory evolution has been limited by challenges in identifying trans-acting changes. We present a comprehensive approach to directly identify cis- and trans-divergent regulatory elements between human and rhesus macaque lymphoblastoid cells using assay for transposase-accessible chromatin coupled to self-transcribing active regulatory region (ATAC-STARR) sequencing. In addition to thousands of cis changes, we discover an unexpected number (∼10,000) of trans changes and show that cis and trans elements exhibit distinct patterns of sequence divergence and function. We further identify differentially expressed transcription factors that underlie ∼37% of trans differences and trace how cis changes can produce cascades of trans changes. Overall, we find that most divergent elements (67%) experienced changes in both cis and trans, revealing a substantial role for trans divergence-alone and together with cis changes-in regulatory differences between species.
Collapse
Affiliation(s)
- Tyler J Hansen
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Sarah L Fong
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jessica K Day
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - John A Capra
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Epidemiology and Biostatistics, University of California, San Francisco, CA 94143, USA.
| | - Emily Hodges
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Ingram Cancer Center, Nashville, TN 37232, USA.
| |
Collapse
|
141
|
Barisic D, Chin CR, Meydan C, Teater M, Tsialta I, Mlynarczyk C, Chadburn A, Wang X, Sarkozy M, Xia M, Carson SE, Raggiri S, Debek S, Pelzer B, Durmaz C, Deng Q, Lakra P, Rivas M, Steidl C, Scott DW, Weng AP, Mason CE, Green MR, Melnick A. ARID1A orchestrates SWI/SNF-mediated sequential binding of transcription factors with ARID1A loss driving pre-memory B cell fate and lymphomagenesis. Cancer Cell 2024; 42:583-604.e11. [PMID: 38458187 PMCID: PMC11407687 DOI: 10.1016/j.ccell.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/20/2023] [Accepted: 02/14/2024] [Indexed: 03/10/2024]
Abstract
ARID1A, a subunit of the canonical BAF nucleosome remodeling complex, is commonly mutated in lymphomas. We show that ARID1A orchestrates B cell fate during the germinal center (GC) response, facilitating cooperative and sequential binding of PU.1 and NF-kB at crucial genes for cytokine and CD40 signaling. The absence of ARID1A tilts GC cell fate toward immature IgM+CD80-PD-L2- memory B cells, known for their potential to re-enter new GCs. When combined with BCL2 oncogene, ARID1A haploinsufficiency hastens the progression of aggressive follicular lymphomas (FLs) in mice. Patients with FL with ARID1A-inactivating mutations preferentially display an immature memory B cell-like state with increased transformation risk to aggressive disease. These observations offer mechanistic understanding into the emergence of both indolent and aggressive ARID1A-mutant lymphomas through the formation of immature memory-like clonal precursors. Lastly, we demonstrate that ARID1A mutation induces synthetic lethality to SMARCA2/4 inhibition, paving the way for potential precision therapy for high-risk patients.
Collapse
Affiliation(s)
- Darko Barisic
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Christopher R Chin
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Matt Teater
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Ioanna Tsialta
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Coraline Mlynarczyk
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Amy Chadburn
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Xuehai Wang
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Margot Sarkozy
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Min Xia
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Sandra E Carson
- Department of Biochemistry, Cell and Molecular Biology, Weill Cornell Medicine, New York, NY, USA
| | - Santo Raggiri
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Sonia Debek
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA; Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Benedikt Pelzer
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Ceyda Durmaz
- Graduate Program of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Qing Deng
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Priya Lakra
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Martin Rivas
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA; Sylvester Comprehensive Cancer Center, University of Miami, FL, USA
| | - Christian Steidl
- Centre for Lymphoid Cancer, BC Cancer and University of British Columbia, British Columbia, Vancouver, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - David W Scott
- Centre for Lymphoid Cancer, BC Cancer and University of British Columbia, British Columbia, Vancouver, Canada; Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew P Weng
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Michael R Green
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ari Melnick
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
142
|
Deng Q, Lakra P, Gou P, Yang H, Meydan C, Teater M, Chin C, Zhang W, Dinh T, Hussein U, Li X, Rojas E, Liu W, Reville PK, Kizhakeyil A, Barisic D, Parsons S, Wilson A, Henderson J, Scull B, Gurumurthy C, Vega F, Chadburn A, Cuglievan B, El-Mallawany NK, Allen C, Mason C, Melnick A, Green MR. SMARCA4 is a haploinsufficient B cell lymphoma tumor suppressor that fine-tunes centrocyte cell fate decisions. Cancer Cell 2024; 42:605-622.e11. [PMID: 38458188 PMCID: PMC11003852 DOI: 10.1016/j.ccell.2024.02.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/30/2023] [Accepted: 02/14/2024] [Indexed: 03/10/2024]
Abstract
SMARCA4 encodes one of two mutually exclusive ATPase subunits in the BRG/BRM associated factor (BAF) complex that is recruited by transcription factors (TFs) to drive chromatin accessibility and transcriptional activation. SMARCA4 is among the most recurrently mutated genes in human cancer, including ∼30% of germinal center (GC)-derived Burkitt lymphomas. In mice, GC-specific Smarca4 haploinsufficiency cooperated with MYC over-expression to drive lymphomagenesis. Furthermore, monoallelic Smarca4 deletion drove GC hyperplasia with centroblast polarization via significantly increased rates of centrocyte recycling to the dark zone. Mechanistically, Smarca4 loss reduced the activity of TFs that are activated in centrocytes to drive GC-exit, including SPI1 (PU.1), IRF family, and NF-κB. Loss of activity for these factors phenocopied aberrant BCL6 activity within murine centrocytes and human Burkitt lymphoma cells. SMARCA4 therefore facilitates chromatin accessibility for TFs that shape centrocyte trajectories, and loss of fine-control of these programs biases toward centroblast cell-fate, GC hyperplasia and lymphoma.
Collapse
Affiliation(s)
- Qing Deng
- Department of Lymphoma & Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Priya Lakra
- Department of Lymphoma & Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Panhong Gou
- Department of Lymphoma & Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Haopeng Yang
- Department of Lymphoma & Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cem Meydan
- Department of Medicine and Weill Cornell Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Matthew Teater
- Department of Medicine and Weill Cornell Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Christopher Chin
- Department of Medicine and Weill Cornell Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Wenchao Zhang
- Department of Lymphoma & Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tommy Dinh
- Department of Lymphoma & Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Usama Hussein
- Department of Lymphoma & Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xubin Li
- Department of Lymphoma & Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Estela Rojas
- Department of Lymphoma & Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Weiguang Liu
- Department of Lymphoma & Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patrick K Reville
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Atish Kizhakeyil
- Department of Lymphoma & Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Darko Barisic
- Department of Medicine and Weill Cornell Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Sydney Parsons
- Department of Lymphoma & Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ashley Wilson
- Department of Lymphoma & Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jared Henderson
- Department of Lymphoma & Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brooks Scull
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Cancer Center, Houston, TX, USA
| | | | - Francisco Vega
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amy Chadburn
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Branko Cuglievan
- Department of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nader Kim El-Mallawany
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Cancer Center, Houston, TX, USA
| | - Carl Allen
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Cancer Center, Houston, TX, USA
| | - Christopher Mason
- Department of Medicine and Weill Cornell Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Ari Melnick
- Department of Medicine and Weill Cornell Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Michael R Green
- Department of Lymphoma & Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
143
|
Bister J, Filipovic I, Sun D, Crona-Guterstam Y, Cornillet M, Ponzetta A, Michaëlsson J, Gidlöf S, Ivarsson MA, Strunz B, Björkström NK. Tissue-specific nonheritable influences drive endometrial immune system variation. Sci Immunol 2024; 9:eadj7168. [PMID: 38579017 DOI: 10.1126/sciimmunol.adj7168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 03/11/2024] [Indexed: 04/07/2024]
Abstract
Although human twin studies have revealed the combined contribution of heritable and environmental factors in shaping immune system variability in blood, the contribution of these factors to immune system variability in tissues remains unexplored. The human uterus undergoes constant regeneration and is exposed to distinct environmental factors. To assess uterine immune system variation, we performed a system-level analysis of endometrial and peripheral blood immune cells in monozygotic twins. Although most immune cell phenotypes in peripheral blood showed high genetic heritability, more variation was found in endometrial immune cells, indicating a stronger influence by environmental factors. Cytomegalovirus infection was identified to influence peripheral blood immune cell variability but had limited effect on endometrial immune cells. Instead, hormonal contraception shaped the local endometrial milieu and immune cell composition with minor influence on the systemic immune system. These results highlight that the magnitude of human immune system variation and factors influencing it can be tissue specific.
Collapse
Affiliation(s)
- Jonna Bister
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Iva Filipovic
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Dan Sun
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ylva Crona-Guterstam
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Martin Cornillet
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Andrea Ponzetta
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jakob Michaëlsson
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sebastian Gidlöf
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Martin A Ivarsson
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Benedikt Strunz
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
144
|
Ayyamperumal P, Naik HC, Naskar AJ, Bammidi LS, Gayen S. Epigenomic states contribute to coordinated allelic transcriptional bursting in iPSC reprogramming. Life Sci Alliance 2024; 7:e202302337. [PMID: 38320809 PMCID: PMC10847334 DOI: 10.26508/lsa.202302337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Two alleles of a gene can be transcribed independently or coordinatedly, which can lead to temporal expression heterogeneity with potentially distinct impacts on cell fate. Here, we profiled genome-wide allelic transcriptional burst kinetics during the reprogramming of MEF to induced pluripotent stem cells. We show that the degree of coordination of allelic bursting differs among genes, and alleles of many reprogramming-related genes burst in a highly coordinated fashion. Notably, we show that the chromatin accessibility of the two alleles of highly coordinated genes is similar, unlike the semi-coordinated or independent genes, suggesting the degree of coordination of allelic bursting is linked to allelic chromatin accessibility. Consistently, we show that many transcription factors have differential binding affinity between alleles of semi-coordinated or independent genes. We show that highly coordinated genes are enriched with chromatin accessibility regulators such as H3K4me3, H3K4me1, H3K36me3, H3K27ac, histone variant H3.3, and BRD4. Finally, we demonstrate that enhancer elements are highly enriched in highly coordinated genes. Our study demonstrates that epigenomic states contribute to coordinated allelic bursting to fine-tune gene expression during induced pluripotent stem cell reprogramming.
Collapse
Affiliation(s)
- Parichitran Ayyamperumal
- Chromatin, RNA and Genome (CRG) Laboratory, Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, India
| | - Hemant Chandru Naik
- Chromatin, RNA and Genome (CRG) Laboratory, Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, India
| | - Amlan Jyoti Naskar
- Chromatin, RNA and Genome (CRG) Laboratory, Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, India
| | - Lakshmi Sowjanya Bammidi
- Chromatin, RNA and Genome (CRG) Laboratory, Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, India
| | - Srimonta Gayen
- Chromatin, RNA and Genome (CRG) Laboratory, Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, India
| |
Collapse
|
145
|
Jakobsen ST, Jensen RAM, Madsen MS, Ravnsborg T, Vaagenso CS, Siersbæk MS, Einarsson H, Andersson R, Jensen ON, Siersbæk R. MYC activity at enhancers drives prognostic transcriptional programs through an epigenetic switch. Nat Genet 2024; 56:663-674. [PMID: 38454021 DOI: 10.1038/s41588-024-01676-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 01/30/2024] [Indexed: 03/09/2024]
Abstract
The transcription factor MYC is overexpressed in most cancers, where it drives multiple hallmarks of cancer progression. MYC is known to promote oncogenic transcription by binding to active promoters. In addition, MYC has also been shown to invade distal enhancers when expressed at oncogenic levels, but this enhancer binding has been proposed to have low gene-regulatory potential. Here, we demonstrate that MYC directly regulates enhancer activity to promote cancer type-specific gene programs predictive of poor patient prognosis. MYC induces transcription of enhancer RNA through recruitment of RNA polymerase II (RNAPII), rather than regulating RNAPII pause-release, as is the case at promoters. This process is mediated by MYC-induced H3K9 demethylation and acetylation by GCN5, leading to enhancer-specific BRD4 recruitment through its bromodomains, which facilitates RNAPII recruitment. We propose that MYC drives prognostic cancer type-specific gene programs through induction of an enhancer-specific epigenetic switch, which can be targeted by BET and GCN5 inhibitors.
Collapse
Affiliation(s)
- Simon T Jakobsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Rikke A M Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Maria S Madsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Tina Ravnsborg
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | | | - Majken S Siersbæk
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Hjorleifur Einarsson
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Robin Andersson
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ole N Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Rasmus Siersbæk
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
146
|
Xiang K, Wang E, Mantyh J, Rupprecht G, Negrete M, Sanati G, Hsu C, Randon P, Dohlman A, Kretzschmar K, Bose S, Giroux N, Ding S, Wang L, Balcazar JP, Huang Q, Sundaramoorthy P, Xi R, McCall SJ, Wang Z, Jiang C, Kang Y, Kopetz S, Crawford GE, Lipkin SM, Wang XF, Clevers H, Hsu D, Shen X. Chromatin Remodeling in Patient-Derived Colorectal Cancer Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303379. [PMID: 38380561 DOI: 10.1002/advs.202303379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/22/2023] [Indexed: 02/22/2024]
Abstract
Patient-Derived Organoids (PDO) and Xenografts (PDX) are the current gold standards for patient-derived models of cancer (PDMC). Nevertheless, how patient tumor cells evolve in these models and the impact on drug response remains unclear. Herein, the transcriptomic and chromatin accessibility landscapes of matched colorectal cancer (CRC) PDO, PDX, PDO-derived PDX (PDOX), and original patient tumors (PT) are compared. Two major remodeling axes are discovered. The first axis delineates PDMC from PT, and the second axis distinguishes PDX and PDO. PDOX are more similar to PDX than PDO, indicating the growth environment is a driving force for chromatin adaptation. Transcription factors (TF) that differentially bind to open chromatins between matched PDO and PDOX are identified. Among them, KLF14 and EGR2 footprints are enriched in PDOX relative to matched PDO, and silencing of KLF14 or EGR2 promoted tumor growth. Furthermore, EPHA4, a shared downstream target gene of KLF14 and EGR2, altered tumor sensitivity to MEK inhibitor treatment. Altogether, patient-derived CRC cells undergo both common and distinct chromatin remodeling in PDO and PDX/PDOX, driven largely by their respective microenvironments, which results in differences in growth and drug sensitivity and needs to be taken into consideration when interpreting their ability to predict clinical outcome.
Collapse
Affiliation(s)
- Kun Xiang
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Ergang Wang
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - John Mantyh
- Department of Medicine, School of Medicine, Duke University, Durham, NC, 27710, USA
| | - Gabrielle Rupprecht
- Department of Medicine, School of Medicine, Duke University, Durham, NC, 27710, USA
| | - Marcos Negrete
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Golshid Sanati
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Carolyn Hsu
- Department of Medicine, School of Medicine, Duke University, Durham, NC, 27710, USA
| | - Peggy Randon
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA
| | - Anders Dohlman
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Kai Kretzschmar
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center (UMC) Utrecht, Uppsalalaan 8, Utrecht, CT, 3584, The Netherlands
- Mildred Scheel Early Career Centre (MSNZ) for Cancer Research Würzburg, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Shree Bose
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Nicholas Giroux
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Shengli Ding
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Lihua Wang
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Jorge Prado Balcazar
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Qiang Huang
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
- Terasaki Institute, Los Angeles, CA, 90024, USA
| | | | - Rui Xi
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Shannon Jones McCall
- Department of Pathology, School of Medicine, Duke University, Durham, NC, 27710, USA
| | - Zhaohui Wang
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | | | - Yubin Kang
- Department of Medicine, School of Medicine, Duke University, Durham, NC, 27710, USA
| | - Scott Kopetz
- Department of Gastrointestinal (GI) Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Gregory E Crawford
- Department of Pediatrics, Division of Medical Genetics, School of Medicine, Duke University, Durham, NC, 27710, USA
| | - Steven M Lipkin
- Department of Medicine and Program in Mendelian Genetics, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Xiao-Fan Wang
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Hans Clevers
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center (UMC) Utrecht, Uppsalalaan 8, Utrecht, CT, 3584, The Netherlands
| | - David Hsu
- Department of Medicine, School of Medicine, Duke University, Durham, NC, 27710, USA
| | - Xiling Shen
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
- Terasaki Institute, Los Angeles, CA, 90024, USA
| |
Collapse
|
147
|
Zhang S, Wu X, Lian Z, Zuo C, Wang Y. GNNMF: a multi-view graph neural network for ATAC-seq motif finding. BMC Genomics 2024; 25:300. [PMID: 38515040 PMCID: PMC10956247 DOI: 10.1186/s12864-024-10218-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/12/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND The Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) utilizes the Transposase Tn5 to probe open chromatic, which simultaneously reveals multiple transcription factor binding sites (TFBSs) compared to traditional technologies. Deep learning (DL) technology, including convolutional neural networks (CNNs), has successfully found motifs from ATAC-seq data. Due to the limitation of the width of convolutional kernels, the existing models only find motifs with fixed lengths. A Graph neural network (GNN) can work on non-Euclidean data, which has the potential to find ATAC-seq motifs with different lengths. However, the existing GNN models ignored the relationships among ATAC-seq sequences, and their parameter settings should be improved. RESULTS In this study, we proposed a novel GNN model named GNNMF to find ATAC-seq motifs via GNN and background coexisting probability. Our experiment has been conducted on 200 human datasets and 80 mouse datasets, demonstrated that GNNMF has improved the area of eight metrics radar scores of 4.92% and 6.81% respectively, and found more motifs than did the existing models. CONCLUSIONS In this study, we developed a novel model named GNNMF for finding multiple ATAC-seq motifs. GNNMF built a multi-view heterogeneous graph by using ATAC-seq sequences, and utilized background coexisting probability and the iterloss to find different lengths of ATAC-seq motifs and optimize the parameter sets. Compared to existing models, GNNMF achieved the best performance on TFBS prediction and ATAC-seq motif finding, which demonstrates that our improvement is available for ATAC-seq motif finding.
Collapse
Affiliation(s)
- Shuangquan Zhang
- School of Cyber Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xiaotian Wu
- School of Artificial Intelligence, Jilin University, Changchun, 130012, China
| | - Zhichao Lian
- School of Cyber Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Chunman Zuo
- Institute of Artificial Intelligence, Donghua University, Shanghai, 201620, China
| | - Yan Wang
- School of Artificial Intelligence, Jilin University, Changchun, 130012, China.
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, 130012, China.
| |
Collapse
|
148
|
Grieshop K, Ho EKH, Kasimatis KR. Dominance reversals: the resolution of genetic conflict and maintenance of genetic variation. Proc Biol Sci 2024; 291:20232816. [PMID: 38471544 DOI: 10.1098/rspb.2023.2816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 02/05/2024] [Indexed: 03/14/2024] Open
Abstract
Beneficial reversals of dominance reduce the costs of genetic trade-offs and can enable selection to maintain genetic variation for fitness. Beneficial dominance reversals are characterized by the beneficial allele for a given context (e.g. habitat, developmental stage, trait or sex) being dominant in that context but recessive where deleterious. This context dependence at least partially mitigates the fitness consequence of heterozygotes carrying one non-beneficial allele for their context and can result in balancing selection that maintains alternative alleles. Dominance reversals are theoretically plausible and are supported by mounting empirical evidence. Here, we highlight the importance of beneficial dominance reversals as a mechanism for the mitigation of genetic conflict and review the theory and empirical evidence for them. We identify some areas in need of further research and development and outline three methods that could facilitate the identification of antagonistic genetic variation (dominance ordination, allele-specific expression and allele-specific ATAC-Seq (assay for transposase-accessible chromatin with sequencing)). There is ample scope for the development of new empirical methods as well as reanalysis of existing data through the lens of dominance reversals. A greater focus on this topic will expand our understanding of the mechanisms that resolve genetic conflict and whether they maintain genetic variation.
Collapse
Affiliation(s)
- Karl Grieshop
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada M5S 1A1
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Eddie K H Ho
- Department of Biology, Reed College, 3203 SE Woodstock Blvd, Portland, OR 97202, USA
| | - Katja R Kasimatis
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada M5S 1A1
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
149
|
Cepika AM, Amaya L, Waichler C, Narula M, Mantilla MM, Thomas BC, Chen PP, Freeborn RA, Pavel-Dinu M, Nideffer J, Porteus M, Bacchetta R, Müller F, Greenleaf WJ, Chang HY, Roncarolo MG. Epigenetic signature and key transcriptional regulators of human antigen-specific type 1 regulatory T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.07.582969. [PMID: 38559096 PMCID: PMC10979855 DOI: 10.1101/2024.03.07.582969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Human adaptive immunity is orchestrated by effector and regulatory T (Treg) cells. Natural Tregs arise in the thymus where they are shaped to recognize self-antigens, while type 1 Tregs or Tr1 cells are induced from conventional peripheral CD4 + T cells in response to peripheral antigens, such as alloantigens and allergens. Tr1 cells have been developed as a potential therapy for inducing antigen-specific tolerance, because they can be rapidly differentiated in vitro in response to a target antigen. However, the epigenetic landscape and the identity of transcription factors (TFs) that regulate differentiation, phenotype, and functions of human antigen-specific Tr1 cells is largely unknown, hindering Tr1 research and broader clinical development. Here, we reveal the unique epigenetic signature of antigen-specific Tr1 cells, and TFs that regulate their differentiation, phenotype and function. We showed that in vitro induced antigen-specific Tr1 cells are distinct both clonally and transcriptionally from natural Tregs and other conventional CD4 + T cells on a single-cell level. An integrative analysis of Tr1 cell epigenome and transcriptome identified a TF signature unique to antigen-specific Tr1 cells, and predicted that IRF4, BATF, and MAF act as their transcriptional regulators. Using functional genomics, we showed that each of these TFs play a non-redundant role in regulating Tr1 cell differentiation, suppressive function, and expression of co-inhibitory and cytotoxic proteins. By using the Tr1-specific TF signature as a molecular fingerprint, we tracked Tr1 cells in peripheral blood of recipients of allogeneic hematopoietic stem cell transplantation treated with adoptive Tr1 cell therapy. Furthermore, the same signature identified Tr1 cells in resident CD4 + T cells in solid tumors. Altogether, these results reveal the epigenetic signature and the key transcriptional regulators of human Tr1 cells. These data will guide mechanistic studies of human Tr1 cell biology and the development and optimization of adoptive Tr1 cell therapies.
Collapse
|
150
|
Ando K, Ou J, Thompson JD, Welsby J, Bangru S, Shen J, Wei X, Diao Y, Poss KD. A screen for regeneration-associated silencer regulatory elements in zebrafish. Dev Cell 2024; 59:676-691.e5. [PMID: 38290519 PMCID: PMC10939760 DOI: 10.1016/j.devcel.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 11/03/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024]
Abstract
Regeneration involves gene expression changes explained in part by context-dependent recruitment of transcriptional activators to distal enhancers. Silencers that engage repressive transcriptional complexes are less studied than enhancers and more technically challenging to validate, but they potentially have profound biological importance for regeneration. Here, we identified candidate silencers through a screening process that examined the ability of DNA sequences to limit injury-induced gene expression in larval zebrafish after fin amputation. A short sequence (s1) on chromosome 5 near several genes that reduce expression during adult fin regeneration could suppress promoter activity in stable transgenic lines and diminish nearby gene expression in knockin lines. High-resolution analysis of chromatin organization identified physical associations of s1 with gene promoters occurring preferentially during fin regeneration, and genomic deletion of s1 elevated the expression of these genes after fin amputation. Our study provides methods to identify "tissue regeneration silencer elements" (TRSEs) with the potential to reduce unnecessary or deleterious gene expression during regeneration.
Collapse
Affiliation(s)
- Kazunori Ando
- Duke Regeneration Center and Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jianhong Ou
- Duke Regeneration Center and Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - John D Thompson
- Duke Regeneration Center and Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - John Welsby
- Duke Regeneration Center and Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sushant Bangru
- Duke Regeneration Center and Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jingwen Shen
- Duke Regeneration Center and Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Xiaolin Wei
- Duke Regeneration Center and Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yarui Diao
- Duke Regeneration Center and Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kenneth D Poss
- Duke Regeneration Center and Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|