101
|
Scattoni ML, Ricceri L, Crawley JN. Unusual repertoire of vocalizations in adult BTBR T+tf/J mice during three types of social encounters. GENES, BRAIN, AND BEHAVIOR 2011; 10:44-56. [PMID: 20618443 PMCID: PMC2972364 DOI: 10.1111/j.1601-183x.2010.00623.x] [Citation(s) in RCA: 259] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BTBR T+tf/J (BTBR) is an inbred mouse strain that displays social deficits and repetitive behaviors analogous to the first and third diagnostic symptoms of autism. We previously reported an unusual pattern of ultrasonic vocalizations in BTBR pups that may represent a behavioral homolog to the second diagnostic symptom of autism, impaired communication. This study investigated the social and vocal repertoire in adult BTBR mice, to evaluate the role of ultrasonic vocalizations in multiple social situations at the adult stage of development. Three different social contexts were considered: male-female, male-male (resident-intruder) and female-female interactions. Behavioral responses and ultrasonic vocalizations were recorded for BTBR and for the highly social control strain C57BL/6J (B6). No episodes of overt fighting or mating were observed during the short durations of the three different experimental encounters. BTBR displayed lower levels of vocalizations and social investigation in all three social contexts as compared with B6. In addition, the correlation analyses between social investigation and ultrasonic vocalization emission rate showed that in B6 mice, the two variables were positively correlated in all the three different social settings, whereas in BTBR mice, the positive correlation was significant only in the male-female interactions. These findings strongly support the value of simultaneously recording two aspects of the mouse social repertoire: social motivation and bioacoustic communication. Moreover, our findings in adults are consistent with previous results in pups, showing an unusual vocal repertoire in BTBR as compared with B6.
Collapse
Affiliation(s)
- M L Scattoni
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute of Mental Health, NIH, Bethesda, MD, USA.
| | | | | |
Collapse
|
102
|
Spencer CM, Alekseyenko O, Hamilton SM, Thomas AM, Serysheva E, Yuva-Paylor LA, Paylor R. Modifying behavioral phenotypes in Fmr1KO mice: genetic background differences reveal autistic-like responses. Autism Res 2011; 4:40-56. [PMID: 21268289 PMCID: PMC3059810 DOI: 10.1002/aur.168] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 10/12/2010] [Indexed: 01/07/2023]
Abstract
Fragile X syndrome (FXS) is the most common inherited form of intellectual disability in humans. In addition to cognitive impairment, patients may exhibit hyperactivity, attention deficits, social difficulties and anxiety, and autistic-like behaviors. The degree to which patients display these behaviors varies considerably and is influenced by family history, suggesting that genetic modifiers play a role in the expression of behaviors in FXS. Several studies have examined behavior in a mouse model of FXS in which the Fmr1 gene has been ablated. Most of those studies were done in Fmr1 knockout mice on a pure C57BL/6 or FVB strain background. To gain a better understanding of the effects of genetic background on behaviors resulting from the loss of Fmr1 gene expression, we generated F1 hybrid lines from female Fmr1 heterozygous mice on a pure C57BL/6J background bred with male Fmr1 wild-type (WT) mice of various background strains (A/J, DBA/2J, FVB/NJ, 129S1/SvImJ and CD-1). Male Fmr1 knockout and WT littermates from each line were examined in an extensive behavioral test battery. Results clearly indicate that multiple behavioral responses are dependent on genetic background, including autistic-like traits that are present on limited genetic backgrounds. This approach has allowed us to identify improved models for different behavioral symptoms present in FXS including autistic-like traits.
Collapse
Affiliation(s)
- Corinne M. Spencer
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Olga Alekseyenko
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Shannon M. Hamilton
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030 USA
| | - Alexia M. Thomas
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030 USA
| | - Ekaterina Serysheva
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Lisa A. Yuva-Paylor
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Richard Paylor
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030 USA
| |
Collapse
|
103
|
Characterization of the deleted in autism 1 protein family: implications for studying cognitive disorders. PLoS One 2011; 6:e14547. [PMID: 21283809 PMCID: PMC3023760 DOI: 10.1371/journal.pone.0014547] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 12/21/2010] [Indexed: 12/21/2022] Open
Abstract
Autism spectrum disorders (ASDs) are a group of commonly occurring, highly-heritable developmental disabilities. Human genes c3orf58 or Deleted In Autism-1 (DIA1) and cXorf36 or Deleted in Autism-1 Related (DIA1R) are implicated in ASD and mental retardation. Both gene products encode signal peptides for targeting to the secretory pathway. As evolutionary medicine has emerged as a key tool for understanding increasing numbers of human diseases, we have used an evolutionary approach to study DIA1 and DIA1R. We found DIA1 conserved from cnidarians to humans, indicating DIA1 evolution coincided with the development of the first primitive synapses. Nematodes lack a DIA1 homologue, indicating Caenorhabditis elegans is not suitable for studying all aspects of ASD etiology, while zebrafish encode two DIA1 paralogues. By contrast to DIA1, DIA1R was found exclusively in vertebrates, with an origin coinciding with the whole-genome duplication events occurring early in the vertebrate lineage, and the evolution of the more complex vertebrate nervous system. Strikingly, DIA1R was present in schooling fish but absent in fish that have adopted a more solitary lifestyle. An additional DIA1-related gene we named DIA1-Like (DIA1L), lacks a signal peptide and is restricted to the genomes of the echinoderm Strongylocentrotus purpuratus and cephalochordate Branchiostoma floridae. Evidence for remarkable DIA1L gene expansion was found in B. floridae. Amino acid alignments of DIA1 family gene products revealed a potential Golgi-retention motif and a number of conserved motifs with unknown function. Furthermore, a glycine and three cysteine residues were absolutely conserved in all DIA1-family proteins, indicating a critical role in protein structure and/or function. We have therefore identified a new metazoan protein family, the DIA1-family, and understanding the biological roles of DIA1-family members will have implications for our understanding of autism and mental retardation.
Collapse
|
104
|
Abstract
PURPOSE Autism is a multifactorial disorder that involves impairments in social interactions and communication, as well as restricted and repetitive behaviors. About 30% of individuals with autism develop epilepsy by adulthood. The EL mouse has long been studied as a natural model of multifactorial idiopathic generalized epilepsy with complex partial seizures. Because epilepsy is a comorbid trait of autism, we evaluated the EL mouse for behaviors associated with autism. METHODS We compared the behavior of EL mice to age-matched control DDY mice, a genetically related nonepileptic strain. The mice were compared in the open field and in the light-dark compartment tests to measure activity, exploratory behavior, and restricted and repetitive behaviors. The social transmission of food preference test was employed to evaluate social communication. Home-cage behavior was also evaluated in EL and DDY mice as a measure of repetitive activity. KEY FINDINGS We found that EL mice displayed several behavioral abnormalities characteristic of autism. Impairments in social interaction and restricted patterns of interest were evident in EL mice. Activity, exploratory behavior, and restricted behavior were significantly greater in EL mice than in DDY mice. EL mice exhibited impairment in the social transmission of food preference assay. In addition, a stereotypic myoclonic jumping behavior was observed in EL mice, but was not seen in DDY mice. It is of interest to note that seizure activity within 24 h of testing exacerbated the autistic behavioral abnormalities found in EL mice. SIGNIFICANCE These findings suggest that the EL mouse expresses behavioral abnormalities similar to those seen in persons with autism. We propose that the EL mouse can be utilized as a natural model of autism and epilepsy.
Collapse
|
105
|
Pobbe RLH, Defensor EB, Pearson BL, Bolivar VJ, Blanchard DC, Blanchard RJ. General and social anxiety in the BTBR T+ tf/J mouse strain. Behav Brain Res 2011; 216:446-51. [PMID: 20816701 PMCID: PMC2975778 DOI: 10.1016/j.bbr.2010.08.039] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 08/19/2010] [Accepted: 08/25/2010] [Indexed: 12/13/2022]
Abstract
BTBR T+ tf/J (BTBR) is an inbred mouse strain that shows behavioral traits with analogies to the three diagnostic symptoms of autism spectrum disorder (ASD); deficits in social interaction, impaired communication, and repetitive behaviors with restricted interests. Previous findings reveal that when compared to C57BL/6J (B6) and other inbred strains, BTBR exhibit normal to low anxiety-like traits in paradigms designed to assess anxiety-related behaviors. The current study assessed the generality of these anxiety findings. In experiment 1, B6 and BTBR mice were tested in the elevated plus maze (EPM), mouse defense test battery (MDTB) and elevated zero-maze. BTBR mice exhibited an anxiogenic profile in the EPM, with a reduction in open arm time and an increase in risk assessment behaviors, as compared to B6. In the MDTB, BTBR showed enhanced vocalization to the predator, and significantly less locomotor activity than B6 in the pre-threat situation, but significantly more locomotion than B6 following exposure to a predator threat, suggesting enhanced defensiveness to the predator. In the zero-maze, BTBR mice showed a significantly higher number of entries and time spent in the open segments of the apparatus, when compared to B6. In experiment 2, a three-chambered social preference test was used to evaluate effects of the systemic administration of an anxiolytic compound, diazepam, on B6 and BTBR social approach. Diazepam consistently increased time in the compartment containing the social stimulus, for both B6 and BTBR mice. However, in the vehicle treated groups, B6 mice spent significantly more time while BTBR mice spent significantly less time in the social stimulus compartment; after diazepam administration both B6 and BTBR strains significantly preferred the social stimulus chamber. These results suggest that while the anxiety responses of BTBR mice to novel situations (EPM and zero-maze) are inconsistent, BTBR mice appear to be more defensive to animate threat stimuli (predator or another mouse). Reduction of anxiety by diazepam normalized the social preference of BTBR for a mouse stimulus in the three-chambered test.
Collapse
Affiliation(s)
- Roger L H Pobbe
- Pacific Biosciences Research Center, University of Hawaii,1993 East-West Road, Honolulu, HI 96822, USA.
| | | | | | | | | | | |
Collapse
|
106
|
Pobbe RLH, Pearson BL, Defensor EB, Bolivar VJ, Blanchard DC, Blanchard RJ. Expression of social behaviors of C57BL/6J versus BTBR inbred mouse strains in the visible burrow system. Behav Brain Res 2010; 214:443-9. [PMID: 20600340 PMCID: PMC2928226 DOI: 10.1016/j.bbr.2010.06.025] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 06/10/2010] [Accepted: 06/18/2010] [Indexed: 01/18/2023]
Abstract
The core symptoms of autism spectrum disorder (ASD) include deficits in social interaction, impaired communication, and repetitive behaviors with restricted interests. Mouse models with behavioral phenotypes relevant to these core symptoms offer an experimental approach to advance the investigation of genes associated with ASD. Previous findings demonstrate that BTBR T+ tf/J (BTBR) is an inbred mouse strain that shows robust behavioral phenotypes with analogies to all three of the diagnostic symptoms of ASD. In the present study, we investigated the expression of social behaviors in a semi-natural visible burrow system (VBS), during colony formation and maintenance in groups comprising three adult male mice of the same strain, either C57BL/6J (B6) or BTBR. For comparative purposes, an extensively investigated three-chambered test was subsequently used to assess social approach in both strains. The effects of strain on these two situations were consistent and highly significant. In the VBS, BTBR mice showed reductions in all interactive behaviors: approach (front and back), flight, chase/follow, allo-grooming and huddling, along with increases in self-grooming and alone, as compared to B6. These results were corroborated in the three-chambered test: in contrast to B6, male BTBR mice failed to spend more time in the side of the test box containing the unfamiliar CD-1 mouse. Overall, the present data indicates that the strain profile for BTBR mice, including consistent social deficits and high levels of repetitive self-grooming, models multiple components of the ASD phenotype.
Collapse
Affiliation(s)
- Roger L H Pobbe
- Pacific Biosciences Research Center, University of Hawaii, 1993 East-West Road, Honolulu, HI 96822, USA.
| | | | | | | | | | | |
Collapse
|
107
|
Yun SH, Trommer BL. Fragile X mice: reduced long-term potentiation and N-Methyl-D-Aspartate receptor-mediated neurotransmission in dentate gyrus. J Neurosci Res 2010; 89:176-82. [PMID: 21162125 DOI: 10.1002/jnr.22546] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 09/28/2010] [Accepted: 10/08/2010] [Indexed: 02/04/2023]
Abstract
Fragile X syndrome (FXS) is a monogenic mental retardation syndrome that frequently includes autism. The Fmr1-knockout (Fmr1-KO) mouse, like FXS-affected individuals, lacks the fragile X mental retardation protein (FMRP) and models autism as well as FXS. Limited human data and several mouse models have implicated the hippocampal dentate gyrus (DG) in autism. We therefore investigated whether the Fmr1-KO mouse exhibited functional changes in DG. We found diminished medial perforant path-granule cell long-term potentiation (LTP), complementing previous investigations of synaptic plasticity in Fmr1-KO demonstrating impaired LTP in CA1, neocortex, and amygdala and exaggerated long-term depression in CA1. We also found that peak amplitude of NMDA receptor-mediated excitatory postsynaptic currents (EPSCs) was smaller in Fmr1-KO than control. AMPA receptor-mediated EPSCs were comparable in the two strains, yielding a lower NMDA/AMPA ratio in Fmr1-KO mice and suggesting one mechanism by which absent FMRP might contribute to diminished LTP. The clinical hallmarks of autism include both excessive adherence to patterns and impaired detection of socially important patterns. The DG has a putative role in pattern separation (for time, space, and features) that has been attributed to granule cell number, firing rates, adult neurogenesis, and even perforant path LTP. DG also contributes to pattern completion in CA3 via its mossy fiber efferents, whose terminals include abundant FMRP in "fragile X granules." Together with the present data, these observations suggest that DG is a candidate region for further investigation in autism and that the Fmr1-KO model may be particularly apt.
Collapse
Affiliation(s)
- Sung Hwan Yun
- Department of Pediatrics, Maimonides Medical Center, Brooklyn, New York 11219, USA
| | | |
Collapse
|
108
|
Eskenazi B, Huen K, Marks A, Harley KG, Bradman A, Barr DB, Holland N. PON1 and neurodevelopment in children from the CHAMACOS study exposed to organophosphate pesticides in utero. ENVIRONMENTAL HEALTH PERSPECTIVES 2010; 118:1775-81. [PMID: 21126941 PMCID: PMC3002199 DOI: 10.1289/ehp.1002234] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 08/13/2010] [Indexed: 05/04/2023]
Abstract
BACKGROUND Paraoxonase 1 (PON1) detoxifies oxon derivatives of some organophosphate (OP) pesticides, and its genetic polymorphisms influence enzyme activity and quantity. We previously reported that maternal urinary concentrations of dialkyl phosphate (DAP) metabolites, a marker of OP pesticide exposure, were related to poorer mental development and maternally reported symptoms consistent with pervasive developmental disorder (PDD) in 2-year-olds participating in the Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS) study. OBJECTIVE We determined whether PON1 genotypes and enzyme measurements were associated with child neurobehavioral development and whether PON1 modified the association of in utero exposure to OPs (as assessed by maternal DAPs) and neurobehavior. METHODS We measured DAP concentrations in maternal urine during pregnancy, PON1₁₉₂ and PON1₋₁₀₈ genotypes in mothers and children, and arylesterase (ARYase) and paraoxonase (POase) in maternal, cord, and 2-year-olds' blood. We assessed 353 2-year-olds on the Mental Development Index (MDI) and Psychomotor Development Index (PDI) of the Bayley Scales of Infant Development and queried their mothers on the Child Behavior Checklist to obtain a score for PDD. RESULTS Children with the PON1(-108T) allele had poorer MDI scores and somewhat poorer PDI scores. Children were less likely to display PDD when they or their mothers had higher ARYase activity and when their mothers had higher POase activity. The association between DAPs and MDI scores was strongest in children with PON1(-108T) allele, but this and other interactions between DAPs and PON1 polymorphisms or enzymes were not significant. CONCLUSION PON1 was associated with child neurobehavioral development, but additional research is needed to confirm whether it modifies the relation with in utero OP exposure.
Collapse
Affiliation(s)
- Brenda Eskenazi
- Center for Environmental Research and Children's Health, School of Public Health, University of California, Berkeley, Berkeley, California 94602, USA.
| | | | | | | | | | | | | |
Collapse
|
109
|
Dye CA, El Shawa H, Huffman KJ. A lifespan analysis of intraneocortical connections and gene expression in the mouse II. ACTA ACUST UNITED AC 2010; 21:1331-50. [PMID: 21060113 DOI: 10.1093/cercor/bhq213] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The mammalian neocortex contains an intricate processing network of multiple sensory and motor areas that allows the animal to engage in complex behaviors. These anatomically and functionally unique areas and their distinct connections arise during early development, through a process termed arealization. Both intrinsic, activity-independent and extrinsic, activity-dependent mechanisms drive arealization, much of which occurs during the areal patterning period (APP) from late embryogenesis to early postnatal life. How areal boundaries and their connections develop and change from infancy to adulthood is not known. Additionally, the adult patterns of sensory and motor ipsilateral intraneocortical connections (INCs) have not been thoroughly characterized in the mouse. In this report and its companion (I), we present the first lifespan analysis of ipsilateral INCs among multiple sensory and motor regions in mouse. We describe the neocortical expression patterns of several developmentally regulated genes that are of central importance to studies investigating the molecular regulation of arealization, from postnatal day (P) 6 to P50. In this study, we correlate the boundaries of gene expression patterns with developing areal boundaries across a lifespan, in order to better understand the nature of gene-areal relationships from early postnatal life to adulthood.
Collapse
Affiliation(s)
- Catherine A Dye
- Department of Psychology and Interdepartmental Neuroscience Program, University of California-Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | | | | |
Collapse
|
110
|
McAlonan GM, Li Q, Cheung C. The timing and specificity of prenatal immune risk factors for autism modeled in the mouse and relevance to schizophrenia. Neurosignals 2010; 18:129-39. [PMID: 21042002 DOI: 10.1159/000321080] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 09/09/2010] [Indexed: 12/13/2022] Open
Abstract
Autism is a highly heritable condition, but there is strong epidemiological evidence that environmental factors, especially prenatal exposure to immune challenge, contribute to it. This evidence is largely indirect, and experimental testing is necessary to directly examine causal mechanisms. Mouse models reveal that prenatal immune perturbation disrupts postnatal brain maturation with alterations in gene and protein expression, neurotransmitter function, brain structure and behavioral indices reminiscent of, but not specific to, autism. This likely reflects a neurodevelopmental spectrum in which autism and schizophrenia share numerous genetic and environmental risk factors for difficulties in social interaction, communication, emotion processing and executive function. Recent epidemiological studies find that early rather than late pregnancy infection confers the greater risk of schizophrenia. The autism literature is more limited, but exposures in the 2nd half of pregnancy may be important. Mouse models of prenatal immune challenge help dissect these observations and show some common consequences of early and late gestational exposures, as well as distinct ramifications potentially relevant to schizophrenia and autism. Although nonspecificity of immune-stimulated mouse models could be considered a disadvantage, we propose a broadened perspective, exploiting the possibility that advances made investigating a target condition can contribute towards the understanding of related conditions.
Collapse
Affiliation(s)
- Gráinne M McAlonan
- Department of Psychiatry, The University of Hong Kong, Hong Kong, SAR, China.
| | | | | |
Collapse
|
111
|
Abstract
Modeling of human neuropsychiatric disorders in animals is extremely challenging given the subjective nature of many symptoms, the lack of biomarkers and objective diagnostic tests, and the early state of the relevant neurobiology and genetics. Nonetheless, progress in understanding pathophysiology and in treatment development would benefit greatly from improved animal models. Here we review the current state of animal models of mental illness, with a focus on schizophrenia, depression and bipolar disorder. We argue for areas of focus that might increase the likelihood of creating more useful models, at least for some disorders, and for explicit guidelines when animal models are reported.
Collapse
Affiliation(s)
- Eric J Nestler
- Fishberg Department of Neuroscience, Mount Sinai School of Medicine, New York, New York, USA.
| | | |
Collapse
|
112
|
Liu PY, Erkkila K, Lue Y, Jentsch JD, Schwarcz MD, Abuyounes D, Hikim AS, Wang C, Lee PWN, Swerdloff RS. Genetic, hormonal, and metabolomic influences on social behavior and sex preference of XXY mice. Am J Physiol Endocrinol Metab 2010; 299:E446-55. [PMID: 20570823 PMCID: PMC2944286 DOI: 10.1152/ajpendo.00085.2010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
XXY men (Klinefelter syndrome) are testosterone deficient, socially isolated, exhibit impaired gender identity, and may experience more homosexual behaviors. Here, we characterize social behaviors in a validated XXY mouse model to understand mechanisms. Sociability and gender preference were assessed by three-chambered choice tasks before and after castration and after testosterone replacement. Metabolomic activities of brain and blood were quantified through fractional synthesis rates of palmitate and ribose (GC-MS). XXY mice exhibit greater sociability than XY littermates, particularly for male mice. The differences in sociability disappear after matching androgen exposure. Intact XXY, compared with XY, mice prefer male mice odors when the alternatives are ovariectomized female mice odors, but they prefer estrous over male mice odors, suggesting that preference for male mice may be due to social, not sexual, cues. Castration followed by testosterone treatment essentially remove these preferences. Fractional synthesis rates of palmitate are higher in the hypothalamus, amygdala, and hippocampus of XXY compared with XY mice but not with ribose in these brain regions or palmitate in blood. Androgen ablation in XY mice increases fractional synthesis rates of fatty acids in the brain to levels indistinguishable from those in XXY mice. We conclude that intact XXY mice exhibit increased sociability, differences in gender preference for mice and their odors are due to social rather than sexual cues and, these differences are mostly related to androgen deficiency rather than genetics. Specific metabolic changes in brain lipids, which are also regulated by androgens, are observed in brain regions that are involved in these behaviors.
Collapse
Affiliation(s)
- Peter Y Liu
- Department of Medicine, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, California, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Kim YS, Harry GJ, Kang HS, Goulding D, Wine RN, Kissling GE, Liao G, Jetten AM. Altered cerebellar development in nuclear receptor TAK1/ TR4 null mice is associated with deficits in GLAST(+) glia, alterations in social behavior, motor learning, startle reactivity, and microglia. CEREBELLUM (LONDON, ENGLAND) 2010; 9:310-23. [PMID: 20393820 PMCID: PMC2928415 DOI: 10.1007/s12311-010-0163-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Previously, deficiency in the expression of the nuclear orphan receptor TAK1 was found to be associated with delayed cerebellar granule cell migration and Purkinje cell maturation with a permanent deficit in foliation of lobules VI–VII, suggesting a role for TAK1 in cerebellum development. In this study, we confirm that TAK1-deficient (TAK1(−/−)) mice have a smaller cerebellum and exhibit a disruption of lobules VI–VII. We extended these studies and show that at postnatal day 7, TAK1(−/−) mice exhibit a delay in monolayer maturation of dysmorphic calbindin 28K-positive Purkinje cells. The astrocyte-specific glutamate transporter (GLAST) was expressed within Bergmann fibers and internal granule cell layer at significantly lower levels in the cerebellum of TAK1(−/−) mice. At PND21, Golgi-positive Purkinje cells in TAK1(−/−) mice displayed a smaller soma (18%) and shorter distance to first branch point (35%). Neuronal death was not observed in TAK1(−/−) mice at PND21; however, activated microglia were present in the cerebellum, suggestive of earlier cell death. These structural deficits in the cerebellum were not sufficient to alter motor strength, coordination, or activity levels; however, deficits in acoustic startle response, prepulse startle inhibition, and social interactions were observed. Reactions to a novel environment were inhibited in a light/dark chamber, open-field, and home-cage running wheel. TAK1(−/−) mice displayed a plateau in performance on the running wheel, suggesting a deficit in learning to coordinate performance on a motor task. These data indicate that TAK1 is an important transcriptional modulator of cerebellar development and neurodevelopmentally regulated behavior.
Collapse
Affiliation(s)
- Yong-Sik Kim
- Laboratory of Respiratory Biology, Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences National Institutes of Health, Research Triangle Park, NC 27709
| | - G. Jean Harry
- Laboratory of Molecular Toxicology, Division of Intramural Research, National Institute of Environmental Health Sciences National Institutes of Health, Research Triangle Park, NC 27709
| | - Hong Soon Kang
- Laboratory of Respiratory Biology, Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences National Institutes of Health, Research Triangle Park, NC 27709
| | - David Goulding
- Comparative Medicine Branch, Division of Intramural Research, National Institute of Environmental Health Sciences National Institutes of Health, Research Triangle Park, NC 27709
| | - Rob N. Wine
- Laboratory of Molecular Toxicology, Division of Intramural Research, National Institute of Environmental Health Sciences National Institutes of Health, Research Triangle Park, NC 27709
| | - Grace E. Kissling
- Biostatistics Branch, Division of Intramural Research, National Institute of Environmental Health Sciences National Institutes of Health, Research Triangle Park, NC 27709
| | - Grace Liao
- Laboratory of Respiratory Biology, Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences National Institutes of Health, Research Triangle Park, NC 27709
| | - Anton M. Jetten
- Laboratory of Respiratory Biology, Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences National Institutes of Health, Research Triangle Park, NC 27709
| |
Collapse
|
114
|
Abstract
A growing and interdisciplinary translational neuroscience research effort for neurodevelopmental disorders (NDDs) is investigating the mechanisms of dysfunction and testing effective treatment strategies in animal models and, when possible, in the clinic. NDDs with a genetic basis have received particular attention. Transgenic animals that mimic genetic insults responsible for disease in man have provided insight about mechanisms of dysfunction, and, surprisingly, have shown that cognitive deficits can be addressed in adult animals. This review will present recent translational research based on animal models of genetic NDDs, as well as pharmacotherapeutic strategies under development to address deficits of brain function for Down syndrome, fragile X syndrome, Rett syndrome, neurofibromatosis-1, tuberous sclerosis, and autism. Although these disorders vary in underlying causes and clinical presentation, common pathways and mechanisms for dysfunction have been observed. These include abnormal gene dosage, imbalance among neurotransmitter systems, and deficits in the development, maintenance and plasticity of neuronal circuits. NDDs affect multiple brain systems and behaviors that may be amenable to drug therapies that target distinct deficits. A primary goal of translational research is to replace symptomatic and supportive drug therapies with pharmacotherapies based on a principled understanding of the causes of dysfunction. Based on this principle, several recently developed therapeutic strategies offer clear promise for clinical development in man.
Collapse
Affiliation(s)
- Daniel Z Wetmore
- Department of Psychiatry and Behavioral Sciences, Nancy Pritzker Laboratory, Stanford University, Stanford, CA 94305-5485, USA
| | | |
Collapse
|
115
|
Olmos-Serrano JL, Paluszkiewicz SM, Martin BS, Kaufmann WE, Corbin JG, Huntsman MM. Defective GABAergic neurotransmission and pharmacological rescue of neuronal hyperexcitability in the amygdala in a mouse model of fragile X syndrome. J Neurosci 2010; 30:9929-38. [PMID: 20660275 PMCID: PMC2948869 DOI: 10.1523/jneurosci.1714-10.2010] [Citation(s) in RCA: 250] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Revised: 06/04/2010] [Accepted: 06/13/2010] [Indexed: 01/12/2023] Open
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder characterized by variable cognitive impairment and behavioral disturbances such as exaggerated fear, anxiety and gaze avoidance. Consistent with this, findings from human brain imaging studies suggest dysfunction of the amygdala. Underlying alterations in amygdala synaptic function in the Fmr1 knock-out (KO) mouse model of FXS, however, remain largely unexplored. Utilizing a combination of approaches, we uncover profound alterations in inhibitory neurotransmission in the amygdala of Fmr1 KO mice. We demonstrate a dramatic reduction in the frequency and amplitude of phasic IPSCs, tonic inhibitory currents, as well as in the number of inhibitory synapses in Fmr1 KO mice. Furthermore, we observe significant alterations in GABA availability, both intracellularly and at the synaptic cleft. Together, these findings identify abnormalities in basal and action potential-dependent inhibitory neurotransmission. Additionally, we reveal a significant neuronal hyperexcitability in principal neurons of the amygdala in Fmr1 KO mice, which is strikingly rescued by pharmacological augmentation of tonic inhibitory tone using the GABA agonist gaboxadol (THIP). Thus, our study reveals relevant inhibitory synaptic abnormalities in the amygdala in the Fmr1 KO brain and supports the notion that pharmacological approaches targeting the GABAergic system may be a viable therapeutic approach toward correcting amygdala-based symptoms in FXS.
Collapse
Affiliation(s)
| | - Scott M. Paluszkiewicz
- Center for Neuroscience Research, Children's National Medical Center, Washington DC, 20010
- Interdisciplinary Program in Neuroscience, Georgetown University School of Medicine, Washington, DC 20057, and
| | - Brandon S. Martin
- Center for Neuroscience Research, Children's National Medical Center, Washington DC, 20010
- Interdisciplinary Program in Neuroscience, Georgetown University School of Medicine, Washington, DC 20057, and
| | - Walter E. Kaufmann
- Center for Genetic Disorders of Cognition and Behavior, Kennedy Krieger Institute, Johns Hopkins, University School of Medicine, Baltimore, Maryland 21205
| | - Joshua G. Corbin
- Center for Neuroscience Research, Children's National Medical Center, Washington DC, 20010
| | - Molly M. Huntsman
- Center for Neuroscience Research, Children's National Medical Center, Washington DC, 20010
| |
Collapse
|
116
|
Marco EM, Macrì S, Laviola G. Critical Age Windows for Neurodevelopmental Psychiatric Disorders: Evidence from Animal Models. Neurotox Res 2010; 19:286-307. [DOI: 10.1007/s12640-010-9205-z] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 06/01/2010] [Accepted: 06/01/2010] [Indexed: 01/28/2023]
|
117
|
Yuskaitis CJ, Beurel E, Jope RS. Evidence of reactive astrocytes but not peripheral immune system activation in a mouse model of Fragile X syndrome. Biochim Biophys Acta Mol Basis Dis 2010; 1802:1006-12. [PMID: 20600866 DOI: 10.1016/j.bbadis.2010.06.015] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 06/01/2010] [Accepted: 06/23/2010] [Indexed: 12/24/2022]
Abstract
Fragile X syndrome (FXS) is the most common form of inherited mental retardation and is one of the few known genetic causes of autism. FXS results from the loss of Fmr1 gene function; thus, Fmr1 knockout mice provide a model to study impairments associated with FXS and autism and to test potential therapeutic interventions. The inhibitory serine phosphorylation of glycogen synthase kinase-3 (GSK3) is lower in brain regions of Fmr1 knockout mice than wild-type mice and the GSK3 inhibitor lithium rescues several behavioral impairments in Fmr1 knockout mice. Therefore, we examined if the serine phosphorylation of GSK3 in Fmr1 knockout mice also was altered outside the brain and if administration of lithium ameliorated the macroorchidism phenotype. Additionally, since GSK3 regulates numerous functions of the immune system and immune alterations have been associated with autism, we tested if immune function is altered in Fmr1 knockout mice. The inhibitory serine phosphorylation of GSK3 was significantly lower in the testis and liver of Fmr1 knockout mice than wild-type mice, and chronic lithium treatment reduced macroorchidism in Fmr1 knockout mice. No alterations in peripheral immune function were identified in Fmr1 knockout mice. However, examination of glia, the immune cells of the brain, revealed reactive astrocytes in several brain regions of Fmr1 knockout mice and treatment with lithium reduced this in the striatum and cerebellum. These results provide further evidence of the involvement of dysregulated GSK3 in FXS, and demonstrate that lithium administration reduces macroorchidism and reactive astrocytes in Fmr1 knockout mice.
Collapse
Affiliation(s)
- Christopher J Yuskaitis
- Department of Psychiatry and behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294-0017, USA
| | | | | |
Collapse
|
118
|
Altered ultrasonic vocalizations in a tuberous sclerosis mouse model of autism. Proc Natl Acad Sci U S A 2010; 107:11074-9. [PMID: 20534473 DOI: 10.1073/pnas.1005620107] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Tuberous sclerosis (TSC) is an autosomally dominant neurocutaneous disease notable for its high comorbidity with autism in human patients. Studies of murine models of tuberous sclerosis have found defects in cognition and learning, but thus far have not uncovered deficits in social behaviors relevant to autism. To explore social communication and interaction in TSC2 heterozygous mice, we recorded ultrasonic vocalizations (USV) and found that although both wild-type (WT) and heterozygous pups born to WT dams showed similar call rates and patterns, baseline vocalization rates were elevated in pups born to heterozygous dams. Further analysis revealed several robust features of maternal potentiation in all but WT pups born to heterozygous dams. This lack of potentiation is suggestive of defects in mother-pup social interaction during or before the reunion period between WT pups and heterozygous dams. Intriguingly, male pups of both genotypes born to heterozygous dams showed particularly heightened call rates and burst patterns. Because our maternal retrieval experiments revealed that TSC2(+/-) dams exhibited improved defensive reactions against intruders and highly efficient pup retrieval performance, the alterations in their pups' USVs and maternal potentiation do not appear to result from poor maternal care. These findings suggest that a pup's interaction with its mother strongly influences the pup's vocal communication, revealing an intriguing dependence of this social behavior on TSC2 gene dosage of both parties involved. Our study of this murine model thus uncovers social abnormalities that arise from TSC haploinsufficiency and are suggestive of autism.
Collapse
|
119
|
Sarachana T, Zhou R, Chen G, Manji HK, Hu VW. Investigation of post-transcriptional gene regulatory networks associated with autism spectrum disorders by microRNA expression profiling of lymphoblastoid cell lines. Genome Med 2010; 2:23. [PMID: 20374639 PMCID: PMC2873801 DOI: 10.1186/gm144] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 02/19/2010] [Accepted: 04/07/2010] [Indexed: 12/12/2022] Open
Abstract
Background Autism spectrum disorders (ASD) are neurodevelopmental disorders characterized by abnormalities in reciprocal social interactions and language development and/or usage, and by restricted interests and repetitive behaviors. Differential gene expression of neurologically relevant genes in lymphoblastoid cell lines from monozygotic twins discordant in diagnosis or severity of autism suggested that epigenetic factors such as DNA methylation or microRNAs (miRNAs) may be involved in ASD. Methods Global miRNA expression profiling using lymphoblasts derived from these autistic twins and unaffected sibling controls was therefore performed using high-throughput miRNA microarray analysis. Selected differentially expressed miRNAs were confirmed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis, and the putative target genes of two of the confirmed miRNA were validated by knockdown and overexpression of the respective miRNAs. Results Differentially expressed miRNAs were found to target genes highly involved in neurological functions and disorders in addition to genes involved in gastrointestinal diseases, circadian rhythm signaling, as well as steroid hormone metabolism and receptor signaling. Novel network analyses of the putative target genes that were inversely expressed relative to the relevant miRNA in these same samples further revealed an association with ASD and other co-morbid disorders, including muscle and gastrointestinal diseases, as well as with biological functions implicated in ASD, such as memory and synaptic plasticity. Putative gene targets (ID3 and PLK2) of two RT-PCR-confirmed brain-specific miRNAs (hsa-miR-29b and hsa-miR-219-5p) were validated by miRNA overexpression or knockdown assays, respectively. Comparisons of these mRNA and miRNA expression levels between discordant twins and between case-control sib pairs show an inverse relationship, further suggesting that ID3 and PLK2 are in vivo targets of the respective miRNA. Interestingly, the up-regulation of miR-23a and down-regulation of miR-106b in this study reflected miRNA changes previously reported in post-mortem autistic cerebellum by Abu-Elneel et al. in 2008. This finding validates these differentially expressed miRNAs in neurological tissue from a different cohort as well as supports the use of the lymphoblasts as a surrogate to study miRNA expression in ASD. Conclusions Findings from this study strongly suggest that dysregulation of miRNA expression contributes to the observed alterations in gene expression and, in turn, may lead to the pathophysiological conditions underlying autism.
Collapse
Affiliation(s)
- Tewarit Sarachana
- Department of Biochemistry and Molecular Biology, The George Washington University Medical Center, 2300 Eye St NW, Washington, DC 20037, USA.
| | | | | | | | | |
Collapse
|
120
|
Mines MA, Yuskaitis CJ, King MK, Beurel E, Jope RS. GSK3 influences social preference and anxiety-related behaviors during social interaction in a mouse model of fragile X syndrome and autism. PLoS One 2010; 5:e9706. [PMID: 20300527 PMCID: PMC2838793 DOI: 10.1371/journal.pone.0009706] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 02/22/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Nearly 1% of children in the United States exhibit autism spectrum disorders, but causes and treatments remain to be identified. Mice with deletion of the fragile X mental retardation 1 (Fmr1) gene are used to model autism because loss of Fmr1 gene function causes Fragile X Syndrome (FXS) and many people with FXS exhibit autistic-like behaviors. Glycogen synthase kinase-3 (GSK3) is hyperactive in brains of Fmr1 knockout mice, and inhibition of GSK3 by lithium administration ameliorates some behavioral impairment in these mice. We extended our studies of this association by testing whether GSK3 contributes to socialization behaviors. This used two mouse models with disrupted regulation of GSK3, Fmr1 knockout mice and GSK3 knockin mice, in which inhibitory serines of the two isoforms of GSK3, GSK3alpha and GSK3beta, are mutated to alanines, leaving GSK3 fully active. METHODOLOGY/PRINCIPAL FINDINGS To assess sociability, test mice were introduced to a restrained stimulus mouse (S1) for 10 min, followed by introduction of a second restrained stimulus mouse (S2) for 10 min, which assesses social preference. Fmr1 knockout and GSK3 knockin mice displayed no deficit in sociability with the S1 mouse, but unlike wild-type mice neither demonstrated social preference for the novel S2 mouse. Fmr1 knockout mice displayed more anxiety-related behaviors during social interaction (grooming, rearing, and digging) than wild-type mice, which was ameliorated by inhibition of GSK3 with chronic lithium treatment. CONCLUSIONS/SIGNIFICANCE These results indicate that impaired inhibitory regulation of GSK3 in Fmr1 knockout mice may contribute to some socialization deficits and that lithium treatment can ameliorate certain socialization impairments. As discussed in the present work, these results suggest a role for GSK3 in social behaviors and implicate inhibition of GSK3 as a potential therapeutic.
Collapse
Affiliation(s)
- Marjelo A. Mines
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Christopher J. Yuskaitis
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Margaret K. King
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Eleonore Beurel
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Richard S. Jope
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
121
|
Meyer U, Feldon J. Epidemiology-driven neurodevelopmental animal models of schizophrenia. Prog Neurobiol 2010; 90:285-326. [DOI: 10.1016/j.pneurobio.2009.10.018] [Citation(s) in RCA: 286] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 09/30/2009] [Accepted: 10/14/2009] [Indexed: 12/17/2022]
|
122
|
Aldinger KA, Qiu S. New mouse genetic model duplicates human 15q11–13 autistic phenotypes, or does it? Dis Model Mech 2010; 3:3-4. [DOI: 10.1242/dmm.004663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Kimberly A. Aldinger
- Zilkha Neurogenetic Institute, Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Shenfeng Qiu
- Zilkha Neurogenetic Institute, Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
123
|
Schaevitz LR, Moriuchi JM, Nag N, Mellot TJ, Berger-Sweeney J. Cognitive and social functions and growth factors in a mouse model of Rett syndrome. Physiol Behav 2010; 100:255-63. [PMID: 20045424 DOI: 10.1016/j.physbeh.2009.12.025] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 12/18/2009] [Accepted: 12/22/2009] [Indexed: 11/18/2022]
Abstract
Rett syndrome (RTT) is an autism-spectrum disorder caused by mutations in the X-linked gene encoding methyl-CpG-binding protein 2 (MeCP2). Abnormalities in social behavior, stereotyped movements, and restricted interests are common features in both RTT and classic autism. While mouse models of both RTT and autism exist, social behaviors have not been explored extensively in mouse models of RTT. Here, we report cognitive and social abnormalities in Mecp2(1lox) null mice, an animal model of RTT. The null mice show severe deficits in short- and long-term object recognition memories, reminiscent of the severe cognitive deficits seen in RTT girls. Social behavior, however, is abnormal in that the null mice spend more time in contact with stranger mice than do wildtype controls. These findings are consistent with reports of increased reciprocal social interaction in RTT girls relative to classic autism. We also report here that the levels of the neurotrophins brain-derived neurotrophic factor (BDNF), insulin-like growth factor-1 (IGF-1), and nerve growth factor (NGF) are decreased in the hippocampus of the null mice, and discuss how this may provide an underlying mechanism for both the cognitive deficits and the increased motivation for social contact observed in the Mecp2(1lox) null mice. These studies support a differential etiology between RTT and autism, particularly with respect to sociability deficits.
Collapse
Affiliation(s)
- Laura R Schaevitz
- Department of Biological Sciences, Wellesley College, Wellesley MA 02481, United States
| | | | | | | | | |
Collapse
|
124
|
How Many Ways Can Mouse Behavioral Experiments Go Wrong? Confounding Variables in Mouse Models of Neurodegenerative Diseases and How to Control Them. ADVANCES IN THE STUDY OF BEHAVIOR 2010. [DOI: 10.1016/s0065-3454(10)41007-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
125
|
De Filippis B, Ricceri L, Laviola G. Investigating Rett Syndrome Through Genetic Mouse Models: Presymptomatic, Clearly Symptomatic Phases, and Innovative Therapeutic Approaches. NEUROMETHODS 2010. [DOI: 10.1007/978-1-60761-474-6_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
126
|
Jacob S, Landeros-Weisenberger A, Leckman JF. Autism spectrum and obsessive-compulsive disorders: OC behaviors, phenotypes and genetics. Autism Res 2009; 2:293-311. [PMID: 20029829 PMCID: PMC3974607 DOI: 10.1002/aur.108] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Autism spectrum disorders (ASDs) are a phenotypically and etiologically heterogeneous set of disorders that include obsessive-compulsive behaviors (OCB) that partially overlap with symptoms associated with obsessive-compulsive disorder (OCD). The OCB seen in ASD vary depending on the individual's mental and chronological age as well as the etiology of their ASD. Although progress has been made in the measurement of the OCB associated with ASD, more work is needed including the potential identification of heritable endophenotypes. Likewise, important progress toward the understanding of genetic influences in ASD has been made by greater refinement of relevant phenotypes using a broad range of study designs, including twin and family-genetic studies, parametric and nonparametric linkage analyses, as well as candidate gene studies and the study of rare genetic variants. These genetic analyses could lead to the refinement of the OCB phenotypes as larger samples are studied and specific associations are replicated. Like ASD, OCB are likely to prove to be multidimensional and polygenic. Some of the vulnerability genes may prove to be generalist genes influencing the phenotypic expression of both ASD and OCD while others will be specific to subcomponents of the ASD phenotype. In order to discover molecular and genetic mechanisms, collaborative approaches need to generate shared samples, resources, novel genomic technologies, as well as more refined phenotypes and innovative statistical approaches. There is a growing need to identify the range of molecular pathways involved in OCB related to ASD in order to develop novel treatment interventions.
Collapse
Affiliation(s)
- Suma Jacob
- Department of Psychiatry, University of Illinois School, Chicago, Illinois 60612, USA.
| | | | | |
Collapse
|
127
|
NMDA receptor phosphorylation at a site affected in schizophrenia controls synaptic and behavioral plasticity. J Neurosci 2009; 29:11965-72. [PMID: 19776282 DOI: 10.1523/jneurosci.2109-09.2009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Phosphorylation of the NR1 subunit of NMDA receptors (NMDARs) at serine (S) 897 is markedly reduced in schizophrenia patients. However, the role of NR1 S897 phosphorylation in normal synaptic function and adaptive behaviors are unknown. To address these questions, we generated mice in which the NR1 S897 is replaced with alanine (A). This knock-in mutation causes severe impairment in NMDAR synaptic incorporation and NMDAR-mediated synaptic transmission. Furthermore, the phosphomutant animals have reduced AMPA receptor (AMPAR)-mediated synaptic transmission, decreased AMPAR GluR1 subunit in the synapse, and impaired long-term potentiation. Finally, the mutant mice exhibit behavioral deficits in social interaction and sensorimotor gating. Our results suggest that an impairment in NR1 phosphorylation leads to glutamatergic hypofunction that can contribute to behavioral deficits associated with psychiatric disorders.
Collapse
|
128
|
Wu WL, Wang CH, Huang EYK, Chen CC. Asic3(-/-) female mice with hearing deficit affects social development of pups. PLoS One 2009; 4:e6508. [PMID: 19652708 PMCID: PMC2714966 DOI: 10.1371/journal.pone.0006508] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 07/01/2009] [Indexed: 12/17/2022] Open
Abstract
Background Infant crying is an important cue for mothers to respond adequately. Inappropriate response to infant crying can hinder social development in infants. In rodents, the pup-mother interaction largely depends on pup's calls. Mouse pups emit high frequency to ultrasonic vocalization (2–90 kHz) to communicate with their dam for maternal care. However, little is known about how the maternal response to infant crying or pup calls affects social development over the long term. Methodology/Principal Findings Here we used mice lacking acid-sensing ion channel 3 (Asic3−/−) to create a hearing deficit to probe the effect of caregiver hearing on maternal care and adolescent social development. Female Asic3−/− mice showed elevated hearing thresholds for low to ultrasonic frequency (4–32 kHz) on auditory brain stem response, which thus hindered their response to their pups' wriggling calls and ultrasonic vocalization, as well as their retrieval of pups. In adolescence, pups reared by Asic3−/− mice showed a social deficit in juvenile social behaviors as compared with those reared by wild-type or heterozygous dams. The social-deficit phenotype in juvenile mice reared by Asic3−/− mice was associated with the reduced serotonin transmission of the brain. However, Asic3−/− pups cross-fostered to wild-type dams showed rescued social deficit. Conclusions/Significance Inadequate response to pups' calls as a result of ASIC3-dependent hearing loss confers maternal deficits in caregivers and social development deficits in their young.
Collapse
Affiliation(s)
- Wei-Li Wu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, Taiwan, Republic of China
| | - Chih-Hung Wang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, Taipei, Taiwan, Republic of China
| | - Eagle Yi-Kung Huang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Chih-Cheng Chen
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, Taiwan, Republic of China
- * E-mail:
| |
Collapse
|
129
|
Silva GT, Le Bé JV, Riachi I, Rinaldi T, Markram K, Markram H. Enhanced long-term microcircuit plasticity in the valproic Acid animal model of autism. Front Synaptic Neurosci 2009; 1:1. [PMID: 21423407 PMCID: PMC3059606 DOI: 10.3389/neuro.19.001.2009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 06/02/2009] [Indexed: 12/02/2022] Open
Abstract
A single intra-peritoneal injection of valproic acid (VPA) on embryonic day (ED) 11.5 to pregnant rats has been shown to produce severe autistic-like symptoms in the offspring. Previous studies showed that the microcircuitry is hyperreactive due to hyperconnectivity of glutamatergic synapses and hyperplastic due to over-expression of NMDA receptors. These changes were restricted to the dimensions of a minicolumn (<50 μm). In the present study, we explored whether Long Term Microcircuit Plasticity (LTMP) was altered in this animal model. We performed multi-neuron patch-clamp recordings on clusters of layer 5 pyramidal cells in somatosensory cortex brain slices (PN 12-15), mapped the connectivity and characterized the synaptic properties for connected neurons. Pipettes were then withdrawn and the slice was perfused with 100 μM sodium glutamate in artificial cerebrospinal fluid in the recording chamber for 12 h. When we re-patched the same cluster of neurons, we found enhanced LTMP only at inter-somatic distances beyond minicolumnar dimensions. These data suggest that hyperconnectivity is already near its peak within the dimensions of the minicolumn in the treated animals and that LTMP, which is normally restricted to within a minicolumn, spills over to drive hyperconnectivity across the dimensions of a minicolumn. This study provides further evidence to support the notion that the neocortex is highly plastic in response to new experiences in this animal model of autism.
Collapse
Affiliation(s)
- Guilherme Testa Silva
- Laboratory of Neural Microcircuitry, Brain and Mind Institute, EPFLLausanne, Switzerland
- Department of Integrative Neurophysiology, Faculty of Earth and Life Sciences, Vrije UniversiteitAmsterdam, The Netherlands
| | - Jean-Vincent Le Bé
- Laboratory of Neural Microcircuitry, Brain and Mind Institute, EPFLLausanne, Switzerland
| | - Imad Riachi
- Laboratory of Neural Microcircuitry, Brain and Mind Institute, EPFLLausanne, Switzerland
| | - Tania Rinaldi
- Laboratory of Neural Microcircuitry, Brain and Mind Institute, EPFLLausanne, Switzerland
| | - Kamila Markram
- Laboratory of Neural Microcircuitry, Brain and Mind Institute, EPFLLausanne, Switzerland
| | - Henry Markram
- Laboratory of Neural Microcircuitry, Brain and Mind Institute, EPFLLausanne, Switzerland
| |
Collapse
|
130
|
Movement planning and reprogramming in individuals with autism. J Autism Dev Disord 2009; 39:1401-11. [PMID: 19466535 DOI: 10.1007/s10803-009-0756-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 05/05/2009] [Indexed: 10/20/2022]
Abstract
Two experiments explored how individuals with and without autism plan and reprogram movements. Participants were given partial or complete information regarding the location of the upcoming manual movement. In Experiment 1, direct information specified the hand or direction of the upcoming movement. These results replicated previous reports that participants with autism utilize advance information to prepare their movements in the same manner as their chronologically age matched peers. Experiment 2 examined how individuals respond to an unexpected change in the movement requirements. Participants received advance information about the hand and direction of the upcoming movement. On 20% of the trials participants needed to adjust either the hand or direction they had prepared. Overall, the individuals with autism had difficulty reprogramming already planned movements, particularly if a different effector was required.
Collapse
|
131
|
Scattoni ML, Crawley J, Ricceri L. Ultrasonic vocalizations: a tool for behavioural phenotyping of mouse models of neurodevelopmental disorders. Neurosci Biobehav Rev 2009; 33:508-15. [PMID: 18771687 PMCID: PMC2688771 DOI: 10.1016/j.neubiorev.2008.08.003] [Citation(s) in RCA: 347] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 07/30/2008] [Accepted: 08/07/2008] [Indexed: 10/21/2022]
Abstract
In neonatal mice ultrasonic vocalizations have been studied both as an early communicative behaviour of the pup-mother dyad and as a sign of an aversive affective state. Adult mice of both sexes produce complex ultrasonic vocalization patterns in different experimental/social contexts. Vocalizations are becoming an increasingly valuable assay for behavioural phenotyping throughout the mouse life-span and alterations of the ultrasound patterns have been reported in several mouse models of neurodevelopmental disorders. Here we also show that the modulation of vocalizations by maternal cues (maternal potentiation paradigm) - originally identified and investigated in rats - can be measured in C57BL/6 mouse pups with appropriate modifications of the rat protocol and can likely be applied to mouse behavioural phenotyping. In addition we suggest that a detailed qualitative evaluation of neonatal calls together with analysis of adult mouse vocalization patterns in both sexes in social settings, may lead to a greater understanding of the communication value of vocalizations in mice. Importantly, both neonatal and adult USV altered patterns can be determined during the behavioural phenotyping of mouse models of human neurodevelopmental and neuropsychiatric disorders, starting from those in which deficits in communication are a primary symptom.
Collapse
Affiliation(s)
- Maria Luisa Scattoni
- Section of Neurotoxicology and Neuroendocrinology, Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, I-00161 Rome, Italy
- Laboratory of Behavioral Neuroscience, National Institute of Mental Health, Bethesda, MD 20892-3730 USA
| | - Jacqueline Crawley
- Laboratory of Behavioral Neuroscience, National Institute of Mental Health, Bethesda, MD 20892-3730 USA
| | - Laura Ricceri
- Section of Neurotoxicology and Neuroendocrinology, Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, I-00161 Rome, Italy
| |
Collapse
|
132
|
Cirulli F, Laviola G, Ricceri L. Risk factors for mental health: translational models from behavioural neuroscience. Neurosci Biobehav Rev 2009; 33:493-7. [PMID: 19415818 PMCID: PMC2768388 DOI: 10.1016/j.neubiorev.2009.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- F. Cirulli
- Section of Behavioral Neuroscience, Viale Regina Elena 299, Rome, Italy
| | - G. Laviola
- Section of Behavioral Neuroscience, Viale Regina Elena 299, Rome, Italy
| | - L. Ricceri
- Section of Neurotoxicology and Neuroendocrinology, Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, Italy
| |
Collapse
|
133
|
Shi L, Smith SEP, Malkova N, Tse D, Su Y, Patterson PH. Activation of the maternal immune system alters cerebellar development in the offspring. Brain Behav Immun 2009; 23:116-23. [PMID: 18755264 PMCID: PMC2614890 DOI: 10.1016/j.bbi.2008.07.012] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 07/19/2008] [Accepted: 07/29/2008] [Indexed: 11/23/2022] Open
Abstract
A common pathological finding in autism is a localized deficit in Purkinje cells (PCs). Cerebellar abnormalities have also been reported in schizophrenia. Using a mouse model that exploits a known risk factor for these disorders, maternal infection, we asked if the offspring of pregnant mice given a mid-gestation respiratory infection have cerebellar pathology resembling that seen in these disorders. We also tested the effects of maternal immune activation in the absence of virus by injection of the synthetic dsRNA, poly(I:C). We infected pregnant mice with influenza on embryonic day 9.5 (E9.5), or injected poly(I:C) i.p. on E12.5, and assessed the linear density of PCs in the cerebellum of adult or postnatal day 11 (P11) offspring. To study granule cell migration, we also injected BrdU on P11. Adult offspring of influenza- or poly(I:C)-exposed mice display a localized deficit in PCs in lobule VII of the cerebellum, as do P11 offspring. Coincident with this are heterotopic PCs, as well as delayed migration of granule cells in lobules VI and VII. The cerebellar pathology observed in the offspring of influenza- or poly(I:C)-exposed mice is strikingly similar to that observed in autism. The poly(I:C) findings indicate that deficits are likely caused by the activation of the maternal immune system. Finally, our data suggest that cerebellar abnormalities occur during embryonic development, and may be an early deficit in autism and schizophrenia.
Collapse
Affiliation(s)
- Limin Shi
- Biology Division, California Institute of Technology, 391 S. Holliston Ave. M/C 216-76, Pasadena, CA 91125
| | - Stephen E. P. Smith
- Biology Division, California Institute of Technology, 391 S. Holliston Ave. M/C 216-76, Pasadena, CA 91125
| | - Natalia Malkova
- Biology Division, California Institute of Technology, 391 S. Holliston Ave. M/C 216-76, Pasadena, CA 91125
| | - Doris Tse
- Biology Division, California Institute of Technology, 391 S. Holliston Ave. M/C 216-76, Pasadena, CA 91125
| | - Yixuan Su
- Biology Division, California Institute of Technology, 391 S. Holliston Ave. M/C 216-76, Pasadena, CA 91125
| | - Paul H. Patterson
- Biology Division, California Institute of Technology, 391 S. Holliston Ave. M/C 216-76, Pasadena, CA 91125
| |
Collapse
|
134
|
Mouse models of Rett syndrome: from behavioural phenotyping to preclinical evaluation of new therapeutic approaches. Behav Pharmacol 2008; 19:501-17. [PMID: 18690105 DOI: 10.1097/fbp.0b013e32830c3645] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder, primarily affecting girls. RTT causes severe cognitive, social, motor and physiological impairments and no cure currently exists. The discovery of a monogenic origin for RTT and the subsequent generation of RTT mouse models provided a major breakthrough for RTT research. Although the characterization of these mutant mice is far from complete, they recapitulate several RTT symptoms. This review provides an overview of the behavioural domains so far investigated in these models, including the very few mouse data concerning the developmental course of RTT. Both clinical and animal studies support the presence of early defects and highlight the importance of probing the presymptomatic phase for both the precocious identification of biomarkers and the early assessment of potential therapies. Preclinical evaluations of pharmacological and nonpharmacological interventions so far carried out are also illustrated. In addition, genetic manipulations are reported that demonstrate rescue from the damage caused by the absence of the methyl-CpG-binding protein 2 (MeCP2) gene even at a mature stage. Given the rare occurrence of RTT cases, transnational collaborative networks are expected to provide a deeper understanding of aetiopathology and the development of new therapeutic approaches.
Collapse
|
135
|
Laporte JL, Ren-Patterson RF, Murphy DL, Kalueff AV. Refining psychiatric genetics: from 'mouse psychiatry' to understanding complex human disorders. Behav Pharmacol 2008; 19:377-84. [PMID: 18690099 PMCID: PMC2743519 DOI: 10.1097/fbp.0b013e32830dc09b] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Investigating the pathogenesis of psychiatric disorders is a complicated and rigorous task for psychiatric geneticists, as the disorders often involve combinations of genetic, behavioral, personality, and environmental factors. To nurture further progress in this field, a new set of conceptual tools is needed in addition to the currently accepted approaches. Concepts that consider cross-species trait genetics and the interplay between the domains of disorders, as well as the full spectrum of potential symptoms and their place along the pathogenetic continuum, are particularly important to address these needs. Here, we outline recent concepts and approaches that can help refine the field and enable more precise dissection of the genetic mechanisms contributing to psychiatric disorders.
Collapse
Affiliation(s)
- Justin L Laporte
- Laboratory of Clinical Science, National Institute of Mental Health, Bethesda, Maryland 20892-1264, USA.
| | | | | | | |
Collapse
|
136
|
Heck DH, Zhao Y, Roy S, LeDoux MS, Reiter LT. Analysis of cerebellar function in Ube3a-deficient mice reveals novel genotype-specific behaviors. Hum Mol Genet 2008; 17:2181-9. [PMID: 18413322 PMCID: PMC2902285 DOI: 10.1093/hmg/ddn117] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 03/12/2008] [Accepted: 04/08/2008] [Indexed: 11/14/2022] Open
Abstract
Angelman syndrome (AS) is a childhood-onset neurogenetic disorder characterized by functionally severe developmental delay with mental retardation, deficits in expressive language, ataxia, appendicular action tremors and unique behaviors such as inappropriate laughter and stimulus-sensitive hyperexcitibility. Most cases of AS are caused by mutations which disrupt expression of maternal UBE3A. Although some progress has been made in understanding hippocampal-related memory and learning aspects of the disorder using Ube3a deficient mice, the numerous motoric abnormalities associated with AS (ataxia, action tremor, dysarthria, dysphagia, sialorrhea and excessive chewing/mouthing behaviors) have not been fully explored with mouse models. Here we use a novel quantifiable analysis of fluid consumption and licking behavior along with a battery of motor tests to examine cerebellar and other motor system defects in Ube3a deficient mice. Mice with a maternally inherited Ube3a deficiency (Ube3a(m-/p+)) show defects in fluid consumption behavior which are different from Ube3a(m-/p-) mice. The rhythm of fluid licking and number of licks per visit were significantly different among the three groups (m-/p-, m-/p+, m+/p+) and indicate that not only was fluid consumption dependent on Ube3a expression in the cerebellum, but may also depend on low levels of Ube3a expression in other brain regions. Additional neurological testing revealed defects in both Ube3a(m-/p+) and Ube3a(m-/p-) mice in rope climbing, grip strength, gait and a raised-beam task. Long-term observation of fluid consumption behavior is the first phenotype reported that differentiates between mice with a maternal loss of function versus complete loss of Ube3a in the brain. The neuronal and molecular mechanisms underlying mouse fluid consumption defects specifically associated with maternally inherited Ube3a deficiency may reveal important new insights into the pathobiology of AS in humans.
Collapse
Affiliation(s)
- Detlef H. Heck
- Department of Anatomy and Neurobiology, UTHSC, Memphis, TN, USA
| | | | - Snigdha Roy
- Department of Anatomy and Neurobiology, UTHSC, Memphis, TN, USA
| | | | | |
Collapse
|
137
|
Molina J, Carmona-Mora P, Chrast J, Krall PM, Canales CP, Lupski JR, Reymond A, Walz K. Abnormal social behaviors and altered gene expression rates in a mouse model for Potocki-Lupski syndrome. Hum Mol Genet 2008; 17:2486-95. [PMID: 18469339 DOI: 10.1093/hmg/ddn148] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Potocki-Lupski syndrome (PTLS) is associated with a microduplication of 17p11.2. Clinical features include multiple congenital and neurobehavioral abnormalities and autistic features. We have generated a PTLS mouse model, Dp(11)17/+, that recapitulates some of the physical and neurobehavioral phenotypes present in patients. Here, we investigated the social behavior and gene expression pattern of this mouse model in a pure C57BL/6-Tyr(c-Brd) genetic background. Dp(11)17/+ male mice displayed normal home-cage behavior but increased anxiety and increased dominant behavior in specific tests. A subtle impairment in the preference for a social target versus an inanimate target and abnormal preference for social novelty (the preference to explore an unfamiliar mouse versus a familiar one) was also observed. Our results indicate that these animals could provide a valuable model to identify the specific gene(s) that confer abnormal social behaviors and that map within this delimited genomic deletion interval. In a first attempt to identify candidate genes and for elucidating the mechanisms of regulation of these important phenotypes, we directly assessed the relative transcription of genes within and around this genomic interval. In this mouse model, we found that candidates genes include not only most of the duplicated genes, but also normal-copy genes that flank the engineered interval; both categories of genes showed altered expression levels in the hippocampus of Dp(11)17/+ mice.
Collapse
|