101
|
Usai G, Mascagni F, Giordani T, Vangelisti A, Bosi E, Zuccolo A, Ceccarelli M, King R, Hassani-Pak K, Zambrano LS, Cavallini A, Natali L. Epigenetic patterns within the haplotype phased fig (Ficus carica L.) genome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:600-614. [PMID: 31808196 DOI: 10.1111/tpj.14635] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 11/13/2019] [Accepted: 11/26/2019] [Indexed: 05/22/2023]
Abstract
Due to DNA heterozygosity and repeat content, assembly of non-model plant genomes is challenging. Herein, we report a high-quality genome reference of one of the oldest known domesticated species, fig (Ficus carica L.), using Pacific Biosciences single-molecule, real-time sequencing. The fig genome is ~333 Mbp in size, of which 80% has been anchored to 13 chromosomes. Genome-wide analysis of N6 -methyladenine and N4 -methylcytosine revealed high methylation levels in both genes and transposable elements, and a prevalence of methylated over non-methylated genes. Furthermore, the characterization of N6 -methyladenine sites led to the identification of ANHGA, a species-specific motif, which is prevalent for both genes and transposable elements. Finally, exploiting the contiguity of the 13 pseudomolecules, we identified 13 putative centromeric regions. The high-quality reference genome and the characterization of methylation profiles, provides an important resource for both fig breeding and for fundamental research into the relationship between epigenetic changes and phenotype, using fig as a model species.
Collapse
Affiliation(s)
- Gabriele Usai
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Flavia Mascagni
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Tommaso Giordani
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Alberto Vangelisti
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Emanuele Bosi
- Department of Biomedical Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Andrea Zuccolo
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Marilena Ceccarelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | | | | | - Liceth S Zambrano
- Facultad de Ciencias Zootécnicas, Universidad Técnica de Manabí, Portoviejo, Ecuador
| | - Andrea Cavallini
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Lucia Natali
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| |
Collapse
|
102
|
Olson ND, Treangen TJ, Hill CM, Cepeda-Espinoza V, Ghurye J, Koren S, Pop M. Metagenomic assembly through the lens of validation: recent advances in assessing and improving the quality of genomes assembled from metagenomes. Brief Bioinform 2020; 20:1140-1150. [PMID: 28968737 DOI: 10.1093/bib/bbx098] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/13/2017] [Indexed: 01/09/2023] Open
Abstract
Metagenomic samples are snapshots of complex ecosystems at work. They comprise hundreds of known and unknown species, contain multiple strain variants and vary greatly within and across environments. Many microbes found in microbial communities are not easily grown in culture making their DNA sequence our only clue into their evolutionary history and biological function. Metagenomic assembly is a computational process aimed at reconstructing genes and genomes from metagenomic mixtures. Current methods have made significant strides in reconstructing DNA segments comprising operons, tandem gene arrays and syntenic blocks. Shorter, higher-throughput sequencing technologies have become the de facto standard in the field. Sequencers are now able to generate billions of short reads in only a few days. Multiple metagenomic assembly strategies, pipelines and assemblers have appeared in recent years. Owing to the inherent complexity of metagenome assembly, regardless of the assembly algorithm and sequencing method, metagenome assemblies contain errors. Recent developments in assembly validation tools have played a pivotal role in improving metagenomics assemblers. Here, we survey recent progress in the field of metagenomic assembly, provide an overview of key approaches for genomic and metagenomic assembly validation and demonstrate the insights that can be derived from assemblies through the use of assembly validation strategies. We also discuss the potential for impact of long-read technologies in metagenomics. We conclude with a discussion of future challenges and opportunities in the field of metagenomic assembly and validation.
Collapse
|
103
|
A High-Quality Genome Assembly from Short and Long Reads for the Non-biting Midge Chironomus riparius (Diptera). G3-GENES GENOMES GENETICS 2020; 10:1151-1157. [PMID: 32060047 PMCID: PMC7144091 DOI: 10.1534/g3.119.400710] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chironomus riparius is of great importance as a study species in various fields like ecotoxicology, molecular genetics, developmental biology and ecology. However, only a fragmented draft genome exists to date, hindering the recent rush of population genomic studies in this species. Making use of 50 NGS datasets, we present a hybrid genome assembly from short and long sequence reads that make C. riparius’ genome one of the most contiguous Dipteran genomes published, the first complete mitochondrial genome of the species, and the respective recombination rate among the first insect recombination rates at all. The genome assembly and associated resources will be highly valuable to the broad community working with dipterans in general and chironomids in particular. The estimated recombination rate will help evolutionary biologists gaining a better understanding of commonalities and differences of genomic patterns in insects.
Collapse
|
104
|
Bastos RW, Valero C, Silva LP, Schoen T, Drott M, Brauer V, Silva-Rocha R, Lind A, Steenwyk JL, Rokas A, Rodrigues F, Resendiz-Sharpe A, Lagrou K, Marcet-Houben M, Gabaldón T, McDonnell E, Reid I, Tsang A, Oakley BR, Loures FV, Almeida F, Huttenlocher A, Keller NP, Ries LNA, Goldman GH. Functional Characterization of Clinical Isolates of the Opportunistic Fungal Pathogen Aspergillus nidulans. mSphere 2020; 5:e00153-20. [PMID: 32269156 PMCID: PMC7142298 DOI: 10.1128/msphere.00153-20] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 03/06/2020] [Indexed: 02/08/2023] Open
Abstract
Aspergillus nidulans is an opportunistic fungal pathogen in patients with immunodeficiency, and virulence of A. nidulans isolates has mainly been studied in the context of chronic granulomatous disease (CGD), with characterization of clinical isolates obtained from non-CGD patients remaining elusive. This study therefore carried out a detailed biological characterization of two A. nidulans clinical isolates (CIs), obtained from a patient with breast carcinoma and pneumonia and from a patient with cystic fibrosis that underwent lung transplantation, and compared them to the reference, nonclinical FGSC A4 strain. Both CIs presented increased growth in comparison to that of the reference strain in the presence of physiologically relevant carbon sources. Metabolomic analyses showed that the three strains are metabolically very different from each other in these carbon sources. Furthermore, the CIs were highly susceptible to cell wall-perturbing agents but not to other physiologically relevant stresses. Genome analyses identified several frameshift variants in genes encoding cell wall integrity (CWI) signaling components. Significant differences in CWI signaling were confirmed by Western blotting among the three strains. In vivo virulence studies using several different models revealed that strain MO80069 had significantly higher virulence in hosts with impaired neutrophil function than the other strains. In summary, this study presents detailed biological characterization of two A. nidulanssensu stricto clinical isolates. Just as in Aspergillus fumigatus, strain heterogeneity exists in A. nidulans clinical strains that can define virulence traits. Further studies are required to fully characterize A. nidulans strain-specific virulence traits and pathogenicity.IMPORTANCE Immunocompromised patients are susceptible to infections with opportunistic filamentous fungi from the genus Aspergillus Although A. fumigatus is the main etiological agent of Aspergillus species-related infections, other species, such as A. nidulans, are prevalent in a condition-specific manner. A. nidulans is a predominant infective agent in patients suffering from chronic granulomatous disease (CGD). A. nidulans isolates have mainly been studied in the context of CGD although infection with A. nidulans also occurs in non-CGD patients. This study carried out a detailed biological characterization of two non-CGD A. nidulans clinical isolates and compared the results to those with a reference strain. Phenotypic, metabolomic, and genomic analyses highlight fundamental differences in carbon source utilization, stress responses, and maintenance of cell wall integrity among the strains. One clinical strain had increased virulence in models with impaired neutrophil function. Just as in A. fumigatus, strain heterogeneity exists in A. nidulans clinical strains that can define virulence traits.
Collapse
Affiliation(s)
- Rafael Wesley Bastos
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Clara Valero
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Lilian Pereira Silva
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Taylor Schoen
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Milton Drott
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Verônica Brauer
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Rafael Silva-Rocha
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Abigail Lind
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Jacob L Steenwyk
- Department of Biological Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Antonis Rokas
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Biological Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Fernando Rodrigues
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/3B's Associate Laboratory, Guimarães, Portugal
| | - Agustin Resendiz-Sharpe
- Laboratory of Clinical Bacteriology and Mycology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Katrien Lagrou
- Laboratory of Clinical Bacteriology and Mycology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- National Reference Center for Mycosis, University Hospitals Leuven, Leuven, Belgium
| | - Marina Marcet-Houben
- Centre for Genomic Regulation, Barcelona, Spain
- Life Sciences Program, Barcelona Supercomputing Centre, Barcelona, Spain
- Mechanisms of Disease Program, Institute for Research in Biomedicine, Barcelona, Spain
| | - Toni Gabaldón
- Centre for Genomic Regulation, Barcelona, Spain
- Life Sciences Program, Barcelona Supercomputing Centre, Barcelona, Spain
- Mechanisms of Disease Program, Institute for Research in Biomedicine, Barcelona, Spain
- ICREA, Barcelona, Spain
| | - Erin McDonnell
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Ian Reid
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Adrian Tsang
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Berl R Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Flávio Vieira Loures
- Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, São José dos Campos, Brazil
| | - Fausto Almeida
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
105
|
Kawahara Y, Endo T, Omura M, Teramoto Y, Itoh T, Fujii H, Shimada T. Mikan Genome Database (MiGD): integrated database of genome annotation, genomic diversity, and CAPS marker information for mandarin molecular breeding. BREEDING SCIENCE 2020; 70:200-211. [PMID: 32523402 PMCID: PMC7272249 DOI: 10.1270/jsbbs.19097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/16/2019] [Indexed: 06/11/2023]
Abstract
Citrus species are some of the most valuable and widely consumed fruits globally. The genome sequences of representative citrus (e.g., Citrus clementina, C. sinensis, C. grandis) species have been released but the research base for mandarin molecular breeding is still poor. We assembled the genomes of Citrus unshiu and Poncirus trifoliata, two important species for citrus industry in Japan, using hybrid de novo assembly of Illumina and PacBio sequence data, and developed the Mikan Genome Database (MiGD). The assembled genome sizes of C. unshiu and P. trifoliata are 346 and 292 Mb, respectively, similar to those of citrus species in public databases; they are predicted to possess 41,489 and 34,333 protein-coding genes in their draft genome sequences, with 9,642 and 8,377 specific genes when compared to C. clementina, respectively. MiGD is an integrated database of genome annotation, genetic diversity, and Cleaved Amplified Polymorphic Sequence (CAPS) marker information, with these contents being mutually linked by genes. MiGD facilitates access to genome sequences of interest from previously reported linkage maps through CAPS markers and obtains polymorphism information through the multiple genome browser TASUKE. The genomic resources in MiGD (https://mikan.dna.affrc.go.jp) could provide valuable information for mandarin molecular breeding in Japan.
Collapse
Affiliation(s)
- Yoshihiro Kawahara
- National Agriculture and Food Research Organization Advanced Analysis Center, Tsukuba, Ibaraki 305-8602, Japan
- National Agriculture and Food Research Organization Institute of Crop Science, Tsukuba, Ibaraki 305-8518, Japan
| | - Tomoko Endo
- National Agriculture and Food Research Organization Institute of Fruit and Tea Tree Science, Shimizu, Shizuoka 424-0292, Japan
| | - Mitsuo Omura
- Faculty of Agriculture, Shizuoka University, Suruga, Shizuoka 422-8529, Japan
| | - Yumiko Teramoto
- IMSBIO Co., Ltd., Owl Tower 6F, 4-21-1, Higashi-ikebukuro, Toshima-ku, Tokyo 170-0013, Japan
| | - Takeshi Itoh
- National Agriculture and Food Research Organization Advanced Analysis Center, Tsukuba, Ibaraki 305-8602, Japan
| | - Hiroshi Fujii
- National Agriculture and Food Research Organization Institute of Fruit and Tea Tree Science, Shimizu, Shizuoka 424-0292, Japan
| | - Takehiko Shimada
- National Agriculture and Food Research Organization Institute of Fruit and Tea Tree Science, Shimizu, Shizuoka 424-0292, Japan
| |
Collapse
|
106
|
Mathers TC. Improved Genome Assembly and Annotation of the Soybean Aphid ( Aphis glycines Matsumura). G3 (BETHESDA, MD.) 2020; 10:899-906. [PMID: 31969427 PMCID: PMC7056979 DOI: 10.1534/g3.119.400954] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aphids are an economically important insect group due to their role as plant disease vectors. Despite this economic impact, genomic resources have only been generated for a small number of aphid species. The soybean aphid (Aphis glycines Matsumura) was the third aphid species to have its genome sequenced and the first to use long-read sequence data. However, version 1 of the soybean aphid genome assembly has low contiguity (contig N50 = 57 Kb, scaffold N50 = 174 Kb), poor representation of conserved genes and the presence of genomic scaffolds likely derived from parasitoid wasp contamination. Here, I use recently developed methods to reassemble the soybean aphid genome. The version 2 genome assembly is highly contiguous, containing half of the genome in only 40 scaffolds (contig N50 = 2.00 Mb, scaffold N50 = 2.51 Mb) and contains 11% more conserved single-copy arthropod genes than version 1. To demonstrate the utility of this improved assembly, I identify a region of conserved synteny between aphids and Drosophila containing members of the Osiris gene family that was split over multiple scaffolds in the original assembly. The improved genome assembly and annotation of A. glycines demonstrates the benefit of applying new methods to old data sets and will provide a useful resource for future comparative genome analysis of aphids.
Collapse
Affiliation(s)
- Thomas C Mathers
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, Norfolk, NR4 7UH, UK
| |
Collapse
|
107
|
Heras J, Chakraborty M, Emerson JJ, German DP. Genomic and biochemical evidence of dietary adaptation in a marine herbivorous fish. Proc Biol Sci 2020; 287:20192327. [PMID: 32070255 PMCID: PMC7062031 DOI: 10.1098/rspb.2019.2327] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/26/2020] [Indexed: 01/30/2023] Open
Abstract
Adopting a new diet is a significant evolutionary change, and can profoundly affect an animal's physiology, biochemistry, ecology and genome. To study this evolutionary transition, we investigated the physiology and genomics of digestion of a derived herbivorous fish, Cebidichthys violaceus. We sequenced and assembled its genome (N50 = 6.7 Mb) and digestive transcriptome, and revealed the molecular changes related to digestive enzymes (carbohydrases, proteases and lipases), finding abundant evidence of molecular adaptation. Specifically, two gene families experienced expansion in copy number and adaptive amino acid substitutions: amylase and carboxyl ester lipase (cel), which are involved in the digestion of carbohydrates and lipids, respectively. Both show elevated levels of gene expression and increased enzyme activity. Because carbohydrates are abundant in the prickleback's diet and lipids are rare, these findings suggest that such dietary specialization involves both exploiting abundant resources and scavenging rare ones, especially essential nutrients, like essential fatty acids.
Collapse
Affiliation(s)
- Joseph Heras
- Department of Ecology & Evolutionary Biology, University of California, Irvine, CA 92697-2525, USA
| | | | | | | |
Collapse
|
108
|
Landi L, Pollastro S, Rotolo C, Romanazzi G, Faretra F, De Miccolis Angelini RM. Draft Genomic Resources for the Brown Rot Fungal Pathogen Monilinia laxa. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:145-148. [PMID: 31687915 DOI: 10.1094/mpmi-08-19-0225-a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Monilinia laxa is the causal agent of brown rot on stone fruit, and it can cause heavy yield losses during field production and postharvest storage. This article reports the draft genome assembly of the M. laxa Mlax316 strain, obtained using a hybrid genome assembly with both Illumina short-reads and PacBio long-reads sequencing technologies. The complete draft genome consists of 49 scaffolds with total size of 42.81 Mb, and scaffold N50 of 2,449.4 kb. Annotation of the M. laxa assembly identified 11,163 genes and 12,424 proteins which were functionally annotated. This new genome draft improves current genomic resources available for M. laxa and represents a useful tool for further research into its interactions with host plants and into evolution in the Monilinia genus.
Collapse
Affiliation(s)
- Lucia Landi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche 10, 60131 Ancona, Italy
| | - Stefania Pollastro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via G. Amendola 165/a, 70126 Bari, Italy
- SELGE Network, Via G. Amendola 165/a, 70126 Bari, Italy
| | - Caterina Rotolo
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via G. Amendola 165/a, 70126 Bari, Italy
| | - Gianfranco Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche 10, 60131 Ancona, Italy
| | - Francesco Faretra
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via G. Amendola 165/a, 70126 Bari, Italy
- SELGE Network, Via G. Amendola 165/a, 70126 Bari, Italy
| | - Rita Milvia De Miccolis Angelini
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via G. Amendola 165/a, 70126 Bari, Italy
- SELGE Network, Via G. Amendola 165/a, 70126 Bari, Italy
| |
Collapse
|
109
|
Van Etten M, Lee KM, Chang SM, Baucom RS. Parallel and nonparallel genomic responses contribute to herbicide resistance in Ipomoea purpurea, a common agricultural weed. PLoS Genet 2020; 16:e1008593. [PMID: 32012153 PMCID: PMC7018220 DOI: 10.1371/journal.pgen.1008593] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 02/13/2020] [Accepted: 01/03/2020] [Indexed: 12/30/2022] Open
Abstract
The repeated evolution of herbicide resistance has been cited as an example of genetic parallelism, wherein separate species or genetic lineages utilize the same genetic solution in response to selection. However, most studies that investigate the genetic basis of herbicide resistance examine the potential for changes in the protein targeted by the herbicide rather than considering genome-wide changes. We used a population genomics screen and targeted exome re-sequencing to uncover the potential genetic basis of glyphosate resistance in the common morning glory, Ipomoea purpurea, and to determine if genetic parallelism underlies the repeated evolution of resistance across replicate resistant populations. We found no evidence for changes in 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), glyphosate's target protein, that were associated with resistance, and instead identified five genomic regions that showed evidence of selection. Within these regions, genes involved in herbicide detoxification-cytochrome P450s, ABC transporters, and glycosyltransferases-are enriched and exhibit signs of selective sweeps. One region under selection shows parallel changes across all assayed resistant populations whereas other regions exhibit signs of divergence. Thus, while it appears that the physiological mechanism of resistance in this species is likely the same among resistant populations, we find patterns of both similar and divergent selection across separate resistant populations at particular loci.
Collapse
Affiliation(s)
- Megan Van Etten
- Biology Department, Penn State-Scranton, Dunmore, Pennsylvania, United States of America
| | - Kristin M. Lee
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Shu-Mei Chang
- Plant Biology Department, University of Georgia, Athens, Georgia, United States of America
| | - Regina S. Baucom
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
110
|
conLSH: Context based Locality Sensitive Hashing for mapping of noisy SMRT reads. Comput Biol Chem 2020; 85:107206. [PMID: 32000034 DOI: 10.1016/j.compbiolchem.2020.107206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 01/14/2020] [Indexed: 11/20/2022]
Abstract
Single Molecule Real-Time (SMRT) sequencing is a recent advancement of Next Gen technology developed by Pacific Bio (PacBio). It comes with an explosion of long and noisy reads demanding cutting edge research to get most out of it. To deal with the high error probability of SMRT data, a novel contextual Locality Sensitive Hashing (conLSH) based algorithm is proposed in this article, which can effectively align the noisy SMRT reads to the reference genome. Here, sequences are hashed together based not only on their closeness, but also on similarity of context. The algorithm has O(nρ+1) space requirement, where n is the number of sequences in the corpus and ρ is a constant. The indexing time and querying time are bounded by Onρ+1·lnnln1P2 and O(nρ) respectively, where P2 > 0, is a probability value. This algorithm is particularly useful for retrieving similar sequences, a widely used task in biology. The proposed conLSH based aligner is compared with rHAT, popularly used for aligning SMRT reads, and is found to comprehensively beat it in speed as well as in memory requirements. In particular, it takes approximately 24.2% less processing time, while saving about 70.3% in peak memory requirement for H.sapiens PacBio dataset.
Collapse
|
111
|
Oh KP, Aldridge CL, Forbey JS, Dadabay CY, Oyler-McCance SJ. Conservation Genomics in the Sagebrush Sea: Population Divergence, Demographic History, and Local Adaptation in Sage-Grouse (Centrocercus spp.). Genome Biol Evol 2020; 11:2023-2034. [PMID: 31135036 DOI: 10.1093/gbe/evz112] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2019] [Indexed: 02/06/2023] Open
Abstract
Sage-grouse are two closely related iconic species of the North American West, with historically broad distributions across sagebrush-steppe habitat. Both species are dietary specialists on sagebrush during winter, with presumed adaptations to tolerate the high concentrations of toxic secondary metabolites that function as plant chemical defenses. Marked range contraction and declining population sizes since European settlement have motivated efforts to identify distinct population genetic variation, particularly that which might be associated with local genetic adaptation and dietary specialization of sage-grouse. We assembled a reference genome and performed whole-genome sequencing across sage-grouse from six populations, encompassing both species and including several populations on the periphery of the species ranges. Population genomic analyses reaffirmed genome-wide differentiation between greater and Gunnison sage-grouse, revealed pronounced intraspecific population structure, and highlighted important differentiation of a small isolated population of greater sage-grouse in the northwest of the range. Patterns of genome-wide differentiation were largely consistent with a hypothesized role of genetic drift due to limited gene flow among populations. Inferred ancient population demography suggested persistent declines in effective population sizes that have likely contributed to differentiation within and among species. Several genomic regions with single-nucleotide polymorphisms exhibiting extreme population differentiation were associated with candidate genes linked to metabolism of xenobiotic compounds. In vitro activity of enzymes isolated from sage-grouse livers supported a role for these genes in detoxification of sagebrush, suggesting that the observed interpopulation variation may underlie important local dietary adaptations, warranting close consideration for conservation strategies that link sage-grouse to the chemistry of local sagebrush.
Collapse
Affiliation(s)
- Kevin P Oh
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, Colorado
| | - Cameron L Aldridge
- Natural Resource Ecology Laboratory and Department of Ecosystem Sciences, Colorado State University in cooperation with U.S. Geological Survey, Fort Collins Science Center, Fort Collins, Colorado
| | | | | | | |
Collapse
|
112
|
Liu Y, Zhang M, Sun J, Chang W, Sun M, Zhang S, Wu J. Comparison of multiple algorithms to reliably detect structural variants in pears. BMC Genomics 2020; 21:61. [PMID: 31959124 PMCID: PMC6972009 DOI: 10.1186/s12864-020-6455-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 01/07/2020] [Indexed: 01/01/2023] Open
Abstract
Background Structural variations (SVs) have been reported to play an important role in genetic diversity and trait regulation. Many computer algorithms detecting SVs have recently been developed, but the use of multiple algorithms to detect high-confidence SVs has not been studied. The most suitable sequencing depth for detecting SVs in pear is also not known. Results In this study, a pipeline to detect SVs using next-generation and long-read sequencing data was constructed. The performances of seven types of SV detection software using next-generation sequencing (NGS) data and two types of software using long-read sequencing data (SVIM and Sniffles), which are based on different algorithms, were compared. Of the nine software packages evaluated, SVIM identified the most SVs, and Sniffles detected SVs with the highest accuracy (> 90%). When the results from multiple SV detection tools were combined, the SVs identified by both MetaSV and IMR/DENOM, which use NGS data, were more accurate than those identified by both SVIM and Sniffles, with mean accuracies of 98.7 and 96.5%, respectively. The software packages using long-read sequencing data required fewer CPU cores and less memory and ran faster than those using NGS data. In addition, according to the performances of assembly-based algorithms using NGS data, we found that a sequencing depth of 50× is appropriate for detecting SVs in the pear genome. Conclusion This study provides strong evidence that more than one SV detection software package, each based on a different algorithm, should be used to detect SVs with higher confidence, and that long-read sequencing data are better than NGS data for SV detection. The SV detection pipeline that we have established will facilitate the study of diversity in other crops.
Collapse
Affiliation(s)
- Yueyuan Liu
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Mingyue Zhang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jieying Sun
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Wenjing Chang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Manyi Sun
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Shaoling Zhang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jun Wu
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
113
|
Liu W, Cai Y, Zhang Q, Shu F, Chen L, Ma X, Bian Y. Subchromosome-Scale Nuclear and Complete Mitochondrial Genome Characteristics of Morchella crassipes. Int J Mol Sci 2020; 21:E483. [PMID: 31940908 PMCID: PMC7014384 DOI: 10.3390/ijms21020483] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/17/2019] [Accepted: 01/09/2020] [Indexed: 11/16/2022] Open
Abstract
Morchella crassipes (Vent.) Pers., a typical yellow morel species with high economic value, is mainly distributed in the low altitude plains of Eurasia. However, rare research has been performed on its genomics and polarity, thus limiting its research and development. Here, we reported a fine physical map of the nuclear genome at the subchromosomal-scale and the complete mitochondrial genome of M. crassipes. The complete size of the nuclear genome was 56.7 Mb, and 23 scaffolds were assembled, with eight of them being complete chromosomes. A total of 11,565 encoding proteins were predicted. The divergence time analysis showed that M. crassipes representing yellow morels differentiated with black morels at ~33.98 Mya (million years), with 150 gene families contracted and expanded in M. crassipes versus the two black morels (M. snyderi and M. importuna). Furthermore, 409 CAZYme genes were annotated in M. crassipes, containing almost all plant cell wall degrading enzymes compared with the mycorrhizal fungi (truffles). Genomic annotation of mating type loci and amplification of the mating genes in the monospore population was conducted, the results indicated that M. crassipes is a heterothallic fungus. Additionally, a complete circular mitochondrial genome of M. crassipes was assembled, the size reached as large as 531,195 bp. It can be observed that the strikingly large size was the biggest up till now, coupled with 14 core conserved mitochondrial protein-coding genes, two rRNAs, 31 tRNAs, 51 introns, and 412 ncORFs. The total length of intron sequences accounted for 53.67% of the mitochondrial genome, with 19 introns having a length over 5 kb. Particularly, 221 of 412 ncORFs were distributed within 51 introns, and the total length of the ncORFs sequence accounted for 40.83% of the mitochondrial genome, and 297 ncORFs had expression activity in the mycelium stage, suggesting their potential functions in M. crassipes. Meanwhile, there was a high degree of repetition (51.31%) in the mitochondria of M. crassipes. Thus, the large number of introns, ncORFs and internal repeat sequences may contribute jointly to the largest fungal mitochondrial genome to date. The fine physical maps of nuclear genome and mitochondrial genome obtained in this study will open a new door for better understanding of the mysterious species of M. crassipes.
Collapse
Affiliation(s)
- Wei Liu
- Institute of Applied Mycology, Plant Science and Technology College, Huazhong Agricultural University, Wuhan 430070, China; (W.L.); (Q.Z.); (F.S.); (L.C.)
| | - Yingli Cai
- Institute of Vegetable, Wuhan Academy of Agricultural Sciences, Wuhan 430070, China; (Y.C.); (X.M.)
| | - Qianqian Zhang
- Institute of Applied Mycology, Plant Science and Technology College, Huazhong Agricultural University, Wuhan 430070, China; (W.L.); (Q.Z.); (F.S.); (L.C.)
| | - Fang Shu
- Institute of Applied Mycology, Plant Science and Technology College, Huazhong Agricultural University, Wuhan 430070, China; (W.L.); (Q.Z.); (F.S.); (L.C.)
| | - Lianfu Chen
- Institute of Applied Mycology, Plant Science and Technology College, Huazhong Agricultural University, Wuhan 430070, China; (W.L.); (Q.Z.); (F.S.); (L.C.)
| | - Xiaolong Ma
- Institute of Vegetable, Wuhan Academy of Agricultural Sciences, Wuhan 430070, China; (Y.C.); (X.M.)
| | - Yinbing Bian
- Institute of Applied Mycology, Plant Science and Technology College, Huazhong Agricultural University, Wuhan 430070, China; (W.L.); (Q.Z.); (F.S.); (L.C.)
| |
Collapse
|
114
|
Xu G, Bian C, Nie Z, Li J, Wang Y, Xu D, You X, Liu H, Gao J, Li H, Liu K, Yang J, Li Q, Shao N, Zhuang Y, Fang D, Jiang T, Lv Y, Huang Y, Gu R, Xu J, Ge W, Shi Q, Xu P. Genome and population sequencing of a chromosome-level genome assembly of the Chinese tapertail anchovy (Coilia nasus) provides novel insights into migratory adaptation. Gigascience 2020; 9:giz157. [PMID: 31895412 PMCID: PMC6939831 DOI: 10.1093/gigascience/giz157] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 09/28/2019] [Accepted: 12/02/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Seasonal migration is one of the most spectacular events in nature; however, the molecular mechanisms related to this phenomenon have not been investigated in detail. The Chinese tapertail, or Japanese grenadier anchovy, Coilia nasus, is a valuable migratory fish of high economic importance and special migratory dimorphism (with certain individuals as non-migratory residents). RESULTS In this study, an 870.0-Mb high-quality genome was assembled by the combination of Illumina and Pacific Biosciences sequencing. Approximately 812.1 Mb of scaffolds were linked to 24 chromosomes using a high-density genetic map from a family of 104 full siblings and their parents. In addition, population sequencing of 96 representative individuals from diverse areas along the putative migration path identified 150 candidate genes, which are mainly enriched in 3 Ca2+-related pathways. Based on integrative genomic and transcriptomic analyses, we determined that the 3 Ca2+-related pathways are critical for promotion of migratory adaption. A large number of molecular markers were also identified, which distinguished migratory individuals and non-migratory freshwater residents. CONCLUSIONS We assembled a chromosome-level genome for the Chinese tapertail anchovy. The genome provided a valuable genetic resource for understanding of migratory adaption and population genetics and will benefit the aquaculture and management of this economically important fish.
Collapse
Affiliation(s)
- Gangchun Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Binhu District, Wuxi 214081, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Binhu District, Wuxi, 214081, China
| | - Chao Bian
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Yantian District, Shenzhen 518083, China
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Zhijuan Nie
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Binhu District, Wuxi, 214081, China
| | - Jia Li
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Yantian District, Shenzhen 518083, China
| | - Yuyu Wang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Binhu District, Wuxi, 214081, China
| | - Dongpo Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Binhu District, Wuxi, 214081, China
| | - Xinxin You
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Yantian District, Shenzhen 518083, China
- BGI Education Center, University of Chinese Academy of Sciences, Yantian District, Shenzhen 518083, China
| | - Hongbo Liu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Binhu District, Wuxi, 214081, China
| | - Jiancao Gao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Binhu District, Wuxi, 214081, China
| | - Hongxia Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Binhu District, Wuxi, 214081, China
| | - Kai Liu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Binhu District, Wuxi, 214081, China
| | - Jian Yang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Binhu District, Wuxi, 214081, China
| | - Quanjie Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Binhu District, Wuxi, 214081, China
| | - Nailin Shao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Binhu District, Wuxi, 214081, China
| | - Yanbing Zhuang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Binhu District, Wuxi, 214081, China
| | - Dian Fang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Binhu District, Wuxi, 214081, China
| | - Tao Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Binhu District, Wuxi, 214081, China
| | - Yunyun Lv
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Yantian District, Shenzhen 518083, China
- BGI Education Center, University of Chinese Academy of Sciences, Yantian District, Shenzhen 518083, China
| | - Yu Huang
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Yantian District, Shenzhen 518083, China
- BGI Education Center, University of Chinese Academy of Sciences, Yantian District, Shenzhen 518083, China
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Ruobo Gu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Binhu District, Wuxi, 214081, China
| | - Junmin Xu
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Yantian District, Shenzhen 518083, China
| | - Wei Ge
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Yantian District, Shenzhen 518083, China
- BGI Education Center, University of Chinese Academy of Sciences, Yantian District, Shenzhen 518083, China
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Binhu District, Wuxi 214081, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Binhu District, Wuxi, 214081, China
| |
Collapse
|
115
|
Qin M, Wu S, Li A, Zhao F, Feng H, Ding L, Ruan J. LRScaf: improving draft genomes using long noisy reads. BMC Genomics 2019; 20:955. [PMID: 31818249 PMCID: PMC6902338 DOI: 10.1186/s12864-019-6337-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 11/26/2019] [Indexed: 12/15/2022] Open
Abstract
Background The advent of third-generation sequencing (TGS) technologies opens the door to improve genome assembly. Long reads are promising for enhancing the quality of fragmented draft assemblies constructed from next-generation sequencing (NGS) technologies. To date, a few algorithms that are capable of improving draft assemblies have released. There are SSPACE-LongRead, OPERA-LG, SMIS, npScarf, DBG2OLC, Unicycler, and LINKS. Hybrid assembly on large genomes remains challenging, however. Results We develop a scalable and computationally efficient scaffolder, Long Reads Scaffolder (LRScaf, https://github.com/shingocat/lrscaf), that is capable of significantly boosting assembly contiguity using long reads. In this study, we summarise a comprehensive performance assessment for state-of-the-art scaffolders and LRScaf on seven organisms, i.e., E. coli, S. cerevisiae, A. thaliana, O. sativa, S. pennellii, Z. mays, and H. sapiens. LRScaf significantly improves the contiguity of draft assemblies, e.g., increasing the NGA50 value of CHM1 from 127.1 kbp to 9.4 Mbp using 20-fold coverage PacBio dataset and the NGA50 value of NA12878 from 115.3 kbp to 12.9 Mbp using 35-fold coverage Nanopore dataset. Besides, LRScaf generates the best contiguous NGA50 on A. thaliana, S. pennellii, Z. mays, and H. sapiens. Moreover, LRScaf has the shortest run time compared with other scaffolders, and the peak RAM of LRScaf remains practical for large genomes (e.g., 20.3 and 62.6 GB on CHM1 and NA12878, respectively). Conclusions The new algorithm, LRScaf, yields the best or, at least, moderate scaffold contiguity and accuracy in the shortest run time compared with other scaffolding algorithms. Furthermore, LRScaf provides a cost-effective way to improve contiguity of draft assemblies on large genomes.
Collapse
Affiliation(s)
- Mao Qin
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, No. 7, Pengfei Road, Dapeng District, Shenzhen, 518120, Guangdong, China
| | - Shigang Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, No. 7, Pengfei Road, Dapeng District, Shenzhen, 518120, Guangdong, China
| | - Alun Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, No. 7, Pengfei Road, Dapeng District, Shenzhen, 518120, Guangdong, China
| | - Fengli Zhao
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, No. 7, Pengfei Road, Dapeng District, Shenzhen, 518120, Guangdong, China
| | - Hu Feng
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, No. 7, Pengfei Road, Dapeng District, Shenzhen, 518120, Guangdong, China
| | - Lulu Ding
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, No. 7, Pengfei Road, Dapeng District, Shenzhen, 518120, Guangdong, China
| | - Jue Ruan
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, No. 7, Pengfei Road, Dapeng District, Shenzhen, 518120, Guangdong, China.
| |
Collapse
|
116
|
Li J, Yu H, Wang W, Fu C, Zhang W, Han F, Wu H. Genomic and transcriptomic insights into molecular basis of sexually dimorphic nuptial spines in Leptobrachium leishanense. Nat Commun 2019; 10:5551. [PMID: 31804492 PMCID: PMC6895153 DOI: 10.1038/s41467-019-13531-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 11/13/2019] [Indexed: 12/21/2022] Open
Abstract
Sexually dimorphic (SD) traits are important in sexual selection and species survival, yet the molecular basis remains elusive, especially in amphibians where SD traits have evolved repeatedly. We focus on the Leishan moustache toad (Leptobrachium leishanense), in which males develop nuptial spines on their maxillary skin. Here we report a 3.5 Gb genome assembly with a contig N50 of 1.93 Mb. We find a specific expansion of the intermediate filament gene family including numerous keratin genes. Within these genes, a cluster of duplicated hair keratin genes exhibits male-biased and maxillary skin-specific expression, suggesting a role in developing nuptial spines. We identify a module of coexpressed genes significantly associated with spine formation. In addition, we find several hormones likely to be involved in regulating spine development. This study not only presents a high-quality anuran genome but also provides a reference for studying skin-derived SD traits in amphibians. The basis of sexual dimorphism in non-model species may be elusive, in part due to a lack of genomic and molecular resources. Here, Li et al. report a high-quality anuran genome and reveal candidate genes and pathways associated with shaping sexually dimorphic nuptial spines in a moustache toad.
Collapse
Affiliation(s)
- Jun Li
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, 152 Luoyulu, Hongshan District, Wuhan, 430079, China
| | - Haiyan Yu
- Biomarker Technologies Corporation, Beijing, 101300, China
| | - Wenxia Wang
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, 152 Luoyulu, Hongshan District, Wuhan, 430079, China
| | - Chao Fu
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, 152 Luoyulu, Hongshan District, Wuhan, 430079, China
| | - Wei Zhang
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, 152 Luoyulu, Hongshan District, Wuhan, 430079, China
| | - Fengming Han
- Biomarker Technologies Corporation, Beijing, 101300, China
| | - Hua Wu
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, 152 Luoyulu, Hongshan District, Wuhan, 430079, China.
| |
Collapse
|
117
|
Insights into the bacterial species and communities of a full-scale anaerobic/anoxic/oxic wastewater treatment plant by using third-generation sequencing. J Biosci Bioeng 2019; 128:744-750. [DOI: 10.1016/j.jbiosc.2019.06.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/27/2019] [Accepted: 06/07/2019] [Indexed: 12/14/2022]
|
118
|
Woodworth MH, Dynerman D, Crawford ED, Doernberg SB, Ramirez-Avila L, Serpa PH, Nichols A, Li LM, Lyden A, Tato CM, Miller S, Derisi JL, Langelier C. Sentinel Case of Candida auris in the Western United States Following Prolonged Occult Colonization in a Returned Traveler from India. Microb Drug Resist 2019; 25:677-680. [PMID: 31163013 PMCID: PMC6555181 DOI: 10.1089/mdr.2018.0408] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Candida auris is an emerging multidrug-resistant yeast with high mortality. We report the sentinel C. auris case on the United States West Coast in a patient who relocated from India. We identified close phylogenetic relatedness to the South Asia clade and ERG11 Y132F and FKS1 S639Y mutations potentially explaining antifungal resistance.
Collapse
Affiliation(s)
- Michael H Woodworth
- 1 Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | | | | | - Sarah B Doernberg
- 3 Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Lynn Ramirez-Avila
- 4 Division of Pediatric Infectious Diseases and Global Health, Department of Pediatrics, University of California, San Francisco, San Francisco, California
| | - Paula Hayakawa Serpa
- 2 Chan Zuckerberg Biohub, San Francisco, California.,3 Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Amy Nichols
- 5 Hospital Epidemiology and Infection Control, University of California, San Francisco, San Francisco, California
| | - Lucy M Li
- 2 Chan Zuckerberg Biohub, San Francisco, California
| | - Amy Lyden
- 2 Chan Zuckerberg Biohub, San Francisco, California
| | | | - Steve Miller
- 6 Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California
| | - Joseph L Derisi
- 2 Chan Zuckerberg Biohub, San Francisco, California.,7 Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California
| | - Charles Langelier
- 2 Chan Zuckerberg Biohub, San Francisco, California.,3 Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, San Francisco, California
| |
Collapse
|
119
|
McDermaid A, Monier B, Zhao J, Liu B, Ma Q. Interpretation of differential gene expression results of RNA-seq data: review and integration. Brief Bioinform 2019; 20:2044-2054. [PMID: 30099484 PMCID: PMC6954399 DOI: 10.1093/bib/bby067] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/21/2018] [Accepted: 07/04/2018] [Indexed: 12/23/2022] Open
Abstract
Differential gene expression (DGE) analysis is one of the most common applications of RNA-sequencing (RNA-seq) data. This process allows for the elucidation of differentially expressed genes across two or more conditions and is widely used in many applications of RNA-seq data analysis. Interpretation of the DGE results can be nonintuitive and time consuming due to the variety of formats based on the tool of choice and the numerous pieces of information provided in these results files. Here we reviewed DGE results analysis from a functional point of view for various visualizations. We also provide an R/Bioconductor package, Visualization of Differential Gene Expression Results using R, which generates information-rich visualizations for the interpretation of DGE results from three widely used tools, Cuffdiff, DESeq2 and edgeR. The implemented functions are also tested on five real-world data sets, consisting of one human, one Malus domestica and three Vitis riparia data sets.
Collapse
Affiliation(s)
- Adam McDermaid
- Department of Mathematics and Statistics, South Dakota State University, Brookings, SD, USA
| | - Brandon Monier
- Department of Biology and Microbiology, South Dakota State University, SD, USA
| | - Jing Zhao
- Department of Internal Medicine, Sanford Research, University of South Dakota Sanford School of Medicine
| | | | - Qin Ma
- Department of Agronomy, Horticulture, and Plant Science, Bioinformatics and Mathematical Biosciences Lab, South Dakota State University
- Department of Mathematics and Statistics of SDSU, BioSNTR and Sanford Research, USA
| |
Collapse
|
120
|
Í Kongsstovu S, Mikalsen SO, Homrum EÍ, Jacobsen JA, Flicek P, Dahl HA. Using long and linked reads to improve an Atlantic herring (Clupea harengus) genome assembly. Sci Rep 2019; 9:17716. [PMID: 31776409 PMCID: PMC6881392 DOI: 10.1038/s41598-019-54151-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/08/2019] [Indexed: 01/01/2023] Open
Abstract
Atlantic herring (Clupea harengus) is one of the most abundant fish species in the world. It is an important economical and nutritional resource, as well as a crucial part of the North Atlantic ecosystem. In 2016, a draft herring genome assembly was published. Being a species of such importance, we sought to independently verify and potentially improve the herring genome assembly. We sequenced the herring genome generating paired-end, mate-pair, linked and long reads. Three assembly versions of the herring genome were generated based on a de novo assembly (A1), which was scaffolded using linked and long reads (A2) and then merged with the previously published assembly (A3). The resulting assemblies were compared using parameters describing the size, fragmentation, correctness, and completeness of the assemblies. Results showed that the A2 assembly was less fragmented, more complete and more correct than A1. A3 showed improvement in fragmentation and correctness compared with A2 and the published assembly but was slightly less complete than the published assembly. Thus, we here confirmed the previously published herring assembly, and made improvements by further scaffolding the assembly and removing low-quality sequences using linked and long reads and merging of assemblies.
Collapse
Affiliation(s)
- Sunnvør Í Kongsstovu
- Amplexa Genetics A/S, Hoyvíksvegur 51, FO-100, Tórshavn, Faroe Islands. .,University of the Faroe Islands, Department of Science and Technology, Vestara Bryggja 15, FO-100, Tórshavn, Faroe Islands. .,European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
| | - Svein-Ole Mikalsen
- University of the Faroe Islands, Department of Science and Technology, Vestara Bryggja 15, FO-100, Tórshavn, Faroe Islands
| | - Eydna Í Homrum
- Faroe Marine Research Institute, Nóatún 1, FO-100, Tórshavn, Faroe Islands
| | - Jan Arge Jacobsen
- Faroe Marine Research Institute, Nóatún 1, FO-100, Tórshavn, Faroe Islands
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Hans Atli Dahl
- Amplexa Genetics A/S, Hoyvíksvegur 51, FO-100, Tórshavn, Faroe Islands
| |
Collapse
|
121
|
The genetic basis of adaptive evolution in parasitic environment from the Angiostrongylus cantonensis genome. PLoS Negl Trop Dis 2019; 13:e0007846. [PMID: 31751335 PMCID: PMC6871775 DOI: 10.1371/journal.pntd.0007846] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 10/14/2019] [Indexed: 01/08/2023] Open
Abstract
Angiostrongylus cantonensis (rat lungworm) is the etiological agent of angiostrongyliasis, mainly causing eosinophilic meningitis or meningoencephalitis in human. Although the biology of A. cantonensis is relatively well known, little is understood about the mechanisms of the parasite’s development and survival in definitive hosts, or its adaptation to a broad range of snail intermediate hosts. Here, we generate a high-quality assembly of a well-defined laboratory strain of A. cantonensis from Guangzhou, China, by using Illumina and PacBio sequencing technologies. We undertake comparative analyses with representative helminth genomes and explore transcriptomic data throughout key developmental life-cycles of the parasite. We find that part of retrotransposons and gene families undergo multiple waves of expansions. These include extracellular superoxide dismutase (EC-SOD) and astacin-like proteases which are considered to be associated with invasion and survival of the parasite. Furthermore, these paralogs from different sub-clades based on phylogeny, have different expression patterns in the molluscan and rodent stages, suggesting divergent functions under the different parasitic environment. We also find five candidate convergent signatures in the EC-SOD proteins from flukes and one sub-clade of A. cantonensis. Additionally, genes encoding proteolytic enzymes, involved in host hemoglobin digestion, exhibit expansion in A. cantonensis as well as two other blood-feeding nematodes. Overall, we find several potential adaptive evolutionary signatures in A. cantonensis, and also in some other helminths with similar traits. The genome and transcriptomes provide a useful resource for detailed studies of A. cantonensis-host adaptation and an in-depth understanding of the global-spread of angiostrongyliasis. Angiostrongylus cantonensis, rat lungworm, is a common pathogen that causes human eosinophilic meningitis via eating contaminated food. Human angiostrongyliasis has been reported globally. This worm has a complex life-cycle, which includes an especially wide range of snails as intermediate hosts, making it more difficult to eradicate. In this study, we sequenced the genome and transcriptome, and performed comparative analyses to study the potential genetics of its biology using short-read and long-read sequencing technologies. We revealed some potential adaptive evolution in the genome, such as the expansion of retrotransposons and gene families encoding antioxidant enzymes, invasion, migration and digestion related proteases. Specifically, we found a potential clue suggesting convergent evolution of EC-SODs in Angiostrongylus and flukes, all of which require snails as intermediate hosts. These results provide an abundant data resource to study the biology and evolution of A. cantonensis and showed some potential targets against A. cantonensis and helminths with similar traits.
Collapse
|
122
|
Apitanyasai K, Huang SW, Ng TH, He ST, Huang YH, Chiu SP, Tseng KC, Lin SS, Chang WC, Baldwin-Brown JG, Long AD, Lo CF, Yu HT, Wang HC. The gene structure and hypervariability of the complete Penaeus monodon Dscam gene. Sci Rep 2019; 9:16595. [PMID: 31719551 PMCID: PMC6851185 DOI: 10.1038/s41598-019-52656-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/17/2019] [Indexed: 12/19/2022] Open
Abstract
Using two advanced sequencing approaches, Illumina and PacBio, we derive the entire Dscam gene from an M2 assembly of the complete Penaeus monodon genome. The P. monodon Dscam (PmDscam) gene is ~266 kbp, with a total of 44 exons, 5 of which are subject to alternative splicing. PmDscam has a conserved architectural structure consisting of an extracellular region with hypervariable Ig domains, a transmembrane domain, and a cytoplasmic tail. We show that, contrary to a previous report, there are in fact 26, 81 and 26 alternative exons in N-terminal Ig2, N-terminal Ig3 and the entirety of Ig7, respectively. We also identified two alternatively spliced exons in the cytoplasmic tail, with transmembrane domains in exon variants 32.1 and 32.2, and stop codons in exon variants 44.1 and 44.2. This means that alternative splicing is involved in the selection of the stop codon. There are also 7 non-constitutive cytoplasmic tail exons that can either be included or skipped. Alternative splicing and the non-constitutive exons together produce more than 21 million isoform combinations from one PmDscam locus in the P. monodon gene. A public-facing database that allows BLAST searches of all 175 exons in the PmDscam gene has been established at http://pmdscam.dbbs.ncku.edu.tw/.
Collapse
Affiliation(s)
- Kantamas Apitanyasai
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan.,International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan
| | - Shiao-Wei Huang
- Department of Life Sciences, National Taiwan University, Taipei, Taiwan
| | - Tze Hann Ng
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan.,International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Ting He
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan.,International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Hsun Huang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan.,International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan
| | - Shen-Po Chiu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Kuan-Chien Tseng
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Wen-Chi Chang
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan, Taiwan
| | - James G Baldwin-Brown
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, California, USA
| | - Anthony D Long
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, California, USA
| | - Chu-Fang Lo
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan.,International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan
| | - Hon-Tsen Yu
- Department of Life Sciences, National Taiwan University, Taipei, Taiwan
| | - Han-Ching Wang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan. .,International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
123
|
Ang MY, Low TY, Lee PY, Wan Mohamad Nazarie WF, Guryev V, Jamal R. Proteogenomics: From next-generation sequencing (NGS) and mass spectrometry-based proteomics to precision medicine. Clin Chim Acta 2019; 498:38-46. [DOI: 10.1016/j.cca.2019.08.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/13/2019] [Accepted: 08/13/2019] [Indexed: 12/14/2022]
|
124
|
Zhang H, Li X, Yu H, Zhang Y, Li M, Wang H, Wang D, Wang H, Fu Q, Liu M, Ji C, Ma L, Tang J, Li S, Miao J, Zheng H, Yi H. A High-Quality Melon Genome Assembly Provides Insights into Genetic Basis of Fruit Trait Improvement. iScience 2019; 22:16-27. [PMID: 31739171 PMCID: PMC6864349 DOI: 10.1016/j.isci.2019.10.049] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/23/2019] [Accepted: 10/24/2019] [Indexed: 01/28/2023] Open
Abstract
Accurate reference genomes have become indispensable tools for characterization of genetic and functional variations. Here we generated a high-quality assembly of the melon Payzawat using a combination of short-read sequencing, single-molecule real-time sequencing, Hi-C, and a high-density genetic map. The final 12 chromosome-level scaffolds cover ∼94.13% of the estimated genome (398.57 Mb). Compared with the published DHL92 genome, our assembly exhibits a 157-fold increase in contig length and remarkable improvements in the assembly of centromeres and telomeres. Six genes within STHQF12.4 on pseudochromosome 12, identified from whole-genome comparison between Payzawat and DHL92, may explain a considerable proportion of the skin thickness. In addition, our population study showed that melon domesticated at multiple times from whole-genome perspective and melons in China are introduced from different routes. Selective sweeps underlying the genes related to desirable traits, haplotypes of alleles associated with agronomic traits, and the variants from resequencing data enable efficient breeding. Provides a high-quality assembly for melon genome Explains a considerable proportion of epidermis thickness Melons in China are introduced from different routes Haplotypes of alleles associated with agronomic traits enable efficient breeding
Collapse
Affiliation(s)
- Hong Zhang
- Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang 830091, China
| | - Xuming Li
- Biomarker Technologies Corporation, Beijing 101200, China
| | - Haiyan Yu
- Biomarker Technologies Corporation, Beijing 101200, China
| | - Yongbing Zhang
- Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang 830091, China
| | - Meihua Li
- Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang 830091, China
| | - Haojie Wang
- Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang 830091, China
| | - Dengming Wang
- Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang 830091, China
| | - Huaisong Wang
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qiushi Fu
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Min Liu
- Biomarker Technologies Corporation, Beijing 101200, China
| | - Changmian Ji
- Biomarker Technologies Corporation, Beijing 101200, China
| | - Liming Ma
- Biomarker Technologies Corporation, Beijing 101200, China
| | - Juan Tang
- Biomarker Technologies Corporation, Beijing 101200, China
| | - Song Li
- Biomarker Technologies Corporation, Beijing 101200, China
| | - Jianshun Miao
- Biomarker Technologies Corporation, Beijing 101200, China
| | - Hongkun Zheng
- Biomarker Technologies Corporation, Beijing 101200, China.
| | - Hongping Yi
- Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang 830091, China.
| |
Collapse
|
125
|
Structural variants exhibit widespread allelic heterogeneity and shape variation in complex traits. Nat Commun 2019; 10:4872. [PMID: 31653862 PMCID: PMC6814777 DOI: 10.1038/s41467-019-12884-1] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 09/25/2019] [Indexed: 12/11/2022] Open
Abstract
It has been hypothesized that individually-rare hidden structural variants (SVs) could account for a significant fraction of variation in complex traits. Here we identified more than 20,000 euchromatic SVs from 14 Drosophila melanogaster genome assemblies, of which ~40% are invisible to high specificity short-read genotyping approaches. SVs are common, with 31.5% of diploid individuals harboring a SV in genes larger than 5kb, and 24% harboring multiple SVs in genes larger than 10kb. SV minor allele frequencies are rarer than amino acid polymorphisms, suggesting that SVs are more deleterious. We show that a number of functionally important genes harbor previously hidden structural variants likely to affect complex phenotypes. Furthermore, SVs are overrepresented in candidate genes associated with quantitative trait loci mapped using the Drosophila Synthetic Population Resource. We conclude that SVs are ubiquitous, frequently constitute a heterogeneous allelic series, and can act as rare alleles of large effect.
Collapse
|
126
|
Yang L, Wang Y, Wang T, Duan S, Dong Y, Zhang Y, He S. A Chromosome-Scale Reference Assembly of a Tibetan Loach, Triplophysa siluroides. Front Genet 2019; 10:991. [PMID: 31681425 PMCID: PMC6807559 DOI: 10.3389/fgene.2019.00991] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/18/2019] [Indexed: 01/03/2023] Open
Abstract
Cobitoidea is one of the two superfamilies in Cypriniformes; however, few genomes have been sequenced for Cobitoidea fishes. Here, we obtained a total of 252.90 Gb of short Illumina reads and 31.60 Gb of long PacBio Sequel reads, representing approximate genome coverage of 256× and 50×, respectively. The final assembled genome is about 583.47 Mb with contig N50 sizes of 2.87 Mb, which accounts for 91.44% of the estimated genome size of 638.07 Mb. Using Hi-C-based chromatin contact maps, 99.31% of the genome assembly was placed into 25 chromosomes, and the N50 is 22.3 Mb. The gene annotation completeness was evaluated by BUSCO, and 2,470 of the 2,586 conserved genes (95.5%) could be found in our assembly. Repetitive elements were calculated to reach 33.08% of the whole genome. Moreover, we identified 25,406 protein-coding genes, of which 92.59% have been functionally annotated. This genome assembly will be a valuable genomic resource to understand the biology of the Tibetan loaches and will also set a stage for comparative analysis of the classification, diversification, and adaptation of fishes in Cobitoidea.
Collapse
Affiliation(s)
- Liandong Yang
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Ying Wang
- School of Life Sciences, Jianghan University, Wuhan, China
| | - Tai Wang
- Gansu Key Laboratory of Cold Water Fishes Germplasm Resources and Genetics Breeding, Gansu Fishers Research Institute, Lanzhou, China
| | | | - Yang Dong
- Nowbio Biotechnology Company, Kunming, China
| | - Yanping Zhang
- Gansu Key Laboratory of Cold Water Fishes Germplasm Resources and Genetics Breeding, Gansu Fishers Research Institute, Lanzhou, China
| | - Shunping He
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
127
|
Renschler G, Richard G, Valsecchi CIK, Toscano S, Arrigoni L, Ramírez F, Akhtar A. Hi-C guided assemblies reveal conserved regulatory topologies on X and autosomes despite extensive genome shuffling. Genes Dev 2019; 33:1591-1612. [PMID: 31601616 PMCID: PMC6824461 DOI: 10.1101/gad.328971.119] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 09/09/2019] [Indexed: 11/30/2022]
Abstract
In this study, Renschler et al. set out to analyze the impact of genomic rearrangements on genome topology using the Drosophila genus and X chromosome dosage compensation as a model. The authors developed a scaffolding algorithm and generated chromosome-length assemblies from Hi-C data for studying genome topology in three distantly related Drosophila species. Their data provides unique insights into genome topology evolution. RA Genome rearrangements that occur during evolution impose major challenges on regulatory mechanisms that rely on three-dimensional genome architecture. Here, we developed a scaffolding algorithm and generated chromosome-length assemblies from Hi-C data for studying genome topology in three distantly related Drosophila species. We observe extensive genome shuffling between these species with one synteny breakpoint after approximately every six genes. A/B compartments, a set of large gene-dense topologically associating domains (TADs), and spatial contacts between high-affinity sites (HAS) located on the X chromosome are maintained over 40 million years, indicating architectural conservation at various hierarchies. Evolutionary conserved genes cluster in the vicinity of HAS, while HAS locations appear evolutionarily flexible, thus uncoupling functional requirement of dosage compensation from individual positions on the linear X chromosome. Therefore, 3D architecture is preserved even in scenarios of thousands of rearrangements highlighting its relevance for essential processes such as dosage compensation of the X chromosome.
Collapse
Affiliation(s)
- Gina Renschler
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg im Breisgau, Germany.,Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Gautier Richard
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg im Breisgau, Germany.,IGEPP, INRA, Agrocampus Ouest, Université Rennes, 35600 Le Rheu, France
| | | | - Sarah Toscano
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg im Breisgau, Germany
| | - Laura Arrigoni
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg im Breisgau, Germany
| | - Fidel Ramírez
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg im Breisgau, Germany
| | - Asifa Akhtar
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg im Breisgau, Germany
| |
Collapse
|
128
|
Improvement of the Pacific bluefin tuna (Thunnus orientalis) reference genome and development of male-specific DNA markers. Sci Rep 2019; 9:14450. [PMID: 31595011 PMCID: PMC6783451 DOI: 10.1038/s41598-019-50978-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/17/2019] [Indexed: 12/30/2022] Open
Abstract
The Pacific bluefin tuna, Thunnus orientalis, is a highly migratory species that is widely distributed in the North Pacific Ocean. Like other marine species, T. orientalis has no external sexual dimorphism; thus, identifying sex-specific variants from whole genome sequence data is a useful approach to develop an effective sex identification method. Here, we report an improved draft genome of T. orientalis and male-specific DNA markers. Combining PacBio long reads and Illumina short reads sufficiently improved genome assembly, with a 38-fold increase in scaffold contiguity (to 444 scaffolds) compared to the first published draft genome. Through analysing re-sequence data of 15 males and 16 females, 250 male-specific SNPs were identified from more than 30 million polymorphisms. All male-specific variants were male-heterozygous, suggesting that T. orientalis has a male heterogametic sex-determination system. The largest linkage disequilibrium block (3,174 bp on scaffold_064) contained 51 male-specific variants. PCR primers and a PCR-based sex identification assay were developed using these male-specific variants. The sex of 115 individuals (56 males and 59 females; sex was diagnosed by visual examination of the gonads) was identified with high accuracy using the assay. This easy, accurate, and practical technique facilitates the control of sex ratios in tuna farms. Furthermore, this method could be used to estimate the sex ratio and/or the sex-specific growth rate of natural populations.
Collapse
|
129
|
De Miccolis Angelini RM, Romanazzi G, Pollastro S, Rotolo C, Faretra F, Landi L. New High-Quality Draft Genome of the Brown Rot Fungal Pathogen Monilinia fructicola. Genome Biol Evol 2019; 11:2850-2855. [PMID: 31560373 PMCID: PMC6795239 DOI: 10.1093/gbe/evz207] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2019] [Indexed: 12/29/2022] Open
Abstract
Brown rot is a worldwide fungal disease of stone and pome fruit that is caused by several Monilinia species. Among these, Monilinia fructicola can cause severe preharvest and postharvest losses, especially for stone fruit. Here, we present a high-quality draft genome assembly of M. fructicola Mfrc123 strain obtained using both Illumina and PacBio sequencing technologies. The genome assembly comprised 20 scaffolds, including 29 telomere sequences at both ends of 10 scaffolds, and at a single end of 9 scaffolds. The total length was 44.05 Mb, with a scaffold N50 of 2,592 kb. Annotation of the M. fructicola assembly identified a total of 12,118 genes and 13,749 proteins that were functionally annotated. This newly generated reference genome is expected to significantly contribute to comparative analysis of genome biology and evolution within Monilinia species.
Collapse
Affiliation(s)
| | - Gianfranco Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Stefania Pollastro
- Department of Soil, Plant and Food Sciences, University of Bari ‘Aldo Moro’, Italy
| | - Caterina Rotolo
- Department of Soil, Plant and Food Sciences, University of Bari ‘Aldo Moro’, Italy
| | - Francesco Faretra
- Department of Soil, Plant and Food Sciences, University of Bari ‘Aldo Moro’, Italy
| | - Lucia Landi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| |
Collapse
|
130
|
Gan HM, Tan MH, Austin CM, Sherman CDH, Wong YT, Strugnell J, Gervis M, McPherson L, Miller AD. Best Foot Forward: Nanopore Long Reads, Hybrid Meta-Assembly, and Haplotig Purging Optimizes the First Genome Assembly for the Southern Hemisphere Blacklip Abalone ( Haliotis rubra). Front Genet 2019; 10:889. [PMID: 31608118 PMCID: PMC6774278 DOI: 10.3389/fgene.2019.00889] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/23/2019] [Indexed: 01/05/2023] Open
Affiliation(s)
- Han Ming Gan
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
- Deakin Genomics Centre, Deakin University, Geelong, VIC, Australia
| | - Mun Hua Tan
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
- Deakin Genomics Centre, Deakin University, Geelong, VIC, Australia
| | - Christopher M. Austin
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
- Deakin Genomics Centre, Deakin University, Geelong, VIC, Australia
| | - Craig D. H. Sherman
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
- Deakin Genomics Centre, Deakin University, Geelong, VIC, Australia
| | - Yen Ting Wong
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
- Deakin Genomics Centre, Deakin University, Geelong, VIC, Australia
| | - Jan Strugnell
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
| | - Mark Gervis
- Southern Ocean Mariculture, Port Fairy, VIC, Australia
| | | | - Adam D. Miller
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
- Deakin Genomics Centre, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
131
|
Martin SL, Parent JS, Laforest M, Page E, Kreiner JM, James T. Population Genomic Approaches for Weed Science. PLANTS (BASEL, SWITZERLAND) 2019; 8:E354. [PMID: 31546893 PMCID: PMC6783936 DOI: 10.3390/plants8090354] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/12/2019] [Accepted: 09/14/2019] [Indexed: 12/16/2022]
Abstract
Genomic approaches are opening avenues for understanding all aspects of biological life, especially as they begin to be applied to multiple individuals and populations. However, these approaches typically depend on the availability of a sequenced genome for the species of interest. While the number of genomes being sequenced is exploding, one group that has lagged behind are weeds. Although the power of genomic approaches for weed science has been recognized, what is needed to implement these approaches is unfamiliar to many weed scientists. In this review we attempt to address this problem by providing a primer on genome sequencing and provide examples of how genomics can help answer key questions in weed science such as: (1) Where do agricultural weeds come from; (2) what genes underlie herbicide resistance; and, more speculatively, (3) can we alter weed populations to make them easier to control? This review is intended as an introduction to orient weed scientists who are thinking about initiating genome sequencing projects to better understand weed populations, to highlight recent publications that illustrate the potential for these methods, and to provide direction to key tools and literature that will facilitate the development and execution of weed genomic projects.
Collapse
Affiliation(s)
- Sara L Martin
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
| | - Jean-Sebastien Parent
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
| | - Martin Laforest
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC J3B 3E6, Canada.
| | - Eric Page
- Harrow Research and Development Centre, Agriculture and Agri-Food Canada, Harrow, ON N0R 1G0, Canada.
| | - Julia M Kreiner
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada.
| | - Tracey James
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
| |
Collapse
|
132
|
Zhou Y, Minio A, Massonnet M, Solares E, Lv Y, Beridze T, Cantu D, Gaut BS. The population genetics of structural variants in grapevine domestication. NATURE PLANTS 2019; 5:965-979. [PMID: 31506640 DOI: 10.1038/s41477-019-0507-8] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/26/2019] [Indexed: 05/20/2023]
Abstract
Structural variants (SVs) are a largely unexplored feature of plant genomes. Little is known about the type and size of SVs, their distribution among individuals and, especially, their population dynamics. Understanding these dynamics is critical for understanding both the contributions of SVs to phenotypes and the likelihood of identifying them as causal genetic variants in genome-wide associations. Here, we identify SVs and study their evolutionary genomics in clonally propagated grapevine cultivars and their outcrossing wild progenitors. To catalogue SVs, we assembled the highly heterozygous Chardonnay genome, for which one in seven genes is hemizygous based on SVs. Using an integrative comparison between Chardonnay and Cabernet Sauvignon genomes by whole-genome, long-read and short-read alignment, we extended SV detection to population samples. We found that strong purifying selection acts against SVs but particularly against inversion and translocation events. SVs nonetheless accrue as recessive heterozygotes in clonally propagated lineages. They also define outlier regions of genomic divergence between wild and cultivated grapevines, suggesting roles in domestication. Outlier regions include the sex-determination region and the berry colour locus, where independent large, complex inversions have driven convergent phenotypic evolution.
Collapse
Affiliation(s)
- Yongfeng Zhou
- Department of Ecology and Evolutionary Biology, UC Irvine, Irvine, CA, USA
| | - Andrea Minio
- Department of Viticulture and Enology, UC Davis, Davis, CA, USA
| | | | - Edwin Solares
- Department of Ecology and Evolutionary Biology, UC Irvine, Irvine, CA, USA
| | - Yuanda Lv
- Department of Ecology and Evolutionary Biology, UC Irvine, Irvine, CA, USA
| | - Tengiz Beridze
- Institute of Molecular Genetics, Agricultural University of Georgia, Tbilisi, Georgia
| | - Dario Cantu
- Department of Viticulture and Enology, UC Davis, Davis, CA, USA.
| | - Brandon S Gaut
- Department of Ecology and Evolutionary Biology, UC Irvine, Irvine, CA, USA.
| |
Collapse
|
133
|
Yang P, Yu S, Hao J, Liu W, Zhao Z, Zhu Z, Sun T, Wang X, Song Q. Genome sequence of the Chinese white wax scale insect Ericerus pela: the first draft genome for the Coccidae family of scale insects. Gigascience 2019; 8:giz113. [PMID: 31518402 PMCID: PMC6743827 DOI: 10.1093/gigascience/giz113] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 06/11/2019] [Accepted: 08/20/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The Chinese white wax scale insect, Ericerus pela, is best known for producing wax, which has been widely used in candle production, casting, Chinese medicine, and wax printing products for thousands of years. The secretion of wax, and other unusual features of scale insects, is thought to be an adaptation to their change from an ancestral ground-dwelling lifestyle to a sedentary lifestyle on the higher parts of plants. As well as helping to improve its economic value, studies of E. pela might also help to explain the adaptation of scale insects. However, no genomic data are currently available for E. pela. FINDINGS To assemble the E. pela genome, 303.92 Gb of data were generated using Illumina and Pacific Biosciences sequencing, producing 277.22 Gb of clean data for assembly. The assembled genome size was 0.66 Gb, with 1,979 scaffolds and a scaffold N50 of 735 kb. The guanine + cytosine content was 33.80%. A total of 12,022 protein-coding genes were predicted, with a mean coding sequence length of 1,370 bp. Twenty-six fatty acyl-CoA reductase genes and 35 acyltransferase genes were identified. Evolutionary analysis revealed that E. pela and aphids formed a sister group and split ∼241.1 million years ago. There were 214 expanded gene families and 2,219 contracted gene families in E. pela. CONCLUSION We present the first genome sequence from the Coccidae family. These results will help to increase our understanding of the evolution of unique features in scale insects, and provide important genetic information for further research.
Collapse
Affiliation(s)
- Pu Yang
- Research Institute of Resource Insects, Chinese Academy of Forestry, Key Laboratory of Cultivating and Utilization of Resource Insects of State Forestry Administration, Kunming 650224, China
| | - Shuhui Yu
- College of Agriculture and Life Sciences, Kunming University, Kunming 650214, China
| | - Junjun Hao
- State Key Laboratory of Genetic Resources and Evolution, Laboratory of Evolutionary and Functional Genomics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China
| | - Wei Liu
- Research Institute of Resource Insects, Chinese Academy of Forestry, Key Laboratory of Cultivating and Utilization of Resource Insects of State Forestry Administration, Kunming 650224, China
| | - Zunling Zhao
- Research Institute of Resource Insects, Chinese Academy of Forestry, Key Laboratory of Cultivating and Utilization of Resource Insects of State Forestry Administration, Kunming 650224, China
| | - Zengrong Zhu
- State Key Laboratory of Rice Biology/Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture/Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tao Sun
- Research Institute of Resource Insects, Chinese Academy of Forestry, Key Laboratory of Cultivating and Utilization of Resource Insects of State Forestry Administration, Kunming 650224, China
| | - Xueqing Wang
- Research Institute of Resource Insects, Chinese Academy of Forestry, Key Laboratory of Cultivating and Utilization of Resource Insects of State Forestry Administration, Kunming 650224, China
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
134
|
Wang D, Chen X, Zhang X, Li J, Yi Y, Bian C, Shi Q, Lin H, Li S, Zhang Y, You X. Whole Genome Sequencing of the Giant Grouper ( Epinephelus lanceolatus) and High-Throughput Screening of Putative Antimicrobial Peptide Genes. Mar Drugs 2019; 17:E503. [PMID: 31466296 PMCID: PMC6780625 DOI: 10.3390/md17090503] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/20/2019] [Accepted: 08/26/2019] [Indexed: 12/25/2022] Open
Abstract
Giant groupers, the largest grouper type in the world, are of economic importance in marine aquaculture for their rapid growth. At the same time, bacterial and viral diseases have become the main threats to the grouper industry. Here, we report a high-quality genome of a giant grouper sequenced by an Illumina HiSeq X-Ten and PacBio Bioscience Sequel platform. A total of 254 putative antimicrobial peptide (AMP) genes were identified, which can be divided into 34 classes according to the annotation of the Antimicrobial Peptides Database (APD3). Their locations in pseudochromosomes were also determined. Thrombin-, lectin-, and scolopendin-derived putative AMPs were the three largest parts. In addition, expressions of putative AMPs were measured by our transcriptome data. Two putative AMP genes (gapdh1 and gapdh2) were involved in glycolysis, which had extremely high expression levels in giant grouper muscle. As it has been reported that AMPs inhibit the growth of a broad spectrum of microbes and participate in regulating innate and adaptive immune responses, genome sequencing of this study provides a comprehensive cataloging of putative AMPs of groupers, supporting antimicrobial research and aquaculture therapy. These genomic resources will be beneficial to further molecular breeding of this economically important fish.
Collapse
Affiliation(s)
- Dengdong Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
- Zhanjiang Bay Laboratory, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiyang Chen
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
| | - Xinhui Zhang
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
| | - Jia Li
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
| | - Yunhai Yi
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
| | - Chao Bian
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
| | - Qiong Shi
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
- Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
- Zhanjiang Bay Laboratory, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shuisheng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
- Zhanjiang Bay Laboratory, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Yong Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
- Zhanjiang Bay Laboratory, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Xinxin You
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China.
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
| |
Collapse
|
135
|
Grosmaire M, Launay C, Siegwald M, Brugière T, Estrada-Virrueta L, Berger D, Burny C, Modolo L, Blaxter M, Meister P, Félix MA, Gouyon PH, Delattre M. Males as somatic investment in a parthenogenetic nematode. Science 2019; 363:1210-1213. [PMID: 30872523 DOI: 10.1126/science.aau0099] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 02/13/2019] [Indexed: 12/20/2022]
Abstract
We report the reproductive strategy of the nematode Mesorhabditis belari This species produces only 9% males, whose sperm is necessary to fertilize and activate the eggs. However, most of the fertilized eggs develop without using the sperm DNA and produce female individuals. Only in 9% of eggs is the male DNA utilized, producing sons. We found that mixing of parental genomes only gives rise to males because the Y-bearing sperm of males are much more competent than the X-bearing sperm for penetrating the eggs. In this previously unrecognized strategy, asexual females produce few sexual males whose genes never reenter the female pool. Here, production of males is of interest only if sons are more likely to mate with their sisters. Using game theory, we show that in this context, the production of 9% males by M. belari females is an evolutionary stable strategy.
Collapse
Affiliation(s)
- Manon Grosmaire
- Laboratoire de Biologie et Modélisation de la Cellule, Université de Lyon, ENS, UCBL, CNRS, INSERM, UMR 5239, U 1210, F-69364 Lyon, France
| | - Caroline Launay
- Laboratoire de Biologie et Modélisation de la Cellule, Université de Lyon, ENS, UCBL, CNRS, INSERM, UMR 5239, U 1210, F-69364 Lyon, France
| | - Marion Siegwald
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, SU, EPHE, UA, CP 39, 57 rue Cuvier, 75005 Paris, France
| | - Thibault Brugière
- Laboratoire de Biologie et Modélisation de la Cellule, Université de Lyon, ENS, UCBL, CNRS, INSERM, UMR 5239, U 1210, F-69364 Lyon, France
| | - Lilia Estrada-Virrueta
- Laboratoire de Biologie et Modélisation de la Cellule, Université de Lyon, ENS, UCBL, CNRS, INSERM, UMR 5239, U 1210, F-69364 Lyon, France
| | - Duncan Berger
- The Ashworth Laboratories, Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Claire Burny
- Laboratoire de Biologie et Modélisation de la Cellule, Université de Lyon, ENS, UCBL, CNRS, INSERM, UMR 5239, U 1210, F-69364 Lyon, France.,Present address: Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna A-1210, Austria
| | - Laurent Modolo
- Laboratoire de Biologie et Modélisation de la Cellule, Université de Lyon, ENS, UCBL, CNRS, INSERM, UMR 5239, U 1210, F-69364 Lyon, France
| | - Mark Blaxter
- The Ashworth Laboratories, Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Peter Meister
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland
| | - Marie-Anne Félix
- Département de Biologie, Ecole Normale Supérieure, IBENS, CNRS, Inserm, PSL Research University, 75005 Paris, France
| | - Pierre-Henri Gouyon
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, SU, EPHE, UA, CP 39, 57 rue Cuvier, 75005 Paris, France
| | - Marie Delattre
- Laboratoire de Biologie et Modélisation de la Cellule, Université de Lyon, ENS, UCBL, CNRS, INSERM, UMR 5239, U 1210, F-69364 Lyon, France.
| |
Collapse
|
136
|
Lantican DV, Strickler SR, Canama AO, Gardoce RR, Mueller LA, Galvez HF. De Novo Genome Sequence Assembly of Dwarf Coconut ( Cocos nucifera L. 'Catigan Green Dwarf') Provides Insights into Genomic Variation Between Coconut Types and Related Palm Species. G3 (BETHESDA, MD.) 2019; 9:2377-2393. [PMID: 31167834 PMCID: PMC6686914 DOI: 10.1534/g3.119.400215] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 05/31/2019] [Indexed: 11/23/2022]
Abstract
We report the first whole genome sequence (WGS) assembly and annotation of a dwarf coconut variety, 'Catigan Green Dwarf' (CATD). The genome sequence was generated using the PacBio SMRT sequencing platform at 15X coverage of the expected genome size of 2.15 Gbp, which was corrected with assembled 50X Illumina paired-end MiSeq reads of the same genome. The draft genome was improved through Chicago sequencing to generate a scaffold assembly that results in a total genome size of 2.1 Gbp consisting of 7,998 scaffolds with N50 of 570,487 bp. The final assembly covers around 97.6% of the estimated genome size of coconut 'CATD' based on homozygous k-mer peak analysis. A total of 34,958 high-confidence gene models were predicted and functionally associated to various economically important traits, such as pest/disease resistance, drought tolerance, coconut oil biosynthesis, and putative transcription factors. The assembled genome was used to infer the evolutionary relationship within the palm family based on genomic variations and synteny of coding gene sequences. Data show that at least three (3) rounds of whole genome duplication occurred and are commonly shared by these members of the Arecaceae family. A total of 7,139 unique SSR markers were designed to be used as a resource in marker-based breeding. In addition, we discovered 58,503 variants in coconut by aligning the Hainan Tall (HAT) WGS reads to the non-repetitive regions of the assembled CATD genome. The gene markers and genome-wide SSR markers established here will facilitate the development of varieties with resilience to climate change, resistance to pests and diseases, and improved oil yield and quality.
Collapse
Affiliation(s)
- Darlon V Lantican
- Genetics Laboratory, Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines Los Baños, College, Laguna, Philippines 4031
- Philippine Genome Center, University of the Philippines System, Diliman, Quezon City, Philippines
| | | | - Alma O Canama
- Genetics Laboratory, Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines Los Baños, College, Laguna, Philippines 4031
| | - Roanne R Gardoce
- Genetics Laboratory, Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines Los Baños, College, Laguna, Philippines 4031
| | | | - Hayde F Galvez
- Genetics Laboratory, Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines Los Baños, College, Laguna, Philippines 4031
- Institute of Crop Science, College of Agriculture and Food Science, University of the Philippines Los Baños, College, Laguna, Philippines 4031
| |
Collapse
|
137
|
Jiang W, Lv Y, Cheng L, Yang K, Bian C, Wang X, Li Y, Pan X, You X, Zhang Y, Yang J, Li J, Zhang X, Liu S, Sun C, Yang J, Shi Q. Whole-Genome Sequencing of the Giant Devil Catfish, Bagarius yarrelli. Genome Biol Evol 2019; 11:2071-2077. [PMID: 31274158 PMCID: PMC6681832 DOI: 10.1093/gbe/evz143] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2019] [Indexed: 12/23/2022] Open
Abstract
As one economically important fish in the southeastern Himalayas, the giant devil catfish (Bagarius yarrelli) has been known for its extraordinarily large body size. It can grow up to 2 m, whereas the non-Bagarius sisorids only reach 10-30 cm. Another outstanding characteristic of Bagarius species is the salmonids-like reddish flesh color. Both body size and flesh color are interesting questions in science and also valuable features in aquaculture that worth of deep investigations. Bagarius species therefore are ideal materials for studying body size evolution and color depositions in fish muscles, and also potential organisms for extensive utilization in Asian freshwater aquaculture. In a combination of Illumina and PacBio sequencing technologies, we de novo assembled a 571-Mb genome for the giant devil catfish from a total of 153.4-Gb clean reads. The scaffold and contig N50 values are 3.1 and 1.6 Mb, respectively. This genome assembly was evaluated with 93.4% of Benchmarking Universal Single-Copy Orthologs completeness, 98% of transcripts coverage, and highly homologous with a chromosome-level-based genome of channel catfish (Ictalurus punctatus). We detected that 35.26% of the genome assembly is composed of repetitive elements. Employing homology, de novo, and transcriptome-based annotations, we annotated a total of 19,027 protein-coding genes for further use. In summary, we generated the first high-quality genome assembly of the giant devil catfish, which provides an important genomic resource for its future studies such as the body size and flesh color issues, and also for facilitating the conservation and utilization of this valuable catfish.
Collapse
Affiliation(s)
- Wansheng Jiang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory of Plateau Fish Breeding, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yunyun Lv
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, Guangdong, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Le Cheng
- BGI-Yunnan, BGI-Shenzhen, Kunming, Yunnan, China
| | - Kunfeng Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory of Plateau Fish Breeding, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Chao Bian
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, Guangdong, China
- Shenzhen Academy of Marine Sciences, Yee Hop-China Marine, Shenzhen, Guangdong, China
| | - Xiaoai Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory of Plateau Fish Breeding, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yanping Li
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, Guangdong, China
- Shenzhen Academy of Marine Sciences, Yee Hop-China Marine, Shenzhen, Guangdong, China
| | - Xiaofu Pan
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory of Plateau Fish Breeding, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xinxin You
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, Guangdong, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Shenzhen Academy of Marine Sciences, Yee Hop-China Marine, Shenzhen, Guangdong, China
| | - Yuanwei Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory of Plateau Fish Breeding, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jinlong Yang
- BGI-Yunnan, BGI-Shenzhen, Kunming, Yunnan, China
| | - Jia Li
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, Guangdong, China
- Shenzhen Academy of Marine Sciences, Yee Hop-China Marine, Shenzhen, Guangdong, China
| | - Xinhui Zhang
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, Guangdong, China
- Shenzhen Academy of Marine Sciences, Yee Hop-China Marine, Shenzhen, Guangdong, China
| | - Shuwei Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory of Plateau Fish Breeding, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Chao Sun
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory of Plateau Fish Breeding, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Junxing Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory of Plateau Fish Breeding, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, Guangdong, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Shenzhen Academy of Marine Sciences, Yee Hop-China Marine, Shenzhen, Guangdong, China
| |
Collapse
|
138
|
Long AD, Baldwin-Brown J, Tao Y, Cook VJ, Balderrama-Gutierrez G, Corbett-Detig R, Mortazavi A, Barbour AG. The genome of Peromyscus leucopus, natural host for Lyme disease and other emerging infections. SCIENCE ADVANCES 2019; 5:eaaw6441. [PMID: 31355335 PMCID: PMC6656541 DOI: 10.1126/sciadv.aaw6441] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/18/2019] [Indexed: 06/10/2023]
Abstract
The rodent Peromyscus leucopus is the natural reservoir of several tick-borne infections, including Lyme disease. To expand the knowledge base for this key species in life cycles of several pathogens, we assembled and scaffolded the P. leucopus genome. The resulting assembly was 2.45 Gb in total length, with 24 chromosome-length scaffolds harboring 97% of predicted genes. RNA sequencing following infection of P. leucopus with Borreliella burgdorferi, a Lyme disease agent, shows that, unlike blood, the skin is actively responding to the infection after several weeks. P. leucopus has a high level of segregating nucleotide variation, suggesting that natural resistance alleles to Crispr gene targeting constructs are likely segregating in wild populations. The reference genome will allow for experiments aimed at elucidating the mechanisms by which this widely distributed rodent serves as natural reservoir for several infectious diseases of public health importance, potentially enabling intervention strategies.
Collapse
Affiliation(s)
- Anthony D. Long
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA
| | - James Baldwin-Brown
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | - Yuan Tao
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA
| | - Vanessa J. Cook
- Departments of Microbiology and Molecular Genetics and Medicine, University of California, Irvine, Irvine, CA, USA
| | | | - Russell Corbett-Detig
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Alan G. Barbour
- Departments of Microbiology and Molecular Genetics and Medicine, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
139
|
Banin AN, Tuen M, Bimela JS, Tongo M, Zappile P, Khodadadi‐Jamayran A, Nanfack AJ, Okonko IO, Meli J, Wang X, Mbanya D, Ngogang J, Gorny MK, Heguy A, Fokunang C, Duerr R. Near full genome characterization of HIV-1 unique recombinant forms in Cameroon reveals dominant CRF02_AG and F2 recombination patterns. J Int AIDS Soc 2019; 22:e25362. [PMID: 31353798 PMCID: PMC6661401 DOI: 10.1002/jia2.25362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 07/04/2019] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION In Cameroon, a manifold diversity of HIV strains exists with CRF02_AG and unique recombinant forms (URFs) being the predominant strains. In recent years, a steady increase in URFs and clade F2 viruses has been monitored through partial genome sequencing. There is an information gap in the characterization of emerging URFs along the full genome, which is needed to address the challenges URFs pose towards diagnosis, treatment and HIV-1 vaccine design. METHOD Eighteen Cameroonian URFs from samples collected between the years 2000 and 2015 were studied using a newly developed near full genome sequencing (NFGS) protocol based on variable nested RT-PCRs with a versatile primer set. Near full genomes were characterized for recombination patterns and sequence signatures with possible impact on antiretroviral treatment or Env-directed immune responses. Third-generation sequencing (3GS) of near full or half genomes (HGs) gave insight into intra-patient URF diversity. RESULTS The characterized URFs were composed of a broad variety of subtypes and recombinants including A, F, G, CRF01_AE, CRF02_AG and CRF22_01A1. Phylogenetic analysis unveiled dominant CRF02_AG and F2 recombination patterns. 3GS indicated a high intra-patient URF diversity with up to four distinct viral sub-populations present in plasma at the same time. URF pol genomic analysis revealed a number of accessory drug resistance mutations (DRMs) in the ART-naïve participants. Genotypic env analysis suggests CCR5 usage in 14/18 samples and identified deviations at residues, critical for gp120/gp41 interphase and CD4 binding site broadly neutralizing antibodies in more than half of the studied URFs. V1V2 sites of immune pressure in the human RV144 vaccine study varied in more than a third of URFs. CONCLUSIONS This study identified novel mosaic patterns in URFs in Cameroon. In line with the regional predominance of CRF_02AG and the increased prevalence of clade F2, prominent CRF_02AG and F2 background patterns were observed underlying the URFs. In the context of the novel mosaic genomes, the impact of the identified accessory DRMs and Env epitope variations on treatment and immune control remains elusive. The evolving diversity of HIV-1 URFs in Cameroon requires continuous monitoring to respond to the increasing challenges for diagnosis, antiretroviral treatment and prevention.
Collapse
Affiliation(s)
- Andrew N Banin
- Department of PathologyNew York University School of MedicineNew YorkNYUSA
- Faculty of Medicine and Biomedical SciencesUniversity of Yaoundé 1YaoundéCameroon
| | - Michael Tuen
- Department of PathologyNew York University School of MedicineNew YorkNYUSA
| | - Jude S Bimela
- Department of PathologyNew York University School of MedicineNew YorkNYUSA
- Faculty of ScienceDepartment of BiochemistryUniversity of Yaoundé 1YaoundéCameroon
| | - Marcel Tongo
- Center of Research for Emerging and Re‐Emerging Diseases (CREMER)Institute of Medical Research and Study of Medicinal PlantsYaoundéCameroon
| | - Paul Zappile
- Department of PathologyNew York University School of MedicineNew YorkNYUSA
| | - Alireza Khodadadi‐Jamayran
- Applied Bioinformatics Laboratories (ABL) and Genome Technology Center (GTC)Division of Advanced Research Technologies (DART)New York University Langone Medical CenterNew YorkNYUSA
| | - Aubin J Nanfack
- Department of PathologyNew York University School of MedicineNew YorkNYUSA
- Medical Diagnostic CenterYaoundéCameroon
- Chantal Biya International Reference Center for Research on HIV/AIDS Prevention and ManagementYaoundéCameroon
| | - Iheanyi O Okonko
- Virus Research UnitDepartment of MicrobiologyUniversity of Port HarcourtPort HarcourtNigeria
| | | | - Xiaohong Wang
- Manhattan Veterans Affairs Harbor Healthcare SystemsNew YorkNYUSA
| | - Dora Mbanya
- Faculty of Medicine and Biomedical SciencesUniversity of Yaoundé 1YaoundéCameroon
| | - Jeanne Ngogang
- Faculty of Medicine and Biomedical SciencesUniversity of Yaoundé 1YaoundéCameroon
| | - Miroslaw K Gorny
- Department of PathologyNew York University School of MedicineNew YorkNYUSA
| | - Adriana Heguy
- Department of PathologyNew York University School of MedicineNew YorkNYUSA
| | - Charles Fokunang
- Faculty of Medicine and Biomedical SciencesUniversity of Yaoundé 1YaoundéCameroon
| | - Ralf Duerr
- Department of PathologyNew York University School of MedicineNew YorkNYUSA
- Manhattan Veterans Affairs Harbor Healthcare SystemsNew YorkNYUSA
| |
Collapse
|
140
|
|
141
|
Saint-Leandre B, Nguyen SC, Levine MT. Diversification and collapse of a telomere elongation mechanism. Genome Res 2019; 29:920-931. [PMID: 31138619 PMCID: PMC6581046 DOI: 10.1101/gr.245001.118] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 05/14/2019] [Indexed: 12/18/2022]
Abstract
In most eukaryotes, telomerase counteracts chromosome erosion by adding repetitive sequence to terminal ends. Drosophila melanogaster instead relies on specialized retrotransposons that insert exclusively at telomeres. This exchange of goods between host and mobile element-wherein the mobile element provides an essential genome service and the host provides a hospitable niche for mobile element propagation-has been called a "genomic symbiosis." However, these telomere-specialized, jockey family retrotransposons may actually evolve to "selfishly" overreplicate in the genomes that they ostensibly serve. Under this model, we expect rapid diversification of telomere-specialized retrotransposon lineages and, possibly, the breakdown of this ostensibly symbiotic relationship. Here we report data consistent with both predictions. Searching the raw reads of the 15-Myr-old melanogaster species group, we generated de novo jockey retrotransposon consensus sequences and used phylogenetic tree-building to delineate four distinct telomere-associated lineages. Recurrent gains, losses, and replacements account for this retrotransposon lineage diversity. In Drosophila biarmipes, telomere-specialized elements have disappeared completely. De novo assembly of long reads and cytogenetics confirmed this species-specific collapse of retrotransposon-dependent telomere elongation. Instead, telomere-restricted satellite DNA and DNA transposon fragments occupy its terminal ends. We infer that D. biarmipes relies instead on a recombination-based mechanism conserved from yeast to flies to humans. Telomeric retrotransposon diversification and disappearance suggest that persistently "selfish" machinery shapes telomere elongation across Drosophila rather than completely domesticated, symbiotic mobile elements.
Collapse
Affiliation(s)
- Bastien Saint-Leandre
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Son C Nguyen
- Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Mia T Levine
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
142
|
Wang ZF. Characterization of 90 function-related SNP markers in the endangered hardwood tree Erythrophleum fordii. CONSERV GENET RESOUR 2019. [DOI: 10.1007/s12686-019-01100-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
143
|
Kono N, Arakawa K. Nanopore sequencing: Review of potential applications in functional genomics. Dev Growth Differ 2019; 61:316-326. [DOI: 10.1111/dgd.12608] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Nobuaki Kono
- Institute for Advanced Biosciences Keio University Tsuruoka Yamagata Japan
| | - Kazuharu Arakawa
- Institute for Advanced Biosciences Keio University Tsuruoka Yamagata Japan
| |
Collapse
|
144
|
Barrera-Redondo J, Ibarra-Laclette E, Vázquez-Lobo A, Gutiérrez-Guerrero YT, Sánchez de la Vega G, Piñero D, Montes-Hernández S, Lira-Saade R, Eguiarte LE. The Genome of Cucurbita argyrosperma (Silver-Seed Gourd) Reveals Faster Rates of Protein-Coding Gene and Long Noncoding RNA Turnover and Neofunctionalization within Cucurbita. MOLECULAR PLANT 2019; 12:506-520. [PMID: 30630074 DOI: 10.1016/j.molp.2018.12.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/12/2018] [Accepted: 12/28/2018] [Indexed: 05/19/2023]
Abstract
Whole-genome duplications are an important source of evolutionary novelties that change the mode and tempo at which genetic elements evolve within a genome. The Cucurbita genus experienced a whole-genome duplication around 30 million years ago, although the evolutionary dynamics of the coding and noncoding genes in this genus have not yet been scrutinized. Here, we analyzed the genomes of four Cucurbita species, including a newly assembled genome of Cucurbita argyrosperma, and compared the gene contents of these species with those of five other members of the Cucurbitaceae family to assess the evolutionary dynamics of protein-coding and long intergenic noncoding RNA (lincRNA) genes after the genome duplication. We report that Cucurbita genomes have a higher protein-coding gene birth-death rate compared with the genomes of the other members of the Cucurbitaceae family. C. argyrosperma gene families associated with pollination and transmembrane transport had significantly faster evolutionary rates. lincRNA families showed high levels of gene turnover throughout the phylogeny, and 67.7% of the lincRNA families in Cucurbita showed evidence of birth from the neofunctionalization of previously existing protein-coding genes. Collectively, our results suggest that the whole-genome duplication in Cucurbita resulted in faster rates of gene family evolution through the neofunctionalization of duplicated genes.
Collapse
Affiliation(s)
- Josué Barrera-Redondo
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior s/n Anexo al Jardín Botánico, 04510 Ciudad de México, Mexico
| | - Enrique Ibarra-Laclette
- Departamento de Estudios Moleculares Avanzados, Instituto de Ecología A.C., Carretera Antigua a Coatepec No. 351, Col. El Haya. C.P., Xalapa, Veracruz 91070, Mexico
| | - Alejandra Vázquez-Lobo
- Centro de Investigaciones en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos 62209, Mexico
| | - Yocelyn T Gutiérrez-Guerrero
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior s/n Anexo al Jardín Botánico, 04510 Ciudad de México, Mexico
| | - Guillermo Sánchez de la Vega
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior s/n Anexo al Jardín Botánico, 04510 Ciudad de México, Mexico
| | - Daniel Piñero
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior s/n Anexo al Jardín Botánico, 04510 Ciudad de México, Mexico
| | - Salvador Montes-Hernández
- Campo Experimental Bajío, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Km 6.5 Carretera Celaya-San Miguel de Allende, Celaya, Guanajuato 38110, Mexico
| | - Rafael Lira-Saade
- UBIPRO, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios #1, Col. Los Reyes Iztacala, Tlanepantla, Edo. de Mex 54090, Mexico.
| | - Luis E Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior s/n Anexo al Jardín Botánico, 04510 Ciudad de México, Mexico.
| |
Collapse
|
145
|
Ma ZS. Sketching the Human Microbiome Biogeography with DAR (Diversity-Area Relationship) Profiles. MICROBIAL ECOLOGY 2019; 77:821-838. [PMID: 30155556 DOI: 10.1007/s00248-018-1245-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 08/07/2018] [Indexed: 06/08/2023]
Abstract
SAR (species area relationship) is a classic ecological theory that has been extensively investigated and applied in the studies of global biogeography and biodiversity conservation in macro-ecology. It has also found important applications in microbial ecology in recent years thanks to the breakthroughs in metagenomic sequencing technology. Nevertheless, SAR has a serious limitation for practical applications-ignoring the species abundance and treating all species as equally abundant. This study aims to explore the biogeography discoveries of human microbiome over 18 sites of 5 major microbiome habitats, establish the baseline DAR (diversity-area scaling relationship) parameters, and perform comparisons with the classic SAR. The extension from SAR to DAR by adopting the Hill numbers as diversity measures not only overcomes the previously mentioned flaw of SAR but also allows for obtaining a series of important findings on the human microbiome biodiversity and biogeography. Specifically, two types of DAR models were built, the traditional power law (PL) and power law with exponential cutoff (PLEC), using comprehensive datasets from the HMP (human microbiome project). Furthermore, the biogeography "maps" for 18 human microbiome sites using their DAR profiles for assessing and predicting the diversity scaling across individuals, PDO profiles (pair-wise diversity overlap) for measuring diversity overlap (similarity), and MAD profile (for predicting the maximal accrual diversity in a population) were sketched out. The baseline biogeography maps for the healthy human microbiome diversity can offer guidelines for conserving human microbiome diversity and investigating the health implications of the human microbiome diversity and heterogeneity.
Collapse
Affiliation(s)
- Zhanshan Sam Ma
- Computational Biology and Medical Ecology Laboratory, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
146
|
Xu J, Li Y, Lv Y, Bian C, You X, Endoh D, Teraoka H, Shi Q. Molecular Evolution of Tryptophan Hydroxylases in Vertebrates: A Comparative Genomic Survey. Genes (Basel) 2019; 10:E203. [PMID: 30857219 PMCID: PMC6470480 DOI: 10.3390/genes10030203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/19/2019] [Accepted: 03/04/2019] [Indexed: 02/02/2023] Open
Abstract
Serotonin is a neurotransmitter involved in various physiological processes in the central and peripheral nervous systems. Serotonin is also a precursor for melatonin biosynthesis, which mainly occurs in the pineal gland of vertebrates. Tryptophan hydroxylase (TPH) acts as the rate-limiting enzyme in serotonin biosynthesis and is the initial enzyme involved in the synthesis of melatonin. Recently, two enzymes-TPH1 and TPH2-were reported to form the TPH family in vertebrates and to play divergent roles in serotonergic systems. Here, we examined the evolution of the TPH family from 70 vertebrate genomes. Based on the sequence similarity, we extracted 184 predicted tph homologs in the examined vertebrates. A phylogenetic tree, constructed on the basis of these protein sequences, indicated that tph genes could be divided into two main clades (tph1 and tph2), and that the two clades were further split into two subgroups of tetrapods and Actinopterygii. In tetrapods, and some basal non-teleost ray-finned fishes, only two tph isotypes exist. Notably, tph1 in most teleosts that had undergone the teleost-specific genome duplication could be further divided into tph1a and tph1b. Moreover, protein sequence comparisons indicated that TPH protein changes among vertebrates were concentrated at the NH₂-terminal. The tertiary structures of TPH1 and TPH2 revealed obvious differences in the structural elements. Five positively selected sites were characterized in TPH2 compared with TPH1; these sites may reflect the functional divergence in enzyme activity and substrate specificity. In summary, our current work provides novel insights into the evolution of tph genes in vertebrates from a comprehensive genomic perspective.
Collapse
Affiliation(s)
- Junmin Xu
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan.
| | - Yanping Li
- BGI-Shenzhen, Shenzhen 518083, China.
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
| | - Yunyun Lv
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China.
| | - Chao Bian
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
| | - Xinxin You
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China.
| | - Daiji Endoh
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan.
| | - Hiroki Teraoka
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan.
| | - Qiong Shi
- BGI-Shenzhen, Shenzhen 518083, China.
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China.
| |
Collapse
|
147
|
Bizzarri M, Cassanelli S, Bartolini L, Pryszcz LP, Dušková M, Sychrová H, Solieri L. Interplay of Chimeric Mating-Type Loci Impairs Fertility Rescue and Accounts for Intra-Strain Variability in Zygosaccharomyces rouxii Interspecies Hybrid ATCC42981. Front Genet 2019; 10:137. [PMID: 30881382 PMCID: PMC6405483 DOI: 10.3389/fgene.2019.00137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/11/2019] [Indexed: 11/13/2022] Open
Abstract
The pre-whole genome duplication (WGD) Zygosaccharomyces clade comprises several allodiploid strain/species with industrially interesting traits. The salt-tolerant yeast ATCC42981 is a sterile and allodiploid strain which contains two subgenomes, one of them resembling the haploid parental species Z. rouxii. Recently, different mating-type-like (MTL) loci repertoires were reported for ATCC42981 and the Japanese strain JCM22060, which are considered two stocks of the same strain. MTL reconstruction by direct sequencing approach is challenging due to gene redundancy, structure complexities, and allodiploid nature of ATCC42981. Here, DBG2OLC and MaSuRCA hybrid de novo assemblies of ONT and Illumina reads were combined with in vitro long PCR to definitively solve these incongruences. ATCC42981 exhibits several chimeric MTL loci resulting from reciprocal translocation between parental haplotypes and retains two MATa/MATα expression loci, in contrast to MATα in JCM22060. Consistently to these reconstructions, JCM22060, but not ATCC42981, undergoes mating and meiosis. To ascertain whether the damage of one allele at the MAT locus regains the complete sexual cycle in ATCC42981, we removed the MATα expressed locus by gene deletion. The resulting MATa/- hemizygous mutants did not show any evidence of sporulation, as well as of self- and out-crossing fertility, probably because incomplete silencing at the chimeric HMLα cassette masks the loss of heterozygosity at the MAT locus. We also found that MATα deletion switched off a2 transcription, an activator of a-specific genes in pre-WGD species. These findings suggest that regulatory scheme of cell identity needs to be further investigated in Z. rouxii protoploid yeast.
Collapse
Affiliation(s)
- Melissa Bizzarri
- Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Stefano Cassanelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Laura Bartolini
- Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Leszek P. Pryszcz
- Laboratory of Zebrafish Developmental Genomics, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Michala Dušková
- Department of Membrane Transport, Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Hana Sychrová
- Department of Membrane Transport, Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Lisa Solieri
- Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
148
|
Characterization and evolutionary dynamics of complex regions in eukaryotic genomes. SCIENCE CHINA-LIFE SCIENCES 2019; 62:467-488. [PMID: 30810961 DOI: 10.1007/s11427-018-9458-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/05/2018] [Indexed: 01/07/2023]
Abstract
Complex regions in eukaryotic genomes are typically characterized by duplications of chromosomal stretches that often include one or more genes repeated in a tandem array or in relatively close proximity. Nevertheless, the repetitive nature of these regions, together with the often high sequence identity among repeats, have made complex regions particularly recalcitrant to proper molecular characterization, often being misassembled or completely absent in genome assemblies. This limitation has prevented accurate functional and evolutionary analyses of these regions. This is becoming increasingly relevant as evidence continues to support a central role for complex genomic regions in explaining human disease, developmental innovations, and ecological adaptations across phyla. With the advent of long-read sequencing technologies and suitable assemblers, the development of algorithms that can accommodate sample heterozygosity, and the adoption of a pangenomic-like view of these regions, accurate reconstructions of complex regions are now within reach. These reconstructions will finally allow for accurate functional and evolutionary studies of complex genomic regions, underlying the generation of genotype-phenotype maps of unprecedented resolution.
Collapse
|
149
|
Abstract
Affordable, high-throughput DNA sequencing has accelerated the pace of genome assembly over the past decade. Genome assemblies from high-throughput, short-read sequencing, however, are often not as contiguous as the first generation of genome assemblies. Whereas early genome assembly projects were often aided by clone maps or other mapping data, many current assembly projects forego these scaffolding data and only assemble genomes into smaller segments. Recently, new technologies have been invented that allow chromosome-scale assembly at a lower cost and faster speed than traditional methods. Here, we give an overview of the problem of chromosome-scale assembly and traditional methods for tackling this problem. We then review new technologies for chromosome-scale assembly and recent genome projects that used these technologies to create highly contiguous genome assemblies at low cost.
Collapse
Affiliation(s)
- Edward S. Rice
- Department of Biomolecular Engineering, University of California, Santa Cruz, California 95064, USA;,
| | - Richard E. Green
- Department of Biomolecular Engineering, University of California, Santa Cruz, California 95064, USA;,
- Dovetail Genomics, LLC, Santa Cruz, California 95060, USA
| |
Collapse
|
150
|
Liu S, Aageaard A, Bechsgaard J, Bilde T. DNA Methylation Patterns in the Social Spider, Stegodyphus dumicola. Genes (Basel) 2019; 10:E137. [PMID: 30759892 PMCID: PMC6409797 DOI: 10.3390/genes10020137] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 12/18/2022] Open
Abstract
Variation in DNA methylation patterns among genes, individuals, and populations appears to be highly variable among taxa, but our understanding of the functional significance of this variation is still incomplete. We here present the first whole genome bisulfite sequencing of a chelicerate species, the social spider Stegodyphus dumicola. We show that DNA methylation occurs mainly in CpG context and is concentrated in genes. This is a pattern also documented in other invertebrates. We present RNA sequence data to investigate the role of DNA methylation in gene regulation and show that, within individuals, methylated genes are more expressed than genes that are not methylated and that methylated genes are more stably expressed across individuals than unmethylated genes. Although no causal association is shown, this lends support for the implication of DNA CpG methylation in regulating gene expression in invertebrates. Differential DNA methylation between populations showed a small but significant correlation with differential gene expression. This is consistent with a possible role of DNA methylation in local adaptation. Based on indirect inference of the presence and pattern of DNA methylation in chelicerate species whose genomes have been sequenced, we performed a comparative phylogenetic analysis. We found strong evidence for exon DNA methylation in the horseshoe crab Limulus polyphemus and in all spider and scorpion species, while most Parasitiformes and Acariformes species seem to have lost DNA methylation.
Collapse
Affiliation(s)
- Shenglin Liu
- Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark.
| | | | | | | |
Collapse
|