101
|
Kin T, Sugie K, Hirano M, Goto YI, Nishino I, Ueno S. Humanin expression in skeletal muscles of patients with chronic progressive external ophthalmoplegia. J Hum Genet 2006; 51:555-558. [PMID: 16639504 DOI: 10.1007/s10038-006-0397-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2005] [Accepted: 02/20/2006] [Indexed: 10/24/2022]
Abstract
We showed that humanin (HN), an endogenous peptide against Alzheimer disease-related insults, was expressed in muscles of patients with chronic progressive external ophthalmoplegia (CPEO), a major mitochondrial disease. Because HN was recently found to block proapoptotic Bax function and exert its versatile cytoprotective effects in association with an increase in ATP levels, HN expression may thus reflect a physiological response against degenerative changes in the muscles of patients with CPEO. We found HN expression in all four patients examined, each of whom had different mitochondrial DNA mutations including two different single DNA deletions, multiple deletions, and no major mutations detected. We also found that HN expression was not linked to focal cytochrome c deficiency, strongly associated with the subtype of CPEO with single deletions. These results suggest that HN expression is more closely related to degenerative changes in all types of CPEO. Notably, HN was also expressed in non-degenerative muscle fibers of patients with CPEO or Leigh syndrome, who had the 8993T>G mutation in the mitochondrial ATPase 6 gene known to be associated with impaired ATP synthesis. Collectively, our findings suggest that HN may be specifically expressed in response to defects in energy production in muscles with mitochondrial abnormalities.
Collapse
Affiliation(s)
- Tesseki Kin
- Department of Neurology, Nara Medical University School of Medicine, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
| | - Kazuma Sugie
- Department of Neurology, Nara Medical University School of Medicine, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
| | - Makito Hirano
- Department of Neurology, Nara Medical University School of Medicine, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan.
| | - Yu-Ichi Goto
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Satoshi Ueno
- Department of Neurology, Nara Medical University School of Medicine, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
| |
Collapse
|
102
|
Zacks MA, Wen JJ, Vyatkina G, Bhatia V, Garg N. An overview of chagasic cardiomyopathy: pathogenic importance of oxidative stress. AN ACAD BRAS CIENC 2005; 77:695-715. [PMID: 16341444 DOI: 10.1590/s0001-37652005000400009] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
There is growing evidence to suggest that chagasic myocardia are exposed to sustained oxidative stress-induced injuries that may contribute to disease progression. Pathogen invasion- and replication-mediated cellular injuries and immune-mediated cytotoxic reactions are the common source of reactive oxygen species (ROS) in infectious etiologies. However, our understanding of the source and role of oxidative stress in chagasic cardiomyopathy (CCM) remains incomplete. In this review, we discuss the evidence for increased oxidative stress in chagasic disease, with emphasis on mitochondrial abnormalities, electron transport chain dysfunction and its role in sustaining oxidative stress in myocardium. We discuss the literature reporting the consequences of sustained oxidative stress in CCM pathogenesis.
Collapse
Affiliation(s)
- Michele A Zacks
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | | | |
Collapse
|
103
|
Da Pozzo P, Federico A. Commentary to mitDNA research for the pathogenesis of mitochondrial disorders. Biochem Biophys Res Commun 2005; 336:1003-4. [PMID: 16125136 DOI: 10.1016/j.bbrc.2005.07.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Accepted: 07/11/2005] [Indexed: 10/25/2022]
Affiliation(s)
- Paola Da Pozzo
- Unit of Neurology and Neurometabolic Diseases, Department of Neurological and Behavioural Sciences, Centre for Research, Therapy and Prevention of Neurohandicap, University of Siena, Italy
| | | |
Collapse
|
104
|
Beutner G, Sharma VK, Lin L, Ryu SY, Dirksen RT, Sheu SS. Type 1 ryanodine receptor in cardiac mitochondria: transducer of excitation-metabolism coupling. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1717:1-10. [PMID: 16246297 DOI: 10.1016/j.bbamem.2005.09.016] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Revised: 09/21/2005] [Accepted: 09/21/2005] [Indexed: 12/19/2022]
Abstract
Mitochondria in a variety of cell types respond to physiological Ca(2+) oscillations in the cytosol dynamically with Ca(2+) uptakes. In heart cells, mitochondrial Ca(2+) uptakes occur by a ruthenium red-sensitive Ca(2+) uniporter (CaUP), a rapid mode of Ca(2+) uptake (RaM) and a ryanodine receptor (RyR) localized in the inner mitochondrial membrane (IMM). Three subtypes of RyRs have been described and cloned, however, the subtype identity of the mitochondrial ryanodine receptor (mRyR) is unknown. Using subtype specific antibodies, we characterized the mRyR in the IMM from rat heart as RyR1. These results are substantiated by the absence of RyR protein in heart mitochondria from RyR1 knockout mice. The bell-shape Ca(2+)-dependent [(3)H]ryanodine binding curve and its modulation by caffeine and adenylylmethylenediphosphonate (AMPPCP) give further evidence that mRyR functions pharmacologically like RyR1. Ryanodine prevents mitochondrial Ca(2+) uptake induced by raising extramitochondrial Ca(2+) to 10 microM. Similarly, ryanodine inhibits oxidative phosphorylation stimulated by 10 microM extramitochondrial Ca(2+). In summary, our results show that the mRyR in cardiac muscle has similar biochemical and pharmacological properties to the RyR1 in the sarcoplasmic reticulum (SR) of skeletal muscle. These results could also suggest an efficient mechanism by which mitochondria sequesters Ca(2+) via mRyR during excitation-contraction coupling to stimulate oxidative phosphorylation for ATP production to meet metabolic demands. Thus, the mRyR functions as a transducer for excitation-metabolism coupling.
Collapse
Affiliation(s)
- Gisela Beutner
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry, NY 14642, USA
| | | | | | | | | | | |
Collapse
|
105
|
Maddatu TP, Garvey SM, Schroeder DG, Zhang W, Kim SY, Nicholson AI, Davis CJ, Cox GA. Dilated cardiomyopathy in the nmd mouse: transgenic rescue and QTLs that improve cardiac function and survival. Hum Mol Genet 2005; 14:3179-89. [PMID: 16174646 PMCID: PMC1350304 DOI: 10.1093/hmg/ddi349] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mutations in the immunoglobulin mu binding protein-2 (Ighmbp2) gene cause motor neuron disease and dilated cardiomyopathy (DCM) in the neuromuscular degeneration (nmd) mouse and spinal muscular atrophy with respiratory distress (SMARD1) in humans. To investigate the role of IGHMBP2 in the pathogenesis of DCM, we generated transgenic mice expressing the full-length Ighmbp2 cDNA specifically in myocytes under the control of the mouse titin promoter. This tissue-specific transgene increased the lifespan of nmd mice up to 8-fold by preventing primary DCM and showed complete functional correction as measured by ECG, echocardiography and plasma creatine kinase-MB. Double-transgenic nmd mice expressing Ighmbp2 both in myocytes and in neurons display correction of both DCM and motor neuron disease, resulting in an essentially wild-type appearance. Additionally, quantitative trait locus (QTL) analysis was undertaken to identify genetic modifier loci responsible for the preservation of cardiac function and a marked delay in the onset of cardiomyopathy in a CAST/EiJ backcross population. Three major CAST-derived cardiac modifiers of nmd were identified on chromosomes 9, 10 and 16, which account for over 26% of the genetic variance and that continue to suppress the exacerbation of cardiomyopathy, otherwise resulting in early death, as incipient B6.CAST congenics. Overall, our results verify the tissue-specific requirement for IGHMBP2 in cardiomyocyte maintenance and survival and describe genetic modifiers that can alter the course of DCM through cardiac functional adaptation and physical remodeling in response to changes in load and respiratory demand.
Collapse
Affiliation(s)
- Terry P. Maddatu
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Sean M. Garvey
- University Program in Genetics and Genomics, Duke University, Durham, NC 27710, USA
| | | | - Wiedong Zhang
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Soh-Yule Kim
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | | | - Crystal J. Davis
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Gregory A. Cox
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
- *To whom correspondence should be addressed. Fax: (207) 288-6073. E-mail:
| |
Collapse
|
106
|
Ricci R, Eriksson U, Oudit GY, Eferl R, Akhmedov A, Sumara I, Sumara G, Kassiri Z, David JP, Bakiri L, Sasse B, Idarraga MH, Rath M, Kurz D, Theussl HC, Perriard JC, Backx P, Penninger JM, Wagner EF. Distinct functions of junD in cardiac hypertrophy and heart failure. Genes Dev 2005; 19:208-13. [PMID: 15655111 PMCID: PMC545879 DOI: 10.1101/gad.327005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cardiac hypertrophic stimuli induce both adaptive and maladaptive growth response pathways in heart. Here we show that mice lacking junD develop less adaptive hypertrophy in heart after mechanical pressure overload, while cardiomyocyte-specific expression of junD in mice results in spontaneous ventricular dilation and decreased contractility. In contrast, fra-1 conditional knock-out mice have a normal hypertrophic response, whereas hearts from fra-1 transgenic mice decompensate prematurely. Moreover, fra-1 transgenic mice simultaneously lacking junD reveal a spontaneous dilated cardiomyopathy associated with increased cardiomyocyte apoptosis and a primary mitochondrial defect. These data suggest that junD promotes both adaptive-protective and maladaptive hypertrophy in heart, depending on its expression levels.
Collapse
Affiliation(s)
- Romeo Ricci
- Institute of Molecular Pathology, A-1030 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Biosynthesis and function of tRNA wobble modifications. FINE-TUNING OF RNA FUNCTIONS BY MODIFICATION AND EDITING 2005. [DOI: 10.1007/b106361] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
108
|
Wen JJ, Vyatkina G, Garg N. Oxidative damage during chagasic cardiomyopathy development: role of mitochondrial oxidant release and inefficient antioxidant defense. Free Radic Biol Med 2004; 37:1821-33. [PMID: 15528041 DOI: 10.1016/j.freeradbiomed.2004.08.018] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2004] [Revised: 07/27/2004] [Accepted: 08/26/2004] [Indexed: 10/26/2022]
Abstract
In this study, we evaluated the oxidant status and antioxidant defense capabilities of the heart during the course of Trypanosoma cruzi infection and disease development in a murine model system. Our data show that the extent of protein carbonylation and lipid peroxidation is increased in the heart, but not the skeletal muscle, of infected mice. The level of oxidative injury biomarkers in the myocardium consistently increased with chronic disease severity. The antioxidant defense constituted by catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GSR), and reduced glutathione was increased in murine heart and skeletal tissue in response to the stress of T. cruzi infection. After the initial burst, CAT, GPx, and GSR remained unresponsive to the severity of chronic tissue damage in chagasic hearts. The cardiac level of Mn(2+) superoxide dismutase (MnSOD) was diminished in chagasic mice. Our data suggest that the host responds to acute injuries by activating antioxidant defenses that are of sufficient magnitude to scavenge the reactive oxidants in skeletal tissue. The myocardia of infected mice, however, sustain increased oxidative injuries with disease progression. We surmise that MnSOD deficiencies, resulting in the increased release of mitochondrial free radicals, lead to sustained oxidative stress that exceeds the cardiac antioxidant defense capacity and contribute to persistent oxidative damage in chagasic myocardium.
Collapse
Affiliation(s)
- Jian-Jun Wen
- Department of Microbiology and Immunology, Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | |
Collapse
|
109
|
Lev D, Nissenkorn A, Leshinsky-Silver E, Sadeh M, Zeharia A, Garty BZ, Blieden L, Barash V, Lerman-Sagie T. Clinical presentations of mitochondrial cardiomyopathies. Pediatr Cardiol 2004; 25:443-50. [PMID: 15185043 DOI: 10.1007/s00246-003-0490-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
UNLABELLED To determine the clinical manifestations and interfamilial variability of patients diagnosed with a mitochondrial cardiomyopathy, we reviewed the charts of 14 patients with cardiomyopathy out of 59 patients with mitochondrial disorders who attended the mitochondrial disease clinic at Wolfson Medical Center from 1996 to 2001. All patients underwent a metabolic evaluation including blood lactate, pyruvate, carnitine, and amino acids and urine organic acids. Respiratory chain enzymes were assessed in 10 patients. The mitochondrial DNA (mtDNA) was assessed for mutations. The age at presentation ranged between 6 months and 24 years. Six of the patients died, 5 from heart failure. The cardiomyopathy was hypertrophic in 10 and dilated in 4. Conduction and rhythm abnormalities were present in 6. Eleven patients had family members with mitochondrial disorders. All the patients had additional involvement of one or more systems. Seven patients exhibited a deficiency of a respiratory chain enzyme in the muscle. The MELAS mtDNA point mutation (3243) was found in one patient. Blood lactic acid levels were increased in 5. Brain MRI abnormalities were observed in 4. CONCLUSIONS Mitochondrial dysfunction frequently affects the heart and may cause both hypertrophic and dilated cardiomyopathy. The cardiomyopathy is usually a part of a multisystem involvement and may rarely be isolated. The course may be stable for many years, but rapid deterioration may occur. Understanding the biochemical and genetic features of these diseases will enable us to comprehend the clinical heterogeneity of these disorders.
Collapse
Affiliation(s)
- D Lev
- Mitochondrial Disease Clinic, Metabolic Neurogenetic Service, Wolfson Medical Center, Holon, Israel.
| | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Vyatkina G, Bhatia V, Gerstner A, Papaconstantinou J, Garg N. Impaired mitochondrial respiratory chain and bioenergetics during chagasic cardiomyopathy development. Biochim Biophys Acta Mol Basis Dis 2004; 1689:162-73. [PMID: 15196597 DOI: 10.1016/j.bbadis.2004.03.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Revised: 03/11/2004] [Accepted: 03/11/2004] [Indexed: 10/26/2022]
Abstract
In this study, we evaluated the activities of respiratory chain complexes and oxidative phosphorylation (OXPHOS) capacity of the heart to gain insights into the pathological significance of mitochondrial dysfunction in chagasic cardiomyopathy (CCM). In a murine model of Trypanosoma cruzi infection, biochemical and histochemical analysis of the cardiac mitochondria revealed deficiency of the respiratory chain complexes (CI-CV) in infected mice; the inhibition of CI activity was more pronounced in the acute infection phase, CIII was constitutively repressed throughout the infection and disease phase, and the CV defects appeared in chronic phase only. A substantial decline in cardiac mtDNA content (54-60%) and mitochondria-encoded transcripts (50-65%) with disease development indicated that the alterations in mtDNA contribute to the quantitative deficiencies in respiratory chain activity in chagasic hearts. The observations of a selective inhibition of redox-sensitive CI and CIII complexes that are also the site of free radical generation in mitochondria, and the decline in cardiac mtDNA content in infected mice, all support the free radical hypothesis of mitochondria dysfunction in CCM. Consequently, OXPHOS-mediated ATP synthesis capacity of the cardiac mitochondria in infected mice was substantially reduced (37-50%), suggesting an energy homeostasis in the affected tissue.
Collapse
Affiliation(s)
- Galina Vyatkina
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | | | | | | | | |
Collapse
|
111
|
Rachek LI, Grishko VI, Alexeyev MF, Pastukh VV, LeDoux SP, Wilson GL. Endonuclease III and endonuclease VIII conditionally targeted into mitochondria enhance mitochondrial DNA repair and cell survival following oxidative stress. Nucleic Acids Res 2004; 32:3240-7. [PMID: 15199172 PMCID: PMC434452 DOI: 10.1093/nar/gkh648] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mitochondrial DNA (mtDNA) is exposed to reactive oxygen species (ROS) produced during oxidative phosphorylation. Accumulation of several kinds of oxidative lesions, including oxidized pyrimidines, in mtDNA may lead to structural genomic alterations, mitochondrial dysfunction and associated degenerative diseases. In Escherichia coli, oxidative pyrimidines are repaired by endonuclease III (EndoIII) and endonuclease VIII (EndoVIII). To determine whether the overexpression of two bacterial glycosylase/AP lyases which predominantly remove oxidized pyrimidines from DNA, could improve mtDNA repair and cell survival, we constructed vectors containing sequences for the EndoIII and EndoVIII downstream of the mitochondrial targeting sequence (MTS) from manganese superoxide dismutase (MnSOD) and placed them under the control of the tetracycline (Tet)-response element. Successful integrations of MTS-EndoIII or MTS-EndoVIII into the HeLa Tet-On genome were confirmed by Southern blot. Western blots of mitochondrial extracts from MTS-EndoIII and MTS-EndoVIII clones revealed that the recombinant proteins are targeted into mitochondria and their expressions are doxycycline (Dox) dependent. Enzyme activity assays and mtDNA repair studies showed that the Dox-dependent expressions of MTS-EndoIII and MTS-EndoVIII are functional, and both MTS-EndoIII and MTS-EndoVIII (Dox+) clones were significantly more proficient at repair of oxidative damage in their mtDNA. This enhanced repair led to increased cellular resistance to oxidative stress.
Collapse
Affiliation(s)
- Lyudmila I Rachek
- Department of Cell Biology and Neuroscience, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | | | | | | | | | | |
Collapse
|
112
|
Nowikovsky K, Froschauer EM, Zsurka G, Samaj J, Reipert S, Kolisek M, Wiesenberger G, Schweyen RJ. The LETM1/YOL027 gene family encodes a factor of the mitochondrial K+ homeostasis with a potential role in the Wolf-Hirschhorn syndrome. J Biol Chem 2004; 279:30307-15. [PMID: 15138253 DOI: 10.1074/jbc.m403607200] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The yeast open reading frames YOL027 and YPR125 and their orthologs in various eukaryotes encode proteins with a single predicted trans-membrane domain ranging in molecular mass from 45 to 85 kDa. Hemizygous deletion of their human homolog LETM1 is likely to contribute to the Wolf-Hirschhorn syndrome phenotype. We show here that in yeast and human cells, these genes encode integral proteins of the inner mitochondrial membrane. Deletion of the yeast YOL027 gene (yol027Delta mutation) results in mitochondrial dysfunction. This mutant phenotype is complemented by the expression of the human LETM1 gene in yeast, indicating a functional conservation of LetM1/Yol027 proteins from yeast to man. Mutant yol027Delta mitochondria have increased cation contents, particularly K+ and low-membrane-potential Deltapsi. They are massively swollen in situ and refractory to potassium acetate-induced swelling in vitro, which is indicative of a defect in K+/H+ exchange activity. Thus, YOL027/LETM1 are the first genes shown to encode factors involved in both K+ homeostasis and organelle volume control.
Collapse
Affiliation(s)
- Karin Nowikovsky
- Max F. Perutz Laboratories, Departments of Microbiology and Genetics, University of Vienna, Campus Vienna Biocenter, A-1030 Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
113
|
Ruppert V, Nolte D, Aschenbrenner T, Pankuweit S, Funck R, Maisch B. Novel point mutations in the mitochondrial DNA detected in patients with dilated cardiomyopathy by screening the whole mitochondrial genome. Biochem Biophys Res Commun 2004; 318:535-43. [PMID: 15120634 DOI: 10.1016/j.bbrc.2004.04.061] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Indexed: 10/26/2022]
Abstract
Dilated cardiomyopathy (DCM) is widely accepted as a pluricausal or multifactorial disease. Because of the linkage between energy metabolism in the mitochondria and cardiac muscle contraction, it is reasonable to assume that mitochondrial abnormalities may be responsible for some forms of DCM. We analysed the whole mitochondrial genome in a series of 45 patients with DCM for alterations and compared the findings with those of 62 control subjects. A total of 458 sequence changes could be identified. These sequence changes were distributed among the whole mitochondrial DNA (mtDNA). An increased number of novel missense mutations could be detected nearly in all genes encoding for protein subunits in DCM patients. In genes coding for NADH dehydrogenase subunits the number of mtDNA mutations detected in patients with DCM was significantly increased (p < 0.05) compared with control subjects. Eight mutations were found to occur in conserved amino acids in the above species. The c.5973G > A (Ala-Trp) and the c.7042T > G (Val-Asp) mutations were located in highly conserved domains of the gene coding for cytochrome c oxidase subunit. Two tRNA mutations could be detected in the mtDNA of DCM patients alone. The T-C transition at nt 15,924 is connected with respiratory enzyme deficiency, mitochondrial myopathy, and cardiomyopathy. The c.16189T > C mutation in the D-loop region that is associated with susceptibility to DCM could be detected in 15.6% of patients as well as in 9.7% of controls. Thus, mutations altering the function of the enzyme subunits of the respiratory chain can be relevant for the pathogenesis of dilated cardiomyopathy.
Collapse
MESH Headings
- Adult
- Aged
- Base Sequence
- Cardiomyopathy, Dilated/blood
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/pathology
- DNA Fingerprinting/methods
- DNA, Mitochondrial/genetics
- Databases, Genetic
- Female
- Genes, rRNA/genetics
- Genome, Human
- Humans
- Male
- Middle Aged
- Mutation, Missense/genetics
- Point Mutation/genetics
- Polymorphism, Restriction Fragment Length
- Proteins/genetics
- RNA, Transfer/genetics
- Statistical Distributions
Collapse
Affiliation(s)
- Volker Ruppert
- Department of Internal Medicine and Cardiology, Philipps University Marburg, Marburg, Germany.
| | | | | | | | | | | |
Collapse
|
114
|
Maddatu TP, Garvey SM, Shroeder DG, Hampton TG, Cox GA. Transgenic rescue of neurogenic atrophy in the nmd mouse reveals a role for Ighmbp2 in dilated cardiomyopathy. Hum Mol Genet 2004; 13:1105-15. [PMID: 15069027 PMCID: PMC1350377 DOI: 10.1093/hmg/ddh129] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Immunoglobulin mu binding protein 2 (IGHMBP2) is a DNA/RNA helicase with a putative role in transcriptional regulation and splicing. A recessive mutation of the Ighmbp2 gene in neuromuscular degeneration (nmd) mice causes progressive neurogenic atrophy of limb muscles. Affected mice show significant loss of motor neurons with large caliber axons and a moderate reduction of neurons with small caliber axons in the ventral nerve roots of the spinal cord. To investigate the role of Ighmbp2 in the pathogenesis of neuromuscular degeneration, we generated two independent lines of transgenic mice expressing the full-length Ighmbp2 cDNA specifically in neurons. Histopathological evaluation of L4 ventral nerve roots revealed that transgenic expression of the Ighmbp2 cDNA prevented primary motor neuron degeneration, while restoring the normal axonal morphology and density in nmd mice. A similar neuronal improvement is found in mutant mice carrying the CAST/EiJ-derived modifier of nmd (Mnm(C)). Intriguingly, both the transgenic and modified nmd mice went on to develop a previously unobserved cardiac and skeletal myopathy. Necropsy of nmd mice in end-stage heart failure revealed a primary dilated cardiomyopathy with secondary respiratory failure that was confirmed by in vivo ECG and echocardiographic measures. Our results suggest that reduced levels of IGHMBP2 in nmd mice compromise the integrity and function not only of motor neurons but also of skeletal and cardiac myocytes. These findings highlight the important role of IGHMBP2 in the maintenance and survival of these terminally differentiated cell types.
Collapse
Affiliation(s)
| | | | | | - Thomas G. Hampton
- Cardiovascular Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02146
| | - Gregory A. Cox
- The Jackson Laboratory 600 Main Street, Bar Harbor ME 046093
- *To whom correspondence should be addressed. Address correspondence to: Gregory A. Cox, The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609 USA, Telephone: (207) 288-6502, FAX: (207) 288-6073, E-mail:
| |
Collapse
|
115
|
Coşkun B, Cömelekoğlu U, Polat A, Kaymaz FF. Evaluation of the toxic effects of cypermethrin inhalation on the frog heart. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2004; 57:220-225. [PMID: 14759669 DOI: 10.1016/s0147-6513(03)00029-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2002] [Revised: 02/03/2003] [Accepted: 02/12/2003] [Indexed: 05/24/2023]
Abstract
Cypermethrin is widely used as an insecticide on animals and in agriculture, the home, and the garden. The effect of inhaled cypermethrin on the cardiac mechanics, electrophysiology, and ultrastructure in frogs was investigated in this study. Four groups received 100 microL of cypermethrin via inhalation for different exposure times, and one group was used as a control. Electrical and mechanical activities of the heart were recorded, and heart samples were examined at light and transmission electron microscopic levels for all groups. The atrial and ventricular contractile forces on the mechanogram, the amplitude of the P wave and the QRS complex on electrocardiogram, and the heart rate were significantly decreased in cypermethrin-inhalated frogs. The total duration of contraction was prolonged in the study groups. Ultrastructurally, dilatation in smooth endoplasmic reticulum cisterns, a decrease in the number of mitochondria, disorganization in the myofibrils of myocytes, and necrotic changes in endothelial cells were observed. These results suggest that cypermethrin has cardiotoxic effects that increase with exposure time.
Collapse
Affiliation(s)
- Banu Coşkun
- Mersin Universitesi Yenişehir Kampusu, Tip Fakultesi, Histoloji Embriyoloji Anabilim Dali, 33169 Mersin, Turkey.
| | | | | | | |
Collapse
|
116
|
Chen Q, Vazquez EJ, Moghaddas S, Hoppel CL, Lesnefsky EJ. Production of reactive oxygen species by mitochondria: central role of complex III. J Biol Chem 2003; 278:36027-31. [PMID: 12840017 DOI: 10.1074/jbc.m304854200] [Citation(s) in RCA: 1227] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mitochondrial respiratory chain is a major source of reactive oxygen species (ROS) under pathological conditions including myocardial ischemia and reperfusion. Limitation of electron transport by the inhibitor rotenone immediately before ischemia decreases the production of ROS in cardiac myocytes and reduces damage to mitochondria. We asked if ROS generation by intact mitochondria during the oxidation of complex I substrates (glutamate, pyruvate/malate) occurred from complex I or III. ROS production by mitochondria of Sprague-Dawley rat hearts and corresponding submitochondrial particles was studied. ROS were measured as H2O2 using the amplex red assay. In mitochondria oxidizing complex I substrates, rotenone inhibition did not increase H2O2. Oxidation of complex I or II substrates in the presence of antimycin A markedly increased H2O2. Rotenone prevented antimycin A-induced H2O2 production in mitochondria with complex I substrates but not with complex II substrates. Catalase scavenged H2O2. In contrast to intact mitochondria, blockade of complex I with rotenone markedly increased H2O2 production from submitochondrial particles oxidizing the complex I substrate NADH. ROS are produced from complex I by the NADH dehydrogenase located in the matrix side of the inner membrane and are dissipated in mitochondria by matrix antioxidant defense. However, in submitochondrial particles devoid of antioxidant defense ROS from complex I are available for detection. In mitochondria, complex III is the principal site for ROS generation during the oxidation of complex I substrates, and rotenone protects by limiting electron flow into complex III.
Collapse
Affiliation(s)
- Qun Chen
- Department of Medicine, Division of Cardiology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | |
Collapse
|
117
|
Nebigil CG, Maroteaux L. Functional consequence of serotonin/5-HT2B receptor signaling in heart: role of mitochondria in transition between hypertrophy and heart failure? Circulation 2003; 108:902-8. [PMID: 12925446 DOI: 10.1161/01.cir.0000081520.25714.d9] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Canan G Nebigil
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Université de Strasbourg, 1 Rue Laurent Freies, BP 10142-67404 Illkirch Cedex, France
| | | |
Collapse
|
118
|
Garg N, Popov VL, Papaconstantinou J. Profiling gene transcription reveals a deficiency of mitochondrial oxidative phosphorylation in Trypanosoma cruzi-infected murine hearts: implications in chagasic myocarditis development. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1638:106-20. [PMID: 12853116 DOI: 10.1016/s0925-4439(03)00060-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this study, we report the host genetic responses that characterize Trypanosoma cruzi-induced myocarditis in a murine model of infection and disease development. The mRNA species from the myocardium of infected mice were assessed using cDNA microarray technology at immediate early, acute, and chronic stages of infection. The immediate early reaction of the host to T. cruzi infection was marked by up-regulation of transcripts indicative of proinflammatory and interferon-induced immune responses. Following acute infection, overexpression of transcripts for extracellular matrix (ECM) proteins, possibly initiated in response to myocardial injuries by invading and replicating parasites, was suggestive of active reparative and remodeling reactions. Surprisingly, progression to the cardiac disease phase was associated with coordinated down-regulation of a majority (>70%) of the differentially expressed genes. Among the most repressed genes were the troponins, essential for contractile function of the myofibrils, and the genes encoding components of oxidative phosphorylation (OXPHOS) pathways. Reverse transcription-polymerase chain reaction (RT-PCR), Western blotting, and biochemical assays confirmed the microarray results and provided evidence for the deficiency of OXPHOS complex IV in the chagasic murine heart. We discuss the apparent role of OXPHOS dysfunction in the cardiac hypertrophic and remodeling processes with the development of chagasic cardiomyopathy (CCM).
Collapse
Affiliation(s)
- Nisha Garg
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | | | | |
Collapse
|
119
|
Haut S, Brivet M, Touati G, Rustin P, Lebon S, Garcia-Cazorla A, Saudubray JM, Boutron A, Legrand A, Slama A. A deletion in the human QP-C gene causes a complex III deficiency resulting in hypoglycaemia and lactic acidosis. Hum Genet 2003; 113:118-22. [PMID: 12709789 DOI: 10.1007/s00439-003-0946-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2002] [Accepted: 02/26/2003] [Indexed: 11/25/2022]
Abstract
Mitochondrial respiratory chain complex III (ubiquinol-cytochrome c reductase) consists of 11 subunits, only one (cytochrome b) being encoded by the mitochondrial DNA. Disorders of complex III are comparatively rare but are nevertheless present as a clinically heterogeneous group of diseases. To date, no mutation in any of the nuclear-encoded subunits has been described. We report here a deletion in the nuclear gene UQCRB encoding the human ubiquinone-binding protein of complex III (QP-C subunit or subunit VII) in a consanguineous family with an isolated complex III defect. In the proband, a homozygous 4-bp deletion was identified at nucleotides 338-341 of the cDNA predicting both a change in the last seven amino acids and an addition of a stretch of 14 amino acids at the C-terminal end of the protein. Both parents were found to be heterozygous for the deletion, which was absent from 55 controls. Low temperature (-196 degrees C) spectral studies performed on isolated mitochondria from cultured skin fibroblast of the proband showed a decreased cytochrome b content suggestive of a role for the QP-C subunit in the assembly or maintenance of complex III structure.
Collapse
Affiliation(s)
- Sandrine Haut
- Laboratoire de Biochimie 1, AP-HP Hôpital de Bicêtre, 78 Rue du Général Leclerc, Cédex, 94275 Le Kremlin Bicetre, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Strohm E, Daniels W. Ultrastructure meets reproductive success: performance of a sphecid wasp is correlated with the fine structure of the flight-muscle mitochondria. Proc Biol Sci 2003; 270:749-54. [PMID: 12713750 PMCID: PMC1691295 DOI: 10.1098/rspb.2002.2282] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Organisms show a remarkable inter-individual variation in reproductive success. The proximate causes of this variation are not well understood. We hypothesized that the ultrastructure of costly or complex tissues or organelles might affect reproductive performance. We tested this hypothesis in females of a sphecid wasp, the European beewolf, Philanthus triangulum (Hymenoptera, Sphecidae), that show considerable variation in reproductive success. The most critical component of reproduction in beewolf females is flying with paralysed honeybees, which more than double their weight. Because of the high energetic requirements for flight, we predicted that the ultrastructure of the flight-muscle mitochondria might influence female success. We determined the density of mitochondria and the density of the inner mitochondrial membranes (DIMM) of the flight muscles as well as age, body size and fat content. Only DIMM had a significant influence on female reproductive success, which might be mediated by an elevated adenosine triphosphate (ATP) supply. The variation in DIMM might result from differences in larval provisions or from an accumulation of mutations in the mitochondrial genome. Our results support the hypothesis that the organization of complex structures contributes to inter-individual variation in reproductive success.
Collapse
Affiliation(s)
- Erhard Strohm
- Department of Animal Ecology and Tropical Biology, Theodor-Boveri-Institute, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany.
| | | |
Collapse
|
121
|
Hood DA, Adhihetty PJ, Colavecchia M, Gordon JW, Irrcher I, Joseph AM, Lowe ST, Rungi AA. Mitochondrial biogenesis and the role of the protein import pathway. Med Sci Sports Exerc 2003; 35:86-94. [PMID: 12544641 DOI: 10.1097/00005768-200301000-00015] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE The importance of the mitochondrial protein import pathway, discussed relative to other steps involved in the overall biogenesis of the organelle, are reviewed. RESULTS Mitochondrial biogenesis is a product of complex interactions between the nuclear and mitochondrial genomes. Signaling pathways, such as those activated by exercise, initiate the activation of transcription factors that increase the production of mRNA from nuclear and mitochondrial DNA. Nuclear gene products are translated in the cytosol as precursor proteins with inherent targeting signals. These precursor proteins interact with molecular chaperones that direct them to the import machinery of the outer membrane (Tom complex). The precursor is unfolded and transferred through the outer membrane, across the intermembrane space to the mitochondrial inner membrane translocases (Tim complex). Intramitochondrial components (mtHSP70) pull the precursor into the matrix, cleave off the targeting sequence (mitochondrial processing peptidase), and refold the protein (HSP60, cpn10) into its mature conformation. Physiological stressors such as contractile activity and thyroid hormone accelerate protein import into the mitochondria, coincident with an increase in the expression of some components of the import machinery. This is important for the overall expansion of the mitochondrial reticulum. Conversely, impairments in the import process can be a cause of mitochondrial dysfunction and disease. CONCLUSIONS Efforts to further characterize the components of the import machinery, to define the role of specific machinery components on the import rate, and to examine protein import function in a variety of mitochondrial diseases are warranted.
Collapse
Affiliation(s)
- David A Hood
- School of Kinesiology and Health Science, Department of Biology, York University, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
122
|
Suzuki T, Suzuki T, Wada T, Saigo K, Watanabe K. Taurine as a constituent of mitochondrial tRNAs: new insights into the functions of taurine and human mitochondrial diseases. EMBO J 2002; 21:6581-9. [PMID: 12456664 PMCID: PMC136959 DOI: 10.1093/emboj/cdf656] [Citation(s) in RCA: 287] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Taurine (2-aminoethanesulphonic acid), a naturally occurring, sulfur-containing amino acid, is found at high concentrations in mammalian plasma and tissues. Although taurine is involved in a variety of processes in humans, it has never been found as a component of a protein or a nucleic acid, and its precise biochemical functions are not fully understood. Here, we report the identification of two novel taurine-containing modified uridines (5-taurinomethyluridine and 5-taurinomethyl-2-thiouridine) in human and bovine mitochondrial tRNAs. Our work further revealed that these nucleosides are synthesized by the direct incorporation of taurine supplied to the medium. This is the first reported evidence that taurine is a constituent of biological macromolecules, unveiling the prospect of obtaining new insights into the functions and subcellular localization of this abundant amino acid. Since modification of these taurine-containing uridines has been found to be lacking in mutant mitochondrial tRNAs for Leu(UUR) and Lys from pathogenic cells of the mitochondrial encephalomyopathies MELAS and MERRF, respectively, our findings will considerably deepen our understanding of the molecular pathogenesis of mitochondrial encephalomyopathic diseases.
Collapse
Affiliation(s)
- Takeo Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering and Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Building FSB-301, 5-1-5 Kashiwanoha, Kashiwa, Chiba Prefecture, 277-8562, Japan Corresponding authors e-mail: or T.Suzuki and T.Suzuki contributed equally to this work
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering and Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Building FSB-301, 5-1-5 Kashiwanoha, Kashiwa, Chiba Prefecture, 277-8562, Japan Corresponding authors e-mail: or T.Suzuki and T.Suzuki contributed equally to this work
| | - Takeshi Wada
- Department of Chemistry and Biotechnology, Graduate School of Engineering and Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Building FSB-301, 5-1-5 Kashiwanoha, Kashiwa, Chiba Prefecture, 277-8562, Japan Corresponding authors e-mail: or T.Suzuki and T.Suzuki contributed equally to this work
| | - Kazuhiko Saigo
- Department of Chemistry and Biotechnology, Graduate School of Engineering and Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Building FSB-301, 5-1-5 Kashiwanoha, Kashiwa, Chiba Prefecture, 277-8562, Japan Corresponding authors e-mail: or T.Suzuki and T.Suzuki contributed equally to this work
| | - Kimitsuna Watanabe
- Department of Chemistry and Biotechnology, Graduate School of Engineering and Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Building FSB-301, 5-1-5 Kashiwanoha, Kashiwa, Chiba Prefecture, 277-8562, Japan Corresponding authors e-mail: or T.Suzuki and T.Suzuki contributed equally to this work
| |
Collapse
|
123
|
Naya FJ, Black BL, Wu H, Bassel-Duby R, Richardson JA, Hill JA, Olson EN. Mitochondrial deficiency and cardiac sudden death in mice lacking the MEF2A transcription factor. Nat Med 2002; 8:1303-9. [PMID: 12379849 DOI: 10.1038/nm789] [Citation(s) in RCA: 255] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2002] [Accepted: 09/19/2002] [Indexed: 11/09/2022]
Abstract
The four MEF2 transcription factors (MEF2A, -B, -C, and -D) regulate differentiation and calcium-dependent gene expression in muscle cells. We generated mice deficient in MEF2A, the predominant Mef2 gene product expressed in post-natal cardiac muscle. Most mice lacking Mef2a died suddenly within the first week of life and exhibited pronounced dilation of the right ventricle, myofibrillar fragmentation, mitochondrial disorganization and activation of a fetal cardiac gene program. The few Mef2a(-/-) mice that survived to adulthood also showed a deficiency of cardiac mitochondria and susceptibility to sudden death. Paradoxically, MEF2 transcriptional activity, revealed by the expression of a MEF2-dependent transgene, was enhanced in the hearts of Mef2a-mutant mice, reflecting the transcriptional activation of residual MEF2D. These findings reveal specific roles for MEF2A in maintaining appropriate mitochondrial content and cyto-architectural integrity in the post-natal heart and show that other MEF2 isoforms cannot support these activities.
Collapse
Affiliation(s)
- Francisco J Naya
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
124
|
Rachek LI, Grishko VI, Musiyenko SI, Kelley MR, LeDoux SP, Wilson GL. Conditional targeting of the DNA repair enzyme hOGG1 into mitochondria. J Biol Chem 2002; 277:44932-7. [PMID: 12244119 DOI: 10.1074/jbc.m208770200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oxidative damage to mitochondrial DNA (mtDNA) has been suggested to be a key factor in the etiologies of many diseases and in the normal process of aging. Although the presence of a repair system to remove this damage has been demonstrated, the mechanisms involved in this repair have not been well defined. In an effort to better understand the physiological role of recombinant 8-oxoguanine DNA glycosylase/apurinic lyase (OGG1) in mtDNA repair, we constructed an expression vector containing the gene for OGG1 downstream of the mitochondrial localization sequence from manganese-superoxide dismutase. This gene construct was placed under the control of a tetracycline-regulated promoter. Transfected cells that conditionally expressed OGG1 in the absence of the tetracycline analogue doxycycline and targeted this recombinant protein to mitochondria were generated. Western blots of mitochondrial extracts from vector- and OGG1-transfected clones with and without doxycycline revealed that removal of doxycycline for 4 days caused an approximate 8-fold increase in the amount of OGG1 protein in mitochondria. Enzyme activity assays and DNA repair studies showed that the doxycycline-dependent recombinant OGG1 is functional. Functional studies revealed that cells containing recombinant OGG1 were more proficient at repairing oxidative damage in their mtDNA, and this increased repair led to increased cellular survival following oxidative stress.
Collapse
Affiliation(s)
- Lyudmila I Rachek
- Department of Cell Biology and Neuroscience, College of Medicine, University of South Alabama, Mobile, Alabama 36688, USA
| | | | | | | | | | | |
Collapse
|
125
|
Xiaofei E, Wada Y, Dakeishi M, Hirasawa F, Murata K, Masuda H, Sugiyama T, Nikaido H, Koizumi A. Age-associated cardiomyopathy in heterozygous carrier mice of a pathological mutation of carnitine transporter gene, OCTN2. J Gerontol A Biol Sci Med Sci 2002; 57:B270-8. [PMID: 12084797 DOI: 10.1093/gerona/57.7.b270] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The purpose of this study was to test whether heterozygotes of juvenile visceral steatosis mice, a model for systemic carnitine deficiency, may develop age-associated cardiomyopathy. Tissue morphological observations were carried out by light and electron microscopy to compare the heterozygous and age-matched control mice at periods of 1 and 2 years. Possible effects of the pathological mutation on lipid and glucose levels was also evaluated in humans and mice. Except mild increases in serum cholesterol levels in male heterozygous mice and humans, no changes were found in other factors, indicating that none of the confounding factors seems to be profound. Results demonstrated that heterozygous mice had larger left ventriclular myocyte diameters than the control mice. Morphological changes in cardiac muscles by electron microscopy revealed age-associated changes of lipid deposition and abnormal mitochondria in heterozygous mice. Two out of 60 heterozygous cohort and one out of nine heterozygous trim-kill mice had cardiac hypertrophy at ages older than 2 years. The present study and our previous work suggest that the carrier state of OCTN2 pathological mutations might be a risk factor for age-associated cardiomyopathy.
Collapse
Affiliation(s)
- E Xiaofei
- Department of Hygiene, Akita University School of Medicine, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Dobson AW, Grishko V, LeDoux SP, Kelley MR, Wilson GL, Gillespie MN. Enhanced mtDNA repair capacity protects pulmonary artery endothelial cells from oxidant-mediated death. Am J Physiol Lung Cell Mol Physiol 2002; 283:L205-10. [PMID: 12060578 DOI: 10.1152/ajplung.00443.2001] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In rat cultured pulmonary arterial (PA), microvascular, and venous endothelial cells (ECs), the rate of mitochondrial (mt) DNA repair is predictive of the severity of xanthine oxidase (XO)-induced mtDNA damage and the sensitivity to XO-mediated cell death. To examine the importance of mtDNA damage and repair more directly, we determined the impact of mitochondrial overexpression of the DNA repair enzyme, Ogg1, on XO-induced mtDNA damage and cell death in PAECs. PAECs were transiently transfected with an Ogg1-mitochondrial targeting sequence construct. Mitochondria-selective overexpression of the transgene product was confirmed microscopically by the observation that immunoreactive Ogg1 colocalized with a mitochondria-specific tracer and, with an oligonucleotide cleavage assay, by a selective enhancement of mitochondrial Ogg1 activity. Overexpression of Ogg1 protected against both XO-induced mtDNA damage, determined by quantitative Southern analysis, and cell death as assessed by trypan blue exclusion and MTS assays. These findings show that mtDNA damage is a direct cause of cell death in XO-treated PAECs.
Collapse
Affiliation(s)
- Allison W Dobson
- Department of Cell Biology and Neuroscience, College of Medicine, University of South Alabama, Mobile, Alabama 36688, USA
| | | | | | | | | | | |
Collapse
|
127
|
Farge G, Touraille S, Le Goff S, Petit N, Renoux M, Morel F, Alziari S. The nuclear genome is involved in heteroplasmy control in a mitochondrial mutant strain of Drosophila subobscura. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:998-1005. [PMID: 11846802 DOI: 10.1046/j.0014-2956.2001.02737.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Most (78%) mitochondrial genomes in the studied mutant strain of Drosophila subobscura have undergone a large-scale deletion (5 kb) in the coding region. This mutation is stable, and is transmitted intact to the offspring. This animal model of major rearrangements of mitochondrial genomes can be used to analyse the involvement of the nuclear genome in the production and maintenance of these rearrangements. Successive backcrosses between mutant strain females and wild-type males yield a biphasic change in heteroplasmy level: (a) a 5% decrease in mutated genomes per generation (from 78 to 55%), until the nuclear genome is virtually replaced by the wild-type genome (seven to eight crosses); and (b) a continuous decrease of 0.5% per generation when the nuclear context is completely wild-type. In parallel with these changes, NADH dehydrogenase activity, which is halved in the mutant strain (five subunits of this complex are affected by the mutation), gradually increases and stabilizes near the wild-type activity. A return to a nuclear context is accompanied by the opposite phenomena: progressive increase in heteroplasmy level and stabilization at the value seen in the wild-type strain and a decrease in the activity of complex I. These results indicate that the nuclear genome plays an important role in the control of heteroplasmy level and probably in the production of rearranged genomes.
Collapse
Affiliation(s)
- Géraldine Farge
- Equipe Génome Mitochondrial, UMR CNRS 6547, Université Blaise Pascal-Clermont II, Aubière, France
| | | | | | | | | | | | | |
Collapse
|
128
|
Mitochondrial electron transport and aging in the heart. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s1566-3124(02)11032-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
129
|
Abstract
Many of the endocrine and metabolic myopathies have no unique features, and for most clinicians, it is not possible to remember the clinical nuances of all the specific abnormalities and deficiencies responsible for these myopathies. This can make this group of diseases difficult to suspect. It is more important to recognize the general features of myopathic disease and to consider muscle biopsies as a preliminary diagnostic technique, with the potential for further investigation if a myopathy is confirmed.
Collapse
Affiliation(s)
- Simon R Platt
- Neurology/Neurosurgery Unit, The Animal Health Trust, Centre for Small Animal Studies, Newmarket, Suffolk, England.
| |
Collapse
|
130
|
Yokoyama U, Shibata T, Yasui K, Iwamoto M, Takigiku K, Yokota S. A case of fatal mitochondrial cardiomyopathy. JAPANESE HEART JOURNAL 2002; 43:61-7. [PMID: 12041891 DOI: 10.1536/jhj.43.61] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We report a case of mitochondrial cardiomyopathy in a Japanese boy who presented with severe cardiac heart failure and died 6 days after admission. The onset of mitochondrial cardiomyopathy often occurs very early in childhood and has a rapid downward course.
Collapse
Affiliation(s)
- Utako Yokoyama
- Department of Pediatrics, Saiseikai Yokohama Nanbu Hospital, Yokohama, Kanagawa, Japan
| | | | | | | | | | | |
Collapse
|
131
|
Yuki K, Suzuki T, Katoh S, Kakinuma Y, Miyauchi T, Mitsui Y. Endothelin-1 stimulates cardiomyocyte injury during mitochondrial dysfunction in culture. Eur J Pharmacol 2001; 431:163-70. [PMID: 11728422 DOI: 10.1016/s0014-2999(01)01434-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
To understand the pathophysiological role of endothelin-1 in the failing heart, we constructed a cellular mitochondrial impairment model and demonstrated the effect of endothelin-1. Primary cultured cardiomyocytes from neonatal rats were pretreated with rotenone, a mitochondrial complex I inhibitor, and the cytotoxic effect of endothelin-1 on the cardiomyocytes was demonstrated. Rotenone gradually decreased the pH of the culture medium with incubation time and caused slight cell injury. Endothelin-1 markedly enhanced the effect of rotenone that decreased the pH of the medium and enhanced cellular injury. The enhancement of the decrease in pH and cell injury induced by endothelin-1 was counteracted by the endothelin ET(A) receptor antagonist BQ123 or by maintaining the pH of the medium by the addition of 50 mM HEPES. Endothelin-1 markedly increased the uptake of 2-deoxyglucose and lactic acid production when the cardiomyocytes were pretreated with rotenone. These findings suggest that the stimulation of glucose uptake and anaerobic glycolysis followed by the increase in lactic acid accumulation in cardiomyocytes under the condition of mitochondrial impairment may be involved, at least in part, in the cellular injury by endothelin-1. Moreover, these findings suggest the possibility that the effect of endothelin-1 on myocardium is reversed by the condition of the mitochondria, and endogenous endothelin-1 may deteriorate cardiac failure with mitochondrial dysfunction. This may contribute to clarify the beneficial effect of endothelin receptor blockade in improving heart failures.
Collapse
Affiliation(s)
- K Yuki
- Cardiovascular Division, Department of Internal Medicine, Institute of Clinical Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | | | | | | | | | | |
Collapse
|
132
|
Li YY, Chen D, Watkins SC, Feldman AM. Mitochondrial abnormalities in tumor necrosis factor-alpha-induced heart failure are associated with impaired DNA repair activity. Circulation 2001; 104:2492-7. [PMID: 11705830 DOI: 10.1161/hc4501.098944] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Recent studies suggest that mutations in cardiac mitochondrial DNA (mtDNA) may contribute to the development of dilated cardiomyopathy. The mechanisms that regulate those mutations, however, remain undefined. Thus, we studied cardiac mtDNA repair mechanisms, mtDNA damage, and mitochondrial structure and function in mice with heart failure secondary to overexpression of TNF-alpha (TNF1.6 mice). METHODS AND RESULTS We studied mtDNA repair by measuring the uracil DNA glycosylase (mtUDG) and base excision repair activities. mtDNA damage was assessed by Southern blot of Fpg protein-digested mtDNA. Mitochondrial ultrastructural changes were examined by electron microscopy, and function by cytochrome c oxidase and succinate dehydrogenase activity assays. The results showed that both mtUDG and base excision repair activities were significantly reduced in TNF1.6 mouse heart. Fpg-sensitive sites were markedly increased in TNF1.6 mouse cardiac mtDNA, suggesting increased mtDNA damage. Mitochondrial function as demonstrated by cardiac cytochrome c oxidase activity was also markedly reduced. Cardiac ATP content was not changed, however, suggesting a shift from oxidative phosphorylation to glycolysis, as shown by increased LDH and ALT activities and lactate/pyruvate ratio. Ultrastructurally, the TNF1.6 mouse cardiac mitochondria became irregular in shape and smaller, and the cristae were decreased and appeared disorganized, with breaks. CONCLUSIONS These results suggest that mtDNA mutations and mitochondrial structural and functional alterations in TNF-alpha-induced heart failure may be associated with reduced mtDNA repair activity, and the pathophysiological effects of TNF-alpha on the heart may be mediated, at least in part, through these changes in mitochondria.
Collapse
Affiliation(s)
- Y Y Li
- Cardiovascular Institute, Center for Biological Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | | |
Collapse
|
133
|
Fiore C, Arlot-Guilligay D, Trézéguet V, Lauquin GJ, Brandolin G. Fluorometric detection of ADP/ATP carrier deficiency in human muscle. Clin Chim Acta 2001; 311:125-35. [PMID: 11566172 DOI: 10.1016/s0009-8981(01)00581-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Defects in mitochondrial energy metabolism lead to severe disorders in humans referred to as mitochondriocytopathies. Most of them have been reported to result from deficiencies of one or more complexes of the respiratory chain and, more rarely, from mitochondrial transmembrane metabolite carrier defects. Dysfunctioning of the ADP/ATP carrier, which catalyses the export of matrix ATP in exchange for cytosolic ADP, has been demonstrated to induce myopathies in mouse and in humans. To screen for ADP/ATP carrier deficiency in patients suffering from mitochondriocytopathy with no defined etiology, we have set up a fluorometric assay to quantify the ADP/ATP carrier in small muscle homogenates, without preliminary isolation of mitochondria. The assay is based on the use of a fluorescent derivative of atractyloside, namely naphthoyl-atractyloside, a highly specific inhibitor of ADP/ATP transport. Here, we describe analysis of healthy and pathological muscle samples, and characterization of ADP/ATP carrier deficiencies in two patients, one displaying an absence of the carrier and the second one containing a limited amount of the carrier with altered binding properties.
Collapse
Affiliation(s)
- C Fiore
- Laboratoire de Biophysique et Biochimie des Systèmes Intégrés, UMR 5092 CEA-CNRS-UJF, CEA-Grenoble, 17 Rue des Martyrs, 38054 Grenoble Cedex 9, France.
| | | | | | | | | |
Collapse
|
134
|
Grishko V, Solomon M, Wilson GL, LeDoux SP, Gillespie MN. Oxygen radical-induced mitochondrial DNA damage and repair in pulmonary vascular endothelial cell phenotypes. Am J Physiol Lung Cell Mol Physiol 2001; 280:L1300-8. [PMID: 11350811 DOI: 10.1152/ajplung.2001.280.6.l1300] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mitochondrial (mt) DNA is damaged by free radicals. Recent data also show that there are cell type-dependent differences in mtDNA repair capacity. In this study, we explored the effects of xanthine oxidase (XO), which generates superoxide anion directly, and menadione, which enhances superoxide production within mitochondria, on mtDNA in pulmonary arterial (PA), microvascular (MV), and pulmonary venous (PV) endothelial cells (ECs). Both XO and menadione damaged mtDNA in the EC phenotypes, with a rank order of sensitivity of (from most to least) PV > PA > MV for XO and MV = PV > PA for menadione. Dimethylthiourea and deferoxamine blunted menadione- and XO-induced mtDNA damage, thus supporting a role for the iron-catalyzed formation of hydroxyl radical. Damage to the nuclear vascular endothelial growth factor gene was not detected with either XO or menadione. PAECs and MVECs, but not PVECs, repaired XO-induced mtDNA damage quickly. Menadione-induced mtDNA damage was avidly repaired in MVECs and PVECs, whereas repair in PAECs was slower. Analysis of mtDNA lesions at nucleotide resolution showed that damage patterns were similar between EC phenotypes, but there were disparities between XO and menadione in terms of the specific nucleotides damaged. These findings indicate that mtDNA in lung vascular ECs is damaged by XO- and menadione-derived free radicals and suggest that mtDNA damage and repair capacities differ between EC phenotypes.
Collapse
Affiliation(s)
- V Grishko
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | | | | | | | | |
Collapse
|
135
|
Lesnefsky EJ, Moghaddas S, Tandler B, Kerner J, Hoppel CL. Mitochondrial dysfunction in cardiac disease: ischemia--reperfusion, aging, and heart failure. J Mol Cell Cardiol 2001; 33:1065-89. [PMID: 11444914 DOI: 10.1006/jmcc.2001.1378] [Citation(s) in RCA: 526] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitochondria contribute to cardiac dysfunction and myocyte injury via a loss of metabolic capacity and by the production and release of toxic products. This article discusses aspects of mitochondrial structure and metabolism that are pertinent to the role of mitochondria in cardiac disease. Generalized mechanisms of mitochondrial-derived myocyte injury are also discussed, as are the strengths and weaknesses of experimental models used to study the contribution of mitochondria to cardiac injury. Finally, the involvement of mitochondria in the pathogenesis of specific cardiac disease states (ischemia, reperfusion, aging, ischemic preconditioning, and cardiomyopathy) is addressed.
Collapse
Affiliation(s)
- E J Lesnefsky
- Division of Cardiology, Case Western Reserve University and Geriatric Research, Education and Clinical Center, Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio 44106, USA.
| | | | | | | | | |
Collapse
|
136
|
Abstract
Since the identification of the first pathogenic mutations of mitochondrial DNA in 1988, a plethora of information about human mitochondrial diseases has been brought to light. Not surprisingly, many of these disorders affect the myocardium, because this tissue relies heavily upon oxidative metabolism. This review focuses on disorders of the respiratory chain, the only area of mammalian cellular metabolism under the control of two genomes, nuclear and mitochondrial. Consequently, defects of aerobic synthesis of adenosine triphosphate (ATP) can be due to mutations of either genome. We describe genetic mitochondrial cardiomyopathies and briefly review mouse models and the mitochondrial theory of presbycardia.
Collapse
Affiliation(s)
- M Hirano
- Department of Neurology, Columbia University College of Physicians & Surgeons, New York, New York, USA.
| | | | | |
Collapse
|
137
|
Hood DA. Invited Review: contractile activity-induced mitochondrial biogenesis in skeletal muscle. J Appl Physiol (1985) 2001; 90:1137-57. [PMID: 11181630 DOI: 10.1152/jappl.2001.90.3.1137] [Citation(s) in RCA: 495] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic contractile activity produces mitochondrial biogenesis in muscle. This adaptation results in a significant shift in adenine nucleotide metabolism, with attendant improvements in fatigue resistance. The vast majority of mitochondrial proteins are derived from the nuclear genome, necessitating the transcription of genes, the translation of mRNA into protein, the targeting of the protein to a mitochondrial compartment via the import machinery, and the assembly of multisubunit enzyme complexes in the respiratory chain or matrix. Putative signals involved in initiating this pathway of gene expression in response to contractile activity likely arise from combinations of accelerations in ATP turnover or imbalances between mitochondrial ATP synthesis and cellular ATP demand, and Ca(2+) fluxes. These rapid events are followed by the activation of exercise-responsive kinases, which phosphorylate proteins such as transcription factors, which subsequently bind to upstream regulatory regions in DNA, to alter transcription rates. Contractile activity increases the mRNA levels of nuclear-encoded proteins such as cytochrome c and mitochondrial transcription factor A (Tfam) and mRNA levels of upstream transcription factors like c-jun and nuclear respiratory factor-1 (NRF-1). mRNA level changes are often most evident during the postexercise recovery period, and they can occur as a result of contractile activity-induced increases in transcription or mRNA stability. Tfam is imported into mitochondria and controls the expression of mitochondrial DNA (mtDNA). mtDNA contributes only 13 protein products to the respiratory chain, but they are vital for electron transport and ATP synthesis. Contractile activity increases Tfam expression and accelerates its import into mitochondria, resulting in increased mtDNA transcription and replication. The result of this coordinated expression of the nuclear and the mitochondrial genomes, along with poorly understood changes in phospholipid synthesis, is an expansion of the muscle mitochondrial reticulum. Further understanding of 1) regulation of mtDNA expression, 2) upstream activators of NRF-1 and other transcription factors, 3) the identity of mRNA stabilizing proteins, and 4) potential of contractile activity-induced changes in apoptotic signals are warranted.
Collapse
Affiliation(s)
- D A Hood
- Department of Kinesiology and Health Science, York University, Toronto, Ontario, Canada M3J 1P3.
| |
Collapse
|
138
|
Abstract
Simultaneous or temporarily staggered affection of both the skeletal as well as the cardiac muscle (cardiac involvement, CI) is a frequent finding in primary myopathies (MPs). CI leads to impulse generation defects, impulse conduction defects, thickened myocardium, left ventriculalr hypertrabeculation, dilatation of the cardiac cavities, secondary valve insufficiency, reduction of coronary vasodilative reserve, intracardial thrombus formation, and heart failure with systolic and diastolic dysfunction. CI has been found in Duchenne muscular dystrophy (MD), Becker MD, Emery-Dreifuss MD, facioscapulohumeral MD, sarcoglycanopathies, myotubular congenital MD, myotonic dystrophies type 1 and 2, proximal myotonic myopathy, myoadenylate deaminase deficiency, glycogenosis type II, III, IV, VII and IX, carnitine deficiency, mitochondriopathy, desmin MP, nemaline MP, central core disease, multicore MP, congenital fiber-type disproportion MP, Barth syndrome, McLeod syndrome and Bethlem MP. Patients with any of the above-mentioned myopathies should be cardiologically investigated as soon as their diagnosis is established, since sufficient cardiac therapy improves CI in MPs and since management of these patients is influenced by the degree of CI.
Collapse
Affiliation(s)
- J Finsterer
- Ludwig Boltzmann Institute for Research in Epilepsy and Neuromuscular Disorders, Vienna, Austria.
| | | |
Collapse
|
139
|
Grossman LI, Schmidt TR, Wildman DE, Goodman M. Molecular evolution of aerobic energy metabolism in primates. Mol Phylogenet Evol 2001; 18:26-36. [PMID: 11161739 DOI: 10.1006/mpev.2000.0890] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
As part of our goal to reconstruct human evolution at the DNA level, we have been examining changes in the biochemical machinery for aerobic energy metabolism. We find that protein subunits of two of the electron transfer complexes, complex III and complex IV, and cytochrome c, the protein carrier that connects them, have all undergone a period of rapid protein evolution in the anthropoid lineage that ultimately led to humans. Indeed, subunit IV of cytochrome c oxidase (COX; complex IV) provides one of the best examples of positively selected changes of any protein studied. The rate of subunit IV evolution accelerated in our catarrhine ancestors in the period between 40 to 18 million years ago and then decelerated in the descendant hominid lineages, a pattern of rate changes indicative of positive selection of adaptive changes followed by purifying selection acting against further changes. Besides clear evidence that adaptive evolution occurred for cytochrome c and subunits of complexes III (e.g., cytochrome c(1)) and IV (e.g., COX2 and COX4), modest rate accelerations in the lineage that led to humans are seen for other subunits of both complexes. In addition the contractile muscle-specific isoform of COX subunit VIII became a pseudogene in an anthropoid ancestor of humans but appears to be a functional gene in the nonanthropoid primates. These changes in the aerobic energy complexes coincide with the expansion of the energy-dependent neocortex during the emergence of the higher primates. Discovering the biochemical adaptations suggested by molecular evolutionary analysis will be an exciting challenge.
Collapse
Affiliation(s)
- L I Grossman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | | | |
Collapse
|
140
|
Guertl B, Noehammer C, Hoefler G. Metabolic cardiomyopathies. Int J Exp Pathol 2000; 81:349-72. [PMID: 11298185 PMCID: PMC2517748 DOI: 10.1046/j.1365-2613.2000.00186.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2001] [Accepted: 01/29/2001] [Indexed: 01/27/2023] Open
Abstract
The energy needed by cardiac muscle to maintain proper function is supplied by adenosine Ariphosphate primarily (ATP) production through breakdown of fatty acids. Metabolic cardiomyopathies can be caused by disturbances in metabolism, for example diabetes mellitus, hypertrophy and heart failure or alcoholic cardiomyopathy. Deficiency in enzymes of the mitochondrial beta-oxidation show a varying degree of cardiac manifestation. Aberrations of mitochondrial DNA lead to a wide variety of cardiac disorders, without any obvious correlation between genotype and phenotype. A completely different pathogenetic model comprises cardiac manifestation of systemic metabolic diseases caused by deficiencies of various enzymes in a variety of metabolic pathways. Examples of these disorders are glycogen storage diseases (e.g. glycogenosis type II and III), lysosomal storage diseases (e.g. Niemann-Pick disease, Gaucher disease, I-cell disease, various types of mucopolysaccharidoses, GM1 gangliosidosis, galactosialidosis, carbohydrate-deficient glycoprotein syndromes and Sandhoff's disease). There are some systemic diseases which can also affect the heart, for example triosephosphate isomerase deficiency, hereditary haemochromatosis, CD 36 defect or propionic acidaemia.
Collapse
Affiliation(s)
- B Guertl
- Institute of Pathology, University of Graz, Austria.
| | | | | |
Collapse
|
141
|
Shin WS, Tanaka M, Suzuki J, Hemmi C, Toyo-oka T. A novel homoplasmic mutation in mtDNA with a single evolutionary origin as a risk factor for cardiomyopathy. Am J Hum Genet 2000; 67:1617-20. [PMID: 11038324 PMCID: PMC1287941 DOI: 10.1086/316896] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2000] [Accepted: 09/25/2000] [Indexed: 11/03/2022] Open
Abstract
To clarify the relationship between variation in mtDNA and the development of cardiomyopathy (CM), the complete sequences of mtDNAs of two brothers with dilated CM were compared with those of 181 patients who had CM and with those of 168 control subjects. Five patients with CM shared a novel homoplasmic point mutation (G12192A tRNA(His)), and all of them demonstrated the evolutionarily related D-loop sequence. The results suggest that this novel mutation originated from the same ancestor and that its presence strongly predisposes carriers to CM.
Collapse
Affiliation(s)
- W S Shin
- Department of Cardiovascular Medicine, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan.
| | | | | | | | | |
Collapse
|
142
|
Valnot I, Osmond S, Gigarel N, Mehaye B, Amiel J, Cormier‐Daire V, Munnich A, Bonnefont J, Rustin P, Rotig A. Mutations of theSCO1Gene in Mitochondrial CytochromecOxidase Deficiency with Neonatal‐Onset Hepatic Failure and Encephalopathy. Am J Hum Genet 2000. [DOI: 10.1086/321202] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
143
|
Murdock DG, Christacos NC, Wallace DC. The age-related accumulation of a mitochondrial DNA control region mutation in muscle, but not brain, detected by a sensitive PNA-directed PCR clamping based method. Nucleic Acids Res 2000; 28:4350-5. [PMID: 11058135 PMCID: PMC113143 DOI: 10.1093/nar/28.21.4350] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2000] [Revised: 09/13/2000] [Accepted: 09/13/2000] [Indexed: 11/14/2022] Open
Abstract
The peptide nucleic acid (PNA)-directed PCR clamping technique was modified and applied to the detection of mitochondrial DNA mutations with low heteroplasmy. This method is extremely specific, eliminating false positives in the absence of mutant molecules, and highly sensitive, being capable of detecting mutations at the level of 0.1% of total molecules. Moreover, the reaction can be multiplexed to identify more than one mutation per reaction. Using this technique, the levels of three point mutations, the tRNA(Leu(UUA)) 3243 mutation causing mitochondrial encephalopathy, lactic acidosis and stroke-like episodes (MELAS); the tRNA(Lys) 8344 mutation causing myoclonic epilepsy and ragged red fibers (MERRF); and the nucleotide position 414 mutation adjacent to the control region promoters, were evaluated in human brain and muscle from individuals of various ages. While none of the mutations were detected in brain samples from individuals ranging in age from 23 to 93, the 414 mutation could be detected in muscle from individuals 30 years and older. These data demonstrate that the 3243 and 8344 mutations do not accumulate with age to levels greater than 0.1% in brain and muscle. By contrast, the 414 mutation accumulates with age in normal human muscle, though not in brain. The reason for the striking absence of the 414 mutation in aging brain is unknown.
Collapse
MESH Headings
- Acidosis, Lactic/genetics
- Adult
- Aged
- Aged, 80 and over
- Aging/genetics
- Aging/psychology
- Brain/growth & development
- Brain/metabolism
- DNA Mutational Analysis/methods
- DNA, Mitochondrial/genetics
- Epilepsies, Myoclonic/genetics
- Female
- Humans
- Male
- Middle Aged
- Muscle Development
- Muscle, Skeletal/growth & development
- Muscle, Skeletal/metabolism
- Peptide Nucleic Acids/genetics
- Plasmids/genetics
- Point Mutation/genetics
- Polymerase Chain Reaction/methods
- Promoter Regions, Genetic/genetics
- RNA, Transfer, Leu/genetics
- RNA, Transfer, Lys/genetics
- Sensitivity and Specificity
- Stroke/genetics
- Templates, Genetic
Collapse
Affiliation(s)
- D G Murdock
- Center for Molecular Medicine, Emory University School of Medicine, 1462 Clifton Road, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
144
|
Valnot I, Osmond S, Gigarel N, Mehaye B, Amiel J, Cormier-Daire V, Munnich A, Bonnefont JP, Rustin P, Rötig A. Mutations of the SCO1 gene in mitochondrial cytochrome c oxidase deficiency with neonatal-onset hepatic failure and encephalopathy. Am J Hum Genet 2000; 67:1104-9. [PMID: 11013136 PMCID: PMC1288552 DOI: 10.1016/s0002-9297(07)62940-1] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2000] [Accepted: 09/08/2000] [Indexed: 10/22/2022] Open
Abstract
Cytochrome c oxidase (COX) catalyzes both electron transfer from cytochrome c to molecular oxygen and the concomitant vectorial proton pumping across the inner mitochondrial membrane. Studying a large family with multiple cases of neonatal ketoacidotic comas and isolated COX deficiency, we have mapped the disease locus to chromosome 17p13.1, in a region encompassing two candidate genes involved in COX assembly-namely, SCO1 and COX10. Mutation screening revealed compound heterozygosity for SCO1 gene mutations in the patients. The mutated allele, inherited from the father, harbored a 2-bp frameshift deletion (DeltaGA; nt 363-364) resulting in both a premature stop codon and a highly unstable mRNA. The maternally inherited mutation (C520T) changed a highly conserved proline into a leucine in the protein (P174L). This proline, adjacent to the CxxxC copper-binding domain of SCO1, is likely to play a crucial role in the tridimentional structure of the domain. Interestingly, the clinical presentation of SCO1-deficient patients markedly differs from that of patients harboring mutations in other COX assembly and/or maturation genes.
Collapse
Affiliation(s)
- I Valnot
- Unité de Recherches sur les Handicaps Génétiques de l'Enfant, INSERM U-393, Hôpital Necker-Enfants Malades, 75743 Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|