101
|
Mathieu-Rivet E, Scholz M, Arias C, Dardelle F, Schulze S, Le Mauff F, Teo G, Hochmal AK, Blanco-Rivero A, Loutelier-Bourhis C, Kiefer-Meyer MC, Fufezan C, Burel C, Lerouge P, Martinez F, Bardor M, Hippler M. Exploring the N-glycosylation pathway in Chlamydomonas reinhardtii unravels novel complex structures. Mol Cell Proteomics 2013; 12:3160-3183. [PMID: 23912651 PMCID: PMC3820931 DOI: 10.1074/mcp.m113.028191] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 08/01/2013] [Indexed: 01/13/2023] Open
Abstract
Chlamydomonas reinhardtii is a green unicellular eukaryotic model organism for studying relevant biological and biotechnological questions. The availability of genomic resources and the growing interest in C. reinhardtii as an emerging cell factory for the industrial production of biopharmaceuticals require an in-depth analysis of protein N-glycosylation in this organism. Accordingly, we used a comprehensive approach including genomic, glycomic, and glycoproteomic techniques to unravel the N-glycosylation pathway of C. reinhardtii. Using mass-spectrometry-based approaches, we found that both endogenous soluble and membrane-bound proteins carry predominantly oligomannosides ranging from Man-2 to Man-5. In addition, minor complex N-linked glycans were identified as being composed of partially 6-O-methylated Man-3 to Man-5 carrying one or two xylose residues. These findings were supported by results from a glycoproteomic approach that led to the identification of 86 glycoproteins. Here, a combination of in-source collision-induced dissodiation (CID) for glycan fragmentation followed by mass tag-triggered CID for peptide sequencing and PNGase F treatment of glycopeptides in the presence of (18)O-labeled water in conjunction with CID mass spectrometric analyses were employed. In conclusion, our data support the notion that the biosynthesis and maturation of N-linked glycans in the endoplasmic reticulum and Golgi apparatus occur via a GnT I-independent pathway yielding novel complex N-linked glycans that maturate differently from their counterparts in land plants.
Collapse
Affiliation(s)
- Elodie Mathieu-Rivet
- From the ‡Université de Rouen, Laboratoire Glyco-MEV, EA 4358, Institut de Recherche et d'Innovation Biomédicale (IRIB), 76821 Mont-Saint-Aignan Cedex, France
| | - Martin Scholz
- ¶Institute of Plant Biology and Biotechnology, Schlossplatz 8, University of Münster, D-48143, Germany
| | - Carolina Arias
- ‖Comisión Docente de Fisiología Vegetal, Departamento de Biología, Edificio de Biología Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Flavien Dardelle
- From the ‡Université de Rouen, Laboratoire Glyco-MEV, EA 4358, Institut de Recherche et d'Innovation Biomédicale (IRIB), 76821 Mont-Saint-Aignan Cedex, France
| | - Stefan Schulze
- ¶Institute of Plant Biology and Biotechnology, Schlossplatz 8, University of Münster, D-48143, Germany
| | - François Le Mauff
- ‡‡Bioprocessing Technology Institute, Agency for Science Technology and Research (A*STAR), 20 Biopolis Way, #06-01, Centros, Singapore, 138668
| | - Gavin Teo
- ‡‡Bioprocessing Technology Institute, Agency for Science Technology and Research (A*STAR), 20 Biopolis Way, #06-01, Centros, Singapore, 138668
| | - Ana Karina Hochmal
- ¶Institute of Plant Biology and Biotechnology, Schlossplatz 8, University of Münster, D-48143, Germany
| | - Amaya Blanco-Rivero
- ‖Comisión Docente de Fisiología Vegetal, Departamento de Biología, Edificio de Biología Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Corinne Loutelier-Bourhis
- §§Université de Rouen, Laboratoire COBRA UMR 6014 & FR 3038, INSA de Rouen, 1 Rue Tesnière, 76821 Mont St Aignan Cedex, France
| | - Marie-Christine Kiefer-Meyer
- From the ‡Université de Rouen, Laboratoire Glyco-MEV, EA 4358, Institut de Recherche et d'Innovation Biomédicale (IRIB), 76821 Mont-Saint-Aignan Cedex, France
| | - Christian Fufezan
- ¶Institute of Plant Biology and Biotechnology, Schlossplatz 8, University of Münster, D-48143, Germany
| | - Carole Burel
- From the ‡Université de Rouen, Laboratoire Glyco-MEV, EA 4358, Institut de Recherche et d'Innovation Biomédicale (IRIB), 76821 Mont-Saint-Aignan Cedex, France
| | - Patrice Lerouge
- From the ‡Université de Rouen, Laboratoire Glyco-MEV, EA 4358, Institut de Recherche et d'Innovation Biomédicale (IRIB), 76821 Mont-Saint-Aignan Cedex, France
| | - Flor Martinez
- ‖Comisión Docente de Fisiología Vegetal, Departamento de Biología, Edificio de Biología Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Muriel Bardor
- From the ‡Université de Rouen, Laboratoire Glyco-MEV, EA 4358, Institut de Recherche et d'Innovation Biomédicale (IRIB), 76821 Mont-Saint-Aignan Cedex, France
| | - Michael Hippler
- ¶Institute of Plant Biology and Biotechnology, Schlossplatz 8, University of Münster, D-48143, Germany
| |
Collapse
|
102
|
|
103
|
Rasala BA, Barrera DJ, Ng J, Plucinak TM, Rosenberg JN, Weeks DP, Oyler GA, Peterson TC, Haerizadeh F, Mayfield SP. Expanding the spectral palette of fluorescent proteins for the green microalga Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:545-56. [PMID: 23521393 DOI: 10.1111/tpj.12165] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 02/14/2013] [Accepted: 02/19/2013] [Indexed: 05/21/2023]
Abstract
Fluorescent proteins (FPs) have become essential tools for a growing number of fields in biology. However, such tools have not been widely adopted for use in microalgal research. The aim of this study was to express and compare six FPs (blue mTagBFP, cyan mCerulean, green CrGFP, yellow Venus, orange tdTomato and red mCherry) in the popular model microalga Chlamydomonas reinhardtii. To circumvent the transgene silencing that often occurs in C. reinhardtii, the FPs were expressed from the nuclear genome as transcriptional fusions with the sh-ble antibiotic resistance gene, with the foot and mouth disease virus 2A self-cleaving sequence placed between the coding sequences. All ble-2A-FPs tested are well-expressed and efficiently processed to yield mature, unfused FPs that localize throughout the cytoplasm. The fluorescence signals of each FP were detectable in whole cells by fluorescence microplate reader analysis, live-cell fluorescence microscopy, and flow cytometry. Furthermore, we report a comparative analysis of fluorescence levels relative to auto-fluorescence for the chosen FPs. Finally, we demonstrate that the ble-2A expression vector may be used to fluorescently label an endogenous protein (α-tubulin). We show that the mCerulean-α-tubulin fusion protein localizes to the cytoskeleton and flagella, as expected, and that cells containing this fusion protein had normal cellular function. Overall, our results indicate that, by use of the ble-2A nuclear expression construct, a wide array of FP tools and technologies may be applied to microalgal research, opening up many possibilities for microalgal biology and biotechnology.
Collapse
Affiliation(s)
- Beth A Rasala
- The San Diego Center for Algae Biotechnology and Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0368, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Demurtas OC, Massa S, Ferrante P, Venuti A, Franconi R, Giuliano G. A Chlamydomonas-derived Human Papillomavirus 16 E7 vaccine induces specific tumor protection. PLoS One 2013; 8:e61473. [PMID: 23626690 PMCID: PMC3634004 DOI: 10.1371/journal.pone.0061473] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 03/11/2013] [Indexed: 11/29/2022] Open
Abstract
Background The E7 protein of the Human Papillomavirus (HPV) type 16, being involved in malignant cellular transformation, represents a key antigen for developing therapeutic vaccines against HPV-related lesions and cancers. Recombinant production of this vaccine antigen in an active form and in compliance with good manufacturing practices (GMP) plays a crucial role for developing effective vaccines. E7-based therapeutic vaccines produced in plants have been shown to be active in tumor regression and protection in pre-clinical models. However, some drawbacks of in whole-plant vaccine production encouraged us to explore the production of the E7-based therapeutic vaccine in Chlamydomonas reinhardtii, an organism easy to grow and transform and fully amenable to GMP guidelines. Methodology/Principal Findings An expression cassette encoding E7GGG, a mutated, attenuated form of the E7 oncoprotein, alone or as a fusion with affinity tags (His6 or FLAG), under the control of the C. reinhardtii chloroplast psbD 5′ UTR and the psbA 3′ UTR, was introduced into the C. reinhardtii chloroplast genome by homologous recombination. The protein was mostly soluble and reached 0.12% of total soluble proteins. Affinity purification was optimized and performed for both tagged forms. Induction of specific anti-E7 IgGs and E7-specific T-cell proliferation were detected in C57BL/6 mice vaccinated with total Chlamydomonas extract and with affinity-purified protein. High levels of tumor protection were achieved after challenge with a tumor cell line expressing the E7 protein. Conclusions The C. reinhardtii chloroplast is a suitable expression system for the production of the E7GGG protein, in a soluble, immunogenic form. The production in contained and sterile conditions highlights the potential of microalgae as alternative platforms for the production of vaccines for human uses.
Collapse
Affiliation(s)
- Olivia C. Demurtas
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, Rome, Italy
- Ylichron S.r.l., ENEA Casaccia Research Center, Rome, Italy
| | - Silvia Massa
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, Rome, Italy
| | - Paola Ferrante
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, Rome, Italy
| | - Aldo Venuti
- Laboratory of Virology, Regina Elena National Cancer Institute, Rome, Italy
| | - Rosella Franconi
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, Rome, Italy
- * E-mail: (RF); (GG)
| | - Giovanni Giuliano
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, Rome, Italy
- * E-mail: (RF); (GG)
| |
Collapse
|
105
|
Alga-produced cholera toxin-Pfs25 fusion proteins as oral vaccines. Appl Environ Microbiol 2013; 79:3917-25. [PMID: 23603678 DOI: 10.1128/aem.00714-13] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Infectious diseases disproportionately affect indigent regions and are the greatest cause of childhood mortality in developing countries. Practical, low-cost vaccines for use in these countries are paramount to reducing disease burdens and concomitant poverty. Algae are a promising low-cost system for producing vaccines that can be orally delivered, thereby avoiding expensive purification and injectable delivery. We engineered the chloroplast of the eukaryotic alga Chlamydomonas reinhardtii to produce a chimeric protein consisting of the 25-kDa Plasmodium falciparum surface protein (Pfs25) fused to the β subunit of the cholera toxin (CtxB) to investigate an alga-based whole-cell oral vaccine. Pfs25 is a promising malaria transmission-blocking vaccine candidate that has been difficult to produce in traditional recombinant systems due to its structurally complex tandem repeats of epidermal growth factor-like domains. The noncatalytic CtxB domain of the cholera holotoxin assembles into a pentameric structure and acts as a mucosal adjuvant by binding GM1 ganglioside receptors on gut epithelial cells. We demonstrate that CtxB-Pfs25 accumulates as a soluble, properly folded and functional protein within algal chloroplasts, and it is stable in freeze-dried alga cells at ambient temperatures. In mice, oral vaccination using freeze-dried algae that produce CtxB-Pfs25 elicited CtxB-specific serum IgG antibodies and both CtxB- and Pfs25-specific secretory IgA antibodies. These data suggest that algae are a promising system for production and oral delivery of vaccine antigens, but as an orally delivered adjuvant, CtxB is best suited for eliciting secretory IgA antibodies for vaccine antigens against pathogens that invade mucosal surfaces using this strategy.
Collapse
|
106
|
Tucker SC, Honn KV. Emerging targets in lipid-based therapy. Biochem Pharmacol 2013; 85:673-688. [PMID: 23261527 PMCID: PMC4106802 DOI: 10.1016/j.bcp.2012.11.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 11/29/2012] [Accepted: 11/30/2012] [Indexed: 02/07/2023]
Abstract
The use of prostaglandins and NSAIDS in the clinic has proven that lipid mediators and their associated pathways make attractive therapeutic targets. When contemplating therapies involving lipid pathways, several basic agents come to mind. There are the enzymes and accessory proteins that lead to the metabolism of lipid substrates, provided through diet or through actions of lipases, the subsequent lipid products, and finally the lipid sensors or receptors. There is abundant evidence that molecules along this lipid continuum can serve as prognostic and diagnostic indicators and are in fact viable therapeutic targets. Furthermore, lipids themselves can be used as therapeutics. Despite this, the vernacular dialog pertaining to "biomarkers" does not routinely include mention of lipids, though this is rapidly changing. Collectively these agents are becoming more appreciated for their respective roles in diverse disease processes from cancer to preterm labor and are receiving their due appreciation after decades of ground work in the lipid field. By relating examples of disease processes that result from dysfunction along the lipid continuum, as well as examples of lipid therapies and emerging technologies, this review is meant to inspire further reading and discovery.
Collapse
Affiliation(s)
- Stephanie C Tucker
- Department of Pathology, Wayne State University School of Medicine, and Karmanos Cancer Institute, Detroit, MI 48202, USA.
| | - Kenneth V Honn
- Department of Pathology, Wayne State University School of Medicine, and Karmanos Cancer Institute, Detroit, MI 48202, USA; Department of Chemistry, Wayne State University School of Medicine, and Karmanos Cancer Institute, Detroit, MI 48202, USA.
| |
Collapse
|
107
|
Stable plastid transformation for high-level recombinant protein expression: promises and challenges. J Biomed Biotechnol 2012; 2012:158232. [PMID: 23093835 PMCID: PMC3474547 DOI: 10.1155/2012/158232] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 08/10/2012] [Accepted: 08/24/2012] [Indexed: 12/22/2022] Open
Abstract
Plants are a promising expression system for the production of recombinant proteins. However, low protein productivity remains a major obstacle that limits extensive commercialization of whole plant and plant cell bioproduction platform. Plastid genetic engineering offers several advantages, including high levels of transgenic expression, transgenic containment via maternal inheritance, and multigene expression in a single transformation event. In recent years, the development of optimized expression strategies has given a huge boost to the exploitation of plastids in molecular farming. The driving forces behind the high expression level of plastid bioreactors include codon optimization, promoters and UTRs, genotypic modifications, endogenous enhancer and regulatory elements, posttranslational modification, and proteolysis. Exciting progress of the high expression level has been made with the plastid-based production of two particularly important classes of pharmaceuticals: vaccine antigens, therapeutic proteins, and antibiotics and enzymes. Approaches to overcome and solve the associated challenges of this culture system that include low transformation frequencies, the formation of inclusion bodies, and purification of recombinant proteins will also be discussed.
Collapse
|
108
|
De Marchis F, Pompa A, Bellucci M. Plastid proteostasis and heterologous protein accumulation in transplastomic plants. PLANT PHYSIOLOGY 2012; 160:571-81. [PMID: 22872774 PMCID: PMC3461539 DOI: 10.1104/pp.112.203778] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
|
109
|
Corchero JL, Gasser B, Resina D, Smith W, Parrilli E, Vázquez F, Abasolo I, Giuliani M, Jäntti J, Ferrer P, Saloheimo M, Mattanovich D, Schwartz S, Tutino ML, Villaverde A. Unconventional microbial systems for the cost-efficient production of high-quality protein therapeutics. Biotechnol Adv 2012; 31:140-53. [PMID: 22985698 DOI: 10.1016/j.biotechadv.2012.09.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 09/04/2012] [Accepted: 09/07/2012] [Indexed: 12/18/2022]
Abstract
Both conventional and innovative biomedical approaches require cost-effective protein drugs with high therapeutic potency, improved bioavailability, biocompatibility, stability and pharmacokinetics. The growing longevity of the human population, the increasing incidence and prevalence of age-related diseases and the better comprehension of genetic-linked disorders prompt to develop natural and engineered drugs addressed to fulfill emerging therapeutic demands. Conventional microbial systems have been for long time exploited to produce biotherapeutics, competing with animal cells due to easier operation and lower process costs. However, both biological platforms exhibit important drawbacks (mainly associated to intracellular retention of the product, lack of post-translational modifications and conformational stresses), that cannot be overcome through further strain optimization merely due to physiological constraints. The metabolic diversity among microorganisms offers a spectrum of unconventional hosts, that, being able to bypass some of these weaknesses, are under progressive incorporation into production pipelines. In this review we describe the main biological traits and potentials of emerging bacterial, yeast, fungal and microalgae systems, by comparing selected leading species with well established conventional organisms with a long run in protein drug production.
Collapse
|
110
|
Hempel F, Maier UG. An engineered diatom acting like a plasma cell secreting human IgG antibodies with high efficiency. Microb Cell Fact 2012; 11:126. [PMID: 22970838 PMCID: PMC3503769 DOI: 10.1186/1475-2859-11-126] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 09/05/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although there are many different expression systems for recombinant production of pharmaceutical proteins, many of these suffer from drawbacks such as yield, cost, complexity of purification, and possible contamination with human pathogens. Microalgae have enormous potential for diverse biotechnological applications and currently attract much attention in the biofuel sector. Still underestimated, though, is the idea of using microalgae as solar-fueled expression system for the production of recombinant proteins. RESULTS In this study, we show for the first time that completely assembled and functional human IgG antibodies can not only be expressed to high levels in algal systems, but also secreted very efficiently into the culture medium. We engineered the diatom Phaeodactylum tricornutum to synthesize and secrete a human IgG antibody against the Hepatitis B Virus surface protein. As the diatom P. tricornutum is not known to naturally secrete many endogenous proteins, the secreted antibodies are already very pure making extensive purification steps redundant and production extremely cost efficient. CONCLUSIONS Microalgae combine rapid growth rates with all the advantages of eukaryotic expression systems, and offer great potential for solar-powered, low cost production of pharmaceutical proteins.
Collapse
Affiliation(s)
- Franziska Hempel
- LOEWE Center for Synthetic Microbiology-SYNMIKRO, Hans-Meerwein-Strasse, Marburg D-35032, Germany.
| | | |
Collapse
|
111
|
Blatti JL, Beld J, Behnke CA, Mendez M, Mayfield SP, Burkart MD. Manipulating fatty acid biosynthesis in microalgae for biofuel through protein-protein interactions. PLoS One 2012; 7:e42949. [PMID: 23028438 PMCID: PMC3441505 DOI: 10.1371/journal.pone.0042949] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 07/16/2012] [Indexed: 02/04/2023] Open
Abstract
Microalgae are a promising feedstock for renewable fuels, and algal metabolic engineering can lead to crop improvement, thus accelerating the development of commercially viable biodiesel production from algae biomass. We demonstrate that protein-protein interactions between the fatty acid acyl carrier protein (ACP) and thioesterase (TE) govern fatty acid hydrolysis within the algal chloroplast. Using green microalga Chlamydomonas reinhardtii (Cr) as a model, a structural simulation of docking CrACP to CrTE identifies a protein-protein recognition surface between the two domains. A virtual screen reveals plant TEs with similar in silico binding to CrACP. Employing an activity-based crosslinking probe designed to selectively trap transient protein-protein interactions between the TE and ACP, we demonstrate in vitro that CrTE must functionally interact with CrACP to release fatty acids, while TEs of vascular plants show no mechanistic crosslinking to CrACP. This is recapitulated in vivo, where overproduction of the endogenous CrTE increased levels of short-chain fatty acids and engineering plant TEs into the C. reinhardtii chloroplast did not alter the fatty acid profile. These findings highlight the critical role of protein-protein interactions in manipulating fatty acid biosynthesis for algae biofuel engineering as illuminated by activity-based probes.
Collapse
Affiliation(s)
- Jillian L. Blatti
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Joris Beld
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Craig A. Behnke
- Sapphire Energy Inc., San Diego, California, United States of America
| | - Michael Mendez
- Sapphire Energy Inc., San Diego, California, United States of America
| | - Stephen P. Mayfield
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Michael D. Burkart
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
112
|
Ambrogelly A, Liu YH, Li H, Mengisen S, Yao B, Xu W, Cannon-Carlson S. Characterization of antibody variants during process development: the tale of incomplete processing of N-terminal secretion peptide. MAbs 2012; 4:701-9. [PMID: 22932441 DOI: 10.4161/mabs.21614] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Monoclonal antibodies (mAbs) have emerged as one of the most important classes of biotherapeutics, although development of these molecules is long and arduous. A production cell line must be established, and growth conditions for the cells and purification processes for the product must be optimized. Integration of the appropriate analytical strategies in these activities is the cornerstone of Quality by Design and in-process control approaches are encouraged by the Food and Drug Administration. We report here the development of a reversed phase-high performance liquid chromatography (RP-HPLC) method to follow the presence of a mAb product-related variant observed during the purification process development. The variant eluted as a later peak on RP-HPLC, compared with the mAb control (3.25 min and 2.85 min, respectively). We isolated this hydrophobic variant and further analyzed it by mass spectrometry. We identified the variant as a mAb with an incompletely processed leader sequence attached to the N-terminus of one of the two heavy chains.
Collapse
|
113
|
Robust expression and secretion of Xylanase1 in Chlamydomonas reinhardtii by fusion to a selection gene and processing with the FMDV 2A peptide. PLoS One 2012; 7:e43349. [PMID: 22937037 PMCID: PMC3427385 DOI: 10.1371/journal.pone.0043349] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 07/19/2012] [Indexed: 02/06/2023] Open
Abstract
Microalgae have recently received attention as a potential low-cost host for the production of recombinant proteins and novel metabolites. However, a major obstacle to the development of algae as an industrial platform has been the poor expression of heterologous genes from the nuclear genome. Here we describe a nuclear expression strategy using the foot-and-mouth-disease-virus 2A self-cleavage peptide to transcriptionally fuse heterologous gene expression to antibiotic resistance in Chlamydomonas reinhardtii. We demonstrate that strains transformed with ble-2A-GFP are zeocin-resistant and accumulate high levels of GFP that is properly ‘cleaved’ at the FMDV 2A peptide resulting in monomeric, cytosolic GFP that is easily detectable by in-gel fluorescence analysis or fluorescent microscopy. Furthermore, we used our ble2A nuclear expression vector to engineer the heterologous expression of the industrial enzyme, xylanase. We demonstrate that linking xyn1 expression to ble2A expression on the same open reading frame led to a dramatic (∼100-fold) increase in xylanase activity in cells lysates compared to the unlinked construct. Finally, by inserting an endogenous secretion signal between the ble2A and xyn1 coding regions, we were able to target monomeric xylanase for secretion. The novel microalgae nuclear expression strategy described here enables the selection of transgenic lines that are efficiently expressing the heterologous gene-of-interest and should prove valuable for basic research as well as algal biotechnology.
Collapse
|
114
|
Barbosa Viana AA, Pelegrini PB, Grossi-de-Sá MF. Plant biofarming: Novel insights for peptide expression in heterologous systems. Biopolymers 2012. [DOI: 10.1002/bip.22089] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
115
|
Haematococcus as a promising cell factory to produce recombinant pharmaceutical proteins. Mol Biol Rep 2012; 39:9931-9. [DOI: 10.1007/s11033-012-1861-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 06/13/2012] [Indexed: 10/28/2022]
|
116
|
Noor-Mohammadi S, Pourmir A, Johannes TW. Method to assemble and integrate biochemical pathways into the chloroplast genome ofChlamydomonas reinhardtii. Biotechnol Bioeng 2012; 109:2896-903. [DOI: 10.1002/bit.24569] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 05/14/2012] [Accepted: 05/21/2012] [Indexed: 11/08/2022]
|
117
|
Jones CS, Luong T, Hannon M, Tran M, Gregory JA, Shen Z, Briggs SP, Mayfield SP. Heterologous expression of the C-terminal antigenic domain of the malaria vaccine candidate Pfs48/45 in the green algae Chlamydomonas reinhardtii. Appl Microbiol Biotechnol 2012; 97:1987-95. [DOI: 10.1007/s00253-012-4071-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 03/28/2012] [Accepted: 03/29/2012] [Indexed: 12/18/2022]
|
118
|
Gregory JA, Li F, Tomosada LM, Cox CJ, Topol AB, Vinetz JM, Mayfield S. Algae-produced Pfs25 elicits antibodies that inhibit malaria transmission. PLoS One 2012; 7:e37179. [PMID: 22615931 PMCID: PMC3353897 DOI: 10.1371/journal.pone.0037179] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 04/17/2012] [Indexed: 12/21/2022] Open
Abstract
Subunit vaccines are significantly more expensive to produce than traditional vaccines because they are based primarily on recombinant proteins that must be purified from the expression system. Despite the increased cost, subunit vaccines are being developed because they are safe, effective, and can elicit antibodies that confer protection against diseases that are not currently vaccine-preventable. Algae are an attractive platform for producing subunit vaccines because they are relatively inexpensive to grow, genetically tractable, easily scaled to large volumes, have a short generation time, and are devoid of inflammatory, viral, or prion contaminants often present in other systems. We tested whether algal chloroplasts can produce malaria transmission blocking vaccine candidates, Plasmodium falciparum surface protein 25 (Pfs25) and 28 (Pfs28). Antibodies that recognize Pfs25 and Pfs28 disrupt the sexual development of parasites within the mosquito midgut, thus preventing transmission of malaria from one human host to the next. These proteins have been difficult to produce in traditional recombinant systems because they contain tandem repeats of structurally complex epidermal growth factor-like domains, which cannot be produced in bacterial systems, and because they are not glycosylated, so they must be modified for production in eukaryotic systems. Production in algal chloroplasts avoids these issues because chloroplasts can fold complex eukaryotic proteins and do not glycosylate proteins. Here we demonstrate that algae are the first recombinant system to successfully produce an unmodified and aglycosylated version of Pfs25 or Pfs28. These antigens are structurally similar to the native proteins and antibodies raised to these recombinant proteins recognize Pfs25 and Pfs28 from P. falciparum. Furthermore, antibodies to algae-produced Pfs25 bind the surface of in-vitro cultured P. falciparum sexual stage parasites and exhibit transmission blocking activity. Thus, algae are promising organisms for producing cysteine-disulfide-containing malaria transmission blocking vaccine candidate proteins.
Collapse
Affiliation(s)
- James A. Gregory
- Division of Biological Sciences, and the San Diego Center for Algae Biotechnology, University of California San Diego, California, United States of America
| | - Fengwu Li
- Division of Infectious Disease, Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Lauren M. Tomosada
- Division of Biological Sciences, and the San Diego Center for Algae Biotechnology, University of California San Diego, California, United States of America
| | - Chesa J. Cox
- Division of Biological Sciences, and the San Diego Center for Algae Biotechnology, University of California San Diego, California, United States of America
| | - Aaron B. Topol
- Division of Biological Sciences, and the San Diego Center for Algae Biotechnology, University of California San Diego, California, United States of America
| | - Joseph M. Vinetz
- Division of Infectious Disease, Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Stephen Mayfield
- Division of Biological Sciences, and the San Diego Center for Algae Biotechnology, University of California San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
119
|
Rosales-Mendoza S, Paz-Maldonado LMT, Soria-Guerra RE. Chlamydomonas reinhardtii as a viable platform for the production of recombinant proteins: current status and perspectives. PLANT CELL REPORTS 2012; 31:479-94. [PMID: 22080228 DOI: 10.1007/s00299-011-1186-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 10/31/2011] [Accepted: 11/01/2011] [Indexed: 05/03/2023]
Abstract
Chlamydomonas reinhardtii has many advantages compared with traditional systems for the molecular farming of recombinant proteins. These include low production costs, rapid scalability at pilot level, absence of human pathogens and the ability to fold and assemble complex proteins accurately. Currently, the successful expression of several proteins with pharmaceutical relevance has been reported from the nuclear and the chloroplastic genome of this alga, demonstrating its usefulness for biotechnological applications. However, several factors affect the level of recombinant protein expression in Chlamydomonas such as enhancer elements, codon dependency, sensitivity to proteases and transformation-associated genotypic modification. The present review outlines a number of strategies to increase protein yields and summarizes recent achievements in algal protein production including biopharmaceuticals such as vaccines, antibodies, hormones and enzymes with implications on health-related approaches. The current status of bioreactor developments for algal culture and the challenges of scale-up and optimization processes are also discussed.
Collapse
Affiliation(s)
- Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78210 San Luis Potosí, SLP, Mexico.
| | | | | |
Collapse
|
120
|
Thanh T, Chi VTQ, Omar H, Abdullah MP, Napis S. Sequence analysis and potentials of the native RbcS promoter in the development of an alternative eukaryotic expression system using green Microalga Ankistrodesmus convolutus. Int J Mol Sci 2012; 13:2676-2691. [PMID: 22489117 PMCID: PMC3317680 DOI: 10.3390/ijms13032676] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 02/02/2012] [Accepted: 02/05/2012] [Indexed: 12/17/2022] Open
Abstract
The availability of highly active homologous promoters is critical in the development of a transformation system and improvement of the transformation efficiency. To facilitate transformation of green microalga Ankistrodesmus convolutus which is considered as a potential candidate for many biotechnological applications, a highly-expressed native promoter sequence of ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit (AcRbcS) has been used to drive the expression of β-glucuronidase (gusA) gene in this microalga. Besides the determination of the transcription start site by 5'-RACE, sequence analysis revealed that AcRbcS promoter contained consensus TATA-box and several putative cis-acting elements, including some representative light-regulatory elements (e.g., G-box, Sp1 motif and SORLIP2), which confer light responsiveness in plants, and several potential conserved motifs (e.g., CAGAC-motif, YCCYTGG-motifs and CACCACA-motif), which may be involved in light responsiveness of RbcS gene in green microalgae. Using AcRbcS promoter::gusA translational fusion, it was demonstrated that this promoter could function as a light-regulated promoter in transgenic A. convolutus, which suggested that the isolated AcRbcS promoter was a full and active promoter sequence that contained all cis-elements required for developmental and light-mediated control of gene expression, and this promoter can be used to drive the expression of heterologous genes in A. convolutus. This achievement therefore advances the development of A. convolutus as an alternative expression system for the production of recombinant proteins. This is the first report on development of gene manipulation system for unicellular green alga A. convolutus.
Collapse
Affiliation(s)
| | | | | | | | - Suhaimi Napis
- Author to whom correspondence should be addressed; E-Mail: or ; Tel.: +603-8947-1207; Fax: +603-8948-3514
| |
Collapse
|
121
|
Rasala BA, Mayfield SP. The microalga Chlamydomonas reinhardtii as a platform for the production of human protein therapeutics. Bioeng Bugs 2011; 2:50-4. [PMID: 21636988 DOI: 10.4161/bbug.2.1.13423] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Microalgae are a diverse group of eukaryotic photosynthetic microorganisms. While microalgae play a crucial role in global carbon fixation and oxygen evolution, these organisms have recently gained much attention for their potential role in biotechnological and industrial applications, such as the production of biofuels. We investigated the potential of the microalga Chlamydomonas reinhardtii to be a platform for the production of human therapeutic proteins. C. reinhardtii is a unicellular freshwater green alga that has served as a popular model alga for physiological, molecular, biochemical and genetic studies. As such, the molecular toolkit for this microorganism is highly developed, including well-established methods for genetic transformation and recombinant gene expression. We transformed the chloroplast genome of C. reinhardtii with seven unrelated genes encoding for current or potential human therapeutic proteins and found that four of these genes supported protein accumulation to levels that are sufficient for commercial production. Furthermore, the algal-produced proteins were bioactive. Thus, the microalga C. reinhardtii has the potential to be a robust platform for human therapeutic protein production.
Collapse
Affiliation(s)
- Beth A Rasala
- Division of Biological Sciences University of California, La Jolla, CA, USA
| | | |
Collapse
|
122
|
Gong Y, Hu H, Gao Y, Xu X, Gao H. Microalgae as platforms for production of recombinant proteins and valuable compounds: progress and prospects. J Ind Microbiol Biotechnol 2011; 38:1879-90. [PMID: 21882013 DOI: 10.1007/s10295-011-1032-6] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 08/19/2011] [Indexed: 12/19/2022]
Abstract
Over the last few years microalgae have gained increasing interest as a natural source of valuable compounds and as bioreactors for recombinant protein production. Natural high-value compounds including pigments, long-chain polyunsaturated fatty acids, and polysaccharides, which have a wide range of applications in the food, feed, cosmetics, and pharmaceutical industries, are currently produced with nontransgenic microalgae. However, transgenic microalgae can be used as bioreactors for the production of therapeutic and industrially relevant recombinant proteins. This technology shows great promise to simplify the production process and significantly decrease the production costs. To date, a variety of recombinant proteins have been produced experimentally from the nuclear or chloroplast genome of transgenic Chlamydomonas reinhardtii. These include monoclonal antibodies, vaccines, hormones, pharmaceutical proteins, and others. In this review, we outline recent progress in the production of recombinant proteins with transgenic microalgae as bioreactors, methods for genetic transformation of microalgae, and strategies for highly efficient expression of heterologous genes. In particular, we highlight the importance of maximizing the value of transgenic microalgae through producing recombinant proteins together with recovery of natural high-value compounds. Finally, we outline some important issues that need to be addressed before commercial-scale production of high-value recombinant proteins and compounds from transgenic microalgae can be realized.
Collapse
Affiliation(s)
- Yangmin Gong
- The State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 430072, Wuhan, Hubei, China
| | | | | | | | | |
Collapse
|
123
|
Coragliotti AT, Beligni MV, Franklin SE, Mayfield SP. Molecular factors affecting the accumulation of recombinant proteins in the Chlamydomonas reinhardtii chloroplast. Mol Biotechnol 2011; 48:60-75. [PMID: 21113690 PMCID: PMC3068253 DOI: 10.1007/s12033-010-9348-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In an effort to develop microalgae as a robust system for the production of valuable proteins, we analyzed some of the factors affecting recombinant protein expression in the chloroplast of the green alga Chlamydomonas reinhardtii. We monitored mRNA accumulation, protein synthesis, and protein turnover for three codon-optimized transgenes including GFP, bacterial luciferase, and a large single chain antibody. GFP and luciferase proteins were quite stable, while the antibody was less so. Measurements of protein synthesis, in contrast, clearly showed that translation of the three chimeric mRNAs was greatly reduced when compared to endogenous mRNAs under control of the same atpA promoter/UTR. Only in a few conditions this could be explained by limited mRNA availability since, in most cases, recombinant mRNAs accumulated quite well when compared to the atpA mRNA. In vitro toeprint and in vivo polysome analyses suggest that reduced ribosome association might contribute to limited translational efficiency. However, when recombinant polysome levels and protein synthesis are analyzed as a whole, it becomes clear that other steps, such as inefficient protein elongation, are likely to have a considerable impact. Taken together, our results point to translation as the main step limiting the expression of heterologous proteins in the C. reinhardtii chloroplast.
Collapse
Affiliation(s)
- Anna T Coragliotti
- The Department of Cell Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
124
|
Wu S, Xu L, Huang R, Wang Q. Improved biohydrogen production with an expression of codon-optimized hemH and lba genes in the chloroplast of Chlamydomonas reinhardtii. BIORESOURCE TECHNOLOGY 2011; 102:2610-6. [PMID: 21036035 DOI: 10.1016/j.biortech.2010.09.123] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 09/26/2010] [Accepted: 09/28/2010] [Indexed: 05/06/2023]
Abstract
According to the codon bias in the chloroplast genome of Chlamydomonas reinhardtii, the codon-optimized coding regions of both the ferrochelatase gene, hemH, from Bradyrhizobium japonicum and the leghemoglobin gene, lba, from Glycine max were synthesized de novo and transferred into the chloroplast of C. reinhardtii. The expression level of hemH-lba protein was improved by 6.8 folds in the codon-optimized transgenic alga compared with the non-optimized one under both normal and anaerobic conditions. H(2) yield was 22% and the respiration rate was 44% higher in the codon-optimized transgenic algal cultures than those of the non-optimized ones, and was 450% and 134% higher than those of the control cultures, respectively. The transcript levels of hydA1 and hydA2 in the hemH-lba transgenic alga were also more stable and higher than those of the control alga. These results demonstrate that codon optimization increased the expression level of hemH-lba protein in the chloroplast of C. reinhardtii and improved algal H(2) yield by enhancing the respiration rate resulting in low O(2) content in the medium and up regulation of the expression of hydA1 and hydA2 in cells, thereby confirming the potential of the utilization of leghemoglobins for H(2) production in green algae.
Collapse
Affiliation(s)
- Shuangxiu Wu
- Department of Biology, College of Life and Environmental Science, Shanghai Normal University, Shanghai, PR China.
| | | | | | | |
Collapse
|
125
|
Lee SB, Li B, Jin S, Daniell H. Expression and characterization of antimicrobial peptides Retrocyclin-101 and Protegrin-1 in chloroplasts to control viral and bacterial infections. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:100-15. [PMID: 20553419 PMCID: PMC3468903 DOI: 10.1111/j.1467-7652.2010.00538.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Retrocyclin-101 (RC101) and Protegrin-1 (PG1) are two important antimicrobial peptides that can be used as therapeutic agents against bacterial and/or viral infections, especially those caused by the HIV-1 or sexually transmitted bacteria. Because of their antimicrobial activity and complex secondary structures, they have not yet been produced in microbial systems and their chemical synthesis is prohibitively expensive. Therefore, we created chloroplast transformation vectors with the RC101 or PG1 coding sequence, fused with GFP to confer stability, furin or Factor Xa cleavage site to liberate the mature peptide from their fusion proteins and a His-tag to aid in their purification. Stable integration of RC101 into the tobacco chloroplast genome and homoplasmy were confirmed by Southern blots. RC101 and PG1 accumulated up to 32%-38% and 17%∼26% of the total soluble protein. Both RC101 and PG1 were cleaved from GFP by corresponding proteases in vitro, and Factor Xa-like protease activity was observed within chloroplasts. Confocal microscopy studies showed location of GFP fluorescence within chloroplasts. Organic extraction resulted in 10.6-fold higher yield of RC101 than purification by affinity chromatography using His-tag. In planta bioassays with Erwinia carotovora confirmed the antibacterial activity of RC101 and PG1 expressed in chloroplasts. RC101 transplastomic plants were resistant to tobacco mosaic virus infections, confirming antiviral activity. Because RC101 and PG1 have not yet been produced in other cell culture or microbial systems, chloroplasts can be used as bioreactors for producing these proteins. Adequate yield of purified antimicrobial peptides from transplastomic plants should facilitate further preclinical studies.
Collapse
Affiliation(s)
| | | | - Shuangxia Jin
- Department of Molecular Biology and Microbiology, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Henry Daniell
- Department of Molecular Biology and Microbiology, College of Medicine, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
126
|
Strategies for high-level recombinant protein expression in transgenic microalgae: A review. Biotechnol Adv 2010; 28:910-8. [DOI: 10.1016/j.biotechadv.2010.08.006] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 08/03/2010] [Accepted: 08/13/2010] [Indexed: 11/22/2022]
|
127
|
Specht E, Miyake-Stoner S, Mayfield S. Micro-algae come of age as a platform for recombinant protein production. Biotechnol Lett 2010; 32:1373-83. [PMID: 20556634 PMCID: PMC2941057 DOI: 10.1007/s10529-010-0326-5] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 06/07/2010] [Indexed: 12/03/2022]
Abstract
A complete set of genetic tools is still being developed for the micro-alga Chlamydomonas reinhardtii. Yet even with this incomplete set, this photosynthetic single-celled plant has demonstrated significant promise as a platform for recombinant protein expression. In recent years, techniques have been developed that allow for robust expression of genes from both the nuclear and plastid genome. With these advances, many research groups have examined the pliability of this and other micro-algae as biological machines capable of producing recombinant peptides and proteins. This review describes recent successes in recombinant protein production in Chlamydomonas, including production of complex mammalian therapeutic proteins and monoclonal antibodies at levels sufficient for production at economic parity with existing production platforms. These advances have also shed light on the details of algal protein production at the molecular level, and provide insight into the next steps for optimizing micro-algae as a useful platform for the production of therapeutic and industrially relevant recombinant proteins.
Collapse
Affiliation(s)
- Elizabeth Specht
- San Diego Center for Algae Biotechnology, Department of Biological Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0368 USA
| | - Shigeki Miyake-Stoner
- San Diego Center for Algae Biotechnology, Department of Biological Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0368 USA
| | - Stephen Mayfield
- San Diego Center for Algae Biotechnology, Department of Biological Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0368 USA
| |
Collapse
|
128
|
Specht E, Miyake-Stoner S, Mayfield S. Micro-algae come of age as a platform for recombinant protein production. Biotechnol Lett 2010; 32:1373-1383. [PMID: 20556634 DOI: 10.1007/s10529-010-0326-325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 06/07/2010] [Indexed: 05/28/2023]
Abstract
A complete set of genetic tools is still being developed for the micro-alga Chlamydomonas reinhardtii. Yet even with this incomplete set, this photosynthetic single-celled plant has demonstrated significant promise as a platform for recombinant protein expression. In recent years, techniques have been developed that allow for robust expression of genes from both the nuclear and plastid genome. With these advances, many research groups have examined the pliability of this and other micro-algae as biological machines capable of producing recombinant peptides and proteins. This review describes recent successes in recombinant protein production in Chlamydomonas, including production of complex mammalian therapeutic proteins and monoclonal antibodies at levels sufficient for production at economic parity with existing production platforms. These advances have also shed light on the details of algal protein production at the molecular level, and provide insight into the next steps for optimizing micro-algae as a useful platform for the production of therapeutic and industrially relevant recombinant proteins.
Collapse
Affiliation(s)
- Elizabeth Specht
- San Diego Center for Algae Biotechnology, Department of Biological Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0368, USA
| | | | | |
Collapse
|
129
|
Rasala BA, Muto M, Lee PA, Jager M, Cardoso RMF, Behnke CA, Kirk P, Hokanson CA, Crea R, Mendez M, Mayfield SP. Production of therapeutic proteins in algae, analysis of expression of seven human proteins in the chloroplast of Chlamydomonas reinhardtii. PLANT BIOTECHNOLOGY JOURNAL 2010; 8:719-33. [PMID: 20230484 PMCID: PMC2918638 DOI: 10.1111/j.1467-7652.2010.00503.x] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Recombinant proteins are widely used today in many industries, including the biopharmaceutical industry, and can be expressed in bacteria, yeasts, mammalian and insect cell cultures, or in transgenic plants and animals. In addition, transgenic algae have also been shown to support recombinant protein expression, both from the nuclear and chloroplast genomes. However, to date, there are only a few reports on recombinant proteins expressed in the algal chloroplast. It is unclear whether this is because of few attempts or of limitations of the system that preclude expression of many proteins. Thus, we sought to assess the versatility of transgenic algae as a recombinant protein production platform. To do this, we tested whether the algal chloroplast could support the expression of a diverse set of current or potential human therapeutic proteins. Of the seven proteins chosen, >50% expressed at levels sufficient for commercial production. Three expressed at 2%-3% of total soluble protein, while a forth protein accumulated to similar levels when translationally fused to a well-expressed serum amyloid protein. All of the algal chloroplast-expressed proteins are soluble and showed biological activity comparable to that of the same proteins expressed using traditional production platforms. Thus, the success rate, expression levels, and bioactivity achieved demonstrate the utility of Chlamydomonas reinhardtii as a robust platform for human therapeutic protein production.
Collapse
Affiliation(s)
- Beth A Rasala
- Department of Cell Biology and the Skaggs Institute for Chemical Biology, 10550 N. Torrey Pines Rd, La Jolla, CA92037, USA
| | - Machiko Muto
- Department of Cell Biology and the Skaggs Institute for Chemical Biology, 10550 N. Torrey Pines Rd, La Jolla, CA92037, USA
| | - Philip A Lee
- Department of Cell Biology and the Skaggs Institute for Chemical Biology, 10550 N. Torrey Pines Rd, La Jolla, CA92037, USA
| | - Michal Jager
- Department of Cell Biology and the Skaggs Institute for Chemical Biology, 10550 N. Torrey Pines Rd, La Jolla, CA92037, USA
| | | | - Craig A Behnke
- Sapphire Energy, 3115 Merryfield Rd., San Diego, CA 92121
| | - Peter Kirk
- Protelica, 26118 Research Pl, Hayward, CA 94545
| | | | | | - Michael Mendez
- Sapphire Energy, 3115 Merryfield Rd., San Diego, CA 92121
| | - Stephen P Mayfield
- Department of Cell Biology and the Skaggs Institute for Chemical Biology, 10550 N. Torrey Pines Rd, La Jolla, CA92037, USA
- Corresponding author: SPM:
| |
Collapse
|
130
|
Franconi R, Demurtas OC, Massa S. Plant-derived vaccines and other therapeutics produced in contained systems. Expert Rev Vaccines 2010; 9:877-92. [PMID: 20673011 DOI: 10.1586/erv.10.91] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The use of contained plant systems for the production of biopharmaceuticals represents a powerful alternative to current methods, combining the benefits of whole-plant systems and cell cultures. In vitro contained production systems include plant cell suspensions, hairy root cultures, novel plants grown in contained conditions and microalgae. These systems show intrinsic advantages, such as control over growth conditions, production in compliance with good manufacturing practice and avoidance of political resistance to the release of genetically modified field crops. At present, one of the two plant-produced vaccine-related products that have gone all the way through production and regulatory hurdles derives from tobacco cell suspensions, and the second is a human therapeutic enzyme, which is expected to reach commercial development soon and derives from carrot suspension cells. In the future, several other products from contained systems are expected to reach the clinical trial stage.
Collapse
Affiliation(s)
- Rosella Franconi
- Italian National Agency for New Technologies, UTBIORAD, CR Casaccia, Rome, Italy.
| | | | | |
Collapse
|
131
|
Abstract
Plants have long been considered advantageous platforms for large-scale production of antibodies due to their low cost, scalability, and the low chances of pathogen contamination. Much effort has therefore been devoted to efficiently producing mAbs (from nanobodies to secretory antibodies) in plant cells. Several technical difficulties have been encountered and are being overcome. Improvements in production levels have been achieved by manipulation of gene expression and, more efficiently, of cell targeting and protein folding and assembly. Differences in mAb glycosylation patterns between animal and plant cells are being successfully addressed by the elimination and introduction of the appropriate enzyme activities in plant cells. Another relevant battlefield is the dichotomy between production capacity and speed. Classically, stably transformed plant lines have been proposed for large scale mAb production, whereas the use of transient expression systems has always provided production speed at the cost of scalability. However, recent advances in transient expression techniques have brought impressive yield improvements, turning speed and scalability into highly compatible assets. In the era of personalized medicines, the combination of yield and speed, and the advances in glyco-engineering have made the plant cell a serious contender in the field of recombinant antibody production.
Collapse
Affiliation(s)
- Diego Orzáez
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Valencia, Spain.
| | | | | |
Collapse
|
132
|
|
133
|
Johanningmeier U, Fischer D. Perspective for the Use of Genetic Transformants in Order to Enhance the Synthesis of the Desired Metabolites: Engineering Chloroplasts of Microalgae for the Production of Bioactive Compounds. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 698:144-51. [DOI: 10.1007/978-1-4419-7347-4_11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
134
|
Lapidot M, Shrestha RP, Weinstein Y, Arad S. Red Microalgae: From Basic Know-How to Biotechnology. CELLULAR ORIGIN, LIFE IN EXTREME HABITATS AND ASTROBIOLOGY 2010. [DOI: 10.1007/978-90-481-3795-4_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
135
|
Tran M, Zhou B, Pettersson PL, Gonzalez MJ, Mayfield SP. Synthesis and assembly of a full-length human monoclonal antibody in algal chloroplasts. Biotechnol Bioeng 2009; 104:663-73. [PMID: 19562731 DOI: 10.1002/bit.22446] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Monoclonal antibodies can be effective therapeutics against a variety of human diseases, but currently marketed antibody-based drugs are very expensive compared to other therapeutic options. Here, we show that the eukaryotic green algae Chlamydomonas reinhardtii is capable of synthesizing and assembling a full-length IgG1 human monoclonal antibody (mAb) in transgenic chloroplasts. This antibody, 83K7C, is derived from a human IgG1 directed against anthrax protective antigen 83 (PA83), and has been shown to block the effects of anthrax toxin in animal models. Here we show that 83K7C heavy and light chain proteins expressed in the chloroplast accumulate as soluble proteins that assemble into complexes containing two heavy and two light chain proteins. The algal-expressed 83K7C binds PA83 in vitro with similar affinity to the mammalian-expressed 83K7C antibody. In addition, a second human IgG1 and a mouse IgG1 were also expressed and shown to properly assemble in algal chloroplast. These results show that chloroplasts have the ability to fold and assemble full-length human mAbs, and suggest the potential of algae as a platform for the cost effective production of complex human therapeutic proteins.
Collapse
Affiliation(s)
- Miller Tran
- Department of Cell Biology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
136
|
Karg SR, Kallio PT. The production of biopharmaceuticals in plant systems. Biotechnol Adv 2009; 27:879-894. [PMID: 19647060 DOI: 10.1016/j.biotechadv.2009.07.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 07/15/2009] [Accepted: 07/17/2009] [Indexed: 12/20/2022]
Abstract
Biopharmaceuticals present the fastest growing segment in the pharmaceutical industry, with an ever widening scope of applications. Whole plants as well as contained plant cell culture systems are being explored for their potential as cheap, safe, and scalable production hosts. The first plant-derived biopharmaceuticals have now reached the clinic. Many biopharmaceuticals are glycoproteins; as the Golgi N-glycosylation machinery of plants differs from the mammalian machinery, the N-glycoforms introduced on plant-produced proteins need to be taken into consideration. Potent systems have been developed to change the plant N-glycoforms to a desired or even superior form compared to the native mammalian N-glycoforms. This review describes the current status of biopharmaceutical production in plants for industrial applications. The recent advances and tools which have been utilized to generate glycoengineered plants are also summarized and compared with the relevant mammalian systems whenever applicable.
Collapse
Affiliation(s)
- Saskia R Karg
- Institute of Microbiology, ETH Zurich, Wolfgang-Pauli Strasse 10, CH-8093 Zürich, Switzerland.
| | - Pauli T Kallio
- Institute of Microbiology, ETH Zurich, Wolfgang-Pauli Strasse 10, CH-8093 Zürich, Switzerland.
| |
Collapse
|
137
|
Weisser NE, Hall JC. Applications of single-chain variable fragment antibodies in therapeutics and diagnostics. Biotechnol Adv 2009; 27:502-20. [PMID: 19374944 DOI: 10.1016/j.biotechadv.2009.04.004] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 03/03/2009] [Accepted: 04/04/2009] [Indexed: 11/18/2022]
Abstract
Antibodies (Abs) are some of the most powerful tools in therapy and diagnostics and are currently one of the fastest growing classes of therapeutic molecules. Recombinant antibody (rAb) fragments are becoming popular therapeutic alternatives to full length monoclonal Abs since they are smaller, possess different properties that are advantageous in certain medical applications, can be produced more economically and are easily amendable to genetic manipulation. Single-chain variable fragment (scFv) Abs are one of the most popular rAb format as they have been engineered into larger, multivalent, bi-specific and conjugated forms for many clinical applications. This review will show the tremendous versatility and importance of scFv fragments as they provide the basic antigen binding unit for a multitude of engineered Abs for use as human therapeutics and diagnostics.
Collapse
Affiliation(s)
- Nina E Weisser
- Department of Environmental Biology, University of Guelph, Guelph, ON N1G2W1, Canada
| | | |
Collapse
|
138
|
Muto M, Henry RE, Mayfield SP. Accumulation and processing of a recombinant protein designed as a cleavable fusion to the endogenous Rubisco LSU protein in Chlamydomonas chloroplast. BMC Biotechnol 2009; 9:26. [PMID: 19323825 PMCID: PMC2671499 DOI: 10.1186/1472-6750-9-26] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Accepted: 03/26/2009] [Indexed: 12/04/2022] Open
Abstract
Background Expression of recombinant proteins in green algal chloroplast holds substantial promise as a platform for the production of human therapeutic proteins. A number of proteins have been expressed in the chloroplast of Chlamydomonas reinhardtii, including complex mammalian proteins, but many of these proteins accumulate to significantly lower levels than do endogenous chloroplast proteins. We examined if recombinant protein accumulation could be enhanced by genetically fusing the recombinant reporter protein, luciferase, to the carboxy-terminal end of an abundant endogenous protein, the large subunit of ribulose bisphosphate carboxylase (Rubisco LSU). Additionally, as recombinant proteins fused to endogenous proteins are of little clinical or commercial value, we explored the possibility of engineering our recombinant protein to be cleavable from the endogenous protein in vivo. This strategy would obviate the need for further in vitro processing steps in order to produce the desired recombinant protein. To achieve this, a native protein-processing site from preferredoxin (preFd) was placed between the Rubisco LSU and luciferase coding regions in the fusion protein construct. Results The luciferase from the fusion protein accumulated to significantly higher levels than luciferase expressed alone. By eliminating the endogenous Rubisco large subunit gene (rbcL), we achieved a further increase in luciferase accumulation with respect to luciferase expression in the WT background. Importantly, near-wild type levels of functional Rubisco holoenzyme were generated following the proteolytic removal of the fused luciferase, while luciferase activity for the fusion protein was almost ~33 times greater than luciferase expressed alone. These data demonstrate the utility of using fusion proteins to enhance recombinant protein accumulation in algal chloroplasts, and also show that engineered proteolytic processing sites can be used to liberate the exogenous protein from the endogenous fusion partner, allowing for the purification of the intended mature protein. Conclusion These results demonstrate the utility of fusion proteins in algal chloroplast as a method to increase accumulation of recombinant proteins that are difficult to express. Since Rubisco is ubiquitous to land plants and green algae, this strategy may also be applied to higher plant transgenic expression systems.
Collapse
Affiliation(s)
- Machiko Muto
- The Department of Cell Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Pines Rd. La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
139
|
Eichler-Stahlberg A, Weisheit W, Ruecker O, Heitzer M. Strategies to facilitate transgene expression in Chlamydomonas reinhardtii. PLANTA 2009; 229:873-83. [PMID: 19127370 DOI: 10.1007/s00425-008-0879-x] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2008] [Accepted: 12/17/2008] [Indexed: 05/20/2023]
Abstract
The unicellular green alga Chlamydomonas reinhardtii has been identified as a promising organism for the production of recombinant proteins. While during the last years important improvements have been developed for the production of proteins within the chloroplast, the expression levels of transgenes from the nuclear genome were too low to be of biotechnological importance. In this study, we integrated endogenous intronic sequences into the expression cassette to enhance the expression of transgenes in the nucleus. The insertion of one or more copies of intron sequences from the Chlamydomonas RBCS2 gene resulted in increased expression levels of a Renilla-luciferase gene used as a reporter. Although any of the three RBCS2 introns alone had a positive effect on expression, their integration in their physiological number and order created an over-proportional stimulating effect observed in all transformants. The secretion of the luciferase protein into the medium was achieved by using the export sequence of the Chlamydomonas ARS2 gene in a cell wall deficient strain and Renilla-luciferase could be successfully concentrated with the help of attached C-terminal protein tags. Similarly, a codon adapted gene variant for human erythropoietin (crEpo) was expressed as a protein of commercial relevance. Extracellular erythropoietin produced in Chlamydomonas showed a molecular mass of 33 kDa probably resulting from post-translational modifications. Both, the increased expression levels of transgenes by integration of introns and the isolation of recombinant proteins from the culture medium are important steps towards an extended biotechnological use of this alga.
Collapse
Affiliation(s)
- Alke Eichler-Stahlberg
- Center of Excellence for Fluorescent Bioanalysis, University of Regensburg, Josef-Engert-Str. 9, 93053, Regensburg, Germany
| | | | | | | |
Collapse
|
140
|
Li SS, Tsai HJ. Transgenic microalgae as a non-antibiotic bactericide producer to defend against bacterial pathogen infection in the fish digestive tract. FISH & SHELLFISH IMMUNOLOGY 2009; 26:316-325. [PMID: 18691655 DOI: 10.1016/j.fsi.2008.07.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Revised: 07/12/2008] [Accepted: 07/12/2008] [Indexed: 05/26/2023]
Abstract
Antibiotics are commonly employed in most fish aquacultures to prevent disease. One major risk in this practice is that antibiotic-resistant pathogens may be selected. Therefore, we wanted to examine the feasibility of producing an economical, non-antibiotic alternative. The microalga Nannochloropsis oculata is an essential phytoplankton used as live feed for fish larvae. We attempted to culture N. oculata in a way that would provide an organism against bacterial pathogenic infection. To test this idea, we constructed an algae-codon-optimized bovine lactoferricin (LFB) fused with a red fluorescent protein (DsRed) driven by a heat-inducible promoter, which is a heat shock protein 70A promoter combined with a ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit 2' promoter from Chlamydomonas reinhardtii. After electroporation, we examined 491 microalgal clones and generated two stable transgenic lines, each expressing a stable transgene inheritance for at least 26 months. This was confirmed by the positive detection of the mRNA transcript and the protein of LFB-DsRed produced by the transgenic microalgae. To test the efficacy of the antimicrobial peptide LFB, medaka fish (Oryzias latipes) were adapted from freshwater to seawater and were fed with the transgenic algae by oral-in-tube delivery method. Bacterial infection with 1 x 10(5)Vibrio parahaemolyticus per fish was induced 6h thereafter by oral-in-tube delivery as well. For medaka fish fed with 1 x 10(8) transgenic algae per fish, the average survival rate after a 24-h period of infection was much higher than that of medaka fed with wild-type algae (85+/-7.1% versus 5+/-7.1%). This result suggests that medaka fish fed with the LFB-containing transgenic microalgae will have bactericidal defense against V. parahaemolyticus infection in its digestive tract.
Collapse
Affiliation(s)
- Si-Shen Li
- Institute of Molecular and Cellular Biology, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 106, Taiwan
| | | |
Collapse
|
141
|
Sourrouille C, Marshall B, Liénard D, Faye L. From Neanderthal to nanobiotech: from plant potions to pharming with plant factories. Methods Mol Biol 2009; 483:1-23. [PMID: 19183890 DOI: 10.1007/978-1-59745-407-0_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Plants were the main source for human drugs until the beginning of the nineteenth century when plant-derived pharmaceuticals were partly supplanted by drugs produced by the industrial methods of chemical synthesis. During the last decades of the twentieth century, genetic engineering has offered an alternative to chemical synthesis, using bacteria, yeasts and animal cells as factories for the production of therapeutic proteins. After a temporary decrease in interest, plants are rapidly moving back into human pharmacopoeia, with the recent development of plant-based recombinant protein production systems offering a safe and extremely cost-effective alternative to microbial and mammalian cell cultures. In this short review, we will illustrate that current improvements in plant expression systems are making them suitable as alternative factories for the production of either simple or highly complex therapeutic proteins.
Collapse
|
142
|
Ko K, Brodzik R, Steplewski Z. Production of Antibodies in Plants: Approaches and Perspectives. Curr Top Microbiol Immunol 2009; 332:55-78. [DOI: 10.1007/978-3-540-70868-1_4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
143
|
Gitzinger M, Parsons J, Reski R, Fussenegger M. Functional cross-kingdom conservation of mammalian and moss (Physcomitrella patens) transcription, translation and secretion machineries. PLANT BIOTECHNOLOGY JOURNAL 2009; 7:73-86. [PMID: 19021876 DOI: 10.1111/j.1467-7652.2008.00376.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Plants and mammals are separated by a huge evolutionary distance. Consequently, biotechnology and genetics have traditionally been divided into 'green' and 'red'. Here, we provide comprehensive evidence that key components of the mammalian transcription, translation and secretion machineries are functional in the model plant Physcomitrella patens. Cross-kingdom compatibility of different expression modalities originally designed for mammalian cells, such as native and synthetic promoters and polyadenylation sites, viral and cellular internal ribosome entry sites, secretion signal peptides and secreted product proteins, and synthetic transactivators and transrepressors, was established. This mammalian expression portfolio enabled constitutive, conditional and autoregulated expression of different product genes in a multicistronic expression format, optionally adjusted by various trigger molecules, such as butyrolactones, macrolide antibiotics and ethanol. Capitalizing on a cross-kingdom-compatible expression platform, we pioneered a prototype biopharmaceutical manufacturing scenario using microencapsulated transgenic P. patens protoplasts cultivated in a Wave Bioreactor. Vascular endothelial growth factor 121 (VEGF(121)) titres matched those typically achieved by standard protonema populations grown in stirred-tank bioreactors. The full compatibility of mammalian expression systems in P. patens further promotes the use of moss as a cost-effective alternative for the manufacture of complex biopharmaceuticals, and as a valuable host system to advance synthetic biology in plants.
Collapse
Affiliation(s)
- Marc Gitzinger
- Department for Biosystems Science and Engineering, ETH Zurich, Wolfgang-Pauli-Strasse 10, HCI F115, CH-8093 Zurich, Switzerland
| | | | | | | |
Collapse
|
144
|
Influence of Codon Bias on the Expression of Foreign Genes in Microalgae. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 616:46-53. [DOI: 10.1007/978-0-387-75532-8_5] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
145
|
Grossman AR. In the Grip of Algal Genomics. TRANSGENIC MICROALGAE AS GREEN CELL FACTORIES 2008; 616:54-76. [DOI: 10.1007/978-0-387-75532-8_6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
146
|
Tools and techniques for chloroplast transformation of Chlamydomonas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 616:34-45. [PMID: 18161489 DOI: 10.1007/978-0-387-75532-8_4] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The chloroplast organelle of plant and algal cells contains its own genetic system with a genome of a hundred or so genes. Stable transformation of the chloroplast was first achieved in 1988, using the newly developed biolistic method of DNA delivery to introduce cloned DNA into the genome of the green unicellular alga Chlamydomonas reinhardtii. Since that time there have been significant developments in chloroplast genetic engineering using this versatile organism, and it is probable that the next few years will see increasing interest in commercial applications whereby high-value therapeutic proteins and other recombinant products are synthesized in the Chlamydomonas chloroplast. In this chapter I review the basic methodology of chloroplast transformation, the current techniques and applications, and the future possibilities for using the Chlamydomonas chloroplast as a green organelle factory.
Collapse
|
147
|
Kroth P. Molecular Biology and the Biotechnological Potential of Diatoms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 616:23-33. [DOI: 10.1007/978-0-387-75532-8_3] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
148
|
Basaran P, Rodríguez-Cerezo E. Plant Molecular Farming: Opportunities and Challenges. Crit Rev Biotechnol 2008; 28:153-72. [PMID: 18937106 DOI: 10.1080/07388550802046624] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
149
|
Wang X, Brandsma M, Tremblay R, Maxwell D, Jevnikar AM, Huner N, Ma S. A novel expression platform for the production of diabetes-associated autoantigen human glutamic acid decarboxylase (hGAD65). BMC Biotechnol 2008; 8:87. [PMID: 19014643 PMCID: PMC2621204 DOI: 10.1186/1472-6750-8-87] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 11/17/2008] [Indexed: 11/26/2022] Open
Abstract
Background Human glutamic acid decarboxylase 65 (hGAD65) is a key autoantigen in type 1 diabetes, having much potential as an important marker for the prediction and diagnosis of type 1 diabetes, and for the development of novel antigen-specific therapies for the treatment of type 1 diabetes. However, recombinant production of hGAD65 using conventional bacterial or mammalian cell culture-based expression systems or nuclear transformed plants is limited by low yield and low efficiency. Chloroplast transformation of the unicellular eukaryotic alga Chlamydomonas reinhardtii may offer a potential solution. Results A DNA cassette encoding full-length hGAD65, under the control of the C. reinhardtii chloroplast rbcL promoter and 5'- and 3'-UTRs, was constructed and introduced into the chloroplast genome of C. reinhardtii by particle bombardment. Integration of hGAD65 DNA into the algal chloroplast genome was confirmed by PCR. Transcriptional expression of hGAD65 was demonstrated by RT-PCR. Immunoblotting verified the expression and accumulation of the recombinant protein. The antigenicity of algal-derived hGAD65 was demonstrated with its immunoreactivity to diabetic sera by ELISA and by its ability to induce proliferation of spleen cells from NOD mice. Recombinant hGAD65 accumulated in transgenic algae, accounts for approximately 0.25–0.3% of its total soluble protein. Conclusion Our results demonstrate the potential value of C. reinhardtii chloroplasts as a novel platform for rapid mass production of immunologically active hGAD65. This demonstration opens the future possibility for using algal chloroplasts as novel bioreactors for the production of many other biologically active mammalian therapeutic proteins.
Collapse
Affiliation(s)
- Xiaofeng Wang
- Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7, Canada.
| | | | | | | | | | | | | |
Collapse
|
150
|
Fernández-San Millán A, Ortigosa SM, Hervás-Stubbs S, Corral-Martínez P, Seguí-Simarro JM, Gaétan J, Coursaget P, Veramendi J. Human papillomavirus L1 protein expressed in tobacco chloroplasts self-assembles into virus-like particles that are highly immunogenic. PLANT BIOTECHNOLOGY JOURNAL 2008; 6:427-41. [PMID: 18422886 DOI: 10.1111/j.1467-7652.2008.00338.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Cervical cancer is the second most prevalent cancer in women worldwide. It is linked to infection with human papillomavirus (HPV). As the virus cannot be propagated in culture, vaccines based on virus-like particles have been developed and recently marketed. However, their high costs constitute an important drawback for widespread use in developing countries, where the incidence of cervical cancer is highest. In a search for alternative production systems, the major structural protein of the HPV-16 capsid, L1, was expressed in tobacco chloroplasts. A very high yield of production was achieved in mature plants (approximately 3 mg L1/g fresh weight; equivalent to 24% of total soluble protein). This is the highest expression level of HPV L1 protein reported in plants. A single mature plant synthesized approximately 240 mg of L1. The chloroplast-derived L1 protein displayed conformation-specific epitopes and assembled into virus-like particles, visible by transmission electron microscopy. Furthermore, leaf protein extracts from L1 transgenic plants were highly immunogenic in mice after intraperitoneal injection, and neutralizing antibodies were detected. Taken together, these results predict a promising future for the development of a plant-based vaccine against HPV.
Collapse
|