101
|
Othumpangat S, Lindsley WG, Beezhold DH, Kashon ML, Burrell CN, Mubareka S, Noti JD. Differential Expression of Serum Exosome microRNAs and Cytokines in Influenza A and B Patients Collected in the 2016 and 2017 Influenza Seasons. Pathogens 2021; 10:pathogens10020149. [PMID: 33540650 PMCID: PMC7912959 DOI: 10.3390/pathogens10020149] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 12/27/2022] Open
Abstract
MicroRNAs (miRNAs) have remarkable stability and are key regulators of mRNA transcripts for several essential proteins required for the survival of cells and replication of the virus. Exosomes are thought to play an essential role in intercellular communications by transporting proteins and miRNAs, making them ideal in the search for biomarkers. Evidence suggests that miRNAs are involved in the regulation of influenza virus replication in many cell types. During the 2016 and 2017 influenza season, we collected blood samples from 54 patients infected with influenza and from 30 healthy volunteers to identify the potential role of circulating serum miRNAs and cytokines in influenza infection. Data comparing the exosomal miRNAs in patients with influenza B to healthy volunteers showed 76 miRNAs that were differentially expressed (p < 0.05). In contrast, 26 miRNAs were differentially expressed between patients with influenza A (p < 0.05) and the controls. Of these miRNAs, 11 were commonly expressed in both the influenza A and B patients. Interferon (IFN)-inducing protein 10 (IP-10), which is involved in IFN synthesis during influenza infection, showed the highest level of expression in both influenza A and B patients. Influenza A patients showed increased expression of IFNα, GM-CSF, interleukin (IL)-13, IL-17A, IL-1β, IL-6 and TNFα, while influenza B induced increased levels of EGF, G-CSF, IL-1α, MIP-1α, and TNF-β. In addition, hsa-miR-326, hsa-miR-15b-5p, hsa-miR-885, hsa-miR-122-5p, hsa-miR-133a-3p, and hsa-miR-150-5p showed high correlations to IL-6, IL-15, IL-17A, IL-1β, and monocyte chemoattractant protein-1 (MCP-1) with both strains of influenza. Next-generation sequencing studies of H1N1-infected human lung small airway epithelial cells also showed similar pattern of expression of miR-375-5p, miR-143-3p, 199a-3p, and miR-199a-5p compared to influenza A patients. In summary, this study provides insights into the miRNA profiling in both influenza A and B virus in circulation and a novel approach to identify the early infections through a combination of cytokines and miRNA expression.
Collapse
Affiliation(s)
- Sreekumar Othumpangat
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505, USA; (W.G.L.); (D.H.B.); (J.D.N.)
- Correspondence: ; Tel.: +1-304-285-5839
| | - William G. Lindsley
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505, USA; (W.G.L.); (D.H.B.); (J.D.N.)
| | - Donald H. Beezhold
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505, USA; (W.G.L.); (D.H.B.); (J.D.N.)
| | - Michael L. Kashon
- Department of Biostatistics, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505, USA;
| | - Carmen N. Burrell
- Department of Emergency Medicine, West Virginia University, Morgantown, WV 26506, USA;
- Department of Family Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Samira Mubareka
- Department of Microbiology, Division of Infectious Diseases, University of Toronto, Toronto, ON M4N 3M5, Canada;
| | - John D. Noti
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505, USA; (W.G.L.); (D.H.B.); (J.D.N.)
| |
Collapse
|
102
|
Săsăran MO, Meliț LE, Dobru ED. MicroRNA Modulation of Host Immune Response and Inflammation Triggered by Helicobacter pylori. Int J Mol Sci 2021; 22:ijms22031406. [PMID: 33573346 PMCID: PMC7866828 DOI: 10.3390/ijms22031406] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 12/15/2022] Open
Abstract
Helicobacter pylori (H. pylori) remains the most-researched etiological factor for gastric inflammation and malignancies. Its evolution towards gastric complications is dependent upon host immune response. Toll-like receptors (TLRs) recognize surface and molecular patterns of the bacterium, especially the lipopolysaccharide (LPS), and act upon pathways, which will finally lead to activation of the nuclear factor-kappa B (NF-kB), a transcription factor that stimulates release of inflammatory cytokines. MicroRNAs (MiRNAs) finely modulate TLR signaling, but their expression is also modulated by activation of NF-kB-dependent pathways. This review aims to focus upon several of the most researched miRNAs on this subject, with known implications in host immune responses caused by H. pylori, including let-7 family, miRNA-155, miRNA-146, miRNA-125, miRNA-21, and miRNA-221. TLR-LPS interactions and their afferent pathways are regulated by these miRNAs, which can be considered as a bridge, which connects gastric inflammation to pre-neoplastic and malignant lesions. Therefore, they could serve as potential non-invasive biomarkers, capable of discriminating H. pylori infection, as well as its associated complications. Given that data on this matter is limited in children, as well as for as significant number of miRNAs, future research has yet to clarify the exact involvement of these entities in the progression of H. pylori-associated gastric conditions.
Collapse
Affiliation(s)
- Maria Oana Săsăran
- Department of Pediatrics III, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, Gheorghe Marinescu Street no 38, 540136 Târgu Mureș, Romania;
| | - Lorena Elena Meliț
- Department of Pediatrics I, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technol-ogy of Târgu Mureș, Gheorghe Marinescu Street no 38, 540136 Târgu Mureș, Romania
- Correspondence: ; Tel.: +40-742-984744
| | - Ecaterina Daniela Dobru
- Department of Internal Medicine VII, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, Gheorghe Marinescu Street no 38, 540136 Târgu Mureș, Romania;
| |
Collapse
|
103
|
Cao YY, Wang Z, Wang ZH, Jiang XG, Lu WH. Inhibition of miR-155 alleviates sepsis-induced inflammation and intestinal barrier dysfunction by inactivating NF-κB signaling. Int Immunopharmacol 2021; 90:107218. [PMID: 33296782 DOI: 10.1016/j.intimp.2020.107218] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 12/25/2022]
Abstract
MicroRNA-155 (miR-155) is implicated in the pathological processes of sepsis. However, the function and regulatory mechanism of miR-155 in sepsis-induced inflammation and intestinal barrier dysfunction remain unknown. In this study, mouse models of sepsis were established by caecal ligation and puncture (CLP). To reduce miR-155 expression, the mice were injected for three consecutive days with an miR-155 inhibitor (80 mg/kg) before CLP. The serum DAO concentration was measured by ELISA, and histological changes in the intestine were identified by H&E staining 24 h after CLP. FITC-dextran assays were used to evaluate intestinal permeability. MiR-155 gene expression was evaluated with RT-PCR, and relative protein expression was assessed by Western blotting. NCM460 cells were transfected with an miR-155 mimic/miR-155 inhibitor or pretreated with an NF-κB inhibitor before LPS treatment, and the cytokines levels, miR-155 gene expression and relative protein expression were measured. Sepsis increased miR-155, DAO and FITC-dextran levels and reduced Occludin and ZO-1 expression. Mice injected with the miR-155 inhibitor recovered from the damages. Transfection of NCM460 cells with the miR-155 mimic elevated the NF-κB (P65) and p-NF-κB (p-P65) localization and expression in the nucleus, which was reversed by the miR-155 inhibitor. Pretreatment with an NF-κB inhibitor suppressed inflammation, improved cell permeability to FITC-dextran and increased Occludin and ZO-1 levels. Transfection with the miR-155 inhibitor decreased TNF-α and IL-6 levels, reduced cell permeability to FITC-dextran and increased ZO-1 and Occludin expression. The effects induced by transfection with the miR-155 mimic, including elevated TNF-α and IL-6 levels, hyperpermeability to FITC-dextran and reduced ZO-1 and Occludin expression, were partly rescued by pretreatment with the NF-κB inhibitor. These findings reveal that the miR-155 inhibitor alleviates inflammation and intestinal barrier dysfunction by inactivating NF-κB signaling during sepsis.
Collapse
Affiliation(s)
- Ying-Ya Cao
- Department of Intensive Care Unit, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China.
| | - Zhen Wang
- Department of Intensive Care Unit, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China.
| | - Zhong-Han Wang
- Department of Intensive Care Unit, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China.
| | - Xiao-Gan Jiang
- Department of Intensive Care Unit, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China.
| | - Wei-Hua Lu
- Department of Intensive Care Unit, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China.
| |
Collapse
|
104
|
Mendes A, Gigan JP, Rodriguez Rodrigues C, Choteau SA, Sanseau D, Barros D, Almeida C, Camosseto V, Chasson L, Paton AW, Paton JC, Argüello RJ, Lennon-Duménil AM, Gatti E, Pierre P. Proteostasis in dendritic cells is controlled by the PERK signaling axis independently of ATF4. Life Sci Alliance 2020; 4:4/2/e202000865. [PMID: 33443099 PMCID: PMC7756897 DOI: 10.26508/lsa.202000865] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022] Open
Abstract
Differentiated dendritic cells display an unusual activation of the integrated stress response, which is necessary for normal type-I Interferon production and cell migration. In stressed cells, phosphorylation of eukaryotic initiation factor 2α (eIF2α) controls transcriptome-wide changes in mRNA translation and gene expression known as the integrated stress response. We show here that DCs are characterized by high eIF2α phosphorylation, mostly caused by the activation of the ER kinase PERK (EIF2AK3). Despite high p-eIF2α levels, DCs display active protein synthesis and no signs of a chronic integrated stress response. This biochemical specificity prevents translation arrest and expression of the transcription factor ATF4 during ER-stress induction by the subtilase cytotoxin (SubAB). PERK inactivation, increases globally protein synthesis levels and regulates IFN-β expression, while impairing LPS-stimulated DC migration. Although the loss of PERK activity does not impact DC development, the cross talk existing between actin cytoskeleton dynamics; PERK and eIF2α phosphorylation is likely important to adapt DC homeostasis to the variations imposed by the immune contexts.
Collapse
Affiliation(s)
- Andreia Mendes
- Aix Marseille Université, Centre National de la Recherch Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Immunologie de Marseille Luminy (CIML), CENTURI, Marseille, France.,Department of Medical Sciences, Institute for Research in Biomedicine (iBiMED) and Ilidio Pinho Foundation, University of Aveiro, Aveiro, Portugal.,International Associated Laboratory (LIA) CNRS "Mistra", Marseille, France
| | - Julien P Gigan
- Aix Marseille Université, Centre National de la Recherch Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Immunologie de Marseille Luminy (CIML), CENTURI, Marseille, France
| | - Christian Rodriguez Rodrigues
- Aix Marseille Université, Centre National de la Recherch Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Immunologie de Marseille Luminy (CIML), CENTURI, Marseille, France
| | - Sébastien A Choteau
- Aix Marseille Université, Centre National de la Recherch Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Immunologie de Marseille Luminy (CIML), CENTURI, Marseille, France.,Aix-Marseille Université, INSERM, Theories and Approaches of Genomic Complexity (TAGC), CENTURI, Marseille, France
| | - Doriane Sanseau
- INSERM U932, Institut Curie, ANR-10-IDEX-0001-02 PSL* and ANR-11-LABX-0043, Paris, France
| | - Daniela Barros
- Aix Marseille Université, Centre National de la Recherch Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Immunologie de Marseille Luminy (CIML), CENTURI, Marseille, France.,Department of Medical Sciences, Institute for Research in Biomedicine (iBiMED) and Ilidio Pinho Foundation, University of Aveiro, Aveiro, Portugal.,International Associated Laboratory (LIA) CNRS "Mistra", Marseille, France
| | - Catarina Almeida
- Department of Medical Sciences, Institute for Research in Biomedicine (iBiMED) and Ilidio Pinho Foundation, University of Aveiro, Aveiro, Portugal.,International Associated Laboratory (LIA) CNRS "Mistra", Marseille, France
| | - Voahirana Camosseto
- Aix Marseille Université, Centre National de la Recherch Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Immunologie de Marseille Luminy (CIML), CENTURI, Marseille, France.,International Associated Laboratory (LIA) CNRS "Mistra", Marseille, France.,INSERM U932, Institut Curie, ANR-10-IDEX-0001-02 PSL* and ANR-11-LABX-0043, Paris, France
| | - Lionel Chasson
- Aix Marseille Université, Centre National de la Recherch Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Immunologie de Marseille Luminy (CIML), CENTURI, Marseille, France
| | - Adrienne W Paton
- Department of Molecular and Biomedical Science, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, Australia
| | - James C Paton
- Department of Molecular and Biomedical Science, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, Australia
| | - Rafael J Argüello
- Aix Marseille Université, Centre National de la Recherch Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Immunologie de Marseille Luminy (CIML), CENTURI, Marseille, France.,INSERM U932, Institut Curie, ANR-10-IDEX-0001-02 PSL* and ANR-11-LABX-0043, Paris, France
| | | | - Evelina Gatti
- Aix Marseille Université, Centre National de la Recherch Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Immunologie de Marseille Luminy (CIML), CENTURI, Marseille, France .,Department of Medical Sciences, Institute for Research in Biomedicine (iBiMED) and Ilidio Pinho Foundation, University of Aveiro, Aveiro, Portugal.,International Associated Laboratory (LIA) CNRS "Mistra", Marseille, France.,INSERM U932, Institut Curie, ANR-10-IDEX-0001-02 PSL* and ANR-11-LABX-0043, Paris, France
| | - Philippe Pierre
- Aix Marseille Université, Centre National de la Recherch Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Immunologie de Marseille Luminy (CIML), CENTURI, Marseille, France .,Department of Medical Sciences, Institute for Research in Biomedicine (iBiMED) and Ilidio Pinho Foundation, University of Aveiro, Aveiro, Portugal.,International Associated Laboratory (LIA) CNRS "Mistra", Marseille, France.,INSERM U932, Institut Curie, ANR-10-IDEX-0001-02 PSL* and ANR-11-LABX-0043, Paris, France
| |
Collapse
|
105
|
El Khateeb E, Nassef A, Gheith R, Erfan A, Abdelfattah W. Expression of miR-146a and miR-155 in Egyptian patients with Behçet’s disease: clinical significance and relationship with disease activity. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020. [DOI: 10.1186/s43042-020-00085-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Behçet’s disease (BD) is a systemic vasculitis disorder with multifactorial immunopathogenesis and associated with significant morbidity and mortality. MicroRNAs (miRNAs) are involved in the pathogenesis of inflammatory diseases. MiR-146 and miR-155 are known key regulators of immune response. This study was conducted to determine the expression of miRNA-146a and miRNA-155 in patients with BD and to link their possible association with the clinical manifestations and activity of this disease to evaluate their role as diagnostic or prognostic markers. A total of 60 patients with BD and 25 age- and gender-matched healthy controls were examined in a case-control study from October 2017 to September 2018 for the expression levels of miR-146a and miR-155 using singleplexTaqMan two-step stem loop quantitative reverse transcription real-time polymerase chain reaction (qRT-PCR).
Results
Patients with BD had significantly lower miR-146a levels than control subjects (P < 0.001). Regarding the miR-155 expression level, no statistically significant differences were detected between patients and healthy controls (P = 0.736). The expression level of miR-146a showed no significant association with the different clinical manifestations of patients with BD.
Conclusion
This study suggests the possibility that miR-146a expression in patients with BD is involved in the pathogenesis of disease. Furthermore, it can be used as a diagnostic biomarker and a therapeutic target for BD in the future.
Collapse
|
106
|
Thorenoor N, Phelps DS, Floros J. Differential Sex-Dependent Regulation of the Alveolar Macrophage miRNome of SP-A2 and co-ex (SP-A1/SP-A2) and Sex Differences Attenuation after 18 h of Ozone Exposure. Antioxidants (Basel) 2020; 9:antiox9121190. [PMID: 33260937 PMCID: PMC7768498 DOI: 10.3390/antiox9121190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/19/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022] Open
Abstract
Background: Human SP-A1 and SP-A2, encoded by SFTPA1 and SFTPA2, and their genetic variants differentially impact alveolar macrophage (AM) functions and regulation, including the miRNome. We investigated whether miRNome differences previously observed between AM from SP-A2 and SP-A1/SP-A2 mice are due to continued qualitative differences or a delayed response of mice carrying a single gene. Methods: Human transgenic (hTG) mice, carrying SP-A2 or both SP-A genes, and SP-A-KO mice were exposed to filtered air (FA) or ozone (O3). AM miRNA levels, target gene expression, and pathways determined 18 h after O3 exposure. RESULTS: We found (a) differences in miRNome due to sex, SP-A genotype, and exposure; (b) miRNome of both sexes was largely downregulated by O3, and co-ex had fewer changed (≥2-fold) miRNAs than either group; (c) the number and direction of the expression of genes with significant changes in males and females in co-ex are almost the opposite of those in SP-A2; (d) the same pathways were found in the studied groups; and (e) O3 exposure attenuated sex differences with a higher number of genotype-dependent and genotype-independent miRNAs common in both sexes after O3 exposure. Conclusion: Qualitative differences between SP-A2 and co-ex persist 18 h post-O3, and O3 attenuates sex differences.
Collapse
Affiliation(s)
- Nithyananda Thorenoor
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA; (N.T.); (D.S.P.)
- Department of Biochemistry & Molecular Biology, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
| | - David S. Phelps
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA; (N.T.); (D.S.P.)
| | - Joanna Floros
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA; (N.T.); (D.S.P.)
- Department of Obstetrics & Gynecology, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
- Correspondence:
| |
Collapse
|
107
|
Gholami S, Mirian M, Eftekhari SM, Aliomrani M. Apamin administration impact on miR-219 and miR-155-3p expression in cuprizone induced multiple sclerosis model. Mol Biol Rep 2020; 47:9013-9019. [PMID: 33174081 DOI: 10.1007/s11033-020-05959-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023]
Abstract
Multiple sclerosis (MS) is a chronic debilitating disease that attacks the central nervous system. This study aims to investigate miR-219 and miR-155-3p expression levels involved in the myelination process following the administration of apamin peptide in the model of multiple sclerosis disease. Forty-four 8 week C57BL/6 male mice (22 ± 5 g) randomly divided into six groups. Apamin (100 µg/kg/BW) was administered intraperitoneally as a co-treatment during phase I (demyelination) or post-treatment phase II (remyelination) twice a week in cuprizone induced MS model. At the end of study myelin content and microRNA expression levels were measured with LFB staining and quantitative Real-Time PCR method, respectively. It was observed that the intended microRNAs were dysregulated during the different phases of disease induction. After 6 weeks of cuprizone exposure, miR-219 downregulated in phase I in comparison with the negative control. On the other hand, the apamin co-treatment significantly inhibit the miR-155-3p upregulation during the phase I as compared with the cuprizone group (p < 0.0001). Apamin has more impact on the miR155-3p reduction in phase I than miR-219 elevation in phase II. It could be considered as a therapeutic option for decreasing plaque formation during the exacerbation phase of the MS disease. Apamin has more impact on the miR155-3p reduction in phase I than miR-219 elevation in phase II. It could be considered as a therapeutic option for decreasing plaque formation during the exacerbation phase of the MS disease.
Collapse
Affiliation(s)
- Samira Gholami
- School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences and Health Services, Isfahan, Iran
| | - Mina Mirian
- Department of Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences and Health Services, Isfahan, Iran
| | | | - Mehdi Aliomrani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Isfahan Pharmaceutical Science Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Room 117, Isfahan, Islamic Republic of Iran.
| |
Collapse
|
108
|
Figueroa-Hall LK, Paulus MP, Savitz J. Toll-Like Receptor Signaling in Depression. Psychoneuroendocrinology 2020; 121:104843. [PMID: 32911436 PMCID: PMC7883590 DOI: 10.1016/j.psyneuen.2020.104843] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/09/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022]
Abstract
Depression is one of the most prevalent, disabling, and costly mental illnesses currently affecting over 300 million people worldwide. A subset of depressed patients display inflammation as indicated by increased levels of proinflammatory mediators in the blood and cerebrospinal fluid. Longitudinal and experimental studies suggest that this inflammatory profile may causally contribute to the initiation, maintenance, or recurrence of depressive episodes in the context of major depressive disorder (MDD). While the mechanistic pathways that mediate these depressogenic effects have not yet been fully elucidated, toll-like receptor (TLR) signaling is one potential common inflammatory pathway. In this review, we focus on the role that inflammation plays in depression, TLR signaling and its plasticity as a candidate pathway, its regulation by micro ribonucleic acids (miRNAs), and their potential as diagnostic biomarkers for identification of inflammatory subtypes of depression. Pre-clinical and clinical studies have demonstrated that TLR expression and TLR signaling regulators are associated with MDD. Further, TLR expression and signaling is in-turn, regulated in part by miRNAs and some TLR-responsive miRNAs indirectly modulate pathways that are implicated in MDD pathophysiology. These data suggest an intersection between TLR signaling regulation and MDD-linked pathways. While these studies suggest that miRNAs play a role in the pathophysiology of MDD via their regulatory effects on TLR pathways, the utility of miRNAs as biomarkers and potential treatment targets remains to be determined. Developing new and innovative techniques or adapting established immunological approaches to mental health, should be at the forefront in moving the field forward, especially in terms of categorization of inflammatory subtypes in MDD.
Collapse
Affiliation(s)
| | - Martin P Paulus
- Laureate Institute for Brain Research, 6655 S. Yale Ave, Tulsa, OK, 74136, United States; Oxley College of Health Sciences, 1215 S. Boulder Ave W., The University of Tulsa, Tulsa, OK, 74199, United States.
| | - Jonathan Savitz
- Laureate Institute for Brain Research, 6655 S. Yale Ave, Tulsa, OK, 74136, United States; Oxley College of Health Sciences, 1215 S. Boulder Ave W., The University of Tulsa, Tulsa, OK, 74199, United States.
| |
Collapse
|
109
|
Rivière T, Bader A, Pogoda K, Walzog B, Maier-Begandt D. Structure and Emerging Functions of LRCH Proteins in Leukocyte Biology. Front Cell Dev Biol 2020; 8:584134. [PMID: 33072765 PMCID: PMC7536344 DOI: 10.3389/fcell.2020.584134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/01/2020] [Indexed: 01/10/2023] Open
Abstract
Actin-dependent leukocyte trafficking and activation are critical for immune surveillance under steady state conditions and during disease states. Proper immune surveillance is of utmost importance in mammalian homeostasis and it ensures the defense against pathogen intruders, but it also guarantees tissue integrity through the continuous removal of dying cells or the elimination of tumor cells. On the cellular level, these processes depend on the precise reorganization of the actin cytoskeleton orchestrating, e.g., cell polarization, migration, and vesicular dynamics in leukocytes. The fine-tuning of the actin cytoskeleton is achieved by a multiplicity of actin-binding proteins inducing, e.g., the organization of the actin cytoskeleton or linking the cytoskeleton to membranes and their receptors. More than a decade ago, the family of leucine-rich repeat (LRR) and calponin homology (CH) domain-containing (LRCH) proteins has been identified as cytoskeletal regulators. The LRR domains are important for protein-protein interactions and the CH domains mediate actin binding. LRR and CH domains are frequently found in many proteins, but strikingly the simultaneous expression of both domains in one protein only occurs in the LRCH protein family. To date, one LRCH protein has been described in drosophila and four LRCH proteins have been identified in the murine and the human system. The function of LRCH proteins is still under investigation. Recently, LRCH proteins have emerged as novel players in leukocyte function. In this review, we summarize our current understanding of LRCH proteins with a special emphasis on their function in leukocyte biology.
Collapse
Affiliation(s)
- Thibaud Rivière
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig-Maximilians-Universität München, Munich, Germany.,Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Almke Bader
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig-Maximilians-Universität München, Munich, Germany.,Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Kristin Pogoda
- Department of Physiology, Medical Faculty, Augsburg University, Augsburg, Germany
| | - Barbara Walzog
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig-Maximilians-Universität München, Munich, Germany.,Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Daniela Maier-Begandt
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig-Maximilians-Universität München, Munich, Germany.,Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
110
|
Tolnai E, Fidler G, Szász R, Rejtő L, Nwozor KO, Biró S, Paholcsek M. Free circulating mircoRNAs support the diagnosis of invasive aspergillosis in patients with hematologic malignancies and neutropenia. Sci Rep 2020; 10:16532. [PMID: 33020578 PMCID: PMC7536194 DOI: 10.1038/s41598-020-73556-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 09/15/2020] [Indexed: 12/15/2022] Open
Abstract
Fungal infections represent a worrisome complication in hematologic cancer patients and in the absence of disease specific symptoms, it is important to establish new biological indicators, which can be used during mould-active prophylaxis. Recently, miRNAs have appeared as candidate diagnostic and prognostic markers of several diseases. A pilot clinical study was performed to evaluate the diagnostic utility of 14 microRNAs which can be related to invasive fungal infections. Based on our data miR-142-3p, miR-142-5p, miR-26b-5p and miR-21-5p showed significant overexpression (p < 0.005) due to invasive aspergillosis in hemato-oncology patients with profound neutropenia. A tetramiR assay was designed to monitor peripheral blood specimens. Optimal cut-off was estimated by using the median value (fold change 1.1) of the log10 transformed gene expressions. The biomarker panel was evaluated on two independent sample cohorts implementing different antimicrobial prophylactic strategies. The receiver operating characteristic analysis with area under the curve proved to be 0.97. Three miRNAs (miR-142-5p, miR-142-3p, miR-16-5p) showed significant expression alterations in episodes with sepsis. In summary, the tetramiR assay proved to be a promising diagnostic adjunct with sufficient accuracy and sensitivity to trace invasive aspergillosis in hemato-oncology patients.
Collapse
Affiliation(s)
- Emese Tolnai
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary
| | - Gábor Fidler
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary
| | - Róbert Szász
- Division of Haematology, Institute of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Rejtő
- Department of Hematology, Jósa András Teaching Hospital, Nyíregyháza, Hungary
| | - Kingsley Okechukwu Nwozor
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary
| | - Sándor Biró
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary
| | - Melinda Paholcsek
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary.
| |
Collapse
|
111
|
Hassouna SS, Tayel MY, Alzawawy AI, Elkaffash DM, Abdel Hadi AM, Elsayed EH, Amin RM, Tayae E, Elkayal A, Nasr A. MicroRNA155 Expression in Different Phenotypes and Genotypes of Behçet's Disease in a Sample of Egyptian Patients. Mediterr J Rheumatol 2020; 31:337-340. [PMID: 33163867 PMCID: PMC7641019 DOI: 10.31138/mjr.31.3.337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/03/2020] [Accepted: 06/21/2020] [Indexed: 12/22/2022] Open
Abstract
Aim:
To display microRNA155 (miRNA155) expression in different entities of Behçet’s disease (BD), and to find out if expression is affected in more than one of disease status than another, either phenotypically, according to HLA B51 expression, presence of family history, or patients’ age. Methods: Thirty BD patients (13 of which were HLAB51 positive) and 15 healthy subjects’ samples were obtained. White blood cell miRNA155 expression in both types of samples was estimated. Results: Results showed that there is a degree of relation between decrease of miRNA155 expression and different disease aspects, and also, that miRNA155 has an inverse relation with the patients’ ages. Conclusion: MiRNA155 might be used as a measure of disease of different phenotypes, and that any manifestation of the disease can happen when the expression level decreases.
Collapse
Affiliation(s)
- Sally S Hassouna
- Internal Medicine Department, Rheumatology and Immunology Unit, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Manal Y Tayel
- Internal Medicine Department, Rheumatology and Immunology Unit, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ashraf I Alzawawy
- Clinical and Chemical Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Dalal M Elkaffash
- Opthalmology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ahmed M Abdel Hadi
- Internal Medicine Department, Rheumatology and Immunology Unit, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Eman H Elsayed
- Opthalmology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Rowayda M Amin
- Clinical and Chemical Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Eman Tayae
- Clinical and Chemical Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Alya Elkayal
- Clinical and Chemical Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Asmaa Nasr
- Clinical and Chemical Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
112
|
miR-369-3p modulates inducible nitric oxide synthase and is involved in regulation of chronic inflammatory response. Sci Rep 2020; 10:15942. [PMID: 32994523 PMCID: PMC7525504 DOI: 10.1038/s41598-020-72991-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 09/10/2020] [Indexed: 11/08/2022] Open
Abstract
Dendritic cells are the most important antigen-presenting cells that link the innate and acquired immune system. In our previous study, we identified that the upregulation of miR-369-3p suppresses the LPS-induced inflammatory response, reducing C/EBP-β, TNFα and IL-6 production. With the aim of gaining further insight into the biological function of miR-369-3p during acute inflammatory response, in the present study we identified novel gene targets of miR-369-3p and demonstrated the suppressive ability of these genes on the inflammatory dendritic cells. Bioinformatic analyses revealed that iNOS is a potential target of miR-369-3p. We demonstrated that the ectopic induction of miR-369-3p markedly reduced iNOS mRNA and protein as well as NO production. Moreover, we found that the upregulation of miR-369-3p decreased the release of TNFα, IL-6, IL-12, IL-1α, IL-1β in response to LPS, and increased the production of anti-inflammatory cytokines such as IL-10 and IL-1RA. In addition, LPS-induced nuclear translocation of NF-kB was inhibited by miR-369-3p. Levels of miR-369-3p were decreased in human inflamed regions of human intestine obtained from IBD patients. Our results provide novel additional information on miR-369-3p as a potential core of the signaling regulating the inflammatory response. These findings suggest that miR-369-3p should be considered as a potential target for the future development of new molecular therapeutic approaches.
Collapse
|
113
|
Kniss DA, Summerfield TL. Progesterone Receptor Signaling Selectively Modulates Cytokine-Induced Global Gene Expression in Human Cervical Stromal Cells. Front Genet 2020; 11:883. [PMID: 33061933 PMCID: PMC7517718 DOI: 10.3389/fgene.2020.00883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 07/17/2020] [Indexed: 01/09/2023] Open
Abstract
Preterm birth (PTB) is the leading cause of morbidity and mortality in infants <1 year of age. Intrauterine inflammation is a hallmark of preterm and term parturition; however, this alone cannot fully explain the pathobiology of PTB. For example, the cervix undergoes a prolonged series of biochemical and biomechanical events, including extracellular matrix (ECM) remodeling and mechanochemical changes, culminating in ripening. Vaginal progesterone (P4) prophylaxis demonstrates great promise in preventing PTB in women with a short cervix (<25 mm). We used a primary culture model of human cervical stromal fibroblasts to investigate gene expression signatures in cells treated with interleukin-1β (IL-1β) in the presence or absence of P4 following 17β-estradiol (17β-E2) priming for 7–10 days. Microarrays were used to measure global gene expression in cells treated with cytokine or P4 alone or in combination, followed by validation of select transcripts by semiquantitative polymerase chain reactions (qRT-PCR). Primary/precursor (MIR) and mature microRNAs (miR) were quantified by microarray and NanoString® platforms, respectively, and validated by qRT-PCR. Differential gene expression was computed after data normalization followed by pathway analysis using Kyoto Encyclopedia Genes and Genomes (KEGG), Panther, Gene Ontology (GO), and Ingenuity Pathway Analysis (IPA) upstream regulator algorithm tools. Treatment of fibroblasts with IL-1β alone resulted in the differential expression of 1432 transcripts (protein coding and non-coding), while P4 alone led to the expression of only 43 transcripts compared to untreated controls. Cytokines, chemokines, and their cognate receptors and prostaglandin endoperoxide synthase-2 (PTGS-2) were among the most highly upregulated transcripts following either IL-1β or IL-1β + P4. Other prominent differentially expressed transcripts were those encoding ECM proteins, ECM-degrading enzymes, and enzymes involved in glycosaminoglycan (GAG) biosynthesis. We also detected differential expression of bradykinin receptor-1 and -2 transcripts, suggesting (prominent in tissue injury/remodeling) a role for the kallikrein–kinin system in cervical responses to cytokine and/or P4 challenge. Collectively, this global gene expression study provides a rich database to interrogate stromal fibroblasts in the setting of a proinflammatory and endocrine milieu that is relevant to cervical remodeling/ripening during preparation for parturition.
Collapse
Affiliation(s)
- Douglas A Kniss
- Division of Maternal-Fetal Medicine and Laboratory of Perinatal Research, Department of Obstetrics and Gynecology, The Ohio State University, College of Medicine and Wexner Medical Center, Columbus, OH, United States.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, United States
| | - Taryn L Summerfield
- Division of Maternal-Fetal Medicine and Laboratory of Perinatal Research, Department of Obstetrics and Gynecology, The Ohio State University, College of Medicine and Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
114
|
Saw PE, Xu X, Chen J, Song EW. Non-coding RNAs: the new central dogma of cancer biology. SCIENCE CHINA-LIFE SCIENCES 2020; 64:22-50. [PMID: 32930921 DOI: 10.1007/s11427-020-1700-9] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
The central dogma of molecular biology states that the functions of RNA revolve around protein translation. Until the last decade, most researches were geared towards characterization of RNAs as intermediaries in protein translation, namely, messenger RNAs (mRNAs) as temporary copies of genetic information, ribosomal RNAs (rRNAs) as a main component of ribosome, or translators of codon sequence (tRNAs). The statistical reality, however, is that these processes account for less than 2% of the genome, and insufficiently explain the functionality of 98% of transcribed RNAs. Recent discoveries have unveiled thousands of unique non-coding RNAs (ncRNAs) and shifted the perception of them from being "junk" transcriptional products to "yet to be elucidated"-and potentially monumentally important-RNAs. Most ncRNAs are now known as key regulators in various networks in which they could lead to specific cellular responses and fates. In major cancers, ncRNAs have been identified as both oncogenic drivers and tumor suppressors, indicating a complex regulatory network among these ncRNAs. Herein, we provide a comprehensive review of the various ncRNAs and their functional roles in cancer, and the pre-clinical and clinical development of ncRNA-based therapeutics. A deeper understanding of ncRNAs could facilitate better design of personalized therapeutics.
Collapse
Affiliation(s)
- Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Jianing Chen
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Er-Wei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China. .,Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|
115
|
Moeng S, Son SW, Lee JS, Lee HY, Kim TH, Choi SY, Kuh HJ, Park JK. Extracellular Vesicles (EVs) and Pancreatic Cancer: From the Role of EVs to the Interference with EV-Mediated Reciprocal Communication. Biomedicines 2020; 8:biomedicines8080267. [PMID: 32756339 PMCID: PMC7459718 DOI: 10.3390/biomedicines8080267] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/25/2020] [Accepted: 08/01/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is malignant and the seventh leading cause of cancer-related deaths worldwide. However, chemotherapy and radiotherapy are—at most—moderately effective, indicating the need for new and different kinds of therapies to manage this disease. It has been proposed that the biologic properties of pancreatic cancer cells are finely tuned by the dynamic microenvironment, which includes extracellular matrix, cancer-associated cells, and diverse immune cells. Accumulating evidence has demonstrated that extracellular vesicles (EVs) play an essential role in communication between heterogeneous subpopulations of cells by transmitting multiplex biomolecules. EV-mediated cell–cell communication ultimately contributes to several aspects of pancreatic cancer, such as growth, angiogenesis, metastasis and therapeutic resistance. In this review, we discuss the role of extracellular vesicles and their cargo molecules in pancreatic cancer. We also present the feasibility of the inhibition of extracellular biosynthesis and their itinerary (release and uptake) for a new attractive therapeutic strategy against pancreatic cancer.
Collapse
Affiliation(s)
- Sokviseth Moeng
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (S.M.); (S.W.S.); (J.S.L.); (H.Y.L.); (T.H.K.); (S.Y.C.)
| | - Seung Wan Son
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (S.M.); (S.W.S.); (J.S.L.); (H.Y.L.); (T.H.K.); (S.Y.C.)
| | - Jong Sun Lee
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (S.M.); (S.W.S.); (J.S.L.); (H.Y.L.); (T.H.K.); (S.Y.C.)
| | - Han Yeoung Lee
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (S.M.); (S.W.S.); (J.S.L.); (H.Y.L.); (T.H.K.); (S.Y.C.)
| | - Tae Hee Kim
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (S.M.); (S.W.S.); (J.S.L.); (H.Y.L.); (T.H.K.); (S.Y.C.)
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (S.M.); (S.W.S.); (J.S.L.); (H.Y.L.); (T.H.K.); (S.Y.C.)
| | - Hyo Jeong Kuh
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Jong Kook Park
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (S.M.); (S.W.S.); (J.S.L.); (H.Y.L.); (T.H.K.); (S.Y.C.)
- Correspondence: ; Tel.: +82-33-248-2114
| |
Collapse
|
116
|
MicroRNAs Regulated by the LPS/TLR2 Immune Axis as Bona Fide Biomarkers for Diagnosis of Acute Leptospirosis. mSphere 2020; 5:5/4/e00409-20. [PMID: 32669469 PMCID: PMC7364213 DOI: 10.1128/msphere.00409-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Here, we used miRNAs that are differentially regulated by the LPS/TLR2 immune axis to devise a miRNA-based diagnosis for leptospirosis. The study established the role of the circulating stable miRNAs (miR-21-5p, miR-144-3p, and miR-let-7b-5p) as an early diagnostic marker for leptospirosis. These miRNAs can be used to diagnose acute leptospirosis and also to differentiate leptospiral infection from other bacterial and spirochetal infections, as proved by the use of human clinical samples. Thus, our findings indicate that miRNAs can play a crucial role in the diagnosis of infectious diseases, like leptospirosis, that are generally misdiagnosed. Leptospirosis remains a significant human health issue due to its systemic complications. Therefore, biomarkers that are more effective are urgently needed for the early diagnosis of leptospirosis. MicroRNAs (miRNAs) are evolutionarily conserved regulatory RNAs that have shown the potential to be used as biomarkers for diagnosis, prognosis, and therapy of infectious diseases. In this study, we performed an unbiased screen using the miRNome miRNA array to identify circulating miRNAs with the potential to serve as authentic biomarkers for early diagnosis of leptospirosis. Because leptospiral lipopolysaccharide (LPS) is the predominant leptospiral antigen and plays a vital role in immunological and biological activities, we used LPS treated and untreated in vitro (THP1 cells) and in vivo (BALB/c mice) surrogate models to identify the LPS-specific miRNAs. Differential expression analysis revealed 18 miRNAs to be associated strongly with LPS stimulation in THP1 cells. Of these, three (miR-let-7b-5p, miR-144-3p, and miR-21-5p) were observed to be present at increased levels in vivo. The identified miRNAs were validated for their biomarker potential using serum samples from leptospirosis-negative patients and patients with confirmed cases of leptospirosis. Identified miRNAs were able to discriminate the acute leptospiral infection from other febrile diseases with a test sensitivity and specificity of 93.2% and 88.19%, respectively. Gene functional enrichment and protein-protein interaction (PPI) network analysis revealed that the identified miRNAs play important roles in disease signal transduction, signaling by interleukins, the stress-activated protein kinase signaling cascade, the mitogen-activated protein kinase (MAPK) signaling pathway, and the cellular response to a transforming growth factor β (TGF-β) stimulus with a notable interconnection between these biological processes. IMPORTANCE Here, we used miRNAs that are differentially regulated by the LPS/TLR2 immune axis to devise a miRNA-based diagnosis for leptospirosis. The study established the role of the circulating stable miRNAs (miR-21-5p, miR-144-3p, and miR-let-7b-5p) as an early diagnostic marker for leptospirosis. These miRNAs can be used to diagnose acute leptospirosis and also to differentiate leptospiral infection from other bacterial and spirochetal infections, as proved by the use of human clinical samples. Thus, our findings indicate that miRNAs can play a crucial role in the diagnosis of infectious diseases, like leptospirosis, that are generally misdiagnosed.
Collapse
|
117
|
Sartorius K, Swadling L, An P, Makarova J, Winkler C, Chuturgoon A, Kramvis A. The Multiple Roles of Hepatitis B Virus X Protein (HBx) Dysregulated MicroRNA in Hepatitis B Virus-Associated Hepatocellular Carcinoma (HBV-HCC) and Immune Pathways. Viruses 2020; 12:v12070746. [PMID: 32664401 PMCID: PMC7412373 DOI: 10.3390/v12070746] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
Currently, the treatment of hepatitis B virus (HBV)-associated hepatocellular carcinoma (HCC) [HBV-HCC] relies on blunt tools that are unable to offer effective therapy for later stage pathogenesis. The potential of miRNA to treat HBV-HCC offer a more targeted approach to managing this lethal carcinoma; however, the complexity of miRNA as an ancillary regulator of the immune system remains poorly understood. This review examines the overlapping roles of HBx-dysregulated miRNA in HBV-HCC and immune pathways and seeks to demonstrate that specific miRNA response in immune cells is not independent of their expression in hepatocytes. This interplay between the two pathways may provide us with the possibility of using candidate miRNA to manipulate this interaction as a potential therapeutic option.
Collapse
Affiliation(s)
- Kurt Sartorius
- Faculty of Commerce, Law and Management, University of the Witwatersrand, Johannesburg 2050, South Africa
- Department of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban 4041, South Africa;
- UKZN Gastrointestinal Cancer Research Centre, Durban 4041, South Africa
- Correspondence:
| | - Leo Swadling
- Division of Infection and Immunity, University College London, London WC1E6BT, UK;
| | - Ping An
- Basic Research Laboratory, Centre for Cancer Research, National Cancer Institute, Leidos Biomedical Research, Inc. Frederick Nat. Lab. for Cancer Research, Frederick, MD 20878, USA; (P.A.); (C.W.)
| | - Julia Makarova
- National Research University Higher School of Economics, Faculty of Biology and Biotechnology, 10100 Moscow, Russia;
| | - Cheryl Winkler
- Basic Research Laboratory, Centre for Cancer Research, National Cancer Institute, Leidos Biomedical Research, Inc. Frederick Nat. Lab. for Cancer Research, Frederick, MD 20878, USA; (P.A.); (C.W.)
| | - Anil Chuturgoon
- Department of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban 4041, South Africa;
| | - Anna Kramvis
- Hepatitis Virus Diversity Research Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2050, South Africa;
| |
Collapse
|
118
|
Du J, Lv H, Dou X, Cao Z. Nuclear Factor κB/MicroRNA-155 Upregulates the Expression Pattern of Cytokines in Regulating the Relapse of Chronic Sinusitis with Nasal Polyps and the Underlying Mechanism of Glucocorticoid. Med Sci Monit 2020; 26:e923618. [PMID: 32614806 PMCID: PMC7350531 DOI: 10.12659/msm.923618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background The aim of this study was to explore the upregulated nuclear factor κB (NF-κB)/microRNA-155 (miR-155) in regulating inflammatory responses and relapse of chronic rhinosinusitis (CRS) with nasal polyps (NP), which underlies the molecular mechanism of glucocorticoid treatment. Material/Methods The study recruited 25 patients with eosinophilic (Eos) CRSwNP, 25 patients with Non-Eos CRSwNP, 25 patients with CRS without NP (CRSsNP) and 30 patients with nasal septum deviation (control group). The expression of NF-κB/miR-155 and inflammatory cytokines was detected in epithelial tissue specimens. Additionally, a mouse model of Eos CRSwNP was established, and the mice were treated by NF-κB inhibitor, miR-155 antagomir, or dexamethasone (DEX) to explore the role of NF-κB/miR-155 and the anti-inflammatory effects of glucocorticoid treatment. Results Results showed that the expression level of NF-κB/miR-155 was significantly elevated in the Eos CRSwNP group, accompanied by the upregulation of cytokines: tumor necrosis factor (TNF)-α, interleukin (IL)-1, IL-4, IL-5 (P<0.05) compared with the control group, the CRSsNP group or the Non-Eos CRSwNP group. The upregulation of NF-κB/miR-155 increased inflammatory mediator cyclooxygenase2 (COX2) while decreasing anti-inflammatory mediator Src homology-2 domain-containing inositol 5-phosphatase 1 (SOCS1), which resulted in the aberrant expression pattern of cytokines in the mice model. DEX treatment inhibited the expression of cytokines and decreased the relapse rate of Eos CRSwNP via inhibiting NF-κB/miR-155 (P<0.05). Conclusions The upregulation of NF-κB/miR-155 was crucial in mediating the aberrant expression of inflammatory cytokines in Eos CRSwNP. This molecular mechanism is a concern with the high relapse rate of Eos CRSwNP. However, glucocorticoid treatment inhibited the relapse of CRSwNP via downregulation of NF-κB/miR-155.
Collapse
Affiliation(s)
- Jianbin Du
- Department of Otorhinolaryngology, The Second Affiliated Hospital of Suzhou University, Suzhou, Jiangsu, China (mainland)
| | - Haijun Lv
- Department of Pathology, The Second Affiliated Hospital of Suzhou University, Suzhou, Jiangsu, China (mainland)
| | - Xin Dou
- Department of Radiology, The Second Affiliated Hospital of Suzhou University, Suzhou, Jiangsu, China (mainland)
| | - Zhongsheng Cao
- Department of Otorhinolaryngology, The Second Affiliated Hospital of Suzhou University, Suzhou, Jiangsu, China (mainland)
| |
Collapse
|
119
|
MicroRNA miR-155 is required for expansion of regulatory T cells to mediate robust pregnancy tolerance in mice. Mucosal Immunol 2020; 13:609-625. [PMID: 31988469 DOI: 10.1038/s41385-020-0255-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 12/11/2019] [Accepted: 01/08/2020] [Indexed: 02/04/2023]
Abstract
The immune-regulatory microRNA miR-155 is reduced in recurrent miscarriage, suggesting that miR-155 contributes to immune tolerance in pregnancy. Here we show miR-155 is induced in the uterine mucosa and draining lymph nodes (dLN) during the female immune response to male seminal fluid alloantigens. Mice with null mutation in miR-155 (miR-155-/-) exhibited a reduced CD4+ T cell response after mating, with a disproportionate loss of CD25+FOXP3+ Treg cells. miR-155 deficiency impaired expansion of both peripheral and thymic Treg cells, distinguished by neuropilin-1 (NRP1), and fewer Treg cells expressed Ki67 proliferation marker and suppressive function marker CTLA4. Altered Treg phenotype distribution in miR-155-/- mice was confirmed by t-distributed neighbor embedding (tSNE) analysis. Fewer dendritic cells (DCs) and macrophages trafficked to the dLN of miR-155-/- mice, associated with lower CCR7 on DCs, and reduced uterine Ccl19 expression, implicating compromised antigen presentation in the stunted Treg cell response. miR-155-/- mice exhibited elevated susceptibility to inflammation-induced fetal loss and fetal growth restriction compared with miR-155+/+ controls, but outcomes were restored by transfer of wild-type Tregs. Thus miR-155 is a key regulator of immune adaptation to pregnancy and is necessary for sufficient Tregs to achieve robust pregnancy tolerance and protect against fetal loss.
Collapse
|
120
|
Hu M, Palić D. Role of MicroRNAs in regulation of DNA damage in monocytes exposed to polystyrene and TiO 2 nanoparticles. Toxicol Rep 2020; 7:743-751. [PMID: 32579136 PMCID: PMC7305267 DOI: 10.1016/j.toxrep.2020.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/11/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022] Open
Abstract
Time and dose dependent DNA damage profile was established to determine the genotoxicity of PSNPs and nano-TiO2-ARS. Expression of DNA damage repairing genes was elevated post nano-TiO2-ARS, but not post PSNPs exposure. miRNA expression screening with different potential activators revealed miR-155-5p as best candidate. Transfection of miR-155-5p mimic influenced expression of genes invovled in DNA damage post expousre to TiO2 and PSNPs. miR-155-5p showed the highest potential to be used as biomarker for PSNPs and nano-TiO2-ARS induced adverse effects.
The release of nanoparticles into the environment can interfere with the health of the exposed organisms. MicroRNAs have been suggested as potential toxicology biomarkers. The expression of potential zebrafish nano-toxicity biomarker miRNAs in our previous study was validated in THP-1 human monocytic cell line after exposure to polystyrene (PSNPs) and ARS labeled Titanium dioxide nanoparticles (nano-TiO2-ARS). miRNAs expression post exposure to PLGA nanoparticles and E. coli BioParticles was used to exclude potential activation and engagement of miRNAs through phagocytosis or pro-inflammatory specific responses. miR-155-5p showed the highest potential to be used as biomarker for PSNPs and nano-TiO2-ARS induced toxicity. To determine effects of PSNPs and nano-TiO2-ARS on genotoxicity, time and dose dependent DNA damage profile was established. Severe DNA damage was triggered by both nanoparticles, and expression of DNA damage repairing genes was elevated post nano-TiO2-ARS, but not post PSNPs exposure, questioning the utility of the comet assay as universal assessment tool for genotoxicity induced by nanoparticles in general. Transfection of miR-155-5p mimic influenced the expression of miR-155-5p related, DNA damage responsible genes post both nano-TiO2-ARS and PSNPs exposure. Transfection results suggest significant involvement of miR-155-5p in gene repair mechanisms triggered by adverse effects of PSNPs and nano-TiO2-ARS on monocytes.
Collapse
Affiliation(s)
- Moyan Hu
- Chair for Fish Diseases and Fisheries Biology, Faculty of Veterinary Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Dušan Palić
- Chair for Fish Diseases and Fisheries Biology, Faculty of Veterinary Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
121
|
miR-155 indicates the fate of CD4 + T cells. Immunol Lett 2020; 224:40-49. [PMID: 32485191 DOI: 10.1016/j.imlet.2020.05.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/14/2020] [Accepted: 05/24/2020] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNAs) are a class of short noncoding RNAs that regulate the translation of target messenger RNA (mRNA) and consequently participate in a variety of biological processes at the posttranscriptional level. miR-155, encoded within a region known as the B cell integration cluster (BIC), plays multifunctional roles in shaping lymphocytes ranging from biological development to adaptive immunity. It has been revealed that miR-155 plays a key role in fine-tuning the regulation of lymphocyte subsets, including dendritic cells (DCs), macrophages, B cells, and CD8+ and CD4+ T cells. Antigen-specific CD4+ T lymphocytes are critical for host defense against pathogens and prevention of damage resulting from excessive inflammation. Over the past years, various studies have shown that miR-155 plays a critical role in CD4+ T cells function. Therefore, we summarize multiple target genes of miR-155 that regulate aspects of CD4+ T cells immunity, particularly CD4+ T cells differentiation, in this review. In addition, we also focus on the role of miR-155 in the regulation of immunological diseases, suggesting it as a potential disease biomarker and therapeutic target.
Collapse
|
122
|
Jia J, Li X, Guo S, Xie X. MicroRNA-155 Suppresses the Translation of p38 and Impairs the Functioning of Dendritic Cells in Endometrial Cancer Mice. Cancer Manag Res 2020; 12:2993-3002. [PMID: 32431542 PMCID: PMC7198441 DOI: 10.2147/cmar.s240926] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/31/2020] [Indexed: 12/12/2022] Open
Abstract
Background Dendritic cells (DCs) are reported to play an important role in activating the anti-tumor immune responses. p38 MAPK14 signaling plays an important role in controlling their activity. Here, we identified that miR-155 suppressed the translation of p38 and impaired the functioning of dendritic cells in endometrial cancer. Methods HEC1A endometrial cancer cell lines were used for the study which was transfected in the C57BL/6 mice. Murine bone marrow-derived dendritic cells (BMDCs) were isolated from the mice. Target prediction was done by TargetScan which was confirmed by RT-PCR analysis. The protein expression was carried by Western blot analysis. Levels of IL-12 were evaluated by ELISA. Mice injected with HEC1A cells were subjected to tumor challenge study. Results On screening the binding sites of p38 MAPK14 gene, miR-155 was found to bind the 3ʹUTR directly and blocked its translation. The levels of miR-155 were upregulated in dendritic cells and RAW264.7 cells, miR-155 showed inhibitory effect on expression levels of p38. In dendritic cells, miR-155 was found to regulate the expression of IL-12, also miR-155 inhibitor stimulated the differentiation of Th1 cells in mice induced with endometrial cancer. In dendritic cells, miR-155 inhibited the expression of p38 gene and decreased their ability to interfere in tumor growth. Conclusion The study concludes suppressive role of miR-155 in the process of dendritic cells mediated anti-tumor immunity, also inhibiting miR-155 provides a novel strategy for countering endometrial cancer.
Collapse
Affiliation(s)
- Jianjun Jia
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Jinan University, Guangzhou 510632, People's Republic of China
| | - Xiaomao Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510632, People's Republic of China
| | - Suiqun Guo
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510632, People's Republic of China
| | - Xingmei Xie
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Jinan University, Guangzhou 510632, People's Republic of China
| |
Collapse
|
123
|
Yin LM, Schnoor M, Jun CD. Structural Characteristics, Binding Partners and Related Diseases of the Calponin Homology (CH) Domain. Front Cell Dev Biol 2020; 8:342. [PMID: 32478077 PMCID: PMC7240100 DOI: 10.3389/fcell.2020.00342] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/20/2020] [Indexed: 01/01/2023] Open
Abstract
The calponin homology (CH) domain is one of the most common modules in various actin-binding proteins and is characterized by an α-helical fold. The CH domain plays important regulatory roles in both cytoskeletal dynamics and signaling. The CH domain is required for stability and organization of the actin cytoskeleton, calcium mobilization and activation of downstream pathways. The CH domain has recently garnered increased attention due to its importance in the onset of different diseases, such as cancers and asthma. However, many roles of the CH domain in various protein functions and corresponding diseases are still unclear. Here, we review current knowledge about the structural features, interactome and related diseases of the CH domain.
Collapse
Affiliation(s)
- Lei-Miao Yin
- Laboratory of Molecular Biology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Michael Schnoor
- Molecular Biomedicine, Center for Investigation and Advanced Studies of the National Polytechnic Institute (Cinvestav), Mexico City, Mexico
| | - Chang-Duk Jun
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
| |
Collapse
|
124
|
The Interplay between MicroRNAs and the Components of the Tumor Microenvironment in B-Cell Malignancies. Int J Mol Sci 2020; 21:ijms21093387. [PMID: 32403283 PMCID: PMC7246984 DOI: 10.3390/ijms21093387] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/22/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022] Open
Abstract
An increased focus is being placed on the tumorigenesis and contexture of tumor microenvironment in hematopoietic and solid tumors. Despite recent clinical revolutions in adoptive T-cell transfer approaches and immune checkpoint blockade, tumor microenvironment is a major obstacle to tumor regression in B-cell malignancies. A transcriptional alteration of coding and non-coding RNAs, such as microRNAs (miRNAs), has been widely demonstrated in the tumor microenvironment of B-cell malignancies. MiRNAs have been associated with different clinical-biological forms of B-cell malignancies and involved in the regulation of B lymphocyte development, maturation, and function, including B-cell activation and malignant transformation. Additionally, tumor-secreted extracellular vesicles regulate recipient cell functions in the tumor microenvironment to facilitate metastasis and progression by delivering miRNA contents to neighboring cells. Herein, we focus on the interplay between miRNAs and tumor microenvironment components in the different B-cell malignancies and its impact on diagnosis, proliferation, and involvement in treatment resistance.
Collapse
|
125
|
Niu L, Lou F, Sun Y, Sun L, Cai X, Liu Z, Zhou H, Wang H, Wang Z, Bai J, Yin Q, Zhang J, Chen L, Peng D, Xu Z, Gao Y, Tang S, Fan L, Wang H. A micropeptide encoded by lncRNA MIR155HG suppresses autoimmune inflammation via modulating antigen presentation. SCIENCE ADVANCES 2020; 6:eaaz2059. [PMID: 32671205 PMCID: PMC7314557 DOI: 10.1126/sciadv.aaz2059] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 03/06/2020] [Indexed: 05/04/2023]
Abstract
Many annotated long noncoding RNAs (lncRNAs) harbor predicted short open reading frames (sORFs), but the coding capacities of these sORFs and the functions of the resulting micropeptides remain elusive. Here, we report that human lncRNA MIR155HG encodes a 17-amino acid micropeptide, which we termed miPEP155 (P155). MIR155HG is highly expressed by inflamed antigen-presenting cells, leading to the discovery that P155 interacts with the adenosine 5'-triphosphate binding domain of heat shock cognate protein 70 (HSC70), a chaperone required for antigen trafficking and presentation in dendritic cells (DCs). P155 modulates major histocompatibility complex class II-mediated antigen presentation and T cell priming by disrupting the HSC70-HSP90 machinery. Exogenously injected P155 improves two classical mouse models of DC-driven auto inflammation. Collectively, we demonstrate the endogenous existence of a micropeptide encoded by a transcript annotated as "non-protein coding" and characterize a micropeptide as a regulator of antigen presentation and a suppressor of inflammatory diseases.
Collapse
Affiliation(s)
- Liman Niu
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Fangzhou Lou
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Yang Sun
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Libo Sun
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Xiaojie Cai
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Zhaoyuan Liu
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Hong Zhou
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Hong Wang
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Zhikai Wang
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Jing Bai
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Qianqian Yin
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Junxun Zhang
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Linjiao Chen
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Danhong Peng
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhenyao Xu
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Yuanyuan Gao
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Sibei Tang
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Li Fan
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Honglin Wang
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| |
Collapse
|
126
|
Abstract
UNLABELLED MINI: Circulating microRNAs provide an insight into current disease states. Comparing patients with degenerative disc disease to healthy controls, patients with disc disease were found to have significantly downregulated levels of miR-155-5p. This marker was found to be an accurate diagnostic predictor for the presence of degeneration (P = 0.006). STUDY DESIGN Case-control study measuring differential gene expression of circulating microRNA (miRNA) in patients with degenerative disc disease (DDD). OBJECTIVE To identify miRNA dysregulation in serum samples of patients with DDD compared to healthy controls (HC). SUMMARY OF BACKGROUND DATA Early DDD can be a difficult diagnosis to make clinically, with lack of positive and specific findings on physical exam or advanced imaging. miRNAs are a class of molecules that act as gene regulators and have been shown to be dysregulated in local degenerative disc tissue. However, to date no studies have identified dysregulation of serum miRNA in patients with DDD. METHODS Whole blood samples were obtained from 69 patients with DDD and 16 HC. Patient-reported outcomes were collected preoperatively and degree of DDD was classified using Pfirrmann grade on preoperative imaging. Differential gene expression analysis using a screening assay for several hundred miRNAs and further characterization for five specific miRNAs (miR-16-5p, miR-21-5p, miR-142-3p, miR-146a-5p, and miR-155-5p) was performed. In addition, a pro-inflammatory cytokine multiplex assay and bioinformatics analysis were done. RESULTS The initial screening assay showed 13 miRNA molecules that were significantly dysregulated in DDD patients, with miR-155-5p showing significant downregulation (p = 0.027) and direct interactions with the pro-inflammatory cytokine IL-1β, and the tumor suppressor genes p53 and BRAF. Analyzing the whole cohort, miR-155 showed an almost four-fold downregulation in DDD patients (-3.94-fold, P < 0.001) and was the sole miRNA that accurately predicted the presence of disc degeneration (P = 0.006). Downregulation of miR-155 also correlated with increased leg pain (P = 0.018), DDD (P = 0.006), and higher Pfirrmann grade (P = 0.039). On cytokine analysis, TNF-α (0.025) and IL-6 (P < 0.001) were significantly higher in DDD patients. CONCLUSION Serum miR-155-5p is significantly downregulated in patients with DDD and may be a diagnostic marker for degenerative spinal disease. LEVEL OF EVIDENCE N/A.
Collapse
|
127
|
Chen W, Guo S, Li X, Song N, Wang D, Yu R. The regulated profile of noncoding RNAs associated with inflammation by tanshinone IIA on atherosclerosis. J Leukoc Biol 2020; 108:243-252. [PMID: 32337768 DOI: 10.1002/jlb.3ma0320-327rrr] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 03/18/2020] [Accepted: 03/27/2020] [Indexed: 01/23/2023] Open
Abstract
Atherosclerosis (AS) is the principal cause of heart attack, sudden cardiac death, stroke, and necrosis of the extremities, in which significant changes in gene expression associated with inflammation are found. However, the molecular mechanisms of AS are not clearly elucidated. In this study, ApoE-/- mice were fed with a high fat diet for 12 weeks to induce atherosclerosis and half of the mice were treated with tanshinone IIA (TAN). Then sequencing analysis was performed to investigate the expression patterns of ncRNAs in AS plaques obtained from mice treated with TAN and AS Model mice. A total of 22 long noncoding RNAs (lncRNAs), 74 microRNAs (miRNAs), 13 circular RNAs (circRNAs), and 1359 mRNAs in AS plaque were more significantly regulated from TAN mice, compared with model mice. Bioinformatics tools and databases were employed to investigate the potential ncRNA functions and their interaction. Our data showed that the most significantly pathways regulated by TAN were associated with inflammation, and involved in the signaling pathways of Ras, Rap1, MAPK, cAMP, T cell receptor, and so on. In addition, the competitive endogenous RNA (ceRNA) network had been constructed and the core nodes included circ-Tns3/let-7d-5p/Ctsl, circ-Wdr91/miR-378a-5p/Msr1, and circ-Cd84/ miR-30c/ Tlr2. The DERNAs were validated by quantitative RT-PCR and dual luminescence reporter assay in RAW264.7 cells in vitro. This study identified ceRNAs network regulated by TAN and elucidated the ncRNAs profile and signal pathways to attenuate AS comprehensively. This research would contribute to further research on the pathogenesis of AS, and facilitate the development of novel therapeutics targeting ncRNAs.
Collapse
Affiliation(s)
- Wenna Chen
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China.,Department of Medical Science of Laboratory, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Shengnan Guo
- Department of Medical Science of Laboratory, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Ximing Li
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Nan Song
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Dan Wang
- Department of Medical Science of Laboratory, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Rui Yu
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| |
Collapse
|
128
|
Meng Y, Li J, Ye Z, Yin Z, Sun Q, Liao Z, Li G, Deng J, Liu L, Yu Y, Wu L, Zhou H, Shen N. MicroRNA-148a facilitates inflammatory dendritic cell differentiation and autoimmunity by targeting MAFB. JCI Insight 2020; 5:133721. [PMID: 32213710 DOI: 10.1172/jci.insight.133721] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 03/18/2020] [Indexed: 01/11/2023] Open
Abstract
Monocyte-derived DCs (moDCs) have been implicated in the pathogenesis of autoimmunity, but the molecular pathways determining the differentiation potential of these cells remain unclear. Here, we report that microRNA-148a (miR-148a) serves as a critical regulator for moDC differentiation. First, miR-148a deficiency impaired the moDC development in vitro and in vivo. A mechanism study showed that MAFB, a transcription factor that hampers moDC differentiation, was a direct target of miR-148a. In addition, a promoter study identified that miR-148a could be transcriptionally induced by PU.1, which is crucial for moDC generation. miR-148a ablation eliminated the inhibition of PU.1 on MAFB. Furthermore, we found that miR-148a increased in monocytes from patients with psoriasis, and miR-148a deficiency or intradermal injection of antagomir-148a immensely alleviated the development of psoriasis-like symptoms in a psoriasis-like mouse model. Therefore, these results identify a pivotal role for the PU.1-miR-148a-MAFB circuit in moDC differentiation and suggest a potential therapeutic avenue for autoimmunity.
Collapse
Affiliation(s)
- Yao Meng
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Jun Li
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Zhizhong Ye
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Zhihua Yin
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Qing Sun
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Zhuojun Liao
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Guanhua Li
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Jun Deng
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Lu Liu
- Institute of Dermatology and Department of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Yuqing Yu
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Li Wu
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University School of Medicine, Beijing, China
| | - Haibo Zhou
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China.,Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Nan Shen
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China.,Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China.,Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, SJTUSM, Shanghai, China
| |
Collapse
|
129
|
Pattnaik B, Sryma PB, Mittal S, Agrawal A, Guleria R, Madan K. MicroRNAs in pulmonary sarcoidosis: A systematic review. Respir Investig 2020; 58:232-238. [PMID: 32305227 DOI: 10.1016/j.resinv.2020.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/11/2020] [Accepted: 02/20/2020] [Indexed: 01/05/2023]
Abstract
Sarcoidosis is a multisystemic granulomatous disorder of unknown etiology. Diagnosis of sarcoidosis is made by correlating clinical and radiological features along with the histopathological demonstration of non-necrotizing granulomas in tissue samples. Diagnosis is often challenging as the clinical profile may mimic other granulomatous disorders, including infections, inflammatory diseases, and lymphoid malignancies. Differentiation from tuberculosis is especially crucial in endemic regions where exclusion of mediastinal tuberculosis is necessary before any immunosuppressant treatment can be initiated for symptomatic sarcoidosis. Identification of biomarkers, which can aid in diagnosis as well as prognosis, can be helpful in clinical decision making. MicroRNAs are small non-coding regulatory RNAs that serve as post-transcriptional regulators of gene expression and have been studied as emerging biomarkers in many other respiratory diseases, including lung cancer, asthma, idiopathic pulmonary fibrosis, and chronic obstructive pulmonary disease. In the context of sarcoidosis, miRNA expression has been studied in the lungs, lymph nodes, bronchoalveolar lavage fluid, and peripheral blood mononuclear cells. A comprehensive search of the PubMed database was performed by two authors independently, and relevant studies were retrieved for review. This systematic review summarizes the current information on miRNAs in sarcoidosis, the biological mechanisms involved in CD4+ T-helper 1 and macrophage polarization, and the use of exhaled breath condensate as an alternative, noninvasive and potential source of miRNAs.
Collapse
Affiliation(s)
- Bijay Pattnaik
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - P B Sryma
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Saurabh Mittal
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Anurag Agrawal
- Centre of Excellence in Asthma and Lung Disease, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Randeep Guleria
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Karan Madan
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India.
| |
Collapse
|
130
|
Monnot GC, Martinez-Usatorre A, Lanitis E, Lopes SF, Cheng WC, Ho PC, Irving M, Coukos G, Donda A, Romero P. miR-155 Overexpression in OT-1 CD8 + T Cells Improves Anti-Tumor Activity against Low-Affinity Tumor Antigen. Mol Ther Oncolytics 2020; 16:111-123. [PMID: 32021906 PMCID: PMC6994712 DOI: 10.1016/j.omto.2019.12.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 12/16/2019] [Indexed: 12/27/2022] Open
Abstract
Therapy by adoptive transfer of ex vivo-expanded tumor-infiltrating or genetically modified T cells may lead to impressive clinical responses. However, there is a need to improve in vivo persistence and functionality of the transferred T cells, in particular, to face the highly immunosuppressive environment of solid tumors. Here, we investigate the potential of miR-155, a microRNA known to play an important role in CD8+ T cell fitness. We show that forced expression of miR-155 in tumor antigen-specific T cells improves the tumor control of B16 tumors expressing a low-affinity antigen ligand. Importantly, miR-155-transduced T cells exhibit increased proliferation and effector functions associated with a higher glycolytic activity independent of exogenous glucose. Altogether, these data suggest that miR-155 may optimize the antitumor activity of adoptively transferred low-affinity tumor-infiltrating lymphocytes (TILs), in particular, by rendering them more resistant to the glucose-deprived environment of solid tumors. Thus, transgenic expression of miR-155 may enable therapeutic targeting of self-antigen-specific T cells in addition to neoantigen-specific ones.
Collapse
Affiliation(s)
- Gwennaëlle C. Monnot
- Department of Fundamental Oncology and Ludwig Cancer Center, Faculty of Biology and Medicine, University of Lausanne, 1066 Epalinges, Switzerland
| | - Amaia Martinez-Usatorre
- Department of Fundamental Oncology and Ludwig Cancer Center, Faculty of Biology and Medicine, University of Lausanne, 1066 Epalinges, Switzerland
| | - Evripidis Lanitis
- Ludwig Institute for Cancer Research, Lausanne Branch at the University of Lausanne, 1066 Epalinges, Switzerland
| | - Silvia Ferreira Lopes
- Department of Fundamental Oncology and Ludwig Cancer Center, Faculty of Biology and Medicine, University of Lausanne, 1066 Epalinges, Switzerland
| | - Wan-Chen Cheng
- Department of Fundamental Oncology and Ludwig Cancer Center, Faculty of Biology and Medicine, University of Lausanne, 1066 Epalinges, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch at the University of Lausanne, 1066 Epalinges, Switzerland
| | - Ping-Chih Ho
- Department of Fundamental Oncology and Ludwig Cancer Center, Faculty of Biology and Medicine, University of Lausanne, 1066 Epalinges, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch at the University of Lausanne, 1066 Epalinges, Switzerland
| | - Melita Irving
- Department of Fundamental Oncology and Ludwig Cancer Center, Faculty of Biology and Medicine, University of Lausanne, 1066 Epalinges, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch at the University of Lausanne, 1066 Epalinges, Switzerland
| | - George Coukos
- Department of Fundamental Oncology and Ludwig Cancer Center, Faculty of Biology and Medicine, University of Lausanne, 1066 Epalinges, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch at the University of Lausanne, 1066 Epalinges, Switzerland
| | - Alena Donda
- Department of Fundamental Oncology and Ludwig Cancer Center, Faculty of Biology and Medicine, University of Lausanne, 1066 Epalinges, Switzerland
| | - Pedro Romero
- Department of Fundamental Oncology and Ludwig Cancer Center, Faculty of Biology and Medicine, University of Lausanne, 1066 Epalinges, Switzerland
| |
Collapse
|
131
|
Zhang L, Wu H, Zhao M, Chang C, Lu Q. Clinical significance of miRNAs in autoimmunity. J Autoimmun 2020; 109:102438. [PMID: 32184036 DOI: 10.1016/j.jaut.2020.102438] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 02/08/2023]
Abstract
MicroRNAs (miRNAs) are evolutionally conserved, single-stranded RNAs that regulate gene expression at the posttranscriptional level by disrupting translation. MiRNAs are key players in variety of biological processes that regulate the differentiation, development and activation of immune cells in both innate and adaptive immunity. The disruption and dysfunction of miRNAs can perturb the immune response, stimulate the release of inflammatory cytokines and initiate the production of autoantibodies, and contribute to the pathogenesis of autoimmune diseases, including systemic lupus erythmatosus (SLE), rheumatoid arthritis (RA), primary biliary cholangitis (PBC), and multiple sclerosis (MS). Accumulating studies demonstrate that miRNAs, which can be collected by noninvasive methods, have the potential to be developed as diagnostic and therapeutic biomarkers, the discovery and validation of which is essential for the improvement of disease diagnosis and clinical monitoring. Recently, with the development of detection tools, such as microarrays and NGS (Next Generation Sequencing), large amounts of miRNAs have been identified and suggest a critical role in the pathogenesis of autoimmune diseases. Several miRNAs associated diagnostic biomarkers have been developed and applied clinically, though the pharmaceutical industry is still facing challenges in commercialization and drug delivery. The development of miRNAs is less advanced for autoimmune diseases compared with cancer. However, drugs that target miRNAs have been introduced as candidates and adopted in clinical trials. This review comprehensively summarizes the differentially expressed miRNAs in several types of autoimmune diseases and discusses the role and the significance of miRNAs in clinical management. The study of miRNAs in autoimmunity promises to provide novel and broad diagnostic and therapeutic strategies for a clinical market that is still in its infancy.
Collapse
Affiliation(s)
- Lian Zhang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China
| | - Christopher Chang
- Division of Rheumatology, Allergy and Clinical, Immunology, University of California at Davis School of Medicine, Davis, CA, 95616, USA
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China.
| |
Collapse
|
132
|
Rostami Z, Khorashadizadeh M, Naseri M. Immunoregulatory properties of mesenchymal stem cells: Micro-RNAs. Immunol Lett 2020; 219:34-45. [PMID: 31917251 DOI: 10.1016/j.imlet.2019.12.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/16/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells that are excellent candidates for different cellular therapies due to their physiological properties such as immunoregulatory function. whetheare currently utilized for regenerative medication and treatment of a number of inflammatory illnesses given their ability to considerably impact tissue microenvironments via extracellular vesicles or toll-like receptor pathway modulation. MicroRNAs (miRNAs) are small noncoding RNAs that target the messenger RNA and play a critical role in different biological procedures, such as the development and reaction of the immune system. Moreover, miRNAs have recently been revealed to have serious functions in MSCs to regulate immunomodulatory properties. In this review, we study how the miRNAs pathway can modulate the immunoregulatory activity of MSCs by counting their interactions with immune cells and also discuss the possibility of using miRNA-based implications for MSC-based therapies.
Collapse
Affiliation(s)
- Zeinab Rostami
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran; Department of Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Khorashadizadeh
- Medical Biotechnology (PhD), Department of Medical Biotechnology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Naseri
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran; Department of Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
133
|
Scalavino V, Liso M, Serino G. Role of microRNAs in the Regulation of Dendritic Cell Generation and Function. Int J Mol Sci 2020; 21:ijms21041319. [PMID: 32075292 PMCID: PMC7072926 DOI: 10.3390/ijms21041319] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023] Open
Abstract
Dendritic cells (DCs) are antigen-presenting cells with a key role in immune responses. They act as a link between the innate and adaptive systems and they can induce and maintain immunologic tolerance. DCs are subdivided into conventional and plasmacytoid DCs. These cell subsets originate from the same bone marrow precursors and their differentiation process is determined by several extrinsic and intrinsic factors, such as cytokines, transcription factors, and miRNAs. miRNAs are small non-coding RNAs that play a crucial role in modulating physiological and pathological processes mediated by DCs. miRNA deregulation affects many inflammatory conditions and diseases. The aim of this review was to underline the importance of miRNAs in inflammatory processes mediated by DCs in physiological and pathological conditions and to highlight their potential application for future therapies.
Collapse
|
134
|
Wei TT, Cheng Z, Hu ZD, Zhou L, Zhong RQ. Upregulated miR-155 inhibits inflammatory response induced by C. albicans in human monocytes derived dendritic cells via targeting p65 and BCL-10. ANNALS OF TRANSLATIONAL MEDICINE 2020; 7:758. [PMID: 32042774 DOI: 10.21037/atm.2019.11.71] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Candida albicans (C. albicans) is one of the most common fungal pathogens causing superficial and systemic infections. The innate immune system is the first defense line against C. albicans infection. MiR-155, a multifunctional microRNA (miRNA), has been proved to be a crucial regulator in innate immune response against bacterial and virus. However, the biological function of miR-155 in innate immune response against C. albicans infection remains unknown. Methods The expression miR-155, as well as inflammatory factors [interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ)], in monocytes derived dendritic cells (DCs) during heat-killed C. albicans infection was detected by quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR). The biological functions of miR-155 were investigated with "gain- and loss-of-function" experiments. Potential targets of miR-155 were identified by bioinformatics analysis, luciferase assay and western blot. Small interfering RNA (siRNA) was used to validate the function of miR-155 target. Results C. albicans increased the expression of miR-155 and pro-inflammatory factors. MiR-155 induced by C. albicans was depended on Dectin-1-spleen tyrosine kinase (Syk)/Raf-1-MAPK signaling pathway. Furthermore, miR-155 suppressed the secretion of pro-inflammatory cytokines induced by C. albicans by targeting NF-κB p65 and B cell leukemia/lymphoma 10 (BCL-10). Conclusions In conclusion, up-regulated miR-155 acts as a negative feedback regulator in the innate immune response against C. albicans infection.
Collapse
Affiliation(s)
- Ting-Ting Wei
- Department of Laboratory Medicine, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, China
| | - Zhuo Cheng
- Department of Medical Oncology, Eastern Hepatobiliary Surgery Hospital/Institute, The Second Military Medical University, Shanghai 200438, China
| | - Zhi-De Hu
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Lin Zhou
- Department of Laboratory Medicine, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, China
| | - Ren-Qian Zhong
- Department of Laboratory Medicine, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, China
| |
Collapse
|
135
|
Fei Y, Chaulagain A, Wang T, Chen Y, Liu J, Yi M, Wang Y, Huang Y, Lin L, Chen S, Xu W, Tong L, Wu X, Zhao D, Zhang F, Zhao W, Zhong Z. MiR-146a down-regulates inflammatory response by targeting TLR3 and TRAF6 in Coxsackievirus B infection. RNA (NEW YORK, N.Y.) 2020; 26:91-100. [PMID: 31676570 PMCID: PMC6913124 DOI: 10.1261/rna.071985.119] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/28/2019] [Indexed: 05/08/2023]
Abstract
Coxsackievirus B (CVB) is the major cause of human myocarditis and dilated cardiomyopathy. Toll-like receptor 3 (TLR3) is an intracellular sensor to detect pathogen's dsRNA. TLR3, along with TRAF6, triggers an inflammatory response through NF-κB signaling pathway. In the cells infected with CVB type 3 (CVB3), the abundance of miR-146a was significantly increased. The role of miR-146a in CVB infection is unclear. In this study, TLR3 and TRAF6 were identified as the targets of miR-146a. The elevated miR-146a inhibited NF-κB translocation and subsequently down-regulated proinflammatory cytokine expression in the CVB3-infected cells. Therefore, the NF-κB pathway can be doubly blocked by miR-146a through targeting of TLR3 and TRAF6. MiR-146a may be a negative regulator on inflammatory response and an intrinsic protective factor in CVB infection.
Collapse
Affiliation(s)
- Yanru Fei
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Anita Chaulagain
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Tianying Wang
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Yang Chen
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Jinchang Liu
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Ming Yi
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Ying Wang
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Yike Huang
- Department of Cell Biology, Harbin Medical University, Harbin 150081, China
| | - Lexun Lin
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Sijia Chen
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Weizhen Xu
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Lei Tong
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Xiaoyu Wu
- Department of Cardiology, The First Hospital of Harbin Medical University, Harbin 150001, China
| | - Dechao Zhao
- Department of Cardiology, The First Hospital of Harbin Medical University, Harbin 150001, China
| | - Fengmin Zhang
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Wenran Zhao
- Department of Cell Biology, Harbin Medical University, Harbin 150081, China
| | - Zhaohua Zhong
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
136
|
Zamani P, Oskuee RK, Atkin SL, Navashenaq JG, Sahebkar A. MicroRNAs as important regulators of the NLRP3 inflammasome. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 150:50-61. [PMID: 31100298 DOI: 10.1016/j.pbiomolbio.2019.05.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 05/13/2019] [Indexed: 12/28/2022]
Abstract
Inflammasomes are a group of cytosolic multi-protein signaling complexes that regulate maturation of the interleukin (IL)-1 family cytokines IL-1β and IL-18 through activation of inflammatory caspase-1. The NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome is the best characterized and consists of several key components that are assembled and activated in response to different endogenous and exogenous signals. The NLRP3 inflammasome is common to a number of human inflammatory diseases and its targeting may lead to novel anti-inflammatory therapy. NLRP3 inflammasome activation is tightly regulated by different mechanisms especially post-transcriptional modulation via microRNAs (miRNA). MicroRNAs are small endogenous noncoding RNAs that are 21-23 nucleotides in length and control the expression of various genes through binding to the 3'-untranslated regions of the respective mRNA and subsequent post-transcriptional regulation. MicroRNAs have recently been recognized as crucial regulators of the NLRP3 inflammasome. In this review, we summarize the current understanding of the role of miRNAs in the regulation of NLRP3 inflammasome complexes and their impact on the pathogenesis of inflammatory disease processes.
Collapse
Affiliation(s)
- Parvin Zamani
- Nanotechnology Research Center, Student Research Committee, Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Kazemi Oskuee
- Targeted Drug Delivery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
137
|
Decreased H19, GAS5, and linc0597 Expression and Association Analysis of Related Gene Polymorphisms in Rheumatoid Arthritis. Biomolecules 2019; 10:biom10010055. [PMID: 31905737 PMCID: PMC7022387 DOI: 10.3390/biom10010055] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/18/2019] [Accepted: 12/26/2019] [Indexed: 01/06/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) widely participate in human diseases by regulating gene transcription, modulating protein function, or acting as ceRNAs. Yet, their roles in rheumatoid arthritis (RA) remain obscure. In this study, the expression of three lncRNAs (H19, GAS5, and linc0597) in peripheral blood mononuclear cells (PBMCs) were detected in 77 RA patients and 78 controls using quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). The association of lncRNAs related gene polymorphisms with RA were evaluated in 828 RA patients and 780 controls using TaqMan single nucleotide polymorphism (SNP) genotyping assays. We observed that the expression levels of H19, GAS5 and linc0597 were down-regulated in PBMCs of RA patients, of which GAS5 level decreased in patients with hypocomplementemia, and negatively correlated with C-reactive protein (CRP) level in RA patients. Moreover, we highlighted two related potential functional SNPs, GAS5 rs6790 and linc0597 rs2680700 for associations with RA susceptibility. The precise roles of these lncRNAs in mechanism of RA remain to be further explored.
Collapse
|
138
|
Seo HA, Moeng S, Sim S, Kuh HJ, Choi SY, Park JK. MicroRNA-Based Combinatorial Cancer Therapy: Effects of MicroRNAs on the Efficacy of Anti-Cancer Therapies. Cells 2019; 9:cells9010029. [PMID: 31861937 PMCID: PMC7016872 DOI: 10.3390/cells9010029] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022] Open
Abstract
The susceptibility of cancer cells to different types of treatments can be restricted by intrinsic and acquired therapeutic resistance, leading to the failure of cancer regression and remission. To overcome this problem, a combination therapy has been proposed as a fundamental strategy to improve therapeutic responses; however, resistance is still unavoidable. MicroRNA (miRNAs) are associated with cancer therapeutic resistance. The modulation of dysregulated miRNA levels through miRNA-based therapy comprising a replacement or inhibition approach has been proposed to sensitize cancer cells to other anti-cancer therapies. The combination of miRNA-based therapy with other anti-cancer therapies (miRNA-based combinatorial cancer therapy) is attractive, due to the ability of miRNAs to target multiple genes associated with the signaling pathways controlling therapeutic resistance. In this article, we present an overview of recent findings on the role of therapeutic resistance-related miRNAs in different types of cancer. We review the feasibility of utilizing dysregulated miRNAs in cancer cells and extracellular vesicles as potential candidates for miRNA-based combinatorial cancer therapy. We also discuss innate properties of miRNAs that need to be considered for more effective combinatorial cancer therapy.
Collapse
Affiliation(s)
- Hyun Ah Seo
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (H.A.S.); (S.M.); (S.Y.C.)
| | - Sokviseth Moeng
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (H.A.S.); (S.M.); (S.Y.C.)
| | - Seokmin Sim
- Generoath, Seachang-ro, Mapo-gu, Seoul 04168, Korea;
| | - Hyo Jeong Kuh
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (H.A.S.); (S.M.); (S.Y.C.)
| | - Jong Kook Park
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (H.A.S.); (S.M.); (S.Y.C.)
- Correspondence: or ; Tel.: +82-33-248-2114
| |
Collapse
|
139
|
Abstract
Paratuberculosis and bovine tuberculosis are two mycobacterial diseases of ruminants which have a considerable impact on livestock health, welfare, and production. These are chronic "iceberg" diseases which take years to manifest and in which many subclinical cases remain undetected. Suggested biomarkers to detect infected or diseased animals are numerous and include cytokines, peptides, and expression of specific genes; however, these do not provide a strong correlation to disease. Despite these advances, disease detection still relies heavily on dated methods such as detection of pathogen shedding, skin tests, or serology. Here we review the evidence for suitable biomarkers and their mechanisms of action, with a focus on identifying animals that are resilient to disease. A better understanding of these factors will help establish new strategies to control the spread of these diseases.
Collapse
|
140
|
Manoel Alves J, Handerson Gomes Teles R, do Valle Gomes Gatto C, Muñoz VR, Regina Cominetti M, Garcia de Oliveira Duarte AC. Mapping Research in the Obesity, Adipose Tissue, and MicroRNA Field: A Bibliometric Analysis. Cells 2019; 8:E1581. [PMID: 31817583 PMCID: PMC6952878 DOI: 10.3390/cells8121581] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023] Open
Abstract
Recent studies have investigated the control of adipose tissue expansion and inflammatory process by microRNAs (miRNAs). These two processes are of great interest because both are associated with obesity and metabolic syndrome. However, despite the great relevance of the role of miRNAs in obesity and adipose tissue, no qualitative and quantitative analysis on the subject has been performed. Thus, we aimed to examine global research activity and current trends with respect to the interaction between obesity, adipose tissue and miRNAs through a bibliometric analysis. This research was performed on the Scopus database for publications containing miRNA, obesity, and adipose tissue keyword combinations. In total, 898 articles were analyzed and the most frequently occurring keywords were selected and clustered into three well-defined groups. As a result, first group of keywords pointed to the research area on miRNAs expressed in obesity-associated diseases. The second group demonstrated the regulation of the adipogenesis process by miRNAs, while the third group highlighted brown adipose tissue and thermogenesis as one of the latest global research trends related to the theme. The studies selected in this paper describe the expression and performance of different miRNAs in obesity and comorbidities. Most studies have focused on identifying miRNAs and signaling pathways associated with obesity, type 2 diabetes mellitus, and cardiovascular disease. Thus, the miRNA profile for these diseases may be used as biomarkers and therapeutic targets in the prevention and treatment of obesity-associated diseases.
Collapse
Affiliation(s)
- João Manoel Alves
- Department of Physical Education, Federal University of São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil;
| | - Ramon Handerson Gomes Teles
- Department of Gerontology, Federal University of São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil; (R.H.G.T.); (M.R.C.)
| | - Camila do Valle Gomes Gatto
- Laboratory of Biochemistry and Molecular Biology of Exercise, University of São Paulo (USP), São Paulo 05508-030, SP, Brazil;
| | - Vitor Rosetto Muñoz
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira 13484-350, SP, Brazil;
| | - Márcia Regina Cominetti
- Department of Gerontology, Federal University of São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil; (R.H.G.T.); (M.R.C.)
| | | |
Collapse
|
141
|
Pisanu C, Merkouri Papadima E, Melis C, Congiu D, Loizedda A, Orrù N, Calza S, Orrù S, Carcassi C, Severino G, Ardau R, Chillotti C, Del Zompo M, Squassina A. Whole Genome Expression Analyses of miRNAs and mRNAs Suggest the Involvement of miR-320a and miR-155-3p and their Targeted Genes in Lithium Response in Bipolar Disorder. Int J Mol Sci 2019; 20:ijms20236040. [PMID: 31801218 PMCID: PMC6928759 DOI: 10.3390/ijms20236040] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 02/06/2023] Open
Abstract
Lithium is the mainstay in the maintenance of bipolar disorder (BD) and the most efficacious pharmacological treatment in suicide prevention. Nevertheless, its use is hampered by a high interindividual variability and important side effects. Genetic and epigenetic factors have been suggested to modulate lithium response, but findings so far have not allowed identifying molecular targets with predictive value. In this study we used next generation sequencing to measure genome-wide miRNA expression in lymphoblastoid cell lines from BD patients excellent responders (ER, n = 12) and non-responders (NR, n = 12) to lithium. These data were integrated with microarray genome-wide expression data to identify pairs of miRNA/mRNA inversely and significantly correlated. Significant pairs were prioritized based on strength of association and in-silico miRNA target prediction analyses to select candidates for validation with qRT-PCR. Thirty-one miRNAs were differentially expressed in ER vs. NR and inversely correlated with 418 genes differentially expressed between the two groups. A total of 331 of these correlations were also predicted by in-silico algorithms. miR-320a and miR-155-3p, as well as three of their targeted genes (CAPNS1 (Calpain Small Subunit 1) and RGS16 (Regulator of G Protein Signaling 16) for miR-320, SP4 (Sp4 Transcription Factor) for miR-155-3p) were validated. These miRNAs and mRNAs were previously implicated in psychiatric disorders (miR-320a and SP4), key processes of the central nervous system (CAPNS1, RGS16, SP4) or pathways involved in mental illnesses (miR-155-3p). Using an integrated approach, we identified miRNAs and their targeted genes potentially involved in lithium response in BD.
Collapse
Affiliation(s)
- Claudia Pisanu
- Department of Biomedical Science, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Monserrato, 09042 Cagliari, Italy; (C.P.); (E.M.P.); (C.M.); (D.C.); (G.S.); (M.D.Z.)
| | - Eleni Merkouri Papadima
- Department of Biomedical Science, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Monserrato, 09042 Cagliari, Italy; (C.P.); (E.M.P.); (C.M.); (D.C.); (G.S.); (M.D.Z.)
| | - Carla Melis
- Department of Biomedical Science, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Monserrato, 09042 Cagliari, Italy; (C.P.); (E.M.P.); (C.M.); (D.C.); (G.S.); (M.D.Z.)
| | - Donatella Congiu
- Department of Biomedical Science, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Monserrato, 09042 Cagliari, Italy; (C.P.); (E.M.P.); (C.M.); (D.C.); (G.S.); (M.D.Z.)
| | - Annalisa Loizedda
- Consiglio Nazionale delle Ricerche (C.N.R.), Istituto di Ricerca Genetica e Biomedica (I.R.G.B.), Monserrato, 09042 Cagliari, Italy;
| | - Nicola Orrù
- Medical Genetics, R. Binaghi Hospital, ASSL Cagliari, ATS Sardegna, 09021 Cagliari, Italy; (N.O.); (S.O.); (C.C.)
| | - Stefano Calza
- Unit of Biostatistics and Bioinformatics, Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy;
- Big & Open Data Innovation Laboratory, University of Brescia, 25121 Brescia, Italy
| | - Sandro Orrù
- Medical Genetics, R. Binaghi Hospital, ASSL Cagliari, ATS Sardegna, 09021 Cagliari, Italy; (N.O.); (S.O.); (C.C.)
- Medical Genetics, Department of Medical Sciences and Public Health, University of Cagliari, 09042 Cagliari, Italy
| | - Carlo Carcassi
- Medical Genetics, R. Binaghi Hospital, ASSL Cagliari, ATS Sardegna, 09021 Cagliari, Italy; (N.O.); (S.O.); (C.C.)
- Medical Genetics, Department of Medical Sciences and Public Health, University of Cagliari, 09042 Cagliari, Italy
| | - Giovanni Severino
- Department of Biomedical Science, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Monserrato, 09042 Cagliari, Italy; (C.P.); (E.M.P.); (C.M.); (D.C.); (G.S.); (M.D.Z.)
| | - Raffaella Ardau
- Unit of Clinical Pharmacology of the University Hospital of Cagliari, 09042 Cagliari, Italy; (R.A.); (C.C.)
| | - Caterina Chillotti
- Unit of Clinical Pharmacology of the University Hospital of Cagliari, 09042 Cagliari, Italy; (R.A.); (C.C.)
| | - Maria Del Zompo
- Department of Biomedical Science, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Monserrato, 09042 Cagliari, Italy; (C.P.); (E.M.P.); (C.M.); (D.C.); (G.S.); (M.D.Z.)
- Unit of Clinical Pharmacology of the University Hospital of Cagliari, 09042 Cagliari, Italy; (R.A.); (C.C.)
| | - Alessio Squassina
- Department of Biomedical Science, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Monserrato, 09042 Cagliari, Italy; (C.P.); (E.M.P.); (C.M.); (D.C.); (G.S.); (M.D.Z.)
- Correspondence: ; Tel.: +39-070-675-4323
| |
Collapse
|
142
|
Pakshir K, Badali H, Nami S, Mirzaei H, Ebrahimzadeh V, Morovati H. Interactions between immune response to fungal infection and microRNAs: The pioneer tuners. Mycoses 2019; 63:4-20. [PMID: 31597205 DOI: 10.1111/myc.13017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022]
Abstract
Due to their physiological and biological characteristics, numerous fungi are potentially emerging pathogens. Active dynamicity of fungal pathogens causes life-threatening infections annually impose high costs to the health systems. Although immune responses play crucial roles in controlling the fate of fungal infections, immunocompromised patients are at high risk with high mortality. Tuning the immune response against fungal infections might be an effective strategy for controlling and reducing the pathological damages. MicroRNAs (miRNAs) are known as the master regulators of immune response. These single-stranded tuners (18-23 bp non-coding RNAs) are endogenously expressed by all metazoan eukaryotes and have emerged as the master gene expression controllers of at least 30% human genes. In this review article, following the review of biology and physiology (biogenesis and mechanism of actions) of miRNAs and immune response against fungal infections, the interactions between them were scrutinised. In conclusion, miRNAs might be considered as one of the potential goals in immunotherapy for fungal infections. Undoubtedly, advanced studies in this field, further identifying of miRNA roles in governing the immune response, pave the way for inclusion of miRNA-related immunotherapeutic in the treatment of life-threatening fungal infections.
Collapse
Affiliation(s)
- Keyvan Pakshir
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Badali
- Invasive Fungi Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Fungus Testing Laboratory, Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Sanam Nami
- Department of Medical Mycology and Parasitology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Veghar Ebrahimzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Morovati
- Department of Medical Mycology and Parasitology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
143
|
Amon L, Lehmann CHK, Baranska A, Schoen J, Heger L, Dudziak D. Transcriptional control of dendritic cell development and functions. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 349:55-151. [PMID: 31759434 DOI: 10.1016/bs.ircmb.2019.10.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dendritic cells (DCs) are major regulators of adaptive immunity, as they are not only capable to induce efficient immune responses, but are also crucial to maintain peripheral tolerance and thereby inhibit autoimmune reactions. DCs bridge the innate and the adaptive immune system by presenting peptides of self and foreign antigens as peptide MHC complexes to T cells. These properties render DCs as interesting target cells for immunomodulatory therapies in cancer, but also autoimmune diseases. Several subsets of DCs with special properties and functions have been described. Recent achievements in understanding transcriptional programs on single cell level, together with the generation of new murine models targeting specific DC subsets, advanced our current understanding of DC development and function. Thus, DCs arise from precursor cells in the bone marrow with distinct progenitor cell populations splitting the monocyte populations and macrophage populations from the DC lineage, which upon lineage commitment can be separated into conventional cDC1, cDC2, and plasmacytoid DCs (pDCs). The DC populations harbor intrinsic programs enabling them to react for specific pathogens in dependency on the DC subset, and thereby orchestrate T cell immune responses. Similarities, but also varieties, between human and murine DC subpopulations are challenging, and will require further investigation of human specimens under consideration of the influence of the tissue micromilieu and DC subset localization in the future.
Collapse
Affiliation(s)
- Lukas Amon
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Christian H K Lehmann
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Anna Baranska
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Janina Schoen
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Lukas Heger
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
144
|
Dai M, Feng M, Xie T, Zhang X. Long non-coding RNA and MicroRNA profiling provides comprehensive insight into non-coding RNA involved host immune responses in ALV-J-infected chicken primary macrophage. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 100:103414. [PMID: 31200006 DOI: 10.1016/j.dci.2019.103414] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/10/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
Avian leukosis virus subgroup J (ALV-J) infection can cause tumors and immunosuppression in infected chickens. Macrophages play a crucial role in host defense against invading pathogens. In the present study, whole transcriptome analysis was performed to analyze the host factors including genes, microRNA (miRNA), long non-coding RNA (lncRNA) and their regulatory network in chicken primary monocyte-derived macrophages (MDMs). In total, 128 differentially expressed (DE) lncRNAs and 15 DE miRNAs were identified in MDMs at 3 h post infection (hpi), and 30 DE lncRNAs and 8 DE miRNAs were identified in MDMs at 36 hpi during ALV-J infection. We further constructed the DE lncRNAs-mRNAs, miRNA-mRNAs and lncRNAs-miRNA-mRNAs interaction networks. The results suggested that DE lncRNAs and miRNAs are involved in the regulation of CCND3 and SOCS5 in Jak-STAT signaling pathway via ceRNA network in ALV-J-infected MDMs at 3 hpi. In addition, lncRNAs including XLOC_672329, ALDBGALG0000001429, XLOC_016500 and ALDBGALG0000000253 cis-regulating CH25H, CISH, IL-1β and CD80 respectively in MDMs at 3 hpi participated in host antiviral responses. Our findings give a comprehensive view of the connection between non-coding RNA and ALV-J in chicken primary macrophages, and provide an excellent resource for further studies of epigenetic effects on ALV-J disease resistance breeding as well as immune system and genomic researches.
Collapse
Affiliation(s)
- Manman Dai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China.
| | - Min Feng
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.
| | - Tingting Xie
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China; Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, 510642, Guangdong, China.
| | - Xiquan Zhang
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China; Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, 510642, Guangdong, China.
| |
Collapse
|
145
|
Litwińska Z, Sobuś A, Łuczkowska K, Grabowicz A, Mozolewska-Piotrowska K, Safranow K, Kawa MP, Machaliński B, Machalińska A. The Interplay Between Systemic Inflammatory Factors and MicroRNAs in Age-Related Macular Degeneration. Front Aging Neurosci 2019; 11:286. [PMID: 31695606 PMCID: PMC6817913 DOI: 10.3389/fnagi.2019.00286] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/04/2019] [Indexed: 12/20/2022] Open
Abstract
We aimed to explore the expression of systemic inflammatory factors and selected intracellular miRNAs that regulate inflammatory signaling pathways potentially involved in age-related macular degeneration (AMD) pathogenesis. A total of 179 patients with wet AMD, 175 with dry AMD and 121 controls were enrolled in the study. Soluble inflammatory factors were analyzed in plasma samples using Luminex technology. Expression of selected miRNAs was analyzed in isolated nucleated peripheral blood cells (PBNCs) using real-time qPCR. Wet AMD was an independent factor associated with higher concentrations of IL-6 (β = +0.24, p = 0.0004), GM-CSF (β = +0.31, p < 0.001), IFN-γ (β = +0.58, p < 0.001), higher expression of miRNA-23a-3p (β = +0.60, p < 0.0001), miRNA-30b (β = +0.32, p < 0.0001), miRNA-191-5p (β = +0.28, p < 0.0001) and lower concentration of IL-1β (β = −0.25, p = 0.0003), IL-5 (β = −0.45, p < 0.001), IL-10 (β = −0.45, p < 0.001), IL-12 (β = −0.35, p < 0.001), lower expression of miRNA-16-5p (β = −0.31, p < 0.0001), miRNA-17-3p (β = −0.18, p = 0.01), miRNA-150-5p (β = −0.18, p = 0.01) and miRNA-155-5p (β = −0.47, p < 0.0001). Multivariate analysis revealed that dry AMD was an independent factor associated with higher concentration of GM-CSF (β = +0.34, p < 0.001), IL-6 (β = +0.13, p = 0.05), higher expression of miRNA-23a-3p (β = +0.60, p < 0.0001), miRNA-126-3p (β = +0.23, p = 0.0005), miRNA-126-5p (β = +0.16, p = 0.01), miRNA 146a (β = +0.14, p = 0.03), and mRNA191-5p (β = +0.15, p = 0.03) and lower concentrations of TNF-α (β = +0.24, p = 0.0004), IL-1β (β = −0.39, p < 0.001), IL-2 (β = −0.20, p = 0.003), IL-5 (β = −0.54, p < 0.001), IL-10 (β = −0.56, p < 0.001), IL-12 (β = −0.51, p < 0.001), lower expression of miRNA-16-5p (β = −0.23, p = 0.0004), miRNA-17-3p (β = −0.20, p = 0.003) and miRNA-17-5p (β = −0.19, p = 0.004). Negative correlations between visual acuity and WBC, lymphocyte count, TNF-α, IL-1 β, IL-2, IL-4, IL-6, IL-10 concentrations and miRNA-191-5p, as well as positive correlations between visual acuity and miRNA-126-3p, -126-5p, and -155-5p PBNCs expression were found in AMD patients. No such correlations were found in the control group. Our results may suggest the role of both intra- and extracellular mechanisms implicated in inflammatory response regulation in multifactorial AMD pathogenesis.
Collapse
Affiliation(s)
- Zofia Litwińska
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Anna Sobuś
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Karolina Łuczkowska
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Aleksandra Grabowicz
- First Department of Ophthalmology, Pomeranian Medical University, Szczecin, Poland
| | | | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | - Miłosz Piotr Kawa
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Anna Machalińska
- First Department of Ophthalmology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
146
|
Inoue K, Nakano S, Zhao B. Osteoclastic microRNAs and their translational potential in skeletal diseases. Semin Immunopathol 2019; 41:573-582. [PMID: 31591677 DOI: 10.1007/s00281-019-00761-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 09/09/2019] [Indexed: 12/16/2022]
Abstract
Skeleton undergoes constant remodeling process to maintain healthy bone mass. However, in pathological conditions, bone remodeling is deregulated, resulting in unbalanced bone resorption and formation. Abnormal osteoclast formation and activation play a key role in osteolysis, such as in rheumatoid arthritis and osteoporosis. As potential therapeutic targets or biomarkers, miRNAs have gained rapidly growing research and clinical attention. miRNA-based therapeutics is recently entering a new era for disease treatment. Such progress is emerging in treatment of skeletal diseases. In this review, we discuss miRNA biogenesis, advances in the strategies for miRNA target identification, important miRNAs involved in osteoclastogenesis and disease models, their regulated mechanisms, and translational potential and challenges in bone homeostasis and related diseases.
Collapse
Affiliation(s)
- Kazuki Inoue
- Arthritis and Tissue Degeneration Program and The David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA.,Department of Medicine, Weill Cornell Medical College, New York, USA
| | - Shinichi Nakano
- Arthritis and Tissue Degeneration Program and The David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
| | - Baohong Zhao
- Arthritis and Tissue Degeneration Program and The David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA. .,Department of Medicine, Weill Cornell Medical College, New York, USA. .,Graduate Program in Cell & Developmental Biology, Weill Cornell Graduate School of Medical Sciences,, New York, NY, USA.
| |
Collapse
|
147
|
Nziza N, Duroux-Richard I, Apparailly F. MicroRNAs in juvenile idiopathic arthritis: Can we learn more about pathophysiological mechanisms? Autoimmun Rev 2019; 18:796-804. [DOI: 10.1016/j.autrev.2019.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 03/03/2019] [Indexed: 01/05/2023]
|
148
|
Fu Y, Li F, Zhang P, Liu M, Qian L, Lv F, Cheng W, Hou R. Myrothecine A modulates the proliferation of HCC cells and the maturation of dendritic cells through downregulating miR-221. Int Immunopharmacol 2019; 75:105783. [PMID: 31376622 DOI: 10.1016/j.intimp.2019.105783] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/24/2019] [Accepted: 07/24/2019] [Indexed: 01/30/2023]
Abstract
Myrothecine A, characterized from the extracts of myrothecium roridum strain IFB-E012, isolated as endophytic fungi found in the traditional Chinese medicinal plant Artemisia annua. Here we investigated its roles on anti-tumor and immune regulation in vitro. Dendritic cells (DCs) are the most potent antigen presenting cells in immune responses. Recent studies have indicated that miRNAs are indispensable in regulating the development, differentiation, maturation and function of DC. MiR-221, acted as an oncogene, is an important regulator in cancer development by binding to 3' untranslated regions (3' UTR) of target mRNA. Here, we investigated whether myrothecine A could inhibit cell proliferation in hepatocellular carcinoma (HCC) cell line SMMC-7721 by regulating miR-221. The HCC cells were treated with myrothecine A at different concentration, and the cell growth ability was measured by MTT assay. Then we observed whether myrothecine A could affect the maturation of DC by regulating miR-221. The HCC cell line was co-cultured with immature DC from mice bone marrow, and the levels of CD86 and CD40 was detected by FCM. Our results showed that myrothecine A could rescue miR-221-induced cell proliferation and influence the protein level of p27 by inhibiting the expression of miR-221. In addition, myrothecine A could enhance the expression of CD86 and CD40 by reversing the function of miR-221. Therefore, myrothecine A may be acted as an anti-tumor drug to promote the maturation of DC in the microenvironment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yi Fu
- Department of Human Anatomy, Histology and Embryology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215007, China.
| | - Fengxia Li
- School of Medicine, Yangzhou University, Yangzhou 225001, China
| | - Ping Zhang
- Institute of Hand Surgery, Ruihua Affiliated Hospital of Soochow University, Suzhou 215007, China
| | - Mingyan Liu
- School of Medicine, Yangzhou University, Yangzhou 225001, China
| | - Li Qian
- School of Medicine, Yangzhou University, Yangzhou 225001, China
| | - Fengwei Lv
- School of Medicine, Yangzhou University, Yangzhou 225001, China
| | - Wenting Cheng
- School of Medicine, Yangzhou University, Yangzhou 225001, China
| | - Ruixing Hou
- Institute of Hand Surgery, Ruihua Affiliated Hospital of Soochow University, Suzhou 215007, China
| |
Collapse
|
149
|
Sonzogni O, Millard AL, Taveira A, Schneider MKJ, Duo L, Speck RF, Wulf GM, Mueller NJ. Efficient Human Cytomegalovirus Replication in Primary Endothelial Cells Is SOCS3 Dependent. Intervirology 2019; 62:80-89. [PMID: 31315128 DOI: 10.1159/000501383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 06/06/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND In immunocompromised patients, human cytomegalovirus (HCMV) infection is a major cause of morbidity and mortality. Suppressor of cytokine signaling (SOCS) proteins are very potent negative regulators of the janus kinase/signal transducer and activator of transcription (JAK/STAT) pathways. We hypothesized that HCMV exploits SOCS1 and/or SOCS3 to its advantage. METHODS All experiments were carried out with primary human lung-derived microvascular endothelial cells (HMVEC). SOCS1 and SOCS3 were silenced by transfecting the cells with siRNA. HCMV was propagated and titered on human lung-derived fibroblasts MRC5. Real-time PCR and Western blot were used to detect mRNA and protein levels, respectively. RESULTS The data presented show that an efficient replication of HCMV in HMVEC is dependent on SOCS3 protein. Time course analysis revealed an increase in SOCS3 protein levels in infected cells. Silencing of SOCS3 (siSOCS3) resulted in inhibition of viral immediate early, early, and late antigen production. Consistently, HCMV titers produced by siSOCS3 cultures were significantly decreased when compared to control transfected cultures (siCNTRs). STAT1 and STAT2 phosphorylation was increased in siSOCS3-infected cells when compared to siCNTR-treated cells. CONCLUSION These findings indicate the implication of SOCS3 in the mechanism of HCMV-mediated control of cellular immune responses.
Collapse
Affiliation(s)
- Olmo Sonzogni
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA,
| | - Anne-Laure Millard
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Aline Taveira
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Mårten K J Schneider
- Laboratory of Vascular Immunology, Division of Internal Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Li Duo
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Roberto F Speck
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Gerburg M Wulf
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Nicolas J Mueller
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
150
|
Wilk G, Braun R. Integrative analysis reveals disrupted pathways regulated by microRNAs in cancer. Nucleic Acids Res 2019; 46:1089-1101. [PMID: 29294105 PMCID: PMC5814839 DOI: 10.1093/nar/gkx1250] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/01/2017] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are small endogenous regulatory molecules that modulate gene expression post-transcriptionally. Although differential expression of miRNAs have been implicated in many diseases (including cancers), the underlying mechanisms of action remain unclear. Because each miRNA can target multiple genes, miRNAs may potentially have functional implications for the overall behavior of entire pathways. Here, we investigate the functional consequences of miRNA dysregulation through an integrative analysis of miRNA and mRNA expression data using a novel approach that incorporates pathway information a priori. By searching for miRNA-pathway associations that differ between healthy and tumor tissue, we identify specific relationships at the systems level which are disrupted in cancer. Our approach is motivated by the hypothesis that if an miRNA and pathway are associated, then the expression of the miRNA and the collective behavior of the genes in a pathway will be correlated. As such, we first obtain an expression-based summary of pathway activity using Isomap, a dimension reduction method which can articulate non-linear structure in high-dimensional data. We then search for miRNAs that exhibit differential correlations with the pathway summary between phenotypes as a means of finding aberrant miRNA-pathway coregulation in tumors. We apply our method to cancer data using gene and miRNA expression datasets from The Cancer Genome Atlas and compare ∼105 miRNA-pathway relationships between healthy and tumor samples from four tissues (breast, prostate, lung and liver). Many of the flagged pairs we identify have a biological basis for disruption in cancer.
Collapse
Affiliation(s)
- Gary Wilk
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Rosemary Braun
- Biostatistics Division, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.,Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|