101
|
Viguera E, Petranovic M, Zahradka D, Germain K, Ehrlich DS, Michel B. Lethality of bypass polymerases in Escherichia coli cells with a defective clamp loader complex of DNA polymerase III. Mol Microbiol 2003; 50:193-204. [PMID: 14507374 DOI: 10.1046/j.1365-2958.2003.03658.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Escherichia coli DNA polymerase III (Pol III) is one of the best studied replicative DNA polymerases. Here we report the properties of an E. coli mutant that lacks one of the subunits of the Pol III clamp loader complex, Psi (psi), as a result of the complete inactivation of the holD gene. We show that, in this mutant, chronic induction of the SOS response in a RecFOR-dependent way leads to lethality at high temperature. The SOS-induced proteins that are lethal in the holD mutant are the specialized DNA polymerases Pol II and Pol IV, combined with the division inhibitor SfiA. Prevention of SOS induction or inactivation of Pol II, Pol IV and SfiA encoding genes allows growth of the holD mutant, although at a reduced rate compared to a wild-type cell. In contrast, the SOS-induced Pol V DNA polymerase does not participate to the lethality of the holD mutant. We conclude that: (i) Psi is essential for efficient replication of the E. coli chromosome; (ii) SOS-induction of specialized DNA polymerases can be lethal in cells in which the replicative polymerase is defective, and (iii) specialized DNA polymerases differ in respect to their access to inactivated replication forks.
Collapse
Affiliation(s)
- Enrique Viguera
- Génétique Microbienne, Institut National de la Recherche Agronomique, 78350 Jouy en Josas, France
| | | | | | | | | | | |
Collapse
|
102
|
Bellows AM, Kenna MA, Cassimeris L, Skibbens RV. Human EFO1p exhibits acetyltransferase activity and is a unique combination of linker histone and Ctf7p/Eco1p chromatid cohesion establishment domains. Nucleic Acids Res 2003; 31:6334-43. [PMID: 14576321 PMCID: PMC275453 DOI: 10.1093/nar/gkg811] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Proper segregation of chromosomes during mitosis requires that the products of chromosome replication are paired together-termed sister chromatid cohesion. In budding yeast, Ctf7p/Eco1p is an essential protein that establishes cohesion between sister chromatids during S phase. In fission yeast, Eso1p also functions in cohesion establishment, but is comprised of a Ctf7p/Eco1p domain fused to a Rad30p domain (a DNA polymerase) both of which are independently expressed in budding yeast. In this report, we identify and characterize the first candidate human ortholog of Ctf7p/Eco1p, which we term hEFO1p (human Establishment Factor Ortholog). As in fission yeast Eso1p, the hEFO1p open reading frame extends well upstream of the C-terminal Ctf7p/Eco1p domain. However, this N-terminal extension in hEFO1p is unlike Rad30p, but instead exhibits significant homology to linker histone proteins. Thus, hEFO1p is a unique fusion of linker histone and cohesion establishment domains. hEFO1p is widely expressed among the tissues tested. Consistent with a role in chromosome segregation, hEFO1p localizes exclusively to the nucleus when expressed in HeLa tissue culture cells. Moreover, biochemical analyses reveal that hEFO1p exhibits acetyltransferase activity. These findings document the first characterization of a novel human acetyltransferase, hEFO1p, that is comprised of both linker histone and Ctf7p/Eco1p domains.
Collapse
Affiliation(s)
- Aaron M Bellows
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Bethlehem, PA 18015, USA
| | | | | | | |
Collapse
|
103
|
Bartl S, Miracle AL, Rumfelt LL, Kepler TB, Mochon E, Litman GW, Flajnik MF. Terminal deoxynucleotidyl transferases from elasmobranchs reveal structural conservation within vertebrates. Immunogenetics 2003; 55:594-604. [PMID: 14579105 DOI: 10.1007/s00251-003-0608-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2003] [Revised: 08/25/2003] [Indexed: 01/21/2023]
Abstract
The DNA polymerase (pol) X family is an ancient group of enzymes that function in DNA replication and repair (pol beta), translesion synthesis (pol lambda and pol micro) and terminal addition of non-templated nucleotides. This latter terminal deoxynucleotidyl transferase (TdT) activity performs the unique function of providing diversity at coding joins of immunoglobulin and T-cell receptor genes. The first isolated full-length TdT genes from shark and skate are reported here. Comparisons with the three-dimensional structure of mouse TdT indicate structural similarity with elasmobranch orthologues that supports both a template-independent mode of replication and a lack of strong nucleotide bias. The vertebrate TdTs appear more closely related to pol micro and fungal polymerases than to pol lambda and pol beta. Thus, unlike other molecules of adaptive immunity, TdT is a member of an ancient gene family with a clear gene phylogeny and a high degree of similarity, which implies the existence of TdT ancestors in jawless fishes and invertebrates.
Collapse
Affiliation(s)
- Simona Bartl
- Moss Landing Marine Laboratories, 8272 Moss Landing Road, CA 95039, Moss Landing, USA.
| | | | | | | | | | | | | |
Collapse
|
104
|
Wellinger RE, Schär P, Sogo JM. Rad52-independent accumulation of joint circular minichromosomes during S phase in Saccharomyces cerevisiae. Mol Cell Biol 2003; 23:6363-72. [PMID: 12944465 PMCID: PMC193689 DOI: 10.1128/mcb.23.18.6363-6372.2003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2003] [Revised: 04/02/2003] [Accepted: 06/20/2003] [Indexed: 01/10/2023] Open
Abstract
We investigated the formation of X-shaped molecules consisting of joint circular minichromosomes (joint molecules) in Saccharomyces cerevisiae by two-dimensional neutral/neutral gel electrophoresis of psoralen-cross-linked DNA. The appearance of joint molecules was found to be replication dependent. The joint molecules had physical properties reminiscent of Holliday junctions or hemicatenanes, as monitored by strand displacement, branch migration, and nuclease digestion. Physical linkage of the joint molecules was detected along the entire length of the minichromosome and most likely involved newly replicated sister chromatids. Surprisingly, the formation of joint molecules was found to be independent of Rad52p as well as of other factors associated with a function in homologous recombination or in the resolution of stalled replication intermediates. These findings thus imply the existence of a nonrecombinational pathway(s) for the formation of joint molecules during the process of DNA replication or minichromosome segregation.
Collapse
Affiliation(s)
- Ralf Erik Wellinger
- Institute of Cell Biology, Swiss Federal Institute of Technology, ETH-Hönggerberg, CH-8093 Zürich, Switzerland
| | | | | |
Collapse
|
105
|
McKenzie GJ, Magner DB, Lee PL, Rosenberg SM. The dinB operon and spontaneous mutation in Escherichia coli. J Bacteriol 2003; 185:3972-7. [PMID: 12813093 PMCID: PMC161582 DOI: 10.1128/jb.185.13.3972-3977.2003] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Apparently conflicting data regarding the role of SOS-inducible, error-prone DNA polymerase IV (DinB) in spontaneous mutation are resolved by the finding that mutation is reduced by a polar allele with which dinB and neighboring yafN are deleted but not by two nonpolar dinB alleles. We demonstrate the existence of a dinB operon that contains four genes, dinB-yafN-yafO-yafP. The results imply a role for yafN, yafO, and/or yafP in spontaneous mutation.
Collapse
Affiliation(s)
- Gregory J McKenzie
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030-3411, USA
| | | | | | | |
Collapse
|
106
|
Stary A, Kannouche P, Lehmann AR, Sarasin A. Role of DNA polymerase eta in the UV mutation spectrum in human cells. J Biol Chem 2003; 278:18767-75. [PMID: 12644471 DOI: 10.1074/jbc.m211838200] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In humans, inactivation of the DNA polymerase eta gene (pol eta) results in sunlight sensitivity and causes the cancer-prone xeroderma pigmentosum variant syndrome (XP-V). Cells from XP-V individuals have a reduced capacity to replicate UV-damaged DNA and show hypermutability after UV exposure. Biochemical assays have demonstrated the ability of pol eta to bypass cis-syn-cyclobutane thymine dimers, the most common lesion generated in DNA by UV. In most cases, this bypass is error-free. To determine the actual requirement of pol eta in vivo, XP-V cells (XP30RO) were complemented by the wild type pol eta gene. We have used two pol eta-corrected clones to study the in vivo characteristics of mutations produced by DNA polymerases during DNA synthesis of UV-irradiated shuttle vectors transfected into human host cells, which had or had not been exposed previously to UV radiation. The functional complementation of XP-V cells by pol eta reduced the mutation frequencies both at CG and TA base pairs and restored UV mutagenesis to a normal level. UV irradiation of host cells prior to transfection strongly increased the mutation frequency in undamaged vectors and, in addition, especially in the pol eta-deficient XP30RO cells at 5'-TT sites in UV-irradiated plasmids. These results clearly show the protective role of pol eta against UV-induced lesions and the activation by UV of pol eta-independent mutagenic processes.
Collapse
Affiliation(s)
- Anne Stary
- Laboratory of Genetic Instability and Cancer, UPR 2169 CNRS, Institut Gustave Roussy, 94805 Villejuif, France.
| | | | | | | |
Collapse
|
107
|
Pagès V, Fuchs RP. Uncoupling of leading- and lagging-strand DNA replication during lesion bypass in vivo. Science 2003; 300:1300-3. [PMID: 12764199 DOI: 10.1126/science.1083964] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Numerous agents attack DNA, forming lesions that impair normal replication. Specialized DNA polymerases transiently replace the replicative polymerase and copy past lesions, thus generating mutations, the major initiating cause of cancer. We monitored, in Escherichia coli, the kinetics of replication of both strands of DNA molecules containing a single replication block in either the leading or lagging strand. Despite a block in the leading strand, lagging-strand synthesis proceeded further, implying transient uncoupling of concurrent strand synthesis. Replication through the lesion requires specialized DNA polymerases and is achieved with similar kinetics and efficiencies in both strands.
Collapse
Affiliation(s)
- Vincent Pagès
- Cancérogenèse et Mutagenèse Moléculaire et Structurale, Unité Propre de Recherche 9003; Centre National de la Recherche Scientifique, Ecole Supérieure de Biotechnologie Boulevard S. Brant, 67400 Strasbourg, France
| | | |
Collapse
|
108
|
Glick E, Chau JS, Vigna KL, McCulloch SD, Adman ET, Kunkel TA, Loeb LA. Amino acid substitutions at conserved tyrosine 52 alter fidelity and bypass efficiency of human DNA polymerase eta. J Biol Chem 2003; 278:19341-6. [PMID: 12644469 DOI: 10.1074/jbc.m300686200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
DNA polymerase eta (Pol eta) is a member of a new class of DNA polymerases that is able to copy DNA containing damaged nucleotides. These polymerases are highly error-prone during copying of unaltered DNA templates. We analyzed the relationship between bypass efficiency and fidelity of DNA synthesis by introducing substitutions for Tyr-52, a highly conserved amino acid, within the human DNA polymerase eta (hPol eta) finger domain. Most substitutions for Tyr-52 caused reduction in bypass of UV-associated damage, measured by the ability to rescue the viability of UV-sensitive yeast cells at a high UV dose. For most mutants, the reduction in bypass ability paralleled the reduction in polymerization activity. Interestingly, the hPol eta Y52E mutant exhibited a greater reduction in bypass efficiency than polymerization activity. The reduction in bypass efficiency was accompanied by an up to 11-fold increase in the incorporation of complementary nucleotides relative to non-complementary nucleotides. The fidelity of DNA synthesis, measured by copying a gapped M13 DNA template in vitro, was also enhanced as much as 15-fold; the enhancement resulted from a decrease in transitions, which were relatively frequent, and a large decrease in transversions. Our demonstration that an amino acid substitution within the active site enhances the fidelity of DNA synthesis by hPol eta, one of the most inaccurate of DNA polymerases, supports the hypothesis that even error-prone DNA polymerases function in base selection.
Collapse
Affiliation(s)
- Eitan Glick
- The Joseph Gottstein Memorial Cancer Research Laboratory, Department of Pathology, University of Washington, Seattle, Washington 98195-357705, USA
| | | | | | | | | | | | | |
Collapse
|
109
|
Liu L, Rodriguez-Belmonte EM, Mazloum N, Xie B, Lee MYWT. Identification of a novel protein, PDIP38, that interacts with the p50 subunit of DNA polymerase delta and proliferating cell nuclear antigen. J Biol Chem 2003; 278:10041-7. [PMID: 12522211 DOI: 10.1074/jbc.m208694200] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The yeast two-hybrid screening method was used to identify novel proteins that associate with human DNA polymerase delta (pol delta). Two baits were used in this study. These were the large (p125) and small (p50) subunits of the core pol delta heterodimer. p50 was the only positive isolated with p125 as the bait. Two novel protein partners, named PDIP38 and PDIP46, were identified from the p50 screen. In this study, the interaction of PDIP38 with pol delta was further characterized. PDIP38 encodes a protein of 368 amino acids whose C terminus is conserved with the bacterial APAG protein and with the F box A protein. It was found that PDIP38 also interacts with proliferating cell nuclear antigen (PCNA). The ability of PDIP38 to interact with both the p50 subunit of pol delta and with PCNA was confirmed by pull-down assays using glutathione S-transferase (GST)-PDIP38 fusion proteins. The PCNA-PDIP38 interaction was also demonstrated by PCNA overlay experiments. The association of PDIP38 with pol delta was shown to occur in calf thymus tissue and mammalian cell extracts by GST-PDIP38 pull-down and coimmunoprecipitation experiments. PDIP38 was associated with pol delta isolated by immunoaffinity chromatography. The association of PDIP38 with pol delta could also be demonstrated by native gel electrophoresis.
Collapse
Affiliation(s)
- Li Liu
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla 10595, USA
| | | | | | | | | |
Collapse
|
110
|
Burger A, Fix D, Liu H, Hays J, Bockrath R. In vivo deamination of cytosine-containing cyclobutane pyrimidine dimers in E. coli: a feasible part of UV-mutagenesis. Mutat Res 2003; 522:145-56. [PMID: 12517420 DOI: 10.1016/s0027-5107(02)00310-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have estimated in vivo deamination rates for cytosines in cyclobutane pyrimidine dimers (CPD or PyPy) in UV-irradiated E. coli deficient in uracil DNA glycosylase. The protocol consisted of UV-irradiation, holding in buffer to allow for deamination of cytosines in CPDs and photoreversal (PR) to establish uracils where cytosines in CPD deaminated. The deamination rate at TC photoproducts targeting glutamine tRNA suppressor mutations was estimated from the increase in the mutation frequency after PR (MF(PR)) that developed as UV-irradiated cells were held before PR. Evidence suggested that an earlier study with this protocol under-estimated the deamination rate at sites producing the same mutations in an E. coli B/r strain. With a K12 strain, where the targeting apparently is principally by CPD and not (6-4) photoproducts, a larger rate of k = 0.0091 min(-1) at 42 degrees C resulted. The dark assay for MF also increased significantly with time for deamination consistent with a model for efficient mutation by translesion synthesis at uracil-containing CPD. In addition, we used a strain constructed by Cupples and Miller in which beta-galactosidase was inactive because -GGG- was at codon 461 and would revert to Lac(+) only when replaced by -GAG- or -GAA- for glutamate. CC photoproducts at this target site in the opposite DNA strand could reveal effects of first and second deaminations in the same CPD. MF(PR) for Lac(+) mutations increased and then decreased as a function of deamination time (at six temperatures 36-48 degrees C). Fitting an approximate model equation that distinguished two different deamination rates to these data suggested a first deamination producing Lac(+) at a rate about eight-fold less than a second deamination restoring the Lac(-) phenotype. We conclude that deamination, changing a cytosine-containing CPD to a uracil-containing CPD, could be an integral part of UV-induced C-to-T mutations.
Collapse
Affiliation(s)
- A Burger
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | |
Collapse
|
111
|
|
112
|
Copani A, Sortino MA, Caricasole A, Chiechio S, Chisari M, Battaglia G, Giuffrida-Stella AM, Vancheri C, Nicoletti F. Erratic expression of DNA polymerases by beta-amyloid causes neuronal death. FASEB J 2002; 16:2006-8. [PMID: 12397084 DOI: 10.1096/fj.02-0422fje] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
An ectopic reentrance into the cell cycle with ensuing DNA replication is required for neuronal apoptosis induced by beta-amyloid. Here, we investigate the repertoire of DNA polymerases expressed in beta-amyloid-treated neurons, and their specific role in DNA synthesis and apoptosis. We show that exposure of cultured cortical neurons to beta-amyloid induces the expression of DNA polymerase-beta, proliferating cell nuclear antigen, and the p49 and p58 subunits of DNA primase. Induction requires the activity of cyclin-dependent kinases. The knockdown of the p49 primase subunit prevents beta-amyloid-induced neuronal DNA synthesis and apoptosis. Similar effects are observed by knocking down DNA polymerase-beta or by using dideoxycytidine, a preferential inhibitor of this enzyme. Thus, the reparative enzyme DNA polymerase-beta unexpectedly mediates a large component of de novo DNA synthesis and apoptotic death in neurons exposed to beta-amyloid. These data indicate that DNA polymerases become death signals when erratically expressed by differentiated neurons.
Collapse
Affiliation(s)
- Agata Copani
- Department of Pharmaceutical Sciences, University of Catania, Catania, 95125, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Saumaa S, Tover A, Kasak L, Kivisaar M. Different spectra of stationary-phase mutations in early-arising versus late-arising mutants of Pseudomonas putida: involvement of the DNA repair enzyme MutY and the stationary-phase sigma factor RpoS. J Bacteriol 2002; 184:6957-65. [PMID: 12446646 PMCID: PMC135458 DOI: 10.1128/jb.184.24.6957-6965.2002] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2002] [Accepted: 09/17/2002] [Indexed: 11/20/2022] Open
Abstract
Stationary-phase mutations occur in populations of stressed, nongrowing, and slowly growing cells and allow mutant bacteria to overcome growth barriers. Mutational processes in starving cells are different from those occurring in growing bacteria. Here, we present evidence that changes in mutational processes also take place during starvation of bacteria. Our test system for selection of mutants based on creation of functional promoters for the transcriptional activation of the phenol degradation genes pheBA in starving Pseudomonas putida enables us to study base substitutions (C-to-A or G-to-T transversions), deletions, and insertions. We observed changes in the spectrum of promoter-creating mutations during prolonged starvation of Pseudomonas putida on phenol minimal plates. One particular C-to-A transversion was the prevailing mutation in starving cells. However, with increasing time of starvation, the importance of this mutation decreased but the percentage of other types of mutations, such as 2- to 3-bp deletions, increased. The rate of transversions was markedly elevated in the P. putida MutY-defective strain. The occurrence of 2- to 3-bp deletions required the stationary-phase sigma factor RpoS, which indicates that some mutagenic pathway is positively controlled by RpoS in P. putida.
Collapse
Affiliation(s)
- Signe Saumaa
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, Estonia
| | | | | | | |
Collapse
|
114
|
Abstract
All cells need not only to remove damage from their DNA, but also to be able to replicate DNA containing unrepaired damage. In mammalian cells, the major process by which cells are able to replicate damaged templates is translesion synthesis, the direct synthesis of DNA past altered bases. Crucial to this process is a series of recently discovered DNA polymerases. Most of them belong to a new family of polymerases designated the Y-family, which have conserved sequences in the catalytic N-terminal half of the proteins. These polymerases have different efficiencies and specificities in vitro depending on the type of damage in the template.One of them, DNA polymerase eta, is defective in xeroderma pigmentosum variants, and overwhelming evidence suggests that this is the polymerase that carries out translesion synthesis past UV-induced cyclobutane pyrimidine dimers in vivo. DNA polymerase eta is localised in replication factories during DNA replication and accumulates at sites of stalled replication forks. Many studies have been carried out on the properties of the other polymerases in vitro, but there is as yet very little evidence for their specific roles in vivo.
Collapse
Affiliation(s)
- Alan R Lehmann
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK.
| |
Collapse
|
115
|
Abstract
DNA repair is crucial to the well-being of all organisms from unicellular life forms to humans. A rich tapestry of mechanistic studies on DNA repair has emerged thanks to the recent discovery of Y-family DNA polymerases. Many Y-family members carry out aberrant DNA synthesis-poor replication accuracy, the favored formation of non-Watson-Crick base pairs, efficient mismatch extension, and most importantly, an ability to replicate through DNA damage. This review is devoted primarily to a discussion of Y-family polymerase members that exhibit error-prone behavior. Roles for these remarkable enzymes occur in widely disparate DNA repair pathways, such as UV-induced mutagenesis, adaptive mutation, avoidance of skin cancer, and induction of somatic cell hypermutation of immunoglobulin genes. Individual polymerases engaged in multiple repair pathways pose challenging questions about their roles in targeting and trafficking. Macromolecular assemblies of replication-repair "factories" could enable a cell to handle the complex logistics governing the rapid migration and exchange of polymerases.
Collapse
Affiliation(s)
- Myron F Goodman
- Department of Biological Sciences and Chemistry, Hedco Molecular Biology Laboratory, University of Southern California, Los Angeles, California 90089-1340, USA.
| |
Collapse
|
116
|
Williams DR, McIntosh JR. mcl1+, the Schizosaccharomyces pombe homologue of CTF4, is important for chromosome replication, cohesion, and segregation. EUKARYOTIC CELL 2002; 1:758-73. [PMID: 12455694 PMCID: PMC126746 DOI: 10.1128/ec.1.5.758-773.2002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2002] [Accepted: 06/26/2002] [Indexed: 11/20/2022]
Abstract
The fission yeast minichromosome loss mutant mcl1-1 was identified in a screen for mutants defective in chromosome segregation. Missegregation of the chromosomes in mcl1-1 mutant cells results from decreased centromeric cohesion between sister chromatids. mcl1+ encodes a beta-transducin-like protein with similarity to a family of eukaryotic proteins that includes Ctf4p from Saccharomyces cerevisiae, sepB from Aspergillus nidulans, and AND-1 from humans. The previously identified fungal members of this protein family also have chromosome segregation defects, but they primarily affect DNA metabolism. Chromosomes from mcl1-1 cells were heterogeneous in size or structure on pulsed-field electrophoresis gels and had elongated heterogeneous telomeres. mcl1-1 was lethal in combination with the DNA checkpoint mutations rad3delta and rad26delta, demonstrating that loss of Mcl1p function leads to DNA damage. mcl1-1 showed an acute sensitivity to DNA damage that affects S-phase progression. It interacts genetically with replication components and causes an S-phase delay when overexpressed. We propose that Mcl1p, like Ctf4p, has a role in regulating DNA replication complexes.
Collapse
Affiliation(s)
- Dewight R Williams
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347, USA.
| | | |
Collapse
|
117
|
Burger A, Raymer J, Bockrath R. DNA damage-processing in E. coli: on-going protein synthesis is required for fixation of UV-induced lethality and mutation. DNA Repair (Amst) 2002; 1:821-31. [PMID: 12531029 DOI: 10.1016/s1568-7864(02)00107-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
UV irradiation of E. coli produces photoproducts in the DNA genome. In consequence, some bacteria lose viability (colony-forming ability) or remain viable as mutant cells. However, the end-points of viability inactivation (lethality) or mutation are determined by cellular processes that act on the UV-damaged DNA. We have investigated the in vivo time course for processes that deal with cyclobutane pyrimidine dimers (CPD) which can be specifically removed by photoreactivation (PR). At different times during post-UV incubation, samples were challenged with PR and assayed for viability or mutation. We used excision-defective E. coli B/r cells and worked under yellow light to avoid background PR. During post-UV incubation (0-100min) in fully supplemented defined medium, inactivation and mutation were initially significantly reversed by PR but the extent of this reversal decreased during continued incubation defining "fixation" of lethality or mutation, respectively. In contrast, if protein synthesis was restricted during the post-UV incubation, no fixation developed. When chloramphenicol was added to inhibit protein synthesis after 30min of supplemented post-UV incubation, at a time sufficient for expression of UV-induced protein(s), fixation of lethality or mutation was still annulled (no change in the effectiveness of PR developed). Lethality fixation did progress when protein synthesis was restricted and the cells were incubated in the presence of puromycin or were either clpP or clpX defective. We discuss these and related results to suggest (1) on-going protein synthesis is required in the fixation process for lethality and mutation to sustain an effective level of a hypothetical protein sensitive to ClpXP proteolysis and (2) this protein plays a critical role in the process leading to exchange between Pol III activity and alternative polymerase activities required as each cell deals with damage in template DNA.
Collapse
Affiliation(s)
- Amanda Burger
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
118
|
Hendricks CA, Razlog M, Matsuguchi T, Goyal A, Brock AL, Engelward BP. The S. cerevisiae Mag1 3-methyladenine DNA glycosylase modulates susceptibility to homologous recombination. DNA Repair (Amst) 2002; 1:645-59. [PMID: 12509287 DOI: 10.1016/s1568-7864(02)00072-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
DNA glycosylases, such as the Mag1 3-methyladenine (3MeA) DNA glycosylase, initiate the base excision repair (BER) pathway by removing damaged bases to create abasic apurinic/apyrimidinic (AP) sites that are subsequently repaired by downstream BER enzymes. Although unrepaired base damage may be mutagenic or recombinogenic, BER intermediates (e.g. AP sites and strand breaks) may also be problematic. To investigate the molecular basis for methylation-induced homologous recombination events in Saccharomyces cerevisiae, spontaneous and methylation-induced recombination were studied in strains with varied MAG1 expression levels. We show that cells lacking Mag1 have increased susceptibility to methylation-induced recombination, and that disruption of nucleotide excision repair (NER; rad4) in mag1 cells increases cellular susceptibility to these events. Furthermore, expression of Escherichia coli Tag 3MeA DNA glycosylase suppresses recombination events, providing strong evidence that unrepaired 3MeA lesions induce recombination. Disruption of REV3 (required for polymerase zeta (Pol zeta)) in mag1 rad4 cells causes increased susceptibility to methylation-induced toxicity and recombination, suggesting that Pol zeta can replicate past 3MeAs. However, at subtoxic levels of methylation damage, disruption of REV3 suppresses methylation-induced recombination, indicating that the effects of Pol zeta on recombination are highly dose-dependent. We also show that overproduction of Mag1 can increase the levels of spontaneous recombination, presumably due to increased levels of BER intermediates. However, additional APN1 endonuclease expression or disruption of REV3 does not affect MAG1-induced recombination, suggesting that downstream BER intermediates (e.g. single strand breaks) are responsible for MAG1-induced recombination, rather than uncleaved AP sites. Thus, too little Mag1 sensitizes cells to methylation-induced recombination, while too much Mag1 can put cells at risk of recombination induced by single strand breaks formed during BER.
Collapse
Affiliation(s)
- C A Hendricks
- Division of Bioengineering and Environmental Health, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
119
|
Birrell GW, Brown JA, Wu HI, Giaever G, Chu AM, Davis RW, Brown JM. Transcriptional response of Saccharomyces cerevisiae to DNA-damaging agents does not identify the genes that protect against these agents. Proc Natl Acad Sci U S A 2002; 99:8778-83. [PMID: 12077312 PMCID: PMC124375 DOI: 10.1073/pnas.132275199] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2002] [Indexed: 12/20/2022] Open
Abstract
The recent completion of the deletion of all of the nonessential genes in budding yeast has provided a powerful new way of determining those genes that affect the sensitivity of this organism to cytotoxic agents. We have used this system to test the hypothesis that genes whose transcription is increased after DNA damage are important for the survival to that damage. We used a pool of 4,627 diploid strains each with homozygous deletion of a nonessential gene to identify those genes that are important for the survival of yeast to four DNA-damaging agents: ionizing radiation, UV radiation, and exposure to cisplatin or to hydrogen peroxide. In addition we measured the transcriptional response of the wild-type parental strain to the same DNA-damaging agents. We found no relationship between the genes necessary for survival to the DNA-damaging agents and those genes whose transcription is increased after exposure. These data show that few, if any, of the genes involved in repairing the DNA lesions produced in this study, including double-strand breaks, pyrimidine dimers, single-strand breaks, base damage, and DNA cross-links, are induced in response to toxic doses of the agents that produce these lesions. This finding suggests that the enzymes necessary for the repair of these lesions are at sufficient levels within the cell. The data also suggest that the nature of the lesions produced by DNA-damaging agents cannot easily be deduced from gene expression profiling.
Collapse
Affiliation(s)
- Geoff W Birrell
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | |
Collapse
|
120
|
Friedberg EC, Wagner R, Radman M. Specialized DNA polymerases, cellular survival, and the genesis of mutations. Science 2002; 296:1627-30. [PMID: 12040171 DOI: 10.1126/science.1070236] [Citation(s) in RCA: 344] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Cell death caused by arrested replication of damaged or structurally altered DNA can be avoided in prokaryotic and eukaryotic cells by multiple DNA polymerases that are specialized to bypass DNA damage. Some of these polymerases perform such translesion DNA synthesis of specific types of damage with high genetic fidelity. However, they exhibit greatly reduced fidelity when they operate on undamaged DNA or on DNA with lesions that are (apparently) not cognate substrates. The low fidelity of some of these specialized polymerases when copying undamaged DNA may be physiologically functional, including generating immunoglobulin diversity.
Collapse
Affiliation(s)
- Errol C Friedberg
- Laboratory of Molecular Pathology, Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | | | | |
Collapse
|
121
|
Borden A, O'Grady PI, Vandewiele D, Fernández de Henestrosa AR, Lawrence CW, Woodgate R. Escherichia coli DNA polymerase III can replicate efficiently past a T-T cis-syn cyclobutane dimer if DNA polymerase V and the 3' to 5' exonuclease proofreading function encoded by dnaQ are inactivated. J Bacteriol 2002; 184:2674-81. [PMID: 11976296 PMCID: PMC135032 DOI: 10.1128/jb.184.10.2674-2681.2002] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although very little replication past a T-T cis-syn cyclobutane dimer normally takes place in Escherichia coli in the absence of DNA polymerase V (Pol V), we previously observed as much as half of the wild-type bypass frequency in Pol V-deficient (DeltaumuDC) strains if the 3' to 5' exonuclease proofreading activity of the Pol III epsilon subunit was also disabled by mutD5. This observation might be explained in at least two ways. In the absence of Pol V, wild-type Pol III might bind preferentially to the blocked primer terminus but be incapable of bypass, whereas the proofreading-deficient enzyme might dissociate more readily, providing access to bypass polymerases. Alternatively, even though wild-type Pol III is generally regarded as being incapable of lesion bypass, proofreading-impaired Pol III might itself perform this function. We have investigated this issue by examining dimer bypass frequencies in DeltaumuDC mutD5 strains that were also deficient for Pol I, Pol II, and Pol IV, both singly and in all combinations. Dimer bypass frequencies were not decreased in any of these strains and indeed in some were increased to levels approaching those found in strains containing Pol V. Efficient dimer bypass was, however, entirely dependent on the proofreading deficiency imparted by mutD5, indicating the surprising conclusion that bypass was probably performed by the mutD5 Pol III enzyme itself. This mutant polymerase does not replicate past the much more distorted T-T (6-4) photoadduct, however, suggesting that it may only replicate past lesions, like the T-T dimer, that form base pairs normally.
Collapse
Affiliation(s)
- Angela Borden
- Section on DNA Replication, Repair, and Mutagenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2725, USA
| | | | | | | | | | | |
Collapse
|
122
|
Sutton MD, Narumi I, Walker GC. Posttranslational modification of the umuD-encoded subunit of Escherichia coli DNA polymerase V regulates its interactions with the beta processivity clamp. Proc Natl Acad Sci U S A 2002; 99:5307-12. [PMID: 11959982 PMCID: PMC122765 DOI: 10.1073/pnas.082322099] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Escherichia coli umuDC (pol V) gene products participate in both a DNA damage checkpoint control and translesion DNA synthesis. Interactions of the two umuD gene products, the 139-aa UmuD and the 115-aa UmuD' proteins, with components of the replicative DNA polymerase (pol III), are important for determining which biological role the umuDC gene products will play. Here we report our biochemical characterizations of the interactions of UmuD and UmuD' with the pol III beta processivity clamp. These analyses demonstrate that UmuD possesses a higher affinity for beta than does UmuD' because of the N-terminal arm of UmuD (residues 1-39), much of which is missing in UmuD'. Furthermore, we have identified specific amino acid residues of UmuD that crosslink to beta with p-azidoiodoacetanilide, defining the domain of UmuD important for the interaction. We have recently proposed a model for the solution structure of UmuD(2) in which the N-terminal arm of each protomer makes extensive contacts with the C-terminal globular domain of its intradimer partner, masking part of each surface. Taken together, our findings suggest that UmuD(2) has a higher affinity for the beta-clamp than does UmuD'(2) because of the structures of its N-terminal arms. Viewed in this way, posttranslational modification of UmuD, which entails the removal of its N-terminal 24 residues to yield UmuD', acts in part to attenuate the affinity of the umuD gene product for the beta-clamp. Implications of these structure-function analyses for the checkpoint and translesion DNA synthesis functions of the umuDC gene products are discussed.
Collapse
Affiliation(s)
- Mark D Sutton
- Biology Department, 68-633, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
123
|
Makarova KS, Aravind L, Grishin NV, Rogozin IB, Koonin EV. A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis. Nucleic Acids Res 2002; 30:482-96. [PMID: 11788711 PMCID: PMC99818 DOI: 10.1093/nar/30.2.482] [Citation(s) in RCA: 254] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
During a systematic analysis of conserved gene context in prokaryotic genomes, a previously undetected, complex, partially conserved neighborhood consisting of more than 20 genes was discovered in most Archaea (with the exception of Thermoplasma acidophilum and Halobacterium NRC-1) and some bacteria, including the hyperthermophiles Thermotoga maritima and Aquifex aeolicus. The gene composition and gene order in this neighborhood vary greatly between species, but all versions have a stable, conserved core that consists of five genes. One of the core genes encodes a predicted DNA helicase, often fused to a predicted HD-superfamily hydrolase, and another encodes a RecB family exonuclease; three core genes remain uncharacterized, but one of these might encode a nuclease of a new family. Two more genes that belong to this neighborhood and are present in most of the genomes in which the neighborhood was detected encode, respectively, a predicted HD-superfamily hydrolase (possibly a nuclease) of a distinct family and a predicted, novel DNA polymerase. Another characteristic feature of this neighborhood is the expansion of a superfamily of paralogous, uncharacterized proteins, which are encoded by at least 20-30% of the genes in the neighborhood. The functional features of the proteins encoded in this neighborhood suggest that they comprise a previously undetected DNA repair system, which, to our knowledge, is the first repair system largely specific for thermophiles to be identified. This hypothetical repair system might be functionally analogous to the bacterial-eukaryotic system of translesion, mutagenic repair whose central components are DNA polymerases of the UmuC-DinB-Rad30-Rev1 superfamily, which typically are missing in thermophiles.
Collapse
MESH Headings
- Amino Acid Sequence
- Archaea/enzymology
- Archaea/genetics
- Bacteria/enzymology
- Bacteria/genetics
- Conserved Sequence/genetics
- DNA Helicases/genetics
- DNA Repair/genetics
- DNA-Directed DNA Polymerase/chemistry
- DNA-Directed DNA Polymerase/genetics
- Databases, Nucleic Acid
- Evolution, Molecular
- Exonucleases/chemistry
- Exonucleases/genetics
- Gene Order/genetics
- Gene Transfer, Horizontal
- Genes, Archaeal/genetics
- Genes, Bacterial/genetics
- Genome, Archaeal
- Genome, Bacterial
- Hydrolases/genetics
- Models, Molecular
- Molecular Sequence Data
- Operon/genetics
- Phylogeny
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Sequence Alignment
- Species Specificity
Collapse
Affiliation(s)
- Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 380, Bethesda, MD 20894, USA
| | | | | | | | | |
Collapse
|
124
|
Grúz P, Pisani FM, Shimizu M, Yamada M, Hayashi I, Morikawa K, Nohmi T. Synthetic activity of Sso DNA polymerase Y1, an archaeal DinB-like DNA polymerase, is stimulated by processivity factors proliferating cell nuclear antigen and replication factor C. J Biol Chem 2001; 276:47394-401. [PMID: 11581267 DOI: 10.1074/jbc.m107213200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
DNA replication efficiency is dictated by DNA polymerases (pol) and their associated proteins. The recent discovery of DNA polymerase Y family (DinB/UmuC/RAD30/REV1 superfamily) raises a question of whether the DNA polymerase activities are modified by accessory proteins such as proliferating cell nuclear antigen (PCNA). In fact, the activity of DNA pol IV (DinB) of Escherichia coli is enhanced upon interaction with the beta subunit, the processivity factor of DNA pol III. Here, we report the activity of Sso DNA pol Y1 encoded by the dbh gene of the archaeon Sulfolobus solfataricus is greatly enhanced by the presence of PCNA and replication factor C (RFC). Sso pol Y1 per se was a distributive enzyme but a substantial increase in the processivity was observed on poly(dA)-oligo(dT) in the presence of PCNA (039p or 048p) and RFC. The length of the synthesized DNA product reached at least 200 nucleotides. Sso pol Y1 displayed a higher affinity for DNA compared with pol IV of E. coli, suggesting that the two DNA polymerases have distinct reason(s) to require the processivity factors for efficient DNA synthesis. The abilities of pol Y1 and pol IV to bypass DNA lesions and their sensitive sites to protease are also discussed.
Collapse
Affiliation(s)
- P Grúz
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
125
|
|