101
|
Abstract
To unravel the cellular and molecular mechanisms involved in beta-cell renewal and expansion throughout life, several different experimental models were devised in the past. A number of experimental approaches and transgenic models have been engineered to trigger specifically pancreatic injury and thus explore regeneration. Globally, three main strategies are followed to induce pancreas damage: surgical, chemical and genetic. Some of the most relevant studies regarding these three approaches are briefly summarized in this short overview. Although significant progress has been achieved in recent years, there is much room for improving our understanding of many fundamental processes regulating beta-cell mass maintenance.
Collapse
Affiliation(s)
- P L Herrera
- Department of Genetic Medicine and Development, University of Geneva Medical School, Switzerland.
| |
Collapse
|
102
|
Multiple, temporal-specific roles for HNF6 in pancreatic endocrine and ductal differentiation. Mech Dev 2009; 126:958-73. [PMID: 19766716 DOI: 10.1016/j.mod.2009.09.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 08/20/2009] [Accepted: 09/11/2009] [Indexed: 01/02/2023]
Abstract
Within the developing pancreas Hepatic Nuclear Factor 6 (HNF6) directly activates the pro-endocrine transcription factor, Ngn3. HNF6 and Ngn3 are each essential for endocrine differentiation and HNF6 is also required for embryonic duct development. Most HNF6(-/-) animals die as neonates, making it difficult to study later aspects of HNF6 function. Here, we describe, using conditional gene inactivation, that HNF6 has specific functions at different developmental stages in different pancreatic lineages. Loss of HNF6 from Ngn3-expressing cells (HNF6(Delta endo)) resulted in fewer multipotent progenitor cells entering the endocrine lineage, but had no effect on beta cell terminal differentiation. Early, pancreas-wide HNF6 inactivation (HNF6(Delta panc)) resulted in endocrine and ductal defects similar to those described for HNF6 global inactivation. However, all HNF6(Delta panc) animals survived to adulthood. HNF6(Delta panc) pancreata displayed increased ductal cell proliferation and metaplasia, as well as characteristics of pancreatitis, including up-regulation of CTGF, MMP7, and p8/Nupr1. Pancreatitis was most likely caused by defects in ductal primary cilia. In addition, expression of Prox1, a known regulator of pancreas development, was decreased in HNF6(Delta panc) pancreata. These data confirm that HNF6 has both early and late functions in the developing pancreas and is essential for maintenance of Ngn3 expression and proper pancreatic duct morphology.
Collapse
|
103
|
Du YCN, Klimstra DS, Varmus H. Activation of PyMT in beta cells induces irreversible hyperplasia, but oncogene-dependent acinar cell carcinomas when activated in pancreatic progenitors. PLoS One 2009; 4:e6932. [PMID: 19812721 PMCID: PMC2758666 DOI: 10.1371/journal.pone.0006932] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 08/06/2009] [Indexed: 12/31/2022] Open
Abstract
It is unclear whether the cellular origin of various forms of pancreatic cancer involves transformation or transdifferentiation of different target cells or whether tumors arise from common precursors, with tumor types determined by the specific genetic alterations. Previous studies suggested that pancreatic ductal carcinomas might be induced by polyoma middle T antigen (PyMT) expressed in non-ductal cells. To ask whether PyMT transforms and transdifferentiates endocrine cells toward exocrine tumor phenotypes, we generated transgenic mice that carry tetracycline-inducible PyMT and a linked luciferase reporter. Induction of PyMT in β cells causes β-cell hyperplastic lesions that do not progress to malignant neoplasms. When PyMT is de-induced, β cell proliferation and growth cease; however, regression does not occur, suggesting that continued production of PyMT is not required to maintain the viable expanded β cell population. In contrast, induction of PyMT in early pancreatic progenitor cells under the control of Pdx1 produces acinar cell carcinomas and β-cell hyperplasia. The survival of acinar tumor cells is dependent on continued expression of PyMT. Our findings indicate that PyMT can induce exocrine tumors from pancreatic progenitor cells, but cells in the β cell lineage are not transdifferentiated toward exocrine cell types by PyMT; instead, they undergo oncogene-dependent hyperplastic growth, but do not require PyMT for survival.
Collapse
Affiliation(s)
- Yi-Chieh Nancy Du
- Program in Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA.
| | | | | |
Collapse
|
104
|
Nishimura W, Bonner-Weir S, Sharma A. Expression of MafA in pancreatic progenitors is detrimental for pancreatic development. Dev Biol 2009; 333:108-20. [PMID: 19576197 PMCID: PMC2737322 DOI: 10.1016/j.ydbio.2009.06.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 06/11/2009] [Accepted: 06/22/2009] [Indexed: 12/27/2022]
Abstract
The transcription factor MafA regulates glucose-responsive expression of insulin. MafA-deficient mice have a normal proportion of insulin+ cells at birth but develop diabetes gradually with age, suggesting that MafA is required for maturation and not specification of pancreatic beta-cells. However, several studies show that ectopic expression of MafA may have a role in specification as it induces insulin+ cells in chicken gut epithelium, reprograms adult murine acinar cells into insulin+ cells in combination with Ngn3 and Pdx1, and triggers the lens differentiation. Hence, we examined whether MafA can induce specification of beta-cells during pancreatic development. When the MafA transgene is expressed in Pdx1+ pancreatic progenitors, both pancreatic mass and proliferation of progenitors are reduced, at least partially due to induction of cyclin kinase inhibitors p27 and p57. Expression of MafA in Pdx1+ cells until E12.5 was sufficient to cause these effects and to disproportionately inhibit the formation of endocrine cells in the remnant pancreas. Thus, in mice, MafA expression in Pdx1+ pancreatic progenitors is not sufficient to specify insulin+ cells but in fact deters pancreatic development and the differentiation of endocrine cells. These findings imply that MafA should be used to enhance maturation, rather than specification, of beta-cells from stem/progenitor cells.
Collapse
Affiliation(s)
- Wataru Nishimura
- Section of Islet Transplantation & Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Susan Bonner-Weir
- Section of Islet Transplantation & Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Arun Sharma
- Section of Islet Transplantation & Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
105
|
Lee J, Wen J, Park JY, Kim SA, Lee EJ, Song SY. Reversal of Diabetes in Rats Using GLP-1-Expressing Adult Pancreatic Duct-Like Precursor Cells Transformed From Acinar to Ductal Cells. Stem Cells Dev 2009; 18:991-1002. [DOI: 10.1089/scd.2008.0107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Jieun Lee
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Jing Wen
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Jeong Youp Park
- Department of Internal Medicine, Inha University College of Medicine, Incheon, Korea
| | - Sun-A. Kim
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Jig Lee
- Endocrinology and Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Korea
- Endocrinology, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Si Young Song
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
106
|
Gauthier BR, Wiederkehr A, Baquié M, Dai C, Powers AC, Kerr-Conte J, Pattou F, MacDonald RJ, Ferrer J, Wollheim CB. PDX1 deficiency causes mitochondrial dysfunction and defective insulin secretion through TFAM suppression. Cell Metab 2009; 10:110-8. [PMID: 19656489 PMCID: PMC4012862 DOI: 10.1016/j.cmet.2009.07.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 06/22/2009] [Accepted: 07/01/2009] [Indexed: 01/23/2023]
Abstract
Mutations in the transcription factor Pdx1 cause maturity-onset diabetes of the young 4 (MODY4). Islet transduction with dominant-negative Pdx1 (RIPDN79PDX1) impairs mitochondrial metabolism and glucose-stimulated insulin secretion (GSIS). Transcript profiling revealed suppression of nuclear-encoded mitochondrial factor A (TFAM). Herein, we show that Pdx1 suppression in adult mice reduces islet TFAM expression coinciding with hyperglycemia. We define TFAM as a direct target of Pdx1 both in rat INS1 cells and human islets. Adenoviral overexpression of TFAM along with RIPDN79PDX1 in isolated rat islets rescued mitochondrial DNA (mtDNA) copy number and restored respiratory chain activity as well as glucose-induced ATP synthesis and insulin secretion. CGP37157, which blocks the mitochondrial Na(+)/Ca(2+) exchanger, restored ATP generation and GSIS in RIPDN79PDX1 islets, thereby bypassing the transcriptional defect. Thus, the genetic control by the beta cell-specific factor Pdx1 of the ubiquitous gene TFAM maintains beta cell mtDNA vital for ATP production and normal GSIS.
Collapse
Affiliation(s)
- Benoit R Gauthier
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Oliver-Krasinski JM, Kasner MT, Yang J, Crutchlow MF, Rustgi AK, Kaestner KH, Stoffers DA. The diabetes gene Pdx1 regulates the transcriptional network of pancreatic endocrine progenitor cells in mice. J Clin Invest 2009; 119:1888-98. [PMID: 19487809 DOI: 10.1172/jci37028] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 04/02/2009] [Indexed: 12/12/2022] Open
Abstract
Heterozygous mutations in the gene encoding the pancreatic homeodomain transcription factor pancreatic duodenal homeobox 1 (PDX1) are associated with maturity onset diabetes of the young, type 4 (MODY4) and type 2 diabetes. Pdx1 governs the early embryonic development of the pancreas and the later differentiation of the insulin-producing islet beta cells of the endocrine compartment. We derived a Pdx1 hypomorphic allele that reveals a role for Pdx1 in the specification of endocrine progenitors. Mice homozygous for this allele displayed a selective reduction in endocrine lineages associated with decreased numbers of endocrine progenitors and a marked reduction in levels of mRNA encoding the proendocrine transcription factor neurogenin 3 (Ngn3). During development, Pdx1 occupies an evolutionarily conserved enhancer region of Ngn3 and interacts with the transcription factor one cut homeobox 1 (Hnf6) to activate this enhancer. Furthermore, mRNA levels of all 4 members of the transcription factor network that regulates Ngn3 expression, SRY-box containing gene 9 (Sox9), Hnf6, Hnf1b, and forkhead box A2 (Foxa2), were decreased in homozygous mice. Pdx1 also occupied regulatory sequences in Foxa2 and Hnf1b. Thus, Pdx1 contributes to specification of endocrine progenitors both by regulating expression of Ngn3 directly and by participating in a cross-regulatory transcription factor network during early pancreas development. These results provide insights that may be applicable to beta cell replacement strategies involving the guided differentiation of ES cells or other progenitor cell types into the beta cell lineage, and they suggest a molecular mechanism whereby human PDX1 mutations cause diabetes.
Collapse
Affiliation(s)
- Jennifer M Oliver-Krasinski
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
108
|
Kaneto H, Matsuoka TA, Kawashima S, Yamamoto K, Kato K, Miyatsuka T, Katakami N, Matsuhisa M. Role of MafA in pancreatic beta-cells. Adv Drug Deliv Rev 2009; 61:489-96. [PMID: 19393272 DOI: 10.1016/j.addr.2008.12.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 12/15/2008] [Indexed: 01/01/2023]
Abstract
Pancreatic beta-cell-specific insulin gene expression is regulated by a variety of pancreatic transcription factors and the conserved A3, C1 and E1 elements in the insulin gene enhancer region are very important for activation of insulin gene. Indeed, PDX-1 binding to the A3 element and NeuroD binding to the E1 element are crucial for insulin gene transcription. Recently, C1 element-binding transcription factor was identified as MafA, which is a basic-leucine zipper transcription factor and functions as a potent transactivator for the insulin gene. Under diabetic conditions, chronic hyperglycemia gradually deteriorates pancreatic beta-cell function, which is accompanied by decreased expression and/or DNA binding activities of MafA and PDX-1. Furthermore, MafA overexpression, together with PDX-1 and NeuroD, markedly induces insulin biosynthesis in various non-beta-cells and thereby is a useful tool to efficiently induce insulin-producing surrogate beta-cells. These results suggest that MafA plays a crucial role in pancreatic beta-cells and could be a novel therapeutic target for diabetes.
Collapse
|
109
|
Spence JR, Lange AW, Lin SCJ, Kaestner KH, Lowy AM, Kim I, Whitsett JA, Wells JM. Sox17 regulates organ lineage segregation of ventral foregut progenitor cells. Dev Cell 2009; 17:62-74. [PMID: 19619492 PMCID: PMC2734336 DOI: 10.1016/j.devcel.2009.05.012] [Citation(s) in RCA: 225] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 03/28/2009] [Accepted: 05/04/2009] [Indexed: 11/29/2022]
Abstract
The ventral pancreas, biliary system, and liver arise from the posterior ventral foregut, but the cell-intrinsic pathway by which these organ lineages are separated is not known. Here we show that the extrahepatobiliary system shares a common origin with the ventral pancreas and not the liver, as previously thought. These pancreatobiliary progenitor cells coexpress the transcription factors PDX1 and SOX17 at E8.5 and their segregation into a PDX1+ ventral pancreas and a SOX17+ biliary primordium is Sox17-dependent. Deletion of Sox17 at E8.5 results in the loss of biliary structures and ectopic pancreatic tissue in the liver bud and common duct, while Sox17 overexpression suppresses pancreas development and promotes ectopic biliary-like tissue throughout the PDX1+ domain. Restricting SOX17+ biliary progenitor cells to the ventral region of the gut requires the notch effector Hes1. Our results highlight the role of Sox17 and Hes1 in patterning and morphogenetic segregation of ventral foregut lineages.
Collapse
Affiliation(s)
- Jason R. Spence
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039
| | - Alex W. Lange
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039
| | - Suh-Chin J. Lin
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039
| | - Klaus H. Kaestner
- School of Medicine Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6145
| | - Andrew M. Lowy
- Department of Surgery, UCSD Medical Center, La Jolla, CA 92093-0658
| | - Injune Kim
- Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea 306-701
| | - Jeffrey A. Whitsett
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039
| | - James M. Wells
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039
| |
Collapse
|
110
|
Abstract
The number of patients worldwide suffering from the chronic disease diabetes mellitus is growing at an alarming rate. Insulin-secreting beta-cells in the islet of Langerhans are damaged to different extents in diabetic patients, either through an autoimmune reaction present in type 1 diabetic patients or through inherent changes within beta-cells that affect their function in patients suffering from type 2 diabetes. Cell replacement strategies via islet transplantation offer potential therapeutic options for diabetic patients. However, the discrepancy between the limited number of donor islets and the high number of patients who could benefit from such a treatment reflects the dire need for renewable sources of high-quality beta-cells. Human embryonic stem cells (hESCs) are capable of self-renewal and can differentiate into components of all three germ layers, including all pancreatic lineages. The ability to differentiate hESCs into beta-cells highlights a promising strategy to meet the shortage of beta-cells. Here, we review the different approaches that have been used to direct differentiation of hESCs into pancreatic and beta-cells. We will focus on recent progress in the understanding of signaling pathways and transcription factors during embryonic pancreas development and how this knowledge has helped to improve the methodology for high-efficiency beta-cell differentiation in vitro.
Collapse
Affiliation(s)
- Tingxia Guo
- Department of Medicine, Diabetes Center, University of California, San Francisco, San Francisco, California 94143, USA
| | | |
Collapse
|
111
|
Abstract
In this review, I summarize some aspects of murine pancreas development, with particular emphasis on the analysis of the ontogenetic relationships between different pancreatic cell types. Lineage analyses allow the identification of the progenitor cells from which mature cell types arise. The identification and successful in vitro culture of putative pancreatic stem cells is highly relevant for future cell replacement therapies in diabetic patients.
Collapse
|
112
|
Evans-Molina C, Robbins RD, Kono T, Tersey SA, Vestermark GL, Nunemaker CS, Garmey JC, Deering TG, Keller SR, Maier B, Mirmira RG. Peroxisome proliferator-activated receptor gamma activation restores islet function in diabetic mice through reduction of endoplasmic reticulum stress and maintenance of euchromatin structure. Mol Cell Biol 2009; 29:2053-67. [PMID: 19237535 PMCID: PMC2663298 DOI: 10.1128/mcb.01179-08] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2008] [Revised: 10/24/2008] [Accepted: 02/06/2009] [Indexed: 12/21/2022] Open
Abstract
The nuclear receptor peroxisome proliferator-activated receptor gamma (PPAR-gamma) is an important target in diabetes therapy, but its direct role, if any, in the restoration of islet function has remained controversial. To identify potential molecular mechanisms of PPAR-gamma in the islet, we treated diabetic or glucose-intolerant mice with the PPAR-gamma agonist pioglitazone or with a control. Treated mice exhibited significantly improved glycemic control, corresponding to increased serum insulin and enhanced glucose-stimulated insulin release and Ca(2+) responses from isolated islets in vitro. This improved islet function was at least partially attributed to significant upregulation of the islet genes Irs1, SERCA, Ins1/2, and Glut2 in treated animals. The restoration of the Ins1/2 and Glut2 genes corresponded to a two- to threefold increase in the euchromatin marker histone H3 dimethyl-Lys4 at their respective promoters and was coincident with increased nuclear occupancy of the islet methyltransferase Set7/9. Analysis of diabetic islets in vitro suggested that these effects resulting from the presence of the PPAR-gamma agonist may be secondary to improvements in endoplasmic reticulum stress. Consistent with this possibility, incubation of thapsigargin-treated INS-1 beta cells with the PPAR-gamma agonist resulted in the reduction of endoplasmic reticulum stress and restoration of Pdx1 protein levels and Set7/9 nuclear occupancy. We conclude that PPAR-gamma agonists exert a direct effect in diabetic islets to reduce endoplasmic reticulum stress and enhance Pdx1 levels, leading to favorable alterations of the islet gene chromatin architecture.
Collapse
Affiliation(s)
- Carmella Evans-Molina
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Gupta D, Jetton TL, Mortensen RM, Duan SZ, Peshavaria M, Leahy JL. In vivo and in vitro studies of a functional peroxisome proliferator-activated receptor gamma response element in the mouse pdx-1 promoter. J Biol Chem 2008; 283:32462-70. [PMID: 18718916 PMCID: PMC2583321 DOI: 10.1074/jbc.m801813200] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 08/01/2008] [Indexed: 01/03/2023] Open
Abstract
We reported that peroxisome proliferator-activated receptor gamma (PPARgamma) transcriptionally regulates the beta-cell differentiation factor pancreatic duodenal homeobox (PDX)-1 based on in vitro RNA interference studies. We have now studied mice depleted of PPARgamma within the pancreas (PANC PPARgamma(-/-)) created by a Cre/loxP recombinase system, with Cre driven by the pdx-1 promoter. Male PANC PPARgamma(-/-) mice were hyperglycemic at 8 weeks of age (8.1+/-0.2 mM versus 6.4+/-0.3 mM, p=0.009) with islet cytoarchitecture and pancreatic mass of islet beta-cells that were indistinguishable from the controls. Islet PDX-1 mRNA (p=0.001) and protein levels (p=0.003) were lowered 60 and 40%, respectively, in tandem with impaired glucose-induced insulin secretion and loss of thiazolidinedione-induced increase in PDX-1 expression. We next identified a putative PPAR-response element (PPRE) in the mouse pdx-1 promoter with substantial homology to the corresponding region of the human PDX-1 promoter. Electrophoretic mobility supershift assays with nuclear extracts from beta-cell lines and mouse islets, also in vitro translated PPARgamma and retinoid X receptor, and chromatin immunoprecipitation analysis demonstrated specific binding of PPARgamma and retinoid X receptor to the human and mouse pdx-1 x PPREs. Transient transfection assays of beta-cells with reporter constructs of mutated PPREs showed dramatically reduced pdx-1 promoter activity. In summary, we have presented in vivo and in vitro evidence showing PPARgamma regulation of pdx-1 transcription in beta-cells, plus our results support an important regulatory role for PPARgamma in beta-cell physiology and thiazolidinedione pharmacology of type 2 diabetes.
Collapse
Affiliation(s)
- Dhananjay Gupta
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Vermont, Burlington, Vermont 05405, USA
| | | | | | | | | | | |
Collapse
|
114
|
Abstract
The control of glucose metabolism by pancreatic endocrine cells throughout life relies on a tight regulation of the mass of insulin-producing beta-cells. How this homoeostasis is achieved is not well understood. Over the last few years, experimental rodent models with altered beta-cell mass, and, more recently, new transgenic approaches designed to tackle this problem, have provided abundant information. Processes such as beta-cell proliferation and apoptosis, or even beta-cell differentiation from poorly characterized progenitor cells, whether immature or differentiated, appear to be implicated. A complex picture is thus emerging in which the nature of the pancreatic lesion appears to determine the kind of regenerative response. The environment formed by acinar and ductal cells, and also by vascular and neuronal structures, which surround islets and penetrate into their beta-cell core, might play crucial roles so far unsuspected, which should be explored in the near future.
Collapse
|
115
|
Gittes GK. Developmental biology of the pancreas: a comprehensive review. Dev Biol 2008; 326:4-35. [PMID: 19013144 DOI: 10.1016/j.ydbio.2008.10.024] [Citation(s) in RCA: 317] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2008] [Revised: 10/09/2008] [Accepted: 10/13/2008] [Indexed: 02/06/2023]
Abstract
Pancreatic development represents a fascinating process in which two morphologically distinct tissue types must derive from one simple epithelium. These two tissue types, exocrine (including acinar cells, centro-acinar cells, and ducts) and endocrine cells serve disparate functions, and have entirely different morphology. In addition, the endocrine tissue must become disconnected from the epithelial lining during its development. The pancreatic development field has exploded in recent years, and numerous published reviews have dealt specifically with only recent findings, or specifically with certain aspects of pancreatic development. Here I wish to present a more comprehensive review of all aspects of pancreatic development, though still there is not a room for discussion of stem cell differentiation to pancreas, nor for discussion of post-natal regeneration phenomena, two important fields closely related to pancreatic development.
Collapse
Affiliation(s)
- George K Gittes
- Children's Hospital of Pittsburgh and the University of Pittsburgh School of Medicine, Department of Pediatric Surgery, 3705 Fifth Avenue, Pittsburgh, PA 15213, USA
| |
Collapse
|
116
|
Villaseñor J, Besse W, Benoist C, Mathis D. Ectopic expression of peripheral-tissue antigens in the thymic epithelium: probabilistic, monoallelic, misinitiated. Proc Natl Acad Sci U S A 2008; 105:15854-9. [PMID: 18836079 PMCID: PMC2572966 DOI: 10.1073/pnas.0808069105] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Indexed: 02/02/2023] Open
Abstract
Thymic medullary epithelial cells (MECs) express a broad repertoire of peripheral-tissue antigens (PTAs), many of which depend on the transcriptional regulatory factor Aire. Although Aire is known to be critically important for shaping a self-tolerant T cell repertoire, its role in MEC maturation and function remains poorly understood. Using a highly sensitive and reproducible single-cell PCR assay, we demonstrate that individual Aire-expressing MECs transcribe a subset of PTA genes in a probabilistic fashion, with no signs of preferential coexpression of genes characteristic of particular extrathymic epithelial cell lineages. In addition, Aire-dependent PTA genes in MECs are transcribed monoallelically or biallelically in a stochastic pattern, in contrast to the usually biallelic transcription of these same genes in the relevant peripheral cells or of Aire-independent genes in MECs. Expression of PTA genes in MECs depends on transcriptional regulators and uses transcriptional start sites different from those used in peripheral cells. These findings support the "terminal differentiation" model of Aire function: as MECs mature, they transcribe more and more PTA genes, culminating in a cell population that is both capable of presenting antigens (MHCII(hi), CD80(hi)) and can draw on a large repertoire of antigens to present.
Collapse
Affiliation(s)
- Jennifer Villaseñor
- Section on Immunology and Immunogenetics, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02215
| | - Whitney Besse
- Section on Immunology and Immunogenetics, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02215
| | - Christophe Benoist
- Section on Immunology and Immunogenetics, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02215
| | - Diane Mathis
- Section on Immunology and Immunogenetics, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02215
| |
Collapse
|
117
|
Abstract
The major forms of diabetes are characterized by pancreatic islet beta-cell dysfunction and decreased beta-cell numbers, raising hope for cell replacement therapy. Although human islet transplantation is a cell-based therapy under clinical investigation for the treatment of type 1 diabetes, the limited availability of human cadaveric islets for transplantation will preclude its widespread therapeutic application. The result has been an intense focus on the development of alternate sources of beta cells, such as through the guided differentiation of stem or precursor cell populations or the transdifferentiation of more plentiful mature cell populations. Realizing the potential for cell-based therapies, however, requires a thorough understanding of pancreas development and beta-cell formation. Pancreas development is coordinated by a complex interplay of signaling pathways and transcription factors that determine early pancreatic specification as well as the later differentiation of exocrine and endocrine lineages. This review describes the current knowledge of these factors as they relate specifically to the emergence of endocrine beta cells from pancreatic endoderm. Current therapeutic efforts to generate insulin-producing beta-like cells from embryonic stem cells have already capitalized on recent advances in our understanding of the embryonic signals and transcription factors that dictate lineage specification and will most certainly be further enhanced by a continuing emphasis on the identification of novel factors and regulatory relationships.
Collapse
Affiliation(s)
- Jennifer M. Oliver-Krasinski
- Institute for Diabetes, Obesity and Metabolism and the Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Doris A. Stoffers
- Institute for Diabetes, Obesity and Metabolism and the Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
118
|
Stadtfeld M, Brennand K, Hochedlinger K. Reprogramming of pancreatic beta cells into induced pluripotent stem cells. Curr Biol 2008; 18:890-4. [PMID: 18501604 PMCID: PMC2819222 DOI: 10.1016/j.cub.2008.05.010] [Citation(s) in RCA: 278] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 05/02/2008] [Accepted: 05/07/2008] [Indexed: 02/06/2023]
Abstract
Induced pluripotent stem (iPS) cells have been derived from fibroblast, stomach, and liver cultures at extremely low frequencies by ectopic expression of the transcription factors Oct4, Sox2, c-myc, and Klf4, a process coined direct or in vitro reprogramming [1-8]. iPS cells are molecularly and functionally highly similar to embryonic stem cells (ESCs), including their ability to contribute to all tissues as well as the germline in mice. The heterogeneity of the starting cell populations and the low efficiency of reprogramming suggested that a rare cell type, such as an adult stem cell, might be the cell of origin for iPS cells and that differentiated cells are refractory to reprogramming. Here, we used inducible lentiviruses [9] to express Oct4, Sox2, c-myc, and Klf4 in pancreatic beta cells to assess whether a defined terminally differentiated cell type remains amenable to reprogramming. Genetically marked beta cells gave rise to iPS cells that expressed pluripotency markers, formed teratomas, and contributed to cell types of all germ layers in chimeric animals. Our results provide genetic proof that terminally differentiated cells can be reprogrammed into pluripotent cells, suggesting that in vitro reprogramming is not restricted to certain cell types or differentiation stages.
Collapse
Affiliation(s)
- Matthias Stadtfeld
- Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine, 185 Cambridge Street, Boston, Massachusetts 02114
- Harvard Stem Cell Institute, 42 Church Street, Cambridge, Massachusetts 02138
| | - Kristen Brennand
- Harvard Stem Cell Institute, 42 Church Street, Cambridge, Massachusetts 02138
- Department of Molecular and Cellular Biology, Harvard University and Howard Hughes Medical Institute, 7 Divinity Avenue, Cambridge, Massachusetts 02138
| | - Konrad Hochedlinger
- Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine, 185 Cambridge Street, Boston, Massachusetts 02114
- Harvard Stem Cell Institute, 42 Church Street, Cambridge, Massachusetts 02138
| |
Collapse
|
119
|
Wang S, Hecksher-Sorensen J, Xu Y, Zhao A, Dor Y, Rosenberg L, Serup P, Gu G. Myt1 and Ngn3 form a feed-forward expression loop to promote endocrine islet cell differentiation. Dev Biol 2008; 317:531-40. [PMID: 18394599 PMCID: PMC2423199 DOI: 10.1016/j.ydbio.2008.02.052] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 02/26/2008] [Accepted: 02/27/2008] [Indexed: 10/22/2022]
Abstract
High levels of Ngn3 expression in pancreatic progenitor cells are both necessary and sufficient to initiate endocrine differentiation. While it is clear that the Notch-Hes1-mediated signals control the number of Ngn3-expressing cells in the developing pancreas, it is not known what factors control the level of Ngn3 expression in individual pancreatic cells. Here we report that Myt1b and Ngn3 form a feed-forward expression loop that regulates endocrine differentiation. Myt1b induces glucagon expression by potentiating Ngn3 transcription in pancreatic progenitors. Vice versa, Ngn3 protein production induces the expression of Myt1. Furthermore, pancreatic Myt1 expression largely, but not totally, relies on Ngn3 activity. Surprisingly, a portion of Myt1 expressing pancreatic cells express glucagon and other alpha cell markers in Ngn3 nullizygous mutant animals. These results demonstrate that Myt1b and Ngn3 positively regulate each other's expression to promote endocrine differentiation. In addition, the data uncover an unexpected Ngn3 expression-independent endocrine cell production pathway, which further bolsters the notion that the seemingly equivalent endocrine cells of each type, as judged by hormone and transcription factor expression, are heterogeneous in their origin.
Collapse
Affiliation(s)
- Sui Wang
- Program in Developmental Biology and the Department of Cell and Developmental Biology. Vanderbilt University Medical Center. Nashville, TN 37232
| | - Jacob Hecksher-Sorensen
- Hagedorn Research Institute, Department of Developmental Biology, Niels Steensens Vej 6, DK-2820 Gentofte, Denmark
| | - Yanwen Xu
- Program in Developmental Biology and the Department of Cell and Developmental Biology. Vanderbilt University Medical Center. Nashville, TN 37232
| | - Aizhen Zhao
- Program in Developmental Biology and the Department of Cell and Developmental Biology. Vanderbilt University Medical Center. Nashville, TN 37232
| | - Yuval Dor
- Cellular Biochemistry & Human Genetics, The Hebrew University-Hadassah Medical School, Jerusalem 91120. Israel
| | - Louise Rosenberg
- Hagedorn Research Institute, Department of Developmental Biology, Niels Steensens Vej 6, DK-2820 Gentofte, Denmark
| | - Palle Serup
- Hagedorn Research Institute, Department of Developmental Biology, Niels Steensens Vej 6, DK-2820 Gentofte, Denmark
| | - Guoqiang Gu
- Program in Developmental Biology and the Department of Cell and Developmental Biology. Vanderbilt University Medical Center. Nashville, TN 37232
| |
Collapse
|
120
|
Kaneto H, Miyatsuka T, Kawamori D, Yamamoto K, Kato K, Shiraiwa T, Katakami N, Yamasaki Y, Matsuhisa M, Matsuoka TA. PDX-1 and MafA play a crucial role in pancreatic beta-cell differentiation and maintenance of mature beta-cell function. Endocr J 2008; 55:235-52. [PMID: 17938503 DOI: 10.1507/endocrj.k07e-041] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Pancreatic and duodenal homeobox factor-1 (PDX-1) plays a crucial role in pancreas development, beta-cell differentiation, and maintenance of mature beta-cell function. PDX-1 expression is maintained in pancreatic precursor cells during pancreas development but becomes restricted to beta-cells in mature pancreas. In mature beta-cells, PDX-1 transactivates the insulin and other genes involved in glucose sensing and metabolism such as GLUT2 and glucokinase. MafA is a recently isolated beta-cell-specific transcription factor which functions as a potent activator of insulin gene transcription. Furthermore, these transcription factors play an important role in induction of insulin-producing cells in various non-beta-cells and thus could be therapeutic targets for diabetes. On the other hand, under diabetic conditions, expression and/or activities of PDX-1 and MafA in beta-cells are reduced, which leads to suppression of insulin biosynthesis and secretion. It is likely that alteration of such transcription factors explains, at least in part, the molecular mechanism for beta-cell glucose toxicity found in diabetes.
Collapse
Affiliation(s)
- Hideaki Kaneto
- Department of Internal Medicine and Therapeutics (A8), Osaka University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Rovira M, Jané-Valbuena J, Marchand M, Savatier P, Real FX, Skoudy A. Viral-mediated coexpression of Pdx1 and p48 regulates exocrine pancreatic differentiation in mouse ES cells. CLONING AND STEM CELLS 2008; 9:327-38. [PMID: 17907943 DOI: 10.1089/clo.2006.0064] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Embryonic stem cells (ES) can spontaneously activate a pancreatic differentiation program in vitro, although with low efficiency. The aim was to improve such process by using viral mediated gene transduction. In this study, we have examined the suitability of using viral vectors to express key transcriptional factors involved in pancreatic development. ES cell lines that constitutively express Pdx1, a homeodomain protein involved in both exocrine and endocrine pancreatic development and differentiation, were established using a lentiviral vector. These cells were additionally infected with an adenovirus expressing p48, a bHLH factor that is also crucial for pancreatic development and acinar differentiation. Quantitative RT-PCR analysis demonstrated an increase in the expression of exocrine genes, including those coding for both digestive enzymes and transcription factors. Immunocytochemical staining also revealed an increase in the number of amylase-expressing cell clusters. However, other important genes involved in acinar cell maturation (i.e., Mist1) were not modulated under these conditions, suggesting that the cells display features of immature exocrine cells or because of an uncoupled gene expression of the exocrine differentiation program. Importantly, this effect was selective for the acinar lineage as the expression of a large set of endocrine markers remained unchanged. Therefore, combined expression of key genes involved in pancreatic development may be a promising approach to generate mature pancreatic exocrine cells.
Collapse
Affiliation(s)
- Meritxell Rovira
- Cell and Molecular Biology Unit, Institut Municipal d'Investigació Mèdica (IMIM), Dr Aiguader 88, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
122
|
Koya V, Lu S, Sun YP, Purich DL, Atkinson MA, Li SW, Yang LJ. Reversal of streptozotocin-induced diabetes in mice by cellular transduction with recombinant pancreatic transcription factor pancreatic duodenal homeobox-1: a novel protein transduction domain-based therapy. Diabetes 2008; 57:757-69. [PMID: 18086901 PMCID: PMC3418347 DOI: 10.2337/db07-1441] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVE The key pancreatic transcription factor pancreatic duodenal homeobox-1 (Pdx1), known to control development and maintenance of pancreatic beta-cells, possesses a protein transduction domain (PTD) that facilitates its entry into cells. We therefore sought to evaluate the capacity of in vivo-administered recombinant Pdx1 (rPdx1) to ameliorate hyperglycemia in mice with streptozotocin-induced diabetes. RESEARCH DESIGN AND METHODS Cell entry and transcriptional regulatory properties of rPdx1 protein and its PTD-deletion mutant rPdx1Delta protein, as well as a PTD-green fluorescent protein, were evaluated in vitro. After intraperitoneal rPdx1 injection into mice with streptozotocin-induced diabetes, we assessed its action on blood glucose levels, insulin content, intraperitoneal glucose tolerance test (IPGTT), Pdx1 distribution, pancreatic gene expression, islet cell proliferation, and organ histology. RESULTS Restoration of euglycemia in Pdx1-treated diabetic mice was evident by improved IPGTT and glucose-stimulated insulin release. Insulin, glucagon, and Ki67 immunostaining revealed increased islet cell number and proliferation in pancreata of rPdx1-treated mice. Real-time PCR of pancreas and liver demonstrated upregulation of INS and PDX1 genes and other genes relevant to pancreas regeneration. While the time course of beta-cell gene expression and serum/tissue insulin levels indicated that both liver- and pancreas-derived insulin contributed to restoration of normoglycemia, near-total pancreatectomy resulted in hyperglycemia, suggesting that beta-cell regeneration played the primary role in rPdx1-induced glucose homeostasis. CONCLUSIONS rPdx1 treatment of mice with streptozotocin-induced diabetes promotes beta-cell regeneration and liver cell reprogramming, leading to restoration of normoglycemia. This novel PTD-based protein therapy offers a promising way to treat patients with diabetes while avoiding potential side effects associated with the use of viral vectors.
Collapse
Affiliation(s)
- Vijay Koya
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Shun Lu
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Yu-Ping Sun
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Daniel L. Purich
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida
| | - Mark A. Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Shi-Wu Li
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Li-Jun Yang
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida
| |
Collapse
|
123
|
Gene expression profiling of a mouse model of pancreatic islet dysmorphogenesis. PLoS One 2008; 3:e1611. [PMID: 18297134 PMCID: PMC2249940 DOI: 10.1371/journal.pone.0001611] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Accepted: 01/16/2008] [Indexed: 12/24/2022] Open
Abstract
Background In the past decade, several transcription factors critical for pancreas organogenesis have been identified. Despite this success, many of the factors necessary for proper islet morphogenesis and function remain uncharacterized. Previous studies have shown that transgenic over-expression of the transcription factor Hnf6 specifically in the pancreatic endocrine cell lineage resulted in disruptions in islet morphogenesis, including dysfunctional endocrine cell sorting, increased individual islet size, increased number of peripheral endocrine cell types, and failure of islets to migrate away from the ductal epithelium. The mechanisms whereby maintained Hnf6 causes defects in islet morphogenesis have yet to be elucidated. Methodology/Principal Findings We exploited the dysmorphic islets in Hnf6 transgenic animals as a tool to identify factors important for islet morphogenesis. Genome-wide microarray analysis was used to identify differences in the gene expression profiles of late gestation and early postnatal total pancreas tissue from wild type and Hnf6 transgenic animals. Here we report the identification of genes with an altered expression in Hnf6 transgenic animals and highlight factors with potential importance in islet morphogenesis. Importantly, gene products involved in cell adhesion, cell migration, ECM remodeling and proliferation were found to be altered in Hnf6 transgenic pancreata, revealing specific candidates that can now be analyzed directly for their role in these processes during islet development. Conclusions/Significance This study provides a unique dataset that can act as a starting point for other investigators to explore the role of the identified genes in pancreatogenesis, islet morphogenesis and mature β cell function.
Collapse
|
124
|
Gannon M, Ables ET, Crawford L, Lowe D, Offield MF, Magnuson MA, Wright CVE. pdx-1 function is specifically required in embryonic beta cells to generate appropriate numbers of endocrine cell types and maintain glucose homeostasis. Dev Biol 2008; 314:406-17. [PMID: 18155690 PMCID: PMC2269701 DOI: 10.1016/j.ydbio.2007.10.038] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Accepted: 10/16/2007] [Indexed: 10/22/2022]
Abstract
The pdx1 gene is essential for pancreatic organogenesis in humans and mice; pdx1 mutations have been identified in human diabetic patients. Specific inactivation of pdx1 in adult beta cells revealed that this gene is required for maintenance of mature beta cell function. In the following study, a Cre-lox strategy was used to remove pdx1 function specifically from embryonic beta cells beginning at late-gestation, prior to islet formation. Animals in which pdx1 is lost in insulin-producing cells during embryogenesis had elevated blood glucose levels at birth and were overtly diabetic by weaning. Neonatal and adult mutant islets showed a dramatic reduction in the number of insulin(+) cells and an increase in both glucagon(+) and somatostatin(+) cells. Lineage tracing revealed that excess glucagon(+) and somatostatin(+) cells did not arise by interconversion of endocrine cell types. Examination of mutant islets revealed a decrease in proliferation of insulin-producing cells just before birth and a concomitant increase in proliferation of glucagon-producing cells. We propose that pdx1 is required for proliferation and function of the beta cells generated at late gestation, and that one function of normal beta cells is to inhibit the proliferation of other islet cell types, resulting in the appropriate numbers of the different endocrine cell types.
Collapse
Affiliation(s)
- Maureen Gannon
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | | | | | | | | | | | | |
Collapse
|
125
|
Abstract
It is well known that pancreatic and duodenal homeobox factor-1 (PDX-1) plays a pleiotropic role in the pancreas. In the developing pancreas, PDX-1 is involved in both pancreas formation and beta-cell differentiation. In mature beta-cells, PDX-1 transactivates insulin and other beta-cell-related genes such as GLUT2 and glucokinase. Furthermore, PDX-1 plays an important role in the induction of insulin-producing cells in various non-beta-cells and is thereby a possible therapeutic target for diabetes. On the other hand, under diabetic conditions, expression and/or activity of PDX-1 in beta-cells is reduced, which leads to suppression of insulin biosynthesis and secretion. It is likely that PDX-1 inactivation explains, at least in part, the molecular mechanism for beta-cell glucose toxicity found in diabetes.
Collapse
Affiliation(s)
- Hideaki Kaneto
- Department of Internal Medicine and Therapeutics (A8), Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
126
|
Chao CS, Loomis ZL, Lee JE, Sussel L. Genetic identification of a novel NeuroD1 function in the early differentiation of islet alpha, PP and epsilon cells. Dev Biol 2007; 312:523-32. [PMID: 17988662 PMCID: PMC2174610 DOI: 10.1016/j.ydbio.2007.09.057] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Revised: 09/27/2007] [Accepted: 09/27/2007] [Indexed: 11/25/2022]
Abstract
Nkx2.2 and NeuroD1 are vital for proper differentiation of pancreatic islet cell types. Nkx2.2-null mice fail to form beta cells, have reduced numbers of alpha and PP cells and display an increase in ghrelin-producing epsilon cells. NeuroD1-null mice display a reduction of alpha and beta cells after embryonic day (e) 17.5. To begin to determine the relative contributions of Nkx2.2 and NeuroD1 in islet development, we generated Nkx2.2-/-;NeuroD1-/- double knockout (DKO) mice. As expected, the DKO mice fail to form beta cells, similar to the Nkx2.2-null mice, suggesting that the Nkx2.2 phenotype may be dominant over the NeuroD1 phenotype in the beta cells. Surprisingly, however, the alpha, PP and epsilon phenotypes of the Nkx2.2-null mice are partially rescued by the simultaneous elimination of NeuroD1, even at early developmental time points when NeuroD1 null mice alone do not display a phenotype. Our results indicate that Nkx2.2 and NeuroD1 interact to regulate pancreatic islet cell fates, and this epistatic relationship is cell-type dependent. Furthermore, this study reveals a previously unappreciated early function of NeuroD1 in regulating the specification of alpha, PP and epsilon cells.
Collapse
Affiliation(s)
- Christina S. Chao
- University of Colorado at Denver and Health Science Center, Biochemistry and Molecular Genetics Department, Aurora, CO 80045
- Medical scientist training program and Cell and Developmental Biology Program
| | - Zoe L. Loomis
- University of Colorado at Denver and Health Science Center, Biochemistry and Molecular Genetics Department, Aurora, CO 80045
| | - Jacqueline E. Lee
- University of Colorado at Boulder, Department of Molecular, Cellular, and Developmental Biology, Boulder, CO 80309
| | - Lori Sussel
- University of Colorado at Denver and Health Science Center, Biochemistry and Molecular Genetics Department, Aurora, CO 80045
| |
Collapse
|
127
|
Kaneto H, Miyatsuka T, Fujitani Y, Noguchi H, Song KH, Yoon KH, Matsuoka TA. Role of PDX-1 and MafA as a potential therapeutic target for diabetes. Diabetes Res Clin Pract 2007; 77 Suppl 1:S127-37. [PMID: 17449132 DOI: 10.1016/j.diabres.2007.01.046] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/29/2007] [Indexed: 12/14/2022]
Abstract
Pancreatic and duodenal homeobox factor-1 (PDX-1) plays a crucial role in pancreas development, beta-cell differentiation, and maintaining mature beta-cell function. During pancreas development, PDX-1 expression is maintained in precursor cells, and later it becomes restricted to beta-cells. In mature beta-cells, PDX-1 regulates gene expression of various beta-cell-related factors including insulin. Also, PDX-1 has potency to induce insulin-producing cells from non-beta-cells in various tissues, and PDX-1-VP16 fusion protein more efficiently induces insulin-producing cells, especially in the presence of NeuroD or Ngn3. MafA is a recently isolated beta-cell-specific transcription factor which functions as a potent activator of insulin gene transcription. During pancreas development, MafA expression is first detected at the beginning of the principal phase of insulin-producing cell production. Furthermore, MafA markedly enhances insulin gene promoter activity and ameliorates glucose tolerance in diabetic mice, especially in the presence of PDX-1 and NeuroD. Taken together, PDX-1 and MafA play a crucial role in inducing surrogate beta-cells and could be a therapeutic target for diabetes.
Collapse
Affiliation(s)
- Hideaki Kaneto
- Department of Internal Medicine and Therapeutics, Osaka University Graduate School of Medicine, Osaka, Japan.
| | | | | | | | | | | | | |
Collapse
|
128
|
Shiraiwa T, Kaneto H, Miyatsuka T, Kato K, Yamamoto K, Kawashima A, Kajimoto Y, Matsuoka TA, Matsuhisa M, Yamasaki Y, Fujitani Y. Establishment of a non-invasive mouse reporter model for monitoring in vivo pdx-1 promoter activity. Biochem Biophys Res Commun 2007; 361:739-44. [PMID: 17678877 DOI: 10.1016/j.bbrc.2007.07.101] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Accepted: 07/06/2007] [Indexed: 11/17/2022]
Abstract
It is well known that pancreatic and duodenal homeobox gene-1 (PDX-1) plays a crucial role in beta-cell differentiation, and maintaining mature beta-cell function. Thus, it is important to understand how pdx-1 gene is regulated under various pathophysiological conditions in vivo. In this study, to non-invasively and quantitatively monitor pdx-1 promoter activity in vivo, we constructed a pdx-1 promoter-SEAP-IRES-GFP reporter plasmid. In this construct, the -4.6kb pdx-1 promoter region sufficient for driving beta-cell-selective PDX-1 expression was inserted to the upstream of the secreted alkaline phosphatase (SEAP) reporter gene. It is noted here that the pdx-1 promoter-mediated SEAP activity can be distinguished from endogenous alkaline phosphatase activity. First, we transfected the construct in mouse beta-cell line MIN6 and human hepatocellular carcinoma cell line HepG2. SEAP activity was readily detected in the media of MIN6 cells, but not in HepG2 cells. These results indicate that this construct specifically reports beta-cell-specific pdx-1 promoter activity in a cell culture system. Based on these in vitro findings, we next generated transgenic mice using the same construct. SEAP activity was readily detected in serum of the transgenic mice, but not in their littermate mice. Furthermore, SEAP activity was detected in protein extract from the transgenic pancreas and slightly from the transgenic duodenum, but not from the liver, and brain. These results indicate that serum SEAP activity likely represents in vivo pdx-1 promoter activity. This transgenic mouse model would be useful to non-invasively monitor in vivo pdx-1 promoter activity and to screen new molecules which regulate PDX-1 expression.
Collapse
Affiliation(s)
- Toshihiko Shiraiwa
- Department of Internal Medicine and Therapeutics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Babu DA, Deering TG, Mirmira RG. A feat of metabolic proportions: Pdx1 orchestrates islet development and function in the maintenance of glucose homeostasis. Mol Genet Metab 2007; 92:43-55. [PMID: 17659992 PMCID: PMC2042521 DOI: 10.1016/j.ymgme.2007.06.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2007] [Revised: 06/14/2007] [Accepted: 06/15/2007] [Indexed: 01/30/2023]
Abstract
Emerging evidence over the past decade indicates a central role for transcription factors in the embryonic development of pancreatic islets and the consequent maintenance of normal glucose homeostasis. Pancreatic and duodenal homeobox 1 (Pdx1) is the best studied and perhaps most important of these factors. Whereas deletion or inactivating mutations of the Pdx1 gene causes whole pancreas agenesis in both mice and humans, even haploinsufficiency of the gene or alterations in its expression in mature islet cells causes substantial impairments in glucose tolerance and the development of a late-onset form of diabetes known as maturity onset diabetes of the young. The study of Pdx1 has revealed crucial phenotypic interrelationships of the varied cell types within the pancreas, particularly as these impinge upon cellular differentiation in the embryo and neogenesis and regeneration in the adult. In this review, we describe the actions of Pdx1 in the developing and mature pancreas and attempt to unify these actions with its known roles in modulating transcriptional complex formation and chromatin structure at the molecular genetic level.
Collapse
Affiliation(s)
- Daniella A. Babu
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908 USA
| | - Tye G. Deering
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908 USA
| | - Raghavendra G. Mirmira
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908 USA
- Diabetes Center, Department of Medicine, University of Virginia, Charlottesville, VA 22908 USA
| |
Collapse
|
130
|
Kim WI, Wiesner SM, Largaespada DA. Vav promoter-tTA conditional transgene expression system for hematopoietic cells drives high level expression in developing B and T cells. Exp Hematol 2007; 35:1231-9. [PMID: 17560009 DOI: 10.1016/j.exphem.2007.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Revised: 04/10/2007] [Accepted: 04/20/2007] [Indexed: 11/24/2022]
Abstract
OBJECTIVE We previously showed that Vav promoter-tetracycline transactivator (Vav-tTA)-driven tetracycline-regulated element (TRE)-NRAS(V12) expression resulted in mastocytosis development in mice. To investigate which hematopoietic cells express TRE-driven transgenes when combined with Vav-tTA, we assayed hematopoietic cells, including bone marrow-derived mast cells (BMMC) and CD34-positive hematopoietic progenitor cells (HPC) as well as myeloid and lymphoid lineages. To determine if suppression of NRAS(V12) expression early in life would delay mastocytosis we treated developing and juvenile mice with doxycycline (Dox). MATERIALS AND METHODS Vav-tTA-driven luciferase expression was assayed by live mouse imaging and relative light unit measurement before or after treating Vav-tTA and TRE-luciferase (TRE-Luc) cotransgenic mice with Dox. Magnetic cell sorting and fluorescence-activating cell sorting methods were used to sort hematopoietic cells. To suppress TRE-mediated luciferase or NRAS(V12) expression in Vav-tTA cotransgenic mice, we added Dox to the drinking water. RESULTS B cells in the bone marrow and T cells in the thymus expressed Vav-tTA-driven luciferase at much higher levels than in myeloid cells, BMMC, and CD34-positive HPC, which showed relatively low levels. Dox treatment completely eliminated the luciferase expression from all hematopoietic cells. Repression of TRE-NRAS(V12) expression early in life was sufficient to increase the latency of mastocytosis development. CONCLUSION The Vav-tTA transgenic line will be very useful for conditional transgene expression in developing B and T cells. Vav-tTA-driven NRAS(V12) expression is sufficient for mastocytosis development, but not for myeloid leukemia. Lymphoid cells are resistant to NRAS(V12) transformation despite high level of expression.
Collapse
Affiliation(s)
- Won-Il Kim
- Graduate Program in Molecular, Cellular, Developmental Biology and Genetics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
131
|
Brennand K, Huangfu D, Melton D. All beta cells contribute equally to islet growth and maintenance. PLoS Biol 2007; 5:e163. [PMID: 17535113 PMCID: PMC1877817 DOI: 10.1371/journal.pbio.0050163] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Accepted: 04/16/2007] [Indexed: 01/29/2023] Open
Abstract
In healthy adult mice, the beta cell population is not maintained by stem cells but instead by the replication of differentiated beta cells. It is not known, however, whether all beta cells contribute equally to growth and maintenance, as it may be that some cells replicate while others do not. Understanding precisely which cells are responsible for beta cell replication will inform attempts to expand beta cells in vitro, a potential source for cell replacement therapy to treat diabetes. Two experiments were performed to address this issue. First, the level of fluorescence generated by a pulse of histone 2B-green fluorescent protein (H2BGFP) expression was followed over time to determine how this marker is diluted with cell division; a uniform loss of label across the entire beta cell population was observed. Second, clonal analysis of dividing beta cells was completed; all clones were of comparable size. These results support the conclusion that the beta cell pool is homogeneous with respect to replicative capacity and suggest that all beta cells are candidates for in vitro expansion. Given similar observations in the hepatocyte population, we speculate that for tissues lacking an adult stem cell, they are replenished equally by replication of all differentiated cells.
Collapse
Affiliation(s)
- Kristen Brennand
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts, United States of America
| | - Danwei Huangfu
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts, United States of America
| | - Doug Melton
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
132
|
Rulifson IC, Karnik SK, Heiser PW, ten Berge D, Chen H, Gu X, Taketo MM, Nusse R, Hebrok M, Kim SK. Wnt signaling regulates pancreatic beta cell proliferation. Proc Natl Acad Sci U S A 2007; 104:6247-52. [PMID: 17404238 PMCID: PMC1847455 DOI: 10.1073/pnas.0701509104] [Citation(s) in RCA: 278] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Indexed: 01/09/2023] Open
Abstract
There is widespread interest in defining factors and mechanisms that stimulate proliferation of pancreatic islet cells. Wnt signaling is an important regulator of organ growth and cell fates, and genes encoding Wnt-signaling factors are expressed in the pancreas. However, it is unclear whether Wnt signaling regulates pancreatic islet proliferation and differentiation. Here we provide evidence that Wnt signaling stimulates islet beta cell proliferation. The addition of purified Wnt3a protein to cultured beta cells or islets promoted expression of Pitx2, a direct target of Wnt signaling, and Cyclin D2, an essential regulator of beta cell cycle progression, and led to increased beta cell proliferation in vitro. Conditional pancreatic beta cell expression of activated beta-catenin, a crucial Wnt signal transduction protein, produced similar phenotypes in vivo, leading to beta cell expansion, increased insulin production and serum levels, and enhanced glucose handling. Conditional beta cell expression of Axin, a potent negative regulator of Wnt signaling, led to reduced Pitx2 and Cyclin D2 expression by beta cells, resulting in reduced neonatal beta cell expansion and mass and impaired glucose tolerance. Thus, Wnt signaling is both necessary and sufficient for islet beta cell proliferation, and our study provides previously unrecognized evidence of a mechanism governing endocrine pancreas growth and function.
Collapse
Affiliation(s)
| | | | - Patrick W. Heiser
- Diabetes Center, University of California, San Francisco, CA 94143-0573
| | - Derk ten Berge
- Departments of *Developmental Biology and
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305-5329; and
| | | | - Xueying Gu
- Departments of *Developmental Biology and
| | - Makoto M. Taketo
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Yoshida-Konoé-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Roel Nusse
- Departments of *Developmental Biology and
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305-5329; and
| | - Matthias Hebrok
- Diabetes Center, University of California, San Francisco, CA 94143-0573
| | - Seung K. Kim
- Departments of *Developmental Biology and
- Medicine, Oncology Division, Stanford University, Stanford, CA 94305-5329
| |
Collapse
|
133
|
Kaneto H, Katakami N, Kawamori D, Miyatsuka T, Sakamoto K, Matsuoka TA, Matsuhisa M, Yamasaki Y. Involvement of oxidative stress in the pathogenesis of diabetes. Antioxid Redox Signal 2007; 9:355-66. [PMID: 17184181 DOI: 10.1089/ars.2006.1465] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pancreatic beta-cell failure is the common characteristic of type 1 and type 2 diabetes. Type 1 diabetes is induced by pancreatic beta-cell destruction, which is mediated by an autoimmune mechanism and consequent inflammatory process. Various inflammatory cytokines and oxidative stress produced by islet-infiltrating immune cells have been proposed to play an important role in mediating the destruction of beta cells. The JNK pathway is also activated by such cytokines and oxidative stress and is involved in beta-cell destruction. Type 2 diabetes is the most prevalent and serious metabolic disease affecting people all over the world. Pancreatic beta-cell dysfunction and insulin resistance are the hallmark of type 2 diabetes. Once hyperglycemia becomes apparent, beta-cell function gradually deteriorates, and insulin resistance is aggravated. This process is called "glucose toxicity." Under such conditions, oxidative stress is provoked, and the JNK pathway is activated, which is likely involved in pancreatic beta-cell dysfunction and insulin resistance. In addition, oxidative stress and activation of the JNK pathway are involved in the progression of atherosclerosis, which is often observed under diabetic conditions. Taken together, it is likely that oxidative stress and subsequent activation of the JNK pathway are involved in the pathogenesis of type 1 and type 2 diabetes.
Collapse
Affiliation(s)
- Hideaki Kaneto
- Department of Internal Medicine and Therapeutics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
134
|
Cano DA, Hebrok M, Zenker M. Pancreatic development and disease. Gastroenterology 2007; 132:745-62. [PMID: 17258745 DOI: 10.1053/j.gastro.2006.12.054] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Accepted: 12/20/2006] [Indexed: 12/22/2022]
Affiliation(s)
- David A Cano
- Diabetes Center, Department of Medicine, University of California San Francisco, 94143, USA
| | | | | |
Collapse
|
135
|
Stanger BZ, Tanaka AJ, Melton DA. Organ size is limited by the number of embryonic progenitor cells in the pancreas but not the liver. Nature 2007; 445:886-91. [PMID: 17259975 DOI: 10.1038/nature05537] [Citation(s) in RCA: 273] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Accepted: 11/29/2006] [Indexed: 02/07/2023]
Abstract
The determinants of vertebrate organ size are poorly understood, but the process is thought to depend heavily on growth factors and other environmental cues. In the blood and central nervous system, for example, organ mass is determined primarily by growth-factor-regulated cell proliferation and apoptosis to achieve a final target size. Here, we report that the size of the mouse pancreas is constrained by an intrinsic programme established early in development, one that is essentially not subject to growth compensation. Specifically, final pancreas size is limited by the size of the progenitor cell pool that is set aside in the developing pancreatic bud. By contrast, the size of the liver is not constrained by reductions in the progenitor cell pool. These findings show that progenitor cell number, independently of regulation by growth factors, can be a key determinant of organ size.
Collapse
Affiliation(s)
- Ben Z Stanger
- Department of Molecular and Cellular Biology, Harvard Stem Cell Institute, and Howard Hughes Medical Institute, Cambridge, Massachusetts 02138, USA.
| | | | | |
Collapse
|
136
|
Abstract
The hallmark of Type 2 diabetes is insulin resistance and pancreatic beta-cell dysfunction. Under diabetic conditions, the c-jun N-terminal kinase (JNK) pathway is activated in various tissues, which is involved in both insulin resistance and beta-cell dysfunction. Activation of the JNK pathway interferes with insulin action and reduces insulin biosynthesis, and suppression of the JNK pathway in diabetic mice improves insulin resistance and beta-cell function, leading to amelioration of glucose tolerance. Taken together, the JNK pathway is likely to play a central role in the progression of insulin resistance and beta-cell dysfunction and, thus, could be a potential therapeutic target for diabetes.
Collapse
Affiliation(s)
- Hideaki Kaneto
- Department of Internal Medicine and Therapeutics (A8), Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
137
|
Moibi JA, Gupta D, Jetton TL, Peshavaria M, Desai R, Leahy JL. Peroxisome proliferator-activated receptor-gamma regulates expression of PDX-1 and NKX6.1 in INS-1 cells. Diabetes 2007; 56:88-95. [PMID: 17192469 DOI: 10.2337/db06-0948] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In the 60% pancreatectomy (Px) rat model of beta-cell adaptation, normoglycemia is maintained by an initial week of beta-cell hyperplasia that ceases and is followed by enhanced beta-cell function. It is unknown how this complex series of events is regulated. We studied isolated islets and pancreas sections from 14-day post-Px versus sham-operated rats and observed a doubling of beta-cell nuclear peroxisome proliferator-activated receptor (PPAR)-gamma protein, along with a 2-fold increase in nuclear pancreatic duodenal homeobox (Pdx)-1 protein and a 1.4-fold increase in beta-cell nuclear Nkx6.1 immunostaining. As PPAR-gamma activation is known to both lower proliferation and have prodifferentiation effects in many tissues, we studied PPAR-gamma actions in INS-1 cells. A 3-day incubation with the PPAR-gamma agonist troglitazone reduced proliferation and increased Pdx-1 and Nkx6.1 immunostaining, along with glucokinase and GLUT2. Also, a 75% knockdown of PPAR-gamma using RNA interference lowered the mRNA levels of Pdx-1, glucokinase, GLUT2, and proinsulin II by more than half. Our results show a dual effect of PPAR-gamma in INS-1 cells: to curtail proliferation and promote maturation, the latter via enhanced expression of Pdx-1 and Nkx6.1. Additional studies are needed to determine whether there is a regulatory role for PPAR-gamma signaling in the beta-cell adaptation following a 60% Px in rats.
Collapse
Affiliation(s)
- Jacob A Moibi
- Cross Cancer Institute, University of Alberta, Edmonton, Canada
| | | | | | | | | | | |
Collapse
|
138
|
Abstract
Explorations into the molecular embryology of the mouse have played a vital role in our understanding of the basic mechanisms of gene regulation that govern development and disease. In the last 15 years, these mechanisms have been analyzed with vastly greater precision and clarity with the advent of systems that allow the conditional control of gene expression. Typically, this control is achieved by silencing or activating the gene of interest with site-specific DNA recombination or transcriptional transactivation. In this review, I discuss the application of these technologies to mouse development, focusing on recent innovations and experimental designs that specifically aid the study of the mouse embryo.
Collapse
Affiliation(s)
- M Lewandoski
- Laboratory of Cancer and Developmental Biology, NCI-Frederick, National Institutes of Health, Frederick, MD 21702-1201, USA.
| |
Collapse
|
139
|
Eto K, Kaur V, Thomas MK. Regulation of pancreas duodenum homeobox-1 expression by early growth response-1. J Biol Chem 2006; 282:5973-83. [PMID: 17150967 DOI: 10.1074/jbc.m607288200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The homeodomain transcription factor pancreas duodenum homeobox-1 (PDX-1) is a key regulator of pancreatic beta-cell development, function, and survival. Deficits in PDX-1 expression result in insulin deficiency and hyperglycemia. We previously found that the glucose-responsive transcription factor early growth response-1 (Egr-1) activates the insulin promoter in part by increasing expression levels of PDX-1. We now report that Egr-1 binds and activates multiple regulatory sites within the pdx-1 promoter. We identified consensus Egr-1 recognition sequences within proximal and distal regions of the mouse pdx-1 promoter and demonstrated specific binding of Egr-1 by chromatin immunoprecipitation and electrophoretic mobility shift assays. Overexpression of Egr-1 increased transcriptional activation of the -4500 proximal pdx-1 promoter and of the highly conserved regulatory Areas I, II, and III. Mutagenesis of a specific Egr-1 binding site within Area III substantially decreased Egr-1-mediated activation. Egr-1 increased the transcriptional activation of Areas I and II, despite the absence of Egr-1 recognition sequences within this promoter segment, suggesting that Egr-1 also can regulate the pdx-1 promoter indirectly. Egr-1 increased, and a dominant-negative Egr-1 mutant repressed, the transcriptional activation of distal pdx-1 promoter sequences. Mutagenesis of a specific Egr-1 binding site within regulatory Area IV reduced basal and Egr-1-mediated transcriptional activation. Our data indicate that Egr-1 regulates expression of PDX-1 in pancreatic beta-cells by both direct and indirect activation of the pdx-1 promoter. We propose that Egr-1 expression levels may act as a sensor in pancreatic beta-cells to translate extracellular signals into changes in PDX-1 expression levels and pancreatic beta-cell function.
Collapse
Affiliation(s)
- Kazuhiro Eto
- Laboratory of Molecular Endocrinology and Diabetes Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
140
|
Deramaudt TB, Sachdeva MM, Wescott MP, Chen Y, Stoffers DA, Rustgi AK. The PDX1 homeodomain transcription factor negatively regulates the pancreatic ductal cell-specific keratin 19 promoter. J Biol Chem 2006; 281:38385-95. [PMID: 17056599 DOI: 10.1074/jbc.m605891200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Keratin 19 is a member of the cytokeratin family that is critical for maintenance of cellular architecture and organization, especially of epithelia. The pancreas has three distinct cell types, ductal, acinar, and islet, each with different functions. Embryologically, the pancreatic and duodenal homeobox 1 (PDX1) homeodomain protein is critical for the initiation of all pancreatic lineages; however, the later differentiation of the endocrine pancreas is uniquely dependent upon high PDX1 expression, whereas PDX1 is down-regulated in the ductal and acinar cell lineages. We find that this down-regulation may be required for normal ductal expression of cytokeratin K19. The K19 promoter-reporter gene assay demonstrates that ectopic PDX1 inhibits K19 reporter gene activity in primary pancreatic ductal cells. This is reinforced by our findings that retrovirally mediated stable transduction of PDX1 in primary pancreatic ductal cells suppresses K19 expression, and short interfering RNA to PDX1 in Min6 insulinoma cells results in the induction of normally undetectable K19. Complementary functional and biochemical approaches led to the unexpected finding that a multimeric complex of PDX1 and two members of the TALE homeodomain factor family, MEIS1a and PBX1b, regulates K19 gene transcription through a specific cis-regulatory element (-341 to -325) upstream of the K19 transcription start site. These data suggest a unifying mechanism whereby PDX1, myeloid ecotropic viral insertion site (MEIS), and pre-B-cell leukemia transcription factor 1 (PBX) may regulate ductal and acinar lineage specification during pancreatic development. Specifically, concomitant PDX1 suppression and MEIS isoform expression result in proper ductal and acinar lineage specification. Furthermore, PDX1 may inhibit the ductal differentiation program in the pancreatic endocrine compartment, particularly beta cells.
Collapse
Affiliation(s)
- Therese B Deramaudt
- Division of Gastroenterology, Departments of Medicine and Genetics, Abramson Cancer Center, University of Pennsylvania, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
141
|
Gierl MS, Karoulias N, Wende H, Strehle M, Birchmeier C. The zinc-finger factor Insm1 (IA-1) is essential for the development of pancreatic beta cells and intestinal endocrine cells. Genes Dev 2006; 20:2465-78. [PMID: 16951258 PMCID: PMC1560419 DOI: 10.1101/gad.381806] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The pancreatic and intestinal primordia contain epithelial progenitor cells that generate many cell types. During development, specific programs of gene expression restrict the developmental potential of such progenitors and promote their differentiation. The Insm1 (insulinoma-associated 1, IA-1) gene encodes a Zinc-finger factor that was discovered in an insulinoma cDNA library. We show that pancreatic and intestinal endocrine cells express Insm1 and require Insm1 for their development. In the pancreas of Insm1 mutant mice, endocrine precursors are formed, but only few insulin-positive beta cells are generated. Instead, endocrine precursor cells accumulate that express none of the pancreatic hormones. A similar change is observed in the development of intestine, where endocrine precursor cells are formed but do not differentiate correctly. A hallmark of endocrine cell differentiation is the accumulation of proteins that participate in secretion and vesicle transport, and we find many of the corresponding genes to be down-regulated in Insm1 mutant mice. Insm1 thus controls a gene expression program that comprises hormones and proteins of the secretory machinery. Our genetic analysis has revealed a key role of Insm1 in differentiation of pancreatic and intestinal endocrine cells.
Collapse
Affiliation(s)
- Mathias S Gierl
- Max-Delbrück-Center for Molecular Medicine, Berlin 13125, Germany
| | | | | | | | | |
Collapse
|
142
|
Kaneto H, Miyatsuka T, Kawamori D, Shiraiwa T, Fujitani Y, Matsuoka TA. PDX-1 and MafA in β-cell differentiation and dysfunction. Expert Rev Endocrinol Metab 2006; 1:587-600. [PMID: 30754099 DOI: 10.1586/17446651.1.5.587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pancreatic and duodenal homeobox factor-1 (PDX-1) plays crucial roles in pancreas development and β-cell differentiation, and in maintaining mature β-cell function. MafA is a recently isolated β-cell-specific transcription factor that functions as a potent activator of insulin gene transcription. Also, these pancreatic transcription factors play a crucial role in inducing surrogate β-cells from non-β-cells and, thus, could be therapeutic targets for diabetes. Conversely, expression and/or activities of PDX-1 and MafA in β-cells are reduced under diabetic conditions, which leads to suppression of insulin biosynthesis and secretion. It is likely that alteration of such transcription factors explains, at least in part, the molecular mechanism for β-cell glucose toxicity.
Collapse
Affiliation(s)
- Hideaki Kaneto
- a Department of Internal Medicine and Therapeutics (A8), Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Takeshi Miyatsuka
- a Department of Internal Medicine and Therapeutics (A8), Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Dan Kawamori
- a Department of Internal Medicine and Therapeutics (A8), Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Toshihiko Shiraiwa
- a Department of Internal Medicine and Therapeutics (A8), Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Yoshio Fujitani
- a Department of Internal Medicine and Therapeutics (A8), Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Taka-Aki Matsuoka
- a Department of Internal Medicine and Therapeutics (A8), Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
143
|
Holland AM, Micallef SJ, Li X, Elefanty AG, Stanley EG. A mouse carrying the green fluorescent protein gene targeted to the Pdx1 locus facilitates the study of pancreas development and function. Genesis 2006; 44:304-7. [PMID: 16794995 DOI: 10.1002/dvg.20214] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The pancreatic and duodenal homeobox gene 1 (Pdx1) has multiple roles in the specification and development of foregut endoderm-derived tissues. We report the characterization of a mouse line in which the gene encoding green fluorescent protein (GFP) has been targeted to the Pdx1 locus, allowing the visualization of Pdx1 expressing cells. Analysis of GFP expression during development showed that the reporter faithfully reproduced the known expression pattern of Pdx1. We demonstrate the utility of this mouse line for the isolation of Pdx1(+) cells by fluorescence-activated cell sorting and for the real-time observation of Pdx1(+) cells in an ex vivo embryonic pancreas culture system. This mouse model should prove useful for the study of pancreas development and regeneration.
Collapse
|
144
|
Boyer DF, Fujitani Y, Gannon M, Powers AC, Stein RW, Wright CVE. Complementation rescue of Pdx1 null phenotype demonstrates distinct roles of proximal and distal cis-regulatory sequences in pancreatic and duodenal expression. Dev Biol 2006; 298:616-31. [PMID: 16962573 DOI: 10.1016/j.ydbio.2006.07.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Revised: 07/11/2006] [Accepted: 07/19/2006] [Indexed: 11/20/2022]
Abstract
The unique, well-demarcated expression domain of Pdx1 within the posterior foregut suggests that investigating its transcriptional regulation will provide insight into mechanisms that regionally pattern the endoderm. Previous phylogenetic comparison identified conserved noncoding regions that stimulate transcriptional activity selectively in cultured pancreatic beta cells. Characterization of these regulatory elements is helping to dissect the transcription factor networks that operate within beta cells, which is important for understanding the etiology of beta cell dysfunction and diabetes, as well as for developing methods to produce beta cells in vitro for cell-based therapies. We recently reported that deletion of three proximally located conserved areas (Area I-II-III) from the endogenous Pdx1 locus resulted in severely reduced expression of Pdx1 in the pancreas, and a milder decrease in other foregut tissues. Here, we report transgene-based complementation experiments on Pdx1 null mice, which reveal that the proximal promoter/enhancer region, including Area I-II-III, rescues the pancreatic defects caused by Pdx1 deficiency, but only weakly promotes expression of Pdx1 in the postnatal stomach and duodenum. These results reveal a role for distal cis-regulatory elements in achieving the correct level of extra-pancreatic Pdx1 expression, which is necessary for the production of duodenal GIP cells and stomach gastrin cells.
Collapse
Affiliation(s)
- Daniel F Boyer
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2175, USA
| | | | | | | | | | | |
Collapse
|
145
|
Kaneto H, Nakatani Y, Kawamori D, Miyatsuka T, Matsuoka TA, Matsuhisa M, Yamasaki Y. Role of oxidative stress, endoplasmic reticulum stress, and c-Jun N-terminal kinase in pancreatic β-cell dysfunction and insulin resistance. Int J Biochem Cell Biol 2006; 38:782-93. [PMID: 16607699 DOI: 10.1016/j.biocel.2006.01.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Type 2 diabetes is the most prevalent and serious metabolic disease affecting people all over the world. Pancreatic beta-cell dysfunction and insulin resistance are the hallmark of type 2 diabetes. Normal beta-cells can compensate for insulin resistance by increasing insulin secretion and/or beta-cell mass, but insufficient compensation leads to the onset of glucose intolerance. Once hyperglycemia becomes apparent, beta-cell function gradually deteriorates and insulin resistance aggravates. Under diabetic conditions, oxidative stress and endoplasmic reticulum stress are induced in various tissues, leading to activation of the c-Jun N-terminal kinase pathway. The activation of c-Jun N-terminal kinase suppresses insulin biosynthesis and interferes with insulin action. Indeed, suppression of c-Jun N-terminal kinase in diabetic mice improves insulin resistance and ameliorates glucose tolerance. Thus, the c-Jun N-terminal kinase pathway plays a central role in pathogenesis of type 2 diabetes and could be a potential target for diabetes therapy.
Collapse
Affiliation(s)
- Hideaki Kaneto
- Department of Internal Medicine and Therapeutics, Osaka University Graduate School of Medicine, Japan.
| | | | | | | | | | | | | |
Collapse
|
146
|
Wang QM, Zhang Y, Yang KM, Zhou HY, Yang HJ. Wnt/β-catenin signaling pathway is active in pancreatic development of rat embryo. World J Gastroenterol 2006; 12:2615-9. [PMID: 16688812 PMCID: PMC4087999 DOI: 10.3748/wjg.v12.i16.2615] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To elucidate the role of Wnt/β-catenin signaling pathway in pancreatic development of rat embryo.
METHODS: The mRNAs of β-catenin, APC, cyclin D1 genes were amplified by means of semiquantitative reverse transcription polymerase chain reaction (RT-PCR) from embryonic pancreas in different periods and normal pancreas of rat, respectively. Protein expression of these genes in embryonic pancreas of E14.5-E18.5 was examined by immunohistochemical method.
RESULTS: In embryonic pancreas of E14.5, the transcript amplification of β-catenin and cyclinD1 genes was detected. In embryonic pancreas of E18.5, the transcription levels of β-catenin and cyclinD1 genes became much higher than in other periods. But in adult rat pancreas the transcription of cyclinD1 gene could not be observed. Only until E18.5, the transcript amplification of mRNA of APC gene could be detected. Surprisingly, the transcription level of APC gene became much higher in adult rat pancreas than in embryonic pancreas. By means of immunohistochemical staining, identical results were obtained to the above by RP-PCR, except for β-catenin protein in adult rat pancreas.
CONCLUSION: Active Wnt/β-catenin signaling occurs in rat embryonic pancreas and is probably important for pancreatic development and organ formation.
Collapse
Affiliation(s)
- Qi-Ming Wang
- Department of Anatomy, School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China.
| | | | | | | | | |
Collapse
|
147
|
Fujitani Y, Fujitani S, Boyer DF, Gannon M, Kawaguchi Y, Ray M, Shiota M, Stein RW, Magnuson MA, Wright CVE. Targeted deletion of a cis-regulatory region reveals differential gene dosage requirements for Pdx1 in foregut organ differentiation and pancreas formation. Genes Dev 2006; 20:253-66. [PMID: 16418487 PMCID: PMC1356115 DOI: 10.1101/gad.1360106] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Pdx1 (IPF-1 in humans, which is altered in MODY-4) is essential for pancreas development and mature beta-cell function. Pdx1 is expressed dynamically within the developing foregut, but how its expression characteristics are linked to the various steps of organ specification, differentiation, and function is unknown. Deletion of a conserved enhancer region (Area I-II-III) from Pdx1 produced a hypomorphic allele (Pdx1(DeltaI-II-III)) with altered timing and level of expression, which was studied in combination with wild-type and protein-null alleles. Lineage labeling in homozygous Area I-II-III deletion mutants (Pdx1(DeltaI-II-III/DeltaI-II-III)) revealed lack of ventral pancreatic bud specification and early-onset hypoplasia in the dorsal bud. Acinar tissue formed in the hypoplastic dorsal bud, but endocrine maturation was greatly impaired. While Pdx1(-/-) (protein-null) mice have nonpancreatic abnormalities (e.g., distorted pylorus, absent Brunner's glands), these structures formed normally in Pdx1(DeltaI-II-III/DeltaI-II-III) and Pdx1(DeltaI-II-III/-) mice. Surprisingly, heterozygous (Pdx1(+/DeltaI-II-III)) mice had abnormal islets and a more severe prediabetic condition than Pdx1(+/-) mice. These findings provide in vivo evidence of the differential requirements for the level of Pdx1 gene activity in the specification and differentiation of the various organs of the posterior foregut, as well as in pancreas and gut endocrine cell differentiation.
Collapse
Affiliation(s)
- Yoshio Fujitani
- Vanderbilt Program in Developmental Biology and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2175, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Smart NG, Apelqvist ÅA, Gu X, Harmon EB, Topper JN, MacDonald RJ, Kim SK. Conditional expression of Smad7 in pancreatic beta cells disrupts TGF-beta signaling and induces reversible diabetes mellitus. PLoS Biol 2006; 4:e39. [PMID: 16435884 PMCID: PMC1351925 DOI: 10.1371/journal.pbio.0040039] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Accepted: 12/02/2005] [Indexed: 11/18/2022] Open
Abstract
Identification of signaling pathways that maintain and promote adult pancreatic islet functions will accelerate our understanding of organogenesis and improve strategies for treating diseases like diabetes mellitus. Previous work has implicated transforming growth factor-β (TGF-β) signaling as an important regulator of pancreatic islet development, but has not established whether this signaling pathway is required for essential islet functions in the adult pancreas. Here we describe a conditional system for expressing Smad7, a potent inhibitor of TGF-β signaling, to identify distinct roles for this pathway in adult and embryonic β cells. Smad7 expression in
Pdx1+ embryonic pancreas cells resulted in striking embryonic β cell hypoplasia and neonatal lethality. Conditional expression of Smad7 in adult
Pdx1+ cells reduced detectable β cell expression of MafA, menin, and other factors that regulate β cell function. Reduced pancreatic insulin content and hypoinsulinemia produced overt diabetes that was fully reversed upon resumption of islet TGF-β signaling. Thus, our studies reveal that TGF-β signaling is crucial for establishing and maintaining defining features of mature pancreatic β cells.
TGF-β signaling is known to regulate the development of pancreatic β cells; here the authors show that TGF-β is also required for the maintenance of β cell identity in the adult.
Collapse
Affiliation(s)
- Nora G Smart
- 1Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Åsa A Apelqvist
- 1Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Xueying Gu
- 1Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Erin B Harmon
- 1Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - James N Topper
- 2Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Raymond J MacDonald
- 3Department of Molecular Biology and Oncology, University of Texas at Southwestern, Dallas, Texas, United States of America
| | - Seung K Kim
- 1Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
- 4Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
149
|
Hale MA, Kagami H, Shi L, Holland AM, Elsässer HP, Hammer RE, MacDonald RJ. The homeodomain protein PDX1 is required at mid-pancreatic development for the formation of the exocrine pancreas. Dev Biol 2005; 286:225-37. [PMID: 16126192 DOI: 10.1016/j.ydbio.2005.07.026] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Revised: 06/29/2005] [Accepted: 07/01/2005] [Indexed: 10/25/2022]
Abstract
The homeoprotein PDX1 is expressed throughout pancreatic development and is thought to play important roles at multiple stages. We describe the properties of a tet-off regulatory scheme to manage the expression of Pdx1 in utero. Cessation of Pdx1 expression at increasingly later gestational times blocked pancreatic development at progressive and morphologically distinct stages and provided the opportunity to assess the requirement for Pdx1 at each stage. Embryonic PDX1 is depleted below effective levels within 1 day of the initiation of doxycycline treatment of pregnant mice. We show that PDX1, which is necessary for early pancreatic development, is also required later for the genesis of acinar tissue, the compartment of the pancreas that produces digestive enzymes. Without PDX1, acini do not form; the precursor epithelium continues to grow and branch, creating a truncated ductal tree comprising immature duct-like cells. The bHLH factor PTF1a, a critical regulator of acinar development, is not expressed and cells producing digestive enzymes are rare. This approach should be generally applicable to study the in vivo functions of other developmental regulators with multiple, temporally distinct roles.
Collapse
Affiliation(s)
- Michael A Hale
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9148, USA
| | | | | | | | | | | | | |
Collapse
|
150
|
Abstract
Studies on the signaling mechanism that control the specification of endoderm-derived organs have only recently begun. While many studies revealed genes involved in the differentiation, growth and morphogenesis of the pancreas through studies of mutant mice, still little is known about how endoderm give rise to specific domains. Although many genes are known to have a role in pancreatic differentiation, growth and morphogenesis, few genes are known to take part in the specification of the pancreas so far. Hallmarks as well as gene markers for early development of the pancreas, which are however still very limited, will be useful for dissecting early events in pancreatic specification. Here, I give a summary on the origin of the dorsal and ventral pancreatic progenitors, signals for inductions, and genes so far known to function in pancreatic differentiation. I also give a future prospect in the use of ES cells and other experimental models, towards a comprehensive understanding of gene networks in the progenitor cells or intermediate cell types which arise during various stages of differentiation.
Collapse
Affiliation(s)
- Shoen Kume
- Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo 2-2-1, Kumamoto 860-0811, Japan.
| |
Collapse
|