101
|
Loebel C, Weiner AI, Eiken MK, Katzen JB, Morley MP, Bala V, Cardenas-Diaz FL, Davidson MD, Shiraishi K, Basil MC, Ferguson LT, Spence JR, Ochs M, Beers MF, Morrisey EE, Vaughan AE, Burdick JA. Microstructured Hydrogels to Guide Self-Assembly and Function of Lung Alveolospheres. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202992. [PMID: 35522531 PMCID: PMC9283320 DOI: 10.1002/adma.202202992] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/02/2022] [Indexed: 06/01/2023]
Abstract
Epithelial cell organoids have increased opportunities to probe questions on tissue development and disease in vitro and for therapeutic cell transplantation. Despite their potential, current protocols to grow these organoids almost exclusively depend on culture within 3D Matrigel, which limits defined culture conditions, introduces animal components, and results in heterogenous organoids (i.e., shape, size, composition). Here, a method is described that relies on hyaluronic acid hydrogels for the generation and expansion of lung alveolar organoids (alveolospheres). Using synthetic hydrogels with defined chemical and physical properties, human-induced pluripotent stem cell (iPSC)-derived alveolar type 2 cells (iAT2s) self-assemble into alveolospheres and propagate in Matrigel-free conditions. By engineering predefined microcavities within these hydrogels, the heterogeneity of alveolosphere size and structure is reduced when compared to 3D culture, while maintaining the alveolar type 2 cell fate of human iAT2-derived progenitor cells. This hydrogel system is a facile and accessible system for the culture of iPSC-derived lung progenitors and the method can be expanded to the culture of primary mouse tissue derived AT2 and other epithelial progenitor and stem cell aggregates.
Collapse
Affiliation(s)
- Claudia Loebel
- Department of Materials Science & Engineering, University of Michigan, North Campus Research Complex, 2800 Plymouth Rd, Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, University of Michigan, Carl A. Gerstacker Building, 2200 Bonisteel Blvd, Ann Arbor, MI, 48109, USA
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall 210 S. 33rd Street, Philadelphia, PA, 19104, USA
| | - Aaron I Weiner
- Department of Medicine, Lung Biology Institute, University of Pennsylvania, 3450 Hamilton Walk, Stemmler Hall, Philadelphia, PA, 19104, USA
| | - Madeline K Eiken
- Department of Biomedical Engineering, University of Michigan, Carl A. Gerstacker Building, 2200 Bonisteel Blvd, Ann Arbor, MI, 48109, USA
| | - Jeremy B Katzen
- Department of Medicine, Lung Biology Institute, University of Pennsylvania, 3450 Hamilton Walk, Stemmler Hall, Philadelphia, PA, 19104, USA
| | - Michael P Morley
- Department of Medicine, Lung Biology Institute, University of Pennsylvania, 3450 Hamilton Walk, Stemmler Hall, Philadelphia, PA, 19104, USA
| | - Vikram Bala
- Department of Biomedical Engineering, University of Michigan, Carl A. Gerstacker Building, 2200 Bonisteel Blvd, Ann Arbor, MI, 48109, USA
| | - Fabian L Cardenas-Diaz
- Department of Medicine, Lung Biology Institute, University of Pennsylvania, 3450 Hamilton Walk, Stemmler Hall, Philadelphia, PA, 19104, USA
| | - Matthew D Davidson
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall 210 S. 33rd Street, Philadelphia, PA, 19104, USA
- BioFrontiers Institute and Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, 596 UCB, Boulder, CO, 80309, USA
| | - Kazushige Shiraishi
- Department of Medicine, Lung Biology Institute, University of Pennsylvania, 3450 Hamilton Walk, Stemmler Hall, Philadelphia, PA, 19104, USA
| | - Maria C Basil
- Department of Medicine, Lung Biology Institute, University of Pennsylvania, 3450 Hamilton Walk, Stemmler Hall, Philadelphia, PA, 19104, USA
| | - Laura T Ferguson
- Department of Medicine, Lung Biology Institute, University of Pennsylvania, 3450 Hamilton Walk, Stemmler Hall, Philadelphia, PA, 19104, USA
| | - Jason R Spence
- Department of Biomedical Engineering, University of Michigan, Carl A. Gerstacker Building, 2200 Bonisteel Blvd, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine - Gastroenterology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
| | - Matthias Ochs
- Institute of Functional Anatomy, Charité - Universitätsmedizin Berlin, Campus Charité Mitte, Philippstraße 12, 10115, Berlin, Germany
| | - Michael F Beers
- Department of Medicine, Lung Biology Institute, University of Pennsylvania, 3450 Hamilton Walk, Stemmler Hall, Philadelphia, PA, 19104, USA
| | - Edward E Morrisey
- Department of Medicine, Lung Biology Institute, University of Pennsylvania, 3450 Hamilton Walk, Stemmler Hall, Philadelphia, PA, 19104, USA
| | - Andrew E Vaughan
- Department of Medicine, Lung Biology Institute, University of Pennsylvania, 3450 Hamilton Walk, Stemmler Hall, Philadelphia, PA, 19104, USA
- School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce St, Philadelphia, PA, 19104, USA
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall 210 S. 33rd Street, Philadelphia, PA, 19104, USA
- BioFrontiers Institute and Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, 596 UCB, Boulder, CO, 80309, USA
| |
Collapse
|
102
|
Zeng W, Xing F, Ji Y, Yang S, Xu T, Huang S, Li C, Wu J, Cao L, Guo D. Evidence of Infection of Human Embryonic Stem Cells by SARS-CoV-2. Front Cell Infect Microbiol 2022; 12:911313. [PMID: 35755832 PMCID: PMC9226488 DOI: 10.3389/fcimb.2022.911313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was initially described to target the respiratory system and now has been reported to infect a variety of cell types, including cardiomyocytes, neurons, hepatocytes, and gut enterocytes. However, it remains unclear whether the virus can directly infect human embryonic stem cells (hESCs) or early embryos. Herein, we sought to investigate this question in a cell-culture system of hESCs. Both the RNA and S protein of SARS-CoV-2 were detected in the infected hESCs and the formation of syncytium was observed. The increased level of subgenomic viral RNA and the presence of dsRNA indicate active replication of SARS-CoV-2 in hESCs. The increase of viral titers in the supernatants revealed virion release, further indicating the successful life cycle of SARS-CoV-2 in hESCs. Remarkably, immunofluorescence microscopy showed that only a small portion of hESCs were infected, which may reflect low expression of SARS-CoV-2 receptors. By setting |log2 (fold change)| > 0.5 as the threshold, a total of 1,566 genes were differentially expressed in SARS-CoV-2-infected hESCs, among which 17 interferon-stimulated genes (ISGs) were significantly upregulated. Altogether, our results provide novel evidence to support the ability of SARS-CoV-2 to infect and replicate in hESCs.
Collapse
Affiliation(s)
- Weijie Zeng
- Center for Infection and Immunity Study, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Fan Xing
- Center for Infection and Immunity Study, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Yanxi Ji
- Center for Infection and Immunity Study, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Sidi Yang
- Center for Infection and Immunity Study, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Tiefeng Xu
- Center for Infection and Immunity Study, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Siyao Huang
- Center for Infection and Immunity Study, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Chunmei Li
- Center for Infection and Immunity Study, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Junyu Wu
- Center for Infection and Immunity Study, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Liu Cao
- Center for Infection and Immunity Study, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Deyin Guo
- Center for Infection and Immunity Study, School of Medicine, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
103
|
Kilgore HR, Young RA. Learning the chemical grammar of biomolecular condensates. Nat Chem Biol 2022; 18:1298-1306. [PMID: 35761089 PMCID: PMC9691472 DOI: 10.1038/s41589-022-01046-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 04/21/2022] [Indexed: 12/24/2022]
Abstract
Biomolecular condensates compartmentalize and regulate assemblies of biomolecules engaged in vital physiological processes in cells. Specific proteins and nucleic acids engaged in shared functions occur in any one kind of condensate, suggesting that these compartments have distinct chemical specificities. Indeed, some small-molecule drugs concentrate in specific condensates due to chemical properties engendered by particular amino acids in the proteins in those condensates. Here we argue that the chemical properties that govern molecular interactions between a small molecule and biomolecules within a condensate can be ascertained for both the small molecule and the biomolecules. We propose that learning this 'chemical grammar', the rules describing the chemical features of small molecules that engender attraction or repulsion by the physicochemical environment of a specific condensate, should enable design of drugs with improved efficacy and reduced toxicity.
Collapse
Affiliation(s)
- Henry R Kilgore
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA. .,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
104
|
Liu Q, Chi S, Dmytruk K, Dmytruk O, Tan S. Coronaviral Infection and Interferon Response: The Virus-Host Arms Race and COVID-19. Viruses 2022; 14:v14071349. [PMID: 35891331 PMCID: PMC9325157 DOI: 10.3390/v14071349] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 02/07/2023] Open
Abstract
The recent pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in unprecedented morbidity and mortality worldwide. The host cells use a number of pattern recognition receptors (PRRs) for early detection of coronavirus infection, and timely interferon secretion is highly effective against SARS-CoV-2 infection. However, the virus has developed many strategies to delay interferon secretion and disarm cellular defense by intervening in interferon-associated signaling pathways on multiple levels. As a result, some COVID-19 patients suffered dramatic susceptibility to SARS-CoV-2 infection, while another part of the population showed only mild or no symptoms. One hypothesis suggests that functional differences in innate immune integrity could be the key to such variability. This review tries to decipher possible interactions between SARS-CoV-2 proteins and human antiviral interferon sensors. We found that SARS-CoV-2 actively interacts with PRR sensors and antiviral pathways by avoiding interferon suppression, which could result in severe COVID-19 pathogenesis. Finally, we summarize data on available antiviral pharmaceutical options that have shown potential to reduce COVID-19 morbidity and mortality in recent clinical trials.
Collapse
Affiliation(s)
- Qi Liu
- Department of Immunology, School of Basic Medicine, Chongqing Medical University, Chongqing 400010, China;
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Correspondence: (Q.L.); (S.T.)
| | - Sensen Chi
- Department of Immunology, School of Basic Medicine, Chongqing Medical University, Chongqing 400010, China;
| | - Kostyantyn Dmytruk
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine; (K.D.); (O.D.)
| | - Olena Dmytruk
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine; (K.D.); (O.D.)
- Institute of Biology and Biotechnology, University of Rzeszow, 35-601 Rzeszow, Poland
| | - Shuai Tan
- Department of Immunology, School of Basic Medicine, Chongqing Medical University, Chongqing 400010, China;
- Correspondence: (Q.L.); (S.T.)
| |
Collapse
|
105
|
Nguyen LC, Renner DM, Silva D, Yang D, Parenti N, Medina KM, Nicolaescu V, Gula H, Drayman N, Valdespino A, Mohamed A, Dann C, Wannemo K, Robinson-Mailman L, Gonzalez A, Stock L, Cao M, Qiao Z, Moellering RE, Tay S, Randall G, Beers MF, Rosner MR, Oakes SA, Weiss SR. SARS-CoV-2 diverges from other betacoronaviruses in only partially activating the IRE1α/XBP1 ER stress pathway in human lung-derived cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2021.12.30.474519. [PMID: 35821981 PMCID: PMC9275661 DOI: 10.1101/2021.12.30.474519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has killed over 6 million individuals worldwide and continues to spread in countries where vaccines are not yet widely available, or its citizens are hesitant to become vaccinated. Therefore, it is critical to unravel the molecular mechanisms that allow SARS-CoV-2 and other coronaviruses to infect and overtake the host machinery of human cells. Coronavirus replication triggers endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR), a key host cell pathway widely believed essential for viral replication. We examined the master UPR sensor IRE1α kinase/RNase and its downstream transcription factor effector XBP1s, which is processed through an IRE1α-mediated mRNA splicing event, in human lung-derived cells infected with betacoronaviruses. We found human respiratory coronavirus OC43 (HCoV-OC43), Middle East respiratory syndrome coronavirus (MERS-CoV), and murine coronavirus (MHV) all induce ER stress and strongly trigger the kinase and RNase activities of IRE1α as well as XBP1 splicing. In contrast, SARS-CoV-2 only partially activates IRE1α through autophosphorylation, but its RNase activity fails to splice XBP1. Moreover, while IRE1α was dispensable for replication in human cells for all coronaviruses tested, it was required for maximal expression of genes associated with several key cellular functions, including the interferon signaling pathway, during SARS-CoV-2 infection. Our data suggest that SARS-CoV-2 actively inhibits the RNase of autophosphorylated IRE1α, perhaps as a strategy to eliminate detection by the host immune system. IMPORTANCE SARS-CoV-2 is the third lethal respiratory coronavirus after MERS-CoV and SARS-CoV to emerge this century, causing millions of deaths world-wide. Other common coronaviruses such as HCoV-OC43 cause less severe respiratory disease. Thus, it is imperative to understand the similarities and differences among these viruses in how each interacts with host cells. We focused here on the inositol-requiring enzyme 1α (IRE1α) pathway, part of the host unfolded protein response to virus-induced stress. We found that while MERS-CoV and HCoV-OC43 fully activate the IRE1α kinase and RNase activities, SARS-CoV-2 only partially activates IRE1α, promoting its kinase activity but not RNase activity. Based on IRE1α-dependent gene expression changes during infection, we propose that SARS-CoV-2 prevents IRE1α RNase activation as a strategy to limit detection by the host immune system.
Collapse
Affiliation(s)
- Long C. Nguyen
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, U.S.A
| | - David M. Renner
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Diane Silva
- Department of Pathology, University of Chicago, Chicago, IL 60637, U.S.A
| | - Dongbo Yang
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, U.S.A
| | - Nicholas Parenti
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kaeri M. Medina
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vlad Nicolaescu
- Department of Microbiology, University of Chicago, Chicago, IL 60637, U.S.A
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Haley Gula
- Department of Microbiology, University of Chicago, Chicago, IL 60637, U.S.A
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Nir Drayman
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, U.S.A
| | - Andrea Valdespino
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, U.S.A
| | - Adil Mohamed
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, U.S.A
| | - Christopher Dann
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, U.S.A
| | - Kristin Wannemo
- Department of Pathology, University of Chicago, Chicago, IL 60637, U.S.A
| | | | - Alan Gonzalez
- Department of Pathology, University of Chicago, Chicago, IL 60637, U.S.A
| | - Letícia Stock
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, U.S.A
| | - Mengrui Cao
- Department of Pathology, University of Chicago, Chicago, IL 60637, U.S.A
| | - Zeyu Qiao
- Department of Chemistry, University of Chicago, Chicago, IL 60637, U.S.A
| | | | - Savas Tay
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, U.S.A
| | - Glenn Randall
- Department of Microbiology, University of Chicago, Chicago, IL 60637, U.S.A
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Michael F. Beers
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marsha Rich Rosner
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, U.S.A
| | - Scott A. Oakes
- Department of Pathology, University of Chicago, Chicago, IL 60637, U.S.A
| | - Susan R. Weiss
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
106
|
Pahl MC, Le Coz C, Su C, Sharma P, Thomas RM, Pippin JA, Cruz Cabrera E, Johnson ME, Leonard ME, Lu S, Chesi A, Sullivan KE, Romberg N, Grant SFA, Wells AD. Implicating effector genes at COVID-19 GWAS loci using promoter-focused Capture-C in disease-relevant immune cell types. Genome Biol 2022; 23:125. [PMID: 35659055 PMCID: PMC9164584 DOI: 10.1186/s13059-022-02691-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND SARS-CoV-2 infection results in a broad spectrum of COVID-19 disease, from mild or no symptoms to hospitalization and death. COVID-19 disease severity has been associated with some pre-existing conditions and the magnitude of the adaptive immune response to SARS-CoV-2, and a recent genome-wide association study (GWAS) of the risk of critical illness revealed a significant genetic component. To gain insight into how human genetic variation attenuates or exacerbates disease following SARS-CoV-2 infection, we implicated putatively functional COVID risk variants in the cis-regulatory landscapes of human immune cell types with established roles in disease severity and used high-resolution chromatin conformation capture to map these disease-associated elements to their effector genes. RESULTS This functional genomic approach implicates 16 genes involved in viral replication, the interferon response, and inflammation. Several of these genes (PAXBP1, IFNAR2, OAS1, OAS3, TNFAIP8L1, GART) were differentially expressed in immune cells from patients with severe versus moderate COVID-19 disease, and we demonstrate a previously unappreciated role for GART in T cell-dependent antibody-producing B cell differentiation in a human tonsillar organoid model. CONCLUSIONS This study offers immunogenetic insight into the basis of COVID-19 disease severity and implicates new targets for therapeutics that limit SARS-CoV-2 infection and its resultant life-threatening inflammation.
Collapse
Affiliation(s)
- Matthew C Pahl
- Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
- Department of Pathology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Carole Le Coz
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Chun Su
- Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
- Department of Pathology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Prabhat Sharma
- Department of Pathology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Rajan M Thomas
- Department of Pathology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - James A Pippin
- Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Emylette Cruz Cabrera
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Matthew E Johnson
- Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Michelle E Leonard
- Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Sumei Lu
- Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Alessandra Chesi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Kathleen E Sullivan
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Neil Romberg
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Struan F A Grant
- Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA, USA
- Division of Diabetes and Endocrinology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Andrew D Wells
- Department of Pathology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA, USA.
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA, USA.
| |
Collapse
|
107
|
Cardiovascular Tropism and Sequelae of SARS-CoV-2 Infection. Viruses 2022; 14:v14061137. [PMID: 35746609 PMCID: PMC9228192 DOI: 10.3390/v14061137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 01/18/2023] Open
Abstract
The extrapulmonary manifestation of coronavirus disease-19 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), became apparent early in the ongoing pandemic. It is now recognized that cells of the cardiovascular system are targets of SARS-CoV-2 infection and associated disease pathogenesis. While some details are emerging, much remains to be understood pertaining to the mechanistic basis by which SARS-CoV-2 contributes to acute and chronic manifestations of COVID-19. This knowledge has the potential to improve clinical management for the growing populations of patients impacted by COVID-19. Here, we review the epidemiology and pathophysiology of cardiovascular sequelae of COVID-19 and outline proposed disease mechanisms, including direct SARS-CoV-2 infection of major cardiovascular cell types and pathogenic effects of non-infectious viral particles and elicited inflammatory mediators. Finally, we identify the major outstanding questions in cardiovascular COVID-19 research.
Collapse
|
108
|
Comar CE, Otter CJ, Pfannenstiel J, Doerger E, Renner DM, Tan LH, Perlman S, Cohen NA, Fehr AR, Weiss SR. MERS-CoV endoribonuclease and accessory proteins jointly evade host innate immunity during infection of lung and nasal epithelial cells. Proc Natl Acad Sci U S A 2022; 119:e2123208119. [PMID: 35594398 PMCID: PMC9173776 DOI: 10.1073/pnas.2123208119] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/13/2022] [Indexed: 12/25/2022] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) emerged into humans in 2012, causing highly lethal respiratory disease. The severity of disease may be, in part, because MERS-CoV is adept at antagonizing early innate immune pathways—interferon (IFN) production and signaling, protein kinase R (PKR), and oligoadenylate synthetase/ribonuclease L (OAS/RNase L)—activated in response to viral double-stranded RNA (dsRNA) generated during genome replication. This is in contrast to severe acute respiratory syndrome CoV-2 (SARS-CoV-2), which we recently reported to activate PKR and RNase L and, to some extent, IFN signaling. We previously found that MERS-CoV accessory proteins NS4a (dsRNA binding protein) and NS4b (phosphodiesterase) could weakly suppress these pathways, but ablation of each had minimal effect on virus replication. Here we investigated the antagonist effects of the conserved coronavirus endoribonuclease (EndoU), in combination with NS4a or NS4b. Inactivation of EndoU catalytic activity alone in a recombinant MERS-CoV caused little if any effect on activation of the innate immune pathways during infection. However, infection with recombinant viruses containing combined mutations with inactivation of EndoU and deletion of NS4a or inactivation of the NS4b phosphodiesterase promoted robust activation of dsRNA-induced innate immune pathways. This resulted in at least tenfold attenuation of replication in human lung–derived A549 and primary nasal cells. Furthermore, replication of these recombinant viruses could be rescued to the level of wild-type MERS-CoV by knockout of host immune mediators MAVS, PKR, or RNase L. Thus, EndoU and accessory proteins NS4a and NS4b together suppress dsRNA-induced innate immunity during MERS-CoV infection in order to optimize viral replication.
Collapse
Affiliation(s)
- Courtney E. Comar
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Clayton J. Otter
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | | | - Ethan Doerger
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045
| | - David M. Renner
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Li Hui Tan
- Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA 19104
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242
| | - Noam A. Cohen
- Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA 19104
- Department of Surgery, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104
| | - Anthony R. Fehr
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242
| | - Susan R. Weiss
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
109
|
Wang Y, Wu M, Li Y, Yuen HH, He ML. The effects of SARS-CoV-2 infection on modulating innate immunity and strategies of combating inflammatory response for COVID-19 therapy. J Biomed Sci 2022; 29:27. [PMID: 35505345 PMCID: PMC9063252 DOI: 10.1186/s12929-022-00811-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/27/2022] [Indexed: 12/15/2022] Open
Abstract
The global pandemic of COVID-19 has caused huge causality and unquantifiable loss of social wealth. The innate immune response is the first line of defense against SARS-CoV-2 infection. However, strong inflammatory response associated with dysregulation of innate immunity causes severe acute respiratory syndrome (SARS) and death. In this review, we update the current knowledge on how SARS-CoV-2 modulates the host innate immune response for its evasion from host defense and its corresponding pathogenesis caused by cytokine storm. We emphasize Type I interferon response and the strategies of evading innate immune defense used by SARS-CoV-2. We also extensively discuss the cells and their function involved in the innate immune response and inflammatory response, as well as the promises and challenges of drugs targeting excessive inflammation for antiviral treatment. This review would help us to figure out the current challenge questions of SARS-CoV-2 infection on innate immunity and directions for future studies.
Collapse
Affiliation(s)
- Yiran Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Mandi Wu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Yichen Li
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Ho Him Yuen
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Ming-Liang He
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China. .,CityU Shenzhen Research Institute, Nanshan, Shenzhen, China.
| |
Collapse
|
110
|
Persson J, Andersson B, van Veen S, Haks MC, Obudulu O, Torkzadeh S, Ottenhoff THM, Kanberg N, Gisslén M, Andersson LM, Harandi AM. Stratification of COVID-19 patients based on quantitative immune-related gene expression in whole blood. Mol Immunol 2022; 145:17-26. [PMID: 35272104 PMCID: PMC8894815 DOI: 10.1016/j.molimm.2022.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/05/2022] [Accepted: 03/01/2022] [Indexed: 01/08/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes mild symptoms in the majority of infected individuals, yet in some cases it leads to a life-threatening condition. Determination of early predictive biomarkers enabling risk stratification for coronavirus disease 2019 (COVID-19) patients can inform treatment and intervention strategies. Herein, we analyzed whole blood samples obtained from individuals infected with SARS-CoV-2, varying from mild to critical symptoms, approximately one week after symptom onset. In order to identify blood-specific markers of disease severity status, a targeted expression analysis of 143 immune-related genes was carried out by dual-color reverse transcriptase multiplex ligation-dependent probe amplification (dcRT-MLPA). The clinically well-defined subgroups of COVID-19 patients were compared with healthy controls. The transcriptional profile of the critically ill patients clearly separated from that of healthy individuals. Moreover, the number of differentially expressed genes increased by severity of COVID-19. It was also found that critically ill patients can be distinguished by reduced peripheral blood expression of several genes, which most likely reflects the lower lymphocyte counts. There was a notable predominance of IFN-associated gene expression in all subgroups of COVID-19, which was most profound in critically ill patients. Interestingly, the gene encoding one of the main TNF-receptors, TNFRS1A, had selectively lower expression in mild COVID-19 cases. This report provides added value in understanding COVID-19 disease, and shows potential of determining early immune transcript signatures in the blood of patients with different disease severity. These results can guide further explorations to uncover mechanisms underlying immunity and immunopathology in COVID-19.
Collapse
Affiliation(s)
- Josefine Persson
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Björn Andersson
- Bioinformatics Core Facility, University of Gothenburg, Gothenburg, Sweden
| | - Suzanne van Veen
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Mariëlle C Haks
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Ogonna Obudulu
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sara Torkzadeh
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Nelly Kanberg
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Infectious Diseases, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Magnus Gisslén
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Infectious Diseases, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Lars-Magnus Andersson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Infectious Diseases, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Ali M Harandi
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Vaccine Evaluation Center, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
111
|
Chan M, Liu Y. Function of epithelial stem cell in the repair of alveolar injury. Stem Cell Res Ther 2022; 13:170. [PMID: 35477551 PMCID: PMC9044382 DOI: 10.1186/s13287-022-02847-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/11/2022] [Indexed: 01/03/2023] Open
Abstract
Alveoli are the functional units of blood-gas exchange in the lung and thus are constantly exposed to outside environments and frequently encounter pathogens, particles and other harmful substances. For example, the alveolar epithelium is one of the primary targets of the SARS-CoV-2 virus that causes COVID-19 lung disease. Therefore, it is essential to understand the cellular and molecular mechanisms by which the integrity of alveoli epithelial barrier is maintained. Alveolar epithelium comprises two cell types: alveolar type I cells (AT1) and alveolar type II cells (AT2). AT2s have been shown to function as tissue stem cells that repair the injured alveoli epithelium. Recent studies indicate that AT1s and subgroups of proximal airway epithelial cells can also participate alveolar repair process through their intrinsic plasticity. This review discussed the potential mechanisms that drive the reparative behaviors of AT2, AT1 and some proximal cells in responses to injury and how an abnormal repair contributes to some pathological conditions.
Collapse
Affiliation(s)
- Manwai Chan
- Department of Biomedical Engineering, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Yuru Liu
- Department of Biomedical Engineering, University of Illinois College of Medicine, Chicago, IL, 60612, USA. .,Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612, USA. .,University of Illinois Cancer Center, Chicago, IL60612, USA.
| |
Collapse
|
112
|
Gray PE, Bartlett AW, Tangye SG. Severe COVID-19 represents an undiagnosed primary immunodeficiency in a high proportion of infected individuals. Clin Transl Immunology 2022; 11:e1365. [PMID: 35444807 PMCID: PMC9013505 DOI: 10.1002/cti2.1365] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 01/08/2023] Open
Abstract
Since the emergence of the COVID-19 pandemic in early 2020, a key challenge has been to define risk factors, other than age and pre-existing comorbidities, that predispose some people to severe disease, while many other SARS-CoV-2-infected individuals experience mild, if any, consequences. One explanation for intra-individual differences in susceptibility to severe COVID-19 may be that a growing percentage of otherwise healthy people have a pre-existing asymptomatic primary immunodeficiency (PID) that is unmasked by SARS-CoV-2 infection. Germline genetic defects have been identified in individuals with life-threatening COVID-19 that compromise local type I interferon (IFN)-mediated innate immune responses to SARS-CoV-2. Remarkably, these variants - which impact responses initiated through TLR3 and TLR7, as well as the response to type I IFN cytokines - may account for between 3% and 5% of severe COVID-19 in people under 70 years of age. Similarly, autoantibodies against type I IFN cytokines (IFN-α, IFN-ω) have been detected in patients' serum prior to infection with SARS-CoV-2 and were found to cause c. 20% of severe COVID-19 in the above 70s and 20% of total COVID-19 deaths. These autoantibodies, which are more common in the elderly, neutralise type I IFNs, thereby impeding innate antiviral immunity and phenocopying an inborn error of immunity. The discovery of PIDs underlying a significant percentage of severe COVID-19 may go some way to explain disease susceptibility, may allow for the application of targeted therapies such as plasma exchange, IFN-α or IFN-β, and may facilitate better management of social distancing, vaccination and early post-exposure prophylaxis.
Collapse
Affiliation(s)
- Paul E Gray
- Department of Immunology and Infectious Diseases Sydney Children's Hospital Randwick NSW Australia.,School of Women's and Children's Health University of New South Wales Randwick NSW Australia
| | - Adam W Bartlett
- Department of Immunology and Infectious Diseases Sydney Children's Hospital Randwick NSW Australia.,School of Women's and Children's Health University of New South Wales Randwick NSW Australia
| | - Stuart G Tangye
- Garvan Institute of Medical Research Darlinghurst NSW Australia.,St Vincent's Clinical School UNSW Sydney Randwick NSW Australia
| |
Collapse
|
113
|
Eriani G, Martin F. Viral and cellular translation during SARS‐CoV‐2 infection. FEBS Open Bio 2022; 12:1584-1601. [PMID: 35429230 PMCID: PMC9110871 DOI: 10.1002/2211-5463.13413] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/30/2022] [Accepted: 04/14/2022] [Indexed: 11/16/2022] Open
Abstract
SARS‐CoV‐2 is a betacoronavirus that emerged in China in December 2019 and which is the causative agent of the Covid‐19 pandemic. This enveloped virus contains a large positive‐sense single‐stranded RNA genome. In this review, we summarize the current knowledge on the molecular mechanisms for the translation of both viral transcripts and cellular messenger RNAs. Non‐structural proteins are encoded by the genomic RNA and are produced in the early steps of infection. In contrast, the structural proteins are produced from subgenomic RNAs that are translated in the late phase of the infectious program. Non‐structural protein 1 (NSP1) is a key molecule that regulates both viral and cellular translation. In addition, NSP1 interferes with multiple steps of the interferon I pathway and thereby blocks host antiviral responses. Therefore, NSP1 is a drug target of choice for the development of antiviral therapies.
Collapse
Affiliation(s)
- Gilbert Eriani
- Université de Strasbourg Institut de Biologie Moléculaire et Cellulaire Architecture et Réactivité de l’ARN CNRS UPR9002 2, allée Konrad Roentgen F‐67084 Strasbourg France
| | - Franck Martin
- Université de Strasbourg Institut de Biologie Moléculaire et Cellulaire Architecture et Réactivité de l’ARN CNRS UPR9002 2, allée Konrad Roentgen F‐67084 Strasbourg France
| |
Collapse
|
114
|
Wei L, Xia S, Li Y, Qi Y, Wang Y, Zhang D, Hua Y, Luo S. Application of hiPSC as a Drug Tester Via Mimicking a Personalized Mini Heart. Front Genet 2022; 13:891159. [PMID: 35495144 PMCID: PMC9046785 DOI: 10.3389/fgene.2022.891159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/30/2022] [Indexed: 12/02/2022] Open
Abstract
Human induced pluripotent stem cells (hIPSC) have been used to produce almost all types of human cells currently, which makes them into several potential applications with replicated patient-specific genotype. Furthermore, hIPSC derived cardiomyocytes assembled engineering heart tissue can be established to achieve multiple functional evaluations by tissue engineering technology. This short review summarized the current advanced applications based on the hIPSC derived heart tissue in molecular mechanisms elucidating and high throughput drug screening.
Collapse
Affiliation(s)
- Li Wei
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Shutao Xia
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yan Qi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China
| | - Yue Wang
- Department of Cardiovascular Surgery, Pediatric Heart Center, West China Hospital, Sichuan University, Chengdu, China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China
- *Correspondence: Donghui Zhang, ; Yimin Hua, ; Shuhua Luo,
| | - Yimin Hua
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- *Correspondence: Donghui Zhang, ; Yimin Hua, ; Shuhua Luo,
| | - Shuhua Luo
- Department of Cardiovascular Surgery, Pediatric Heart Center, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Donghui Zhang, ; Yimin Hua, ; Shuhua Luo,
| |
Collapse
|
115
|
Beyer DK, Forero A. Mechanisms of Antiviral Immune Evasion of SARS-CoV-2. J Mol Biol 2022; 434:167265. [PMID: 34562466 PMCID: PMC8457632 DOI: 10.1016/j.jmb.2021.167265] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/16/2022]
Abstract
Coronavirus disease (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is characterized by a delayed interferon (IFN) response and high levels of proinflammatory cytokine expression. Type I and III IFNs serve as a first line of defense during acute viral infections and are readily antagonized by viruses to establish productive infection. A rapidly growing body of work has interrogated the mechanisms by which SARS-CoV-2 antagonizes both IFN induction and IFN signaling to establish productive infection. Here, we summarize these findings and discuss the molecular interactions that prevent viral RNA recognition, inhibit the induction of IFN gene expression, and block the response to IFN treatment. We also describe the mechanisms by which SARS-CoV-2 viral proteins promote host shutoff. A detailed understanding of the host-pathogen interactions that unbalance the IFN response is critical for the design and deployment of host-targeted therapeutics to manage COVID-19.
Collapse
Affiliation(s)
- Daniel K. Beyer
- Molecular Genetics, College of Arts and Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Adriana Forero
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210, USA,Corresponding author
| |
Collapse
|
116
|
Zhang D, Zhu L, Wang Y, Li P, Gao Y. Translational Control of COVID-19 and Its Therapeutic Implication. Front Immunol 2022; 13:857490. [PMID: 35422818 PMCID: PMC9002053 DOI: 10.3389/fimmu.2022.857490] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/07/2022] [Indexed: 12/19/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of COVID-19, which has broken out worldwide for more than two years. However, due to limited treatment, new cases of infection are still rising. Therefore, there is an urgent need to understand the basic molecular biology of SARS-CoV-2 to control this virus. SARS-CoV-2 replication and spread depend on the recruitment of host ribosomes to translate viral messenger RNA (mRNA). To ensure the translation of their own mRNAs, the SARS-CoV-2 has developed multiple strategies to globally inhibit the translation of host mRNAs and block the cellular innate immune response. This review provides a comprehensive picture of recent advancements in our understanding of the molecular basis and complexity of SARS-CoV-2 protein translation. Specifically, we summarize how this viral infection inhibits host mRNA translation to better utilize translation elements for translation of its own mRNA. Finally, we discuss the potential of translational components as targets for therapeutic interventions.
Collapse
Affiliation(s)
- Dejiu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Lei Zhu
- College of Basic Medical, Qingdao Binhai University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yanyan Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
117
|
Jiang D, Zhang L, Zhu G, Zhang P, Wu X, Yao X, Luo Y, Yang Z, Ren M, Wang X, Chen S, Wang Y. The Antiviral Effect of Isatis Root Polysaccharide against NADC30-like PRRSV by Transcriptome and Proteome Analysis. Int J Mol Sci 2022; 23:ijms23073688. [PMID: 35409050 PMCID: PMC8998840 DOI: 10.3390/ijms23073688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 01/25/2023] Open
Abstract
(1) Background: In recent years, the porcine reproductive and respiratory syndrome virus (PRRSV) has become a virulent pathogen that has caused devastating diseases and economic losses worldwide in the swine industry. IRPS has attracted extensive attention in the field of virology. However, it is not clear that IRPS has an antiviral effect on PRRSV at gene and protein levels. (2) Methods: We used transcriptomic and proteomic analysis to investigate the antiviral effect of IRPS against PRRSV. Additionally, a microbiome was used to explore the effects of IRPS on gut microbes. (3) Results: IRPS significantly extenuated the pulmonary pathological lesions and inflammatory response. We used transcriptomic and proteomic analysis to investigate the antiviral effect of IRPS against PRRSV. In the porcine model, 1669 differentially expressed genes (DEGs) and 370 differentially expressed proteins (DEPs) were identified. Analysis of the DEG/DEP-related pathways indicated immune-system and infectious-disease (viral) pathways, such as the NOD-like receptor (NLR) signaling pathway, toll-like receptor (TLR) signaling pathway, and Influenza A-associated signaling pathways. It is noteworthy that IRPS can inhibit NLR-dependent gene expression, then reduce the inflammatory damage. IRPS could exert beneficial effects on the host by regulating the structure of intestinal flora. (4) Conclusions: The antiviral effect of IRPS on PRRSV can be directly achieved by omics techniques. Specifically, the antiviral mechanism of IPRS can be better elucidated by screening target genes and proteins using transcriptome and proteome sequencing, and then performing enrichment and classification according to DEGs and DEPs.
Collapse
Affiliation(s)
- Dike Jiang
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (D.J.); (G.Z.); (P.Z.); (X.Y.); (Y.L.); (Z.Y.); (M.R.)
| | - Ling Zhang
- College of Veterinary Medicine, Jilin University, Changchun 130012, China;
| | - Guangheng Zhu
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (D.J.); (G.Z.); (P.Z.); (X.Y.); (Y.L.); (Z.Y.); (M.R.)
| | - Pengfei Zhang
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (D.J.); (G.Z.); (P.Z.); (X.Y.); (Y.L.); (Z.Y.); (M.R.)
| | - Xulong Wu
- Branch of Animal Husbandry and Veterinary Medicine, Chengdu Agricultural College, Chengdu 611130, China;
| | - Xueping Yao
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (D.J.); (G.Z.); (P.Z.); (X.Y.); (Y.L.); (Z.Y.); (M.R.)
| | - Yan Luo
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (D.J.); (G.Z.); (P.Z.); (X.Y.); (Y.L.); (Z.Y.); (M.R.)
| | - Zexiao Yang
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (D.J.); (G.Z.); (P.Z.); (X.Y.); (Y.L.); (Z.Y.); (M.R.)
| | - Meishen Ren
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (D.J.); (G.Z.); (P.Z.); (X.Y.); (Y.L.); (Z.Y.); (M.R.)
| | - Xinping Wang
- College of Veterinary Medicine, Jilin University, Changchun 130012, China;
- Correspondence: (X.W.); (Y.W.)
| | - Sheng Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong 999077, China;
| | - Yin Wang
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (D.J.); (G.Z.); (P.Z.); (X.Y.); (Y.L.); (Z.Y.); (M.R.)
- Correspondence: (X.W.); (Y.W.)
| |
Collapse
|
118
|
Innate Immune Response in SARS-CoV-2 Infection. Microorganisms 2022; 10:microorganisms10030501. [PMID: 35336077 PMCID: PMC8950297 DOI: 10.3390/microorganisms10030501] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 01/08/2023] Open
Abstract
An efficient host immune response is crucial in controlling viral infections. Despite most studies focused on the implication of T and B cell response in COVID-19 (Corona Virus Disease-19) patients or in their activation after vaccination against SARS-CoV-2, host innate immune response has raised even more interest as well. In fact, innate immunity, including Natural Killer (NK) cells, monocytes/macrophages and neutrophils, represent the first line of defense against the virus and it is essential to determine the correct activation of an efficient and specific acquired immune response. In this perspective, we will report an overview on the main findings concerning SARS-CoV-2 interaction with innate host immune system, in correlation with pathogenesis and viral immune escape mechanisms.
Collapse
|
119
|
Zhang H, Fischer DK, Shuda M, Moore PS, Gao SJ, Ambrose Z, Guo H. Construction and characterization of two SARS-CoV-2 minigenome replicon systems. J Med Virol 2022; 94:2438-2452. [PMID: 35137972 PMCID: PMC9088700 DOI: 10.1002/jmv.27650] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/10/2022]
Abstract
The ongoing COVID-19 pandemic severely impacts global public health and economies. In order to facilitate research on SARS-CoV-2 virology and antiviral discovery, a non-infectious viral replicon system operating under biosafety level 2 containment is warranted. We report herein the construction and characterization of two SARS-CoV-2 minigenome replicon systems. First, we constructed the IVT-CoV2-Rep cDNA template to generate a replicon mRNA with nanoluciferase (NLuc) reporter via in vitro transcription (IVT). The replicon mRNA transfection assay demonstrated a rapid and transient replication of IVT-CoV2-Rep in a variety of cell lines, which could be completely abolished by known SARS-CoV-2 replication inhibitors. Our data also suggests that the transient phenotype of IVT-CoV2-Rep is not due to host innate antiviral responses. In addition, we have developed a DNA-launched replicon BAC-CoV2-Rep, which supports the in-cell transcription of a replicon mRNA as initial replication template. The BAC-CoV2-Rep transient transfection system exhibited a much stronger and longer replicon signal compared to the IVT-CoV2-Rep version. We also found that a portion of the NLuc reporter signal was derived from the spliced BAC-CoV2-Rep mRNA and was resistant to antiviral treatment, especially during the early phase after transfection. In summary, the established SARS-CoV-2 transient replicon systems are suitable for basic and antiviral research, and hold promise for stable replicon cell line development with further optimization. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hu Zhang
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine.,Cancer Virology Program, Hillman Cancer Center, University of Pittsburgh Medical Center
| | - Douglas K Fischer
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine.,Cancer Virology Program, Hillman Cancer Center, University of Pittsburgh Medical Center
| | - Masahiro Shuda
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine.,Cancer Virology Program, Hillman Cancer Center, University of Pittsburgh Medical Center
| | - Patrick S Moore
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine.,Cancer Virology Program, Hillman Cancer Center, University of Pittsburgh Medical Center
| | - Shou-Jiang Gao
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine.,Cancer Virology Program, Hillman Cancer Center, University of Pittsburgh Medical Center
| | - Zandrea Ambrose
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine.,Cancer Virology Program, Hillman Cancer Center, University of Pittsburgh Medical Center
| | - Haitao Guo
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine.,Cancer Virology Program, Hillman Cancer Center, University of Pittsburgh Medical Center
| |
Collapse
|
120
|
Aricò E, Bracci L, Castiello L, Urbani F, Casanova JL, Belardelli F. Exploiting natural antiviral immunity for the control of pandemics: Lessons from Covid-19. Cytokine Growth Factor Rev 2022; 63:23-33. [PMID: 34955389 PMCID: PMC8675148 DOI: 10.1016/j.cytogfr.2021.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022]
Abstract
The outbreak of coronavirus disease 2019 (COVID-19), triggered by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the disruptive global consequences in terms of mortality and social and economic crises, have taught lessons that may help define strategies to better face future pandemics. Innate and intrinsic immunity form the front-line natural antiviral defense. They involve both tissue-resident and circulating cells, which can produce anti-viral molecules shortly after viral infection. Prototypes of these factors are type I interferons (IFN), antiviral cytokines with a long record of clinical use. During the last two years, there has been an impressive progress in understanding the mechanisms of both SARS-CoV-2 infection and the cellular and soluble antiviral responses occurring early after viral exposure. However, this information was not sufficiently translated into therapeutic approaches. Insufficient type I IFN activity probably accounts for disease progression in many patients. This results from both the multiple interfering mechanisms developed by SARS-CoV-2 to decrease type I IFN response and various pre-existing human deficits of type I IFN activity, inherited or auto-immune. Emerging data suggest that IFN-I-mediated boosting of patients' immunity, achieved directly through the exogenous administration of IFN-β early post viral infection, or indirectly following inoculation of heterologous vaccines (e.g., Bacillus Calmette Guerin), might play a role against SARS-CoV-2. We review how recent insights on the viral and human determinants of critical COVID-19 pneumonia can foster clinical studies of IFN therapy. We also discuss how early therapeutic use of IFN-β and prophylactic campaigns with live attenuated vaccines might prevent a first wave of new pandemic viruses.
Collapse
Affiliation(s)
- Eleonora Aricò
- FaBioCell, Core Facilities, Istituto Superiore di Sanità, Rome, Italy.
| | - Laura Bracci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Luciano Castiello
- FaBioCell, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Urbani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy; Medical Biotechnology and Translational Medicine PhD School, II University of Rome "Tor Vergata", Italy
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; University of Paris, Imagine Institute, Paris, France; Howard Hughes Medical Institute, New York, NY, USA
| | - Filippo Belardelli
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche, Rome, Italy
| |
Collapse
|
121
|
Geerling E, Pinski AN, Stone TE, DiPaolo RJ, Zulu MZ, Maroney KJ, Brien JD, Messaoudi I, Pinto AK. Roles of antiviral sensing and type I interferon signaling in the restriction of SARS-CoV-2 replication. iScience 2022; 25:103553. [PMID: 34877479 PMCID: PMC8639477 DOI: 10.1016/j.isci.2021.103553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/15/2021] [Accepted: 11/30/2021] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019. Few studies have compared replication dynamics and host responses to SARS-CoV-2 in cell lines from different tissues and species. Therefore, we investigated the role of tissue type and antiviral genes during SARS-CoV-2 infection in nonhuman primate (kidney) and human (liver, respiratory epithelial, gastric) cell lines. We report different viral growth kinetics and release among the cell lines despite comparable ACE2 expression. Transcriptomics revealed that absence of STAT1 in nonhuman primate cells appeared to enhance inflammatory responses without effecting infectious viral titer. Deletion of RL-6 in respiratory epithelial cells increased viral replication. Impaired infectious virus release was detected in Huh7 but not Huh7.5 cells, suggesting a role for RIG1. Gastric cells MKN45 exhibited robust antiviral gene expression and supported viral replication. Data here provide insight into molecular pathogenesis of and alternative cell lines for studying SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Elizabeth Geerling
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, MO 63103, USA
| | - Amanda N. Pinski
- Department of Molecular Biology and Biochemistry, University of California-Irvine, Irvine, CA 92697, USA
| | - Taylor E. Stone
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, MO 63103, USA
| | - Richard J. DiPaolo
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, MO 63103, USA
| | - Michael Z. Zulu
- Department of Molecular Biology and Biochemistry, University of California-Irvine, Irvine, CA 92697, USA
| | - Kevin J. Maroney
- Department of Molecular Biology and Biochemistry, University of California-Irvine, Irvine, CA 92697, USA
| | - James D. Brien
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, MO 63103, USA
| | - Ilhem Messaoudi
- Department of Molecular Biology and Biochemistry, University of California-Irvine, Irvine, CA 92697, USA
| | - Amelia K. Pinto
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, MO 63103, USA
| |
Collapse
|
122
|
de Waal AM, Hiemstra PS, Ottenhoff TH, Joosten SA, van der Does AM. Lung epithelial cells interact with immune cells and bacteria to shape the microenvironment in tuberculosis. Thorax 2022; 77:408-416. [PMID: 35017314 PMCID: PMC8938665 DOI: 10.1136/thoraxjnl-2021-217997] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/16/2021] [Indexed: 12/31/2022]
Abstract
The lung epithelium has long been overlooked as a key player in tuberculosis disease. In addition to acting as a direct barrier to Mycobacterium tuberculosis (Mtb), epithelial cells (EC) of the airways and alveoli act as first responders during Mtb infections; they directly sense and respond to Mtb by producing mediators such as cytokines, chemokines and antimicrobials. Interactions of EC with innate and adaptive immune cells further shape the immune response against Mtb. These three essential components, epithelium, immune cells and Mtb, are rarely studied in conjunction, owing in part to difficulties in coculturing them. Recent advances in cell culture technologies offer the opportunity to model the lung microenvironment more closely. Herein, we discuss the interplay between lung EC, immune cells and Mtb and argue that modelling these interactions is of key importance to unravel early events during Mtb infection.
Collapse
Affiliation(s)
- Amy M de Waal
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom Hm Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Simone A Joosten
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Anne M van der Does
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
123
|
Schreiber A, Viemann D, Schöning J, Schloer S, Mecate Zambrano A, Brunotte L, Faist A, Schöfbänker M, Hrincius E, Hoffmann H, Hoffmann M, Pöhlmann S, Rescher U, Planz O, Ludwig S. The MEK1/2-inhibitor ATR-002 efficiently blocks SARS-CoV-2 propagation and alleviates pro-inflammatory cytokine/chemokine responses. Cell Mol Life Sci 2022; 79:65. [PMID: 35013790 PMCID: PMC8747446 DOI: 10.1007/s00018-021-04085-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/13/2022]
Abstract
Coronavirus disease 2019 (COVID-19), the illness caused by a novel coronavirus now called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to more than 260 million confirmed infections and 5 million deaths to date. While vaccination is a powerful tool to control pandemic spread, medication to relieve COVID-19-associated symptoms and alleviate disease progression especially in high-risk patients is still lacking. In this study, we explore the suitability of the rapid accelerated fibrosarcoma/mitogen-activated protein kinase/extracellular signal-regulated kinase (Raf/MEK/ERK) pathway as a druggable target in the treatment of SARS-CoV-2 infections. We find that SARS-CoV-2 transiently activates Raf/MEK/ERK signaling in the very early infection phase and that ERK1/2 knockdown limits virus replication in cell culture models. We demonstrate that ATR-002, a specific inhibitor of the upstream MEK1/2 kinases which is currently evaluated in clinical trials as an anti-influenza drug, displays strong anti-SARS-CoV-2 activity in cell lines as well as in primary air-liquid-interphase epithelial cell (ALI) cultures, with a safe and selective treatment window. We also observe that ATR-002 treatment impairs the SARS-CoV-2-induced expression of pro-inflammatory cytokines, and thus might prevent COVID-19-associated hyperinflammation, a key player in COVID-19 progression. Thus, our data suggest that the Raf/MEK/ERK signaling cascade may represent a target for therapeutic intervention strategies against SARS-CoV-2 infections and that ATR-002 is a promising candidate for further drug evaluation.
Collapse
Affiliation(s)
- André Schreiber
- Institute of Virology (IVM), Centre for Molecular Biology of Inflammation, University of Muenster, Von-Esmarch-Straße 56, 48149, Münster, North Rhine-Westphalia, Germany
| | - Dorothee Viemann
- Translational Pediatrics, Department of Pediatrics, University Hospital Wuerzburg, 97080, Würzburg, Bavaria, Germany
- Center for Infection Research, University Wuerzburg, 97080, Würzburg, Bavaria, Germany
- Cluster of Excellence RESIST (EXC 2155, Hannover Medical School, 30625, Hannover, Lower Saxony, Germany
| | - Jennifer Schöning
- Translational Pediatrics, Department of Pediatrics, University Hospital Wuerzburg, 97080, Würzburg, Bavaria, Germany
| | - Sebastian Schloer
- Research Group Regulatory Mechanisms of Inflammation, Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Muenster, 48149, Münster, North Rhine-Westphalia, Germany
| | - Angeles Mecate Zambrano
- Institute of Virology (IVM), Centre for Molecular Biology of Inflammation, University of Muenster, Von-Esmarch-Straße 56, 48149, Münster, North Rhine-Westphalia, Germany
| | - Linda Brunotte
- Institute of Virology (IVM), Centre for Molecular Biology of Inflammation, University of Muenster, Von-Esmarch-Straße 56, 48149, Münster, North Rhine-Westphalia, Germany
| | - Aileen Faist
- Institute of Virology (IVM), Centre for Molecular Biology of Inflammation, University of Muenster, Von-Esmarch-Straße 56, 48149, Münster, North Rhine-Westphalia, Germany
- CiM-IMPRS Graduate School, University of Muenster, 48149, Münster, North Rhine-Westphalia, Germany
| | - Michael Schöfbänker
- Institute of Virology (IVM), Centre for Molecular Biology of Inflammation, University of Muenster, Von-Esmarch-Straße 56, 48149, Münster, North Rhine-Westphalia, Germany
| | - Eike Hrincius
- Institute of Virology (IVM), Centre for Molecular Biology of Inflammation, University of Muenster, Von-Esmarch-Straße 56, 48149, Münster, North Rhine-Westphalia, Germany
| | - Helen Hoffmann
- Atriva Therapeutics GmbH, 72072, Tübingen, Baden-Württemberg, Germany
- Department of Immunology, Interfaculty Institute for Cell Biology, Eberhard Karls University, 72074, Tübingen, Baden-Württemberg, Germany
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, University Goettingen, 37077, Göttingen, Lower Saxony, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, University Goettingen, 37077, Göttingen, Lower Saxony, Germany
| | - Ursula Rescher
- Research Group Regulatory Mechanisms of Inflammation, Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Muenster, 48149, Münster, North Rhine-Westphalia, Germany
- Interdisciplinary Center of Clinical Research (IZKF), Medical Faculty, University of Muenster, 48149, Münster, North Rhine-Westphalia, Germany
| | - Oliver Planz
- Atriva Therapeutics GmbH, 72072, Tübingen, Baden-Württemberg, Germany
- Department of Immunology, Interfaculty Institute for Cell Biology, Eberhard Karls University, 72074, Tübingen, Baden-Württemberg, Germany
| | - Stephan Ludwig
- Institute of Virology (IVM), Centre for Molecular Biology of Inflammation, University of Muenster, Von-Esmarch-Straße 56, 48149, Münster, North Rhine-Westphalia, Germany.
- Interdisciplinary Center of Clinical Research (IZKF), Medical Faculty, University of Muenster, 48149, Münster, North Rhine-Westphalia, Germany.
| |
Collapse
|
124
|
Müller WEG, Wang X, Neufurth M, Schröder HC. Polyphosphate in Antiviral Protection: A Polyanionic Inorganic Polymer in the Fight Against Coronavirus SARS-CoV-2 Infection. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2022; 61:145-189. [PMID: 35697940 DOI: 10.1007/978-3-031-01237-2_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Polyanions as polymers carrying multiple negative charges have been extensively studied with regard to their potential antiviral activity. Most studies to date focused on organic polyanionic polymers, both natural and synthetic. The inorganic polymer, polyphosphate (polyP), despite the ubiquitous presence of this molecule from bacteria to man, has attracted much less attention. More recently, and accelerated by the search for potential antiviral agents in the fight against the pandemic caused by the coronavirus SARS-CoV-2, it turned out that polyP disrupts the first step of the viral replication cycle, the interaction of the proteins in the virus envelope and in the cell membrane that are involved in the docking process of the virus with the target host cell. Experiments on a molecular level using the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein and the cellular angiotensin converting enzyme 2 (ACE2) receptor revealed that polyP strongly inhibits the binding reaction through an electrostatic interaction between the negatively charged centers of the polyP molecule and a cationic groove, which is formed by positively charged amino acids on the RBD surface. In addition, it was found that polyP, due to its morphogenetic and energy delivering activities, enhances the antiviral host innate immunity defense of the respiratory epithelium. The underlying mechanisms and envisaged application of polyP in the therapy and prevention of COVID-19 are discussed.
Collapse
Affiliation(s)
- Werner E G Müller
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| | - Xiaohong Wang
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Meik Neufurth
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Heinz C Schröder
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
125
|
Lee JY, Wing PAC, Gala DS, Noerenberg M, Järvelin AI, Titlow J, Zhuang X, Palmalux N, Iselin L, Thompson MK, Parton RM, Prange-Barczynska M, Wainman A, Salguero FJ, Bishop T, Agranoff D, James W, Castello A, McKeating JA, Davis I. Absolute quantitation of individual SARS-CoV-2 RNA molecules provides a new paradigm for infection dynamics and variant differences. eLife 2022; 11:74153. [PMID: 35049501 PMCID: PMC8776252 DOI: 10.7554/elife.74153] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/21/2021] [Indexed: 12/11/2022] Open
Abstract
Despite an unprecedented global research effort on SARS-CoV-2, early replication events remain poorly understood. Given the clinical importance of emergent viral variants with increased transmission, there is an urgent need to understand the early stages of viral replication and transcription. We used single-molecule fluorescence in situ hybridisation (smFISH) to quantify positive sense RNA genomes with 95% detection efficiency, while simultaneously visualising negative sense genomes, subgenomic RNAs, and viral proteins. Our absolute quantification of viral RNAs and replication factories revealed that SARS-CoV-2 genomic RNA is long-lived after entry, suggesting that it avoids degradation by cellular nucleases. Moreover, we observed that SARS-CoV-2 replication is highly variable between cells, with only a small cell population displaying high burden of viral RNA. Unexpectedly, the B.1.1.7 variant, first identified in the UK, exhibits significantly slower replication kinetics than the Victoria strain, suggesting a novel mechanism contributing to its higher transmissibility with important clinical implications.
Collapse
Affiliation(s)
- Jeffrey Y Lee
- Department of Biochemistry, The University of OxfordOxfordUnited Kingdom
| | - Peter AC Wing
- Nuffield Department of Medicine, The University of OxfordOxfordUnited Kingdom,Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI), The University of OxfordOxfordUnited Kingdom
| | - Dalia S Gala
- Department of Biochemistry, The University of OxfordOxfordUnited Kingdom
| | - Marko Noerenberg
- Department of Biochemistry, The University of OxfordOxfordUnited Kingdom,MRC-University of Glasgow Centre for Virus Research, The University of GlasgowGlasgowUnited Kingdom
| | - Aino I Järvelin
- Department of Biochemistry, The University of OxfordOxfordUnited Kingdom
| | - Joshua Titlow
- Department of Biochemistry, The University of OxfordOxfordUnited Kingdom
| | - Xiaodong Zhuang
- Nuffield Department of Medicine, The University of OxfordOxfordUnited Kingdom
| | - Natasha Palmalux
- MRC-University of Glasgow Centre for Virus Research, The University of GlasgowGlasgowUnited Kingdom
| | - Louisa Iselin
- Department of Biochemistry, The University of OxfordOxfordUnited Kingdom
| | - Mary Kay Thompson
- Department of Biochemistry, The University of OxfordOxfordUnited Kingdom
| | - Richard M Parton
- Department of Biochemistry, The University of OxfordOxfordUnited Kingdom
| | - Maria Prange-Barczynska
- Nuffield Department of Medicine, The University of OxfordOxfordUnited Kingdom,Ludwig Institute for Cancer Research, The University of OxfordOxfordUnited Kingdom
| | - Alan Wainman
- Sir William Dunn School of Pathology, The University of OxfordOxfordUnited Kingdom
| | | | - Tammie Bishop
- Nuffield Department of Medicine, The University of OxfordOxfordUnited Kingdom,Ludwig Institute for Cancer Research, The University of OxfordOxfordUnited Kingdom
| | - Daniel Agranoff
- Department of Infectious Diseases, University Hospitals Sussex NHS Foundation TrustBrightonUnited Kingdom
| | - William James
- Sir William Dunn School of Pathology, The University of OxfordOxfordUnited Kingdom,James & Lillian Martin Centre, Sir William Dunn School of Pathology, The University of OxfordOxfordUnited Kingdom
| | - Alfredo Castello
- Department of Biochemistry, The University of OxfordOxfordUnited Kingdom,MRC-University of Glasgow Centre for Virus Research, The University of GlasgowGlasgowUnited Kingdom
| | - Jane A McKeating
- Nuffield Department of Medicine, The University of OxfordOxfordUnited Kingdom,Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI), The University of OxfordOxfordUnited Kingdom
| | - Ilan Davis
- Department of Biochemistry, The University of OxfordOxfordUnited Kingdom
| |
Collapse
|
126
|
Rockwood SJ, Arzt M, Sharma A. Modeling Cardiac SARS-CoV-2 Infection with Human Pluripotent Stem Cells. Curr Cardiol Rep 2022; 24:2121-2129. [PMID: 36272051 PMCID: PMC9589554 DOI: 10.1007/s11886-022-01813-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/14/2022] [Indexed: 01/11/2023]
Abstract
Although SARS-CoV-2, the causative virus of the global COVID-19 pandemic, primarily affects the respiratory tract, it is now recognized to have broad multi-organ tropism and systemic effects. Early reports indicated that SARS-CoV-2 infection could lead to cardiac damage, suggesting the virus may directly impact the heart. Cardiac cell types derived from human pluripotent stem cells (hPSCs) enable mechanistic interrogation of SARS-CoV-2 infection in human cardiac tissue. PURPOSE OF REVIEW: To review the studies published since the emergence of the COVID-19 pandemic which utilize hPSCs and their cardiovascular derivative cell types to interrogate the tropism and effects of SARS-CoV-2 infection in the heart, as well as explore potential therapies. RECENT FINDINGS: Recent studies reveal that SARS-CoV-2 is capable of infecting and replicating within hPSC-derived cardiomyocytes and sinoatrial nodal cells, but not as extensively in their non-parenchymal counterparts. Additionally, they show striking viral effects on cardiomyocyte structure, transcriptional activity, and survival, along with potential mechanisms and therapeutic targets. Cardiac models derived from hPSCs are a viable platform to study the impact of SARS-CoV-2 on cardiac tissue and may lead to novel mechanistic insight as well as therapeutic interventions.
Collapse
Affiliation(s)
- Sarah J. Rockwood
- Stanford University Medical Scientist Training Program, 1600 Sand Hill Road, Palo Alto, CA 94304 USA
| | - Madelyn Arzt
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA USA 90048 ,Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA USA 90048 ,Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA USA 90048 ,Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA USA 90048
| | - Arun Sharma
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA USA 90048 ,Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA USA 90048 ,Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA USA 90048 ,Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA USA 90048
| |
Collapse
|
127
|
Nieto-Fontarigo JJ, Tillgren S, Cerps S, Sverrild A, Hvidtfeldt M, Ramu S, Menzel M, Sander AF, Porsbjerg C, Uller L. Imiquimod Boosts Interferon Response, and Decreases ACE2 and Pro-Inflammatory Response of Human Bronchial Epithelium in Asthma. Front Immunol 2021; 12:743890. [PMID: 34950134 PMCID: PMC8688760 DOI: 10.3389/fimmu.2021.743890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022] Open
Abstract
Background Both anti-viral and anti-inflammatory bronchial effects are warranted to treat viral infections in asthma. We sought to investigate if imiquimod, a TLR7 agonist, exhibits such dual actions in ex vivo cultured human bronchial epithelial cells (HBECs), targets for SARS-CoV-2 infectivity. Objective To investigate bronchial epithelial effects of imiquimod of potential importance for anti-viral treatment in asthmatic patients. Methods Effects of imiquimod alone were examined in HBECs from healthy (N=4) and asthmatic (N=18) donors. Mimicking SARS-CoV-2 infection, HBECs were stimulated with poly(I:C), a dsRNA analogue, or SARS-CoV-2 spike-protein 1 (SP1; receptor binding) with and without imiquimod treatment. Expression of SARS-CoV-2 receptor (ACE2), pro-inflammatory and anti-viral cytokines were analyzed by RT-qPCR, multiplex ELISA, western blot, and Nanostring and proteomic analyses. Results Imiquimod reduced ACE2 expression at baseline and after poly(I:C) stimulation. Imiquimod also reduced poly(I:C)-induced pro-inflammatory cytokines including IL-1β, IL-6, IL-8, and IL-33. Furthermore, imiquimod increased IFN-β expression, an effect potentiated in presence of poly(I:C) or SP1. Multiplex mRNA analysis verified enrichment in type-I IFN signaling concomitant with suppression of cytokine signaling pathways induced by imiquimod in presence of poly(I:C). Exploratory proteomic analyses revealed potentially protective effects of imiquimod on infections. Conclusion Imiquimod triggers viral resistance mechanisms in HBECs by decreasing ACE2 and increasing IFN-β expression. Additionally, imiquimod improves viral infection tolerance by reducing viral stimulus-induced epithelial cytokines involved in severe COVID-19 infection. Our imiquimod data highlight feasibility of producing pluripotent drugs potentially suited for anti-viral treatment in asthmatic subjects.
Collapse
Affiliation(s)
| | - Sofia Tillgren
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Samuel Cerps
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Asger Sverrild
- Department of Respiratory Medicine, University Hospital Bispebjerg, Copenhagen, Denmark
| | - Morten Hvidtfeldt
- Department of Respiratory Medicine, University Hospital Bispebjerg, Copenhagen, Denmark
| | - Sangeetha Ramu
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Mandy Menzel
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Adam Frederik Sander
- Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Disease, Copenhagen University Hospital, Copenhagen, Denmark
| | - Celeste Porsbjerg
- Department of Respiratory Medicine, University Hospital Bispebjerg, Copenhagen, Denmark
| | - Lena Uller
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
128
|
Picardi E, Mansi L, Pesole G. Detection of A-to-I RNA Editing in SARS-COV-2. Genes (Basel) 2021; 13:41. [PMID: 35052382 PMCID: PMC8774467 DOI: 10.3390/genes13010041] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/12/2021] [Accepted: 12/21/2021] [Indexed: 12/21/2022] Open
Abstract
ADAR1-mediated deamination of adenosines in long double-stranded RNAs plays an important role in modulating the innate immune response. However, recent investigations based on metatranscriptomic samples of COVID-19 patients and SARS-COV-2-infected Vero cells have recovered contrasting findings. Using RNAseq data from time course experiments of infected human cell lines and transcriptome data from Vero cells and clinical samples, we prove that A-to-G changes observed in SARS-COV-2 genomes represent genuine RNA editing events, likely mediated by ADAR1. While the A-to-I editing rate is generally low, changes are distributed along the entire viral genome, are overrepresented in exonic regions, and are (in the majority of cases) nonsynonymous. The impact of RNA editing on virus-host interactions could be relevant to identify potential targets for therapeutic interventions.
Collapse
MESH Headings
- Adenosine/metabolism
- Adenosine Deaminase/genetics
- Adenosine Deaminase/immunology
- Animals
- COVID-19/genetics
- COVID-19/metabolism
- COVID-19/virology
- Cell Line, Tumor
- Chlorocebus aethiops
- DEAD Box Protein 58/genetics
- DEAD Box Protein 58/immunology
- Deamination
- Epithelial Cells/immunology
- Epithelial Cells/virology
- Genome, Viral
- Host-Pathogen Interactions/genetics
- Host-Pathogen Interactions/immunology
- Humans
- Immunity, Innate
- Inosine/metabolism
- Interferon-Induced Helicase, IFIH1/genetics
- Interferon-Induced Helicase, IFIH1/immunology
- Interferon-beta/genetics
- Interferon-beta/immunology
- RNA Editing
- RNA, Double-Stranded/genetics
- RNA, Double-Stranded/immunology
- RNA, Viral/genetics
- RNA, Viral/immunology
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/immunology
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- SARS-CoV-2/genetics
- SARS-CoV-2/metabolism
- SARS-CoV-2/pathogenicity
- Transcriptome
- Vero Cells
Collapse
Affiliation(s)
- Ernesto Picardi
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy; (L.M.); (G.P.)
- Institute of Biomembranes and Bioenergetics, National Research Council, Via Amendola 122/O, 70126 Bari, Italy
- Consorzio Interuniversitario Biotecnologie (CIB), 34012 Trieste, Italy
| | - Luigi Mansi
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy; (L.M.); (G.P.)
| | - Graziano Pesole
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy; (L.M.); (G.P.)
- Institute of Biomembranes and Bioenergetics, National Research Council, Via Amendola 122/O, 70126 Bari, Italy
- Consorzio Interuniversitario Biotecnologie (CIB), 34012 Trieste, Italy
| |
Collapse
|
129
|
Comar CE, Otter CJ, Pfannenstiel J, Doerger E, Renner DM, Tan LH, Perlman S, Cohen NA, Fehr AR, Weiss SR. MERS-CoV endoribonuclease and accessory proteins jointly evade host innate immunity during infection of lung and nasal epithelial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34981054 DOI: 10.1101/2021.12.20.473564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) emerged into humans in 2012, causing highly lethal respiratory disease. The severity of disease may be in part because MERS-CoV is adept at antagonizing early innate immune pathways - interferon (IFN) production and signaling, protein kinase R (PKR), and oligoadenylate synthetase ribonuclease L (OAS/RNase L) - generated in response to viral double-stranded (ds)RNA generated during genome replication. This is in contrast to SARS-CoV-2, which we recently reported activates PKR and RNase L and to some extent, IFN signaling. We previously found that MERS-CoV accessory proteins NS4a (dsRNA binding protein) and NS4b (phosphodiesterase) could weakly suppress these pathways, but ablation of each had minimal effect on virus replication. Here we investigated the antagonist effects of the conserved coronavirus endoribonuclease (EndoU), in combination with NS4a or NS4b. Inactivation of EndoU catalytic activity alone in a recombinant MERS-CoV caused little if any effect on activation of the innate immune pathways during infection. However, infection with recombinant viruses containing combined mutations with inactivation of EndoU and deletion of NS4a or inactivation of the NS4b phosphodiesterase promoted robust activation of the dsRNA-induced innate immune pathways. This resulted in ten-fold attenuation of replication in human lung derived A549 and primary nasal cells. Furthermore, replication of these recombinant viruses could be rescued to the level of WT MERS-CoV by knockout of host immune mediators MAVS, PKR, or RNase L. Thus, EndoU and accessory proteins NS4a and NS4b together suppress dsRNA-induced innate immunity during MERS-CoV infection in order to optimize viral replication. IMPORTANCE Middle East Respiratory Syndrome Coronavirus (MERS-CoV) causes highly lethal respiratory disease. MERS-CoV encodes several innate immune antagonists, accessory proteins NS4a and NS4b unique to the merbeco lineage and the nsp15 protein endoribonuclease (EndoU), conserved among all coronaviruses. While mutation of each antagonist protein alone has little effect on innate immunity, infections with recombinant MERS-CoVs with mutations of EndoU in combination with either NS4a or NS4b, activate innate signaling pathways and are attenuated for replication. Our data indicate that EndoU and accessory proteins NS4a and NS4b together suppress innate immunity during MERS-CoV infection, to optimize viral replication. This is in contrast to SARS-CoV-2 which activates these pathways and consistent with greater mortality observed during MERS-CoV infection compared to SARS-CoV-2.
Collapse
|
130
|
Kibler KV, Szczerba M, Lake D, Roeder AJ, Rahman M, Hogue BG, Roy Wong LY, Perlman S, Li Y, Jacobs BL. Intranasal immunization with a vaccinia virus vaccine vector expressing pre-fusion stabilized SARS-CoV-2 spike fully protected mice against lethal challenge with the heavily mutated mouse-adapted SARS2-N501Y MA30 strain of SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34909775 DOI: 10.1101/2021.07.28.454201] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
The Omicron SARS-CoV-2 variant has been designated a variant of concern because its spike protein is heavily mutated. In particular, Omicron spike is mutated at 5 positions (K417, N440, E484, Q493 and N501) that have been associated with escape from neutralizing antibodies induced by either infection with or immunization against the early Washington strain of SARS-CoV-2. The mouse-adapted strain of SARS-CoV-2, SARS2-N501Y MA30 , contains a spike that is also heavily mutated, with mutations at 4 of the 5 positions in Omicron spike associated with neutralizing antibody escape (K417, E484, Q493 and N501). In this manuscript we show that intranasal immunization with a pre-fusion stabilized Washington strain spike, expressed from a highly attenuated, replication-competent vaccinia virus construct, NYVAC-KC, fully protected mice against disease and death from SARS2-N501Y MA30 . Similarly, immunization by scarification on the skin fully protected against death, but not from mild disease. This data demonstrates that Washington strain spike, when expressed from a highly attenuated, replication-competent poxvirus, administered without parenteral injection can fully protect against the heavily mutated mouse-adapted SARS2-N501Y MA30 .
Collapse
Affiliation(s)
- Karen V Kibler
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA
| | - Mateusz Szczerba
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA
| | - Douglas Lake
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Alexa J Roeder
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Masmudur Rahman
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA
| | - Brenda G Hogue
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Lok-Yin Roy Wong
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | - Yize Li
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Bertram L Jacobs
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
131
|
Kibler KV, Szczerba M, Lake D, Roeder AJ, Rahman M, Hogue BG, Roy Wong LY, Perlman S, Li Y, Jacobs BL. Intranasal immunization with a vaccinia virus vaccine vector expressing pre-fusion stabilized SARS-CoV-2 spike fully protected mice against lethal challenge with the heavily mutated mouse-adapted SARS2-N501Y MA30 strain of SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.12.06.471483. [PMID: 34909775 PMCID: PMC8669842 DOI: 10.1101/2021.12.06.471483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The Omicron SARS-CoV-2 variant has been designated a variant of concern because its spike protein is heavily mutated. In particular, Omicron spike is mutated at 5 positions (K417, N440, E484, Q493 and N501) that have been associated with escape from neutralizing antibodies induced by either infection with or immunization against the early Washington strain of SARS-CoV-2. The mouse-adapted strain of SARS-CoV-2, SARS2-N501Y MA30 , contains a spike that is also heavily mutated, with mutations at 4 of the 5 positions in Omicron spike associated with neutralizing antibody escape (K417, E484, Q493 and N501). In this manuscript we show that intranasal immunization with a pre-fusion stabilized Washington strain spike, expressed from a highly attenuated, replication-competent vaccinia virus construct, NYVAC-KC, fully protected mice against disease and death from SARS2-N501Y MA30 . Similarly, immunization by scarification on the skin fully protected against death, but not from mild disease. This data demonstrates that Washington strain spike, when expressed from a highly attenuated, replication-competent poxvirus, administered without parenteral injection can fully protect against the heavily mutated mouse-adapted SARS2-N501Y MA30 .
Collapse
Affiliation(s)
- Karen V. Kibler
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA
| | - Mateusz Szczerba
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA
| | - Douglas Lake
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Alexa J. Roeder
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Masmudur Rahman
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA
| | - Brenda G. Hogue
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Lok-Yin Roy Wong
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | - Yize Li
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Bertram L. Jacobs
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
132
|
Gao L, Li GS, Li JD, He J, Zhang Y, Zhou HF, Kong JL, Chen G. Identification of the susceptibility genes for COVID-19 in lung adenocarcinoma with global data and biological computation methods. Comput Struct Biotechnol J 2021; 19:6229-6239. [PMID: 34840672 PMCID: PMC8605816 DOI: 10.1016/j.csbj.2021.11.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/07/2021] [Accepted: 11/16/2021] [Indexed: 12/19/2022] Open
Abstract
Introduction The risk of infection with COVID-19 is high in lung adenocarcinoma (LUAD) patients, and there is a dearth of studies on the molecular mechanism underlying the high susceptibility of LUAD patients to COVID-19 from the perspective of the global differential expression landscape. Objectives To fill the research void on the molecular mechanism underlying the high susceptibility of LUAD patients to COVID-19 from the perspective of the global differential expression landscape. Methods Herein, we identified genes, specifically the differentially expressed genes (DEGs), correlated with the susceptibility of LUAD patients to COVID-19. These were obtained by calculating standard mean deviation (SMD) values for 49 SARS-CoV-2-infected LUAD samples and 24 non-affected LUAD samples, as well as 3931 LUAD samples and 3027 non-cancer lung samples from 40 pooled RNA-seq and microarray datasets. Hub susceptibility genes significantly related to COVID-19 were further selected by weighted gene co-expression network analysis. Then, the hub genes were further analyzed via an examination of their clinical significance in multiple datasets, a correlation analysis of the immune cell infiltration level, and their interactions with the interactome sets of the A549 cell line. Results A total of 257 susceptibility genes were identified, and these genes were associated with RNA splicing, mitochondrial functions, and proteasomes. Ten genes, MEA1, MRPL24, PPIH, EBNA1BP2, MRTO4, RABEPK, TRMT112, PFDN2, PFDN6, and NDUFS3, were confirmed to be the hub susceptibility genes for COVID-19 in LUAD patients, and the hub susceptibility genes were significantly correlated with the infiltration of multiple immune cells. Conclusion In conclusion, the susceptibility genes for COVID-19 in LUAD patients discovered in this study may increase our understanding of the high risk of COVID-19 in LUAD patients.
Collapse
Key Words
- CI, confidence interval
- COVID-19
- COVID-19, coronavirus disease 2019
- DEG
- DEG, differentially expressed genes
- FC, fold change
- FPKM, fragments per kilobase per million
- GTEx, Genotype-tissue Expression
- HPA, human protein atlas
- IHC, immunohistochemistry
- Immune infiltration
- LUAD
- LUAD, lung adenocarcinoma
- PPI, protein-to-protein interaction
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- SMD, standard mean difference
- SROC, summarized receiver’s operating characteristics
- Susceptibility
- TF, transcription factor
- TPM, transcripts per million reads
- WGCNA
- WGCNA, weighted gene co-expression network analysis
Collapse
Affiliation(s)
- Li Gao
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Rd, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Guo-Sheng Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Rd, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Jian-Di Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Rd, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Juan He
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Rd, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Yu Zhang
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324. Jingwu Rd, Jinan, Shandong 250021, PR China
| | - Hua-Fu Zhou
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Rd, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Jin-Liang Kong
- Ward of Pulmonary and Critical Care Medicine, Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Rd, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Rd, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| |
Collapse
|
133
|
Abstract
Since the start of the pandemic, SARS-CoV-2 has infected almost 200 million human hosts and is set to encounter and gain entry in many more in the coming months. As the coronavirus flourish, the evolutionary pressure selects those variants that can complete the infection cycle faster and reproduce in large numbers compared to others. This increase in infectivity and transmissibility coupled with the immune response from high viral load may cause moderate to severe disease. Whether this leads to enhanced virulence in the prevalent Alpha and Delta variants is still not clear. This review describes the different types of SARS-CoV-2 variants that are now prevalent, their emergence, the mutations responsible for their growth advantages, and how they affect vaccine efficacy and increase chances of reinfection. Finally, we have also summarized the efforts made to recognize and predict the mutations, which can cause immune escape and track their emergence through impactful genomic surveillance.
Collapse
MESH Headings
- Angiotensin-Converting Enzyme 2/chemistry
- Angiotensin-Converting Enzyme 2/genetics
- Angiotensin-Converting Enzyme 2/immunology
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/genetics
- Antibodies, Neutralizing/immunology
- Binding Sites
- COVID-19/epidemiology
- COVID-19/pathology
- COVID-19/transmission
- COVID-19/virology
- COVID-19 Vaccines
- Genome, Viral
- Humans
- Immune Evasion/genetics
- Models, Molecular
- Mutation
- Phylogeny
- Protein Binding
- Protein Interaction Domains and Motifs
- Receptors, Virus/chemistry
- Receptors, Virus/genetics
- Receptors, Virus/immunology
- SARS-CoV-2/classification
- SARS-CoV-2/genetics
- SARS-CoV-2/immunology
- SARS-CoV-2/pathogenicity
- Serine Endopeptidases/chemistry
- Serine Endopeptidases/genetics
- Serine Endopeptidases/immunology
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Virulence
Collapse
Affiliation(s)
- Raju Mukherjee
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India
| | - Rohit Satardekar
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India
| |
Collapse
|
134
|
Abstract
SARS-CoV-2, the etiological agent of COVID-19, is characterized by a delay in type I interferon (IFN-I)-mediated antiviral defenses alongside robust cytokine production. Here, we investigate the underlying molecular basis for this imbalance and implicate virus-mediated activation of NF-κB in the absence of other canonical IFN-I-related transcription factors. Epigenetic and single-cell transcriptomic analyses show a selective NF-κB signature that was most prominent in infected cells. Disruption of NF-κB signaling through the silencing of the NF-κB transcription factor p65 or p50 resulted in loss of virus replication that was rescued upon reconstitution. These findings could be further corroborated with the use of NF-κB inhibitors, which reduced SARS-CoV-2 replication in vitro. These data suggest that the robust cytokine production in response to SARS-CoV-2, despite a diminished IFN-I response, is the product of a dependency on NF-κB for viral replication. IMPORTANCE The COVID-19 pandemic has caused significant mortality and morbidity around the world. Although effective vaccines have been developed, large parts of the world remain unvaccinated while new SARS-CoV-2 variants keep emerging. Furthermore, despite extensive efforts and large-scale drug screenings, no fully effective antiviral treatment options have been discovered yet. Therefore, it is of the utmost importance to gain a better understanding of essential factors driving SARS-CoV-2 replication to be able to develop novel approaches to target SARS-CoV-2 biology.
Collapse
|
135
|
Burke JM, St Clair LA, Perera R, Parker R. SARS-CoV-2 infection triggers widespread host mRNA decay leading to an mRNA export block. RNA (NEW YORK, N.Y.) 2021; 27:1318-1329. [PMID: 34315815 PMCID: PMC8522697 DOI: 10.1261/rna.078923.121] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 05/16/2023]
Abstract
The transcriptional induction of interferon (IFN) genes is a key feature of the mammalian antiviral response that limits viral replication and dissemination. A hallmark of severe COVID-19 disease caused by SARS-CoV-2 is the low presence of IFN proteins in patient serum despite elevated levels of IFN-encoding mRNAs, indicative of post-transcriptional inhibition of IFN protein production. Here, we performed single-molecule RNA visualization to examine the expression and localization of host mRNAs during SARS-CoV-2 infection. Our data show that the biogenesis of type I and type III IFN mRNAs is inhibited at multiple steps during SARS-CoV-2 infection. First, translocation of the interferon regulatory factor 3 (IRF3) transcription factor to the nucleus is limited in response to SARS-CoV-2, indicating that SARS-CoV-2 inhibits RLR-MAVS signaling and thus weakens transcriptional induction of IFN genes. Second, we observed that IFN mRNAs primarily localize to the site of transcription in most SARS-CoV-2 infected cells, suggesting that SARS-CoV-2 either inhibits the release of IFN mRNAs from their sites of transcription and/or triggers decay of IFN mRNAs in the nucleus upon exiting the site of transcription. Lastly, nuclear-cytoplasmic transport of IFN mRNAs is inhibited during SARS-CoV-2 infection, which we propose is a consequence of widespread degradation of host cytoplasmic basal mRNAs in the early stages of SARS-CoV-2 replication by the SARS-CoV-2 Nsp1 protein, as well as the host antiviral endoribonuclease, RNase L. Importantly, IFN mRNAs can escape SARS-CoV-2-mediated degradation if they reach the cytoplasm, making rescue of mRNA export a viable means for promoting the immune response to SARS-CoV-2.
Collapse
Affiliation(s)
- James M Burke
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80303, USA
| | - Laura A St Clair
- Center for Vector-Borne and Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, USA
- Center for Metabolism of Infectious Diseases, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Rushika Perera
- Center for Vector-Borne and Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, USA
- Center for Metabolism of Infectious Diseases, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Roy Parker
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
| |
Collapse
|
136
|
Kalwat MA, Scheuner D, Rodrigues-dos-Santos K, Eizirik DL, Cobb MH. The Pancreatic ß-cell Response to Secretory Demands and Adaption to Stress. Endocrinology 2021; 162:bqab173. [PMID: 34407177 PMCID: PMC8459449 DOI: 10.1210/endocr/bqab173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Indexed: 02/06/2023]
Abstract
Pancreatic β cells dedicate much of their protein translation capacity to producing insulin to maintain glucose homeostasis. In response to increased secretory demand, β cells can compensate by increasing insulin production capability even in the face of protracted peripheral insulin resistance. The ability to amplify insulin secretion in response to hyperglycemia is a critical facet of β-cell function, and the exact mechanisms by which this occurs have been studied for decades. To adapt to the constant and fast-changing demands for insulin production, β cells use the unfolded protein response of the endoplasmic reticulum. Failure of these compensatory mechanisms contributes to both type 1 and 2 diabetes. Additionally, studies in which β cells are "rested" by reducing endogenous insulin demand have shown promise as a therapeutic strategy that could be applied more broadly. Here, we review recent findings in β cells pertaining to the metabolic amplifying pathway, the unfolded protein response, and potential advances in therapeutics based on β-cell rest.
Collapse
Affiliation(s)
- Michael A Kalwat
- Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA
| | - Donalyn Scheuner
- Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA
| | | | - Decio L Eizirik
- Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Melanie H Cobb
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
137
|
Mousavi SR, Sajjadi MS, Khosravian F, Feizbakhshan S, Salmanizadeh S, Esfahani ZT, Beni FA, Arab A, Kazemi M, Shahzamani K, Sami R, Hosseinzadeh M, Salehi M, Lotfi H. Dysregulation of RNA interference components in COVID-19 patients. BMC Res Notes 2021; 14:401. [PMID: 34715923 PMCID: PMC8554738 DOI: 10.1186/s13104-021-05816-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/19/2021] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the novel coronavirus causing severe respiratory illness (COVID-19). This virus was initially identified in Wuhan city, a populated area of the Hubei province in China, and still remains one of the major global health challenges. RNA interference (RNAi) is a mechanism of post-transcriptional gene silencing that plays a crucial role in innate viral defense mechanisms by inhibiting the virus replication as well as expression of various viral proteins. Dicer, Drosha, Ago2, and DGCR8 are essential components of the RNAi system, which is supposed to be dysregulated in COVID-19 patients. This study aimed to assess the expression level of the mentioned mRNAs in COVID-19patients compared to healthy individuals. RESULTS Our findings demonstrated that the expression of Dicer, Drosha, and Ago2 was statistically altered in COVID-19 patients compared to healthy subjects. Ultimately, the RNA interference mechanism as a crucial antiviral defense system was suggested to be dysregulated in COVID-19 patients.
Collapse
Affiliation(s)
- Seyyed Reza Mousavi
- Cellular, Molecular and Genetics Research Center, Isfahan University of Medical Sciences, 8175954319, Isfahan, Iran
- Medical Genetics Research Center of Genome, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Sadat Sajjadi
- Medical Genetics Laboratory, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farinaz Khosravian
- Cellular, Molecular and Genetics Research Center, Isfahan University of Medical Sciences, 8175954319, Isfahan, Iran
- Medical Genetics Research Center of Genome, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sara Feizbakhshan
- Cellular, Molecular and Genetics Research Center, Isfahan University of Medical Sciences, 8175954319, Isfahan, Iran
- Medical Genetics Research Center of Genome, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sharareh Salmanizadeh
- Cellular, Molecular and Genetics Research Center, Isfahan University of Medical Sciences, 8175954319, Isfahan, Iran
- Medical Genetics Research Center of Genome, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Taherian Esfahani
- Medical Genetics Laboratory, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Faeze Ahmadi Beni
- Cellular, Molecular and Genetics Research Center, Isfahan University of Medical Sciences, 8175954319, Isfahan, Iran
- Medical Genetics Research Center of Genome, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ameneh Arab
- Noor Educational and Medical Center،Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Kazemi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kiana Shahzamani
- Isfahan Gastroenterology and Hepatology Research Center (lGHRC), Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ramin Sami
- Department of Pulmonology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Majid Hosseinzadeh
- Craniofacial and Cleft Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mansoor Salehi
- Cellular, Molecular and Genetics Research Center, Isfahan University of Medical Sciences, 8175954319, Isfahan, Iran.
- Medical Genetics Research Center of Genome, Isfahan University of Medical Sciences, Isfahan, Iran.
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Hajie Lotfi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
138
|
Jung HE, Lee HK. Current Understanding of the Innate Control of Toll-like Receptors in Response to SARS-CoV-2 Infection. Viruses 2021; 13:2132. [PMID: 34834939 PMCID: PMC8622567 DOI: 10.3390/v13112132] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023] Open
Abstract
The global coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection, threatens the entire world. It has affected every aspect of life and increased the burden on both healthcare and socioeconomic systems. Current studies have revealed that excessive inflammatory immune responses are responsible for the severity of COVID-19, which suggests that anti-inflammatory drugs may be promising therapeutic treatments. However, there are currently a limited number of approved therapeutics for COVID-19. Toll-like receptors (TLRs), which recognize microbial components derived from invading pathogens, are involved in both the initiation of innate responses against SARS-CoV-2 infection and the hyperinflammatory phenotype of COVID-19. In this review, we provide current knowledge on the pivotal role of TLRs in immune responses against SARS-CoV-2 infection and demonstrate the potential effectiveness of TLR-targeting drugs on the control of hyperinflammation in patients with COVID-19.
Collapse
Affiliation(s)
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea;
| |
Collapse
|
139
|
Zhuang X, Tsukuda S, Wrensch F, Wing PA, Schilling M, Harris JM, Borrmann H, Morgan SB, Cane JL, Mailly L, Thakur N, Conceicao C, Sanghani H, Heydmann L, Bach C, Ashton A, Walsh S, Tan TK, Schimanski L, Huang KYA, Schuster C, Watashi K, Hinks TS, Jagannath A, Vausdevan SR, Bailey D, Baumert TF, McKeating JA. The circadian clock component BMAL1 regulates SARS-CoV-2 entry and replication in lung epithelial cells. iScience 2021; 24:103144. [PMID: 34545347 PMCID: PMC8443536 DOI: 10.1016/j.isci.2021.103144] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022] Open
Abstract
The coronavirus disease 2019 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) coronavirus, is a global health issue with unprecedented challenges for public health. SARS-CoV-2 primarily infects cells of the respiratory tract via spike glycoprotein binding to angiotensin-converting enzyme (ACE2). Circadian rhythms coordinate an organism's response to its environment and can regulate host susceptibility to virus infection. We demonstrate that silencing the circadian regulator Bmal1 or treating lung epithelial cells with the REV-ERB agonist SR9009 reduces ACE2 expression and inhibits SARS-CoV-2 entry and replication. Importantly, treating infected cells with SR9009 limits SARS-CoV-2 replication and secretion of infectious particles, showing that post-entry steps in the viral life cycle are influenced by the circadian system. Transcriptome analysis revealed that Bmal1 silencing induced interferon-stimulated gene transcripts in Calu-3 lung epithelial cells, providing a mechanism for the circadian pathway to limit SARS-CoV-2 infection. Our study highlights alternative approaches to understand and improve therapeutic targeting of SARS-CoV-2.
Collapse
Affiliation(s)
- Xiaodong Zhuang
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Senko Tsukuda
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Florian Wrensch
- Université de Strasbourg, Strasbourg, France and INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
| | - Peter A.C. Wing
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Mirjam Schilling
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - James M. Harris
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Helene Borrmann
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sophie B. Morgan
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, Nuffield Department of Medicine, Experimental Medicine, University of Oxford, UK
| | - Jennifer L. Cane
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, Nuffield Department of Medicine, Experimental Medicine, University of Oxford, UK
| | - Laurent Mailly
- Université de Strasbourg, Strasbourg, France and INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
| | - Nazia Thakur
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, UK
| | - Carina Conceicao
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, UK
| | - Harshmeena Sanghani
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Laura Heydmann
- Université de Strasbourg, Strasbourg, France and INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
| | - Charlotte Bach
- Université de Strasbourg, Strasbourg, France and INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
| | - Anna Ashton
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Steven Walsh
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Tiong Kit Tan
- MRC Human Immunology Unit, MRC Weatherall Institute, John Radcliffe Hospital, Oxford 17 OX3 9DS, UK
| | - Lisa Schimanski
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
- MRC Human Immunology Unit, MRC Weatherall Institute, John Radcliffe Hospital, Oxford 17 OX3 9DS, UK
| | - Kuan-Ying A. Huang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University and Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Catherine Schuster
- Université de Strasbourg, Strasbourg, France and INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
- Department of Applied Biological Science, Tokyo University of Science, Noda 278-8510, Japan
| | - Timothy S.C. Hinks
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, Nuffield Department of Medicine, Experimental Medicine, University of Oxford, UK
| | - Aarti Jagannath
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - Dalan Bailey
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, UK
| | - Thomas F. Baumert
- Université de Strasbourg, Strasbourg, France and INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Pole Hépato-digestif, IHU, Hopitaux Universitaires de Strasbourg, Strasbourg, France
| | - Jane A. McKeating
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| |
Collapse
|
140
|
Won SY, Seol IC, Yoo HR, Kim YS. Antiviral Effect of Hyunggaeyungyo-Tang on A549 Cells Infected with Human Coronavirus. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:4494389. [PMID: 34659433 PMCID: PMC8514924 DOI: 10.1155/2021/4494389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/08/2021] [Accepted: 08/30/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND Herbal medicine is widely recommended to treat viral infectious diseases. Over 123,000,000 individuals have been infected with the coronavirus since a worldwide pandemic was declared in March 2020. We conducted this research to confirm the potential of herbal medicine as a treatment for coronavirus. METHODS We infected the A549 cell line with betacoronavirus OC43 and then treated it with 100 μg/mL Hyunggaeyungyo-tang (HGYGT) or distilled water with a control of HGYGT. We measured the mRNA expression levels of proinflammatory cytokines and interferon stimulated genes (ISGs) to confirm the effectiveness of HGYGT upon coronavirus infection. RESULTS We found that the effects of HYGYT decrease the expression level of pPKR, peIF2α, IFI6, IFI44, IFI44L, IFI27, IRF7, OASL, and ISG15 when administered to cells with coronavirus infection. The expressions of IL-1, TNF-α, COX-2, NF-κB, iNOS, and IKK mRNA were also significantly decreased in the HGYGT group than in the control group. CONCLUSION Through the reduction of the amount of coronavirus RNA, our research indicates that HGYGT has antiviral effects. The reduction of IKK and iNOS mRNA levels indicate that HGYGT reduces coronavirus RNA expression and may inhibit the replication of coronavirus by acting on NF-kB/Rel pathways to protect oxidative injury. In addition, decreases in mRNA expression levels of proinflammatory cytokines indicate that the HGYGT may relieve the symptoms of coronavirus infections.
Collapse
Affiliation(s)
- Seo-Young Won
- Department of Korean Internal Medicine, College of Korean Medicine Daejeon University, Daejeon KS015, Republic of Korea
- Department of Korean Internal Medicine, Cheonan Korean Medicine Hospital of Daejeon University, Cheonan-Si KS002, Republic of Korea
| | - In-Chan Seol
- Department of Korean Internal Medicine, College of Korean Medicine Daejeon University, Daejeon KS015, Republic of Korea
- Department of Korean Internal Medicine, Daejeon Korean Medicine Hospital of Daejeon University, Daejeon KS015, Republic of Korea
| | - Ho-Ryong Yoo
- Department of Korean Internal Medicine, College of Korean Medicine Daejeon University, Daejeon KS015, Republic of Korea
- Department of Korean Internal Medicine, Daejeon Korean Medicine Hospital of Daejeon University, Daejeon KS015, Republic of Korea
| | - Yoon-Sik Kim
- Department of Korean Internal Medicine, College of Korean Medicine Daejeon University, Daejeon KS015, Republic of Korea
- Department of Korean Internal Medicine, Cheonan Korean Medicine Hospital of Daejeon University, Cheonan-Si KS002, Republic of Korea
| |
Collapse
|
141
|
Dela Justina V, Giachini FR, Priviero F, Webb RC. COVID-19 and hypertension: Is there a role for dsRNA and activation of Toll-like receptor 3? Vascul Pharmacol 2021; 140:106861. [PMID: 33845201 PMCID: PMC8061373 DOI: 10.1016/j.vph.2021.106861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/15/2021] [Accepted: 04/06/2021] [Indexed: 02/06/2023]
Abstract
The virus responsible for the coronavirus disease of 2019 (COVID-19) is the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Evidences suggest that COVID-19 could trigger cardiovascular complications in apparently healthy patients. Coronaviruses are enveloped positive-strand RNA viruses acting as a pathogen-associated molecular pattern (PAMP)/ danger-associated molecular patterns (DAMP). Interestingly, Toll-like receptor (TLR) 3 recognize both PAMPs DAMPs and is activated by viral double-stranded RNA (dsRNA) leading to activation of TIR receptor domain-containing adaptor inducing IFN-β (TRIF) dependent pathway. New evidence has shown a link between virus dsRNA and increased BP. Hence, we hypothesize that COVID-19 infection may be over activating the TLR3 through dsRNA, evoking further damage to the patients, leading to vascular inflammation and increased blood pressure, favoring the development of several cardiovascular complications, including hypertension.
Collapse
Affiliation(s)
- Vanessa Dela Justina
- Graduate Program in Biological Sciences, Federal University of Goiás, Goiânia, Brazil.
| | - Fernanda R Giachini
- Graduate Program in Biological Sciences, Federal University of Goiás, Goiânia, Brazil; Institute of Health Sciences and Health, Universidad Federal De Mato Grosso, Barra Do Garcas, Brazil
| | - Fernanda Priviero
- Cardiovascular Translational Research Center - School of Medicine, University of South Carolina, Columbia, SC, United States
| | - R Clinton Webb
- Cardiovascular Translational Research Center - School of Medicine, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
142
|
Christie MJ, Irving AT, Forster SC, Marsland BJ, Hansbro PM, Hertzog PJ, Nold-Petry CA, Nold MF. Of bats and men: Immunomodulatory treatment options for COVID-19 guided by the immunopathology of SARS-CoV-2 infection. Sci Immunol 2021; 6:eabd0205. [PMID: 34533977 DOI: 10.1126/sciimmunol.abd0205] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Michael J Christie
- Department of Paediatrics, Monash University, Melbourne, Victoria 3168, Australia.,Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria 3168, Australia
| | - Aaron T Irving
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
| | - Samuel C Forster
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Molecular and Translational Sciences, Monash University, Melbourne, Victoria, Australia
| | - Benjamin J Marsland
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia.,Centre for Inflammation, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Paul J Hertzog
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Molecular and Translational Sciences, Monash University, Melbourne, Victoria, Australia
| | - Claudia A Nold-Petry
- Department of Paediatrics, Monash University, Melbourne, Victoria 3168, Australia.,Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria 3168, Australia
| | - Marcel F Nold
- Department of Paediatrics, Monash University, Melbourne, Victoria 3168, Australia.,Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria 3168, Australia.,Monash Newborn, Monash Children's Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
143
|
Immunobiotic Lactobacilli Improve Resistance of Respiratory Epithelial Cells to SARS-CoV-2 Infection. Pathogens 2021; 10:pathogens10091197. [PMID: 34578229 PMCID: PMC8472143 DOI: 10.3390/pathogens10091197] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/02/2021] [Accepted: 09/14/2021] [Indexed: 12/18/2022] Open
Abstract
Previously, we reported that immunomodulatory lactobacilli, nasally administered, beneficially regulated the lung antiviral innate immune response induced by Toll-like receptor 3 (TLR3) activation and improved protection against the respiratory pathogens, influenza virus and respiratory syncytial virus in mice. Here, we assessed the immunomodulatory effects of viable and non-viable Lactiplantibacillus plantarum strains in human respiratory epithelial cells (Calu-3 cells) and the capacity of these immunobiotic lactobacilli to reduce their susceptibility to the acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Immunobiotic L. plantarum MPL16 and CRL1506 differentially modulated IFN-β, IL-6, CXCL8, CCL5 and CXCL10 production and IFNAR2, DDX58, Mx1 and OAS1 expression in Calu-3 cells stimulated with the TLR3 agonist poly(I:C). Furthermore, the MPL16 and CRL1506 strains increased the resistance of Calu-3 cells to the challenge with SARS-CoV-2. L. plantarum MPL16 induced these beneficial effects more efficiently than the CRL1506 strain. Of note, neither non-viable MPL16 and CRL1506 strains nor the non-immunomodulatory strains L. plantarum CRL1905 and MPL18 could modify the resistance of Calu-3 cells to SARS-CoV-2 infection or the immune response to poly(I:C) challenge. To date, the potential beneficial effects of immunomodulatory probiotics on SARS-CoV-2 infection and COVID-19 outcome have been extrapolated from studies carried out in the context of other viral pathogens. To the best of our knowledge, this is the first demonstration of the ability of immunomodulatory lactobacilli to positively influence the replication of the new coronavirus. Further mechanistic studies and in vivo experiments in animal models of SARS-CoV-2 infection are necessary to identify specific strains of beneficial immunobiotic lactobacilli like L. plantarum MPL16 or CRL1506 for the prevention or treatment of the COVID-19.
Collapse
|
144
|
Tomchaney M, Contoli M, Mayo J, Baraldo S, Li S, Cabel CR, Bull DA, Lick S, Malo J, Knoper S, Kim SS, Tram J, Rojas-Quintero J, Kraft M, Ledford JG, Tesfaigzi Y, Martinez FD, Thorne CA, Kheradmand F, Campos SK, Papi A, Polverino F. Paradoxical effects of cigarette smoke and COPD on SARS-CoV-2 infection and disease. BMC Pulm Med 2021; 21:275. [PMID: 34425811 PMCID: PMC8381712 DOI: 10.1186/s12890-021-01639-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/11/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND How cigarette smoke (CS) and chronic obstructive pulmonary disease (COPD) affect severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infection and severity is controversial. We investigated the effects of COPD and CS on the expression of SARS-CoV-2 entry receptor ACE2 in vivo in COPD patients and controls and in CS-exposed mice, and the effects of CS on SARS-CoV-2 infection in human bronchial epithelial cells in vitro. METHODS We quantified: (1) pulmonary ACE2 protein levels by immunostaining and ELISA, and both ACE2 and/or TMPRSS2 mRNA levels by RT-qPCR in two independent human cohorts; and (2) pulmonary ACE2 protein levels by immunostaining and ELISA in C57BL/6 WT mice exposed to air or CS for up to 6 months. The effects of CS exposure on SARS-CoV-2 infection were evaluated after in vitro infection of Calu-3 cells and differentiated human bronchial epithelial cells (HBECs), respectively. RESULTS ACE2 protein and mRNA levels were decreased in peripheral airways from COPD patients versus controls but similar in central airways. Mice exposed to CS had decreased ACE2 protein levels in their bronchial and alveolar epithelia versus air-exposed mice. CS treatment decreased viral replication in Calu-3 cells, as determined by immunofluorescence staining for replicative double-stranded RNA (dsRNA) and western blot for viral N protein. Acute CS exposure decreased in vitro SARS-CoV-2 replication in HBECs, as determined by plaque assay and RT-qPCR. CONCLUSIONS ACE2 levels were decreased in both bronchial and alveolar epithelial cells from COPD patients versus controls, and from CS-exposed versus air-exposed mice. CS-pre-exposure potently inhibited SARS-CoV-2 replication in vitro. These findings urge to investigate further the controversial effects of CS and COPD on SARS-CoV-2 infection.
Collapse
Affiliation(s)
- M Tomchaney
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, 85719, USA
| | - M Contoli
- Respiratory Unit, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - J Mayo
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, 85719, USA
| | - S Baraldo
- Department of Cardiological, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - S Li
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, USA
| | - C R Cabel
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, Tucson, USA
| | - D A Bull
- Thoracic Surgery, University of Arizona, Tucson, USA
| | - S Lick
- Thoracic Surgery, University of Arizona, Tucson, USA
| | - J Malo
- Thoracic Surgery, University of Arizona, Tucson, USA
| | - S Knoper
- Thoracic Surgery, University of Arizona, Tucson, USA
| | - S S Kim
- Thoracic Surgery, Northwester University, Chicago, IL, USA
| | - J Tram
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, 85719, USA
| | - J Rojas-Quintero
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - M Kraft
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, 85719, USA
| | - J G Ledford
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, 85719, USA
| | - Y Tesfaigzi
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - F D Martinez
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, 85719, USA
| | - C A Thorne
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, Tucson, USA
| | | | - S K Campos
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, USA
- BIO5 Institute, University of Arizona, Tucson, USA
| | - A Papi
- Respiratory Unit, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - F Polverino
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, 85719, USA.
- BIO5 Institute, University of Arizona, Tucson, USA.
| |
Collapse
|
145
|
Specificity and Mechanism of Coronavirus, Rotavirus, and Mammalian Two-Histidine Phosphoesterases That Antagonize Antiviral Innate Immunity. mBio 2021; 12:e0178121. [PMID: 34372695 PMCID: PMC8406329 DOI: 10.1128/mbio.01781-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The 2′,5′-oligoadenylate (2-5A)-dependent endoribonuclease, RNase L, is a principal mediator of the interferon (IFN) antiviral response. Therefore, the regulation of cellular levels of 2-5A is a key point of control in antiviral innate immunity. Cellular 2-5A levels are determined by IFN-inducible 2′,5′-oligoadenylate synthetases (OASs) and by enzymes that degrade 2-5A. Importantly, many coronaviruses (CoVs) and rotaviruses encode 2-5A-degrading enzymes, thereby antagonizing RNase L and its antiviral effects. A-kinase-anchoring protein 7 (AKAP7), a mammalian counterpart, could possibly limit tissue damage from excessive or prolonged RNase L activation during viral infections or from self-double-stranded RNAs that activate OAS. We show that these enzymes, members of the two-histidine phosphoesterase (2H-PE) superfamily, constitute a subfamily referred here as 2′,5′-PEs. 2′,5′-PEs from the mouse CoV mouse hepatitis virus (MHV) (NS2), Middle East respiratory syndrome coronavirus (MERS-CoV) (NS4b), group A rotavirus (VP3), and mouse (AKAP7) were investigated for their evolutionary relationships and activities. While there was no activity against 3′,5′-oligoribonucleotides, they all cleaved 2′,5′-oligoadenylates efficiently but with variable activity against other 2′,5′-oligonucleotides. The 2′,5′-PEs are shown to be metal ion-independent enzymes that cleave trimer 2-5A (2′,5′-p3A3) producing mono- or diadenylates with 2′,3′-cyclic phosphate termini. Our results suggest that the elimination of 2-5A might be the sole function of viral 2′,5′-PEs, thereby promoting viral escape from innate immunity by preventing or limiting the activation of RNase L.
Collapse
|
146
|
Thorne LG, Reuschl A, Zuliani‐Alvarez L, Whelan MVX, Turner J, Noursadeghi M, Jolly C, Towers GJ. SARS-CoV-2 sensing by RIG-I and MDA5 links epithelial infection to macrophage inflammation. EMBO J 2021; 40:e107826. [PMID: 34101213 PMCID: PMC8209947 DOI: 10.15252/embj.2021107826] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 12/25/2022] Open
Abstract
SARS-CoV-2 infection causes broad-spectrum immunopathological disease, exacerbated by inflammatory co-morbidities. A better understanding of mechanisms underpinning virus-associated inflammation is required to develop effective therapeutics. Here, we discover that SARS-CoV-2 replicates rapidly in lung epithelial cells despite triggering a robust innate immune response through the activation of cytoplasmic RNA sensors RIG-I and MDA5. The inflammatory mediators produced during epithelial cell infection can stimulate primary human macrophages to enhance cytokine production and drive cellular activation. Critically, this can be limited by abrogating RNA sensing or by inhibiting downstream signalling pathways. SARS-CoV-2 further exacerbates the local inflammatory environment when macrophages or epithelial cells are primed with exogenous inflammatory stimuli. We propose that RNA sensing of SARS-CoV-2 in lung epithelium is a key driver of inflammation, the extent of which is influenced by the inflammatory state of the local environment, and that specific inhibition of innate immune pathways may beneficially mitigate inflammation-associated COVID-19.
Collapse
Affiliation(s)
- Lucy G Thorne
- Division of Infection and ImmunityUniversity College LondonLondonUK
| | | | | | | | - Jane Turner
- Division of Infection and ImmunityUniversity College LondonLondonUK
| | | | - Clare Jolly
- Division of Infection and ImmunityUniversity College LondonLondonUK
| | - Greg J Towers
- Division of Infection and ImmunityUniversity College LondonLondonUK
| |
Collapse
|
147
|
Thorne LG, Reuschl AK, Zuliani-Alvarez L, Whelan MVX, Turner J, Noursadeghi M, Jolly C, Towers GJ. SARS-CoV-2 sensing by RIG-I and MDA5 links epithelial infection to macrophage inflammation. EMBO J 2021; 40:e107826. [PMID: 34101213 DOI: 10.1101/2020.12.23.424169] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 05/18/2023] Open
Abstract
SARS-CoV-2 infection causes broad-spectrum immunopathological disease, exacerbated by inflammatory co-morbidities. A better understanding of mechanisms underpinning virus-associated inflammation is required to develop effective therapeutics. Here, we discover that SARS-CoV-2 replicates rapidly in lung epithelial cells despite triggering a robust innate immune response through the activation of cytoplasmic RNA sensors RIG-I and MDA5. The inflammatory mediators produced during epithelial cell infection can stimulate primary human macrophages to enhance cytokine production and drive cellular activation. Critically, this can be limited by abrogating RNA sensing or by inhibiting downstream signalling pathways. SARS-CoV-2 further exacerbates the local inflammatory environment when macrophages or epithelial cells are primed with exogenous inflammatory stimuli. We propose that RNA sensing of SARS-CoV-2 in lung epithelium is a key driver of inflammation, the extent of which is influenced by the inflammatory state of the local environment, and that specific inhibition of innate immune pathways may beneficially mitigate inflammation-associated COVID-19.
Collapse
Affiliation(s)
- Lucy G Thorne
- Division of Infection and Immunity, University College London, London, UK
| | | | | | - Matthew V X Whelan
- Division of Infection and Immunity, University College London, London, UK
| | - Jane Turner
- Division of Infection and Immunity, University College London, London, UK
| | - Mahdad Noursadeghi
- Division of Infection and Immunity, University College London, London, UK
| | - Clare Jolly
- Division of Infection and Immunity, University College London, London, UK
| | - Greg J Towers
- Division of Infection and Immunity, University College London, London, UK
| |
Collapse
|
148
|
Widera M, Wilhelm A, Toptan T, Raffel JM, Kowarz E, Roesmann F, Grözinger F, Siemund AL, Luciano V, Külp M, Reis J, Bracharz S, Pallas C, Ciesek S, Marschalek R. Generation of a Sleeping Beauty Transposon-Based Cellular System for Rapid and Sensitive Screening for Compounds and Cellular Factors Limiting SARS-CoV-2 Replication. Front Microbiol 2021; 12:701198. [PMID: 34394046 PMCID: PMC8362758 DOI: 10.3389/fmicb.2021.701198] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/28/2021] [Indexed: 12/18/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the acute respiratory disease COVID-19, which has become a global concern due to its rapid spread. The common methods to monitor and quantitate SARS-CoV-2 infectivity in cell culture are so far time-consuming and labor-intensive. Using the Sleeping Beauty transposase system, we generated a robust and versatile cellular infection model that allows SARS-CoV-2 infection experiments compatible for high-throughput and live cell imaging. The model is based on lung derived A549 cells, which show a profound interferon response and convenient cell culture characteristics. ACE2 and TMPRSS2 were introduced for constitutive expression (A549-AT). Subclones with varying levels of ACE2/TMPRSS2 were screened for optimal SARS-CoV-2 susceptibility. Furthermore, extensive evaluation demonstrated that SARS-CoV-2 infected A549-AT cells were distinguishable from mock-infected cells and already showed approximately 12 h post infection a clear signal to noise ratio in terms of cell roughness, fluorescence and a profound visible cytopathic effect. Moreover, due to the high transfection efficiency and proliferation capacity, Sleeping Beauty transposase-based overexpression cell lines with a second inducible fluorescence reporter cassette (eGFP) can be generated in a very short time, enabling the investigation of host and restriction factors in a doxycycline-inducible manner. Thus, the novel model cell line allows rapid and sensitive monitoring of SARS-CoV-2 infection and the screening for host factors essential for viral replication.
Collapse
Affiliation(s)
- Marek Widera
- Institute for Medical Virology, University Hospital Frankfurt am Main, Goethe University, Frankfurt am Main, Germany
| | - Alexander Wilhelm
- Institute for Medical Virology, University Hospital Frankfurt am Main, Goethe University, Frankfurt am Main, Germany.,Institute of Pharmaceutical Biology, Goethe University, Frankfurt am Main, Germany
| | - Tuna Toptan
- Institute for Medical Virology, University Hospital Frankfurt am Main, Goethe University, Frankfurt am Main, Germany
| | - Johanna M Raffel
- Institute for Medical Virology, University Hospital Frankfurt am Main, Goethe University, Frankfurt am Main, Germany
| | - Eric Kowarz
- Institute of Pharmaceutical Biology, Goethe University, Frankfurt am Main, Germany
| | - Fabian Roesmann
- Institute for Medical Virology, University Hospital Frankfurt am Main, Goethe University, Frankfurt am Main, Germany
| | - Finn Grözinger
- Institute for Medical Virology, University Hospital Frankfurt am Main, Goethe University, Frankfurt am Main, Germany
| | - Anna Lena Siemund
- Institute of Pharmaceutical Biology, Goethe University, Frankfurt am Main, Germany
| | - Vanessa Luciano
- Institute of Pharmaceutical Biology, Goethe University, Frankfurt am Main, Germany
| | - Marius Külp
- Institute of Pharmaceutical Biology, Goethe University, Frankfurt am Main, Germany
| | - Jennifer Reis
- Institute of Pharmaceutical Biology, Goethe University, Frankfurt am Main, Germany
| | - Silvia Bracharz
- Institute of Pharmaceutical Biology, Goethe University, Frankfurt am Main, Germany
| | - Christiane Pallas
- Institute for Medical Virology, University Hospital Frankfurt am Main, Goethe University, Frankfurt am Main, Germany
| | - Sandra Ciesek
- Institute for Medical Virology, University Hospital Frankfurt am Main, Goethe University, Frankfurt am Main, Germany.,German Center for Infection Research, Braunschweig, Germany.,Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch Translational Medicine and Pharmacology, Frankfurt am Main, Germany
| | - Rolf Marschalek
- Institute of Pharmaceutical Biology, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
149
|
Deguchi S, Serrano-Aroca Á, Tambuwala MM, Uhal BD, Brufsky AM, Takayama K. SARS-CoV-2 research using human pluripotent stem cells and organoids. Stem Cells Transl Med 2021; 10:1491-1499. [PMID: 34302450 PMCID: PMC8550698 DOI: 10.1002/sctm.21-0183] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/10/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
Experimental cell models are indispensable for clarifying the pathophysiology of coronavirus disease 2019 (COVID‐19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) infection, and for developing therapeutic agents. To recapitulate the symptoms and drug response of COVID‐19 patients in vitro, SARS‐CoV‐2 studies using physiologically relevant human embryonic stem (ES)/induced pluripotent stem (iPS) cell‐derived somatic cells and organoids are ongoing. These cells and organoids have been used to show that SARS‐CoV‐2 can infect and damage various organs including the lung, heart, brain, intestinal tract, kidney, and pancreas. They are also being used to develop COVID‐19 therapeutic agents, including evaluation of their antiviral efficacy and safety. The relationship between COVID‐19 aggravation and human genetic backgrounds has been investigated using genetically modified ES/iPS cells and patient‐derived iPS cells. This review summarizes the latest results and issues of SARS‐CoV‐2 research using human ES/iPS cell‐derived somatic cells and organoids.
Collapse
Affiliation(s)
- Sayaka Deguchi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, Valencia, 46001, Spain
| | - Murtaza M Tambuwala
- School of Pharmacy & Pharmaceutical Sciences, Ulster University, Londonderry, Northern Ireland, UK
| | - Bruce D Uhal
- Department of Physiology, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Adam M Brufsky
- University of Pittsburgh, Magee-Women's Hospital, Pittsburgh, Pennsylvania, 15213, USA
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| |
Collapse
|
150
|
Veluswamy P, Wacker M, Stavridis D, Reichel T, Schmidt H, Scherner M, Wippermann J, Michels G. The SARS-CoV-2/Receptor Axis in Heart and Blood Vessels: A Crisp Update on COVID-19 Disease with Cardiovascular Complications. Viruses 2021; 13:1346. [PMID: 34372552 PMCID: PMC8310117 DOI: 10.3390/v13071346] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 01/08/2023] Open
Abstract
The SARS-CoV-2 virus causing COVID-19 disease has emerged expeditiously in the world and has been declared pandemic since March 2020, by World Health Organization (WHO). The destructive effects of SARS-CoV-2 infection are increased among the patients with pre-existing chronic conditions and, in particular, this review focuses on patients with underlying cardiovascular complications. The expression pattern and potential functions of SARS-CoV-2 binding receptors and the attributes of SARS-CoV-2 virus tropism in a physio-pathological state of heart and blood vessel are precisely described. Of note, the atheroprotective role of ACE2 receptors is reviewed. A detailed description of the possible detrimental role of SARS-CoV-2 infection in terms of vascular leakage, including endothelial glycocalyx dysfunction and bradykinin 1 receptor stimulation is concisely stated. Furthermore, the potential molecular mechanisms underlying SARS-CoV-2 induced clot formation in association with host defense components, including activation of FXIIa, complements and platelets, endothelial dysfunction, immune cell responses with cytokine-mediated action are well elaborated. Moreover, a brief clinical update on patient with COVID-19 disease with underlying cardiovascular complications and those who had new onset of cardiovascular complications post-COVID-19 disease was also discussed. Taken together, this review provides an overview of the mechanistic aspects of SARS-CoV-2 induced devastating effects, in vital organs such as the heart and vessels.
Collapse
Affiliation(s)
- Priya Veluswamy
- Heart Surgery Research, Department of Cardiothoracic Surgery, Faculty of Medicine, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.W.); (D.S.); (M.S.); (J.W.)
| | - Max Wacker
- Heart Surgery Research, Department of Cardiothoracic Surgery, Faculty of Medicine, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.W.); (D.S.); (M.S.); (J.W.)
| | - Dimitrios Stavridis
- Heart Surgery Research, Department of Cardiothoracic Surgery, Faculty of Medicine, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.W.); (D.S.); (M.S.); (J.W.)
| | - Thomas Reichel
- Department of Cardiology, Diabetology and Infectiology, Klinikum Magdeburg, 39130 Magdeburg, Germany; (T.R.); (H.S.)
| | - Hendrik Schmidt
- Department of Cardiology, Diabetology and Infectiology, Klinikum Magdeburg, 39130 Magdeburg, Germany; (T.R.); (H.S.)
| | - Maximilian Scherner
- Heart Surgery Research, Department of Cardiothoracic Surgery, Faculty of Medicine, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.W.); (D.S.); (M.S.); (J.W.)
| | - Jens Wippermann
- Heart Surgery Research, Department of Cardiothoracic Surgery, Faculty of Medicine, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.W.); (D.S.); (M.S.); (J.W.)
| | - Guido Michels
- Department of Acute and Emergency Care, Sankt Antonius-Hospital Eschweiler, 52249 Eschweiler, Germany;
| |
Collapse
|