101
|
Rossetti CA, Galindo CL, Lawhon SD, Garner HR, Adams LG. Brucella melitensis global gene expression study provides novel information on growth phase-specific gene regulation with potential insights for understanding Brucella:host initial interactions. BMC Microbiol 2009; 9:81. [PMID: 19419566 PMCID: PMC2684542 DOI: 10.1186/1471-2180-9-81] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 05/06/2009] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Brucella spp. are the etiological agents of brucellosis, a zoonotic infectious disease that causes abortion in animals and chronic debilitating illness in humans. Natural Brucella infections occur primarily through an incompletely defined mechanism of adhesion to and penetration of mucosal epithelium. In this study, we characterized changes in genome-wide transcript abundance of the most and the least invasive growth phases of B. melitensis cultures to HeLa cells, as a preliminary approach for identifying candidate pathogen genes involved in invasion of epithelial cells. RESULTS B. melitensis at the late logarithmic phase of growth are more invasive to HeLa cells than mid-logarithmic or stationary growth phases. Microarray analysis of B. melitensis gene expression identified 414 up- and 40 down-regulated genes in late-log growth phase (the most invasive culture) compared to the stationary growth phase (the least invasive culture). As expected, the majority of up-regulated genes in late-log phase cultures were those associated with growth, including DNA replication, transcription, translation, intermediate metabolism, energy production and conversion, membrane transport, and biogenesis of the cell envelope and outer membrane; while the down-regulated genes were distributed among several functional categories. CONCLUSION This Brucella global expression profile study provides novel information on growth phase-specific gene expression. Further characterization of some genes found differentially expressed in the most invasive culture will likely bring new insights into the initial molecular interactions between Brucella and its host.
Collapse
Affiliation(s)
- Carlos A Rossetti
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77483-4467, USA.
| | | | | | | | | |
Collapse
|
102
|
Encheva V, Shah HN, Gharbia SE. Proteomic analysis of the adaptive response of Salmonella enterica serovar Typhimurium to growth under anaerobic conditions. MICROBIOLOGY-SGM 2009; 155:2429-2441. [PMID: 19389776 DOI: 10.1099/mic.0.026138-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In order to survive in the host and initiate infection, Salmonella enterica needs to undergo a transition between aerobic and anaerobic growth by modulating its central metabolic pathways. In this study, a comparative analysis of the proteome of S. enterica serovar Typhimurium grown in the presence or absence of oxygen was performed. The most prominent changes in expression were measured in a semiquantitative manner using difference in-gel electrophoresis (DIGE) to reveal the main protein factors involved in the adaptive response to anaerobiosis. A total of 38 proteins were found to be induced anaerobically, while 42 were repressed. The proteins of interest were in-gel digested with trypsin and identified by MALDI TOF mass spectrometry using peptide mass fingerprinting. In the absence of oxygen, many fermentative enzymes catalysing reactions in the mixed-acid or arginine fermentations were overexpressed. In addition, the enzyme fumarate reductase, which is known to provide an alternative electron acceptor for the respiratory chains in the absence of oxygen, was shown to be induced. Increases in expression of several glycolytic and pentose phosphate pathway enzymes, as well as two malic enzymes, were detected, suggesting important roles for these in anaerobic metabolism. Substantial decreases in expression were observed for a large number of periplasmic transport proteins. The majority of these are involved in the uptake of amino acids and peptides, but permeases transporting iron, thiosulphate, glucose/galactose, glycerol 3-phosphate and dicarboxylic acids were also repressed. Decreases in expression were also observed for a superoxide dismutase, ATP synthase, inositol monophosphatase, and several chaperone and hypothetical proteins. The changes were monitored in two different isolates, and despite their very similar expression patterns, some variability in the adaptive response to anaerobiosis was also observed.
Collapse
Affiliation(s)
- Vesela Encheva
- Department for Bioanalysis and Horizon Technologies, Centre for Infections, Health Protection Agency, London, UK
| | - Haroun N Shah
- Department for Bioanalysis and Horizon Technologies, Centre for Infections, Health Protection Agency, London, UK
| | - Saheer E Gharbia
- Department for Bioanalysis and Horizon Technologies, Centre for Infections, Health Protection Agency, London, UK
| |
Collapse
|
103
|
Characterization of the expression of Salmonella Type III secretion system factor PrgI, SipA, SipB, SopE2, SpaO, and SptP in cultures and in mice. BMC Microbiol 2009; 9:73. [PMID: 19371445 PMCID: PMC2678129 DOI: 10.1186/1471-2180-9-73] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 04/17/2009] [Indexed: 11/11/2022] Open
Abstract
Background The type III secretion systems (T3SSs) encoded by Salmonella pathogenicity island 1 and 2 (SPI-1 and SPI-2) are important for invasion of epithelial cells during development of Salmonella-associated enterocolitis and for replication in macrophages during systemic infection, respectively. In vitro studies have previously revealed hierarchical transport of different SPI-1 factors and ordered synergistic/antagonistic relationships between these proteins during Salmonella entry. These results suggest that the level and timing of the expression of these proteins dictate the consequences of bacterial infection and pathogenesis. However, the expression of these proteins has not been extensively studied in vivo, especially during the later stages of salmonellosis when the infection is established. Results In this study, we have constructed bacterial strains that contain a FLAG epitope inserted in frame to SPI-1 genes prgI, sipA, sipB, sopE2, spaO, and sptP, and investigated the expression of the tagged proteins both in vitro and in vivo during murine salmonellosis. The tagged Salmonella strains were inoculated intraperitoneally or intragastrically into mice and recovered from various organs. Our results provide direct evidence that PrgI and SipB are expressed in Salmonella colonizing the spleen and cecum of the infected animals at early and late stages of infection. Furthermore, this study demonstrates that the SpaO protein is expressed preferably in Salmonella colonizing the cecum but not the spleen and that SptP is expressed preferably in Salmonella colonizing the spleen but not the cecum. Conclusion These results suggest that Salmonella may express different SPI-1 proteins when they colonize specific tissues and that differential expression of these proteins may be important for tissue-specific aspects of bacterial pathogenesis such as gastroenterititis in the cecum and systemic infection in the spleen.
Collapse
|
104
|
Salmonella enterica serovar enteritidis pathogenicity island 1 is not essential for but facilitates rapid systemic spread in chickens. Infect Immun 2009; 77:2866-75. [PMID: 19364835 DOI: 10.1128/iai.00039-09] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica subsp. enterica serovar Enteritidis is a leading cause of human food-borne illness that is mainly associated with the consumption of contaminated poultry meat and eggs. To cause infection, S. Enteritidis is known to use two type III secretion systems, which are encoded on two salmonella pathogenicity islands, SPI-1 and SPI-2, the first of which is thought to play a major role in invasion and bacterial uptake. In order to study the role of SPI-1 in the colonization of chicken, we constructed deletion mutants affecting the complete SPI-1 region (40 kb) and the invG gene. Both DeltaSPI-1 and DeltainvG mutant strains were impaired in the secretion of SipD, a SPI-1 effector protein. In vitro analysis using polarized human intestinal epithelial cells (Caco-2) revealed that both mutant strains were less invasive than the wild-type strain. A similar observation was made when chicken cecal and small intestinal explants were coinfected with the wild-type and DeltaSPI-1 mutant strains. Oral challenge of 1-week-old chicken with the wild-type or DeltaSPI-1 strains demonstrated that there was no difference in chicken cecal colonization. However, systemic infection of the liver and spleen was delayed in birds that were challenged with the DeltaSPI-1 strain. These data demonstrate that SPI-1 facilitates systemic infection but is not essential for invasion and systemic spread of the organism in chickens.
Collapse
|
105
|
Dorman CJ. Nucleoid-associated proteins and bacterial physiology. ADVANCES IN APPLIED MICROBIOLOGY 2009; 67:47-64. [PMID: 19245936 DOI: 10.1016/s0065-2164(08)01002-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bacterial physiology is enjoying a renaissance in the postgenomic era as investigators struggle to interpret the wealth of new data that has emerged and continues to emerge from genome sequencing projects and from analyses of bacterial gene regulation patterns using whole-genome methods at the transcriptional and posttranscriptional levels. Information from model organisms such as the Gram-negative bacterium Escherichia coli is proving to be invaluable in providing points of reference for such studies. An important feature of this work concerns the nature of global mechanisms of gene regulation where a relatively small number of regulatory proteins affect the expression of scores of genes simultaneously. The nucleoid-associated proteins, especially Factor for Inversion Stimulation (Fis), IHF, H-NS, HU, and Lrp, represent a prominent group of global regulators and studies of these proteins and their roles in bacterial physiology are providing new insights into how the bacterium governs gene expression in ways that maximize its competitive advantage.
Collapse
Affiliation(s)
- Charles J Dorman
- Department of Microbiology, School of Genetics and Microbiology, Trinity College, Dublin 2, Ireland
| |
Collapse
|
106
|
Lane MC, Li X, Pearson MM, Simms AN, Mobley HLT. Oxygen-limiting conditions enrich for fimbriate cells of uropathogenic Proteus mirabilis and Escherichia coli. J Bacteriol 2009; 191:1382-92. [PMID: 19114498 PMCID: PMC2648204 DOI: 10.1128/jb.01550-08] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Accepted: 12/17/2008] [Indexed: 01/19/2023] Open
Abstract
MR/P fimbriae of uropathogenic Proteus mirabilis undergo invertible element-mediated phase variation whereby an individual bacterium switches between expressing fimbriae (phase ON) and not expressing fimbriae (phase OFF). Under different conditions, the percentage of fimbriate bacteria within a population varies and could be dictated by either selection (growth advantage of one phase) or signaling (preferentially converting one phase to the other in response to external signals). Expression of MR/P fimbriae increases in a cell-density dependent manner in vitro and in vivo. However, rather than the increased cell density itself, this increase in fimbrial expression is due to an enrichment of fimbriate bacteria under oxygen limitation resulting from increased cell density. Our data also indicate that the persistence of MR/P fimbriate bacteria under oxygen-limiting conditions is a result of both selection (of MR/P fimbrial phase variants) and signaling (via modulation of expression of the MrpI recombinase). Furthermore, the mrpJ transcriptional regulator encoded within the mrp operon contributes to phase switching. Type 1 fimbriae of Escherichia coli, which are likewise subject to phase variation via an invertible element, also increase in expression during reduced oxygenation. These findings provide evidence to support a mechanism for persistence of fimbriate bacteria under oxygen limitation, which is relevant to disease progression within the oxygen-restricted urinary tract.
Collapse
Affiliation(s)
- M Chelsea Lane
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, 48109-0620, USA
| | | | | | | | | |
Collapse
|
107
|
Sonck KAJ, Kint G, Schoofs G, Vander Wauven C, Vanderleyden J, De Keersmaecker SCJ. The proteome of Salmonella Typhimurium grown under in vivo-mimicking conditions. Proteomics 2009; 9:565-79. [DOI: 10.1002/pmic.200700476] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
108
|
CHANSIRIPORNCHAI N, SASIPREEYAJAN J. PCR Detection of Four Virulence-Associated Genes of Campylobacter jejuni Isolates from Thai Broilers and Their Abilities of Adhesion to and Invasion of INT-407 Cells. J Vet Med Sci 2009; 71:839-44. [DOI: 10.1292/jvms.71.839] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Niwat CHANSIRIPORNCHAI
- Department of Veterinary Medicine, Faculty of Veterinary Sciences, Chulalongkorn University
| | - Jiroj SASIPREEYAJAN
- Department of Veterinary Medicine, Faculty of Veterinary Sciences, Chulalongkorn University
| |
Collapse
|
109
|
Leucine-responsive regulatory protein (Lrp) acts as a virulence repressor in Salmonella enterica serovar Typhimurium. J Bacteriol 2008; 191:1278-92. [PMID: 19074398 DOI: 10.1128/jb.01142-08] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Leucine-responsive regulatory protein (Lrp) is a global gene regulator that influences expression of a large number of genes including virulence-related genes in Escherichia coli and Salmonella. No systematic studies examining the regulation of virulence genes by Lrp have been reported in Salmonella. We report here that constitutive expression of Lrp [lrp(Con)] dramatically attenuates Salmonella virulence while an lrp deletion (Deltalrp) mutation enhances virulence. The lrp(Con) mutant caused pleiotropic effects that include defects in invasion, cytotoxicity, and colonization, whereas the Deltalrp mutant was more proficient at these activities than the wild-type strain. We present evidence that Lrp represses transcription of key virulence regulator genes--hilA, invF, and ssrA--in Salmonella pathogenicity island 1 (SPI-1) and 2 (SPI-2), by binding directly to their promoter regions, P(hilA), P(invF), and P(ssrA). In addition, Western blot analysis showed that the expression of the SPI-1 effector SipA was reduced in the lrp(Con) mutant and enhanced in the Deltalrp mutant. Computational analysis revealed putative Lrp-binding consensus DNA motifs located in P(hilA), P(invF), and P(ssrA). These results suggest that Lrp binds to the consensus motifs and modulates expression of the linked genes. The presence of leucine enhanced Lrp binding to P(invF) in vitro and the addition of leucine to growth medium decreased the level of invF transcription. However, leucine had no effect on expression of hilA and ssrA or on cellular levels of Lrp. In addition, Lrp appears to be an antivirulence gene, since the deletion mutant showed enhanced cell invasion, cytotoxicity, and hypervirulence in BALB/c mice.
Collapse
|
110
|
Abstract
The Gram-negative bacterium Escherichia coli and its close relative Salmonella enterica have made important contributions historically to our understanding of how bacteria control DNA supercoiling and of how supercoiling influences gene expression and vice versa. Now they are contributing again by providing examples where changes in DNA supercoiling affect the expression of virulence traits that are important for infectious disease. Available examples encompass both the earliest stages of pathogen–host interactions and the more intimate relationships in which the bacteria invade and proliferate within host cells. A key insight concerns the link between the physiological state of the bacterium and the activity of DNA gyrase, with downstream effects on the expression of genes with promoters that sense changes in DNA supercoiling. Thus the expression of virulence traits by a pathogen can be interpreted partly as a response to its own changing physiology. Knowledge of the molecular connections between physiology, DNA topology and gene expression offers new opportunities to fight infection.
Collapse
Affiliation(s)
- Charles J Dorman
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College, Dublin 2, Ireland.
| | | |
Collapse
|
111
|
The potassium transporter Trk and external potassium modulate Salmonella enterica protein secretion and virulence. Infect Immun 2008; 77:667-75. [PMID: 19001074 DOI: 10.1128/iai.01027-08] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Potassium (K(+)) is the most abundant intracellular cation and is essential for many physiological functions of all living organisms; however, its role in the pathogenesis of human pathogens is not well understood. In this study, we characterized the functions of the bacterial Trk K(+) transport system and external K(+) in the pathogenesis of Salmonella enterica, a major food-borne bacterial pathogen. Here we report that Trk is important for Salmonella to invade and grow inside epithelial cells. It is also necessary for the full virulence of Salmonella in an animal infection model. Analysis of proteins of Salmonella indicated that Trk is involved in the expression and secretion of effector proteins of the type III secretion system (TTSS) encoded by Salmonella pathogenicity island 1 (SPI1) that were previously shown to be necessary for Salmonella invasion. In addition to the role of the Trk transporter in the pathogenesis of Salmonella, we discovered that external K(+) modulates the pathogenic properties of Salmonella by increasing the expression and secretion of effector proteins of the SPI1-encoded TTSS and by enhancing epithelial cell invasion. Our studies demonstrated that K(+) is actively involved in the pathogenesis of Salmonella and indicated that Salmonella may take advantage of the high K(+) content inside host cells and in the intestinal fluid during diarrhea to become more virulent.
Collapse
|
112
|
Abelson tyrosine kinase facilitates Salmonella enterica serovar Typhimurium entry into epithelial cells. Infect Immun 2008; 77:60-9. [PMID: 18936177 DOI: 10.1128/iai.00639-08] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The intracellular gram-negative bacterial pathogen Salmonella enterica serovar Typhimurium gains entry into nonphagocytic cells by manipulating the assembly of the host actin cytoskeleton. S. enterica serovar Typhimurium entry requires a functional type III secretion system, a conduit through which bacterial effector proteins are directly translocated into the host cytosol. We and others have previously reported the enhancement of tyrosine kinase activities during Salmonella serovar Typhimurium infection; however, neither specific kinases nor their targets have been well characterized. In this study, we investigated the roles of the cellular Abelson tyrosine kinase (c-Abl) and the related protein Arg in the context of serovar Typhimurium infection. We found that bacterial internalization was inhibited by more than 70% in cells lacking both c-Abl and Arg and that treatment of wild-type cells with a pharmaceutical inhibitor of the c-Abl kinase, STI571 (imatinib), reduced serovar Typhimurium invasion efficiency to a similar extent. Bacterial infection led to enhanced phosphorylation of two previously identified c-Abl substrates, the adaptor protein CT10 regulator of kinase (CrkII) and the Abelson-interacting protein Abi1, a component of the WAVE2 complex. Furthermore, overexpression of the nonphosphorylatable form of CrkII resulted in decreased invasion. Taken together, these findings indicate that c-Abl is activated during S. enterica serovar Typhimurium infection and that its phosphorylation of multiple downstream targets is functionally important in bacterial internalization.
Collapse
|
113
|
Bishop A, House D, Perkins T, Baker S, Kingsley RA, Dougan G. Interaction of Salmonella enterica serovar Typhi with cultured epithelial cells: roles of surface structures in adhesion and invasion. MICROBIOLOGY-SGM 2008; 154:1914-1926. [PMID: 18599820 DOI: 10.1099/mic.0.2008/016998-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this study we investigate the ability of Salmonella enterica serovar Typhi (S. Typhi) surface structures to influence invasion and adhesion in epithelial cell assay systems. In general, S. Typhi was found to be less adherent, invasive and cytotoxic than S. enterica serovar Typhimurium (S. Typhimurium). Culture conditions had little effect on adhesion of S. Typhi to cultured cells but had a marked influence on invasion. In contrast, bacterial growth conditions did not influence S. Typhi apical invasion of polarized cells. The levels of S. Typhi, but not S. Typhimurium, invasion were increased by application of bacteria to the basolateral surface of polarized cells. Expression of virulence (Vi) capsule by S. Typhi resulted in a modest reduction in adhesion, but profoundly reduced levels of invasion of non-polarized cells. However, Vi capsule expression had no affect on invasion of the apical or basolateral surfaces of polarized cells. Mutation of the staA, tcfA or pilS genes did not affect invasion or adhesion in either the presence or the absence of Vi capsule.
Collapse
Affiliation(s)
- Anne Bishop
- The Centre for Molecular Microbiology and Infection, Faculty of Life Sciences, Division of Molecular and Cell Biology, Imperial College London, London SW7 2AZ, UK
| | - Deborah House
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Timothy Perkins
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Stephen Baker
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Robert A Kingsley
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Gordon Dougan
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| |
Collapse
|
114
|
Flentie KN, Qi M, Gammon ST, Razia Y, Lui F, Marpegan L, Manglik A, Piwnica-Worms D, McKinney JS. Stably integrated luxCDABE for assessment of Salmonella invasion kinetics. Mol Imaging 2008; 7:222-33. [PMID: 19123992 PMCID: PMC2743400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023] Open
Abstract
Salmonella Typhimurium is a common cause of gastroenteritis in humans and also localizes to neoplastic tumors in animals. Invasion of specific eukaryotic cells is a key mechanism of Salmonella interactions with host tissues. Early stages of gastrointestinal cell invasion are mediated by a Salmonella type III secretion system, powered by the adenosine triphosphatase invC. The aim of this work was to characterize the invC dependence of invasion kinetics into disparate eukaryotic cells traditionally used as models of gut epithelium or neoplasms. Thus, a nondestructive real-time assay was developed to report eukaryotic cell invasion kinetics using lux+ Salmonella that contain chromosomally integrated luxCDABE genes. Bioluminescence-based invasion assays using lux+ Salmonella exhibited inoculum dose-response correlation, distinguished invasion-competent from invasion-incompetent Salmonella, and discriminated relative Salmonella invasiveness in accordance with environmental conditions that induce invasion gene expression. In standard gentamicin protection assays, bioluminescence from lux+ Salmonella correlated with recovery of colony-forming units of internalized bacteria and could be visualized by bioluminescence microscopy. Furthermore, this assay distinguished invasion-competent from invasion-incompetent bacteria independent of gentamicin treatment in real time. Bioluminescence reported Salmonella invasion of disparate eukaryotic cell lines, including neoplastic melanoma, colon adenocarcinoma, and glioma cell lines used in animal models of malignancy. In each case, Salmonella invasion of eukaryotic cells was invC dependent.
Collapse
Affiliation(s)
- Kelly N Flentie
- Department of Molecular Microbiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Flentie KN, Qi M, Gammon ST, Razia Y, Lui F, Marpegan L, Manglik A, Piwnica-Worms D, McKinney JS. Stably IntegratedluxCDABEfor Assessment ofSalmonellaInvasion Kinetics. Mol Imaging 2008. [DOI: 10.2310/7290.2008.00024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Kelly N. Flentie
- From the Departments of Molecular Microbiology, Pediatrics, Biology, and Developmental Biology and Molecular Imaging Center, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO
| | - Min Qi
- From the Departments of Molecular Microbiology, Pediatrics, Biology, and Developmental Biology and Molecular Imaging Center, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO
| | - Seth T. Gammon
- From the Departments of Molecular Microbiology, Pediatrics, Biology, and Developmental Biology and Molecular Imaging Center, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO
| | - Yasmin Razia
- From the Departments of Molecular Microbiology, Pediatrics, Biology, and Developmental Biology and Molecular Imaging Center, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO
| | - Felix Lui
- From the Departments of Molecular Microbiology, Pediatrics, Biology, and Developmental Biology and Molecular Imaging Center, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO
| | - Luciano Marpegan
- From the Departments of Molecular Microbiology, Pediatrics, Biology, and Developmental Biology and Molecular Imaging Center, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO
| | - Aashish Manglik
- From the Departments of Molecular Microbiology, Pediatrics, Biology, and Developmental Biology and Molecular Imaging Center, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO
| | - David Piwnica-Worms
- From the Departments of Molecular Microbiology, Pediatrics, Biology, and Developmental Biology and Molecular Imaging Center, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO
| | - Jeffrey S. McKinney
- From the Departments of Molecular Microbiology, Pediatrics, Biology, and Developmental Biology and Molecular Imaging Center, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
116
|
KUNDINGER M, ZABALA-DÍAZ I, CHALOVA V, MOORE R, RICKE S. REAL-TIME POLYMERASE CHAIN REACTION QUANTIFICATION OFSALMONELLATYPHIMURIUMHILAEXPRESSION DURING AGITATION AND STATIC INCUBATION. ACTA ACUST UNITED AC 2008. [DOI: 10.1111/j.1745-4581.2008.00133.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
117
|
Deep sequencing analysis of small noncoding RNA and mRNA targets of the global post-transcriptional regulator, Hfq. PLoS Genet 2008; 4:e1000163. [PMID: 18725932 PMCID: PMC2515195 DOI: 10.1371/journal.pgen.1000163] [Citation(s) in RCA: 440] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 07/14/2008] [Indexed: 12/27/2022] Open
Abstract
Recent advances in high-throughput pyrosequencing (HTPS) technology now allow a thorough analysis of RNA bound to cellular proteins, and, therefore, of post-transcriptional regulons. We used HTPS to discover the Salmonella RNAs that are targeted by the common bacterial Sm-like protein, Hfq. Initial transcriptomic analysis revealed that Hfq controls the expression of almost a fifth of all Salmonella genes, including several horizontally acquired pathogenicity islands (SPI-1, -2, -4, -5), two sigma factor regulons, and the flagellar gene cascade. Subsequent HTPS analysis of 350,000 cDNAs, derived from RNA co-immunoprecipitation (coIP) with epitope-tagged Hfq or control coIP, identified 727 mRNAs that are Hfq-bound in vivo. The cDNA analysis discovered new, small noncoding RNAs (sRNAs) and more than doubled the number of sRNAs known to be expressed in Salmonella to 64; about half of these are associated with Hfq. Our analysis explained aspects of the pleiotropic effects of Hfq loss-of-function. Specifically, we found that the mRNAs of hilD (master regulator of the SPI-1 invasion genes) and flhDC (flagellar master regulator) were bound by Hfq. We predicted that defective SPI-1 secretion and flagellar phenotypes of the hfq mutant would be rescued by overexpression of HilD and FlhDC, and we proved this to be correct. The combination of epitope-tagging and HTPS of immunoprecipitated RNA detected the expression of many intergenic chromosomal regions of Salmonella. Our approach overcomes the limited availability of high-density microarrays that have impeded expression-based sRNA discovery in microorganisms. We present a generic strategy that is ideal for the systems-level analysis of the post-transcriptional regulons of RNA-binding proteins and for sRNA discovery in a wide range of bacteria.
Collapse
|
118
|
Zhou X, Shah DH, Konkel ME, Call DR. Type III secretion system 1 genes in Vibrio parahaemolyticus are positively regulated by ExsA and negatively regulated by ExsD. Mol Microbiol 2008; 69:747-64. [PMID: 18554322 PMCID: PMC2610376 DOI: 10.1111/j.1365-2958.2008.06326.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2008] [Indexed: 12/21/2022]
Abstract
Vibrio parahaemolyticus harbours two distinct type III secretion systems (T3SS1 and T3SS2). A subset of 10 T3SS1 genes are transcribed when V. parahaemolyticus is grown in tissue culture medium [Dulbecco's modified Eagle's medium (DMEM)], while transcription of these genes (except exsD) is minimal upon growth in Luria-Bertani-Salt (LB-S). Transcription of T3SS1 genes and cytotoxicity towards HeLa cells was prevented by deletion of exsA while complementation with exsA restored these traits. Overexpression of ExsA in the wild-type strain, NY-4, activated the transcription of T3SS1 genes when bacteria were grown in LB-S. Thus, ExsA is necessary and sufficient to induce the transcription of T3SS1 genes. Deletion of the exsD permitted the transcription of T3SS1 genes when bacteria were grown in the LB-S medium and complementation with the wild-type exsD gene-blocked transcription of T3SS1 genes. Overexpression of ExsD in NY-4 prevented the transcription of T3SS1 gene when bacteria were grown in DMEM. A gel mobility shift assay demonstrated that purified ExsA protein binds a novel motif in the upstream region of vp1668 and vp1687, indicating that ExsA interacts directly with the promoter sequences of T3SS1 genes. ExsA positively regulates the expression and secretion of Vp1656 while ExsD negatively regulates the expression and secretion of Vp1656.
Collapse
Affiliation(s)
- Xiaohui Zhou
- Department of Veterinary Microbiology and Pathology, Washington State UniversityPullman, WA, USA
| | - Devendra H Shah
- Department of Veterinary Microbiology and Pathology, Washington State UniversityPullman, WA, USA
| | - Michael E Konkel
- School of Molecular Biosciences, Washington State UniversityPullman, WA, USA
| | - Douglas R Call
- Department of Veterinary Microbiology and Pathology, Washington State UniversityPullman, WA, USA
| |
Collapse
|
119
|
Quinolone-resistance in Salmonella is associated with decreased mRNA expression of virulence genes invA and avrA, growth and intracellular invasion and survival. Vet Microbiol 2008; 133:328-34. [PMID: 18762392 DOI: 10.1016/j.vetmic.2008.07.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2008] [Revised: 06/03/2008] [Accepted: 07/18/2008] [Indexed: 11/22/2022]
Abstract
A variety of environmental factors, such as oxygen, pH, osmolarity and antimicrobial agents, modulate the expression of Salmonella pathogenicity islands (SPI) genes. This study investigated SPI-1 gene expression and the pathogenicity of quinolone-resistant Salmonella. mRNA expression levels of the invA and avrA genes, located in SPI-1, in quinolone-susceptible and quinolone-resistant Salmonella strains were determined using real-time fluorescent quantitative reverse transcription-polymerase chain reaction (RT-PCR). Twenty-five quinolone-resistant Salmonella mutants were derived from quinolone-susceptible strains by multiple-passage selection through increasing concentrations of ciprofloxacin in vitro, while an additional 15 strains were quinolone-resistant Salmonella clinical isolates. Sequence analysis showed no gene deletion or point mutations of nine SPI-1 genes (including invA and avrA) occurred in either the selected or clinical quinolone-resistant strains, while a single gyrA point mutation (S83F) was observed in all 40 quinolone-resistant strains. The mRNA expression levels of invA and avrA were significantly decreased (P<0.005) in quinolone-resistant strains (clinically acquired or experimentally selected in vitro), compared to the quinolone-susceptible strains. The resistant strains also had a slower growth rate combined with decreased epithelial cell invasion and intracellular replication in epithelial cells and macrophages. The results suggest that quinolone-resistance may be associated with lower virulence and pathogenicity than in quinolone-susceptible strains.
Collapse
|
120
|
Salmonella enterica serovar gallinarum requires ppGpp for internalization and survival in animal cells. J Bacteriol 2008; 190:6340-50. [PMID: 18621899 DOI: 10.1128/jb.00385-08] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To elucidate the pathogenic mechanism of Salmonella enterica serovar Gallinarum, we examined the expression of the genes encoded primarily in Salmonella pathogenicity island 1 (SPI-1) and SPI-2. These genes were found to be induced as cultures entered stationary phase under high- and low-oxygen growth conditions, as also observed for Salmonella serovar Typhimurium. In contrast, Salmonella serovar Gallinarum in the exponential growth phase most efficiently internalized cultured animal cells. Analysis of mutants defective in SPI-1 genes, SPI-2 genes, and others implicated in early stages of infection revealed that SPI-1 genes were not involved in the internalization of animal cells by Salmonella serovar Gallinarum. Following entry, however, Salmonella serovar Gallinarum was found to reside in LAMP1-positive vacuoles in both phagocytic and nonphagocytic cells, although internalization was independent of SPI-1. A mutation that conferred defects in ppGpp synthesis was the only one found to affect animal cell internalization by Salmonella serovar Gallinarum. It was concluded that Salmonella serovar Gallinarum internalizes animal cells by a mechanism independent of SPI-1 genes but dependent on ppGpp. Intracellular growth also required ppGpp for the transcription of genes encoded in SPI-2.
Collapse
|
121
|
Alegado RA, Tan MW. Resistance to antimicrobial peptides contributes to persistence of Salmonella typhimurium in the C. elegans intestine. Cell Microbiol 2008; 10:1259-73. [PMID: 18221392 DOI: 10.1111/j.1462-5822.2008.01124.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The human pathogen Salmonella typhimurium can colonize, proliferate and persist in the intestine causing enteritis in mammals and mortality in the nematode Caenorhabditis elegans. Using C. elegans as a model, we determined that the Salmonella pathogenicity islands-1 and -2 (SPI-1 and SPI-2), PhoP and the virulence plasmid are required for the establishment of a persistent infection. We observed that the PhoP regulon, SPI-1, SPI-2 and spvR are induced in C. elegans and isogenic strains lacking these virulence factors exhibited significant defects in the ability to persist in the worm intestine. Salmonella infection also leads to induction of two C. elegans antimicrobial genes, abf-2 and spp-1, which act to limit bacterial proliferation. The SPI-2, phoP and Delta pSLT mutants are more sensitive to the cationic peptide polymyxin B, suggesting that resistance to worm's antimicrobial peptides might be necessary for Salmonella to persist in the C. elegans intestine. Importantly, we showed that the persistence defects of the SPI-2, phoP and Delta pSLT mutants could be rescued in vivo when expression of C. elegans spp-1 was reduced by RNAi. Together, our data suggest that resistance to host antimicrobials in the intestinal lumen is a key mechanism for Salmonella persistence.
Collapse
Affiliation(s)
- Rosanna A Alegado
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
122
|
Huang Y, Suyemoto M, Garner CD, Cicconi KM, Altier C. Formate acts as a diffusible signal to induce Salmonella invasion. J Bacteriol 2008; 190:4233-41. [PMID: 18424519 PMCID: PMC2446767 DOI: 10.1128/jb.00205-08] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2008] [Accepted: 04/09/2008] [Indexed: 01/07/2023] Open
Abstract
To infect an animal host, Salmonella enterica serovar Typhimurium must penetrate the intestinal epithelial barrier. This process of invasion requires a type III secretion system encoded within Salmonella pathogenicity island I (SPI1). We found that a mutant with deletions of the acetate kinase and phosphotransacetylase genes (ackA-pta) was deficient in invasion and SPI1 expression but that invasion gene expression was completely restored by supplying medium conditioned by growth of the wild-type strain, suggesting that a signal produced by the wild type, but not by the ackA-pta mutant, was required for invasion. This mutant also excreted 68-fold-less formate into the culture medium, and the addition of sodium formate to cultures restored both the expression of SPI1 and the invasion of cultured epithelial cells by the mutant. The effect of formate was pH dependent, requiring a pH below neutrality, and studies in mice showed that the distal ileum, the preferred site of Salmonella invasion in this species, had the appropriate formate concentration and pH to elicit invasion, while the cecum contained no detectable formate. Furthermore, we found that formate affected the major regulators of SPI1, hilA and hilD, but that the primary routes of formate metabolism played no role in its activity as a signal.
Collapse
Affiliation(s)
- Yanyan Huang
- Department of Population Medicine and Diagnostic Sciences, Upper Tower Road, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
123
|
Hierarchical effector protein transport by the Salmonella Typhimurium SPI-1 type III secretion system. PLoS One 2008; 3:e2178. [PMID: 18478101 PMCID: PMC2364654 DOI: 10.1371/journal.pone.0002178] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Accepted: 04/06/2008] [Indexed: 11/19/2022] Open
Abstract
Background Type III secretion systems (TTSS) are employed by numerous pathogenic and symbiotic bacteria to inject a cocktail of different “effector proteins” into host cells. These effectors subvert host cell signaling to establish symbiosis or disease. Methodology/Principal Findings We have studied the injection of SipA and SptP, two effector proteins of the invasion-associated Salmonella type III secretion system (TTSS-1). SipA and SptP trigger different host cell responses. SipA contributes to triggering actin rearrangements and invasion while SptP reverses the actin rearrangements after the invasion has been completed. Nevertheless, SipA and SptP were both pre-formed and stored in the bacterial cytosol before host cell encounter. By time lapse microscopy, we observed that SipA was injected earlier than SptP. Computer modeling revealed that two assumptions were sufficient to explain this injection hierarchy: a large number of SipA and SptP molecules compete for transport via a limiting number of TTSS; and the TTSS recognize SipA more efficiently than SptP. Conclusions/Significance This novel mechanism of hierarchical effector protein injection may serve to avoid functional interference between SipA and SptP. An injection hierarchy of this type may be of general importance, allowing bacteria to precisely time the host cell manipulation by type III effectors.
Collapse
|
124
|
Gutierrez O, Zhang C, Caldwell DJ, Carey JB, Cartwright AL, Bailey CA. Guar meal diets as an alternative approach to inducing molt and improving Salmonella enteritidis resistance in late-phase laying hens. Poult Sci 2008; 87:536-40. [PMID: 18281581 DOI: 10.3382/ps.2007-00337] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Induced molting of laying hens is a practice used by commercial egg producers to increase the productive lifetime of their flock. However, the conventional method of inducing molt, which involves removal of feed, water, or both as well as a reduction in photoperiod to less than a natural day has drawn criticism due to animal welfare and food safety concerns. The objective of this study was to explore the efficacy of diets containing high levels of guar meal (GM) in inducing molt and reducing susceptibility to Salmonella Enteritidis colonization in late-phase laying hens. Late-phase (68 wk old) Lohmann laying hens were either full-fed standard laying hen diets (nonmolted control), induced to molt by feed withdrawal, or full-fed standard laying hen diets containing 20% GM with or without 250 units/kg of mannanase Hemicell supplementation. On the fourth day of treatment, all hens were orally challenged with SE (1.65 x 10(7) cfu). Hens were killed and evaluated for Salmonella colonization and differences in organ weights 5 d postinoculation. Salmonella Enteritidis present in crop, liver, ovary, and cecal contents were significantly reduced by feeding GM with enzyme supplementation compared with feed withdrawal hens. No significant differences were observed in reproductive tract weights of molted groups, although a difference in liver weight was detected. Results indicate that feeding diets containing 20% GM are as effective as complete feed withdrawal with respect to inducing molt with the added benefit of improved resistance to Salmonella Enteritidis colonization and translocation.
Collapse
Affiliation(s)
- O Gutierrez
- Department of Poultry Science, Texas A&M University, College Station, TX 77843-2472, USA.
| | | | | | | | | | | |
Collapse
|
125
|
Adaska J, Silva A, Sischo W. Comparison of Salmonella enterica subspecies enterica serovar Typhimurium isolates from dairy cattle and humans using in vitro assays of virulence. Vet Microbiol 2008; 128:90-5. [DOI: 10.1016/j.vetmic.2007.08.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 08/17/2007] [Accepted: 08/21/2007] [Indexed: 10/22/2022]
|
126
|
Padalon-Brauch G, Hershberg R, Elgrably-Weiss M, Baruch K, Rosenshine I, Margalit H, Altuvia S. Small RNAs encoded within genetic islands of Salmonella typhimurium show host-induced expression and role in virulence. Nucleic Acids Res 2008; 36:1913-27. [PMID: 18267966 PMCID: PMC2330248 DOI: 10.1093/nar/gkn050] [Citation(s) in RCA: 177] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The emergence of pathogenic strains of enteric bacteria and their adaptation to unique niches are associated with the acquisition of foreign DNA segments termed 'genetic islands'. We explored these islands for the occurrence of small RNA (sRNA) encoding genes. Previous systematic screens for enteric bacteria sRNAs were mainly carried out using the laboratory strain Escherichia coli K12, leading to the discovery of approximately 80 new sRNA genes. These searches were based on conservation within closely related members of enteric bacteria and thus, sRNAs, unique to pathogenic strains were excluded. Here we describe the identification and characterization of 19 novel unique sRNA genes encoded within the 'genetic islands' of the virulent strain Salmonella typhimurium. We show that the expression of many of the island-encoded genes is associated with stress conditions and stationary phase. Several of these sRNA genes are induced when Salmonella resides within macrophages. One sRNA, IsrJ, was further examined and found to affect the translocation efficiency of virulence-associated effector proteins into nonphagocytic cells. In addition, we report that unlike the majority of the E. coli sRNAs that are trans regulators, many of the island-encoded sRNAs affect the expression of cis-encoded genes. Our study suggests that the island encoded sRNA genes play an important role within the network that regulates bacterial adaptation to environmental changes and stress conditions and thus controls virulence.
Collapse
Affiliation(s)
- Gilly Padalon-Brauch
- Department of Molecular Genetics and Biotechnology, The Hebrew University-Hadassah Medical School, 91120, Jerusalem, Israel
| | | | | | | | | | | | | |
Collapse
|
127
|
Abstract
Vertebrates are colonized at birth by complex and dynamic communities of microorganisms that can contribute significantly to host health and disease. The ability to raise animals in the absence of microorganisms has been a powerful tool for elucidating the relationships between animal hosts and their microbial residents. The optical transparency of the developing zebrafish and relative ease of generating germ-free (GF) zebrafish make it an attractive model organism for gnotobiotic research. Here we provide a protocol for generating zebrafish embryos; deriving and rearing GF zebrafish; and colonizing zebrafish with microorganisms. Using these methods, we typically obtain 80-90% sterility rates in our GF derivations with 90% survival in GF animals and 50-90% survival in colonized animals through larval stages. Obtaining embryos for derivation requires approximately 1-2 h, with a 3- to 8-h incubation period before derivation. Derivation of GF animals takes 1-1.5 h, and daily maintenance requires 1-2 h.
Collapse
Affiliation(s)
- Linh N. Pham
- Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 USA
| | - Michelle Kanther
- Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 USA
| | - Ivana Semova
- Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 USA
| | - John F. Rawls
- Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 USA
| |
Collapse
|
128
|
Schmidt LD, Kohrt LJ, Brown DR. Comparison of growth phase on Salmonella enterica serovar Typhimurium invasion in an epithelial cell line (IPEC J2) and mucosal explants from porcine small intestine. Comp Immunol Microbiol Infect Dis 2008; 31:63-9. [PMID: 17544508 PMCID: PMC10656783 DOI: 10.1016/j.cimid.2007.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2007] [Indexed: 11/26/2022]
Abstract
Salmonella Typhimurium DT104 is a zoonotic enteropathogen of increasing concern for human health. In this study, the influence of growth phase on invasiveness of a S. Typhimurium DT104 field isolate and two reference strains (SL1344 and ATCC 14028) was compared in IPEC J2 cells and mucosal explants from porcine ileum. Internalized bacteria were quantified by a gentamicin resistance assay. After 90 min of exposure to the apical aspect of epithelial monolayers or luminal surface of explants, internalization of all S. Typhimurium strains in mid-logarithmic phase of bacterial growth was comparable. Internalization of stationary phase bacteria was reduced relative to log phase bacteria, with DT104 exhibiting the greatest decrease. Growth phase-related differences in S. Typhimurium invasion are similar in porcine intestinal epithelial cells and mucosal explants, but may be greater in multidrug-resistant strains.
Collapse
Affiliation(s)
- Lisa D. Schmidt
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1988 Fitch Avenue, St. Paul, Minnesota 55108-6010
| | - Laura J. Kohrt
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1988 Fitch Avenue, St. Paul, Minnesota 55108-6010
| | - David R. Brown
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1988 Fitch Avenue, St. Paul, Minnesota 55108-6010
| |
Collapse
|
129
|
Temme K, Salis H, Tullman-Ercek D, Levskaya A, Hong SH, Voigt CA. Induction and relaxation dynamics of the regulatory network controlling the type III secretion system encoded within Salmonella pathogenicity island 1. J Mol Biol 2007; 377:47-61. [PMID: 18242639 DOI: 10.1016/j.jmb.2007.12.044] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Revised: 12/14/2007] [Accepted: 12/18/2007] [Indexed: 12/30/2022]
Abstract
Bacterial pathogenesis requires the precise spatial and temporal control of gene expression, the dynamics of which are controlled by regulatory networks. A network encoded within Salmonella Pathogenicity Island 1 controls the expression of a type III protein secretion system involved in the invasion of host cells. The dynamics of this network are measured in single cells using promoter-green fluorescent protein (gfp) reporters and flow cytometry. During induction, there is a temporal order of gene expression, with transcriptional inputs turning on first, followed by structural and effector genes. The promoters show varying stochastic properties, where graded inputs are converted into all-or-none and hybrid responses. The relaxation dynamics are measured by shifting cells from inducing to noninducing conditions and by measuring fluorescence decay. The gfp expressed from promoters controlling the transcriptional inputs (hilC and hilD) and structural genes (prgH) decay exponentially, with a characteristic time of 50-55 min. In contrast, the gfp expressed from a promoter controlling the expression of effectors (sicA) persists for 110+/-9 min. This promoter is controlled by a genetic circuit, formed by a transcription factor (InvF), a chaperone (SicA), and a secreted protein (SipC), that regulates effector expression in response to the secretion capacity of the cell. A mathematical model of this circuit demonstrates that the delay is due to a split positive feedback loop. This model is tested in a DeltasicA knockout strain, where sicA is complemented with and without the feedback loop. The delay is eliminated when the feedback loop is deleted. Furthermore, a robustness analysis of the model predicts that the delay time can be tuned by changing the affinity of SicA:InvF multimers for an operator in the sicA promoter. This prediction is used to construct a targeted library, which contains mutants with both longer and shorter delays. This combination of theory and experiments provides a platform for predicting how genetic perturbations lead to changes in the global dynamics of a regulatory network.
Collapse
Affiliation(s)
- Karsten Temme
- UCSF/UCB Joint Graduate Group in Bioengineering, San Francisco, CA, USA
| | | | | | | | | | | |
Collapse
|
130
|
Huang Y, Leming CL, Suyemoto M, Altier C. Genome-wide screen of Salmonella genes expressed during infection in pigs, using in vivo expression technology. Appl Environ Microbiol 2007; 73:7522-30. [PMID: 17921269 PMCID: PMC2168049 DOI: 10.1128/aem.01481-07] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Accepted: 09/26/2007] [Indexed: 11/20/2022] Open
Abstract
Pigs are a food-producing species that readily carry Salmonella but, in the great majority of cases, do not show clinical signs of disease. Little is known about the functions required by Salmonella to be maintained in pigs. We have devised a recombinase-based promoter-trapping strategy to identify genes with elevated expression during pig infection with Salmonella enterica serovar Typhimurium. A total of 55 clones with in vivo-induced promoters were selected from a genomic library of approximately 10,000 random Salmonella DNA fragments fused to the recombinase cre, and the cloned DNA fragments were analyzed by sequencing. Thirty-one genes encoding proteins involved in bacterial adhesion and colonization (including bcfA, hscA, rffG, and yciR), virulence (metL), heat shock (hscA), and a sensor of a two-component regulator (hydH) were identified. Among the 55 clones, 19 were isolated from both the tonsils and the intestine, while 23 were identified only in the intestine and 13 only in tonsils. High temperature and increased osmolarity were identified as environmental signals that induced in vivo-expressed genes, suggesting possible signals for expression.
Collapse
Affiliation(s)
- Yanyan Huang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
131
|
Chan SSM, Mastroeni P, McConnell I, Blacklaws BA. Salmonella infection of afferent lymph dendritic cells. J Leukoc Biol 2007; 83:272-9. [PMID: 17986631 DOI: 10.1189/jlb.0607401] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The interactions of Salmonella enterica subspecies I serotype Abortusovis (S. Abortusovis) with ovine afferent lymph dendritic cells (ALDCs) were investigated for their ability to deliver Maedi visna virus (MVV) GAG p25 antigens to ALDCs purified from afferent lymph. Salmonellae were found to enter ALDC populations by a process of cell invasion, as confirmed by electron and confocal microscopy. This led to phenotypical changes in ALDC populations, as defined by CD1b and CD14 expression. No differences in the clearance kinetics of intracellular aroA-negative Salmonella from CD1b+ CD14lo and CD1b+ CD14(-) ALDC populations were noted over 72 h. ALDCs were also shown to present MVV GAG p25 expressed by aroA-negative S. Abortusovis to CD4+ T lymphocytes. Thus, the poor immune responses that Salmonella vaccines elicited in large animal models compared with mice are neither a result of an inability of Salmonella to infect large animal DCs nor an inability of these DCs to present delivered antigens. However, the low efficiency of infection of ALDC compared with macrophages or monocyte-derived DCs may account for the poor immune responses induced in large animal models.
Collapse
Affiliation(s)
- Simon S M Chan
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | | | | | | |
Collapse
|
132
|
Viegas SC, Pfeiffer V, Sittka A, Silva IJ, Vogel J, Arraiano CM. Characterization of the role of ribonucleases in Salmonella small RNA decay. Nucleic Acids Res 2007; 35:7651-64. [PMID: 17982174 PMCID: PMC2190706 DOI: 10.1093/nar/gkm916] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In pathogenic bacteria, a large number of sRNAs coordinate adaptation to stress and expression of virulence genes. To better understand the turnover of regulatory sRNAs in the model pathogen, Salmonella typhimurium, we have constructed mutants for several ribonucleases (RNase E, RNase G, RNase III, PNPase) and Poly(A) Polymerase I. The expression profiles of four sRNAs conserved among many enterobacteria, CsrB, CsrC, MicA and SraL, were analysed and the processing and stability of these sRNAs was studied in the constructed strains. The degradosome was a common feature involved in the turnover of these four sRNAs. PAPI-mediated polyadenylation was the major factor governing SraL degradation. RNase III was revealed to strongly affect MicA decay. PNPase was shown to be important in the decay of these four sRNAs. The stability of CsrB and CsrC seemed to be independent of the RNA chaperone, Hfq, whereas the decay of SraL and MicA was Hfq-dependent. Taken together, the results of this study provide initial insight into the mechanisms of sRNA decay in Salmonella, and indicate specific contributions of the RNA decay machinery components to the turnover of individual sRNAs.
Collapse
Affiliation(s)
- Sandra C Viegas
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Apartado 127, 2781-901 Oeiras, Portugal
| | | | | | | | | | | |
Collapse
|
133
|
Pfeiffer V, Sittka A, Tomer R, Tedin K, Brinkmann V, Vogel J. A small non-coding RNA of the invasion gene island (SPI-1) represses outer membrane protein synthesis from the Salmonella core genome. Mol Microbiol 2007; 66:1174-91. [PMID: 17971080 DOI: 10.1111/j.1365-2958.2007.05991.x] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The Salmonella pathogenicity island (SPI-1) encodes approximately 35 proteins involved in assembly of a type III secretion system (T3SS) which endows Salmonella with the ability to invade eukaryotic cells. We have discovered a novel SPI-1 gene, invR, which expresses an abundant small non-coding RNA (sRNA). The invR gene, which we identified in a global search for new Salmonella sRNA genes, is activated by the major SPI-1 transcription factor, HilD, under conditions that favour host cell invasion. The RNA chaperone, Hfq, is essential for the in vivo stability of the approximately 80 nt InvR RNA. Hfq binds InvR with high affinity in vitro, and InvR co-immunoprecipitates with FLAG epitope-tagged Hfq in Salmonella extracts. Surprisingly, deletion/overexpression of invR revealed no phenotype in SPI-1 regulation. In contrast, we find that InvR represses the synthesis of the abundant OmpD porin encoded by the Salmonella core genome. As invR is conserved in the early branching Salmonella bongori, we speculate that porin repression by InvR may have aided successful establishment of the SPI-1 T3SS after horizontal acquisition in the Salmonella lineage. This study identifies the first regulatory RNA of an enterobacterial pathogenicity island, and new roles for Hfq and HilD in SPI-1 gene expression.
Collapse
Affiliation(s)
- Verena Pfeiffer
- Max Planck Institute for Infection Biology, Charitéplatz 1, D-10117 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
134
|
Chanana V, Ray P, Rishi DB, Rishi P. Reactive nitrogen intermediates and monokines induce caspase-3 mediated macrophage apoptosis by anaerobically stressed Salmonella typhi. Clin Exp Immunol 2007; 150:368-74. [PMID: 17888027 PMCID: PMC2219343 DOI: 10.1111/j.1365-2249.2007.03503.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A successful pathogen manipulates its host for its own benefit. After ingestion, on reaching the intestine Salmonella encounters the resident tissue macrophages. Rather than being destroyed by these professional phagocytes after internalization, Salmonella survives intracellularly. Invasive Salmonella has been reported to induce apoptosis of macrophages as a part of its infection process, which may allow it to avoid detection by the innate immune system. However, the induction of apoptosis under different host environments, including the anaerobic stress encountered by the pathogen in the gut, remains to be examined. The present study is aimed at investigating the apoptotic potential of S. enterica serovar Typhi (S. typhi) grown under anaerobic conditions simulating the in vivo situation encountered by the pathogen. Apoptotic cell death was determined by assessment of nucleosomal DNA and flow cytometric analysis. Evaluation of the data revealed that anaerobically grown S. typhi could induce apoptosis in significantly more number of macrophages compared to the bacterial cells grown under aerobic conditions. A significantly enhanced generation of reactive nitrogen intermediates and caspase-3 activity during macrophage apoptosis induced by anaerobic S. typhi correlated with the increased generation of tumour necrosis factor-alpha, interleukin (IL)-1alpha and IL-6. The results indicate that reactive nitrogen intermediates and monokines induce caspase-3 mediated apoptosis of macrophages by S. typhi under anaerobic conditions. These findings may be relevant for clearer understanding of the Salmonella-macrophage interactions and may be of clinical importance in the development of preventive intervention against the infection.
Collapse
Affiliation(s)
- V Chanana
- Department of Microbiology, Basic Medical Sciences Building, Panjab University, Chandigarh, India
| | | | | | | |
Collapse
|
135
|
O Cróinín T, Dorman CJ. Expression of the Fis protein is sustained in late-exponential- and stationary-phase cultures of Salmonella enterica serovar Typhimurium grown in the absence of aeration. Mol Microbiol 2007; 66:237-51. [PMID: 17784910 DOI: 10.1111/j.1365-2958.2007.05916.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The classic expression pattern of the Fis global regulatory protein during batch culture consists of a high peak in the early logarithmic phase of growth, followed by a sharp decrease through mid-exponential growth phase until Fis is almost undetectable at the end of the exponential phase. We discovered that this pattern is contingent on the growth regime. In Salmonella enterica serovar Typhimurium cultures grown in non-aerated SPI1-inducing conditions, Fis can be detected readily in stationary phase. On the other hand, cultures grown with standard aeration showed the classic Fis expression pattern. Sustained Fis expression in non-aerated cultures was also detected in some Escherichia coli strains, but not in others. This novel pattern of Fis expression was independent of sequence differences in the fis promoter regions of Salmonella and E. coli. Instead, a clear negative correlation between the expression of the Fis protein and of the stress-and-stationary-phase sigma factor RpoS was observed in a variety of strains. An rpoS mutant displayed elevated levels of Fis and had a higher frequency of epithelial cell invasion under these growth conditions. We discuss a model whereby Fis and RpoS levels vary in response to environmental signals allowing the expression and repression of SPI1 invasion genes.
Collapse
Affiliation(s)
- Tadhg O Cróinín
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Ireland
| | | |
Collapse
|
136
|
Wall DM, Nadeau WJ, Pazos MA, Shi HN, Galyov EE, McCormick BA. Identification of the Salmonella enterica serotype typhimurium SipA domain responsible for inducing neutrophil recruitment across the intestinal epithelium. Cell Microbiol 2007; 9:2299-313. [PMID: 17697195 DOI: 10.1111/j.1462-5822.2007.00960.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In human intestinal disease induced by Salmonella enterica serotype Typhimurium (S. typhimurium) transepithelial migration of polymorphonuclear leukocytes (PMNs) rapidly follows attachment of the bacteria to the epithelial apical membrane. Previously, we have shown that the S. typhimurium effector protein, SipA, plays a pivotal role in signalling epithelial cell responses that lead to the transepithelial migration of PMNs. Thus, the objective of this study was to determine the functional domain of SipA that regulates this signalling event. SipA was divided into two fragments: the SipAb C-terminal fragment(426-684) (259 AA), which binds actin, and the SipAa fragment(2-425) (424 AA), which a role has yet to be described. In both in vitro and in vivo models of S. typhimurium-induced intestinal inflammation the SipAa fragment exhibited a profound ability to induce PMN transmigration, whereas the SipAb actin-binding domain failed to induce PMN transmigration. Subsequent mapping of the SipAa domain identified a 131-amino-acid region (SipAa3(294-424)) responsible for modulating PMN transepithelial migration. Interestingly, neither intracellular translocation nor actin association of SipA was necessary for its ability to induce PMN transepithelial migration. As these results indicate SipA has at least two separate functional domains, we speculate that during infection S. typhimurium requires delivery of SipA to both extracellular and intracellular spaces to maximize pro-inflammatory responses and mechanisms of bacterial invasion.
Collapse
Affiliation(s)
- Daniel M Wall
- Mucosal Immunology Laboratory, Department of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | | | | | | | | | | |
Collapse
|
137
|
Gerlach RG, Jäckel D, Geymeier N, Hensel M. Salmonella pathogenicity island 4-mediated adhesion is coregulated with invasion genes in Salmonella enterica. Infect Immun 2007; 75:4697-709. [PMID: 17635868 PMCID: PMC2044552 DOI: 10.1128/iai.00228-07] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella pathogenicity island 4 (SPI4) encodes a type I secretion system and the cognate substrate protein, SiiE. We have recently demonstrated that SiiE is a giant nonfimbrial adhesin involved in the adhesion of Salmonella enterica serovar Typhimurium to polarized epithelial cells. We also observed that under in vitro culture conditions, the synthesis and secretion of SiiE coincided with the activation of Salmonella invasion genes. These observations prompted us to investigate the regulation of SPI4 genes in detail. A novel approach for the generation of reporter gene fusions was employed to generate single-copy chromosomal fusions to various genes within SPI4, and the expression of these fusions was investigated. We analyzed the regulation of SPI4 genes and the roles of various regulatory systems for SPI4 expression. Our data show that the expression of SPI4 genes is coregulated with SPI1 invasion genes by the global regulator SirA. Expression of a SPI4 gene was also reduced in the absence of HilA, the central local regulator of SPI1 gene expression. Both SirA and HilA functions were required for the secretion of SiiE and the SPI4-mediated adhesion. Our data demonstrate that SPI4-mediated adhesion, as well as SPI1-mediated invasion, are tightly coregulated by the same regulatory circuits and induced under similar environmental conditions.
Collapse
Affiliation(s)
- Roman G Gerlach
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Wasserturmstr. 3-5, D-91054 Erlangen, Germany
| | | | | | | |
Collapse
|
138
|
Oxygen restriction increases the infective potential of Listeria monocytogenes in vitro in Caco-2 cells and in vivo in guinea pigs. BMC Microbiol 2007; 7:55. [PMID: 17570840 PMCID: PMC1899506 DOI: 10.1186/1471-2180-7-55] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Accepted: 06/14/2007] [Indexed: 11/10/2022] Open
Abstract
Background Listeria monocytogenes has been implicated in several food borne outbreaks as well as sporadic cases of disease. Increased understanding of the biology of this organism is important in the prevention of food borne listeriosis. The infectivity of Listeria monocytogenes ScottA, cultivated with and without oxygen restriction, was compared in vitro and in vivo. Fluorescent protein labels were applied to allow certain identification of Listeria cells from untagged bacteria in in vivo samples, and to distinguish between cells grown under different conditions in mixed infection experiments. Results Infection of Caco-2 cells revealed that Listeria cultivated under oxygen-restricted conditions were approximately 100 fold more invasive than similar cultures grown without oxygen restriction. This was observed for exponentially growing bacteria, as well as for stationary-phase cultures. Oral dosage of guinea pigs with Listeria resulted in a significantly higher prevalence (p < 0.05) of these bacteria in jejunum, liver and spleen four and seven days after challenge, when the bacterial cultures had been grown under oxygen-restricted conditions prior to dosage. Additionally, a 10–100 fold higher concentration of Listeria in fecal samples was observed after dosage with oxygen-restricted bacteria. These differences were seen after challenge with single Listeria cultures, as well as with a mixture of two cultures grown with and without oxygen restriction. Conclusion Our results show for the first time that the environmental conditions to which L. monocytogenes is exposed prior to ingestion are decisive for its in vivo infective potential in the gastrointestinal tract after passage of the gastric barrier. This is highly relevant for safety assessment of this organism in food.
Collapse
|
139
|
Thijs IMV, De Keersmaecker SCJ, Fadda A, Engelen K, Zhao H, McClelland M, Marchal K, Vanderleyden J. Delineation of the Salmonella enterica serovar Typhimurium HilA regulon through genome-wide location and transcript analysis. J Bacteriol 2007; 189:4587-96. [PMID: 17483226 PMCID: PMC1913449 DOI: 10.1128/jb.00178-07] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The Salmonella enterica serovar Typhimurium HilA protein is the key regulator for the invasion of epithelial cells. By a combination of genome-wide location and transcript analysis, the HilA-dependent regulon has been delineated. Under invasion-inducing conditions, HilA binds to most of the known target genes and a number of new target genes. The sopB, sopE, and sopA genes, encoding effector proteins secreted by the type III secretion system on Salmonella pathogenicity island 1 (SPI-1), were identified as being both bound by HilA and differentially regulated in an HilA mutant. This suggests a cooperative role for HilA and InvF in the regulation of SPI-1-secreted effectors. Also, siiA, the first gene of SPI-4, is both bound by HilA and differentially regulated in an HilA mutant, thus linking this pathogenicity island to the invasion key regulator. Finally, the interactions of HilA with the SPI-2 secretion system gene ssaH and the flagellar gene flhD imply a repressor function for HilA under invasion-inducing conditions.
Collapse
Affiliation(s)
- Inge M V Thijs
- Centre of Microbial and Plant Genetics, K. U. Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
140
|
Hara-Kaonga B, Pistole TG. A dual fluorescence flow cytometric analysis of bacterial adherence to mammalian host cells. J Microbiol Methods 2007; 69:37-43. [PMID: 17222473 PMCID: PMC2649669 DOI: 10.1016/j.mimet.2006.11.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 11/20/2006] [Accepted: 11/22/2006] [Indexed: 11/30/2022]
Abstract
Flow cytometry has provided a powerful tool for analyzing bacteria-host cell associations. Established approaches have used bacteria, labeled either directly with fluorochromes or indirectly with fluorescently conjugated antibodies, to detect these associations. Although useful, these techniques are consistently unable to include all host cells in the analysis while excluding free, aggregated bacteria. This study describes a new flow cytometry method of assessing bacterial adherence to host cells based on direct fluorescent labeling of both bacteria and host cells. Eukaryotic host cells were labeled with PKH-26, a red fluorescent dye, and bacteria were labeled with fluorescein isothiocyanate, a green fluorescent dye. The red host cells were gated and the mean green fluorescence intensity (MFI) of these red cells was determined. We used MFI values obtained from control samples (unlabeled and labeled host cells with unlabeled bacteria) to eliminate contributions due to autofluorescence. The final MFI values represent fluorescence of host cells resulting from the adherent bacteria. Because all red fluorescent cells are analyzed, this method includes all the eukaryotic cells for analysis but excludes all free or aggregated bacteria that are not bound to target cells.
Collapse
Affiliation(s)
| | - Thomas G. Pistole
- Department of Microbiology, University of New Hampshire, Rudman Hall, 46 College Road, Durham, NH 03824-2617, U.S.A
| |
Collapse
|
141
|
Fink RC, Evans MR, Porwollik S, Vazquez-Torres A, Jones-Carson J, Troxell B, Libby SJ, McClelland M, Hassan HM. FNR is a global regulator of virulence and anaerobic metabolism in Salmonella enterica serovar Typhimurium (ATCC 14028s). J Bacteriol 2007; 189:2262-73. [PMID: 17220229 PMCID: PMC1899381 DOI: 10.1128/jb.00726-06] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Salmonella enterica serovar Typhimurium must successfully transition the broad fluctuations in oxygen concentrations encountered in the host. In Escherichia coli, FNR is one of the main regulatory proteins involved in O2 sensing. To assess the role of FNR in serovar Typhimurium, we constructed an isogenic fnr mutant in the virulent wild-type strain (ATCC 14028s) and compared their transcriptional profiles and pathogenicities in mice. Here, we report that, under anaerobic conditions, 311 genes (6.80% of the genome) are regulated directly or indirectly by FNR; of these, 87 genes (28%) are poorly characterized. Regulation by FNR in serovar Typhimurium is similar to, but distinct from, that in E. coli. Thus, genes/operons involved in aerobic metabolism, NO. detoxification, flagellar biosynthesis, motility, chemotaxis, and anaerobic carbon utilization are regulated by FNR in a fashion similar to that in E. coli. However, genes/operons existing in E. coli but regulated by FNR only in serovar Typhimurium include those coding for ethanolamine utilization, a universal stress protein, a ferritin-like protein, and a phosphotransacetylase. Interestingly, Salmonella-specific genes/operons regulated by FNR include numerous virulence genes within Salmonella pathogenicity island 1 (SPI-1), newly identified flagellar genes (mcpAC, cheV), and the virulence operon (srfABC). Furthermore, the role of FNR as a positive regulator of motility, flagellar biosynthesis, and pathogenesis was confirmed by showing that the mutant is nonmotile, lacks flagella, is attenuated in mice, and does not survive inside macrophages. The inability of the mutant to survive inside macrophages is likely due to its sensitivity to the reactive oxygen species generated by NADPH phagocyte oxidase.
Collapse
Affiliation(s)
- Ryan C Fink
- Department of Microbiology, North Carolina State University, Raleigh, NC 27695-7615, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Sittka A, Pfeiffer V, Tedin K, Vogel J. The RNA chaperone Hfq is essential for the virulence of Salmonella typhimurium. Mol Microbiol 2006; 63:193-217. [PMID: 17163975 PMCID: PMC1810395 DOI: 10.1111/j.1365-2958.2006.05489.x] [Citation(s) in RCA: 309] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The RNA chaperone, Hfq, plays a diverse role in bacterial physiology beyond its original role as a host factor required for replication of Qβ RNA bacteriophage. In this study, we show that Hfq is involved in the expression and secretion of virulence factors in the facultative intracellular pathogen, Salmonella typhimurium. A Salmonella hfq deletion strain is highly attenuated in mice after both oral and intraperitoneal infection, and shows a severe defect in invasion of epithelial cells and a growth defect in both epithelial cells and macrophages in vitro. Surprisingly, we find that these phenotypes are largely independent of the previously reported requirement of Hfq for expression of the stationary phase sigma factor, RpoS. Our results implicate Hfq as a key regulator of multiple aspects of virulence including regulation of motility and outer membrane protein (OmpD) expression in addition to invasion and intracellular growth. These pleiotropic effects are suggested to involve a network of regulatory small non-coding RNAs, placing Hfq at the centre of post-transcriptional regulation of virulence gene expression in Salmonella. In addition, the hfq mutation appears to cause a chronic activation of the RpoE-mediated envelope stress response which is likely due to a misregulation of membrane protein expression.
Collapse
Affiliation(s)
- Alexandra Sittka
- Max Planck Institute for Infection BiologyRNA Biology Group, Berlin, Germany
| | - Verena Pfeiffer
- Max Planck Institute for Infection BiologyRNA Biology Group, Berlin, Germany
| | - Karsten Tedin
- Institut für Mikrobiologie und Tierseuchen, Freie Universität BerlinBerlin, Germany
| | - Jörg Vogel
- Max Planck Institute for Infection BiologyRNA Biology Group, Berlin, Germany
- *For correspondence. E-mail ; Tel. (+49) 30 28460 265; Fax (+49) 30 28460 244
| |
Collapse
|
143
|
Kleta S, Steinrück H, Breves G, Duncker S, Laturnus C, Wieler LH, Schierack P. Detection and distribution of probiotic Escherichia coli Nissle 1917 clones in swine herds in Germany. J Appl Microbiol 2006; 101:1357-66. [PMID: 17105567 DOI: 10.1111/j.1365-2672.2006.03019.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AIMS To verify the presence of Escherichia coli Nissle 1917 as a natural isolate in swine and to characterize in vitro probiotic properties as well as in vivo persistence in a feeding experiment. METHODS AND RESULTS During studies on the intestinal microflora of pigs, we isolated E. coli Nissle 1917 sporadically from a pig population over a period of 1 year. The identity of the isolates as E. coli Nissle 1917 was verified by serotyping, Nissle-specific PCR, macrorestriction analysis (pulsed field gel electrophoresis) and the determination of in vitro probiotic properties in invasion and adhesion assays using a porcine intestinal epithelial cell line. Both the E. coli isolates and the E. coli Nissle 1917 strain showed strong reductions in adhesion of porcine enteropathogenic E. coli and invasion of Salmonella typhimurium with epithelial cells in vitro, with a probiotic effect. Screening of five epidemiologically unlinked swine farms and two wild boar groups showed one farm positive for E. coli Nissle 1917. A feeding experiment with four piglets showed viable E. coli Nissle 1917 in the intestine of three animals. CONCLUSIONS The results of this study suggest that the E. coli Nissle 1917 strain is already partially established in swine herds, but the colonization of individual animals is variable. SIGNIFICANCE AND IMPACT OF THE STUDY We report natural, long-term colonization and transmission of the probiotic E. coli Nissle 1917 strain in a swine herd, characterized individual persistence and colonization properties in swine and established an in vitro porcine intestinal epithelial cell model of probiotic action. The results of this study would have implications in the use of this strain as a probiotic in swine and contribute to a better understanding of the individual nature of intestinal bacterial persistence and establishment.
Collapse
Affiliation(s)
- S Kleta
- Institut für Mikrobiologie und Tierseuchen, Freie Universität Berlin, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
144
|
Aguirre A, Cabeza ML, Spinelli SV, McClelland M, García Véscovi E, Soncini FC. PhoP-induced genes within Salmonella pathogenicity island 1. J Bacteriol 2006; 188:6889-98. [PMID: 16980492 PMCID: PMC1595516 DOI: 10.1128/jb.00804-06] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The invasive pathogen Salmonella enterica has evolved a sophisticated device that allows it to enter nonphagocytic host cells. This process requires the expression of Salmonella pathogenicity island 1 (SPI-1), which encodes a specialized type III protein secretion system (TTSS). This TTSS delivers a set of effectors that produce a marked rearrangement of the host cytoskeleton, generating a profuse membrane ruffling at the site of interaction, driving bacterial entry. It has been shown that the PhoP/PhoQ two-component system represses the expression of the SPI-1 machinery by down-regulating the transcription of its master regulator, HilA. In this work, we reveal the presence of a PhoP-activated operon within SPI-1. This operon is composed of the orgB and orgC genes, which encode a protein that interacts with the InvC ATPase and a putative effector protein of the TTSS, respectively. Under PhoP-inducing conditions, expression of this operon is directly activated by the phosphorylated form of the response regulator, which recognizes a PhoP box located at the -35 region relative to the transcription start site. Additionally, under invasion-inducing conditions, orgBC expression is driven both by the prgH promoter, induced by the SPI-1 master regulator HilA, and by the directly controlled PhoP/PhoQ promoter. Together, these results indicate that in contrast to the rest of the genes encompassed in the SPI-1 locus, orgBC is expressed during and after Salmonella entry into its host cell, and they suggest a role for the products of this operon after host cell internalization.
Collapse
Affiliation(s)
- Andrés Aguirre
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Suipacha 531, S2002LRK Rosario, Argentina
| | | | | | | | | | | |
Collapse
|
145
|
Shi J, Casanova JE. Invasion of host cells by Salmonella typhimurium requires focal adhesion kinase and p130Cas. Mol Biol Cell 2006; 17:4698-708. [PMID: 16914515 PMCID: PMC1635395 DOI: 10.1091/mbc.e06-06-0492] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Salmonella typhimurium colonizes the intestinal epithelium by injecting an array of effector proteins into host cells that induces phagocytic uptake of attached bacteria. However, the host molecules targeted by these effectors remain poorly defined. Here, we demonstrate that S. typhimurium induces formation of focal adhesion-like complexes at sites of bacterial attachment and that both focal adhesion kinase (FAK) and the scaffolding protein p130Cas are required for Salmonella uptake. Entry of Salmonella into FAK(-/-) cells is dramatically impaired and can be restored to control levels by expression of wild-type FAK. Surprisingly, reconstitution of bacterial internalization requires neither the kinase domain of FAK nor activation of c-Src, but does require a C-terminal PXXP motif through which FAK interacts with Cas. Infection of Cas(-/-) cells is also impaired, and reconstitution of invasiveness requires the central Cas YXXP repeat domain. The invasion defect in Cas(-/-) cells can be suppressed by overexpression of FAK, suggesting a functional link between FAK and Cas in the regulation of Salmonella invasion. Together, these findings reveal a novel role for focal adhesion proteins in the invasion of host cells by Salmonella.
Collapse
Affiliation(s)
- Jing Shi
- Department of Cell Biology, University of Virginia Health Sciences Center, Charlottesville, VA 22908-0732
| | - James E. Casanova
- Department of Cell Biology, University of Virginia Health Sciences Center, Charlottesville, VA 22908-0732
| |
Collapse
|
146
|
Kiama SG, Dreher D, Cochand L, Kok M, Obregon C, Nicod L, Gehr P. Host cell responses of Salmonella typhimurium infected human dendritic cells. Immunol Cell Biol 2006; 84:475-81. [PMID: 16869939 DOI: 10.1111/j.1440-1711.2006.01461.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Live attenuated Salmonella are attractive vaccine candidates for mucosal application because they induce both mucosal immune responses and systematic immune responses. After breaking the epithelium barrier, Salmonella typhimurium is found within dendritic cells (DC) in the Peyer's patches. Although there are abundant data on the interaction of S. typhimurium with murine epithelial cells, macrophages and DC, little is known about its interaction with human DC. Live attenuated S. typhimurium have recently been shown to efficiently infect human DC in vitro and induce production of cytokines. In this study, we have analysed the morphological consequences of infection of human DC by the attenuated S. typhimurium mutant strains designated PhoPc, AroA and SipB and the wild-type strains of the American Type Culture Collection (Manassas, VA, USA), ATCC 14028 and ATCC C53, by electron microscopy at 30 min, 3 h and 24 h after exposure. Our results show that genetic background of the strains profoundly influence DC morphology following infection. The changes included (i) membrane ruffling; (ii) formation of tight or spacious phagosomes; (iii) apoptosis; and (iv) spherical, pedunculated membrane-bound microvesicles that project from the plasma membrane. Despite the fact that membrane ruffling was much more pronounced with the two virulent strains, all mutants were taken up by the DC. The microvesicles were induced by all the attenuated strains, including SipB, which did not induce apoptosis in the host cell. These results suggest that Salmonella is internalized by human DC, inducing morphological changes in the DC that could explain immunogenicity of the attenuated strains.
Collapse
|
147
|
Nakayama SI, Watanabe H. Mechanism of hilA repression by 1,2-propanediol consists of two distinct pathways, one dependent on and the other independent of catabolic production of propionate, in Salmonella enterica serovar Typhimurium. J Bacteriol 2006; 188:3121-5. [PMID: 16585772 PMCID: PMC1447021 DOI: 10.1128/jb.188.8.3121-3125.2006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A glycerol dehydrogenase gene was selected as a multicopy suppressor rescuing the reduced hilA expression in the Salmonella enterica serovar Typhimurium cpxA mutant. A substrate of the enzyme, 1,2-propanediol, repressed hilA expression. The 1,2-propanediol-mediated repression at 150 mM, but not that at 300 mM, was abrogated by blocking the catabolism producing propionate from 1,2-propanediol.
Collapse
Affiliation(s)
- Shu-ichi Nakayama
- Department of Bacteriology, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8640, Japan.
| | | |
Collapse
|
148
|
Abstract
Type III secretion-mediated cytotoxicity is one of the key virulence mechanisms of the opportunistic pathogen Pseudomonas aeruginosa. Prior data from several laboratories have established that metabolism is a key factor in the regulation of type III secretion gene expression in P. aeruginosa. Here we use a fluorescence-activated cell sorter (FACS)-based approach to investigate expression of type III secretion genes at a single-cell level. The data demonstrate that the metabolic state regulates the percentage of cells that are able to induce type III secretion gene expression under inducing conditions. We also present evidence that this regulation is the result of an effect of the growth conditions on the ability of P. aeruginosa to assemble a functional type III secretion apparatus. Preliminary data suggest that the metabolite that controls type III secretion gene expression is derived from acetyl-CoA and that this regulation may, in part, be mediated by changes in the intracellular concentration of cyclic-AMP.
Collapse
Affiliation(s)
- Arne Rietsch
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Ave., Boston, MA 02115, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - John J. Mekalanos
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Ave., Boston, MA 02115, USA
| |
Collapse
|
149
|
Mizoguchi E. Chitinase 3-like-1 exacerbates intestinal inflammation by enhancing bacterial adhesion and invasion in colonic epithelial cells. Gastroenterology 2006; 130:398-411. [PMID: 16472595 DOI: 10.1053/j.gastro.2005.12.007] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Accepted: 10/26/2005] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Dysregulated host/microbial interactions appear to play a central role in the development of inflammatory bowel disease (IBD). However, molecular events leading to the dysregulation have not yet been defined fully. Studies were designed to characterize a key molecule that is involved in the dysregulation. METHODS Colonic mucosal RNA from C57BL/6 mice on days 4 and 8 with administration of 4% dextran sulfate sodium for 5 days were subjected to DNA microarray analysis. Chitinase 3-like-1 (CHI3L1) messenger RNA and protein expressions were examined by reverse-transcription polymerase chain reaction and immunohistochemistry. A gentamicin protection assay of Salmonella typhimurium was performed using epithelial cell lines that are engineered genetically to overexpress or lack mouse CHI3L1. To examine the functional role of CHI3L1 in vivo, anti-CHI3L1 antibody was administered into the dextran sulfate sodium colitis model. RESULTS Microarray analysis identified that CHI3L1 is up-regulated specifically in inflamed mucosa. The expression of CHI3L1 protein clearly was detectable in lamina propria and colonic epithelial cells (CECs) in several murine colitis models and ulcerative colitis and Crohn's disease patients but absent in normal controls. The gentamicin protection assays using intracellular bacteria showed that CHI3L1 is required for the enhancement of adhesion and internalization of these bacteria in CEC. In vivo neutralization experiments showed that CHI3L1 contributes to the facilitation of bacterial invasion into the intestinal mucosa and the development of acute colitis. CONCLUSIONS CHI3L1 plays a pathogenic role in colitis, presumably by enhancing the adhesion and invasion of bacteria on/into CEC. Inhibition of CHI3L1 activity would be a novel therapeutic approach for IBD.
Collapse
MESH Headings
- Animals
- Bacterial Adhesion/physiology
- Colitis, Ulcerative/genetics
- Colitis, Ulcerative/pathology
- Colon/microbiology
- Colon/pathology
- DNA Primers
- Disease Models, Animal
- Extracellular Matrix Proteins/genetics
- Extracellular Matrix Proteins/physiology
- Female
- Humans
- Interleukin-10/deficiency
- Interleukin-10/genetics
- Interleukin-10/physiology
- Intestinal Mucosa/microbiology
- Intestinal Mucosa/pathology
- Lectins/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Oligonucleotide Array Sequence Analysis
- RNA, Small Interfering/genetics
- Receptors, Antigen, T-Cell/deficiency
- Receptors, Antigen, T-Cell/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Salmonella typhimurium/pathogenicity
- beta-N-Acetylhexosaminidases/physiology
Collapse
Affiliation(s)
- Emiko Mizoguchi
- Center for the Study of Inflammatory Bowel Disease, Gastroenterology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, 02114, USA
| |
Collapse
|
150
|
Bucarey SA, Villagra NA, Martinic MP, Trombert AN, Santiviago CA, Maulén NP, Youderian P, Mora GC. The Salmonella enterica serovar Typhi tsx gene, encoding a nucleoside-specific porin, is essential for prototrophic growth in the absence of nucleosides. Infect Immun 2005; 73:6210-9. [PMID: 16177292 PMCID: PMC1230887 DOI: 10.1128/iai.73.10.6210-6219.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Salmonella enterica serovar Typhi tsx gene encodes a porin that facilitates the import of nucleosides. When serovar Typhi is grown under anaerobic conditions, Tsx is among the outer membrane proteins whose expression increases dramatically. This increase in expression is due, at least in part, to increased transcription and is dependent on Fnr but not on ArcA. A mutant derivative of serovar Typhi strain STH2370 with a deletion of the tsx gene is an auxotroph that requires either adenosine or thymidine for growth on minimal medium. In contrast, an otherwise isogenic nupG nupC double mutant, defective in the inner membrane nucleoside permeases, is a prototroph. Because anaerobic growth enhances the virulence of serovar Typhi in vitro, we assessed the role that the tsx gene plays in pathogenicity and found that the serovar Typhi STH2370 Deltatsx mutant is defective in survival within human macrophage-like U937 cells. To understand why the Deltatsx mutant is an auxotroph, we selected for insertions of minitransposon T-POP in the Deltatsx genetic background that restored prototrophy. One T-POP insertion that suppressed the Deltatsx mutation in the presence of the inducer tetracycline was located upstream of the pyrD gene. The results of reverse transcription-PCR analysis showed that addition of the inducer decreased the rate of pyrD transcription. These results suggest that the Tsx porin and the balance of products of the tsx and pyrD genes play critical roles in membrane assembly and integrity and thus in the virulence of serovar Typhi.
Collapse
Affiliation(s)
- Sergio A Bucarey
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile
| | | | | | | | | | | | | | | |
Collapse
|