101
|
Besson A, Robbins SM, Yong VW. PTEN/MMAC1/TEP1 in signal transduction and tumorigenesis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 263:605-11. [PMID: 10469123 DOI: 10.1046/j.1432-1327.1999.00542.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The level of phosphorylation within cells is tightly regulated by the concerted action of protein kinases and protein phosphatases [Hunter, T. (1995) Cell 80, 225-236]. Disregulation in the activity of either of these players can lead to cellular transformation. Many protein tyrosine kinases are proto-oncogenes and it has been postulated that some protein phosphatases may act as tumor suppressors. Herein we will review the recent findings addressing the roles the candidate tumor suppressor PTEN/MMAC1/TEP1 (PTEN, phosphatase and tensin homologue deleted from chromosome 10; MMAC 1, mutated in multiple advanced cancers 1; TEP1, TGF beta regulated and epithelial cell enriched phosphatase 1) plays in signal transduction and tumorigenesis. PTEN is a dual specificity protein phosphatase (towards phospho-Ser/Thr and phospho-Tyr) and, unexpectedly, also has a phosphoinositide 3-phosphatase activity. PTEN plays an important role in the modulation of the 1-phosphatidylinositol 3-kinase (PtdIns 3-kinase) pathway, by catalyzing the degradation of the PtdIns(3,4,5)P3 generated by PtdIns 3-kinase; this inhibits the downstream functions mediated by the PtdIns 3-kinase pathway, such as activation of protein kinase B (PKB, also known as Akt), cell survival and cell proliferation. Furthermore, PTEN modulates cell migration and invasion by negatively regulating the signals generated at the focal adhesions, through the direct dephosphorylation and inhibition of focal adhesion kinase (FAK). Growth factor receptor signaling is also negatively regulated by PTEN, through the inhibition of the adaptor protein Shc. While some of the functions of PTEN have been elucidated, it is clear that there is much more to discover about the roles of this unique protein.
Collapse
Affiliation(s)
- A Besson
- Department of Oncology, University of Calgary, Alberta, Canada
| | | | | |
Collapse
|
102
|
Tanoue T, Moriguchi T, Nishida E. Molecular cloning and characterization of a novel dual specificity phosphatase, MKP-5. J Biol Chem 1999; 274:19949-56. [PMID: 10391943 DOI: 10.1074/jbc.274.28.19949] [Citation(s) in RCA: 177] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A group of dual specificity protein phosphatases negatively regulates members of the mitogen-activated protein kinase (MAPK) superfamily, which consists of three major subfamilies, MAPK/extracellular signal-regulated kinase (ERK), stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK), and p38. Nine members of this group of dual specificity phosphatases have previously been cloned. They show distinct substrate specificities for MAPKs, different tissue distribution and subcellular localization, and different modes of inducibility of their expression by extracellular stimuli. Here we have cloned and characterized a novel dual specificity phosphatase, which we have designated MKP-5. MKP-5 is a protein of 482 amino acids with a calculated molecular mass of 52.6 kDa and consists of 150 N-terminal amino acids of unknown function, two Cdc25 homology 2 regions in the middle, and a C-terminal catalytic domain. MKP-5 binds to p38 and SAPK/JNK, but not to MAPK/ERK, and inactivates p38 and SAPK/JNK, but not MAPK/ERK. p38 is a preferred substrate. The subcellular localization of MKP-5 is unique; it is present evenly in both the cytoplasm and the nucleus. MKP-5 mRNA is widely expressed in various tissues and organs, and its expression in cultured cells is elevated by stress stimuli. These results suggest that MKP-5 is a novel type of dual specificity phosphatase specific for p38 and SAPK/JNK.
Collapse
Affiliation(s)
- T Tanoue
- Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | |
Collapse
|
103
|
Todd JL, Tanner KG, Denu JM. Extracellular regulated kinases (ERK) 1 and ERK2 are authentic substrates for the dual-specificity protein-tyrosine phosphatase VHR. A novel role in down-regulating the ERK pathway. J Biol Chem 1999; 274:13271-80. [PMID: 10224087 DOI: 10.1074/jbc.274.19.13271] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mammalian dual-specificity protein-tyrosine phosphatase VHR (for VH1-related) has been identified as a novel regulator of extracellular regulated kinases (ERKs). To identify potential cellular substrates of VHR, covalently immobilized mutant VHR protein was employed as an affinity trap. A tyrosine-phosphorylated protein(s) of approximately 42 kDa was specifically adsorbed by the affinity column and identified as ERK1 and ERK2. Subsequent kinetic analyses and transfection studies demonstrated that VHR specifically dephosphorylates and inactivates ERK1 and ERK2 in vitro and in vivo. Only the native structure of phosphorylated ERK was recognized by VHR and was inactivated with a second-order rate constant of 40,000 M-1 s-1. VHR was found to dephosphorylate endogenous ERK, but not p38 and JNK. Immunodepletion of endogenous VHR eliminated the dephosphorylation of cellular ERK. Transfection studies in COS-1 cells demonstrated that in vivo phosphorylation of epidermal growth factor-stimulated ERK depended on VHR protein levels. Overexpression above endogenous levels of VHR led to accelerated ERK inactivation, but did not alter the normal activation of ERK. Unique among reported mitogen activated protein kinase phosphatases, VHR is constitutively expressed, localized to the nucleus, and tyrosine-specific. This study is the first to report the identification of authentic substrates of dual-specificity phosphatases utilizing affinity absorbents and is the first to identify a nuclear, constitutively expressed, and tyrosine-specific ERK phosphatase. The data strongly suggest that VHR is responsible for the rapid inactivation of ERK following stimulation and for its repression in quiescent cells.
Collapse
Affiliation(s)
- J L Todd
- Oregon Health Sciences University, Department of Biochemistry and Molecular Biology L224, Portland, Oregon 97201-3098, USA
| | | | | |
Collapse
|
104
|
Adler V, Yin Z, Fuchs SY, Benezra M, Rosario L, Tew KD, Pincus MR, Sardana M, Henderson CJ, Wolf CR, Davis RJ, Ronai Z. Regulation of JNK signaling by GSTp. EMBO J 1999; 18:1321-34. [PMID: 10064598 PMCID: PMC1171222 DOI: 10.1093/emboj/18.5.1321] [Citation(s) in RCA: 848] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Studies of low basal Jun N-terminal kinase (JNK) activity in non-stressed cells led us to identify a JNK inhibitor that was purified and identified as glutathione S-transferase Pi (GSTp) and was characterized as a JNK-associated protein. UV irradiation or H2O2 treatment caused GSTp oligomerization and dissociation of the GSTp-JNK complex, indicating that it is the monomeric form of GSTp that elicits JNK inhibition. Addition of purified GSTp to the Jun-JNK complex caused a dose-dependent inhibition of JNK activity. Conversely, immunodepleting GSTp from protein extracts attenuated JNK inhibition. Furthermore, JNK activity was increased in the presence of specific GSTp inhibitors and a GSTp-derived peptide. Forced expression of GSTp decreased MKK4 and JNK phosphorylation which coincided with decreased JNK activity, increased c-Jun ubiquitination and decreased c-Jun-mediated transcription. Co-transfection of MEKK1 and GSTp restored MKK4 phosphorylation but did not affect GSTp inhibition of JNK activity, suggesting that the effect of GSTp on JNK is independent of the MEKK1-MKK4 module. Mouse embryo fibroblasts from GSTp-null mice exhibited a high basal level of JNK activity that could be reduced by forced expression of GSTp cDNA. In demonstrating the relationships between GSTp expression and its association with JNK, our findings provide new insight into the regulation of stress kinases.
Collapse
Affiliation(s)
- V Adler
- The Ruttenberg Cancer Center, Mount Sinai School of Medicine, One Gustave L.Levy Place, Box 1130, New York, NY 10029-6574, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Gupta R, Huang Y, Kieber J, Luan S. Identification of a dual-specificity protein phosphatase that inactivates a MAP kinase from Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 16:581-589. [PMID: 10036776 DOI: 10.1046/j.1365-313x.1998.00327.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Mitogen-activated protein kinases (MAPKs) play a key role in plant responses to stress and pathogens. Activation and inactivation of MAPKs involve phosphorylation and dephosphorylation on both threonine and tyrosine residues in the kinase domain. Here we report the identification of an Arabidopsis gene encoding a dual-specificity protein phosphatase capable of hydrolysing both phosphoserine/threonine and phosphotyrosine in protein substrates. This enzyme, designated AtDsPTP1 (Arabidopsis thaliana dual-specificity protein tyrosine phosphatase), dephosphorylated and inactivated AtMPK4, a MAPK member from the same plant. Replacement of a highly conserved cysteine by serine abolished phosphatase activity of AtDsPTP1, indicating a conserved catalytic mechanism of dual-specificity protein phosphatases from all eukaryotes.
Collapse
Affiliation(s)
- R Gupta
- Department of Plant and Microbial Biology, University of California at Berkeley 94720, USA
| | | | | | | |
Collapse
|
106
|
Takagi T, Taylor GS, Kusakabe T, Charbonneau H, Buratowski S. A protein tyrosine phosphatase-like protein from baculovirus has RNA 5'-triphosphatase and diphosphatase activities. Proc Natl Acad Sci U S A 1998; 95:9808-12. [PMID: 9707557 PMCID: PMC21418 DOI: 10.1073/pnas.95.17.9808] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The superfamily of protein tyrosine phosphatases (PTPs) includes at least one enzyme with an RNA substrate. We recently showed that the RNA triphosphatase domain of the Caenorhabditis elegans mRNA capping enzyme is related to the PTP enzyme family by sequence similarity and mechanism. The PTP most similar in sequence to the capping enzyme triphosphatase is BVP, a dual-specificity PTP encoded by the Autographa californica nuclear polyhedrosis virus. Although BVP previously has been shown to have modest tyrosine and serine/threonine phosphatase activity, we find that it is much more potent as an RNA 5'-phosphatase. BVP sequentially removes gamma and beta phosphates from the 5' end of triphosphate-terminated RNA, leaving a 5'-monophosphate end. The activity was specific for polynucleotides; nucleotide triphosphates were not hydrolyzed. A mutant protein in which the active site cysteine was replaced with serine was inactive. Three other dual-specificity PTPs (VH1, VHR, and Cdc14) did not exhibit detectable RNA phosphatase activity. Therefore, capping enzyme and BVP are members of a distinct PTP-like subfamily that can remove phosphates from RNA.
Collapse
Affiliation(s)
- T Takagi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
107
|
Peinado-Ramón P, Wallén A, Hallböök F. MAP kinase phosphatase-1 mRNA is expressed in embryonic sympathetic neurons and is upregulated after NGF stimulation. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 56:256-67. [PMID: 9602144 DOI: 10.1016/s0169-328x(98)00047-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The family of Tyr/Thr protein phosphatases, called dual-specificity phosphatases, have been implicated in the feedback regulation of the MAP kinase cascade by dephosphorylating the MAP kinases. Using low stringent cDNA screening we have isolated a chicken homologue of the CL100 phosphatase also called MAP kinase phosphatase 1 (MKP-1). The chicken MKP-1 has 84% and 85.5% identity to the rat and human amino acid sequence, respectively. Using RNase protection assay and in situ hybridization we have found that MKP-1 mRNA is expressed at low levels in most tissues during development. In embryonic dorsal root and sympathetic ganglia MKP-1 mRNA expression increases with age. The expression in large cells in dorsal root ganglia suggests that it is neurons which express MKP-1 mRNA. We also show that MKP-1 mRNA is induced in dissociated embryonic sympathetic neurons after nerve growth factor stimulation. In addition, our results show that MKP-1 mRNA is induced after NGF stimulation of fibroblasts expressing the NGF receptor TrkA, suggesting that MKP-1 is upregulated after activation of the TrkA receptor. These data show that the MKP-1 gene is regulated in a tissue and temporal specific fashion with strong expression in the developing peripheral ganglia, and suggest that the activation of MKP-1 mRNA expression by NGF is a ubiquitously induced response to TrkA activation, independent of the cellular origin or type on which the TrkA receptor is active.
Collapse
Affiliation(s)
- P Peinado-Ramón
- Department of Developmental Neuroscience, Biomedical Centre, University of Uppsala, Box 587, S-751 23, Uppsala, Sweden
| | | | | |
Collapse
|
108
|
Affiliation(s)
- T S Lewis
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado, Boulder 80309, USA
| | | | | |
Collapse
|
109
|
Zhang ZY. Protein-tyrosine phosphatases: biological function, structural characteristics, and mechanism of catalysis. Crit Rev Biochem Mol Biol 1998; 33:1-52. [PMID: 9543627 DOI: 10.1080/10409239891204161] [Citation(s) in RCA: 201] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The protein-tyrosine phosphatases (PTPases) superfamily consists of tyrosine-specific phosphatases, dual specificity phosphatases, and the low-molecular-weight phosphatases. They are modulators of signal transduction pathways that regulate numerous cell functions. Malfunction of PTPases have been linked to a number of oncogenic and metabolic disease states, and PTPases are also employed by microbes and viruses for pathogenicity. There is little sequence similarity among the three subfamilies of phosphatases. Yet, three-dimensional structural data show that they share similar conserved structural elements, namely, the phosphate-binding loop encompassing the PTPase signature motif (H/V)C(X)5R(S/T) and an essential general acid/base Asp residue on a surface loop. Biochemical experiments demonstrate that phosphatases in the PTPase superfamily utilize a common mechanism for catalysis going through a covalent thiophosphate intermediate that involves the nucleophilic Cys residue in the PTPase signature motif. The transition states for phosphoenzyme intermediate formation and hydrolysis are dissociative in nature and are similar to those of the solution phosphate monoester reactions. One strategy used by these phosphatases for transition state stabilization is to neutralize the developing negative charge in the leaving group. A conformational change that is restricted to the movement of a flexible loop occurs during the catalytic cycle of the PTPases. However, the relationship between loop dynamics and enzyme catalysis remains to be established. The nature and identity of the rate-limiting step in the PTPase catalyzed reaction requires further investigation and may be dependent on the specific experimental conditions such as temperature, pH, buffer, and substrate used. In-depth kinetic and structural analysis of a representative number of phosphatases from each group of the PTPase superfamily will most likely continue to yield insightful mechanistic information that may be applicable to the rest of the family members.
Collapse
Affiliation(s)
- Z Y Zhang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
110
|
Muda M, Theodosiou A, Gillieron C, Smith A, Chabert C, Camps M, Boschert U, Rodrigues N, Davies K, Ashworth A, Arkinstall S. The mitogen-activated protein kinase phosphatase-3 N-terminal noncatalytic region is responsible for tight substrate binding and enzymatic specificity. J Biol Chem 1998; 273:9323-9. [PMID: 9535927 DOI: 10.1074/jbc.273.15.9323] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have reported recently that the dual specificity mitogen-activated protein kinase phosphatase-3 (MKP-3) elicits highly selective inactivation of the extracellular signal-regulated kinase (ERK) class of mitogen-activated protein (MAP) kinases (Muda, M., Theodosiou, A., Rodrigues, N., Boschert, U., Camps, M., Gillieron, C., Davies, K., Ashworth, A., and Arkinstall, S. (1996) J. Biol. Chem. 271, 27205-27208). We now show that MKP-3 enzymatic specificity is paralleled by tight binding to both ERK1 and ERK2 while, in contrast, little or no interaction with either c-Jun N-terminal kinase/stress activated protein kinase (JNK/SAPK) or p38 MAP kinases was detected. Further study revealed that the N-terminal noncatalytic domain of MKP-3 (MKP-3DeltaC) binds both ERK1 and ERK2, while the C-terminal MKP-3 catalytic core (MKP-3DeltaN) fails to precipitate either of these MAP kinases. A chimera consisting of the N-terminal half of MKP-3 with the C-terminal catalytic core of M3-6 also bound tightly to ERK1 but not to JNK3/SAPKbeta. Consistent with a role for N-terminal binding in determining MKP-3 specificity, at least 10-fold higher concentrations of purified MKP-3DeltaN than full-length MKP-3 is required to inhibit ERK2 activity. In contrast, both MKP-3DeltaN and full-length MKP-3 inactivate JNK/SAPK and p38 MAP kinases at similarly high concentrations. Also, a chimera of the M3-6 N terminus with the MKP-3 catalytic core which fails to bind ERK elicits non selective inactivation of ERK1 and JNK3/SAPKbeta. Together, these observations suggest that the physiological specificity of MKP-3 for inactivation of ERK family MAP kinases reflects tight substrate binding by its N-terminal domain.
Collapse
Affiliation(s)
- M Muda
- Serono Pharmaceutical Research Institute, CH-1228 Plan-les-Ouates, Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Gopalbhai K, Meloche S. Repression of mitogen-activated protein kinases ERK1/ERK2 activity by a protein tyrosine phosphatase in rat fibroblasts transformed by upstream oncoproteins. J Cell Physiol 1998; 174:35-47. [PMID: 9397154 DOI: 10.1002/(sici)1097-4652(199801)174:1<35::aid-jcp5>3.0.co;2-h] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The observation that mitogen-activated protein (MAP) kinases ERK1 and ERK2 are constitutively activated in a number of oncogene-transformed cell lines has led to the hypothesis that prolonged activation of these enzymes is required for the transformation process. To investigate this question, we have examined the regulation of the ERK pathway in Rat1 fibroblasts transformed with activated c-Raf-1 (Raf22W), v-Ha-Ras, and v-Src. Expression of these oncoproteins had no effect on the enzymatic activity of ERK1 and ERK2 in either serum-starved or exponentially growing cells. Moreover, the stimulatory effect of serum on ERK1/ERK2 activity was substantially reduced or abrogated in these cells; this impairment was associated with a strong attenuation of c-fos gene induction. In contrast, expression of Raf22w, v-Ha-Ras, or v-Src resulted in the constitutive activation of the upstream kinases MEK1 and MEK2. Treatment of the cells with vanadate completely restored the activation of ERK1/ERK2 in oncogene-transformed cells, suggesting the involvement of a vanadate-sensitive tyrosine phosphatase. Northern blot analysis of VH1-like dual-specificity MAP kinase phosphatases did not reveal any significant difference in the mRNA expression pattern of these genes between parental and transformed Rat1 cells. Phosphoamino acid analysis indicated that ERK1 is phosphorylated on threonine, but not on tyrosine, in oncogene-transformed cells and that vanadate treatment restores tyrosine phosphorylation. We conclude from these results that ERK1/ERK2 activity is repressed by a single-specificity tyrosine phosphatase in oncogene-transformed rat fibroblasts.
Collapse
Affiliation(s)
- K Gopalbhai
- Centre de Recherche, Hôtel-Dieu de Montréal, Quebec, Canada
| | | |
Collapse
|
112
|
MORIYAMA T, XIA C, MIYAI A, AKAGI Y, ISAKA Y, KANEKO T, KAWADA N, UEDA N, YAMAUCHI A, HORIO M, ANDO A, IMAI E, HORI M. Involvement of MAP kinase phosphatase-1 in mesangial cell growth regulation. Nephrology (Carlton) 1997. [DOI: 10.1111/j.1440-1797.1997.tb00268.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
113
|
Csank C, Makris C, Meloche S, Schröppel K, Röllinghoff M, Dignard D, Thomas DY, Whiteway M. Derepressed hyphal growth and reduced virulence in a VH1 family-related protein phosphatase mutant of the human pathogen Candida albicans. Mol Biol Cell 1997; 8:2539-51. [PMID: 9398674 PMCID: PMC25726 DOI: 10.1091/mbc.8.12.2539] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/1997] [Accepted: 09/08/1997] [Indexed: 02/05/2023] Open
Abstract
Mitogen-activated protein (MAP) kinases are pivotal components of eukaryotic signaling cascades. Phosphorylation of tyrosine and threonine residues activates MAP kinases, but either dual-specificity or monospecificity phosphatases can inactivate them. The Candida albicans CPP1 gene, a structural member of the VH1 family of dual- specificity phosphatases, was previously cloned by its ability to block the pheromone response MAP kinase cascade in Saccharomyces cerevisiae. Cpp1p inactivated mammalian MAP kinases in vitro and acted as a tyrosine-specific enzyme. In C. albicans a MAP kinase cascade can trigger the transition from the budding yeast form to a more invasive filamentous form. Disruption of the CPP1 gene in C. albicans derepressed the yeast to hyphal transition at ambient temperatures, on solid surfaces. A hyphal growth rate defect under physiological conditions in vitro was also observed and could explain a reduction in virulence associated with reduced fungal burden in the kidneys seen in a systemic mouse model. A hyper-hyphal pathway may thus have some detrimental effects on C. albicans cells. Disruption of the MAP kinase homologue CEK1 suppressed the morphological effects of the CPP1 disruption in C. albicans. The results presented here demonstrate the biological importance of a tyrosine phosphatase in cell-fate decisions and virulence in C. albicans.
Collapse
Affiliation(s)
- C Csank
- Centre de Recherche, Hôtel-Dieu de Montréal and Department of Pharmacology, University of Montreal, Montreal, Quebec, Canada H2W 1T8
| | | | | | | | | | | | | | | |
Collapse
|
114
|
Ramponi G, Stefani M. Structure and function of the low Mr phosphotyrosine protein phosphatases. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1341:137-56. [PMID: 9357953 DOI: 10.1016/s0167-4838(97)00087-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Phosphotyrosine protein phosphatases (PTPases) catalyse the hydrolysis of phosphotyrosine residues in proteins and are hence implicated in the complex mechanism of the control of cell proliferation and differentiation. The low Mr PTPases are a group of soluble PTPases displaying a reduced molecular mass; in addition, a group of low molecular mass dual specificity (ds)PTPases which hydrolyse phosphotyrosine and phosphoserine/threonine residues in proteins are known. The enzymes belonging to the two groups are unrelated to each other and to other PTPase classes except for the presence of a CXXXXXRS/T sequence motif containing some of the catalytic residues (active site signature) and for the common catalytic mechanism, clearly indicating convergent evolution. The low Mr PTPases have a long evolutionary history since microbial (prokaryotic and eukaryotic) counterparts of both tyrosine-specific and dsPTPases have been described. Despite the relevant number of data reported on the structural and catalytic features of a number of low Mr PTPases, only limited information is presently available on the substrate specificity and the true biological roles of these enzymes, in prokaryotic, yeast and eukaryotic cells.
Collapse
Affiliation(s)
- G Ramponi
- Department of Biochemical Sciences, University of Florence, Italy
| | | |
Collapse
|
115
|
Ahrens CH, Russell RL, Funk CJ, Evans JT, Harwood SH, Rohrmann GF. The sequence of the Orgyia pseudotsugata multinucleocapsid nuclear polyhedrosis virus genome. Virology 1997; 229:381-99. [PMID: 9126251 DOI: 10.1006/viro.1997.8448] [Citation(s) in RCA: 191] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The nucleotide sequence of the Orgyia pseudotsugata multinucleocapsid nuclear polyhedrosis virus (OpMNPV) genome was completed and analyzed. It is composed of 131,990 bases with a G + C content of 55% and contains 152 putative genes of 150 nucleotides or greater. Major differences in gene content and arrangement between OpMNPV and the Autographa californica MNPV were found. These include the presence in OpMNPV of three complete iap gene homologs, two conotoxin gene homologs, two protein tyrosine phosphatase homologs, and genes encoding homologs of dUTPase and the large and small subunits of ribonucleotide reductase. Seven major intergenic repeated regions were identified. Five of these are homologous regions that are related to similar regions from other baculoviruses.
Collapse
Affiliation(s)
- C H Ahrens
- Department of Agricultural Chemistry, Oregon State University, Corvallis 97331-7301, USA
| | | | | | | | | | | |
Collapse
|
116
|
Muda M, Boschert U, Smith A, Antonsson B, Gillieron C, Chabert C, Camps M, Martinou I, Ashworth A, Arkinstall S. Molecular cloning and functional characterization of a novel mitogen-activated protein kinase phosphatase, MKP-4. J Biol Chem 1997; 272:5141-51. [PMID: 9030581 DOI: 10.1074/jbc.272.8.5141] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK), and p38/RK/CSBP (p38) mitogen-activated protein (MAP) kinases are target enzymes activated by a wide range of cell-surface stimuli. Recently, a distinct class of dual specificity phosphatase has been shown to reverse activation of MAP kinases by dephosphorylating critical tyrosine and threonine residues. By searching the expressed sequence tag data base (dbEST) for homologues of known dual specificity phosphatases, we identified a novel partial human sequence for which we isolated a full-length cDNA (termed MKP-4). The deduced amino acid sequence of MKP-4 is most similar to MKP-X/PYST2 (61% identity) and MKP-3/PYST1 (57% identity), includes two N-terminal CH2 domains homologous to the cell cycle regulator Cdc25 phosphatase, and contains the extended active site sequence motif VXVHCXAGXSRSXTX3AYLM (where X is any amino acid) conserved in dual specificity phosphatases. MKP-4 produced in Escherichia coli catalyzes vanadate-sensitive breakdown of p-nitrophenyl phosphate as well as in vitro inactivation of purified ERK2. When expressed in COS-7 cells, MKP-4 blocks activation of MAP kinases with the selectivity ERK > p38 = JNK/SAPK. This cellular specificity is similar to MKP-3/PYST1, although distinct from hVH-5/M3-6 (JNK/SAPK = p38 >>> ERK). Northern analysis reveals a highly restricted tissue distribution with a single MKP-4 mRNA species of approximately 2.5 kilobases detected only in placenta, kidney, and embryonic liver. Immunocytochemical analysis showed MKP-4 to be present within cytosol although punctate nuclear staining co-localizing with promyelocytic protein was also observed in a subpopulation (10-20%) of cells. Chromosomal localization by analysis of DNAs from human/rodent somatic cell hybrids and a panel of radiation hybrids assign the human gene for MKP-4 to Xq28. The identification and characterization of MKP-4 highlights the emergence of an expanding family of structurally homologous dual specificity phosphatases possessing distinct MAP kinase specificity and subcellular localization as well as diverse patterns of tissue expression.
Collapse
Affiliation(s)
- M Muda
- Geneva Biomedical Research Institute, Glaxo Wellcome Research and Development S.A., CH-1228 Plan-les-Ouates, Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Zhang ZY. Structure, mechanism, and specificity of protein-tyrosine phosphatases. CURRENT TOPICS IN CELLULAR REGULATION 1997; 35:21-68. [PMID: 9192175 DOI: 10.1016/s0070-2137(97)80002-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Z Y Zhang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| |
Collapse
|
118
|
Muda M, Theodosiou A, Rodrigues N, Boschert U, Camps M, Gillieron C, Davies K, Ashworth A, Arkinstall S. The dual specificity phosphatases M3/6 and MKP-3 are highly selective for inactivation of distinct mitogen-activated protein kinases. J Biol Chem 1996; 271:27205-8. [PMID: 8910287 DOI: 10.1074/jbc.271.44.27205] [Citation(s) in RCA: 323] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The mitogen-activated protein (MAP) kinase family includes extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase/stress-activated protein kinase (JNK/SAPK) and p38/RK/CSBP (p38) as structurally and functionally distinct enzyme classes. Here we describe two new dual specificity phosphatases of the CL100/MKP-1 family that are selective for inactivating ERK or JNK/SAPK and p38 MAP kinases when expressed in COS-7 cells. M3/6 is the first phosphatase of this family to display highly specific inactivation of JNK/SAPK and p38 MAP kinases. Although stress-induced activation of p54 SAPKbeta, p46 SAPKgamma (JNK1) or p38 MAP kinases is abolished upon co-transfection with increasing amounts of M3/6 plasmid, epidermal growth factor-stimulated ERK1 is remarkably insensitive even to the highest levels of M3/6 expression obtained. In contrast to M3/6, the dual specificity phosphatase MKP-3 is selective for inactivation of ERK family MAP kinases. Low level expression of MKP-3 blocks totally epidermal growth factor-stimulated ERK1, whereas stress-induced activation of p54 SAPKbeta and p38 MAP kinases is inhibited only partially under identical conditions. Selective regulation by M3/6 and MKP-3 was also observed upon chronic MAP kinase activation by constitutive p21(ras) GTPases. Hence, although M3/6 expression effectively blocked p54 SAPKbeta activation by p21(rac) (G12V), ERK1 activated by p21(ras) (G12V) was insensitive to this phosphatase. ERK1 activation by oncogenic p21(ras) was, however, blocked totally by co-expression of MKP-3. This is the first report demonstrating reciprocally selective inhibition of different MAP kinases by two distinct dual specificity phosphatases.
Collapse
Affiliation(s)
- M Muda
- Geneva Biomedical Research Institute, Glaxo Wellcome Research and Development S. A., CH-1228 Plan-les-Ouates, Geneva, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Cui L, Yu WP, DeAizpurua HJ, Schmidli RS, Pallen CJ. Cloning and Characterization of Islet Cell Antigen-related Protein-tyrosine Phosphatase (PTP), a Novel Receptor-like PTP and Autoantigen in Insulin-dependent Diabetes. J Biol Chem 1996. [DOI: 10.1074/jbc.271.40.24817] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
120
|
Yuvaniyama J, Denu JM, Dixon JE, Saper MA. Crystal structure of the dual specificity protein phosphatase VHR. Science 1996; 272:1328-31. [PMID: 8650541 DOI: 10.1126/science.272.5266.1328] [Citation(s) in RCA: 254] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Dual specificity protein phosphatases (DSPs) regulate mitogenic signal transduction and control the cell cycle. Here, the crystal structure of a human DSP, vaccinia H1-related phosphatase (or VHR), was determined at 2.1 angstrom resolution. A shallow active site pocket in VHR allows for the hydrolysis of phosphorylated serine, threonine, or tyrosine protein residues, whereas the deeper active site of protein tyrosine phosphatases (PTPs) restricts substrate specificity to only phosphotyrosine. Positively charged crevices near the active site may explain the enzyme's preference for substrates with two phosphorylated residues. The VHR structure defines a conserved structural scaffold for both DSPs and PTPs. A "recognition region," connecting helix alpha1 to strand beta1, may determine differences in substrate specificity between VHR, the PTPs, and other DSPs.
Collapse
Affiliation(s)
- J Yuvaniyama
- Biophysics Research Division and Department of Biological Chemistry, University of Michigan, Ann Arbor 48109-1055, USA
| | | | | | | |
Collapse
|
121
|
|
122
|
Denu JM, Lohse DL, Vijayalakshmi J, Saper MA, Dixon JE. Visualization of intermediate and transition-state structures in protein-tyrosine phosphatase catalysis. Proc Natl Acad Sci U S A 1996; 93:2493-8. [PMID: 8637902 PMCID: PMC39825 DOI: 10.1073/pnas.93.6.2493] [Citation(s) in RCA: 204] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Engineering site-specific amino acid substitutions into the protein-tyrosine phosphatase (PTPase) PTP1 and the dual-specific vaccinia H1-related phosphatase (VHR), has kinetically isolated the two chemical steps of the reaction and provided a rare opportunity for examining transition states and directly observing the phosphoenzyme intermediate. Changing serine to alanine in the active-site sequence motif HCXXGXXRS shifted the rate-limiting step from intermediate formation to intermediate hydrolysis. Using phosphorus 31P NMR, the covalent thiol-phosphate intermediate was directly observed during catalytic turnover. The importance of the conserved aspartic acid (D92 in VHR and D181 in PTP1) in both chemical steps was established. Kinetic analysis of D92N and D181N mutants indicated that aspartic acid acts as a general acid by protonating the leaving-group phenolic oxygen. Structure-reactivity experiments with native and aspartate mutant enzymes established that proton transfer is concomitant with P-O cleavage, such that no charge develops on the phenolic oxygen. Steady- and presteady-state kinetics, as well as NMR analysis of the double mutant D92N/S131A (VHR), suggested that the conserved aspartic acid functions as a general base during intermediate hydrolysis. As a general base, aspartate would activate a water molecule to facilitate nucleophilic attack. The amino acids involved in transition-state stabilization for cysteinylphosphate hydrolysis were confirmed by the x-ray structure of the Yersinia PTPase complexed with vanadate, a transition-state mimic that binds covalently to the active-site cysteine. Consistent with the NMR, x-ray, biochemical, and kinetic data, a unifying mechanism for catalysis is proposed.
Collapse
Affiliation(s)
- J M Denu
- Department of Biological Chemistry, University of Michigan, Ann Arbor 48109-0606, USA
| | | | | | | | | |
Collapse
|
123
|
Muda M, Boschert U, Dickinson R, Martinou JC, Martinou I, Camps M, Schlegel W, Arkinstall S. MKP-3, a novel cytosolic protein-tyrosine phosphatase that exemplifies a new class of mitogen-activated protein kinase phosphatase. J Biol Chem 1996; 271:4319-26. [PMID: 8626780 DOI: 10.1074/jbc.271.8.4319] [Citation(s) in RCA: 277] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
MKP-1 (also known as CL100, 3CH134, Erp, and hVH-1) exemplifies a class of dual-specificity phosphatase able to reverse the activation of mitogen-activated protein (MAP) kinase family members by dephosphorylating critical tyrosine and threonine residues. We now report the cloning of MKP-3, a novel protein phosphatase that also suppresses MAP kinase activation state. The deduced amino acid sequence of MKP-3 is 36% identical to MKP-1 and contains the characteristic extended active-site sequence motif VXVHCXXGXSRSXTXXXAYLM (where X is any amino acid) as well as two N-terminal CH2 domains displaying homology to the cell cycle regulator Cdc25 phosphatase. When expressed in COS-7 cells, MKP-3 blocks both the phosphorylation and enzymatic activation of ERK2 by mitogens. Northern analysis reveals a single mRNA species of 2.7 kilobases with an expression pattern distinct from other dual-specificity phosphatases. MKP-3 is expressed in lung, heart, brain, and kidney, but not significantly in skeletal muscle or testis. In situ hybridization studies of MKP-3 in brain reveal enrichment within the CA1, CA3, and CA4 layers of the hippocampus. Metrazole-stimulated seizure activity triggers rapid (<1 h) but transient up-regulation of MKP-3 mRNA in the cortex, piriform cortex, and some amygdala nuclei. Metrazole stimulated similar regional up-regulation of MKP-1, although this was additionally induced within the thalamus. MKP-3 mRNA also undergoes powerful induction in PC12 cells after 3 h of nerve growth factor treatment. This response appears specific insofar as epidermal growth factor and dibutyryl cyclic AMP fail to induce significant MKP-3 expression. Subcellular localization of epitope-tagged MKP-3 in sympathetic neurons reveals expression in the cytosol with exclusion from the nucleus. Together, these observations indicate that MKP-3 is a novel dual-specificity phosphatase that displays a distinct tissue distribution, subcellular localization, and regulated expression, suggesting a unique function in controlling MAP kinase family members. Identification of a second partial cDNA clone (MKP-X) encoding the C-terminal 280 amino acids of an additional phosphatase that is 76% identical to MKP-3 suggests the existence of a distinct structurally homologous subfamily of MAP kinase phosphatases.
Collapse
Affiliation(s)
- M Muda
- Glaxo Institute for Molecular Biology, CH-1228 Plan-les-Ouates, Geneva, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
124
|
Mourey RJ, Vega QC, Campbell JS, Wenderoth MP, Hauschka SD, Krebs EG, Dixon JE. A novel cytoplasmic dual specificity protein tyrosine phosphatase implicated in muscle and neuronal differentiation. J Biol Chem 1996; 271:3795-802. [PMID: 8631996 DOI: 10.1074/jbc.271.7.3795] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Dual specificity protein tyrosine phosphatases (dsPTPs) are a subfamily of protein tyrosine phosphatases implicated in the regulation of mitogen-activated protein kinase (MAPK). In addition to hydrolyzing phosphotyrosine, dsPTPs can hydrolyze phosphoserine/threonine-containing substrates and have been shown to dephosphorylate activated MAPK. We have identified a novel dsPTP, rVH6, from rat hippocampus. rVH6 contains the conserved dsPTP active site sequence, VXVHCX2GX2RSX5AY(L/I)M, and exhibits phosphatase activity against activated MAPK. In PC12 cells, rVH6 mRNA is induced during nerve growth factor-mediated differentiation but not during insulin or epidermal growth factor mitogenic stimulation. In MM14 muscle cells, rVH6 mRNA is highly expressed in proliferating cells and declines rapidly during differentiation. rVH6 expression correlates with the inability of fibroblast growth factor to stimulate MAPK activity in proliferating but not in differentiating MM14 cells. rVH6 protein localizes to the cytoplasm and is the first dsPTP to be localized outside the nucleus. This novel subcellular localization may expose rVH6 to potential substrates that differ from nuclear dsPTPs substrates.
Collapse
Affiliation(s)
- R J Mourey
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, USA
| | | | | | | | | | | | | |
Collapse
|
125
|
Eckstein JW, Beer-Romero P, Berdo I. Identification of an essential acidic residue in Cdc25 protein phosphatase and a general three-dimensional model for a core region in protein phosphatases. Protein Sci 1996; 5:5-12. [PMID: 8771191 PMCID: PMC2143238 DOI: 10.1002/pro.5560050102] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The reaction mechanism of protein tyrosine phosphatases (PTPases) and dual-specificity protein phosphatases is thought to involve a catalytic aspartic acid residue. This residue was recently identified by site-directed mutagenesis in Yersinia PTPase, VHR protein phosphatase, and bovine low molecular weight protein phosphatase. Herein we identify aspartic acid 383 as a potential candidate for the catalytic acid in human Cdc25A protein phosphatase, using sequence alignment, structural information, and site-directed mutagenesis. The D383N mutant enzyme exhibits a 150-fold reduction in kcat, with Kw only slightly changed. Analysis of sequence homologies between several members of the Cdc25 family and deletion mutagenesis substantiate the concept of a two-domain structure for Cdc25, with a regulatory N-terminal and a catalytic C-terminal domain. Based on the alignment of catalytic residues and secondary structure elements, we present a three-dimensional model for the core region of Cdc25. By comparing this three-dimensional model to the crystal structures of PTP1b, Yersinia PTPase, and bovine low molecular weight PTPase, which share only very limited amino acid sequence similarities, we identify a general architecture of the protein phosphatase core region, encompassing the active site loop motif HCXXXXXR and the catalytic aspartic acid residue.
Collapse
Affiliation(s)
- J W Eckstein
- Mitotix, Inc., Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
126
|
Feng L, Xia Y, Seiffert D, Wilson CB. Oxidative stress-inducible protein tyrosine phosphatase in glomerulonephritis. Kidney Int 1995; 48:1920-8. [PMID: 8587253 DOI: 10.1038/ki.1995.492] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Previously we found that rat mesangial cells express 3CH134/CL100 protein-tyrosine phosphatase (PTPase) in response to reactive oxygen intermediates (ROIs), and we now extend these studies to glomerulonephritis (GN), where ROI have been demonstrated to play a role. The rat homologue of 3CH134/CL100 was cloned from a rat macrophage cDNA library. The rat 3CH134/CL100 mRNA was strongly induced in the lung, liver, and heart the first day after birth, suggesting that hyperoxic adaption might be involved in the induction of the PTPase mRNA. In anti-glomerular basement membrane (GBM) antibody (Ab) GN in rats, the 3CH134/CL100 PTPase mRNA was expressed in glomeruli as early as 30 minutes after anti-GBM Ab injection. The 3CH134/CL100 mRNA expression was modulated by the ROI scavenger dimethylthiourea (DMTU), indicating that its induction was ROI related. In contrast to the glomerular lesion, PTPase mRNA expression was not induced in experimental tubulointerstitial nephritis. In situ hybridization suggested that mesangial and some infiltrating cells were the major glomerular cell sources of the PTPase mRNA. These results indicate that rat CCH134/CL100 PTPase is actively induced in glomeruli as part of an acute immune injury at least in part related to oxidative stress. PTPase induction in GN and potentially other forms of inflammation may play an important regulatory role in protein kinase signaling pathways.
Collapse
Affiliation(s)
- L Feng
- Department of Immunology, Scripps Research Institute, La Jolla, California, USA
| | | | | | | |
Collapse
|
127
|
Miura Y, Tam T, Ido A, Morinaga T, Miki T, Hashimoto T, Tamaoki T. Cloning and characterization of an ATBF1 isoform that expresses in a neuronal differentiation-dependent manner. J Biol Chem 1995; 270:26840-8. [PMID: 7592926 DOI: 10.1074/jbc.270.45.26840] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The human ATBF1 cDNA reported previously, now termed ATBF1-B, encodes a 306-kDa protein containing 4 homeodomains and 18 zinc fingers including one pseudo zinc finger motif. Here, we report the isolation of a second ATBF1 cDNA, 12 kilobase pairs long, termed ATBF1-A. The deduced ATBF1-A protein is 404 kDa in size and differs from ATBF1-B by a 920-amino acid extention at the N terminus. Analysis of 5'-genomic sequences showed that the 5'-noncoding sequences specific to ATBF1-A and ATBF1-B transcripts were contained in distinct exons that could splice to a downstream exon common to the ATBF1-A and ATBF1-B mRNAs. The expression of ATBF1-A transcripts increased to high levels when P19 and NT2/D1 cells were treated with retinoic acid to induce neuronal differentiation. Preferential expression of ATBF1-A transcripts was also observed in developing mouse brain. Transient transfection assays showed that the 5.5-kilobase pair sequence upstream of the ATBF1-A-specific exon (exon 2) supported expression of the linked chloramphenicol acetyltransferase gene in neuronal cells derived from P19 cells but not in undifferentiated P19 or in F9 cells, which do not differentiate into neurons. These results showed that ATBF1-A and ATBF1-B transcripts are generated by alternative promoter usage combined with alternative splicing and that the ATBF1-A-specific promoter is activated during neuronal differentiation.
Collapse
Affiliation(s)
- Y Miura
- Department of Medical Biochemistry, Faculty of Medicine, University of Calgary, Alberta, Canada
| | | | | | | | | | | | | |
Collapse
|
128
|
Wishart MJ, Denu JM, Williams JA, Dixon JE. A single mutation converts a novel phosphotyrosine binding domain into a dual-specificity phosphatase. J Biol Chem 1995; 270:26782-5. [PMID: 7592916 DOI: 10.1074/jbc.270.45.26782] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Dual-specificity protein-tyrosine phosphatases (dsPTPases) have been implicated in the inactivation of mitogen-activated protein kinases (MAPKs). We have identified a novel phosphoserine/threonine/tyrosine-binding protein (STYX) that is related in amino acid sequence to dsPTPases, except for the substitution of Gly for Cys in the conserved dsPTPase catalytic loop (HCXXGXXR(S/T)). cDNA subcloning and Northern blot analysis in mouse shows poly(A+) hybridization bands of 4.6, 2.4, 1.5, and 1.2 kilobases, with highest abundance in skeletal muscle, testis, and heart. Polymerase chain reaction amplification of reverse-transcribed poly(A+) RNA revealed an alternatively spliced form of STYX containing a unique carboxyl terminus. Bacterially expressed STYX is incapable of hydrolyzing Tyr(P)-containing substrates; however, mutation of Gly120 to Cys (G120C), which structurally mimics the active site of dsPTPases, confers phosphatase activity to this molecule. STYX-G120C mutant hydrolyzes p-nitrophenyl phosphate and dephosphorylates both Tyr(P) and Thr(P) residues of peptide sequences of MAPK homologues. The kinetic parameters of dephosphorylation are similar to human dsPTPase, Vaccinia H1-related, including inhibition by vanadate. We believe this is the first example of a naturally occurring "dominant negative" phosphotyrosine/serine/threonine-binding protein which is structurally related to dsPTPases.
Collapse
Affiliation(s)
- M J Wishart
- Department of Physiology, University of Michigan, Ann Arbor 48109-0606, USA
| | | | | | | |
Collapse
|
129
|
Klinghoffer RA, Kazlauskas A. Identification of a putative Syp substrate, the PDGF beta receptor. J Biol Chem 1995; 270:22208-17. [PMID: 7545675 DOI: 10.1074/jbc.270.38.22208] [Citation(s) in RCA: 134] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Because the protein-tyrosine phosphatase (PTP) Syp associates with the tyrosine-phosphorylated platelet-derived growth factor beta receptor (beta PDGFR), the beta PDGFR is a likely Syp substrate. We tested this hypothesis by determining whether recombinant Syp (rSyp) and a control PTP, recombinant PTP1B (rPTP1B), were able to dephosphorylate the beta PDGFR. The beta PDGFR was phosphorylated at multiple tyrosine residues in an in vitro kinase assay and then incubated with increasing concentrations of rSyp or rPTP1B. While the receptor was nearly completely dephosphorylated by high concentrations of rPTP1B, receptor dephosphorylation by rSyp plateaued at approximately 50%. Two-dimensional phosphopeptide maps of the beta PDGFR demonstrated that rSyp displayed a clear preference for certain receptor phosphorylation sites; the most efficiently dephosphorylated sites were phosphotyrosines (Tyr(P)-771 and -751, followed by Tyr(P)740, while Tyr(P)-1021 and Tyr(P)-1009 were very poor substrates. In contrast, rPTP1B displayed no selectivity for the various rPTP1B displayed no selectivity for the various beta PDGFR tyrosine phosphorylation sites and dephosphorylated all of them with comparable efficiency. A Syp construct that lacked the SH2 domains was still able to discriminate between the various receptor phosphorylation sites, although less effectively than full-length Syp. These in vitro studies predicted that Syp can dephosphorylate the receptor in vivo. Indeed, we found that a beta PDGFR mutant (F1009) that associates poorly with Syp, had a much slower in vivo rate of receptor dephosphorylation than the wild type receptor. In addition, the GTPase-activating protein of Ras (GAP) and phosphatidylinositol 3-kinase were less stably associated with the wild type beta PDGFR than with the F1009 receptor. These findings are consistent with the in vitro experiments showign that Syp prefers to dephosphorylate sites on the beta PDGFR, that are important for binding phosphatidylinositol 3-kinase (Tyr(P)-740 and Tyr(P)-751) and GAP (Tyr(P)-771). These studies reveal that Syp is a substrate-selective PTP and that both the catalytic domain and the SH2 domains contribute to Syp's ability to choose substrates. Furthermore, it appears that Syp plays a role in PDGF-dependent intracellular signal relay by selectively dephosphorylating the beta PDGFR and thereby regulating the binding of a distinct group of receptor-associated signal relay enzymes.
Collapse
Affiliation(s)
- R A Klinghoffer
- National Jewish Center for Immunology and Respiratory Medicine, Division of Basic Sciences, Denver, Colorado 80206, USA
| | | |
Collapse
|
130
|
Affiliation(s)
- J D Graves
- Department of Pharmacology, University of Washington, Seattle 98195-7280, USA
| | | | | |
Collapse
|
131
|
Abstract
Dual-specific protein-tyrosine phosphatases have the common active-site sequence motif HCXXGXXRS(T). The role of the conserved hydroxyl was investigated by changing serine-131 to an alanine (S131A) in the dual-specific protein-tyrosine phosphatase VHR. The pH profile of the kcat/Km value for the S131A mutant is indistinguishable from that of the native enzyme. In contrast, the kcat value for S131A mutant is 100-fold lower than that for the native enzyme, and the shape of the pH profile was perturbed from bell-shaped in the native enzyme to a pH-independent curve over the pH range 4.5-9.0. This evidence, along with results from a previous study, suggests that the S131A mutation alters the rate-limiting step in the catalytic mechanism. Formation of a phosphoenzyme intermediate appears to be rate-limiting with the native enzyme, whereas in the S131A mutant breakdown of the intermediate is rate-limiting. This was confirmed by the appearance of a burst of p-nitrophenol formation when p-nitrophenyl phosphate rapidly reacted with the S131A enzyme in a stopped-flow spectrophotometer. Loss of this hydroxyl group at the active site dramatically diminished the ability of the enzyme to hydrolyze the thiol-phosphate intermediate without exerting any significant change in the steps leading to and including the formation of the intermediate. Consistent with rate-limiting intermediate formation in the native enzyme, the rate of burst in the S131A mutant was 1.5 s-1, which agrees well with the kcat value of 5 s-1 observed for native enzyme. The amplitude of the burst was stoichiometric with final enzyme concentration, and the slow linear rate (0.06 s-1) of p-nitrophenol formation after the burst was in agreement with the steady-state determined value of kcat (0.055 s-1).
Collapse
Affiliation(s)
- J M Denu
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor 48109-0606, USA
| | | |
Collapse
|
132
|
Aroca P, Bottaro DP, Ishibashi T, Aaronson SA, Santos E. Human dual specificity phosphatase VHR activates maturation promotion factor and triggers meiotic maturation in Xenopus oocytes. J Biol Chem 1995; 270:14229-34. [PMID: 7775484 DOI: 10.1074/jbc.270.23.14229] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Bacterially expressed, dual specificity phosphatase VHR protein induced germinal vesicle breakdown (GVBD) when microinjected into Xenopus oocytes, albeit with slower kinetics than that observed in progesterone- or insulin-induced maturation. A mutant VHR protein missing an essential cysteine residue for its in vitro phosphatase activity completely lacked activity in injected oocytes. VHR injection done in conjunction with progesterone or insulin treatment resulted in highly synergized GVBD responses showing much faster kinetics than that produced by VHR or either hormone alone. The delayed kinetics of VHR-induced GVBD and the synergistic responses obtained in the presence of hormones suggested that this protein may be promoting G2/M transition by weakly mimicking the action of cdc25, the dual specificity phosphatase that physiologically activates the maturation promotion factor. Various experimental observations are consistent with such a role for the injected VHR in oocytes: 1) as opposed to hormone-treated oocytes, histone H1 kinase activation is not preceded by MAPK activation in the process of GVBD in VHR-injected oocytes; 2) incubation of purified VHR with highly concentrated cell-free extracts of untreated oocytes resulted in activation of histone H1 kinase activity in the lysates; 3) coinjection of VHR with activated Ras proteins resulted in synergized responses, faster than those produced by either protein alone; 4) coinjection of VHR with the purified amino-terminal SH2 domain of the p85 subunit of phosphatidylinositol 3-kinase (which blocks insulin-induced GVBD) does not affect VHR-induced maturation. The biological actions of VHR in oocytes clearly distinguish it from other dual specificity phosphatases, which have shown inhibitory effects when tested in oocytes. We speculate that VHR may represent a dual specificity phosphatase responsible for activation of cdk-cyclin complex(es) at a still undetermined stage of the cell cycle.
Collapse
Affiliation(s)
- P Aroca
- Laboratory of Cellular and Molecular Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
133
|
Guan KL, Butch E. Isolation and characterization of a novel dual specific phosphatase, HVH2, which selectively dephosphorylates the mitogen-activated protein kinase. J Biol Chem 1995; 270:7197-203. [PMID: 7535768 DOI: 10.1074/jbc.270.13.7197] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK) also known as extracellular signal-regulated kinase (ERK) plays a crucial role in various signal transduction pathways. ERK is activated by its upstream activator, MEK, via threonine and tyrosine phosphorylation. ERK activity in the cell is tightly regulated by phosphorylation and dephosphorylation. Here we report the cloning and characterization of a novel dual specific phosphatase, HVH2, which may function in vivo as a MAP kinase phosphatase. The deduced amino acid sequence of HVH2 shows significant identity to the VH1-related dual specific phosphatase family. In addition, the N-terminal region of HVH2 also displays sequence identity to the cell cycle regulator, Cdc25 phosphatase. Recombinant HVH2 phosphatase exhibited a high substrate specificity toward activated ERK and dephosphorylated both threonine and tyrosine residues of activated ERK1 and ERK2. Immunofluorescence studies with an epitope-tagged HVH2 showed that the enzyme was localized in cell nucleus. Transfection of HVH2 into NIH3T3 cells inhibited the v-src and MEK-induced transcriptional activation of serum-responsive element containing promoter, consistent with the notion that HVH2 promotes the inactivation of MAP kinase. HVH2 mRNA showed an expression pattern distinct from CL100 (human homologue of mouse MKP1) and PAC1, two previously identified MAP kinase phosphatases. Our data suggest a possible role of HVH2 in MAP kinase regulation.
Collapse
Affiliation(s)
- K L Guan
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor 48109-0606, USA
| | | |
Collapse
|
134
|
Denu JM, Zhou G, Guo Y, Dixon JE. The catalytic role of aspartic acid-92 in a human dual-specific protein-tyrosine-phosphatase. Biochemistry 1995; 34:3396-403. [PMID: 7880835 DOI: 10.1021/bi00010a031] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The mechanism of catalysis for the human dual-specific (vaccinia H1-related) protein-tyrosine-phosphatase was investigated. The pH dependence of the kcat value is bell-shaped when p-nitrophenyl phosphate was employed as a model substrate. The kcat/Km pH profile rises with a slope of 2 and decreases with a slope of -1, indicating that two groups must be unprotonated and one group must be protonated for activity. An amino acid residue with an apparent pKa value of 5.5 +/- 0.2 must be unprotonated and a residue with a pKa value of 5.7 must be unprotonated for activity. The pKa value of the catalytic cysteine-124 (C124) was 5.6 +/- 0.1. The aspartic acid-92-asparagine (D92N) mutant enzyme was 100-fold less active than the native enzyme and exhibited the loss of the basic limb in the pH profiles, suggesting that in the native enzyme D92 must be protonated for activity. The D92 residue is conserved throughout the entire family of dual-specific phosphatases. Mutants glutamic acid-6-glutamine, glutamic acid-32-glutamine, aspartic acid-14-asparagine, and aspartic acid-110-asparagine had less than a 2-fold effect on the kinetic parameters when compared to native enzyme. Based upon the lack of a "burst" in rapid reaction kinetics, formation of the intermediate is rate-limiting with both native and D92N mutant enzymes. In agreement with rate-limiting formation of the intermediate, the pKa value of 5.5 for the group which must be unprotonated for activity was assigned to C124.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J M Denu
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor 48109-0606
| | | | | | | |
Collapse
|
135
|
Denu JM, Zhou G, Wu L, Zhao R, Yuvaniyama J, Saper MA, Dixon JE. The purification and characterization of a human dual-specific protein tyrosine phosphatase. J Biol Chem 1995; 270:3796-803. [PMID: 7876121 DOI: 10.1074/jbc.270.8.3796] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
An expression and purification method was developed to obtain the recombinant human dual-specific protein tyrosine phosphatase (PTPase) VHR in quantities suitable for both kinetic studies and crystallization. Physical characterization of the homogeneous recombinant protein verified the mass to be 20,500 +/- 100 by matrix-assisted laser desorption mass spectrometry, confirmed the anticipated NH2-terminal amino acid sequence and demonstrated that the protein exists as a monomer. Conditions were developed to obtain crystals which were suitable for x-ray structure determination. Using synthetic diphosphorylated peptides corresponding to MAP177-189 (mitogen-activated protein) kinase (DHTG-FLpTEpYVATR), an assay was devised which permitted the determination of the rate constants for dephosphorylation of the diphosphorylated peptide on threonine and tyrosine residues. The diphosphorylated peptides are preferred over the singly phosphorylated on tyrosine by 3-8-fold. The apparent second-order rate constant kcat/Km for dephosphorylation of phosphotyrosine on DHTGFLpTEpYVATR was 32,000 M-1 S-1 while dephosphorylation of phosphothreonine was 14 M-1 S-1 (pH 6). The reaction of DHTGFLpTEpYVATR with VHR is ordered, with rapid dephosphorylation on tyrosine occurring first followed by slow dephosphorylation on threonine. Similar results were obtained with F(NLe)(N-Le)pTPpYVVTR, a peptide corresponding to a MAP kinase-like protein (JNK1(180-189)) which is involved in the stress response signaling pathway.
Collapse
Affiliation(s)
- J M Denu
- Department of Biological Chemistry, University of Michigan, Ann Arbor 48109-0606
| | | | | | | | | | | | | |
Collapse
|
136
|
Kwak SP, Dixon JE. Multiple dual specificity protein tyrosine phosphatases are expressed and regulated differentially in liver cell lines. J Biol Chem 1995; 270:1156-60. [PMID: 7836374 DOI: 10.1074/jbc.270.3.1156] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
An emerging subclass of protein-tyrosine phosphatases (PTPases) exhibits sequence identity to the vaccinia H-1 (VH-1) gene product. These VH-1-like PTPases possess the canonical HCXAGXXR(S/T) sequence common to all PTPases, but unlike other PTPases they exhibit dual catalytic activity toward phosphotyrosine and nearby phosphothreonine residues in substrate proteins. We have isolated a novel VH-1-like PTPase, hVH-3, from the human placenta and compared various aspects of its expression with previously isolated members of this subfamily. The mammalian members of this subfamily including hVH-3 commonly localize to the nucleus and exhibit catalytic activity toward phosphorylated extracellular signal-regulated kinase. However, while the expression of some VH-1-like PTPases is extremely transient and independent of protein synthesis, hVH-3 expression is sustained over 3 h after being cell stimulated. Tissue-specific expression of hVH-3 is also distinct from other VH-1-like PTPases. Although VH-1-like PTPases have overlapping substrate specificity, there are differences in their mRNA regulation, response to extracellular stimuli, and tissue-specific expression, suggesting they serve specific roles in cellular function.
Collapse
Affiliation(s)
- S P Kwak
- Department of Biological Chemistry, University of Michigan, Ann Arbor 48109-0606
| | | |
Collapse
|
137
|
Campbell JS, Seger R, Graves JD, Graves LM, Jensen AM, Krebs EG. The MAP kinase cascade. RECENT PROGRESS IN HORMONE RESEARCH 1995; 50:131-59. [PMID: 7740155 DOI: 10.1016/b978-0-12-571150-0.50011-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- J S Campbell
- Department of Biochemistry, University of Washington, Seattle 98195, USA
| | | | | | | | | | | |
Collapse
|
138
|
Takano S, Fukuyama H, Fukumoto M, Hirashimizu K, Higuchi T, Takenawa J, Nakayama H, Kimura J, Fujita J. Induction of CL100 protein tyrosine phosphatase following transient forebrain ischemia in the rat brain. J Cereb Blood Flow Metab 1995; 15:33-41. [PMID: 7798338 DOI: 10.1038/jcbfm.1995.4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Protein tyrosine phosphorylation is thought to play an important role in the regulation of neural function. To elucidate the role that protein tyrosine phosphatases (PTPs) may play in the postischemic brain, PTPs expressed in regions of the rat brain vulnerable to transient forebrain ischemia were examined. With the reverse-transcriptase polymerase chain reaction using degenerate primers, three PTPs, STEP, PTP delta, and SH-PTP2, were identified. They were expressed in the hippocampus 12 h after transient ischemia for 20 min. During the reperfusion period, the mRNA levels of these PTPs were not different from those in sham-operated rats. In contrast, a fourfold increase in the mRNA level of CL100 (3CH134), a PTP that is inducible by oxidative stress, was detected by Northern blotting in the hippocampus and cerebral cortex 1 h after the onset of reperfusion. In situ hybridization histochemistry showed a slight increase in the level of CL100 mRNA in neuronal cells in the hippocampus and cortex of postischemic rats compared to control rats. These findings suggest that PTPs play a role in the normal function of the hippocampus and cerebral cortex and demonstrate that ischemia induced CL100 expression.
Collapse
Affiliation(s)
- S Takano
- Department of Clinical Molecular Biology, Faculty of Medicine, Kyoto University, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Friedman LS, Ostermeyer EA, Lynch ED, Welcsh P, Szabo CI, Meza JE, Anderson LA, Dowd P, Lee MK, Rowell SE. 22 genes from chromosome 17q21: cloning, sequencing, and characterization of mutations in breast cancer families and tumors. Genomics 1995; 25:256-63. [PMID: 7774926 DOI: 10.1016/0888-7543(95)80133-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In our effort to identify BRCA1, 22 genes were cloned from a 1-Mb region of chromosome 17q21 defined by meiotic recombinants in families with inherited breast and/or ovarian cancer. Subsequent discovery of another meiotic recombinant narrowed the region to approximately 650 kb. Genes were cloned from fibroblast and ovarian cDNA libraries by direct screening with YACs and cosmids. The more than 400 cDNA clones so identified were mapped to cosmids, YACs, and P1 clones and to a chromosome 17 somatic panel informative for the BRCA1 region. Clones that mapped back to the region were hybridized to each other and consolidated into clusters reflecting 22 genes. Ten genes were known human genes, 5 were human homologs of known genes, and 7 were novel. Each gene was sequenced, compared to genes in the databases to find homologies, and analyzed for mutations in BRCA1-linked families and tumors. Eight mutations were found in tumors or families and not in controls. In the gene encoding alpha-N-acetylglucosaminidase, approximately 100 kb proximal to the 650-kb linked region, somatic nonsense, missense, and splice junction mutations occurred in 3 breast tumors, but not in these patients' germline DNA nor in controls. In an ets-related oncogene in the linked region, a missense mutation cosegregated with breast cancer in one family and was not observed in controls. In a human homolog of a yeast pre-mRNA splicing factor, 3 different mutations cosegregated with breast cancer in 3 families and were not observed in controls. In these and the other genes in the region, 36 polymorphic variants were observed in both cases and controls.
Collapse
Affiliation(s)
- L S Friedman
- Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Van Hoof C, Cayla X, Bosch M, Merlevede W, Goris J. The phosphotyrosyl phosphatase activator of protein phosphatase 2A. A novel purification method, immunological and enzymic characterization. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 226:899-907. [PMID: 7813481 DOI: 10.1111/j.1432-1033.1994.00899.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A simple, improved procedure for the isolation of the phosphotyrosyl phosphatase activator (PTPA) from rabbit skeletal muscle has been developed. The majority of the protein phosphatase 2A (PP2A) was separated from PTPA at an early stage in the procedure. The procedure yields approximately 1 mg essentially pure PTPA/kg rabbit skeletal muscle; it was also applied to porcine brain and the yeast Saccharomyces cerevisiae. The physico-chemical properties of PTPA obtained from all sources are very similar. The pure rabbit skeletal muscle protein was used to raise polyclonal goat antibodies and to affinity purify these antibodies. Immunological studies revealed the presence of PTPA in all mammalian tissues and cell lines examined with differences in tissue distribution, brain showing the highest concentration. PTPA could only be detected in cytosolic fractions. Using a semi-quantitative immunological assay (Western blot), the in vivo concentration could be estimated to be micromolar, which is in the same range as the PP2A target. The purified Xenopus oocyte PTPA showed only a weak cross reactivity, whereas yeast PTPA was not recognised by the antibody indicating some evolutionary diversity of the protein. In a PTPA-affinity column chromatography, the weak interaction with PP2A was independent of the presence of ATP.Mg, a necessary cofactor in the activation process. Interaction of PTPA with PP2A in a 1:1 ratio induces a low (kcat = 3 min-1) ATPase activity that is inhibited by okadaic acid, ADP and non-hydrolysable ATP analogues.
Collapse
Affiliation(s)
- C Van Hoof
- Afdeling Biochemie, Faculteit der Geneeskunde, Katholieke Universiteit Leuven, Belgium
| | | | | | | | | |
Collapse
|
141
|
|
142
|
Ishibashi T, Bottaro D, Michieli P, Kelley CA, Aaronson SA. A novel dual specificity phosphatase induced by serum stimulation and heat shock. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)43965-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
143
|
Zhou G, Denu JM, Wu L, Dixon JE. The catalytic role of Cys124 in the dual specificity phosphatase VHR. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)46898-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
144
|
Simian virus 40 small t antigen cooperates with mitogen-activated kinases to stimulate AP-1 activity. Mol Cell Biol 1994. [PMID: 8065356 DOI: 10.1128/mcb.14.9.6244] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The simian virus 40 small tumor antigen (small t) specifically interacts with protein phosphatase type 2A (PP2A) in vivo and alters its catalytic activity in vitro. Among the substrates for PP2A in vitro are the activated forms of MEK and ERK kinases. Dephosphorylation of the activating phosphorylation sites on MEK and ERKs by PP2A in vitro results in a decrease in their respective kinase activities. Recently, it has been shown that overexpression of small t in CV-1 cells results in an inhibition of PP2A activity toward MEK and ERK2 and a constitutive upregulation of MEK and ERK2 activity. Previously, we have observed that overexpression of either ERK1, MEK1, or a constitutively active truncated form of c-Raf-1 (BXB) is insufficient to activate AP-1 in REF52 fibroblasts. We therefore examined whether overexpression of small t either alone or in conjunction with ERK1, MEK1, or BXB could activate AP-1. We found that coexpression of small t and either ERK1, MEK1, or BXB resulted in an increase in AP-1 activity, whereas expression of either small t or any of the kinases alone did not have any effect. Similarly, coexpression of small t and ERK1 activated serum response element-regulated promoters. Coexpression of kinase-deficient mutants of ERK1 and ERK2 inhibited the activation of AP-1 caused by expression of small t and either MEK1 or BXB. Coexpression of an interfering MEK, which inhibited AP-1 activation by small t and BXB, did not inhibit the activation of AP-1 caused by small t and ERK1. In contrast to REF52 cells, we observed that overexpression of either small or ERK1 alone in CV-1 cells was sufficient to stimulate AP-1 activity and that this stimulation was not enhanced by expression of small t and ERK1 together. These results show that the effects of small t on immediate-early gene expression depend on the cell type examined and suggest that the mitogen-activated protein kinase activation pathway is distinctly regulated in different cell types.
Collapse
|
145
|
Frost JA, Alberts AS, Sontag E, Guan K, Mumby MC, Feramisco JR. Simian virus 40 small t antigen cooperates with mitogen-activated kinases to stimulate AP-1 activity. Mol Cell Biol 1994; 14:6244-52. [PMID: 8065356 PMCID: PMC359151 DOI: 10.1128/mcb.14.9.6244-6252.1994] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The simian virus 40 small tumor antigen (small t) specifically interacts with protein phosphatase type 2A (PP2A) in vivo and alters its catalytic activity in vitro. Among the substrates for PP2A in vitro are the activated forms of MEK and ERK kinases. Dephosphorylation of the activating phosphorylation sites on MEK and ERKs by PP2A in vitro results in a decrease in their respective kinase activities. Recently, it has been shown that overexpression of small t in CV-1 cells results in an inhibition of PP2A activity toward MEK and ERK2 and a constitutive upregulation of MEK and ERK2 activity. Previously, we have observed that overexpression of either ERK1, MEK1, or a constitutively active truncated form of c-Raf-1 (BXB) is insufficient to activate AP-1 in REF52 fibroblasts. We therefore examined whether overexpression of small t either alone or in conjunction with ERK1, MEK1, or BXB could activate AP-1. We found that coexpression of small t and either ERK1, MEK1, or BXB resulted in an increase in AP-1 activity, whereas expression of either small t or any of the kinases alone did not have any effect. Similarly, coexpression of small t and ERK1 activated serum response element-regulated promoters. Coexpression of kinase-deficient mutants of ERK1 and ERK2 inhibited the activation of AP-1 caused by expression of small t and either MEK1 or BXB. Coexpression of an interfering MEK, which inhibited AP-1 activation by small t and BXB, did not inhibit the activation of AP-1 caused by small t and ERK1. In contrast to REF52 cells, we observed that overexpression of either small or ERK1 alone in CV-1 cells was sufficient to stimulate AP-1 activity and that this stimulation was not enhanced by expression of small t and ERK1 together. These results show that the effects of small t on immediate-early gene expression depend on the cell type examined and suggest that the mitogen-activated protein kinase activation pathway is distinctly regulated in different cell types.
Collapse
Affiliation(s)
- J A Frost
- Department of Medicine, University of California School of Medicine, La Jolla 92093-0636
| | | | | | | | | | | |
Collapse
|
146
|
Comparative study of three protein-tyrosine phosphatases. Chicken protein-tyrosine phosphatase lambda dephosphorylates c-Src tyrosine 527. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32145-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
147
|
Hannon GJ, Casso D, Beach D. KAP: a dual specificity phosphatase that interacts with cyclin-dependent kinases. Proc Natl Acad Sci U S A 1994; 91:1731-5. [PMID: 8127873 PMCID: PMC43237 DOI: 10.1073/pnas.91.5.1731] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The cyclin-dependent kinases are key cell cycle regulators whose activation is required for passage from one cell cycle phase to the next. In mammalian cells, CDK2 has been implicated in control of the G1 and S phases. We have used a two-hybrid protein interaction screen to identify cDNAs encoding proteins that can interact with CDK2. Among those identified was a protein (KAP), which contained the HCXX-XXGR motif characteristic of protein tyrosine phosphatases. KAP showed phosphatase activity toward substrates containing either phosphotyrosine or phosphoserine residues. Since KAP is not significantly similar to known phosphatases beyond the catalytic core motif, it represents an additional class of dual specificity phosphatase. KAP interacted with cdc2 and CDK2 in yeast. In mammalian cells, KAP also associated with cdc2 and CDK2 but showed a preference for cdc2. The ability of KAP to bind multiple cyclin-dependent kinases suggests that it may play a role in cell cycle regulation.
Collapse
Affiliation(s)
- G J Hannon
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, NY 11724
| | | | | |
Collapse
|
148
|
Abstract
Screening of a human embryonic lung fibroblast cDNA expression library with antiphosphotyrosine antibodies led to isolation of a novel protein kinase. A clone, designated A6, contained a 3-kb cDNA insert with a predicted open reading frame of 350 amino acids. DNA sequence analysis failed to reveal any detectable similarity with previously known genes, and the predicted A6 protein lacked any of the motifs commonly conserved in the catalytic domains of protein kinases. However, the bacterially expressed beta-galactosidase-A6 fusion protein demonstrated both tyrosine and serine phosphorylation in an in vitro kinase assay and phosphorylated exogenous substrates including myelin basic protein specifically on tyrosine residues. The enzyme also displayed biochemical properties analogous to those of other protein tyrosine kinases. The A6 gene was found to be expressed widely at the transcript level in normal tissues and was evolutionarily conserved. Thus, A6 represents a novel tyrosine kinase which is highly divergent from previously described members of this important class of regulatory molecules.
Collapse
|
149
|
Beeler JF, LaRochelle WJ, Chedid M, Tronick SR, Aaronson SA. Prokaryotic expression cloning of a novel human tyrosine kinase. Mol Cell Biol 1994; 14:982-8. [PMID: 7507208 PMCID: PMC358453 DOI: 10.1128/mcb.14.2.982-988.1994] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Screening of a human embryonic lung fibroblast cDNA expression library with antiphosphotyrosine antibodies led to isolation of a novel protein kinase. A clone, designated A6, contained a 3-kb cDNA insert with a predicted open reading frame of 350 amino acids. DNA sequence analysis failed to reveal any detectable similarity with previously known genes, and the predicted A6 protein lacked any of the motifs commonly conserved in the catalytic domains of protein kinases. However, the bacterially expressed beta-galactosidase-A6 fusion protein demonstrated both tyrosine and serine phosphorylation in an in vitro kinase assay and phosphorylated exogenous substrates including myelin basic protein specifically on tyrosine residues. The enzyme also displayed biochemical properties analogous to those of other protein tyrosine kinases. The A6 gene was found to be expressed widely at the transcript level in normal tissues and was evolutionarily conserved. Thus, A6 represents a novel tyrosine kinase which is highly divergent from previously described members of this important class of regulatory molecules.
Collapse
Affiliation(s)
- J F Beeler
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, Maryland 20892
| | | | | | | | | |
Collapse
|
150
|
Isolation and characterization of a human dual specificity protein-tyrosine phosphatase gene. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)41905-3] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|