101
|
Satohisa S, Zhang HH, Feng L, Yang YY, Huang L, Chen DB. Endogenous NO upon estradiol-17β stimulation and NO donor differentially regulate mitochondrial S-nitrosylation in endothelial cells. Endocrinology 2014; 155:3005-16. [PMID: 24877627 PMCID: PMC4098011 DOI: 10.1210/en.2013-2174] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adduction of a nitric oxide (NO) moiety (NO(•)) to cysteines termed as S-nitrosylation (SNO) has emerged as a crucial mechanism for NO signaling crucial for mediating the vascular effects of estrogens. Mitochondrion is a known vascular risk factor; however, the effects of estrogens on mitochondrial SNO are incompletely understood. In this study we determined the effects of estradiol-17β (E2β) on mitochondrial protein SNO in primary human umbilical vein endothelial cells and compared the mitochondrial nitroso-proteomes in E2β- and a NO donor S-nitrosoglutathione (GSNO)-treated cells using a proteomics approach. Treatment with 10 nM E2β and 1 mM GSNO for 30 minutes significantly increased the levels of mitochondrial SNO-proteins. Subcellular localization of SNO-proteins showed mitochondria as the major cellular organelle for protein SNO in response to E2β and GSNO. E2β stimulated mitochondrial endothelial nitric oxide synthase (eNOS) phosphorylation and mitochondrial protein SNO that was enhanced by overexpression of mitochondrion or Golgi, but not membrane targeting eNOS constructs. We identified 11, 32, and 54 SNO-proteins in the mitochondria from the untreated, E2β-, and GSNO-treated human umbilical vein endothelial cells, respectively. Comparisons of the nitroso-proteomes revealed that common and different mitochondrial SNO-proteins were affected by endogenous NO on E2β stimulation and exogenous NO from donor. These SNO-proteins were associated with various mitochondrial functions, including energy and redox regulation, transport, iron homeostasis, translation, mitochondrial morphology, and apoptosis, etc. Collectively, we conclude that estrogens rapidly stimulate protein SNO in endothelial mitochondria via mitochondrial eNOS, providing a mechanism for mediating the vascular effects of estrogens.
Collapse
Affiliation(s)
- Seiro Satohisa
- Departments of Obstetrics and Gynecology (S.S., H-h.Z., L.F., D-b.C.), Biophysics and Physiology (Y-y.Y., L.H.), and Pathology (D-b.C.), University of California, Irvine, California 92697
| | | | | | | | | | | |
Collapse
|
102
|
Shvets E, Ludwig A, Nichols BJ. News from the caves: update on the structure and function of caveolae. Curr Opin Cell Biol 2014; 29:99-106. [PMID: 24908346 DOI: 10.1016/j.ceb.2014.04.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/03/2014] [Accepted: 04/24/2014] [Indexed: 10/25/2022]
Abstract
Recent data from the study of the cell biology of caveolae have provided insights both into how these flask-shaped invaginations of the plasma membrane are formed and how they may function in different contexts. This review discusses experiments that analyse the composition and ultrastructural distribution of protein complexes responsible for generating caveolae, that suggest functions for caveolae in response to mechanical stress or damage to the plasma membrane, that show that caveolae may have an important role during the signalling events for regulation of metabolism, and that imply that caveolae can act as endocytic vesicles at the plasma membrane. We also highlight unexpected roles for caveolar proteins in regulating circadian rhythms and new insights into the way in which caveolae may be involved in fatty acid uptake in the intestine. Current outstanding questions in the field are emphasised.
Collapse
Affiliation(s)
| | - Alexander Ludwig
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | |
Collapse
|
103
|
Zhou J, Chen L, Fan Y, Jiang J, Wan J. Atorvastatin increases endothelial progenitor cells in balloon-injured mouse carotid artery. Can J Physiol Pharmacol 2014; 92:369-74. [PMID: 24773377 DOI: 10.1139/cjpp-2013-0292] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Here we aimed to investigate the effects of atorvastatin on accelerated reendothelialization after carotid balloon injury. A mouse model of carotid arterial injury was established, followed by intragastric administration of atorvastatin at a dose of 0.6 mg·(kg body mass)–1·d–1. Pathological sections of carotid artery stained with hematoxylin and eosin were observed under light microscopy. Expression levels of eNOS mRNA and protein were detected with real-time quantitative PCR and Western blot analysis, respectively. Proliferation and differentiation of endothelial progenitor cells (EPCs) were observed after treatment, in vitro. Reendothelialization appeared on the neovascular surface, while intimal hyperplasia was inhibited after treatment with atorvastatin. Numbers of CD31-positive cells increased after atorvastatin treatment, as did the number of leucocyte antigen positive cells. The expression of cell markers, such as CD34, eNOS, and VEGF-R, were higher in the atorvastatin-treated group of mononuclear cells. EPC numbers increased with the concentration of atorvastatin. The expression of eNOS mRNA was reduced in the mice with carotid artery injury that were treated with normal saline. The expression levels of eNOS protein were increased in atorvastatin treatment group. In conclusion, atorvastatin stimulates EPCs to differentiate into endothelial cells and promotes the repair of carotid arterial injury.
Collapse
Affiliation(s)
- Jianpo Zhou
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lei Chen
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yiling Fan
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jiyao Jiang
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jieqing Wan
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
104
|
Abstract
The cell type of election for the study of cell membranes, the mammalian non-nucleated erythrocyte, has been scarcely considered in the research of membrane rafts of the plasma membrane. However, detergent-resistant-membranes (DRM) were actually first described in human erythrocytes, as a fraction resisting solubilization by the nonionic detergent Triton X-100. These DRMs were insoluble entities of high density, easily pelleted by centrifugation, as opposed to the now accepted concept of lipid raft-like membrane fractions as material floating in low-density regions of sucrose gradients. The present article reviews the available literature on membrane rafts/DRMs in human erythrocytes from an historical point of view, describing the experiments that provided the solution to the above described discrepancy and suggesting possible avenue of research in the field of membrane rafts that, moving from the most studied model of living cell membrane, the erythrocyte's, could be relevant also for other cell types.
Collapse
Affiliation(s)
- Annarita Ciana
- Laboratories of Biochemistry, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia , Pavia , Italy
| | | | | |
Collapse
|
105
|
Billaud M, Lohman AW, Johnstone SR, Biwer LA, Mutchler S, Isakson BE. Regulation of cellular communication by signaling microdomains in the blood vessel wall. Pharmacol Rev 2014; 66:513-69. [PMID: 24671377 PMCID: PMC3973613 DOI: 10.1124/pr.112.007351] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It has become increasingly clear that the accumulation of proteins in specific regions of the plasma membrane can facilitate cellular communication. These regions, termed signaling microdomains, are found throughout the blood vessel wall where cellular communication, both within and between cell types, must be tightly regulated to maintain proper vascular function. We will define a cellular signaling microdomain and apply this definition to the plethora of means by which cellular communication has been hypothesized to occur in the blood vessel wall. To that end, we make a case for three broad areas of cellular communication where signaling microdomains could play an important role: 1) paracrine release of free radicals and gaseous molecules such as nitric oxide and reactive oxygen species; 2) role of ion channels including gap junctions and potassium channels, especially those associated with the endothelium-derived hyperpolarization mediated signaling, and lastly, 3) mechanism of exocytosis that has considerable oversight by signaling microdomains, especially those associated with the release of von Willebrand factor. When summed, we believe that it is clear that the organization and regulation of signaling microdomains is an essential component to vessel wall function.
Collapse
Affiliation(s)
- Marie Billaud
- Dept. of Molecular Physiology and Biophysics, University of Virginia School of Medicine, PO Box 801394, Charlottesville, VA 22902.
| | | | | | | | | | | |
Collapse
|
106
|
Trane AE, Pavlov D, Sharma A, Saqib U, Lau K, van Petegem F, Minshall RD, Roman LJ, Bernatchez PN. Deciphering the binding of caveolin-1 to client protein endothelial nitric-oxide synthase (eNOS): scaffolding subdomain identification, interaction modeling, and biological significance. J Biol Chem 2014; 289:13273-83. [PMID: 24648521 DOI: 10.1074/jbc.m113.528695] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Caveolin-1 (Cav-1) gene inactivation interferes with caveolae formation and causes a range of cardiovascular and pulmonary complications in vivo. Recent evidence suggests that blunted Cav-1/endothelial nitric-oxide synthase (eNOS) interaction, which occurs specifically in vascular endothelial cells, is responsible for the multiple phenotypes observed in Cav-1-null animals. Under basal conditions, Cav-1 binds eNOS and inhibits nitric oxide (NO) production via the Cav-1 scaffolding domain (CAV; amino acids 82-101). Although we have recently shown that CAV residue Phe-92 is responsible for eNOS inhibition, the "inactive" F92A Cav-1 mutant unexpectedly retains its eNOS binding ability and can increase NO release, indicating the presence of a distinct eNOS binding domain within CAV. Herein, we identified and characterized a small 10-amino acid CAV subsequence (90-99) that accounted for the majority of eNOS association with Cav-1 (Kd = 49 nM), and computer modeling of CAV(90-99) docking to eNOS provides a rationale for the mechanism of eNOS inhibition by Phe-92. Finally, using gene silencing and reconstituted cell systems, we show that intracellular delivery of a F92A CAV(90-99) peptide can promote NO bioavailability in eNOS- and Cav-1-dependent fashions. To our knowledge, these data provide the first detailed analysis of Cav-1 binding to one of its most significant client proteins, eNOS.
Collapse
Affiliation(s)
- Andy E Trane
- From the St. Paul's Hospital's Centre of Heart and Lung Innovation
| | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Ebong EE, Lopez-Quintero SV, Rizzo V, Spray DC, Tarbell JM. Shear-induced endothelial NOS activation and remodeling via heparan sulfate, glypican-1, and syndecan-1. Integr Biol (Camb) 2014; 6:338-47. [PMID: 24480876 PMCID: PMC3996848 DOI: 10.1039/c3ib40199e] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mammalian epithelial cells are coated with a multifunctional surface glycocalyx (GCX). On vascular endothelial cells (EC), intact GCX is atheroprotective. It is degraded in many vascular diseases. GCX heparan sulfate (HS) is essential for healthy flow-induced EC nitric oxide (NO) release, elongation, and alignment. The HS core protein mechanisms involved in these processes are unknown. We hypothesized that the glypican-1 (GPC1) HS core protein mediates flow-induced EC NO synthase (eNOS) activation because GPC1 is anchored to caveolae where eNOS resides. We also hypothesized that the HS core protein syndecan-1 (SDC1) mediates flow-induced EC elongation and alignment because SDC1 is linked to the cytoskeleton which impacts cell shape. We tested our hypotheses by exposing EC monolayers treated with HS degrading heparinase III (HepIII), and monolayers with RNA-silenced GPC1, or SDC1, to 3 to 24 hours of physiological shear stress. Shear-conditioned EC with intact GCX exhibited characteristic eNOS activation in short-term flow conditions. After long-term exposure, EC with intact GCX were elongated and aligned in the direction of flow. HS removal and GPC1 inhibition, not SDC1 reduction, blocked shear-induced eNOS activation. EC remodeling in response to flow was attenuated by HS degradation and in the absence of SDC1, but preserved with GPC1 knockdown. These findings clearly demonstrate that HS is involved in both centralized and decentralized GCX-mediated mechanotransduction mechanisms, with GPC1 acting as a centralized mechanotransmission agent and SDC1 functioning in decentralized mechanotransmission. This foundational work demonstrates how EC can transform fluid shear forces into diverse biomolecular and biomechanical responses.
Collapse
Affiliation(s)
- Eno E Ebong
- Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Ave, K-840, Bronx, NY 10461
- Department of Biomedical Engineering, City College of New York, 140 Street and Convent Avenue, T-404B, New York, NY 10031
| | - Sandra V Lopez-Quintero
- Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Ave, K-840, Bronx, NY 10461
| | - Victor Rizzo
- Cardiovascular Research Center, Temple University School of Medicine, 3500 N. Broad Street, MERB 1080, Philadelphia, PA 19140
| | - David C Spray
- Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Ave, K-840, Bronx, NY 10461
| | - John M Tarbell
- Department of Biomedical Engineering, City College of New York, 140 Street and Convent Avenue, T-404B, New York, NY 10031
| |
Collapse
|
108
|
Abstract
It has been demonstrated that redox homeostasis is important in the pathophysiology of several human diseases, including cardiovascular diseases. In this respect, genetic polymorphism, nutritional and environmental factors, age, lifestyle and physical activity may account for variable antioxidant defenses, which may be more or less effective at counteracting oxidative damage. Since accumulating oxidative damage may be associated with several pathologic conditions, including different cardiovascular diseases, prevention of oxidative stress appears to be a promising approach to improve such diseases. Exercise training, diets rich in antioxidants and a good control of blood glucose and lipid levels help to strengthen the physiologic antioxidant defense system, perhaps coupled to drugs capable of increasing the nitric oxide bioavailability and decreasing superoxide production. Within the next few years other therapeutic approaches will be available, such as gene therapy, which will prove to be even more effective but devoid of several important systemic side effects.
Collapse
Affiliation(s)
- Paolo Abrescia
- University of Naples Federico II, Department of General and Environmental Physiology, Via Mezzocannone 8, 80134 Naples, Italy.
| | | |
Collapse
|
109
|
Kozai D, Kabasawa Y, Ebert M, Kiyonaka S, Otani Y, Numata T, Takahashi N, Mori Y, Ohwada T. Transnitrosylation directs TRPA1 selectivity in N-nitrosamine activators. Mol Pharmacol 2014; 85:175-85. [PMID: 24202912 DOI: 10.1124/mol.113.088864] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
S-Nitrosylation, the addition of a nitrosyl group to cysteine thiols, regulates various protein functions to mediate nitric oxide (NO) bioactivity. Recent studies have demonstrated that selectivity in protein S-nitrosylation signaling pathways is conferred through transnitrosylation, a transfer of the NO group, between proteins via interaction. We previously demonstrated that sensitivity to activation by synthetic NO-releasing agents via S-nitrosylation is a common feature of members of the transient receptor potential (TRP) family of Ca(2+)-permeable cation channels. However, strategies to confer subtype selectivity to nitrosylating agents targeted to TRP channels are yet to be developed. Here, we show selective activation of TRPA1 channels by novel NO donors derived from the ABBH (7-azabenzobicyclo[2.2.1]heptane) N-nitrosamines, which exhibit transnitrosylation reactivity to thiols without releasing NO. The NNO-ABBH1 (N-nitroso-2-exo,3-exo-ditrifluoromethyl-7-azabenzobicyclo[2.2.1]heptane) elicits S-nitrosylation of TRPA1 proteins, and dose-dependently induces robust Ca(2+) influx via both recombinant and native TRPA1 channels, but not via other NO-activated TRP channels. TRPA1 activation by NNO-ABBH1 is suppressed by specific cysteine mutations but not by NO scavenging, suggesting that cysteine transnitrosylation underlies the activation of TRPA1 by NNO-ABBH1. This is supported by the correlation of N-NO bond reactivity and TRPA1-activating potency in a congeneric series of ABBH N-nitrosamines. Interestingly, nonelectrophilic derivatives of ABBH also activate TRPA1 selectively, but less potently, compared with NNO-ABBH1. Thus, ABBH N-nitrosamines confer subtype selectivity on S-nitrosylation in TRP channels through synergetic effects of two chemical processes: cysteine transnitrosylation and molecular recognition of the nonelectrophilic moiety.
Collapse
Affiliation(s)
- Daisuke Kozai
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering (D.K., M.E., S.K., T.N., N.T., Y.M.), Department of Technology and Ecology, Hall of Global Environmental Studies (S.K., T.N., Y.M.), and Advanced Biomedical Engineering Research Unit (N.T.), Kyoto University, Kyoto, Japan; Laboratory of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (Y.K., F., Y.O., T.O.); and Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Tokyo, Japan (S.K., Y.M.)
| | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Deletion of cavin genes reveals tissue-specific mechanisms for morphogenesis of endothelial caveolae. Nat Commun 2013; 4:1831. [PMID: 23652019 PMCID: PMC3674239 DOI: 10.1038/ncomms2808] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 03/26/2013] [Indexed: 12/23/2022] Open
Abstract
Caveolae are abundant in endothelial cells and are thought to have important roles in endothelial cell biology. The cavin proteins are key components of caveolae, and are expressed at varied amounts in different tissues. Here we use knockout mice to determine the roles of cavins 2 and 3 in caveolar morphogenesis in vivo. Deletion of cavin 2 causes loss of endothelial caveolae in lung and adipose tissue, but has no effect on the abundance of endothelial caveolae in heart and other tissues. Changes in the morphology of endothelium in cavin 2 null mice correlate with changes in caveolar abundance. Cavin 3 is not required for making caveolae in the tissues examined. Cavin 2 determines the size of cavin complexes, and acts to shape caveolae. Cavin 1, however, is essential for normal oligomerization of caveolin 1. Our data reveal that endothelial caveolae are heterogeneous, and identify cavin 2 as a determinant of this heterogeneity. Cavin proteins are key components of mammalian caveolae and are expressed from four genes in a tissue-specific manner. Gram Hansen et al. demonstrate that caveolae in the endothelia of different tissues are remarkably heterogeneous, and reveal a role for cavin 2 in determining the apparent size of cavin complexes.
Collapse
|
111
|
Qian J, Fulton D. Post-translational regulation of endothelial nitric oxide synthase in vascular endothelium. Front Physiol 2013; 4:347. [PMID: 24379783 PMCID: PMC3861784 DOI: 10.3389/fphys.2013.00347] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 11/11/2013] [Indexed: 01/22/2023] Open
Abstract
Nitric oxide (NO) is a short-lived gaseous signaling molecule. In blood vessels, it is synthesized in a dynamic fashion by endothelial nitric oxide synthase (eNOS) and influences vascular function via two distinct mechanisms, the activation of soluble guanylyl cyclase (sGC)/cyclic guanosine monophosphate (cGMP)-dependent signaling and the S-nitrosylation of proteins with reactive thiols (S-nitrosylation). The regulation of eNOS activity and NO bioavailability is critical to maintain blood vessel function. The activity of eNOS and ability to generate NO is regulated at the transcriptional, posttranscriptional, and posttranslational levels. Post-translational modifications acutely impact eNOS activity and dysregulation of these mechanisms compromise eNOS activity and foster the development of cardiovascular diseases (CVDs). This review will intergrate past and current literature on the post-translational modifications of eNOS in both health and disease.
Collapse
Affiliation(s)
- Jin Qian
- Pulmonary and Critical Care, School of Medicine, Stanford University/VA Palo Alto Health Care System Palo Alto, CA, USA
| | - David Fulton
- Vascular Biology Center, Georgia Regents University Augusta, GA, USA
| |
Collapse
|
112
|
Thompson MA, Prakash YS, Pabelick CM. The role of caveolae in the pathophysiology of lung diseases. Expert Rev Respir Med 2013; 8:111-22. [PMID: 24308657 DOI: 10.1586/17476348.2014.855610] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Caveolae are flask-shaped plasma membrane invaginations formed by constitutive caveolin proteins and regulatory cavin proteins. Caveolae harbor a range of signaling components such as receptors, ion channels and regulatory molecules. There is now increasing evidence that caveolins and cavins play an important role in a variety of diseases. However, the mechanisms by which these caveolar proteins affect lung health and disease are still under investigation, with emerging data suggesting complex roles in disease pathophysiology. This review summarizes the current state of understanding of how caveolar proteins contribute to lung structure and function and how their altered expression and/or function can influence lung diseases.
Collapse
|
113
|
Noel J, Wang H, Hong N, Tao JQ, Yu K, Sorokina EM, Debolt K, Heayn M, Rizzo V, Delisser H, Fisher AB, Chatterjee S. PECAM-1 and caveolae form the mechanosensing complex necessary for NOX2 activation and angiogenic signaling with stopped flow in pulmonary endothelium. Am J Physiol Lung Cell Mol Physiol 2013; 305:L805-18. [PMID: 24077950 PMCID: PMC3882530 DOI: 10.1152/ajplung.00123.2013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 09/24/2013] [Indexed: 12/14/2022] Open
Abstract
We showed that stop of flow triggers a mechanosignaling cascade that leads to the generation of reactive oxygen species (ROS); however, a mechanosensor coupled to the cytoskeleton that could potentially transduce flow stimulus has not been identified. We showed a role for KATP channel, caveolae (caveolin-1), and NADPH oxidase 2 (NOX2) in ROS production with stop of flow. Based on reports of a mechanosensory complex that includes platelet endothelial cell adhesion molecule-1 (PECAM-1) and initiates signaling with mechanical force, we hypothesized that PECAM-1 could serve as a mechanosensor in sensing disruption of flow. Using lungs in situ, we observed that ROS production with stop of flow was significantly reduced in PECAM-1(-/-) lungs compared with lungs from wild-type (WT) mice. Lack of PECAM-1 did not affect NOX2 activation machinery or the caveolin-1 expression or caveolae number in the pulmonary endothelium. Stop of flow in vitro triggered an increase in angiogenic potential of WT pulmonary microvascular endothelial cells (PMVEC) but not of PECAM-1(-/-) PMVEC. Obstruction of flow in lungs in vivo showed that the neutrophil infiltration as observed in WT mice was significantly lowered in PECAM-1(-/-) mice. With stop of flow, WT lungs showed higher expression of the angiogenic marker VEGF compared with untreated (sham) and PECAM-1(-/-) lungs. Thus PECAM-1 (and caveolae) are parts of the mechanosensing machinery that generates superoxide with loss of shear; the resultant ROS potentially drives neutrophil influx and acts as an angiogenic signal.
Collapse
Affiliation(s)
- John Noel
- Institute for Environmental Medicine, Univ. of Pennsylvania School of Medicine, 1 John Morgan Bldg., 3620 Hamilton Walk, Philadelphia, PA 19104-6068.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Bakhshi FR, Mao M, Shajahan AN, Piegeler T, Chen Z, Chernaya O, Sharma T, Elliott WM, Szulcek R, Bogaard HJ, Comhair S, Erzurum S, van Nieuw Amerongen GP, Bonini MG, Minshall RD. Nitrosation-dependent caveolin 1 phosphorylation, ubiquitination, and degradation and its association with idiopathic pulmonary arterial hypertension. Pulm Circ 2013; 3:816-30. [PMID: 25006397 PMCID: PMC4070841 DOI: 10.1086/674753] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 09/18/2013] [Indexed: 01/15/2023] Open
Abstract
In the present study, we tested the hypothesis that chronic inflammation and oxidative/nitrosative stress induce caveolin 1 (Cav-1) degradation, providing an underlying mechanism of endothelial cell activation/dysfunction and pulmonary vascular remodeling in patients with idiopathic pulmonary arterial hypertension (IPAH). We observed reduced Cav-1 protein despite increased Cav-1 messenger RNA expression and also endothelial nitric oxide synthase (eNOS) hyperphosphorylation in human pulmonary artery endothelial cells (PAECs) from patients with IPAH. In control human lung endothelial cell cultures, tumor necrosis factor α-induced nitric oxide (NO) production and S-nitrosation (SNO) of Cav-1 Cys-156 were associated with Src displacement and activation, Cav-1 Tyr-14 phosphorylation, and destabilization of Cav-1 oligomers within 5 minutes that could be blocked by eNOS or Src inhibition. Prolonged stimulation (72 hours) with NO donor DETANONOate reduced oligomerized and total Cav-1 levels by 40%-80%, similar to that observed in IPAH patient-derived PAECs. NO donor stimulation of endothelial cells for >72 hours, which was associated with sustained Src activation and Cav-1 phosphorylation, ubiquitination, and degradation, was blocked by NOS inhibitor L-NAME, Src inhibitor PP2, and proteosomal inhibitor MG132. Thus, chronic inflammation, sustained eNOS and Src signaling, and Cav-1 degradation may be important causal factors in the development of IPAH by promoting PAEC dysfunction/activation via sustained oxidative/nitrosative stress.
Collapse
Affiliation(s)
- Farnaz R. Bakhshi
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Mao Mao
- Department of Medicine, Section of Cardiology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Ayesha N. Shajahan
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Tobias Piegeler
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Zhenlong Chen
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Olga Chernaya
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Tiffany Sharma
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - W. Mark Elliott
- Pulmonary Division, James Hogg Research Centre Biobank, University of British Columbia, Vancouver, Canada
| | - Robert Szulcek
- Department of Physiology, Institute for Cardiovascular Research, Vrije Universiteit (VU) University Medical Center, Amsterdam, The Netherlands
- Department of Pulmonology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Harm Jan Bogaard
- Department of Pulmonology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Suzy Comhair
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Serpil Erzurum
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Geerten P. van Nieuw Amerongen
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Physiology, Institute for Cardiovascular Research, Vrije Universiteit (VU) University Medical Center, Amsterdam, The Netherlands
| | - Marcelo G. Bonini
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Medicine, Section of Cardiology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Richard D. Minshall
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
115
|
Austin ED, Loyd JE. Heritable forms of pulmonary arterial hypertension. Semin Respir Crit Care Med 2013; 34:568-80. [PMID: 24037626 DOI: 10.1055/s-0033-1355443] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tremendous progress has been made in understanding the genetics of heritable pulmonary arterial hypertension (HPAH) since its description in the 1950s. Germline mutations in the gene coding bone morphogenetic receptor type 2 (BMPR2) are detectable in the majority of cases of HPAH, and in a small proportion of cases of idiopathic pulmonary arterial hypertension (IPAH). Recent advancements in gene sequencing methods have facilitated the discovery of additional genes with mutations among those with and without familial PAH (CAV1, KCNK3). HPAH is an autosomal dominant disease characterized by reduced penetrance, variable expressivity, and female predominance. These characteristics suggest that genetic and nongenetic factors modify disease expression, highlighting areas of active investigation. The reduced penetrance makes genetic counseling complex, as the majority of carriers of PAH-related mutations will never be diagnosed with the disease. This issue is increasingly important, as clinical testing for BMPR2 and other mutations is now available for the evaluation of patients and their at-risk kin. The possibilities to avoid mutation transmission, such as the rapidly advancing field of preimplantation genetic testing, highlight the need for all clinicians to understand the genetic features of PAH risk.
Collapse
Affiliation(s)
- Eric D Austin
- Division of Pulmonary, Allergy, and Immunology Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | |
Collapse
|
116
|
Gadkari TV, Cortes N, Madrasi K, Tsoukias NM, Joshi MS. Agmatine induced NO dependent rat mesenteric artery relaxation and its impairment in salt-sensitive hypertension. Nitric Oxide 2013; 35:65-71. [PMID: 23994446 DOI: 10.1016/j.niox.2013.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/15/2013] [Accepted: 08/19/2013] [Indexed: 11/18/2022]
Abstract
l-Arginine and its decarboxylated product, agmatine are important mediators of NO production and vascular relaxation. However, the underlying mechanisms of their action are not understood. We have investigated the role of arginine and agmatine in resistance vessel relaxation of Sprague-Dawley (SD) and Dahl salt-sensitive hypertensive rats. Second or 3rd-order mesenteric arterioles were cannulated in an organ chamber, pressurized and equilibrated before perfusing intraluminally with agonists. The vessel diameters were measured after mounting on the stage of a microscope fitted with a video camera. The gene expression in Dahl rat vessel homogenates was ascertained by real-time PCR. l-Arginine initiated relaxations (EC50, 5.8±0.7mM; n=9) were inhibited by arginine decarboxylase (ADC) inhibitor, difluoromethylarginine (DFMA) (EC50, 18.3±1.3mM; n=5) suggesting that arginine-induced vessel relaxation was mediated by agmatine formation. Agmatine relaxed the SD rat vessels at significantly lower concentrations (EC50, 138.7±12.1μM; n=22), which was compromised by l-NAME (l-N(G)-nitroarginine methyl ester, an eNOS inhibitor), RX821002 (α-2 AR antagonist) and pertussis toxin (G-protein inhibitor). The agmatine-mediated vessel relaxation from high salt Dahl rats was abolished as compared to that from normal salt rats (EC50, 143.9±23.4μM; n=5). The α-2A AR, α-2B AR and eNOS mRNA expression was downregulated in mesenteric arterioles of high-salt treated Dahl hypertensive rats. These findings demonstrate that agmatine facilitated the relaxation via activation of α-2 adrenergic G-protein coupled receptor and NO synthesis, and this pathway is compromised in salt-sensitive hypertension.
Collapse
Affiliation(s)
- Tushar V Gadkari
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, United States
| | | | | | | | | |
Collapse
|
117
|
Lee HJ, Li N, Evans SM, Diaz MF, Wenzel PL. Biomechanical force in blood development: extrinsic physical cues drive pro-hematopoietic signaling. Differentiation 2013; 86:92-103. [PMID: 23850217 DOI: 10.1016/j.diff.2013.06.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 06/17/2013] [Accepted: 06/19/2013] [Indexed: 02/07/2023]
Abstract
The hematopoietic system is dynamic during development and in adulthood, undergoing countless spatial and temporal transitions during the course of one's life. Microenvironmental cues in the many unique hematopoietic niches differ, characterized by distinct soluble molecules, membrane-bound factors, and biophysical features that meet the changing needs of the blood system. Research from the last decade has revealed the importance of substrate elasticity and biomechanical force in determination of stem cell fate. Our understanding of the role of these factors in hematopoiesis is still relatively poor; however, the developmental origin of blood cells from the endothelium provides a model for comparison. Many endothelial mechanical sensors and second messenger systems may also determine hematopoietic stem cell fate, self renewal, and homing behaviors. Further, the intimate contact of hematopoietic cells with mechanosensitive cell types, including osteoblasts, endothelial cells, mesenchymal stem cells, and pericytes, places them in close proximity to paracrine signaling downstream of mechanical signals. The objective of this review is to present an overview of the sensors and intracellular signaling pathways activated by mechanical cues and highlight the role of mechanotransductive pathways in hematopoiesis.
Collapse
Affiliation(s)
- Hyun Jung Lee
- Children's Regenerative Medicine Program, Department of Pediatric Surgery, University of Texas Medical School at Houston, Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
118
|
Elms S, Chen F, Wang Y, Qian J, Askari B, Yu Y, Pandey D, Iddings J, Caldwell RB, Fulton DJR. Insights into the arginine paradox: evidence against the importance of subcellular location of arginase and eNOS. Am J Physiol Heart Circ Physiol 2013; 305:H651-66. [PMID: 23792682 DOI: 10.1152/ajpheart.00755.2012] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reduced production of nitric oxide (NO) is one of the first indications of endothelial dysfunction and precedes overt cardiovascular disease. Increased expression of Arginase has been proposed as a mechanism to account for diminished NO production. Arginases consume l-arginine, the substrate for endothelial nitric oxide synthase (eNOS), and l-arginine depletion is thought to competitively reduce eNOS-derived NO. However, this simple relationship is complicated by the paradox that l-arginine concentrations in endothelial cells remain sufficiently high to support NO synthesis. One mechanism proposed to explain this is compartmentalization of intracellular l-arginine into distinct, poorly interchangeable pools. In the current study, we investigated this concept by targeting eNOS and Arginase to different intracellular locations within COS-7 cells and also BAEC. We found that supplemental l-arginine and l-citrulline dose-dependently increased NO production in a manner independent of the intracellular location of eNOS. Cytosolic arginase I and mitochondrial arginase II reduced eNOS activity equally regardless of where in the cell eNOS was expressed. Similarly, targeting arginase I to disparate regions of the cell did not differentially modify eNOS activity. Arginase-dependent suppression of eNOS activity was reversed by pharmacological inhibitors and absent in a catalytically inactive mutant. Arginase did not directly interact with eNOS, and the metabolic products of arginase or downstream enzymes did not contribute to eNOS inhibition. Cells expressing arginase had significantly lower levels of intracellular l-arginine and higher levels of ornithine. These results suggest that arginases inhibit eNOS activity by depletion of substrate and that the compartmentalization of l-arginine does not play a major role.
Collapse
Affiliation(s)
- Shawn Elms
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Feng H, Guo W, Han J, Li XA. Role of caveolin-1 and caveolae signaling in endotoxemia and sepsis. Life Sci 2013; 93:1-6. [PMID: 23727353 DOI: 10.1016/j.lfs.2013.05.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 05/09/2013] [Accepted: 05/14/2013] [Indexed: 12/28/2022]
Abstract
Caveolae, plasma membrane invaginations of 60-80nm in diameter, are a subset of lipid rafts enriched in cholesterol and sphingolipids. Caveolae are expressed in various tissues and cell types, such as endothelial cells, macrophages, neutrophils and adipocytes. The functions of caveolae are diverse and include endocytosis, transcytosis, potocytosis, calcium signaling, and regulation of various signaling events. Although growing evidence has increased our understanding of caveolae function, the role of caveolae in sepsis is still a controversial issue. In this review, we present a number of studies addressing caveolae and sepsis and describe the signaling pathways involved, including the LPS-eNOS-TLR4-NFκB, MKK3/p38 MAPK, cPLA2/p38 MAPK, STAT3/NFκB and IL-1β-IL-1R1 pathways. Different studies using endotoxemia and bacteremia animal models have provided distinct conclusions about the function of caveolae, and we discuss these inconsistencies. Taken together, the current data suggest that the function of caveolae in sepsis, which involves a number of signaling pathways, is complex and warrants further studies.
Collapse
Affiliation(s)
- Hong Feng
- Department of Tumor Research and Therapy Center, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Wen Guo
- Taian Central Hospital, Taian, Shandong 271000, China
| | - Junqing Han
- Department of Tumor Research and Therapy Center, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Xiang-An Li
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY 40536, United States.
| |
Collapse
|
120
|
Nitric oxide production and the expression of two nitric oxide synthases in the avian retina. Vis Neurosci 2013; 30:91-103. [PMID: 23721886 DOI: 10.1017/s0952523813000126] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nitric oxide (NO) is known to exert multiple effects on the function of many retinal neurons and their synapses. Therefore, it is equally important to understand the potential sources of NO within the retina. To explore this, we employ a combination of 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate (DAF-FM) based NO detection and immunohistochemistry for the NO synthetic enzymes, neuronal and endothelial nitric oxide synthase (nNOS and eNOS). We find DAF signals in photoreceptors, horizontal cells, amacrine cells, efferent synapses, Müller cells, and cells in the ganglion cell layer (GCL). nNOS immunoreactivity was consistent with the DAF signal with the exception that horizontal cells and Müller cells were not clearly labeled. eNOS-like immunoreactivity (eNOS-LI) was more widespread with photoreceptors, horizontal cells, occasional bipolar cells, amacrine cells, Müller cells, and cells in the GCL all showing labeling. Double labeling with antibodies raised against calretinin, syntaxin, and glutamine synthetase confirmed that horizontal cells, amacrine cells, and Müller cells (respectively) were expressing eNOS-LI. Although little or no nNOS labeling is observed in horizontal cells or Müller cells, the expression of eNOS-LI is consistent with the ability of these cells to produce NO. Together these results suggest that the capability to produce NO is widespread in the chicken retina. We propose that multiple forms of regulation for nNOS and eNOS play a role in the patterning of NO production in the chicken retina.
Collapse
|
121
|
Nanni S, Aiello A, Re A, Guffanti A, Benvenuti V, Colussi C, Castro-Vega LJ, Felsani A, Londono-Vallejo A, Capogrossi MC, Bacchetti S, Gaetano C, Pontecorvi A, Farsetti A. Estrogen-dependent dynamic profile of eNOS-DNA associations in prostate cancer. PLoS One 2013; 8:e62522. [PMID: 23658738 PMCID: PMC3643940 DOI: 10.1371/journal.pone.0062522] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 03/22/2013] [Indexed: 01/07/2023] Open
Abstract
In previous work we have documented the nuclear translocation of endothelial NOS (eNOS) and its participation in combinatorial complexes with Estrogen Receptor Beta (ERβ) and Hypoxia Inducible Factors (HIFs) that determine localized chromatin remodeling in response to estrogen (E2) and hypoxia stimuli, resulting in transcriptional regulation of genes associated with adverse prognosis in prostate cancer (PCa). To explore the role of nuclear eNOS in the acquisition of aggressive phenotype in PCa, we performed ChIP-Sequencing on chromatin-associated eNOS from cells from a primary tumor with poor outcome and from metastatic LNCaP cells. We found that: 1. the eNOS-bound regions (peaks) are widely distributed across the genome encompassing multiple transcription factors binding sites, including Estrogen Response Elements. 2. E2 increased the number of peaks, indicating hormone-dependent eNOS re-localization. 3. Peak distribution was similar with/without E2 with ≈ 55% of them in extragenic DNA regions and an intriguing involvement of the 5′ domain of several miRs deregulated in PCa. Numerous potentially novel eNOS-targeted genes have been identified suggesting that eNOS participates in the regulation of large gene sets. The parallel finding of downregulation of a cluster of miRs, including miR-34a, in PCa cells associated with poor outcome led us to unveil a molecular link between eNOS and SIRT1, an epigenetic regulator of aging and tumorigenicity, negatively regulated by miR-34a and in turn activating eNOS. E2 potentiates miR-34a downregulation thus enhancing SIRT1 expression, depicting a novel eNOS/SIRT1 interplay fine-tuned by E2-activated ER signaling, and suggesting that eNOS may play an important role in aggressive PCa.
Collapse
Affiliation(s)
- Simona Nanni
- Department of Experimental Oncology, National Cancer Institute Regina Elena, Rome, Italy
- Medical Pathology Institute, Catholic University, Rome, Italy
| | - Aurora Aiello
- Medical Pathology Institute, Catholic University, Rome, Italy
- Institute of Cell Biology and Neurobiology, National Research Council (CNR), Rome, Italy
| | - Agnese Re
- Medical Pathology Institute, Catholic University, Rome, Italy
- University of Messina, Messina, Italy
| | | | - Valentina Benvenuti
- Institute of Cell Biology and Neurobiology, National Research Council (CNR), Rome, Italy
| | - Claudia Colussi
- Medical Pathology Institute, Catholic University, Rome, Italy
- Institute of Cell Biology and Neurobiology, National Research Council (CNR), Rome, Italy
| | | | - Armando Felsani
- Institute of Cell Biology and Neurobiology, National Research Council (CNR), Rome, Italy
- Genomnia srl, Lainate, Milan, Italy
| | | | | | - Silvia Bacchetti
- Department of Experimental Oncology, National Cancer Institute Regina Elena, Rome, Italy
| | - Carlo Gaetano
- Goethe University, Frankfurt, Germany
- * E-mail: (CG); (AF)
| | | | - Antonella Farsetti
- Department of Experimental Oncology, National Cancer Institute Regina Elena, Rome, Italy
- Institute of Cell Biology and Neurobiology, National Research Council (CNR), Rome, Italy
- * E-mail: (CG); (AF)
| |
Collapse
|
122
|
Teng RJ, Wu TJ. Persistent pulmonary hypertension of the newborn. J Formos Med Assoc 2013; 112:177-184. [PMID: 23537863 PMCID: PMC3740154 DOI: 10.1016/j.jfma.2012.11.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 10/01/2012] [Accepted: 11/06/2012] [Indexed: 11/29/2022] Open
Abstract
Persistent pulmonary hypertension of the newborn (PPHN) is a severe pulmonary disorder which occurs at a rate of one in every 500 live births. About 10-50% of the victims will die of the problem and 7-20% of the survivors develop long-term impairments such as hearing deficit, chronic lung disease, and intracranial bleed. Most adult survivors show evidence of augmented pulmonary vasoreactivity, suggesting a phenotypical change. Several animal models have been used to study the pathophysiology and help to develop new therapeutic modality for PPHN. The etiology of PPHN can be classified into three groups: (1) abnormally constricted pulmonary vasculature as a result of parenchymal diseases; (2) hypoplastic pulmonary vasculature; and (3) normal parenchyma with remodeled pulmonary vasculature. Impaired vasorelaxation of pulmonary artery and reduced blood vessel density in lungs are two characteristic findings in PPHN. Medical treatment includes sedation, oxygen, mechanical ventilation, vasorelaxants (inhaled nitric oxide, inhaled or intravenous prostacyclin, intravenous prostaglandin E1, magnesium sulfate), and inotropic agents. Phosphodiesterase inhibitors have recently been studied as another therapeutic agent for PPHN. Endothelin-1 (ET-1) inhibitors have been studied in animals and a case of premature infant with PPHN successfully treated with an ET-I inhibitor has been reported in the literature. Surfactants have been reported as an adjunct treatment for PPHN as a complication of meconium aspiration syndrome. Even with the introduction of several new therapeutic modalities there has been no significant change in survival rate. Extracorporeal membrane oxygenator is used when medical treatment fails and the patient is considered to have a recoverable cause of PPHN.
Collapse
Affiliation(s)
- Ru-Jeng Teng
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Wauwatosa, WI 53226, USA.
| | | |
Collapse
|
123
|
Amelio D, Garofalo F, Wong WP, Chew SF, Ip YK, Cerra MC, Tota B. Nitric oxide synthase-dependent "on/off" switch and apoptosis in freshwater and aestivating lungfish, Protopterus annectens: skeletal muscle versus cardiac muscle. Nitric Oxide 2013; 32:1-12. [PMID: 23545405 DOI: 10.1016/j.niox.2013.03.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 03/14/2013] [Accepted: 03/22/2013] [Indexed: 01/15/2023]
Abstract
African lungfishes (Protopterus spp.) are obligate air breathers which enter in a prolonged torpor (aestivation) in association with metabolic depression, and biochemical and morpho-functional readjustments during the dry season. During aestivation, the lungfish heart continues to pump, while the skeletal muscle stops to function but can immediately contract during arousal. Currently, nothing is known regarding the orchestration of the multilevel rearrangements occurring in myotomal and myocardial muscles during aestivation and arousal. Because of its universal role in cardio-circulatory and muscle homeostasis, nitric oxide (NO) could be involved in coordinating these stress-induced adaptations. Western blotting and immunofluorescence microscopy on cardiac and skeletal muscles of Protopterus annectens (freshwater, 6months of aestivation and 6days after arousal) showed that expression, localization and activity of the endothelial-like nitric oxide synthase (eNOS) isoform and its partners Akt and Hsp-90 are tissue-specifically modulated. During aestivation, phospho-eNOS/eNOS and phospho-Akt/Akt ratios increased in the heart but decreased in the skeletal muscle. By contrast, Hsp-90 increased in both muscle types during aestivation. TUNEL assay revealed that increased apoptosis occurred in the skeletal muscle of aestivating lungfish, but the myocardial apoptotic rate of the aestivating lungfish remained unchanged as compared with the freshwater control. Consistent with the preserved cardiac activity during aestivation, the expression of apoptosis repressor (ARC) also remained unchanged in the heart of aestivating and aroused fish as compared with the freshwater control. Contrarily, ARC expression was strongly reduced in the skeletal muscle of aestivating lungfish. On the whole, our data indicate that changes in the eNOS/NO system and cell turnover are implicated in the morpho-functional readjustments occurring in lungfish cardiac and skeletal muscle during the switch from freshwater to aestivation, and between the maintenance and arousal phases of aestivation.
Collapse
Affiliation(s)
- D Amelio
- Department of Cell Biology, University of Calabria, 87030 Arcavacata di Rende, CS, Italy
| | | | | | | | | | | | | |
Collapse
|
124
|
Shimizu S, Ishibashi M, Kumagai S, Wajima T, Hiroi T, Kurihara T, Ishii M, Kiuchi Y. Decreased cardiac mitochondrial tetrahydrobiopterin in a rat model of pressure overload. Int J Mol Med 2013; 31:589-96. [PMID: 23313998 DOI: 10.3892/ijmm.2013.1236] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 12/19/2012] [Indexed: 11/05/2022] Open
Abstract
Sustained cardiac pressure overload induces mitochondrial dysfunction and apoptosis of cardiomyocytes leading to pathological cardiac hypertrophy and dysfunction. Mitochondrial nitric oxide synthase (NOS) appears to cause uncoupling, which produces reactive oxygen species (ROS) instead of nitric oxide (NO), by a decrease in the cofactor tetrahydrobiopterin (BH4). This study focused on examining the changes in mitochondrial BH4 levels during cardiac pressure overload. Chronic cardiac pressure overload was generated by abdominal aortic banding in rats. Levels of BH4 and its oxidized form were measured in the mitochondria isolated from the left ventricle (LV) and the post-mitochondrial supernatants. Chronic aortic banding increased blood pressure, and induced cardiac hypertrophy and fibrosis. Notably, the BH4 levels were decreased while its oxidized forms were increased in LV mitochondria, but not in the post-mitochondrial supernatants containing the cytosol and microsome. Anti-neuronal NOS antibody-sensitive protein was detected in the cardiac mitochondria. Moreover, continuous administration of BH4 to rats with pressure overload increased mitochondrial BH4 levels and reduced cardiac fibrosis and matrix metallopeptidase activity, but not cardiac hypertrophy. These findings show the possibility that NOS uncoupling by decreased cardiac mitochondrial BH4 levels is implicated, at least in part, in the development of cardiac fibrosis, leading to cardiac dysfunction induced by pressure overload.
Collapse
Affiliation(s)
- Shunichi Shimizu
- Department of Pathophysiology, Showa University School of Pharmacy, Tokyo 142-8555, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
125
|
Caveolin-1 regulates endothelial adhesion of lung cancer cells via reactive oxygen species-dependent mechanism. PLoS One 2013; 8:e57466. [PMID: 23460862 PMCID: PMC3583825 DOI: 10.1371/journal.pone.0057466] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 01/21/2013] [Indexed: 11/19/2022] Open
Abstract
The knowledge regarding the role of caveolin-1 (Cav-1) protein on endothelium adhesion of cancer cells is unclear. The present study revealed that Cav-1 plays a negative regulatory role on cancer-endothelium interaction. Endogenous Cav-1 was shown to down-regulate during cell detachment and the level of such a protein was conversely associated with tumor-endothelial adhesion. Furthermore, the ectopic overexpression of Cav-1 attenuated the ability of the cancer cells to adhere to endothelium while shRNA-mediated Cav-1 knock-down exhibited the opposite effect. We found that cell detachment increased cellular hydrogen peroxide and hydroxyl radical generation and such reactive oxygen species (ROS) were responsible for the increasing interaction between cancer cells and endothelial cells through vascular endothelial cell adhesion molecule-1 (VCAM-1). Importantly, Cav-1 was shown to suppress hydrogen peroxide and hydroxyl radical formation by sustaining the level of activated Akt which was critical for the role of Cav-1 in attenuating the cell adhesion. Together, the present study revealed the novel role of Cav-1 and underlying mechanism on tumor adhesion which explain and highlight an important role of Cav-1 on lung cancer cell metastasis.
Collapse
|
126
|
Chou CT, Bhawal UK, Watanabe N, Kuboyama N, Chang WJ, Lee SY, Abiko Y. Expression of caveolin-1 in the early phase of beta-TCP implanted in dog mandible. J Biomed Mater Res B Appl Biomater 2013; 101:804-12. [PMID: 23401359 DOI: 10.1002/jbm.b.32884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 10/31/2012] [Accepted: 11/25/2012] [Indexed: 11/05/2022]
Abstract
Caveolin is an essential and signature protein of caveolae. Caveolin-1 participates in signal transduction processes by acting as a scaffolding protein that concentrates, organizes and functional regulates signalling molecules within caveolar membranes. Beta-tricalcium phosphate (β-TCP) has been widely used for scaffold in tissue engineering due to its high biodegradability, osteoconductivity, easy manipulation, and lack of histotoxicity. To better understand the role of caveolin-1 in bone homeostasis and response to β-TCP scaffold, β-TCP was implanted into the dog mandible defects in beagle dogs, and gene expression profiles were examined focused on the molecular components involved in caveolin-1 regulation. Here we showed the quantitative imageology analysis characterized using in vivo micro-computed tomography (CT) images at 4 and 7 days after β-TCP implanted in dog mandibles. The bone reformation by using the β-TCP scaffolds began within 4 days of surgery, and was healing well at 7 days after surgery. Higher mRNA level of caveolin-1 was observed in β-TCP-implanted Beagle dog mandibles compared with controls at day 4 and day 7 post-surgery. The enhancement of caveolin-1 by β-TCP was further confirmed by immunohistochemistry and immunofluorescence analysis. We further revealed increased Smad7 and Phospho Stat3 expression in β-TCP-implanted specimens. Taken together, these results suggest that the enhancement of caveolin-1 play an important role in accelerating bone formation by β-TCP.
Collapse
Affiliation(s)
- Cherng-Tzeh Chou
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Chiba 271-8587, Japan
| | | | | | | | | | | | | |
Collapse
|
127
|
Teng RJ, Du J, Afolayan AJ, Eis A, Shi Y, Konduri GG. AMP kinase activation improves angiogenesis in pulmonary artery endothelial cells with in utero pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2013; 304:L29-L42. [PMID: 23103561 PMCID: PMC3543642 DOI: 10.1152/ajplung.00200.2012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 10/15/2012] [Indexed: 12/25/2022] Open
Abstract
Pulmonary artery endothelial cells (PAEC) isolated from fetal lambs with in utero pulmonary hypertension (IPH) have phenotypical changes that lead to increased reactive oxygen species (ROS) formation and impaired angiogenesis. AMP-activated protein kinase (AMPK) is known to be activated by ROS, which is expected to help angiogenesis in IPH-PAEC. The objectives of this study were to investigate AMPK responses in IPH and its role in angiogenesis. We observed that, compared with control PAEC, IPH-PAEC have decreased phosphorylation of AMPKα catalytic subunit and AMPK downstream enzymes, indicating a decrease in AMPK activity. In addition, the expression of AMPK kinases is decreased, and protein phosphatase 2 is increased in IPH-PAEC, potentially contributing to the decreased AMPK activation. Metformin, an AMPK activator, improved IPH-PAEC angiogenesis while increasing endothelial NO synthase (eNOS) serine(1179) phosphorylation and decreasing the eNOS-caveolin-1 association. Metformin also increased MnSOD activity and the expression of both eNOS and MnSOD. The increase in angiogenesis by Metformin is abolished by pretreatment with AMPK inhibitor, Compound C. Expression of vascular endothelial growth factor (VEGF) and platelet-derived growth factor β (PDGFβ) are decreased in IPH-PAEC compared with control PAEC and were not altered by Metformin. These data indicate that Metformin improves angiogenesis through mechanisms independent of these angiogenic factors. In conclusion, activation of AMPK restores angiogenesis and increases the bioavailability of nitric oxide in IPH. Whether Metformin is beneficial in the management of pulmonary hypertension requires further investigation.
Collapse
Affiliation(s)
- Ru-Jeng Teng
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, USA.
| | | | | | | | | | | |
Collapse
|
128
|
Abstract
In addition to its role in reverse cholesterol transport, high-density lipoprotein (HDL) cholesterol has direct action on numerous cell types that influence cardiovascular and metabolic health. Cellular responses to HDL entail its capacity to invoke cholesterol efflux that causes signal initiation via scavenger receptor class B, type I, and plasma membrane receptor activation by HDL cargo molecules. In endothelial cells and their progenitors, HDL attenuates apoptosis and stimulates proliferation and migration. HDL also has diverse anti-inflammatory actions in both endothelial cells and leukocytes. In vascular smooth muscles, HDL tempers proinflammatory, promigratory, and degradative processes, and through actions on endothelium and platelets HDL is antithrombotic. There are additional actions of HDL of potential cardiovascular consequence that are indirect, including the capacities to promote pancreatic β-cell insulin secretion, to protect pancreatic β cells from apoptosis, and to enhance glucose uptake by skeletal muscle myocytes. Furthermore, HDL decreases white adipose tissue mass, increases energy expenditure, and promotes the production of adipose-derived cytokine adiponectin that has its own vascular-protective properties. Many of these numerous actions of HDL have been observed not only in cell culture and animal models but also in human studies, and assessments of these functions are now being applied to patient populations to better-elucidate which actions of HDL may contribute to its cardioprotective potential and how they can be quantified and targeted. Further work on the many mechanisms of HDL action promises to reveal new prophylactic and therapeutic strategies to optimize both cardiovascular and metabolic health.
Collapse
Affiliation(s)
- Chieko Mineo
- Division of Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | |
Collapse
|
129
|
Abstract
In addition to its role in reverse cholesterol transport, high-density lipoprotein (HDL) cholesterol has direct action on numerous cell types that influence cardiovascular and metabolic health. Cellular responses to HDL entail its capacity to invoke cholesterol efflux that causes signal initiation via scavenger receptor class B, type I, and plasma membrane receptor activation by HDL cargo molecules. In endothelial cells and their progenitors, HDL attenuates apoptosis and stimulates proliferation and migration. HDL also has diverse anti-inflammatory actions in both endothelial cells and leukocytes. In vascular smooth muscles, HDL tempers proinflammatory, promigratory, and degradative processes, and through actions on endothelium and platelets HDL is antithrombotic. There are additional actions of HDL of potential cardiovascular consequence that are indirect, including the capacities to promote pancreatic β-cell insulin secretion, to protect pancreatic β cells from apoptosis, and to enhance glucose uptake by skeletal muscle myocytes. Furthermore, HDL decreases white adipose tissue mass, increases energy expenditure, and promotes the production of adipose-derived cytokine adiponectin that has its own vascular-protective properties. Many of these numerous actions of HDL have been observed not only in cell culture and animal models but also in human studies, and assessments of these functions are now being applied to patient populations to better-elucidate which actions of HDL may contribute to its cardioprotective potential and how they can be quantified and targeted. Further work on the many mechanisms of HDL action promises to reveal new prophylactic and therapeutic strategies to optimize both cardiovascular and metabolic health.
Collapse
Affiliation(s)
- Chieko Mineo
- Division of Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | |
Collapse
|
130
|
Edgar K, Gardiner TA, van Haperen R, de Crom R, McDonald DM. eNOS overexpression exacerbates vascular closure in the obliterative phase of OIR and increases angiogenic drive in the subsequent proliferative stage. Invest Ophthalmol Vis Sci 2012; 53:6833-50. [PMID: 22930723 DOI: 10.1167/iovs.12-9797] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
PURPOSE In ischemic retinopathies, the misdirection of reparative angiogenesis away from the hypoxic retina leads to pathologic neovascularization. Thus, therapeutic strategies that reverse this trend would be extremely beneficial. Nitric oxide (NO) produced by endothelial nitric oxide synthase (eNOS) is an important mediator of vascular endothelial growth factor (VEGF) function facilitating vascular growth and maturation. However, in addition to NO, eNOS can also produce superoxide (O(2)(-)), exacerbating pathology. Here, our aim was to investigate the effect of eNOS overexpression on vascular closure and subsequent recovery of the ischemic retina. METHODS Mice overexpressing eNOS-GFP were subjected to oxygen-induced retinopathy (OIR) and changes in retinal vascularization quantified. Background angiogenic drive was assessed during vascular development and in aortic rings. NOS activity was measured by Griess assay or conversion of radiolabeled arginine to citrulline, nitrotyrosine (NT), and superoxide by immunolabeling and dihydroethidium fluorescence and VEGF by ELISA. RESULTS In response to hyperoxia, enhanced eNOS expression led to increased NOS-derived superoxide and dysfunctional NO production, NT accumulation, and exacerbated vessel closure associated with tetrahydrobiopterin (BH₄) insufficiency. Despite worse vaso-obliteration, eNOS overexpression resulted in elevated hypoxia-induced angiogenic drive, independent of VEGF production. This correlated with increased vascular branching similar to that observed in isolated aortas and during development. Enhanced recovery was also associated with neovascular tuft formation, which showed defective NO production and increased eNOS-derived superoxide and NT levels. CONCLUSIONS In hyperoxia, reduced BH₄ bioavailability causes overexpressed eNOS to become dysfunctional, exacerbating vaso-obliteration. In the proliferative phase, however, eNOS has important prorepair functions enhancing angiogenic growth potential and recovery in ischemia.
Collapse
Affiliation(s)
- Kevin Edgar
- Centre for Vision and Vascular Science, Queen's University Belfast, United Kingdom
| | | | | | | | | |
Collapse
|
131
|
Rajamannan NM. Oxidative-mechanical stress signals stem cell niche mediated Lrp5 osteogenesis in eNOS(-/-) null mice. J Cell Biochem 2012; 113:1623-34. [PMID: 22359381 DOI: 10.1002/jcb.24031] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Calcific aortic valve disease (CAVD) is the most common indication for valve surgery in the USA. This study hypothesizes that CAVD develops secondary to Wnt3a/Lrp5 activation via oxidative-mechanical stress in eNOS null mice. eNOS(-/-) mice were tested with experimental diets including a control (n=20), cholesterol (n=20), cholesterol + Atorvastatin (n=20). After 23 weeks the mice were tested for the development of aortic stenosis by Echo, Histology, MicroCT, and RTPCR for bone markers. In vitro studies measured Wnt3a secretion from aortic valve endothelial cells and confirmed oxidative stress via eNOS activity. Anion exchange chromatography was performed to isolate the mitogenic protein. Myofibroblast cells were tested to induce bone formation. Cholesterol treated eNOS mice develop severe stenosis with an increase in Wnt3a, Lrp5, Runx2 (threefold increase (P<0.0001) in the bicuspid versus tricuspid aortic valves. Secretion of Wnt3a from aortic valve endothelium in the presence of abnormal oxidative stress was correlated with diminished eNOS enzymatic activity and tissue nitrite levels. Initial characterization of the architecture for a stem cell nice was determined by protein isolation using anion-exchange chromatography and cell proliferation via thymidine incorporation. Osteoblastogenesis in the myofibroblast cell occurred via Lrp5 receptor upregulation in the presence of osteogenic media. Targeting the Wnt3a/Lrp5 pathway in valve calcification and activation of osteogenesis is via an oxidative-mechanical stress in CAVD. These findings provide a foundation for treating this disease process by targeting the cross talk mechanism in a resident stem cell niche.
Collapse
Affiliation(s)
- Nalini M Rajamannan
- Division of Cardiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.
| |
Collapse
|
132
|
Baskova IP, Alekseeva AI, Kostiuk SV, Neverova ME, Smirnova TD, Veĭko NN. [Use of the most recent reagent (CuFL) for stimulation of NO synthesis by the medicinal leech salivary cell secretion in the cultures of human endothelium cells (HUVEC) and in rat cardiomiocytes]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2012; 58:65-76. [PMID: 22642153 DOI: 10.18097/pbmc20125801065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The medicinal leech salivary cell secretion (SCS) may stimulate NO-production in cultures of human endothelium cells (HUVEC) and rat cardiomiocytes (RCM). This effect was detected using a NO specific reagent, - the complex Cu2+ with a fluorescein derivative (Cu-Fl). NO had also been detected in the cells by fluorescent electronic microscopy and determined quantitatively in the cells and in culture fluid by the fluorescence method. SCS stimulated NO synthesis in HUVEC cells (but not in RCM) is accompanied by NO release into intercellular space. Localization of NO synthesis centers is presented and it is shown that the increase in NO levels during the SCS action on HUVEC and RCM is associated with the increase in the activity of eNOS/nNOS, but not iNOS. In endothelial cells SCS activates nitrosylation processes, assessed by the increase of nitrite-ions in the culture medium. It is therefore important to use Cu-Fl, other than Griss-reagent, during the first hour of analysis of NO synthesis. The NO-depended mechanism of SCS action on endothelial cells might be a factor in providing of its positive action in hirudotheraphy.
Collapse
|
133
|
Yue L, Bian JT, Grizelj I, Cavka A, Phillips SA, Makino A, Mazzone T. Apolipoprotein E enhances endothelial-NO production by modulating caveolin 1 interaction with endothelial NO synthase. Hypertension 2012; 60:1040-6. [PMID: 22914792 DOI: 10.1161/hypertensionaha.112.196667] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Apolipoprotein E (apoE) is widely expressed in mammalian tissues, and one of the important tissue-specific effects is the atheroprotection ascribed to macrophage-derived apoE in the arterial wall. However, underlying mechanisms are not well understood. In this study, using subcellular fractionation, confocal microscopy, and coimmunoprecipitation, we demonstrated that macrophage-derived apoE is internalized by endothelial cells and impacts the subcellular distribution/interaction of caveolin 1 (cav-1) and endothelial NO synthase (eNOS). The addition of apoE disrupts the heteromeric complex formed between cav-1 and eNOS, and increases NO production. Sterol and oxysterol enhance endothelial cav-1/eNOS interaction and suppress NO production, but these effects are reversed by apoE. Silencing endothelial cav-1 attenuates apoE-induced NO production, establishing the importance of the cav-1-eNOS interaction for the increment in endothelial NO produced by apoE. Consistent with these observations, macrophage-derived apoE significantly improves vasodilation to acetylcholine in resistance arteries isolated from adipose tissue of obese humans. We conclude that macrophage-derived apoE enhances endothelial NO production by disrupting the inhibitory interaction of eNOS with cav-1. These results establish a novel mechanism by which apoE modulates endothelial cell function.
Collapse
Affiliation(s)
- Lili Yue
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | | | | | | | | | | | | |
Collapse
|
134
|
Sansbury BE, Cummins TD, Tang Y, Hellmann J, Holden CR, Harbeson MA, Chen Y, Patel RP, Spite M, Bhatnagar A, Hill BG. Overexpression of endothelial nitric oxide synthase prevents diet-induced obesity and regulates adipocyte phenotype. Circ Res 2012; 111:1176-89. [PMID: 22896587 DOI: 10.1161/circresaha.112.266395] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
RATIONALE Endothelial dysfunction is a characteristic feature of diabetes and obesity in animal models and humans. Deficits in nitric oxide production by endothelial nitric oxide synthase (eNOS) are associated with insulin resistance, which is exacerbated by high-fat diet. Nevertheless, the metabolic effects of increasing eNOS levels have not been studied. OBJECTIVE The current study was designed to test whether overexpression of eNOS would prevent diet-induced obesity and insulin resistance. METHODS AND RESULTS In db/db mice and in high-fat diet-fed wild-type C57BL/6J mice, the abundance of eNOS protein in adipose tissue was decreased without significant changes in eNOS levels in skeletal muscle or aorta. Mice overexpressing eNOS (eNOS transgenic mice) were resistant to diet-induced obesity and hyperinsulinemia, although systemic glucose intolerance remained largely unaffected. In comparison with wild-type mice, high-fat diet-fed eNOS transgenic mice displayed a higher metabolic rate and attenuated hypertrophy of white adipocytes. Overexpression of eNOS did not affect food consumption or diet-induced changes in plasma cholesterol or leptin levels, yet plasma triglycerides and fatty acids were decreased. Metabolomic analysis of adipose tissue indicated that eNOS overexpression primarily affected amino acid and lipid metabolism; subpathway analysis suggested changes in fatty acid oxidation. In agreement with these findings, adipose tissue from eNOS transgenic mice showed higher levels of PPAR-α and PPAR-γ gene expression, elevated abundance of mitochondrial proteins, and a higher rate of oxygen consumption. CONCLUSIONS These findings demonstrate that increased eNOS activity prevents the obesogenic effects of high-fat diet without affecting systemic insulin resistance, in part, by stimulating metabolic activity in adipose tissue.
Collapse
Affiliation(s)
- Brian E Sansbury
- Institute of Molecular Cardiology, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Alvira CM, Umesh A, Husted C, Ying L, Hou Y, Lyu SC, Nowak J, Cornfield DN. Voltage-dependent anion channel-2 interaction with nitric oxide synthase enhances pulmonary artery endothelial cell nitric oxide production. Am J Respir Cell Mol Biol 2012; 47:669-78. [PMID: 22842492 DOI: 10.1165/rcmb.2011-0436oc] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Increased pulmonary artery endothelial cell (PAEC) endothelium-dependent nitric oxide synthase (eNOS) activity mediates perinatal pulmonary vasodilation. Compromised eNOS activity is central to the pathogenesis of persistent pulmonary hypertension of the newborn (PPHN). Voltage-derived anion channel (VDAC)-1 was recently demonstrated to bind eNOS in the systemic circulation. We hypothesized that VDAC isoforms modulate eNOS activity in the pulmonary circulation, and that decreased VDAC expression contributes to PPHN. In PAECs derived from an ovine model of PPHN: (1) there is eNOS activity, but not expression; and (2) VDAC1 and -2 proteins are decreased. Immunocytochemistry, coimmunoprecipitation, and in situ proximity ligation assays in human PAECs (hPAECs) demonstrate binding between eNOS and both VDAC1 and -2, which increased upon stimulation with NO agonists. The ability of agonists to increase the eNOS/VDAC interaction was significantly blunted in hypertensive, compared with normotensive, ovine PAECs. Depletion of VDAC2, but not VDAC1, blocked the agonist-induced increase in eNOS activity in hPAECs. Overexpression of VDAC2 in hypertensive PAECs increased eNOS activity. Binding of VDAC2 enhances eNOS activity in the pulmonary circulation, and diminished VDAC2 constrains eNOS in PAECs derived from fetal lambs with chronic intrauterine pulmonary hypertension. We speculate that decreases in VDAC2 may contribute to the limited eNOS activity that characterizes pulmonary hypertension.
Collapse
Affiliation(s)
- Cristina M Alvira
- Center of Excellence in Pulmonary Biology, Divisions of Pediatric Pulmonary, Asthma and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
136
|
Wright DB, Tripathi S, Sikarwar A, Santosh KT, Perez-Zoghbi J, Ojo OO, Irechukwu N, Ward JPT, Schaafsma D. Regulation of GPCR-mediated smooth muscle contraction: implications for asthma and pulmonary hypertension. Pulm Pharmacol Ther 2012; 26:121-31. [PMID: 22750270 DOI: 10.1016/j.pupt.2012.06.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 06/15/2012] [Accepted: 06/18/2012] [Indexed: 11/28/2022]
Abstract
Contractile G-protein-coupled receptors (GPCRs) have emerged as key regulators of smooth muscle contraction, both under healthy and diseased conditions. This brief review will discuss some key topics and novel insights regarding GPCR-mediated airway and vascular smooth muscle contraction as discussed at the 7th International Young Investigators' Symposium on Smooth Muscle (2011, Winnipeg, Manitoba, Canada) and will in particular focus on processes driving Ca(2+)-mobilization and -sensitization.
Collapse
Affiliation(s)
- D B Wright
- Department of Asthma, Allergy, and Lung Biology, King's College, London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Triggle CR, Samuel SM, Ravishankar S, Marei I, Arunachalam G, Ding H. The endothelium: influencing vascular smooth muscle in many ways. Can J Physiol Pharmacol 2012; 90:713-38. [PMID: 22625870 DOI: 10.1139/y2012-073] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The endothelium, although only a single layer of cells lining the vascular and lymphatic systems, contributes in multiple ways to vascular homeostasis. Subsequent to the 1980 report by Robert Furchgott and John Zawadzki, there has been a phenomenal increase in our knowledge concerning the signalling molecules and pathways that regulate endothelial - vascular smooth muscle communication. It is now recognised that the endothelium is not only an important source of nitric oxide (NO), but also numerous other signalling molecules, including the putative endothelium-derived hyperpolarizing factor (EDHF), prostacyclin (PGI(2)), and hydrogen peroxide (H(2)O(2)), which have both vasodilator and vasoconstrictor properties. In addition, the endothelium, either via transferred chemical mediators, such as NO and PGI(2), and (or) low-resistance electrical coupling through myoendothelial gap junctions, modulates flow-mediated vasodilatation as well as influencing mitogenic activity, platelet aggregation, and neutrophil adhesion. Disruption of endothelial function is an early indicator of the development of vascular disease, and thus an important area for further research and identification of potentially new therapeutic targets. This review focuses on the signalling pathways that regulate endothelial - vascular smooth muscle communication and the mechanisms that initiate endothelial dysfunction, particularly with respect to diabetic vascular disease.
Collapse
Affiliation(s)
- Chris R Triggle
- Department of Pharmacology, Weill Cornell Medical College in Qatar, P.O. Box 24144, Education City, Doha, Qatar.
| | | | | | | | | | | |
Collapse
|
138
|
Marin EP, Derakhshan B, Lam TT, Davalos A, Sessa WC. Endothelial cell palmitoylproteomic identifies novel lipid-modified targets and potential substrates for protein acyl transferases. Circ Res 2012; 110:1336-44. [PMID: 22496122 PMCID: PMC3428238 DOI: 10.1161/circresaha.112.269514] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 04/02/2012] [Indexed: 11/16/2022]
Abstract
RATIONALE Protein S-palmitoylation is the posttranslational attachment of a saturated 16-carbon palmitic acid to a cysteine side chain via a thioester bond. Palmitoylation can affect protein localization, trafficking, stability, and function. The extent and roles of palmitoylation in endothelial cell (EC) biology is not well-understood, partly because of technological limits on palmitoylprotein detection. OBJECTIVE To develop a method using acyl-biotinyl exchange technology coupled with mass spectrometry to globally isolate and identify palmitoylproteins in ECs. METHODS AND RESULTS More than 150 putative palmitoyl proteins were identified in ECs using acyl-biotinyl exchange and mass spectrometry. Among the novel palmitoylproteins identified is superoxide dismutase-1, an intensively studied enzyme that protects all cells from oxidative damage. Mutation of cysteine-6 prevents palmitoylation, leads to reduction in superoxide dismutase-1 activity in vivo and in vitro, and inhibits nuclear localization, thereby supporting a functional role for superoxide dismutase-1 palmitoylation. Moreover, we used acyl-biotinyl exchange to search for substrates of particular protein acyl transferases in ECs. We found that palmitoylation of the cell adhesion protein platelet endothelial cell adhesion molecule-1 is dependent on the protein acyl transferase ZDHHC21. We show that knockdown of ZDHHC21 leads to reduced levels of platelet endothelial cell adhesion molecule-1 at the cell surface. CONCLUSIONS Our data demonstrate the utility of EC palmitoylproteomics to reveal new insights into the role of this important posttranslational lipid modification in EC biology.
Collapse
Affiliation(s)
- Ethan P. Marin
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520 USA
- Department of Nephrology, Yale University School of Medicine, New Haven, CT, 06520 USA
| | - Behrad Derakhshan
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520 USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520 USA
| | - TuKiet T. Lam
- WM Keck Foundation Biotechnology Resource Laboratory, Keck MS and Proteomics Resources, Yale University, New Haven, CT, USA
| | - Alberto Davalos
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520 USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520 USA
| | - William C. Sessa
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520 USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520 USA
| |
Collapse
|
139
|
Abstract
Several apparent paradoxes are evident when one compares mathematical predictions from models of nitric oxide (NO) diffusion and convection in vasculature structures with experimental measurements of NO (or related metabolites) in animal and human studies. Values for NO predicted from mathematical models are generally much lower than in vivo NO values reported in the literature for experiments, specifically with NO microelectrodes positioned at perivascular locations next to different sizes of blood vessels in the microcirculation and NO electrodes inserted into a wide range of tissues supplied by the microcirculation of each specific organ system under investigation. There continues to be uncertainty about the roles of NO scavenging by hemoglobin versus a storage function that may conserve NO, and other signaling targets for NO need to be considered. This review describes model predictions and relevant experimental data with respect to several signaling pathways in the microcirculation that involve NO.
Collapse
|
140
|
Oh P, Horner T, Witkiewicz H, Schnitzer JE. Endothelin induces rapid, dynamin-mediated budding of endothelial caveolae rich in ET-B. J Biol Chem 2012; 287:17353-17362. [PMID: 22457360 DOI: 10.1074/jbc.m111.338897] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Clathrin-independent trafficking pathways for internalizing G protein-coupled receptors (GPCRs) remain undefined. Clathrin-mediated endocytosis of receptors including ligand-engaged GPCRs can be very rapid and comprehensive (<10 min). Caveolae-mediated endocytosis of ligands and antibodies has been reported to be much slower in cell culture (≫10 min). Little is known about the role of physiological ligands and specific GPCRs in regulating caveolae trafficking. Here, we find that one receptor for endothelin, ET-B but not ET-A, resides on endothelial cell surfaces in both tissue and cell culture primarily concentrated within caveolae. Reconstituted cell-free budding assays show that endothelins (ETs) induce the fission of caveolae from endothelial plasma membranes purified from rat lungs. Electron microcopy of lung tissue sections and tissue subcellular fractionation both show that endothelin administered intravascularly in rats also induces a significant loss of caveolae at the luminal surface of lung vascular endothelium. Endothelial cells in culture show that ET stimulates very rapid internalization of caveolae and cargo including caveolin, caveolae-targeting antibody, and itself. The ET-B inhibitor BQ788, but not the ET-A inhibitor BQ123, blocks the ET-induced budding of caveolae. Both the pharmacological inhibitor Dynasore and the genetic dominant negative K44A mutant of dynamin prevent this induced budding and internalization of caveolae. Also shRNA lentivirus knockdown of caveolin-1 expression prevents rapid internalization of ET and ET-B. It appears that endothelin can engage ET-B already highly concentrated in caveolae of endothelial cells to induce very rapid caveolae fission and endocytosis. This transport requires active dynamin function. Caveolae trafficking may occur more rapidly than previously documented when it is stimulated by a specific ligand to signaling receptors already located in caveolae before ligand engagement.
Collapse
Affiliation(s)
- Phil Oh
- Proteogenomics Research Institute for Systems Medicine, San Diego, California 92121
| | - Thierry Horner
- Proteogenomics Research Institute for Systems Medicine, San Diego, California 92121
| | - Halina Witkiewicz
- Proteogenomics Research Institute for Systems Medicine, San Diego, California 92121
| | - Jan E Schnitzer
- Proteogenomics Research Institute for Systems Medicine, San Diego, California 92121.
| |
Collapse
|
141
|
Li X, McClellan ME, Tanito M, Garteiser P, Towner R, Bissig D, Berkowitz BA, Fliesler SJ, Woodruff ML, Fain GL, Birch DG, Khan MS, Ash JD, Elliott MH. Loss of caveolin-1 impairs retinal function due to disturbance of subretinal microenvironment. J Biol Chem 2012; 287:16424-34. [PMID: 22451674 DOI: 10.1074/jbc.m112.353763] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Caveolin-1 (Cav-1), an integral component of caveolar membrane domains, is expressed in several retinal cell types, including photoreceptors, retinal vascular endothelial cells, Müller glia, and retinal pigment epithelium (RPE) cells. Recent evidence links Cav-1 to ocular diseases, including autoimmune uveitis, diabetic retinopathy, and primary open angle glaucoma, but its role in normal vision is largely undetermined. In this report, we show that ablation of Cav-1 results in reduced inner and outer retinal function as measured, in vivo, by electroretinography and manganese-enhanced MRI. Somewhat surprisingly, dark current and light sensitivity were normal in individual rods (recorded with suction electrode methods) from Cav-1 knock-out (KO) mice. Although photoreceptor function was largely normal, in vitro, the apparent K(+) affinity of the RPE-expressed α1-Na(+)/K(+)-ATPase was decreased in Cav-1 KO mice. Cav-1 KO retinas also displayed unusually tight adhesion with the RPE, which could be resolved by brief treatment with hyperosmotic medium, suggesting alterations in outer retinal fluid homeostasis. Collectively, these findings demonstrate that reduced retinal function resulting from Cav-1 ablation is not photoreceptor-intrinsic but rather involves impaired subretinal and/or RPE ion/fluid homeostasis.
Collapse
Affiliation(s)
- Xiaoman Li
- Department of Ophthalmology and Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Sangwung P, Greco TM, Wang Y, Ischiropoulos H, Sessa WC, Iwakiri Y. Proteomic identification of S-nitrosylated Golgi proteins: new insights into endothelial cell regulation by eNOS-derived NO. PLoS One 2012; 7:e31564. [PMID: 22363674 PMCID: PMC3283662 DOI: 10.1371/journal.pone.0031564] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 01/13/2012] [Indexed: 01/12/2023] Open
Abstract
Background Endothelial nitric oxide synthase (eNOS) is primarily localized on the Golgi apparatus and plasma membrane caveolae in endothelial cells. Previously, we demonstrated that protein S-nitrosylation occurs preferentially where eNOS is localized. Thus, in endothelial cells, Golgi proteins are likely to be targets for S-nitrosylation. The aim of this study was to identify S-nitrosylated Golgi proteins and attribute their S-nitrosylation to eNOS-derived nitric oxide in endothelial cells. Methods Golgi membranes were isolated from rat livers. S-nitrosylated Golgi proteins were determined by a modified biotin-switch assay coupled with mass spectrometry that allows the identification of the S-nitrosylated cysteine residue. The biotin switch assay followed by Western blot or immunoprecipitation using an S-nitrosocysteine antibody was also employed to validate S-nitrosylated proteins in endothelial cell lysates. Results Seventy-eight potential S-nitrosylated proteins and their target cysteine residues for S-nitrosylation were identified; 9 of them were Golgi-resident or Golgi/endoplasmic reticulum (ER)-associated proteins. Among these 9 proteins, S-nitrosylation of EMMPRIN and Golgi phosphoprotein 3 (GOLPH3) was verified in endothelial cells. Furthermore, S-nitrosylation of these proteins was found at the basal levels and increased in response to eNOS stimulation by the calcium ionophore A23187. Immunofluorescence microscopy and immunoprecipitation showed that EMMPRIN and GOLPH3 are co-localized with eNOS at the Golgi apparatus in endothelial cells. S-nitrosylation of EMMPRIN was notably increased in the aorta of cirrhotic rats. Conclusion Our data suggest that the selective S-nitrosylation of EMMPRIN and GOLPH3 at the Golgi apparatus in endothelial cells results from the physical proximity to eNOS-derived nitric oxide.
Collapse
Affiliation(s)
- Panjamaporn Sangwung
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | | | | | | | | | | |
Collapse
|
143
|
Kostyuk SV, Ermakov AV, Alekseeva AY, Smirnova TD, Glebova KV, Efremova LV, Baranova A, Veiko NN. Role of extracellular DNA oxidative modification in radiation induced bystander effects in human endotheliocytes. Mutat Res 2012; 729:52-60. [PMID: 22001237 DOI: 10.1016/j.mrfmmm.2011.09.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Revised: 08/30/2011] [Accepted: 09/27/2011] [Indexed: 05/31/2023]
Abstract
The development of the bystander effect induced by low doses of irradiation in human umbilical vein endothelial cells (HUVECs) depends on extracellular DNA (ecDNA) signaling pathway. We found that the changes in the levels of ROS and NO production by human endothelial cells are components of the radiation induced bystander effect that can be registered at a low dose. We exposed HUVECs to X-ray radiation and studied effects of ecDNA(R) isolated from the culture media conditioned by the short-term incubation of irradiated cells on intact HUVECs. Effects of ecDNA(R) produced by irradiated cells on ROS and NO production in non-irradiated HUVECs are similar to bystander effect. These effects at least partially depend on TLR9 signaling. We compared the production of the nitric oxide and the ROS in human endothelial cells that were (1) irradiated at a low dose; (2) exposed to the ecDNA(R) extracted from the media conditioned by irradiated cells; and (3) exposed to human DNA oxidized in vitro. We found that the cellular responses to all three stimuli described above are essentially similar. We conclude that irradiation-related oxidation of the ecDNA is an important component of the ecDNA-mediated bystander effect.
Collapse
Affiliation(s)
- Svetlana V Kostyuk
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow, Russia
| | | | | | | | | | | | | | | |
Collapse
|
144
|
Abstract
Caveolae are a specialized subset of lipid domains that are prevalent on the plasma membrane of endothelial cells. They compartmentalize signal transduction molecules which regulate multiple endothelial functions including the production of nitric oxide (NO) by the caveolae resident enzyme endothelial NO synthase (eNOS). eNOS is one of the three isoforms of the NOS enzyme which generates NO upon the conversion of L-arginine to L-citrulline and it is regulated by multiple mechanisms. Caveolin negatively impact eNOS activity through direct interaction with the enzyme. Circulating factors known to modify cardiovascular disease risk also influence the activity of the enzyme. In particular, high density lipoprotein cholesterol (HDL) maintains the lipid environment in caveolae, thereby promoting the retention and function of eNOS in the domain and it also causes direct activation of eNOS via scavenger receptor class B, Type I (SR-BI)-induced kinase signaling. Estrogen binding to estrogen receptors (ER) in caveolae also activates eNOS and this occurs through G protein coupling and kinase activation. Discrete domains within SR-BI and ER mediating signal initiation in caveolae have been identified. Counteracting the promodulatory actions of HDL and estrogen, C-reactive protein (CRP) antagonizes eNOS through FcγRIIB, which is the sole inhibitory receptor for IgG. Through their actions on eNOS, estrogen and CRP also regulate endothelial cell growth and migration. Thus, signaling events in caveolae invoked by known circulating cardiovascular disease risk factors have major impact on eNOS and endothelial cell phenotypes of importance to cardiovascular health and disease.
Collapse
Affiliation(s)
- Chieko Mineo
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | | |
Collapse
|
145
|
Abstract
We have previously demonstrated an association between the accumulation of the glycosphingolipid globotriaosylceramide (Gb3) and the loss of high molecular weight oligomers in the aortas of α-galactosidase A-knockout mice, a model of Fabry disease. In the present study the molecular basis for the association between glycosphingolipids and caveolin-1 oligomerization was further investigated. Cellular glycosphingolipids were selectively depleted by treatment with a series of sphingolipid synthesis inhibitors, including D-threo-ethylenedioxyphenyl-2-palmitoylamino-3-pyrrolidino-propanol, fumonisin B1 and myriocin. The depletion of glycosphingolipids resulted in the loss of high molecular mass oligomers of caveolin-1 in plasma membranes of cultured ECV-304 cells as well as in the caveolar fractions of Hela cells as measured by immunoblotting. The disruption of caveolin-1 high molecular weight oligomer formation caused by changes of composition of glycosphingolipids may be directly involved in the interruption of cellular functions including caveolar stabilization, membrane trafficking and signal transduction. These results suggest a specific role for glycosphingolipidsin the caveolar co-localization and oligomerization of caveolin-1.
Collapse
Affiliation(s)
- Liming Shu
- Nephrology Division, Department of Internal Medicine, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
146
|
Protein palmitoylation and subcellular trafficking. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2981-94. [DOI: 10.1016/j.bbamem.2011.07.009] [Citation(s) in RCA: 274] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 07/06/2011] [Accepted: 07/12/2011] [Indexed: 02/07/2023]
|
147
|
Kuang T, Wang J, Zeifman A, Pang B, Huang X, Burg ED, Yuan JXJ, Wang C. Combination use of sildenafil and simvastatin increases BMPR-II signal transduction in rats with monocrotaline-mediated pulmonary hypertension. Pulm Circ 2011; 1:111-4. [PMID: 22034597 PMCID: PMC3198628 DOI: 10.4103/2045-8932.78102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Tuguang Kuang
- Department of Pulmonary and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University and Beijing Institute of Respiratory Medicine, China
| | | | | | | | | | | | | | | |
Collapse
|
148
|
Sotgia F, Martinez-Outschoorn UE, Howell A, Pestell RG, Pavlides S, Lisanti MP. Caveolin-1 and cancer metabolism in the tumor microenvironment: markers, models, and mechanisms. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2011; 7:423-67. [PMID: 22077552 DOI: 10.1146/annurev-pathol-011811-120856] [Citation(s) in RCA: 233] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Caveolins are a family of membrane-bound scaffolding proteins that compartmentalize and negatively regulate signal transduction. Recent studies have implicated a loss of caveolin-1 (Cav-1) expression in the pathogenesis of human cancers. Loss of Cav-1 expression in cancer-associated fibroblasts results in an activated tumor microenvironment, thereby driving early tumor recurrence, metastasis, and poor clinical outcome in breast and prostate cancers. We describe various paracrine signaling mechanism(s) by which the loss of stromal Cav-1 promotes tumor progression, including fibrosis, extracellular matrix remodeling, and the metabolic/catabolic reprogramming of cancer-associated fibroblast, to fuel the growth of adjacent tumor cells. It appears that oxidative stress is the root cause of initiation of the loss of stromal Cav-1 via autophagy, which provides further impetus for the use of antioxidants in anticancer therapy. Finally, we discuss the functional role of Cav-1 in epithelial cancer cells.
Collapse
Affiliation(s)
- Federica Sotgia
- The Jefferson Stem Cell Biology and Regenerative Medicine Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | | | | | | | | | |
Collapse
|
149
|
Schaeffer M, Hodson DJ, Lafont C, Mollard P. Endocrine cells and blood vessels work in tandem to generate hormone pulses. J Mol Endocrinol 2011; 47:R59-66. [PMID: 21622530 DOI: 10.1530/jme-11-0035] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hormones are dynamically collected by fenestrated capillaries to generate pulses, which are then decoded by target tissues to mount a biological response. To generate hormone pulses, endocrine systems have evolved mechanisms to tightly regulate blood perfusion and oxygenation, coordinate endocrine cell responses to secretory stimuli, and regulate hormone uptake from the perivascular space into the bloodstream. Based on recent findings, we review here the mechanisms that exist in endocrine systems to regulate blood flow, and facilitate coordinated cell activity and output under both normal physiological and pathological conditions in the pituitary gland and pancreas.
Collapse
Affiliation(s)
- Marie Schaeffer
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, F-34000 Montpellier, France
| | | | | | | |
Collapse
|
150
|
Lai YL, Tomono S, Miyoshi N, Ohshima H. Inhibition of endothelial- and neuronal-type, but not inducible-type, nitric oxide synthase by the oxidized cholesterol metabolite secosterol aldehyde: Implications for vascular and neurodegenerative diseases. J Clin Biochem Nutr 2011; 50:84-9. [PMID: 22247606 PMCID: PMC3246188 DOI: 10.3164/jcbn.11-31] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 04/19/2011] [Indexed: 12/15/2022] Open
Abstract
The cholesterol ozonolysis products secosterol-A and its aldolization product secosterol-B were recently detected in human atherosclerotic tissues and brain specimens, and have been postulated to play pivotal roles in the pathogenesis of atherosclerosis and neurodegenerative diseases. We examined several oxidized cholesterol metabolites including secosterol-A, secosterol-B, 25-hydroxycholesterol, 5β,6β-epoxycholesterol and 7-ketocholesterol for their effects on the activities of three nitric oxide synthases. In contrast to other oxidized metabolites, secosterol-A was found to be a potent inhibitor against the neuronal- and endothelial-type, but not the inducible-type nitric oxide synthase, with IC50 values of 22 ± 1 and 50 ± 5 µM, respectively. The calmodulin-binding regions of the neuronal- and endothelial-nitric oxide synthases contain lysine residues which are not present in the inducible-type nitric oxide synthase. Secosterol-A modifies proteins through the formation of a Schiff base with the lysine epsilon-amino group. It is possible that secosterol-A modifies lysine residues of constitutive nitric oxide synthases, leading to the inhibition of enzymatic activities. As nitric oxide is a critical signaling molecule in vascular function and in long-term potentiation, its reduced production through inhibition of constitutive nitric oxide synthases by secosterol-A may contribute to the development of atherosclerosis and memory impairment in particular neurodegenerative diseases.
Collapse
Affiliation(s)
- Ying-Ling Lai
- Laboratory of Biochemistry and Global Center of Excellence Program, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | | | | | | |
Collapse
|