101
|
Carey P, Low E, Harper E, Stack MS. Metalloproteinases in Ovarian Cancer. Int J Mol Sci 2021; 22:3403. [PMID: 33810259 PMCID: PMC8036623 DOI: 10.3390/ijms22073403] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/21/2021] [Accepted: 03/25/2021] [Indexed: 01/25/2023] Open
Abstract
Proteases play a crucial role in the progression and metastasis of ovarian cancer. Pericellular protein degradation and fragmentation along with remodeling of the extracellular matrix (ECM) is accomplished by numerous proteases that are present in the ovarian tumor microenvironment. Several proteolytic processes have been linked to cancer progression, particularly those facilitated by the matrix metalloproteinase (MMP) family. These proteases have been linked to enhanced migratory ability, extracellular matrix breakdown, and development of support systems for tumors. Several studies have reported the direct involvement of MMPs with ovarian cancer, as well as their mechanisms of action in the tumor microenvironment. MMPs play a key role in upregulating transcription factors, as well as the breakdown of structural proteins like collagen. Proteolytic mechanisms have been shown to enhance the ability of ovarian cancer cells to migrate and adhere to secondary sites allowing for efficient metastasis. Furthermore, angiogenesis for tumor growth and development of metastatic implants is influenced by upregulation of certain proteases, including MMPs. While proteases are produced normally in vivo, they can be upregulated by cancer-associated mutations, tumor-microenvironment interaction, stress-induced catecholamine production, and age-related pathologies. This review outlines the important role of proteases throughout ovarian cancer progression and metastasis.
Collapse
Affiliation(s)
- Preston Carey
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN 46617, USA; (P.C.); (E.L.); (E.H.)
- Department of Preprofessional Studies, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Ethan Low
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN 46617, USA; (P.C.); (E.L.); (E.H.)
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Elizabeth Harper
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN 46617, USA; (P.C.); (E.L.); (E.H.)
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
- Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
| | - M. Sharon Stack
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN 46617, USA; (P.C.); (E.L.); (E.H.)
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
102
|
Takihata Y, Einama T, Kobayashi K, Suzuki T, Yonamine N, Fujinuma I, Tsunenari T, Yamagishi Y, Iwasaki T, Miyata Y, Shinto E, Ogata S, Tsujimoto H, Ueno H, Kishi Y. Different role of MSLN and CA125 co-expression as a prognostic predictor between perihilar and distal bile duct carcinoma. Oncol Lett 2021; 21:414. [PMID: 33841575 PMCID: PMC8020376 DOI: 10.3892/ol.2021.12675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/15/2021] [Indexed: 01/03/2023] Open
Abstract
Recent studies have suggested that the interaction of mesothelin (MSLN) and cancer antigen 125 (CA125) enhances tumor metastases. The aim of the present study was to clarify the impact of MSLN and CA125 co-expression on the prognosis of patients with extrahepatic bile duct carcinoma (BDC). Tissue samples from patients who underwent surgical resection between 2007 and 2015 for perihilar or distal BDC were immunohistochemically examined. The expression levels of MSLN and CA125 in tumor cells were analyzed. The expression in <50% and ≥50% of the total tumor cells were defined as low- and high-level expression, respectively. Tissue samples were obtained from 31 patients with perihilar BDC and 43 patients with distal BDC. Lymph node metastases were associated with MSLN and CA125 co-expression in patients with perihilar BDC (P=0.002), while there was no association between lymph node metastasis and co-expression in patients with distal BDC (P=0.362). MSLN and CA125 co-expression was associated with a worse overall survival rate in patients with perihilar BDC (5-year overall survival rate, co-expression positive vs. negative, 24 vs. 63%; P=0.038). To the best of our knowledge, the present study is the first to report an association between co-expression of MSLN and CA125 with a poor prognosis in patients with perihilar BDC. The current findings suggested that the significance of co-expression differed according to the BDC location.
Collapse
Affiliation(s)
- Yasuhiro Takihata
- Department of Surgery, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | - Takahiro Einama
- Department of Surgery, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | - Kazuki Kobayashi
- Department of Surgery, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | - Takafumi Suzuki
- Department of Surgery, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | - Naoto Yonamine
- Department of Surgery, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | - Ibuki Fujinuma
- Department of Surgery, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | - Takazumi Tsunenari
- Department of Surgery, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | - Yoji Yamagishi
- Department of Surgery, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | - Toshimitsu Iwasaki
- Department of Surgery, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | - Yoichi Miyata
- Department of Surgery, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | - Eiji Shinto
- Department of Surgery, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | - Sho Ogata
- Department of Pathology and Laboratory Medicine, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | - Hironori Tsujimoto
- Department of Surgery, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | - Hideki Ueno
- Department of Surgery, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | - Yoji Kishi
- Department of Surgery, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| |
Collapse
|
103
|
Mogi K, Yoshihara M, Iyoshi S, Kitami K, Uno K, Tano S, Koya Y, Sugiyama M, Yamakita Y, Nawa A, Tomita H, Kajiyama H. Ovarian Cancer-Associated Mesothelial Cells: Transdifferentiation to Minions of Cancer and Orchestrate Developing Peritoneal Dissemination. Cancers (Basel) 2021; 13:1352. [PMID: 33802781 PMCID: PMC8002484 DOI: 10.3390/cancers13061352] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/18/2021] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
Ovarian cancer has one of the poorest prognoses among carcinomas. Advanced ovarian cancer often develops ascites and peritoneal dissemination, which is one of the poor prognostic factors. From the perspective of the "seed and soil" hypothesis, the intra-abdominal environment is like the soil for the growth of ovarian cancer (OvCa) and mesothelial cells (MCs) line the top layer of this soil. In recent years, various functions of MCs have been reported, including supporting cancer in the OvCa microenvironment. We refer to OvCa-associated MCs (OCAMs) as MCs that are stimulated by OvCa and contribute to its progression. OCAMs promote OvCa cell adhesion to the peritoneum, invasion, and metastasis. Elucidation of these functions may lead to the identification of novel therapeutic targets that can delay OvCa progression, which is difficult to cure.
Collapse
Affiliation(s)
- Kazumasa Mogi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8560, Japan; (K.M.); (S.I.); (K.K.); (K.U.); (S.T.)
| | - Masato Yoshihara
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8560, Japan; (K.M.); (S.I.); (K.K.); (K.U.); (S.T.)
| | - Shohei Iyoshi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8560, Japan; (K.M.); (S.I.); (K.K.); (K.U.); (S.T.)
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Albertstr. 19A, 79104 Freiburg, Germany
| | - Kazuhisa Kitami
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8560, Japan; (K.M.); (S.I.); (K.K.); (K.U.); (S.T.)
| | - Kaname Uno
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8560, Japan; (K.M.); (S.I.); (K.K.); (K.U.); (S.T.)
- Division of Clinical Genetics, Lund University, Sölvegatan 19, 22184 Lund, Sweden
| | - Sho Tano
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8560, Japan; (K.M.); (S.I.); (K.K.); (K.U.); (S.T.)
| | - Yoshihiro Koya
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan; (Y.K.); (M.S.); (Y.Y.); (A.N.)
| | - Mai Sugiyama
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan; (Y.K.); (M.S.); (Y.Y.); (A.N.)
| | - Yoshihiko Yamakita
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan; (Y.K.); (M.S.); (Y.Y.); (A.N.)
| | - Akihiro Nawa
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan; (Y.K.); (M.S.); (Y.Y.); (A.N.)
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan;
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8560, Japan; (K.M.); (S.I.); (K.K.); (K.U.); (S.T.)
| |
Collapse
|
104
|
Castelletti L, Yeo D, van Zandwijk N, Rasko JEJ. Anti-Mesothelin CAR T cell therapy for malignant mesothelioma. Biomark Res 2021; 9:11. [PMID: 33588928 PMCID: PMC7885509 DOI: 10.1186/s40364-021-00264-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/31/2021] [Indexed: 12/14/2022] Open
Abstract
Malignant mesothelioma (MM) is a treatment-resistant tumor originating in the mesothelial lining of the pleura or the abdominal cavity with very limited treatment options. More effective therapeutic approaches are urgently needed to improve the poor prognosis of MM patients. Chimeric Antigen Receptor (CAR) T cell therapy has emerged as a novel potential treatment for this incurable solid tumor. The tumor-associated antigen mesothelin (MSLN) is an attractive target for cell therapy in MM, as this antigen is expressed at high levels in the diseased pleura or peritoneum in the majority of MM patients and not (or very modestly) present in healthy tissues. Clinical trials using anti-MSLN CAR T cells in MM have shown that this potential therapeutic is relatively safe. However, efficacy remains modest, likely due to the MM tumor microenvironment (TME), which creates strong immunosuppressive conditions and thus reduces anti-MSLN CAR T cell tumor infiltration, efficacy and persistence. Various approaches to overcome these challenges are reviewed here. They include local (intratumoral) delivery of anti-MSLN CAR T cells, improved CAR design and co-stimulation, and measures to avoid T cell exhaustion. Combination therapies with checkpoint inhibitors as well as oncolytic viruses are also discussed. Preclinical studies have confirmed that increased efficacy of anti-MSLN CAR T cells is within reach and offer hope that this form of cellular immunotherapy may soon improve the prognosis of MM patients.
Collapse
Affiliation(s)
- Laura Castelletti
- Li Ka Shing Cell & Gene Therapy Program, The University of Sydney, Camperdown, Australia.,Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia.,Cell and Molecular Therapies, Royal Prince Alfred Hospital, Sydney Local Health District (SLHD), Camperdown, Australia
| | - Dannel Yeo
- Li Ka Shing Cell & Gene Therapy Program, The University of Sydney, Camperdown, Australia.,Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia.,Cell and Molecular Therapies, Royal Prince Alfred Hospital, Sydney Local Health District (SLHD), Camperdown, Australia
| | - Nico van Zandwijk
- Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia.,Cell and Molecular Therapies, Royal Prince Alfred Hospital, Sydney Local Health District (SLHD), Camperdown, Australia.,Concord Repatriation General Hospital, Sydney Local Health District (SLHD), Concord, Australia
| | - John E J Rasko
- Li Ka Shing Cell & Gene Therapy Program, The University of Sydney, Camperdown, Australia. .,Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia. .,Cell and Molecular Therapies, Royal Prince Alfred Hospital, Sydney Local Health District (SLHD), Camperdown, Australia. .,Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, Australia.
| |
Collapse
|
105
|
Criscitiello C, Morganti S, Curigliano G. Antibody-drug conjugates in solid tumors: a look into novel targets. J Hematol Oncol 2021; 14:20. [PMID: 33509252 PMCID: PMC7844898 DOI: 10.1186/s13045-021-01035-z] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are a relatively new class of anticancer agents designed to merge the selectivity of monoclonal antibodies with cell killing properties of chemotherapy. They are commonly described as the "Trojan Horses" of therapeutic armamentarium, because of their capability of directly conveying cytotoxic drug (payloads) into the tumor space, thus transforming chemotherapy into a targeted agent. Three novel ADCs have been recently approved, i.e., trastuzumab deruxtecan, sacituzumab govitecan and enfortumab vedotin, respectively, targeting HER2, Trop2 and Nectin4. Thanks to progressive advances in engineering technologies these drugs rely on, the spectrum of diseases sensitive to these drugs as well as their indications are in continuous expansion. Several novel ADCs are under evaluation, exploring new potential targets along with innovative payloads. This review aims at providing a summary of the technology behind these compounds and at presenting the latest ADCs approved in solid tumors, as well as at describing novel targets for ADCs under investigation and new strategies to optimize their efficacy in solid tumors.
Collapse
Affiliation(s)
- Carmen Criscitiello
- Division of Early Drug Development for Innovative Therapy, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141, Milan, Italy
- Department of Oncology and Haematology (DIPO), University of Milan, Milan, Italy
| | - Stefania Morganti
- Division of Early Drug Development for Innovative Therapy, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141, Milan, Italy
- Department of Oncology and Haematology (DIPO), University of Milan, Milan, Italy
| | - Giuseppe Curigliano
- Division of Early Drug Development for Innovative Therapy, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141, Milan, Italy.
- Department of Oncology and Haematology (DIPO), University of Milan, Milan, Italy.
| |
Collapse
|
106
|
Huo Q, Xu C, Shao Y, Yu Q, Huang L, Liu Y, Bao H. Free CA125 promotes ovarian cancer cell migration and tumor metastasis by binding Mesothelin to reduce DKK1 expression and activate the SGK3/FOXO3 pathway. Int J Biol Sci 2021; 17:574-588. [PMID: 33613114 PMCID: PMC7893585 DOI: 10.7150/ijbs.52097] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/18/2020] [Indexed: 01/15/2023] Open
Abstract
Objective: CA125/MUC16 is an O-glycosylated protein that is expressed on the surfaces of ovarian epithelial cells. This molecule is a widely used tumor-associated marker for diagnosis of ovarian cancer. Recently, CA125 was shown to be involved in ovarian cancer metastasis. The purpose of this study was to investigate the mechanism of CA125 during ovarian cancer metastasis. Methods: We analyzed the Oncomine and CSIOVDB databases to determine the expression levels of DKK1 in ovarian cancer. DKK1 expression levels were upregulated or downregulated and applied with CA125 to Transwell and Western blot assays to ascertain the underlying mechanism by which CA125 stimulates cell migration via the SGK3/FOXO3 pathway. Anti-mesothelin antibodies (anti-MSLN) were used to block CA125 stimulation. Then the expression levels of DKK1were tested by enzyme-linked immunosorbent assay (ELISA) to eliminate the blocking effect of anti-MSLN to CA125 stimulation. Xenograft mouse models were used to detect the effects of CA125 and anti-MSLN on ovarian cancer metastasis in vivo. Results: DKK1 levels were downregulated in ovarian tumor tissues according to the analyses of two databases and significantly correlated with FIGO stage, grade and disease-free survival in ovarian cancer patients. DKK1 levels were downregulated by CA125 stimulation in vitro. Overexpression of DKK1 reversed the ability of exogenous CA125 to mediate cell migration by activating the SGK3/FOXO3 signaling pathway. Anti-MSLN abrogated the DKK1 reduction and increased the apoptosis of ovarian cancer cells. The use of anti-MSLN in xenograft mouse models significantly reduced tumor growth and metastasis accelerated by CA125. Conclusions: These experiments revealed that the SGK3/FOXO3 pathway was activated, wherein decreased expression of DKK1 was caused by CA125, which fuels ovarian cancer cell migration. Mesothelin is a potential therapeutic target for the treatment of ovarian cancer metastasis.
Collapse
Affiliation(s)
- Qianyu Huo
- School of Medical Technology, Tianjin Medical University, Tianjin 300203, China
| | - Chen Xu
- Laboratory Science Department, Tianjin 4th Central Hospital, Tianjin, 300100, China
| | - Yanhong Shao
- School of Medical Technology, Tianjin Medical University, Tianjin 300203, China
| | - Qin Yu
- School of Medical Technology, Tianjin Medical University, Tianjin 300203, China
| | - Lunhui Huang
- School of Medical Technology, Tianjin Medical University, Tianjin 300203, China
| | - Yunde Liu
- School of Medical Technology, Tianjin Medical University, Tianjin 300203, China
| | - Huijing Bao
- Integrative Medical Diagnosis Laboratory, Tianjin Nankai Hospital, Tianjin, 300100, China; School of Medical Technology, Tianjin Medical University, Tianjin 300203, China
| |
Collapse
|
107
|
Zhang M, Cheng S, Jin Y, Zhao Y, Wang Y. Roles of CA125 in diagnosis, prediction, and oncogenesis of ovarian cancer. Biochim Biophys Acta Rev Cancer 2021; 1875:188503. [PMID: 33421585 DOI: 10.1016/j.bbcan.2021.188503] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
After it was discovered approximately 40 years ago, carbohydrate antigen 125 (CA125) became the most widely used and concerning biomarker in ovarian cancer screening. However, there is still controversy about its role in clinical practice. CA125 is not sufficiently reliable in diagnosis to screen for early-stage ovarian cancer. On the other hand, CA125 has been a valuable indicator for evaluating chemotherapeutic efficacy and prognosis. We still do not know much about its biological role, and several studies have indicated that this marker participates in the occurrence and development of ovarian cancer. Currently, an increasing number of scholars have begun to pay attention to CA125-targeted treatment strategies. In the interest of better design and development of anticancer therapies, a renewed and systematic understanding of the roles of CA125 in diagnosis, prediction, and tumorigenesis is warranted.
Collapse
Affiliation(s)
- Minghai Zhang
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Shanshan Cheng
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Yue Jin
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Yaqian Zhao
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Yu Wang
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China; Shanghai Key Laboratory of Gynecologic Oncology, Shanghai 200127, China.
| |
Collapse
|
108
|
Gogineni V, Morand S, Staats H, Royfman R, Devanaboyina M, Einloth K, Dever D, Stanbery L, Aaron P, Manning L, Walter A, Edelman G, Dworkin L, Nemunaitis J. Current Ovarian Cancer Maintenance Strategies and Promising New Developments. J Cancer 2021; 12:38-53. [PMID: 33391401 PMCID: PMC7738841 DOI: 10.7150/jca.49406] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/17/2020] [Indexed: 12/11/2022] Open
Abstract
While ovarian cancer typically responds well to front line treatment, many patients will relapse within 5 years. Treatment options are less effective at each recurrence highlighting the need for novel maintenance therapies. PolyADP-ribose polymerase (PARP) inhibitors have recently gained approval in ovarian cancer maintenance. Niraparib was approved regardless of BRCA mutation status, however impact on overall survival is limited. Oliparib was approved for BRCA mutant and BRCA wildtype/homologous recombination deficient patients. This review will focus on current frontline ovarian cancer treatment as well molecularly based approaches to ovarian cancer management.
Collapse
|
109
|
Liu G, Zhang Q, Li D, Zhang L, Gu Z, Liu J, Liu G, Yang M, Gu J, Cui X, Pan Y, Tian X. PD-1 silencing improves anti-tumor activities of human mesothelin-targeted CAR T cells. Hum Immunol 2020; 82:130-138. [PMID: 33341289 DOI: 10.1016/j.humimm.2020.12.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
Chimeric antigen receptor T (CAR T) cell therapy is a new pillar in cancer therapeutics, and has been successfully used for the treatment of cancers, including acute lymphoblastic leukemia and solid cancers. Following immune attack, many tumors upregulate inhibitory ligands which bind to inhibitory receptors on T cells. For example, the interaction between programmed cell death protein 1 (PD-1) on activated T cells and its ligands (widely known as PD-L1) on a target tumor limits the efficacy of CAR T cells therapy against poorly responding tumors. Here, we use mesothelin (MSLN)-expressing human ovarian cancer cells (SKOV3) and human colon cancer cells (HCT116) to investigate whether PD-1-mediated T cell exhaustion affects the anti-tumor activity of MSLN-targeted CAR T cells. We utilized cell-intrinsic PD-1-targeting shRNA overexpression strategy, resulting in a significant PD-1 silencing in CAR T cells. The reduction of PD-1 expression on T cell surface strongly augmented CAR T cell cytokine production and cytotoxicity towards PD-L1-expressing cancer cells in vitro. This study indicates the enhanced anti-tumor efficacy of PD-1-silencing MSLN-targeted CAR T cells against several cancers and suggests the potential of other specific gene silencing on the immune checkpoints to enhance the CAR T cell therapies against human tumors.
Collapse
Affiliation(s)
- Guodi Liu
- Shanghai Yihao Biological Technology Co, Ltd, Shanghai 200231, China
| | - Qian Zhang
- Shanghai Yihao Biological Technology Co, Ltd, Shanghai 200231, China
| | - Dehua Li
- Shanghai Yihao Biological Technology Co, Ltd, Shanghai 200231, China
| | - Linsong Zhang
- Shanghai Yihao Biological Technology Co, Ltd, Shanghai 200231, China
| | - Zhangjie Gu
- Shanghai Yihao Biological Technology Co, Ltd, Shanghai 200231, China
| | - Jibin Liu
- Institute of Tumor of Nantong Tumor Hospital, No. 30, North Tongyang Road, Pingchao Town, Tongzhou District, Nantong City, Jiangsu Province 226361, China
| | - Guoping Liu
- Department of General Surgery, Changhai Hospital, Shanghai 200433, China
| | - Mu Yang
- Department of Pathology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
| | - Jinwei Gu
- Shanghai Yihao Biological Technology Co, Ltd, Shanghai 200231, China
| | - Xingbing Cui
- Shanghai Yihao Biological Technology Co, Ltd, Shanghai 200231, China
| | - Yingjiao Pan
- Shanghai Yihao Biological Technology Co, Ltd, Shanghai 200231, China
| | - Xiaoli Tian
- Shanghai Yihao Biological Technology Co, Ltd, Shanghai 200231, China.
| |
Collapse
|
110
|
CA125 and Ovarian Cancer: A Comprehensive Review. Cancers (Basel) 2020; 12:cancers12123730. [PMID: 33322519 PMCID: PMC7763876 DOI: 10.3390/cancers12123730] [Citation(s) in RCA: 247] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/27/2022] Open
Abstract
Simple Summary CA125 has been the most promising biomarker for screening ovarian cancer; however, it still does not have an acceptable accuracy in population-based screening for ovarian cancer. In this review article, we have discussed the role of CA125 in diagnosis, evaluating response to treatment and prognosis of ovarian cancer and provided some suggestions in improving the clinical utility of this biomarker in the early diagnosis of aggressive ovarian cancers. These include using CA125 to screen individuals with symptoms who seek medical care rather than screening the general population, increasing the cutoff point for the CA125 level in the plasma and performing the test at point-of-care rather than laboratory testing. By these strategies, we would detect more aggressive ovarian cancer patients in stages that the tumour can be completely removed by surgery, which is the most important factor in redusing recurrence rate and improving the survival of the patients with ovarian cancer. Abstract Ovarian cancer is the second most lethal gynecological malignancy. The tumour biomarker CA125 has been used as the primary ovarian cancer marker for the past four decades. The focus on diagnosing ovarian cancer in stages I and II using CA125 as a diagnostic biomarker has not improved patients’ survival. Therefore, screening average-risk asymptomatic women with CA125 is not recommended by any professional society. The dualistic model of ovarian cancer carcinogenesis suggests that type II tumours are responsible for the majority of ovarian cancer mortality. However, type II tumours are rarely diagnosed in stages I and II. The recent shift of focus to the diagnosis of low volume type II ovarian cancer in its early stages of evolution provides a new and valuable target for screening. Type II ovarian cancers are usually diagnosed in advanced stages and have significantly higher CA125 levels than type I tumours. The detection of low volume type II carcinomas in stage IIIa/b is associated with a higher likelihood for optimal cytoreduction, the most robust prognostic indicator for ovarian cancer patients. The diagnosis of type II ovarian cancer in the early substages of stage III with CA125 may be possible using a higher cutoff point rather than the traditionally used 35 U/mL through the use of point-of-care CA125 assays in primary care facilities. Rapid point-of-care testing also has the potential for effective longitudinal screening and quick monitoring of ovarian cancer patients during and after treatment. This review covers the role of CA125 in the diagnosis and management of ovarian cancer and explores novel and more effective screening strategies with CA125.
Collapse
|
111
|
Książek K. Where does cellular senescence belong in the pathophysiology of ovarian cancer? Semin Cancer Biol 2020; 81:14-23. [PMID: 33290845 DOI: 10.1016/j.semcancer.2020.11.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/28/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022]
Abstract
Although ovarian cancer is the leading cause of death from gynecological malignancies, there are still some issues that hamper accurate interpretation of the complexity of cellular and molecular events underlying the pathophysiology of this disease. One of these is cellular senescence, which is the process whereby cells irreversibly lose their ability to divide and develop a phenotype that fuels a variety of age-related diseases, including cancer. In this review, various aspects of cellular senescence associated with intraperitoneal ovarian cancer metastasis are presented and discussed, including mechanisms of senescence in normal peritoneal mesothelial cells; the role of senescent mesothelium in ovarian cancer progression; the effect of drugs commonly used as first-line therapy in ovarian cancer patients on senescence of normal cells; mechanisms of spontaneous senescence in ovarian cancer cells; and, last but not least, other pharmacologic strategies to induce senescence in ovarian malignancies. Collectively, this study shows that cellular senescence is involved in several aspects of ovarian cancer pathobiology. Proper understanding of this phenomenon, particularly its clinical relevance, seems to be critical for oncology patients from both therapeutic and prognostic perspectives.
Collapse
Affiliation(s)
- Krzysztof Książek
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848, Poznań, Poland.
| |
Collapse
|
112
|
Perrone MG, Luisi O, De Grassi A, Ferorelli S, Cormio G, Scilimati A. Translational Theragnosis of Ovarian Cancer: where do we stand? Curr Med Chem 2020; 27:5675-5715. [PMID: 31419925 DOI: 10.2174/0929867326666190816232330] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/13/2019] [Accepted: 07/24/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Ovarian cancer is the second most common gynecologic malignancy, accounting for approximately 220,000 deaths annually worldwide. Despite radical surgery and initial high response rates to platinum- and taxane-based chemotherapy, most patients experience a relapse, with a median progression-free survival of only 18 months. Overall survival is approximately 30% at 5 years from the diagnosis. In comparison, patients out from breast cancer are more than 80 % after ten years from the disease discovery. In spite of a large number of published fundamental and applied research, and clinical trials, novel therapies are urgently needed to improve outcomes of the ovarian cancer. The success of new drugs development in ovarian cancer will strongly depend on both fully genomic disease characterization and, then, availability of biomarkers able to identify women likely to benefit from a given new therapy. METHODS In this review, the focus is given to describe how complex is the diseases under the simple name of ovarian cancer, in terms of cell tumor types, histotypes, subtypes, and specific gene mutation or differently expressed in the tumor with respect the healthy ovary. The first- and second-line pharmacological treatment clinically used over the last fifty years are also described. Noteworthy achievements in vitro and in vivo tested new drugs are also summarized. Recent literature related to up to date ovarian cancer knowledge, its detection by biomarkers and chemotherapy was searched from several articles on Pubmed, Google Scholar, MEDLINE and various Governmental Agencies till April 2019. RESULTS The papers referenced by this review allow a deep analysis of status of the art in the classification of the several types of ovarian cancer, the present knowledge of diagnosis based on biomarkers and imaging techniques, and the therapies developed over the past five decades. CONCLUSION This review aims at stimulating more multi-disciplinary efforts to identify a panel of novel and more specific biomarkers to be used to screen patients for a very early diagnosis, to have prognosis and therapy efficacy indications. The desired final goal would be to have available tools allowing to reduce the recurrence rate, increase both the disease progression free interval and of course the overall survival at five years from the diagnosis that today is still very low.
Collapse
Affiliation(s)
- Maria Grazia Perrone
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "A. Moro", Via Orabona 4, 70125 Bari, Italy
| | - Oreste Luisi
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "A. Moro", Via Orabona 4, 70125 Bari, Italy
| | - Anna De Grassi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "A. Moro", Via Orabona 4, 70125 Bari, Italy
| | - Savina Ferorelli
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "A. Moro", Via Orabona 4, 70125 Bari, Italy
| | - Gennaro Cormio
- Gynecologic Oncology Unit, IRCCS Istituto Oncologico "Giovanni Paolo II" Bari, Italy
| | - Antonio Scilimati
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "A. Moro", Via Orabona 4, 70125 Bari, Italy
| |
Collapse
|
113
|
Molloy ME, Austin RJ, Lemon BD, Aaron WH, Ganti V, Jones A, Jones SD, Strobel KL, Patnaik P, Sexton K, Tatalick L, Yu TZ, Baeuerle PA, Law CL, Wesche H. Preclinical Characterization of HPN536, a Trispecific, T-Cell-Activating Protein Construct for the Treatment of Mesothelin-Expressing Solid Tumors. Clin Cancer Res 2020; 27:1452-1462. [PMID: 33262134 DOI: 10.1158/1078-0432.ccr-20-3392] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/12/2020] [Accepted: 11/25/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Mesothelin (MSLN) is a glycophosphatidylinositol-linked tumor antigen overexpressed in a variety of malignancies, including ovarian, pancreatic, lung, and triple-negative breast cancer. Early signs of clinical efficacy with MSLN-targeting agents have validated MSLN as a promising target for therapeutic intervention, but therapies with improved efficacy are still needed to address the significant unmet medical need posed by MSLN-expressing cancers. EXPERIMENTAL DESIGN We designed HPN536, a 53-kDa, trispecific, T-cell-activating protein-based construct, which binds to MSLN-expressing tumor cells, CD3ε on T cells, and to serum albumin. Experiments were conducted to assess the potency, activity, and half-life of HPN536 in in vitro assays, rodent models, and in nonhuman primates (NHP). RESULTS HPN536 binds to MSLN-expressing tumor cells and to CD3ε on T cells, leading to T-cell activation and potent redirected target cell lysis. A third domain of HPN536 binds to serum albumin for extension of plasma half-life. In cynomolgus monkeys, HPN536 at doses ranging from 0.1 to 10 mg/kg demonstrated MSLN-dependent pharmacologic activity, was well tolerated, and showed pharmacokinetics in support of weekly dosing in humans. CONCLUSIONS HPN536 is potent, is well tolerated, and exhibits extended half-life in NHPs. It is currently in phase I clinical testing in patients with MSLN-expressing malignancies (NCT03872206).
Collapse
Affiliation(s)
| | | | - Bryan D Lemon
- Harpoon Therapeutics, South San Francisco, California
| | - Wade H Aaron
- Harpoon Therapeutics, South San Francisco, California
| | | | - Adrie Jones
- Harpoon Therapeutics, South San Francisco, California
| | - Susan D Jones
- Harpoon Therapeutics, South San Francisco, California
| | | | | | | | | | - Timothy Z Yu
- Harpoon Therapeutics, South San Francisco, California
| | - Patrick A Baeuerle
- Harpoon Therapeutics, South San Francisco, California.,MPM Capital, Cambridge, Massachusetts.,Institute for Immunology, Ludwig-Maximilians University Munich, Planegg- Martinsried, Munich, Germany
| | - Che-Leung Law
- Harpoon Therapeutics, South San Francisco, California
| | - Holger Wesche
- Harpoon Therapeutics, South San Francisco, California
| |
Collapse
|
114
|
Multiple proteases are involved in mesothelin shedding by cancer cells. Commun Biol 2020; 3:728. [PMID: 33262421 PMCID: PMC7708464 DOI: 10.1038/s42003-020-01464-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 10/19/2020] [Indexed: 11/09/2022] Open
Abstract
Mesothelin (MSLN) is a lineage restricted cell surface protein expressed in about 30% of human cancers and high MSLN expression is associated with poor survival in several different cancers. The restricted expression of MSLN in normal tissue and its frequent expression in cancers make MSLN an excellent target for antibody-based therapies. Many clinical trials with agents targeting MSLN have been carried out but to date none of these agents have produced enough responses to obtain FDA approval. MSLN shedding is an important factor that may contribute to the failure of these therapies, because shed MSLN acts as a decoy receptor and allows release of antibodies bound to cell-surface MSLN. We have investigated the mechanism of shedding and show here that members of the ADAM, MMP and BACE families of proteases all participate in shedding, that more than one protease can produce shedding in the same cell, and that inhibition of shedding greatly enhances killing of cells by an immunotoxin targeting MSLN. Our data indicates that controlling MSLN shedding could greatly increase the activity of therapies that target MSLN.
Collapse
|
115
|
Gaughran G, Aggarwal N, Shadbolt B, Stuart-Harris R. The utility of the tumor markers CA15.3, CEA, CA-125 and CA19.9 in metastatic breast cancer. BREAST CANCER MANAGEMENT 2020. [DOI: 10.2217/bmt-2020-0015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: Cancer antigen 15.3 (CA15.3) is a commonly used tumor marker (TM) in metastatic breast cancer (MBC) but may not be raised. We assessed CA15.3, carcinoembryonic antigen (CEA), cancer antigen 125 (CA-125) and cancer antigen 19.9 in 193 MBC patients at diagnosis and follow-up. Materials & methods: This TM panel was measured approximately 3 monthly. Median follow-up was 29.3 months. Results: At diagnosis, the following TMs were raised: CA15.3 63.2%, CEA 37.3%, CA-125 45.0% and cancer antigen 19.9 17.3%. CA15.3 became raised later in 28/71. Raised TMs were less common in HER2+ tumors. CA-125 was frequently raised in triple negative tumors and was associated with pleural metastases. More raised TMs correlated with more sites of metastases and shorter survival. Conclusion: CEA and CA-125 showed benefit over CA15.3 alone in MBC and all three should be considered in MBC.
Collapse
Affiliation(s)
- Gregory Gaughran
- Department of Medical Oncology, The Canberra Hospital, Garran, ACT, 2605, Australia
| | - Neha Aggarwal
- Department of Medical Oncology, The Canberra Hospital, Garran, ACT, 2605, Australia
| | - Bruce Shadbolt
- ANU Medical School, Australian National University, Barry Drive, Acton, ACT, 2000, Australia
- Centre for Health & Medical Research ACT Health, Building 2-6, Level 3, Bowes Street, Garran, ACT, 2605, Australia
| | - Robin Stuart-Harris
- Department of Medical Oncology, The Canberra Hospital, Garran, ACT, 2605, Australia
- ANU Medical School, Australian National University, Barry Drive, Acton, ACT, 2000, Australia
| |
Collapse
|
116
|
Klampatsa A, Dimou V, Albelda SM. Mesothelin-targeted CAR-T cell therapy for solid tumors. Expert Opin Biol Ther 2020; 21:473-486. [PMID: 33176519 DOI: 10.1080/14712598.2021.1843628] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Mesothelin (MSLN) is a tumor differentiation antigen normally restricted to the body's mesothelial surfaces, but significantly overexpressed in a broad range of solid tumors. For this reason, MSLN has emerged as an important target for the development of novel immunotherapies. This review focuses on anti-MSLN chimeric antigen receptor (CAR) T cell immunotherapy approaches.Areas covered: A brief overview of MSLN as a therapeutic target and existing anti-MSLN antibody-based drugs and vaccines is provided. A detailed account of anti-MSLN CAR-T cell approaches utilized in preclinical models is presented. Finally, a comprehensive summary of currently ongoing and completed anti-MSLN CAR-T cell clinical trials is discussed.Expert opinion: Initial trials using anti-MSLN CAR-T cells have been safe, but efficacy has been limited. Employing regional routes of delivery, introducing novel modifications leading to enhanced tumor infiltration and persistence, and improved safety profiles and combining anti-MSLN CAR-T cells with standard therapies, could render them more efficacious in the treatment of solid malignancies.
Collapse
Affiliation(s)
- Astero Klampatsa
- Thoracic Oncology Immunotherapy Group, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Vivian Dimou
- Thoracic Oncology Immunotherapy Group, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Steven M Albelda
- Pulmonary, Allergy and Critical Care Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
117
|
Kravchenko Y, Chumakov SP, Frolova EI. New anti-mesothelin single-domain antibodies and cell models for developing targeted breast cancer therapy. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2020. [DOI: 10.24075/brsmu.2020.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Most triple negative breast cancers (TNBC) are characterized by elevated expression of mesothelin (MSLN), a cell surface antigen and one of the preferred targets for the therapy of solid tumors. Most continuous TNBC cell lines are MSLN-negative, which obstructs the development of MSLN-targeted therapy for TNBC. The aim of this study was to identify TNBC cell lines with MSLN hyperexpression and to obtain single-domain antibodies (nanobodies) capable of recognizing MSLN in TNBC cells. Mesothelin expression levels were measured in the panel of TNBC cell lines by real-time reverse-transcription PCR. PCR results were verified by measuring concentrations of the megakaryocyte potentiating factor (the secreted fragment of the mesothelin precursor) using sandwich ELISA. Immune phage-display VHH fragment libraries were prepared from mononuclear cells of Vicugna pacos using a modified library enrichment protocol. Two nanobody variants with high specificity for the target and Kd of about 140 and 95 nmol, respectively were obtained. Two MSLN+ and three MSLN– cell lines were identified in the TNBC cell lines panel. The nanobodies demonstrated the ability to recognize the target antigen in MSLN+ cells and had the low ability to bind to MSLN– cells. Thus, we found a convenient MSLN+ TNBC cell model for MSLN-targeted therapy testing. The new single-domain antibodies can be used as targeting components of chimeric antigen receptors.
Collapse
Affiliation(s)
- YuE Kravchenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - SP Chumakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - EI Frolova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| |
Collapse
|
118
|
Abou-El-Naga AM, Abo El-Khair SM, Mahmoud AZ, Hamza M, Elshazli RM. Association of genetic variants in the 3'-untranslated region of the mesothelin (MSLN) gene with ovarian carcinoma. J Biochem Mol Toxicol 2020; 35:e22637. [PMID: 32997381 DOI: 10.1002/jbt.22637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/17/2020] [Accepted: 09/16/2020] [Indexed: 12/14/2022]
Abstract
Limited information has been offered regarding the association of mesothelin (MSLN) gene variants at the 3'-untranslated region with the risk of ovarian carcinoma. The primary objective of this work is to assess the impact of the MSLN (rs1057147 and rs57272256) variants on the progression of ovarian carcinoma among Egyptian women. The study was conceived based on 127 women diagnosed with ovarian carcinoma and 106 unrelated cancer-free controls. Genomic DNA of these MSLN variants was genotyped utilizing the PCR technique. The frequencies of the MSLN (rs1057147) variant revealed a significant association with increased risk of ovarian carcinoma under allelic and dominant models (P < .05). Nonetheless, ovarian cancer patients with the MSLN (rs57272256) variant did not attain considerable significance under all genetic models (P > .05). Together, our findings suggested that the MSLN (rs1057147) variant was associated with an increased risk of ovarian carcinoma, but not the MSLN (rs57272256) variant.
Collapse
Affiliation(s)
| | - Salwa M Abo El-Khair
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ashraf Z Mahmoud
- Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Mohamed Hamza
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Rami M Elshazli
- Department of Biochemistry, Faculty of Physical Therapy, Horus University - Egypt, New Damietta, Egypt
| |
Collapse
|
119
|
Chung CT, Yeh KC, Lee CH, Chen YY, Ho PJ, Chang KY, Chen CH, Lai YK, Chen CT. Molecular profiling of afatinib-resistant non-small cell lung cancer cells in vivo derived from mice. Pharmacol Res 2020; 161:105183. [PMID: 32896579 DOI: 10.1016/j.phrs.2020.105183] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 01/28/2023]
Abstract
Non-small-cell lung cancer (NSCLC) is a leading cause of cancer-related death worldwide. NSCLC patients with overexpressed or mutated epidermal growth factor receptor (EGFR) related to disease progression are treated with EGFR-tyrosine kinase inhibitors (EGFR-TKIs). Acquired drug resistance after TKI treatments has been a major focus for development of NSCLC therapies. This study aimed to establish afatinib-resistant cell lines from which afatinib resistance-associated genes are identified and the underlying mechanisms of multiple-TKI resistance in NSCLC can be further investigated. Nude mice bearing subcutaneous NSCLC HCC827 tumors were administered with afatinib at different dose intensities (5-100 mg/kg). We established three HCC827 sublines resistant to afatinib (IC50 > 1 μM) with cross-resistance to gefitinib (IC50 > 5 μM). cDNA microarray revealed several of these sublines shared 27 up- and 13 down-regulated genes. The mRNA expression of selective novel genes - such as transmembrane 4 L six family member 19 (TM4SF19), suppressor of cytokine signaling 2 (SOCS2), and quinolinate phosphoribosyltransferase (QPRT) - are responsive to afatinib treatments only at high concentrations. Furthermore, c-MET amplification and activations of a subset of tyrosine kinase receptors were observed in all three resistant cells. PHA665752, a c-MET inhibitor, remarkably increased the sensitivity of these resistant cells to afatinib (IC50 = 12-123 nM). We established afatinib-resistant lung cancer cell lines and here report genes associated with afatinib resistance in human NSCLC. These cell lines and the identified genes serve as useful investigational tools, prognostic biomarkers of TKI therapies, and promising molecule targets for development of human NSCLC therapeutics.
Collapse
Affiliation(s)
- Cheng-Ta Chung
- Graduate Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan; Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
| | - Kai-Chia Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
| | - Chia-Huei Lee
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Yun-Yu Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
| | - Pai-Jiun Ho
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
| | - Kai-Yen Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
| | - Chieh-Hsin Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
| | - Yiu-Kay Lai
- Graduate Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan.
| | - Chiung-Tong Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan.
| |
Collapse
|
120
|
Shen J, Sun X, Zhou J. Insights Into the Role of Mesothelin as a Diagnostic and Therapeutic Target in Ovarian Carcinoma. Front Oncol 2020; 10:1263. [PMID: 32983962 PMCID: PMC7485315 DOI: 10.3389/fonc.2020.01263] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/18/2020] [Indexed: 11/13/2022] Open
Abstract
Ovarian malignancies remain the leading cause of death in female gynecological tumors. More than 70% of patients are diagnosed with advanced stage with extensive metastatic lesions in abdominal cavity due to lack of symptoms in early stage and sensitive diagnostic approaches. Mesothelin (MSLN), a glycosylphosphatidylinositol-anchored membrane glycoprotein, participates in cell adhesion, tumor progression, metastasis, and drug resistance. Despite this, the mechanism is still poorly understood. The differential expression pattern of MSLN in normal and cancer tissues makes it a promising target for diagnosis and therapeutic applications. Several clinical trials are underway to evaluate the safety and efficacy of MSLN-targeted drugs, including CAR T cells, immunotoxin, antibody-drug conjugates, and vaccine. This review is aimed to briefly discuss the characteristics of MSLN and the latest progress in MSLN targeting therapies.
Collapse
Affiliation(s)
- Jiayu Shen
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiwen Sun
- Department of Obstetrics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jianwei Zhou
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
121
|
Abstract
Pancreatic cancer is the third leading cause of cancer death in the USA, and pancreatic ductal adenocarcinoma (PDA) constitutes 85% of pancreatic cancer diagnoses. PDA frequently metastasizes to the peritoneum, but effective treatment of peritoneal metastasis remains a clinical challenge. Despite this unmet need, understanding of the biological mechanisms that contribute to development and progression of PDA peritoneal metastasis is sparse. By contrast, a vast number of studies have investigated mechanisms of peritoneal metastasis in ovarian and gastric cancers. Here, we contrast similarities and differences between peritoneal metastasis in PDA as compared with those in gastric and ovarian cancer by outlining molecular mediators involved in each step of the peritoneal metastasis cascade. This review aims to provide mechanistic insights that could be translated into effective targeted therapies for patients with peritoneal metastasis from PDA.
Collapse
|
122
|
Wang X, Liu G, Sheng N, Zhang M, Pan X, Liu S, Huang K, Cong Y, Xu Q, Jia X, Xu J. Peptidome characterization of ovarian cancer serum and the identification of tumor suppressive peptide ZYX 36-58. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:925. [PMID: 32953725 PMCID: PMC7475411 DOI: 10.21037/atm-20-2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Several serum biomarkers, including miRNA, mRNA, protein and peptides in cancer patients are also important mediators of cancer progression. Methods The differentially expressed peptides between the serum of ovarian cancer patients and healthy controls were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The function of the peptides was analyzed by CCK8, transwell, wound healing, and flow cytometry analysis. And the mechanism of the peptides was analyzed by peptide pull down, and high-throughput RNA-sequencing. Results A total of 7 and 46 peptides were significantly up-regulated and down-regulated in the serum of ovarian cancer patients, respectively. The precursor proteins of the differentially expressed peptides mainly involved in the complement and coagulation cascades, platelet activation, phagosome and focal adhesion pathways. Interestingly, focal adhesion, platelet activation, platelet-cancer cell interaction, complement activation, coagulation cascades and phagosome formation are all critical factors for cancer initiation or progression, which indicated that the peptides may play a crucial role in cancer development. And we identified one peptide, ZYX36-58, which was down-regulated in the serum of ovarian cancer patients, significantly inhibited invasion and migration and promoted the apoptosis of ovarian cancer cells. Mechanistic study indicated that ZYX36-58 interacted with and increased the protein level of the antiangiogenic protein thrombospondin-1 (TSP1), which has a tumor suppressive effect on ovarian cancer. Conclusions ZYX36-58, which was significantly down-regulated in the serum of ovarian cancer patients can significantly inhibit cell invasion, migration and promote apoptosis of ovarian cancer cells by binding and up-regulating TSP1 protein expression.
Collapse
Affiliation(s)
- Xusu Wang
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Guangquan Liu
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Na Sheng
- Model Animal Research Center of Nanjing University, Nanjing, China
| | - Mi Zhang
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Xinxing Pan
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Siyu Liu
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Ke Huang
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Yu Cong
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Qing Xu
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Xuemei Jia
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Juan Xu
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| |
Collapse
|
123
|
Javadi J, Dobra K, Hjerpe A. Multiplex Soluble Biomarker Analysis from Pleural Effusion. Biomolecules 2020; 10:biom10081113. [PMID: 32731396 PMCID: PMC7464384 DOI: 10.3390/biom10081113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a highly aggressive and therapy resistant pleural malignancy that is caused by asbestos exposure. MPM is associated with poor prognosis and a short patient survival. The survival time is strongly influenced by the subtype of the tumor. Dyspnea and accumulation of pleural effusion in the pleural cavity are common symptoms of MPM. The diagnostic distinction from other malignancies and reactive conditions is done using histopathology or cytopathology, always supported by immunohistochemistry, and sometimes also by analyses of soluble biomarkers in effusion supernatant. We evaluated the soluble angiogenesis related molecules as possible prognostic and diagnostic biomarkers for MPM by Luminex multiplex assay. Pleural effusion from 42 patients with malignant pleural mesothelioma (MPM), 36 patients with adenocarcinoma (AD) and 40 benign (BE) effusions were analyzed for 10 different analytes that, in previous studies, were associated with angiogenesis, consisting of Angiopoietin-1, HGF, MMP-7, Osteopontin, TIMP-1, Galectin, Mesothelin, NRG1-b1, Syndecan-1 (SDC-1) and VEGF by a Human Premixed Multi-Analyte Luminex kit. We found that shed SDC-1 and MMP-7 levels were significantly lower, whereas Mesothelin and Galectin-1 levels were significantly higher in malignant mesothelioma effusions, compared to adenocarcinoma. Galectin-1, HGF, Mesothelin, MMP-7, Osteopontin, shed SDC-1, NRG1-β1, VEGF and TIMP-1 were significantly higher in malignant pleural mesothelioma effusions compared to benign samples. Moreover, there is a negative correlation between Mesothelin and shed SDC-1 and positive correlation between VEGF, Angiopoietin-1 and shed SDC-1 level in the pleural effusion from malignant cases. Shed SDC-1 and VEGF have a prognostic value in malignant mesothelioma patients. Collectively, our data suggest that MMP-7, shed SDC-1, Mesothelin and Galectin-1 can be diagnostic and VEGF and SDC-1 prognostic markers in MPM patients. Additionally, Galectin-1, HGF, Mesothelin, MMP-7, Osteopontin, shed SDC-1 and TIMP-1 can be diagnostic for malignant cases.
Collapse
Affiliation(s)
- Joman Javadi
- Karolinska Institutet, Department of Laboratory Medicine, Division of Pathology, Huddinge University Hospital, SE-14186 Stockholm, Sweden;
- Correspondence: ; Tel.: +46-762-615-122
| | - Katalin Dobra
- Karolinska Institutet, Department of Laboratory Medicine, Division of Pathology, Huddinge University Hospital, SE-14186 Stockholm, Sweden;
- Karolinska University Hospital, Karolinska University laboratory, Huddinge University Hospital, SE-14186 Stockholm, Sweden;
| | - Anders Hjerpe
- Karolinska University Hospital, Karolinska University laboratory, Huddinge University Hospital, SE-14186 Stockholm, Sweden;
| |
Collapse
|
124
|
Abstract
Abstract
Purpose
The aim of this review is to summarize the main applications of mesothelin-targeting agents in the diagnosis of different types of cancers with a brief mention of nuclear magnetic resonance.
Methods
The articles taken into account were selected from PubMed, Scopus, and Web of Sciences, including research articles and abstracts that deal with radioimmunotherapy and new tracers for nuclear medicine and radiodiagnosis. Articles that are not in English have been excluded.
Results
Mesothelin-targeting agents were the subject of the selected articles in which tracers as 64Cu-DOTA-11-25mAb anti MSLN, 111In-MORAb-009-CHX-A″, 89Zr-MMOT0530A, 111In-amatuximab, 99mTc-A1, 89Zr-AMA, 89Zr-amatuximab, 64Cu-amatuximab, 89Zr-labeled MMOT0530A and 89Zr-B3 found application in detection of malignancies that overexpressed mesothelin. Only one article approached magnetic resonance imaging (MRI) diagnosis using superparamagnetic iron oxide nanoparticles linked to anti-mesothelin antibodies. The tracers proved to be highly sensitive in detecting mesothelin positive cells. 89Zr-labeled MMOT0530A could also be used to predict the suitability of patients to radioimmunotherapy.
Conclusions
Radiolabeled anti-mesothelin antibodies could be crucial as a treatment tool and for predicting the eligibility and the response of the patient to radioimmunotherapy through the study of the expression grade of mesothelin. They can be a relevant tool for pancreatic adenocarcinoma, lung cancer, human epidermoid carcinoma, ovarian cancer, malignant mesothelioma in which mesothelin is widely expressed.
Collapse
|
125
|
Possible reversibility between epithelioid and sarcomatoid types of mesothelioma is independent of ERC/mesothelin expression. Respir Res 2020; 21:187. [PMID: 32677949 PMCID: PMC7364551 DOI: 10.1186/s12931-020-01449-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 07/08/2020] [Indexed: 12/12/2022] Open
Abstract
Background Mesothelioma is histologically divided into three subgroups: epithelioid, sarcomatoid, and biphasic types. The epithelioid or sarcomatoid type is morphologically defined by polygonal or spindle-like forms of cells, respectively. The biphasic type consists of both components. It is not yet understood how histological differentiation of mesothelioma is regulated. ERC/mesothelin is expressed in most cases of the epithelioid type, but not in the sarcomatoid type of mesothelioma. Consequently, its expression is well correlated to the histological subtype. We hypothesized that ERC/mesothelin expression influences the histological differentiation of mesothelioma, and tested this hypothesis. Methods We performed studies using the overexpression or knockdown of ERC/mesothelin in mesothelioma cells to examine its effect on cellular morphology, growth kinetics, or migration/invasion activity, in vitro. We then transplanted ERC/mesothelin-overexpressing and control cells into the intraperitoneal space of mice. We examined the effect of ERC/mesothelin overexpression on mouse survival and tumor phenotype. Results In vitro cell culture manipulations of ERC/mesothelin expression did not affect cellular morphology or proliferation, although its overexpression enhanced cellular adhesion and the migration/invasion activity of mesothelioma cells. The survival rate of mice following intraperitoneal transplantation of ERC/mesothelin-overexpressing mesothelioma cells was significantly lower than that of mice with control cells. The histological evaluation of the tumors, however, did not show any morphological difference between two groups, and our hypothesis was not validated. Unexpectedly, both groups (ERC/mesothelin-overexpressing and control) of mesothelioma cells that were morphologically monophasic and spindle-like in vitro differentiated into a biphasic type consisting of polygonal and spindle-like components in the transplanted tumor, irrespective of ERC/mesothelin expression. Conclusions These results suggested that the histological transition of mesothelioma between epithelioid and sarcomatoid types may be reversible and regulated not by ERC/mesothelin, but by other unknown mechanisms.
Collapse
|
126
|
Coelho R, Ricardo S, Amaral AL, Huang YL, Nunes M, Neves JP, Mendes N, López MN, Bartosch C, Ferreira V, Portugal R, Lopes JM, Almeida R, Heinzelmann-Schwarz V, Jacob F, David L. Regulation of invasion and peritoneal dissemination of ovarian cancer by mesothelin manipulation. Oncogenesis 2020; 9:61. [PMID: 32612258 PMCID: PMC7329842 DOI: 10.1038/s41389-020-00246-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 06/06/2020] [Accepted: 06/12/2020] [Indexed: 11/09/2022] Open
Abstract
Peritoneal dissemination is a particular form of metastasis typically observed in ovarian cancer and the major cause for poor patient’s outcome. Identification of the molecular players involved in ovarian cancer dissemination can offer an approach to develop treatment strategies to improve clinical prognosis. Here, we identified mesothelin (MSLN) as a crucial protein in the multistep process of peritoneal dissemination of ovarian cancer. We demonstrated that MSLN is overexpressed in primary and matched peritoneal metastasis of high-grade serous carcinomas (HGSC). Using several genetically engineered ovarian cancer cell lines, resulting in loss or gain of function, we found that MSLN increased cell survival in suspension and invasion of tumor cells through the mesothelial cell layer in vitro. Intraperitoneal xenografts established with MSLNhigh ovarian cancer cell lines showed enhanced tumor burden and spread within the peritoneal cavity. These findings provide strong evidences that MSLN is a key player in ovarian cancer progression by triggering peritoneal dissemination and provide support for further clinical investigation of MSLN as a therapeutic target in HGSC.
Collapse
Affiliation(s)
- Ricardo Coelho
- Differentiation and Cancer group, Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal
| | - Sara Ricardo
- Differentiation and Cancer group, Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal
| | - Ana Luísa Amaral
- Differentiation and Cancer group, Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Yen-Lin Huang
- Glyco-Oncology, Ovarian Cancer Research, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Mariana Nunes
- Differentiation and Cancer group, Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,ICBAS, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - José Pedro Neves
- Differentiation and Cancer group, Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Pathology Department, Centro Hospitalar de São João, Porto, Portugal
| | - Nuno Mendes
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Histology and Electron Microscopy, Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Mónica Nuñez López
- Glyco-Oncology, Ovarian Cancer Research, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Carla Bartosch
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Verónica Ferreira
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Raquel Portugal
- Pathology Department, Centro Hospitalar de São João, Porto, Portugal
| | - José Manuel Lopes
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal.,Pathology Department, Centro Hospitalar de São João, Porto, Portugal.,Cancer Cell Signaling and Metabolism Group, Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Raquel Almeida
- Differentiation and Cancer group, Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal.,Biology Department, Faculty of Sciences of the University of Porto, Porto, Portugal
| | - Viola Heinzelmann-Schwarz
- Gynecological Cancer Center and Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Francis Jacob
- Glyco-Oncology, Ovarian Cancer Research, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Leonor David
- Differentiation and Cancer group, Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal. .,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal. .,Faculty of Medicine, University of Porto, Porto, Portugal.
| |
Collapse
|
127
|
Mesothelin-Targeted Recombinant Immunotoxins for Solid Tumors. Biomolecules 2020; 10:biom10070973. [PMID: 32605175 PMCID: PMC7408136 DOI: 10.3390/biom10070973] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 12/12/2022] Open
Abstract
Mesothelin (MSLN) is a cell surface glycoprotein normally expressed only on serosal surfaces, and not found in the parenchyma of vital organs. Many solid tumors also express MSLN, including mesothelioma and pancreatic adenocarcinoma. Due to this favorable expression profile, MSLN represents a viable target for directed anti-neoplastic therapies, such as recombinant immunotoxins (iToxs). Pre-clinical testing of MSLN-targeted iTox’s has yielded a strong body of evidence for activity against a number of solid tumors. This has led to multiple clinical trials, testing the safety and efficacy of the clinical leads SS1P and LMB-100. While promising clinical results have been observed, neutralizing anti-drug antibody (ADA) formation presents a major challenge to overcome in the therapeutic development process. Additionally, on-target, off-tumor toxicity from serositis and non-specific capillary leak syndrome (CLS) also limits the dose, and therefore, impact anti-tumor activity. This review summarizes existing pre-clinical and clinical data on MSLN-targeted iTox’s. In addition, we address the potential future directions of research to enhance the activity of these anti-tumor agents.
Collapse
|
128
|
Abstract
INTRODUCTION Ovarian cancer typically presents at an advanced stage and while initial chemotherapy response rates are favorable, a majority of patients experience recurrence with the subsequent development of chemoresistance. Recurrent, platinum-resistant disease is associated with a very poor prognosis as treatment in this setting is often limited by systemic toxicity. Antibody-drug conjugates (ADCs) are novel therapeutic agents designed to target antigens specific to ovarian tumor cells with direct delivery of cytotoxic agents to combat recurrent, platinum-resistant disease while limiting systemic toxicity. AREAS COVERED The basic structure and function of ADCs will be reviewed as well as the current data on ADCs under investigation in ovarian cancer. EXPERT OPINION ADCs represent a promising class of targeted therapy in recurrent ovarian cancer with excellent response rates particularly when utilized as combination therapy. While mirvetuximab soravtansine is the only ADC that has been evaluated in a phase 3 trial, many other ADCs and trials are on the horizon. As the field of targeted therapy continues to evolve, continued development of target antigens and ADCs are likely to represent a key development in treatment of recurrent, platinum-resistant disease.
Collapse
Affiliation(s)
- Corinne A Calo
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Ohio State University, Columbus, OH, USA
| | - David M O'Malley
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Ohio State University, Columbus, OH, USA
| |
Collapse
|
129
|
Montemagno C, Cassim S, Pouyssegur J, Broisat A, Pagès G. From Malignant Progression to Therapeutic Targeting: Current Insights of Mesothelin in Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2020; 21:E4067. [PMID: 32517181 PMCID: PMC7312874 DOI: 10.3390/ijms21114067] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), accounting for 90% of all pancreatic tumors, is a highly devastating disease with poor prognosis and rising incidence. The lack of available specific diagnostics tests and the limited treatment opportunities contribute to this pejorative issue. Over the last 10 years, a growing interest pointing towards mesothelin (MSLN) as a promising PDAC-associated antigen has emerged. The limited expression of MSLN in normal tissues (peritoneum, pleura and pericardium) and its overexpression in 80 to 90% of PDAC make it an attractive candidate for therapeutic management of PDAC patients. Moreover, its role in malignant progression related to its involvement in tumor cell proliferation and resistance to chemotherapy has highlighted the relevance of its targeting. Hence, several clinical trials are investigating anti-MSLN efficacy in PDAC. In this review, we provide a general overview of the different roles sustained by MSLN during PDAC progression. Finally, we also summarize the different MSLN-targeted therapies that are currently tested in the clinic.
Collapse
Affiliation(s)
- Christopher Montemagno
- Département de Biologie Médicale, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (S.C.); (J.P.); (G.P.)
- Institute for Research on Cancer and Aging of Nice, Université Cote d’Azur, CNRS UMR 7284, INSERM U1081, Centre Antoine Lacassagne, 06200 Nice, France
| | - Shamir Cassim
- Département de Biologie Médicale, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (S.C.); (J.P.); (G.P.)
| | - Jacques Pouyssegur
- Département de Biologie Médicale, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (S.C.); (J.P.); (G.P.)
- Institute for Research on Cancer and Aging of Nice, Université Cote d’Azur, CNRS UMR 7284, INSERM U1081, Centre Antoine Lacassagne, 06200 Nice, France
| | - Alexis Broisat
- Laboratoire Radiopharmaceutiques Biocliniques, INSERM, 1039-Université de Grenoble, 38700 La Tronche, France;
| | - Gilles Pagès
- Département de Biologie Médicale, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (S.C.); (J.P.); (G.P.)
- Institute for Research on Cancer and Aging of Nice, Université Cote d’Azur, CNRS UMR 7284, INSERM U1081, Centre Antoine Lacassagne, 06200 Nice, France
| |
Collapse
|
130
|
Mesothelial cells regulate immune responses in health and disease: role for immunotherapy in malignant mesothelioma. Curr Opin Immunol 2020; 64:88-109. [PMID: 32485577 DOI: 10.1016/j.coi.2020.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/11/2020] [Accepted: 04/16/2020] [Indexed: 01/17/2023]
Abstract
The mesothelium when first described was thought to function purely as a non-adhesive surface to facilitate intracoelomic movement of organs. However, the mesothelium is now recognized as a dynamic cellular membrane with many important functions that maintain serosal integrity and homeostasis. For example, mesothelial cells interact with and help regulate the body's inflammatory and immune system following infection, injury, or malignancy. With recent advances in our understanding of checkpoint molecules and the advent of novel immunotherapy approaches, there has been an increase in the number of studies examining mesothelial and immune cell interaction, in particular the role of these interactions in malignant mesothelioma. This review will highlight some of the recent advances in our understanding of how mesothelial cells help regulate serosal immunity and how in a malignant environment, the immune system is hijacked to stimulate tumor growth. Ways to treat mesothelioma using immunotherapy approaches will also be discussed.
Collapse
|
131
|
Kakimoto S, Miyamoto M, Einama T, Matsuura H, Iwahashi H, Ishibashi H, Sakamoto T, Hada T, Takano M. Co-Expression of Mesothelin and CA125 Is Associated with the Poor Prognosis of Endometrial Serous Carcinoma and Mixed Carcinomas Including Serous Carcinoma. Pathol Oncol Res 2020; 26:2299-2306. [PMID: 32468249 DOI: 10.1007/s12253-020-00823-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 05/14/2020] [Indexed: 12/21/2022]
Abstract
The aim of this study was to investigate the association between the clinicopathologic factors and either expression or co-expression of mesothelin and cancer antigen (CA) 125 in endometrial serous carcinoma and mixed carcinomas including serous carcinoma. Between 1990 and 2017, patients with endometrial serous carcinoma and mixed carcinoma including serous carcinoma treated by total hysterectomy and bilateral salpingo-oophorectomy at our hospital were identified. The association between either expression or co-expression of mesothelin and CA125 was evaluated by immunochemical analysis and the clinico-pathological features were retrospectively examined. Among the 40 patients included, 19, 31, and 18 patients exhibited single positive mesothelin, single positive CA125, and positive co-expression, respectively. The expression of mesothelin and CA125 was observed to be positively associated (p = 0.021). There was no significant association of age and FIGO stage with individual mesothelin or CA125 expression or their co-expression. Overall survival (OS), but not progression-free survivals (PFS), of only mesothelin-positive patients was worse (p = 0.024). Hence, OS and PFS of patients with positive co-expression were worse (PFS: p = 0.043, OS: p = 0.012). In multivariate analysis, single mesothelin expression and single CA125 expression did not lead to worse prognosis. However, positive co-expression was the worst prognostic factor for OS (hazard ratio: 3.32, p = 0.039). Co-expression of mesothelin and CA125 may accurately predict OS in endometrial serous carcinoma and mixed carcinomas including serous carcinoma. Further studies should examine this relationship.
Collapse
Affiliation(s)
- Soichiro Kakimoto
- Department of Obstetrics and Gynecology, National Defense Medical College Hospital, Tokorozawa, Saitama, 359-8513, Japan
| | - Morikazu Miyamoto
- Department of Obstetrics and Gynecology, National Defense Medical College Hospital, Tokorozawa, Saitama, 359-8513, Japan.
| | - Takahiro Einama
- Department of Surgery, National Defense Medical College Hospital, Tokorozawa, Saitama, 359-8513, Japan
| | - Hiroko Matsuura
- Department of Obstetrics and Gynecology, National Defense Medical College Hospital, Tokorozawa, Saitama, 359-8513, Japan
| | - Hideki Iwahashi
- Department of Obstetrics and Gynecology, National Defense Medical College Hospital, Tokorozawa, Saitama, 359-8513, Japan
| | - Hiroki Ishibashi
- Department of Obstetrics and Gynecology, National Defense Medical College Hospital, Tokorozawa, Saitama, 359-8513, Japan
| | - Takahiro Sakamoto
- Department of Obstetrics and Gynecology, National Defense Medical College Hospital, Tokorozawa, Saitama, 359-8513, Japan
| | - Taira Hada
- Department of Obstetrics and Gynecology, National Defense Medical College Hospital, Tokorozawa, Saitama, 359-8513, Japan
| | - Masashi Takano
- Department of Obstetrics and Gynecology, National Defense Medical College Hospital, Tokorozawa, Saitama, 359-8513, Japan
| |
Collapse
|
132
|
Moentenich V, Comut E, Gebauer F, Tuchscherer A, Bruns C, Schroeder W, Buettner R, Alakus H, Loeser H, Zander T, Quaas A. Mesothelin expression in esophageal adenocarcinoma and squamous cell carcinoma and its possible impact on future treatment strategies. Ther Adv Med Oncol 2020; 12:1758835920917571. [PMID: 32547645 PMCID: PMC7249595 DOI: 10.1177/1758835920917571] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/06/2020] [Indexed: 12/29/2022] Open
Abstract
Background Mesothelin is expressed at very low levels by normal mesothelial cells but is overexpressed in several human cancers. This makes mesothelin a promising target for immunotherapy. Limited data exist about mesothelin expression in esophageal carcinoma. In a current clinical trial, the highly potent anti-mesothelin antibody anetumab ravtansine is used in patients with mesothelin-positive tumors. Response rates are correlated with mesothelin expression (using the Ventana antibody) in tumor cells. No data are available on expression levels using the Ventana antibody. Most data have been generated using the Novocastra antibody. As patients are selected for clinical trials based on antibody staining of tumor samples, a comparison of these two available antibodies is crucial. Methods We analyzed 481 esophageal carcinomas [373 esophageal adenocarcinomas (EACs), 108 esophageal squamous cell carcinomas (ESCCs)] using two different monoclonal antibodies (Novocastra and Ventana) for mesothelin expression (low-mid and high-level expression, as used in one clinical trial). We also checked for the correlation of these results with clinical and molecular data. Results We revealed different staining results for both antibodies in EACs: Ventana: 53.6% (low expression: 25.3%; high expression: 28.3%) and Novocastra: 35.7% (low expression: 21.2%; high expression 14.5%). In ESCC we found comparable staining results: Ventana: 13.3% (low expression: 9.5%; high expression: 3.8%) and Novocastra: 13% (low expression: 11.1%; high expression: 1.9%). ARID1a-deficient EAC patients demonstrated significantly higher rates of mesothelin-positive tumors than ARID1a intact EAC patients. No correlations were found with other molecular alterations (TP53 mutation, ERBB2 amplification) or survival rates. Conclusion To the best of our knowledge, this is the largest study analyzing the importance of mesothelin expression in esophageal carcinoma. This study revealed a significant number of mesothelin-positive esophageal carcinomas, especially adenocarcinomas. New therapeutic targets are urgently required to improve the outcome of patients with locally advanced or metastasized esophageal carcinoma. The inhibition of mesothelin can be a new attractive target.
Collapse
Affiliation(s)
- Valeska Moentenich
- Department of Oncology and Hematology, University of Cologne, Kerpener Strasse 62, Cologne 50937, Germany
| | - Erdem Comut
- Institute of Pathology, Pammukale University, Turkey
| | - Florian Gebauer
- Department of Visceral Surgery, University of Cologne, Germany
| | - Armin Tuchscherer
- Department of Oncology and Hematology, University of Cologne, Germany
| | | | | | | | - Hakan Alakus
- Department of Visceral Surgery, University of Cologne, Germany
| | - Heike Loeser
- Institute of Pathology, University of Cologne, Germany
| | - Thomas Zander
- Department of Oncology and Hematology, University of Cologne, Germany
| | | |
Collapse
|
133
|
Yousefi M, Dehghani S, Nosrati R, Ghanei M, Salmaninejad A, Rajaie S, Hasanzadeh M, Pasdar A. Current insights into the metastasis of epithelial ovarian cancer - hopes and hurdles. Cell Oncol (Dordr) 2020; 43:515-538. [PMID: 32418122 DOI: 10.1007/s13402-020-00513-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Ovarian cancer is the most lethal gynecologic cancer and the fifth leading cause of cancer-related mortality in women worldwide. Despite various attempts to improve the diagnosis and therapy of ovarian cancer patients, the survival rate for these patients is still dismal, mainly because most of them are diagnosed at a late stage. Up to 90% of ovarian cancers arise from neoplastic transformation of ovarian surface epithelial cells, and are usually referred to as epithelial ovarian cancer (EOC). Unlike most human cancers, which are disseminated through blood-borne metastatic routes, EOC has traditionally been thought to be disseminated through direct migration of ovarian tumor cells to the peritoneal cavity and omentum via peritoneal fluid. It has recently been shown, however, that EOC can also be disseminated through blood-borne metastatic routes, challenging previous thoughts about ovarian cancer metastasis. CONCLUSIONS Here, we review our current understanding of the most updated cellular and molecular mechanisms underlying EOC metastasis and discuss in more detail two main metastatic routes of EOC, i.e., transcoelomic metastasis and hematogenous metastasis. The emerging concept of blood-borne EOC metastasis has led to exploration of the significance of circulating tumor cells (CTCs) as novel and non-invasive prognostic markers in this daunting cancer. We also evaluate the role of tumor stroma, including cancer associated fibroblasts (CAFs), tumor associated macrophages (TAMs), endothelial cells, adipocytes, dendritic cells and extracellular matrix (ECM) components in EOC growth and metastasis. Lastly, we discuss therapeutic approaches for targeting EOC. Unraveling the mechanisms underlying EOC metastasis will open up avenues to the design of new therapeutic options. For instance, understanding the molecular mechanisms involved in the hematogenous metastasis of EOC, the biology of CTCs, and the detailed mechanisms through which EOC cells take advantage of stromal cells may help to find new opportunities for targeting EOC metastasis.
Collapse
Affiliation(s)
- Meysam Yousefi
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sadegh Dehghani
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rahim Nosrati
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Ghanei
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Salmaninejad
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Halal Research Center of IRI, FDA, Tehran, Iran
| | - Sara Rajaie
- Department of Biology, Islamic Azad University, Arsanjan Branch, Arsanjan, Iran
| | - Malihe Hasanzadeh
- Department of Gynecologic Oncology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Pasdar
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. .,Bioinformatics Research Group, Mashhad University of Medical Sciences, Mashhad, Iran. .,Division of Applied Medicine, Faculty of Medicine, University of Aberdeen, Foresterhill, Aberdeen, UK.
| |
Collapse
|
134
|
Hassan R, Blumenschein GR, Moore KN, Santin AD, Kindler HL, Nemunaitis JJ, Seward SM, Thomas A, Kim SK, Rajagopalan P, Walter AO, Laurent D, Childs BH, Sarapa N, Elbi C, Bendell JC. First-in-Human, Multicenter, Phase I Dose-Escalation and Expansion Study of Anti-Mesothelin Antibody-Drug Conjugate Anetumab Ravtansine in Advanced or Metastatic Solid Tumors. J Clin Oncol 2020; 38:1824-1835. [PMID: 32213105 PMCID: PMC7255978 DOI: 10.1200/jco.19.02085] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE This phase I study, which to our knowledge is the first-in-human study of this kind, investigates the safety, tolerability, pharmacokinetics, and clinical activity of anetumab ravtansine, an antibody–drug conjugate of anti-mesothelin antibody linked to maytansinoid DM4, in patients with advanced, metastatic, or recurrent solid tumors known to express the tumor-differentiation antigen mesothelin. PATIENTS AND METHODS This phase I, open-label, multicenter, dose-escalation and dose-expansion study of anetumab ravtansine enrolled 148 adult patients with multiple solid tumor types. Ten dose-escalation cohorts of patients with advanced or metastatic solid tumors (0.15-7.5 mg/kg) received anetumab ravtansine once every 3 weeks, and 6 expansion cohorts of patients with advanced, recurrent ovarian cancer or malignant mesothelioma received anetumab ravtansine at the maximum tolerated dose once every 3 weeks, 1.8 mg/kg once per week, and 2.2 mg/kg once per week. RESULTS Forty-five patients were enrolled across the 10 dose-escalation cohorts. The maximum tolerated dose of anetumab ravtansine was 6.5 mg/kg once every 3 weeks or 2.2 mg/kg once per week. Thirty-two patients were enrolled in the 6.5 mg/kg once-every-3-weeks, 35 in the 1.8 mg/kg once-per-week, and 36 in the 2.2 mg/kg once-per-week expansion cohorts. The most common drug-related adverse events were fatigue, nausea, diarrhea, anorexia, vomiting, peripheral sensory neuropathy, and keratitis/keratopathy. There were no drug-related deaths. Anetumab ravtansine pharmacokinetics were dose proportional; the average half-life was 5.5 days. Among 148 patients with mesothelioma or ovarian, pancreatic, non–small-cell lung, and breast cancers, 1 had a complete response, 11 had partial responses, and 66 had stable disease. High levels of tumor mesothelin expression were detected in patients with clinical activity. CONCLUSION Anetumab ravtansine exhibited a manageable safety and favorable pharmacokinetic profile with encouraging preliminary antitumor activity in heavily pretreated patients with mesothelin-expressing solid tumors. The results allowed for the determination of recommended doses, schedules, and patient populations for anetumab ravtansine in phase II studies.
Collapse
Affiliation(s)
- Raffit Hassan
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - George R Blumenschein
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Kathleen N Moore
- Stephenson Oklahoma Cancer Center at University of Oklahoma, Oklahoma City, OK/Sarah Cannon Research Institute, Nashville, TN
| | | | | | - John J Nemunaitis
- Division of Hematology and Medical Oncology, Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Shelly M Seward
- Wayne State University Karmanos Cancer Institute, Huntington Woods, MI
| | - Anish Thomas
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | | | | | | | | | | | | | - Cem Elbi
- Bayer HealthCare Pharmaceuticals, Whippany, NJ
| | | |
Collapse
|
135
|
Kusamura S, Kepenekian V, Villeneuve L, Lurvink RJ, Govaerts K, De Hingh IHJT, Moran BJ, Van der Speeten K, Deraco M, Glehen O. Peritoneal mesothelioma: PSOGI/EURACAN clinical practice guidelines for diagnosis, treatment and follow-up. Eur J Surg Oncol 2020; 47:36-59. [PMID: 32209311 DOI: 10.1016/j.ejso.2020.02.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 12/20/2022] Open
Affiliation(s)
- S Kusamura
- Department of Surgery, Peritoneal Surface Malignancy Unit, Fondazione IRCCS Instituto Nazionale Dei Tumori di Milano, Via Giacomo Venezian 1, Milano, Milan, Cap 20133, Italy
| | - V Kepenekian
- Service de Chirurgie Digestive et Endocrinienne, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Lyon, France; EMR 3738, Lyon 1 University, Lyon, France
| | - L Villeneuve
- Service de Recherche et Epidémiologie Cliniques, Pôle de Santé Publique, Hospices Civils de Lyon, Lyon, France
| | - R J Lurvink
- Department of Surgery, Catharina Hospital, Eindhoven, the Netherlands
| | - K Govaerts
- Department of Surgical Oncology, Hospital Oost-Limburg, Genk, Belgium
| | - I H J T De Hingh
- Department of Surgery, Catharina Hospital, Eindhoven, the Netherlands
| | - B J Moran
- Peritoneal Malignancy Institute, North-Hampshire Hospital, Basingstoke, United Kingdom
| | - K Van der Speeten
- Department of Surgical Oncology, Hospital Oost-Limburg, Genk, Belgium
| | - M Deraco
- Department of Surgery, Peritoneal Surface Malignancy Unit, Fondazione IRCCS Instituto Nazionale Dei Tumori di Milano, Via Giacomo Venezian 1, Milano, Milan, Cap 20133, Italy.
| | - O Glehen
- Department of Digestive Surgery, Centre Hospitalier Lyon Sud, Lyon, France
| | | |
Collapse
|
136
|
McEachron J, Chatterton C, Hastings V, Gorelick C, Economos K, Lee YC, Kanis MJ. A clinicopathologic study of endometrial cancer metastatic to bone: Identification of microsatellite instability improves treatment strategies. Gynecol Oncol Rep 2020; 32:100549. [PMID: 32099892 PMCID: PMC7031305 DOI: 10.1016/j.gore.2020.100549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/02/2020] [Accepted: 02/04/2020] [Indexed: 12/28/2022] Open
Abstract
Metastasis of endometrial cancer (EC) to bone is rare, occurring in <1.0% of cases. The most common sites of bone metastasis in EC are the spine and hip. Diagnosis of bone metastasis is associated with widely metastatic disease and poor prognosis. The median overall survival following a diagnosis of bone metastasis was 11 months in our series. 87.5% of patients with bone metastasis were found to have microsatellite instability.
Metastasis to bone (BM) is an uncommon manifestation of advanced endometrial cancer (EC). The present study will review the clinicopathologic features of a cohort of patients with EC and BM. We conducted a multi-center retrospective review of patients with EC and BM. Demographic and clinical information was extracted from the medical records. Survival outcomes were determined using Kaplan-Meier Curves. Final analysis included 10 patients. The median age was 65 years (range 31–71). 80% had FIGO stage III/IV disease. The most common site of BM was the spine (66%). All patients presented with extraosseous dissemination at the time of diagnosis of BM and 70% were found to have multiple sites of BM. 80% of patients were diagnosed with BM in the recurrent setting. The median time to diagnosis of bone recurrence was 14 months (range: 0–44). Median survival after diagnosis of BM was 11 months (range: 1–22 months). Patients with endometrioid histology and single site of bone metastasis experienced improved survival (p = 0.04 and p = 0.05, respectively). Eight patients had immunohistochemistry or molecular tumor profiles available for review. Seven of these patients (87.5%) were found to have microsatellite instability (MSI). The most common mutation was hypermethylation of MLH-1 (43%). To our knowledge, this is the first report demonstrating a correlation between MSI and metastasis to bone. The identification of BM in EC is uncommon, but will alter treatment strategies and dramatically impact prognosis. Molecular tumor profiling should be performed to identify targeted therapy options and optimize adjuvant treatment strategies.
Collapse
Affiliation(s)
- Jennifer McEachron
- Division of Gynecologic Oncology, SUNY Downstate Medical Center, Brooklyn, NY, United States
| | - Carolyn Chatterton
- Division of Gynecologic Oncology, Good Samaritan Hospital Medical Center, West Islip, NY, United States
| | - Victoria Hastings
- Division of Gynecologic Oncology, New York Presbyterian - Brooklyn Methodist Hospital, Brooklyn, NY, United States
| | - Constantine Gorelick
- Division of Gynecologic Oncology, New York Presbyterian - Brooklyn Methodist Hospital, Brooklyn, NY, United States
| | - Katherine Economos
- Division of Gynecologic Oncology, New York Presbyterian - Brooklyn Methodist Hospital, Brooklyn, NY, United States
| | - Yi-Chun Lee
- Division of Gynecologic Oncology, SUNY Downstate Medical Center, Brooklyn, NY, United States
| | - Marguax J Kanis
- Division of Gynecologic Oncology, New York Presbyterian - Brooklyn Methodist Hospital, Brooklyn, NY, United States
| |
Collapse
|
137
|
Le K, Wang J, Zhang T, Guo Y, Chang H, Wang S, Zhu B. Overexpression of Mesothelin in Pancreatic Ductal Adenocarcinoma (PDAC). Int J Med Sci 2020; 17:422-427. [PMID: 32174772 PMCID: PMC7053310 DOI: 10.7150/ijms.39012] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 01/05/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose: Pancreatic ductal adenocarcinoma (PDAC) with difficulty in early diagnosis does not respond well to conventional treatments and has not occurred significant improvement in the overall 5-year survival rates. Mesothelin (MSLN) is a tumor differentiation antigen expressed in several solid neoplasms and a limited number of healthy tissues. Its selective expression on malignant cells makes it an interesting candidate for investigation as a diagnostic and prognostic biomarker and as a therapeutic target. In this study, we detected the expression of MSLN in PDAC and analyzed the correlation between the expression of MSLN and clinicopathological data, so as to provide more theoretical basis for the role of MSLN in the diagnosis and treatment of PDAC. Patients and methods: Cancer and para-cancer tissues of 24 cases with PDAC were assessed by standardized immunohistochemical (IHC) detection with two kinds of anti-MSLN antibodies (EPR4509 and EPR19025-42) to detect their positive expression rates and study the correlation between the expression of MSLN and the clinicopathological data. Results: The two anti-MSLN antibodies of cancer tissues showed positive expression with tan yellow or tan brown granules diffusely distributed on the cell membrane in 22 of 24 cases with PDAC (positive rate of 91.67%), and the positive expression of the two antibodies EPR4509 and EPR19025-42 was completely consistent in all tissue samples. No expression of the two anti-MSLN antibodies was found in para-cancer tissues and the difference was statistically significant (χ2=40.615, p=0.000, p<0.05) when compared with PDAC tissues. There was no significant correlation between MSLN expression and clinicopathological data, such as gender, tumor size, location, pathological stage, differentiation degree and lymph node metastasis (p>0.05). Conclusion: MSLN was highly expressed in PDAC tissues, but not in paracancerous tissues. There was no significant correlation between MSLN expression and clinicopathological factors. The overexpression of MSLN may have promising prospects in diagnosis, targeted therapy and immunotherapy of PDAC.
Collapse
Affiliation(s)
- Kai Le
- Department of General Surgery, Peking University Ninth School of Clinical Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Urology Surgery, Aerospace Center Hospital, Beijing, China
| | - Jia Wang
- Department of General Surgery, Peking University Ninth School of Clinical Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Tao Zhang
- Department of General Surgery, Liang Xiang Teaching Hospital of Capital Medical University, Beijing, China
| | - Yifan Guo
- Department of General Surgery, Peking University Ninth School of Clinical Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Hong Chang
- Department of Pathology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Siyuan Wang
- Department of Rehabilitation Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Bin Zhu
- Department of General Surgery, Peking University Ninth School of Clinical Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
138
|
Carmicheal J, Atri P, Sharma S, Kumar S, Chirravuri Venkata R, Kulkarni P, Salgia R, Ghersi D, Kaur S, Batra SK. Presence and structure-activity relationship of intrinsically disordered regions across mucins. FASEB J 2020; 34:1939-1957. [PMID: 31908009 DOI: 10.1096/fj.201901898rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/18/2019] [Accepted: 12/05/2019] [Indexed: 12/24/2022]
Abstract
Many members of the mucin family are evolutionarily conserved and are often aberrantly expressed and glycosylated in various benign and malignant pathologies leading to tumor invasion, metastasis, and immune evasion. The large size and extensive glycosylation present challenges to study the mucin structure using traditional methods, including crystallography. We offer the hypothesis that the functional versatility of mucins may be attributed to the presence of intrinsically disordered regions (IDRs) that provide dynamism and flexibility and that the IDRs offer potential therapeutic targets. Herein, we examined the links between the mucin structure and function based on IDRs, posttranslational modifications (PTMs), and potential impact on their interactome. Using sequence-based bioinformatics tools, we observed that mucins are predicted to be moderately (20%-40%) to highly (>40%) disordered and many conserved mucin domains could be disordered. Phosphorylation sites overlap with IDRs throughout the mucin sequences. Additionally, the majority of predicted O- and N- glycosylation sites in the tandem repeat regions occur within IDRs and these IDRs contain a large number of functional motifs, that is, molecular recognition features (MoRFs), which directly influence protein-protein interactions (PPIs). This investigation provides a novel perspective and offers an insight into the complexity and dynamic nature of mucins.
Collapse
Affiliation(s)
- Joseph Carmicheal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Pranita Atri
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sunandini Sharma
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska.,Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | | | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, California
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, California
| | - Dario Ghersi
- School of Interdisciplinary Informatics, University of Nebraska Omaha, Omaha, Nebraska
| | - Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska.,Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska.,Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
139
|
Ovarian Cancer Dissemination-A Cell Biologist's Perspective. Cancers (Basel) 2019; 11:cancers11121957. [PMID: 31817625 PMCID: PMC6966436 DOI: 10.3390/cancers11121957] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 12/04/2019] [Indexed: 12/16/2022] Open
Abstract
Epithelial ovarian cancer (EOC) comprises multiple disease states representing a variety of distinct tumors that, irrespective of tissue of origin, genetic aberrations and pathological features, share common patterns of dissemination to the peritoneal cavity. EOC peritoneal dissemination is a stepwise process that includes the formation of malignant outgrowths that detach and establish widespread peritoneal metastases through adhesion to serosal membranes. The cell biology associated with outgrowth formation, detachment, and de novo adhesion is at the nexus of diverse genetic backgrounds that characterize the disease. Development of treatment for metastatic disease will require detailed characterization of cellular processes involved in each step of EOC peritoneal dissemination. This article offers a review of the literature that relates to the current stage of knowledge about distinct steps of EOC peritoneal dissemination, with emphasis on the cell biology aspects of the process.
Collapse
|
140
|
Sirois AR, Deny DA, Li Y, Fall YD, Moore SJ. Engineered Fn3 protein has targeted therapeutic effect on mesothelin-expressing cancer cells and increases tumor cell sensitivity to chemotherapy. Biotechnol Bioeng 2019; 117:330-341. [PMID: 31631324 DOI: 10.1002/bit.27204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/05/2019] [Accepted: 10/13/2019] [Indexed: 12/12/2022]
Abstract
Mesothelin is a protein expressed at high levels on the cell surface in a variety of cancers, with limited expression in healthy tissues. The presence of mesothelin on tumor tissue correlates with increased invasion and metastasis, and resistance to traditional chemotherapies, through mechanisms that remain poorly understood. Molecules that specifically recognize mesothelin and interrupt its contribution to tumor progression have significant potential for targeted therapy and targeted drug delivery applications. A number of mesothelin-targeting therapies are in preclinical and clinical development, although none are currently approved for routine clinical use. In this work, we report the development of a mesothelin-targeting protein based on the fibronectin type-III non-antibody protein scaffold, which offers opportunities for applications where antibodies have limitations. We engineered protein variants that bind mesothelin with high affinity and selectively initiate apoptosis in tumor cells expressing mesothelin. Interestingly, apoptosis does not occur through a caspase-mediated pathway and does not require downregulation of cell-surface mesothelin, suggesting a currently unknown pathway through which mesothelin contributes to cancer progression. Importantly, simultaneous treatment with mesothelin-binding protein and chemotherapeutic mitomycin C had a greater cytotoxic effect on mesothelin-positive cells compared to either molecule alone, underscoring the potential for combination therapy including biologics targeting mesothelin.
Collapse
Affiliation(s)
- Allison R Sirois
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, Massachusetts.,Picker Engineering Program, Smith College, Northampton, Massachusetts
| | - Daniela A Deny
- Biochemistry Program, Smith College, Northampton, Massachusetts
| | - Yanxuan Li
- Picker Engineering Program, Smith College, Northampton, Massachusetts
| | - Yacine D Fall
- Biochemistry Program, Smith College, Northampton, Massachusetts
| | - Sarah J Moore
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, Massachusetts.,Picker Engineering Program, Smith College, Northampton, Massachusetts.,Department of Biological Sciences, Smith College, Northampton, Massachusetts
| |
Collapse
|
141
|
Avula LR, Rudloff M, El-Behaedi S, Arons D, Albalawy R, Chen X, Zhang X, Alewine C. Mesothelin Enhances Tumor Vascularity in Newly Forming Pancreatic Peritoneal Metastases. Mol Cancer Res 2019; 18:229-239. [PMID: 31676721 DOI: 10.1158/1541-7786.mcr-19-0688] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/20/2019] [Accepted: 10/28/2019] [Indexed: 02/06/2023]
Abstract
Over 90% of pancreatic ductal adenocarcinomas (PDAC) express mesothelin (MSLN). Overexpression or knockdown of MSLN has been implicated in PDAC aggressiveness. This activity has been ascribed to MSLN-induced activation of MAPK or NF-κB signaling pathways and to interaction of MSLN with its only known binding partner, MUC16. Here, we used CRISPR/Cas9 gene editing to delete MSLN from PDAC, then restored expression of wild-type (WT) or Y318A mutant MSLN by viral transduction. We found that MSLN KO cells grew in culture and as subcutaneous tumors in mouse xenografts at the same rate as WT cells but formed intraperitoneal metastases poorly. Complementation with WT MSLN restored intraperitoneal growth, whereas complementation with Y318A mutant MSLN, which does not bind MUC16, was ineffective at enhancing growth in both MUC16(+) and MUC16(-) models. Restoration of WT MSLN did enhance growth but did not affect cell-to-cell binding, cell viability in suspension or signaling pathways previously identified as contributing to the protumorigenic effect of MSLN. RNA deep sequencing of tumor cells identified no changes in transcriptional profile that could explain the observed phenotype. Furthermore, no histologic changes in tumor cell proliferation or morphology were observed in mature tumors. Examination of nascent MSLN KO tumors revealed decreased microvascular density as intraperitoneal tumors were forming, followed by decreased proliferation, which resolved by 2 weeks postimplantation. These data support a model whereby MSLN expression by tumor cells contributes to metastatic colonization. IMPLICATIONS: MSLN confers a growth advantage to tumor cells during colonization of peritoneal metastasis. Therapeutic blockade of MSLN might limit peritoneal spread.
Collapse
Affiliation(s)
- Leela Rani Avula
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Michael Rudloff
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Salma El-Behaedi
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Danielle Arons
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Rakan Albalawy
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Xiongfong Chen
- CCR-SF Bioinformatics Group, Advanced Biomedical and Computational Sciences, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Xianyu Zhang
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Christine Alewine
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland.
| |
Collapse
|
142
|
Shin SJ, Park S, Kim MH, Nam CM, Kim H, Choi YY, Jung MK, Choi HJ, Rha SY, Chung HC. Mesothelin Expression Is a Predictive Factor for Peritoneal Recurrence in Curatively Resected Stage III Gastric Cancer. Oncologist 2019; 24:e1108-e1114. [PMID: 31015316 PMCID: PMC6853112 DOI: 10.1634/theoncologist.2018-0896] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/29/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mesothelin is overexpressed in many solid tumors, and recent studies have shown that mesothelin expression is associated with poor outcomes in several malignant tumors and may play a role in cancer progression. Clinical trials of mesothelin-targeted immunotherapies are currently under way, but the correlation between mesothelin expression and gastric cancer prognosis is still unclear. SUBJECTS, MATERIALS, AND METHODS Mesothelin expression in tumor cells was evaluated immunohistochemically in 958 patients with advanced gastric cancer and interpreted according to the intensity and extent of staining. Samples were scored from 0 to 2, with high expression defined as a score of 2. Clinicopathological factors, overall survival (OS), recurrence-free survival (RFS), and sites of initial recurrence, including peritoneal recurrence, were evaluated. Staging was performed according to the American Joint Committee on Cancer 7th edition. RESULTS High mesothelin expression was observed in 49.7% of patients and significantly associated with high pathologic T (p = .021) and peritoneal recurrence (p = .018). Multivariate survival analysis showed that high mesothelin expression was independently associated with poor RFS (p = .001), OS (p = .001), and peritoneal recurrence (p = .002) in addition to stage, lymphovascular invasion, and Lauren classification. In a subgroup analysis of peritoneal recurrence, high mesothelin expression was also an independent prognostic factor in stage III (p = .013) and diffuse/mixed type gastric cancer (p = .010). CONCLUSION High mesothelin expression is correlated with poor outcomes. In addition, mesothelin expression, Lauren classification, and stage are meaningful predictive factors for peritoneal recurrence. Moreover, mesothelin was a significant predictor of a high risk of peritoneal recurrence in patients with stage III gastric cancer. IMPLICATIONS FOR PRACTICE This study demonstrates that high mesothelin expression correlates with poor outcomes and is a significant predictor of peritoneal recurrence in patients with stage III gastric cancer. This study provides instrumental evidence for designing anti-mesothelin antibody-drug conjugate clinical trials in patients with diffuse-type gastric cancer to reduce their high risk of peritoneal carcinomatosis.
Collapse
Affiliation(s)
- Su-Jin Shin
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Sejung Park
- Department of Biostatistics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min Hwan Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chung Mo Nam
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyunki Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoon Young Choi
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min Kyu Jung
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
- Cancer Metastasis Research Center, Song Dang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hye Jin Choi
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
- Cancer Metastasis Research Center, Song Dang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sun Young Rha
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
- Cancer Metastasis Research Center, Song Dang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyun Cheol Chung
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
- Cancer Metastasis Research Center, Song Dang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
143
|
Olafsson S, Alexandersson KF, Gizurarson JGK, Hauksdottir K, Gunnarsson O, Olafsson K, Gudmundsson J, Stacey SN, Sveinbjornsson G, Saemundsdottir J, Bjornsson ES, Olafsson S, Bjornsson S, Orvar KB, Vikingsson A, Geirsson AJ, Arinbjarnarson S, Bjornsdottir G, Thorgeirsson TE, Sigurdsson S, Halldorsson GH, Magnusson OT, Masson G, Holm H, Jonsdottir I, Sigurdardottir O, Eyjolfsson GI, Olafsson I, Sulem P, Thorsteinsdottir U, Jonsson T, Rafnar T, Gudbjartsson DF, Stefansson K. Common and Rare Sequence Variants Influencing Tumor Biomarkers in Blood. Cancer Epidemiol Biomarkers Prev 2019; 29:225-235. [PMID: 31666285 DOI: 10.1158/1055-9965.epi-18-1060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 02/10/2019] [Accepted: 10/25/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Alpha-fetoprotein (AFP), cancer antigens 15.3, 19.9, and 125, carcinoembryonic antigen, and alkaline phosphatase (ALP) are widely measured in attempts to detect cancer and to monitor treatment response. However, due to lack of sensitivity and specificity, their utility is debated. The serum levels of these markers are affected by a number of nonmalignant factors, including genotype. Thus, it may be possible to improve both sensitivity and specificity by adjusting test results for genetic effects. METHODS We performed genome-wide association studies of serum levels of AFP (N = 22,686), carcinoembryonic antigen (N = 22,309), cancer antigens 15.3 (N = 7,107), 19.9 (N = 9,945), and 125 (N = 9,824), and ALP (N = 162,774). We also examined the correlations between levels of these biomarkers and the presence of cancer, using data from a nationwide cancer registry. RESULTS We report a total of 84 associations of 79 sequence variants with levels of the six biomarkers, explaining between 2.3% and 42.3% of the phenotypic variance. Among the 79 variants, 22 are cis (in- or near the gene encoding the biomarker), 18 have minor allele frequency less than 1%, 31 are coding variants, and 7 are associated with gene expression in whole blood. We also find multiple conditions associated with higher biomarker levels. CONCLUSIONS Our results provide insights into the genetic contribution to diversity in concentration of tumor biomarkers in blood. IMPACT Genetic correction of biomarker values could improve prediction algorithms and decision-making based on these biomarkers.
Collapse
Affiliation(s)
| | | | | | | | - Orvar Gunnarsson
- Department of Oncology, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland
| | - Karl Olafsson
- Department of Obstetrics and Gynecology, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland
| | | | | | | | | | - Einar S Bjornsson
- Department of Medicine, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Sigurdur Olafsson
- Department of Medicine, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
- Division of Gastroenterology and Hepatology, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland
| | - Sigurdur Bjornsson
- Department of Medicine, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
- The Medical Center, Glaesibae, Reykjavik, Iceland
| | - Kjartan B Orvar
- Department of Medicine, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
- The Medical Center, Glaesibae, Reykjavik, Iceland
| | - Arnor Vikingsson
- Department of Medicine, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland
- Thraut Fibromyalgia Clinic, Reykjavik, Iceland
| | - Arni J Geirsson
- Department of Medicine, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland
- Center for Rheumatology Research, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland
- Icelandic Medical Center (Laeknasetrid), Laboratory in Mjodd (RAM), Reykjavik, Iceland
| | | | | | | | | | | | | | | | - Hilma Holm
- deCODE genetics/AMGEN, Reykjavik, Iceland
| | - Ingileif Jonsdottir
- deCODE genetics/AMGEN, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | | | | | - Isleifur Olafsson
- Department of Clinical Biochemistry, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland
| | | | - Unnur Thorsteinsdottir
- deCODE genetics/AMGEN, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Thorvaldur Jonsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Surgery, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland
| | | | - Daniel F Gudbjartsson
- deCODE genetics/AMGEN, Reykjavik, Iceland.
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Kari Stefansson
- deCODE genetics/AMGEN, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
144
|
Oh JH, Oh MJ. Primary Malignant Mesothelioma of the Peritoneum Mistaken for Peritoneal Tuberculosis due to Elevated Cancer Antigen 125. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2019; 74:232-238. [PMID: 31650800 DOI: 10.4166/kjg.2019.74.4.232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/03/2019] [Accepted: 07/05/2019] [Indexed: 11/03/2022]
Abstract
Adifferential diagnosis of ascites is always challenging for physicians. Peritoneal tuberculosis is particularly difficult to distinguish from peritoneal carcinomatosis because of the similarities in clinical manifestations and laboratory results. Although the definitive diagnostic method for ascites is to take a biopsy of the involved tissues through laparoscopy or laparotomy, there are many limitations in performing biopsies in clinical practice. For this reason, physicians have attempted to find surrogate markers that can substitute for a biopsy as a confirmative diagnostic method for ascites. CA 125, which is known as a tumor marker for gynecological malignancies, has been reported to be a biochemical indicator for peritoneal tuberculosis. On the other hand, the sensitivity of serum CA 125 is low, and CA 125 may be elevated due to other benign or malignant conditions. This paper reports the case of a 66-year-old male who had a moderate amount of ascites and complained of dyspepsia and a febrile sensation. His abdominal CT scans revealed a conglomerated mass, diffuse omental infiltration, and peritoneal wall thickening. Initially, peritoneal tuberculosis was suspected due to the clinical symptoms, CT findings, and high serum CA 125 levels, but non-specific malignant cells were detected on cytology of the ascitic fluid. Finally, he was diagnosed with primary malignant peritoneal mesothelioma after undergoing a laparoscopic biopsy.
Collapse
Affiliation(s)
- Ju Hyun Oh
- Division of Gastroenterology, Department of Internal Medicine, CHA Gumi Medical Center, CHA University School of Medicine, Gumi, Korea
| | - Myung Jin Oh
- Division of Gastroenterology, Department of Internal Medicine, CHA Gumi Medical Center, CHA University School of Medicine, Gumi, Korea
| |
Collapse
|
145
|
Nichetti F, Marra A, Corti F, Guidi A, Raimondi A, Prinzi N, de Braud F, Pusceddu S. The Role of Mesothelin as a Diagnostic and Therapeutic Target in Pancreatic Ductal Adenocarcinoma: A Comprehensive Review. Target Oncol 2019; 13:333-351. [PMID: 29656320 DOI: 10.1007/s11523-018-0567-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mesothelin is a tumor differentiation antigen, which is highly expressed in several solid neoplasms, including pancreatic cancer. Its selective expression on malignant cells and on only a limited number of healthy tissues has made it an interesting candidate for investigation as a diagnostic and prognostic biomarker and as a therapeutic target. Based on a strong preclinical rationale, a number of therapeutic agents targeting mesothelin have entered clinical trials, including immunotoxins, monoclonal antibodies, antibody-drug conjugates, cancer vaccines, and adoptive T cell therapies with chimeric antigen receptors. In pancreatic cancer, mesothelin has been investigated mainly to address two unmet issues: the urgent need for new laboratory techniques for early tumor detection and the lack of successfully targetable oncogenic alterations for patients' treatment. In this review, we describe the clinicopathological significance of mesothelin expression in pancreatic cancer initiation and progression, we summarize available studies evaluating mesothelin as a potential diagnostic and prognostic biomarker in this disease, and we discuss current evidence and future perspectives of preclinical and clinical studies testing mesothelin as a molecular target for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Federico Nichetti
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy.
| | - Antonio Marra
- Medical Oncology Unit, Azienda Ospedaliera San Paolo, Milan, Italy
| | - Francesca Corti
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Alessandro Guidi
- Medical Oncology Unit, Azienda Ospedaliera San Gerardo, Monza, Italy
| | - Alessandra Raimondi
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Natalie Prinzi
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Filippo de Braud
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
- Department of Oncology, Università degli Studi di Milano, Milan, Italy
| | - Sara Pusceddu
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| |
Collapse
|
146
|
Mohsen MO, Speiser DE, Knuth A, Bachmann MF. Virus-like particles for vaccination against cancer. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1579. [PMID: 31456339 PMCID: PMC6916610 DOI: 10.1002/wnan.1579] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/31/2019] [Accepted: 07/16/2019] [Indexed: 12/21/2022]
Abstract
Active immunotherapy of cancer aims to treat the disease by inducing effective cellular and humoral immune responses. Virus‐like particle‐based vaccines have evolved dramatically over the last few decades, greatly reducing morbidity and mortality of several infectious diseases and expectedly preventing cervical cancer caused by human papilloma virus. In contrast to these broad successes of disease prevention, therapeutic cancer vaccines remain to demonstrate clinical benefit. Yet, several preclinical and clinical trials have revealed promising results and are paving the way for medical breakthroughs. This study reviews and discusses the recent preclinical development and clinical trials in this field. This article is categorized under: Biology‐Inspired Nanomaterials > Protein and Virus‐Based Structures Nanotechnology Approaches to Biology > Nanoscale Systems in Biology
Collapse
Affiliation(s)
- Mona O Mohsen
- The Interim Translational Research Institute "iTRI", National Center for Cancer Care & Research (NCCCR), Doha, Qatar.,Department of BioMedical Research, Immunology RIA, University of Bern, Bern, Switzerland
| | - Daniel E Speiser
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Alexander Knuth
- The Interim Translational Research Institute "iTRI", National Center for Cancer Care & Research (NCCCR), Doha, Qatar
| | - Martin F Bachmann
- Department of BioMedical Research, Immunology RIA, University of Bern, Bern, Switzerland.,Nuffield Department of Medicine, Jenner Institute, University of Oxford, Oxford, UK
| |
Collapse
|
147
|
Abstract
CAR-T cell therapy targeting CD19 has achieved remarkable success in the treatment of B cell malignancies, while various solid malignancies are still refractory for lack of suitable target. In recent years, a large number of studies have sought to find suitable targets with low “on target, off tumor” concern for the treatment of solid tumors. Mesothelin (MSLN), a tumor-associated antigen broadly overexpressed on various malignant tumor cells, while its expression is generally limited to normal mesothelial cells, is an attractive candidate for targeted therapy. Strategies targeting MSLN, including antibody-based drugs, vaccines and CAR-T therapies, have been assessed in a large number of preclinical investigations and clinical trials. In particular, the development of CAR-T therapy has shown great promise as a treatment for various types of cancers. The safety, efficacy, doses, and pharmacokinetics of relevant strategies have been evaluated in many clinical trials. This review is intended to provide a brief overview of the characteristics of mesothelin and the development of strategies targeting MSLN for solid tumors. Further, we discussed the challenges and proposed potential strategies to improve the efficacy of MSLN targeted immunotherapy.
Collapse
Affiliation(s)
- Jiang Lv
- 1Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,2Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,3University of Chinese Academy of Sciences, Shijingshan District, Beijing, China
| | - Peng Li
- 1Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,2Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
148
|
Timmermans M, Zwakman N, Sonke GS, Van de Vijver KK, Duk MJ, van der Aa MA, Kruitwagen RF. Perioperative change in CA125 is an independent prognostic factor for improved clinical outcome in advanced ovarian cancer. Eur J Obstet Gynecol Reprod Biol 2019; 240:364-369. [PMID: 31400565 DOI: 10.1016/j.ejogrb.2019.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 05/25/2019] [Accepted: 07/08/2019] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Despite being the most important prognostic factor for prolonged overall survival in epithelial ovarian cancer (EOC), the measurement of residual disease is hampered by its subjective character. Additional assessment tools are needed to establish the success of cytoreductive surgery in order to predict patients' prognosis more accurately. The aim of this study is to evaluate the independent prognostic value of perioperative CA125 change in advanced stage EOC patients. STUDY DESIGN We identified all patients who underwent primary cytoreductive surgery for advanced stage (FIGO IIB-IV) EOC between 2008 and 2015, from the Netherlands Cancer Registry. The relative perioperative change in CA125 was categorized into four groups; increase, <50% decline, 50-79% decline and ≥80% decline. Overall survival (OS) was analyzed using Kaplan-Meier survival curves and multivariable cox regression models. RESULTS We included 1232 eligible patients with known pre- and postoperative CA125 serum levels. Patients with a decline of ≥80% in CA125 levels experienced improved OS compared to those with a decline of <50% (univariable Hazard Ratio (HR) 0.45, 95%CI 0.36-0.57). The prognostic effect of perioperative CA125 change was independent of patient- and treatment characteristics, such as the extent of residual disease after cytoreductive surgery (multivariable HR≥80% 0.52(0.41-0.66)). CONCLUSIONS This study shows that the perioperative change in CA125 is an independent prognostic factor for overall survival after primary surgery for EOC patients. This pleads for the use of a combined model, consisting of perioperative CA125 change and the outcome of residual disease, in order to predict the prognosis of EOC patients more accurately.
Collapse
Affiliation(s)
- M Timmermans
- Department of Research, Netherlands Comprehensive Cancer Organization (IKNL), Utrecht, the Netherlands; Department of Obstetrics and Gynecology, Maastricht University Medical Centre, Maastricht, The Netherlands, GROW - School for Oncology and Developmental Biology, Maastricht, the Netherlands.
| | - N Zwakman
- Department of Obstetrics and Gynecology, VieCuri Medical Center, Venlo, the Netherlands
| | - G S Sonke
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - K K Van de Vijver
- Department of Pathology, Ghent University Hospital, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - M J Duk
- Department of Obstetrics and Gynecology, Meander Medical Center, Amersfoort, the Netherlands
| | - M A van der Aa
- Department of Research, Netherlands Comprehensive Cancer Organization (IKNL), Utrecht, the Netherlands
| | - R F Kruitwagen
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre, Maastricht, The Netherlands, GROW - School for Oncology and Developmental Biology, Maastricht, the Netherlands
| |
Collapse
|
149
|
Yohannes E, Kazanjian AA, Lindsay ME, Fujii DT, Ieronimakis N, Chow GE, Beesley RD, Heitmann RJ, Burney RO. The human tubal lavage proteome reveals biological processes that may govern the pathology of hydrosalpinx. Sci Rep 2019; 9:8980. [PMID: 31222072 PMCID: PMC6586608 DOI: 10.1038/s41598-019-44962-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 05/24/2019] [Indexed: 12/12/2022] Open
Abstract
Hydrosalpinx, the blockage of fallopian tubes, can result from pelvic inflammatory disease. Hydrosalpinx is a cause of infertility and negatively impacts in vitro fertilization. To better understand the pathobiology of hydrosalpinx, we compared the proteome of lavages from disease vs. healthy fallopian tubes. Results indicate a disruption of redox homeostasis and activation of the complement system, immune cell infiltration, and phagocytosis; pathways that may drive tubal injury. To our surprise among the most prominent proteins with hydrosalpinx was mesothelin (MSLN), which until now has only been associated with epithelial malignancies. Analogous to mesothelioma and ovarian carcinoma, a significant increase of MSLN was detected in plasma from patients with hydrosalpinx. This finding suggests MSLN may provide clinical diagnosis in lieu of the current approaches that require invasive imaging. Importantly, these findings implicate MSLN in a benign disease, indicating that the activation and role of MSLN is not restricted to cancer.
Collapse
Affiliation(s)
- Elizabeth Yohannes
- Department of Clinical Investigation, Division of Graduate Medical Education, Madigan Army Medical Center, 9040 Jackson Ave, Tacoma, WA, 98431, USA.
| | - Avedis A Kazanjian
- Department of Clinical Investigation, Division of Graduate Medical Education, Madigan Army Medical Center, 9040 Jackson Ave, Tacoma, WA, 98431, USA
| | - Morgan E Lindsay
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Madigan Army Medical Center, 9040 Jackson Ave, Tacoma, WA, 98431, USA
| | - Dennis T Fujii
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Madigan Army Medical Center, 9040 Jackson Ave, Tacoma, WA, 98431, USA
| | - Nicholas Ieronimakis
- Department of Clinical Investigation, Division of Graduate Medical Education, Madigan Army Medical Center, 9040 Jackson Ave, Tacoma, WA, 98431, USA
| | - Gregory E Chow
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Madigan Army Medical Center, 9040 Jackson Ave, Tacoma, WA, 98431, USA
| | - Ronald D Beesley
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Madigan Army Medical Center, 9040 Jackson Ave, Tacoma, WA, 98431, USA
| | - Ryan J Heitmann
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Madigan Army Medical Center, 9040 Jackson Ave, Tacoma, WA, 98431, USA
| | - Richard O Burney
- Department of Clinical Investigation, Division of Graduate Medical Education, Madigan Army Medical Center, 9040 Jackson Ave, Tacoma, WA, 98431, USA.,Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Madigan Army Medical Center, 9040 Jackson Ave, Tacoma, WA, 98431, USA
| |
Collapse
|
150
|
Modified CAR T cells targeting membrane-proximal epitope of mesothelin enhances the antitumor function against large solid tumor. Cell Death Dis 2019; 10:476. [PMID: 31209210 PMCID: PMC6572851 DOI: 10.1038/s41419-019-1711-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 12/13/2022]
Abstract
Mesothelin (MSLN) is an attractive antigen for chimeric antigen receptor (CAR) T therapy and the epitope selection within MSLN is essential. In this study, we constructed two types of CARs targeting either region I of MSLN (meso1 CAR, also known as a membrane-distal region) or region III of MSLN (meso3 CAR, also known as a membrane-proximal region) using a modified piggyBac transposon system. We reported that, compared with meso1 CAR T cells, meso3 CAR T cells express higher levels of CD107α upon activation and produce increased levels of interleukin-2, TNF-α, and IFN-γ against multiple MSLN-expressing cancer cells in vitro. In a real-time cell analyzer system and a three-dimensional spheroid cancer cell model, we also demonstrated that meso3 CAR T cells display an enhanced killing effect compared with that of meso1 CAR T cells. More importantly, in a gastric cancer NSG mice model, meso3 CAR T cells mediated stronger antitumor responses than meso1 CAR T cells did. We further identified that meso3 CAR T cells can effectively inhibit the growth of large ovarian tumors in vivo. Collectively, our study provides evidences that meso3 CAR T-cell therapy performs as a better immunotherapy than meso1 CAR T-cell therapy in treating MSLN-positive solid tumors.
Collapse
|