101
|
Chen EC, Liang X, Yee SW, Geier EG, Stocker SL, Chen L, Giacomini KM. Targeted disruption of organic cation transporter 3 attenuates the pharmacologic response to metformin. Mol Pharmacol 2015; 88:75-83. [PMID: 25920679 PMCID: PMC4468641 DOI: 10.1124/mol.114.096776] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 04/28/2015] [Indexed: 01/07/2023] Open
Abstract
Metformin, the most widely prescribed antidiabetic drug, requires transporters to enter tissues involved in its pharmacologic action, including liver, kidney, and peripheral tissues. Organic cation transporter 3 (OCT3, SLC22A3), expressed ubiquitously, transports metformin, but its in vivo role in metformin response is not known. Using Oct3 knockout mice, the role of the transporter in metformin pharmacokinetics and pharmacodynamics was determined. After an intravenous dose of metformin, a 2-fold decrease in the apparent volume of distribution and clearance was observed in knockout compared with wild-type mice (P < 0.001), indicating an important role of OCT3 in tissue distribution and elimination of the drug. After oral doses, a significantly lower bioavailability was observed in knockout compared with wild-type mice (0.27 versus 0.58, P < 0.001). Importantly, metformin's effect on the plasma glucose concentration-time curve was reduced in knockout compared with wild-type mice (12 versus 30% reduction, respectively, P < 0.05) along with its accumulation in skeletal muscle and adipose tissue (P < 0.05). Furthermore, the effect of metformin on phosphorylation of AMP activated protein kinase, and expression of glucose transporter type 4 was absent in the adipose tissue of Oct3(-/-) mice. Additional analysis revealed that an OCT3 3' untranslated region variant was associated with reduced activity in luciferase assays and reduced response to metformin in 57 healthy volunteers. These findings suggest that OCT3 plays an important role in the absorption and elimination of metformin and that the transporter is a critical determinant of metformin bioavailability, clearance, and pharmacologic action.
Collapse
Affiliation(s)
- Eugene C Chen
- Department of Bioengineering and Therapeutic Sciences (E.C.C., X.L., S.W.Y., E.G.G, S.L.S., K.M.G.) and Institute for Human Genetics (K.M.G.),University of California, San Francisco, California; and Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing, China (L.C.)
| | - Xiaomin Liang
- Department of Bioengineering and Therapeutic Sciences (E.C.C., X.L., S.W.Y., E.G.G, S.L.S., K.M.G.) and Institute for Human Genetics (K.M.G.),University of California, San Francisco, California; and Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing, China (L.C.)
| | - Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences (E.C.C., X.L., S.W.Y., E.G.G, S.L.S., K.M.G.) and Institute for Human Genetics (K.M.G.),University of California, San Francisco, California; and Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing, China (L.C.)
| | - Ethan G Geier
- Department of Bioengineering and Therapeutic Sciences (E.C.C., X.L., S.W.Y., E.G.G, S.L.S., K.M.G.) and Institute for Human Genetics (K.M.G.),University of California, San Francisco, California; and Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing, China (L.C.)
| | - Sophie L Stocker
- Department of Bioengineering and Therapeutic Sciences (E.C.C., X.L., S.W.Y., E.G.G, S.L.S., K.M.G.) and Institute for Human Genetics (K.M.G.),University of California, San Francisco, California; and Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing, China (L.C.)
| | - Ligong Chen
- Department of Bioengineering and Therapeutic Sciences (E.C.C., X.L., S.W.Y., E.G.G, S.L.S., K.M.G.) and Institute for Human Genetics (K.M.G.),University of California, San Francisco, California; and Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing, China (L.C.)
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences (E.C.C., X.L., S.W.Y., E.G.G, S.L.S., K.M.G.) and Institute for Human Genetics (K.M.G.),University of California, San Francisco, California; and Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing, China (L.C.)
| |
Collapse
|
102
|
Calcagno A, Di Perri G, Bonora S. Pharmacokinetics and pharmacodynamics of antiretrovirals in the central nervous system. Clin Pharmacokinet 2015; 53:891-906. [PMID: 25200312 DOI: 10.1007/s40262-014-0171-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
HIV-positive patients may be effectively treated with highly active antiretroviral therapy and such a strategy is associated with striking immune recovery and viral load reduction to very low levels. Despite undeniable results, the central nervous system (CNS) is commonly affected during the course of HIV infection, with neurocognitive disorders being as prevalent as 20-50 % of treated subjects. This review discusses the pathophysiology of CNS infection by HIV and the barriers to efficacious control of such a mechanism, including the available data on compartmental drug penetration and on pharmacokinetic/pharmacodynamic relationships. In the reviewed articles, a high variability in drug transfer to the CNS is highlighted with several mechanisms as well as methodological issues potentially influencing the observed results. Nevirapine and zidovudine showed the highest cerebrospinal fluid (CSF) to plasma ratios, although target concentrations are currently unknown for the CNS. The use of the composite CSF concentration effectiveness score has been associated with better virological outcomes (lower HIV RNA) but has been inconsistently associated with neurocognitive outcomes. These findings support the CNS effectiveness of commonly used highly antiretroviral therapies. The use of antiretroviral drugs with increased CSF penetration and/or effectiveness in treating or preventing neurocognitive disorders however needs to be assessed in well-designed prospective studies.
Collapse
Affiliation(s)
- Andrea Calcagno
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, c/o Ospedale Amedeo di Savoia, C.so Svizzera 164, 10159, Torino, Italy,
| | | | | |
Collapse
|
103
|
Prostaglandin Transporter (PGT/SLCO2A1) Protects the Lung from Bleomycin-Induced Fibrosis. PLoS One 2015; 10:e0123895. [PMID: 25923111 PMCID: PMC4414486 DOI: 10.1371/journal.pone.0123895] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 03/02/2015] [Indexed: 12/16/2022] Open
Abstract
Prostaglandin (PG) E2 exhibits an anti-fibrotic effect in the lung in response to inflammatory reactions and is a high-affinity substrate of PG transporter (SLCO2A1). The present study aimed to evaluate the pathophysiological relevance of SLCO2A1 to bleomycin (BLM)-induced pulmonary fibrosis in mice. Immunohistochemical analysis indicated that Slco2a1 protein was expressed in airway and alveolar type I (ATI) and II (ATII) epithelial cells, and electron-microscopic immunohistochemistry further demonstrated cell surface expression of Slco2a1 in ATI cells in wild type (WT) C57BL/6 mice. PGE2 uptake activity was abrogated in ATI-like cells from Slco2a1-deficient (Slco2a1-/-) mice, which was clearly observed in the cells from WT mice. Furthermore, the PGE2 concentrations in lung tissues were lower in Slco2a1-/- than in WT mice. The pathological relevance of SLCO2A1 was further studied in mouse BLM-induced pulmonary fibrosis models. BLM (1 mg/kg) or vehicle (phosphate buffered saline) was intratracheally injected into WT and Slco2a1-/- mice, and BLM-induced fibrosis was evaluated on day 14. BLM induced more severe fibrosis in Slco2a1-/- than in WT mice, as indicated by thickened interstitial connective tissue and enhanced collagen deposition. PGE2 levels were higher in bronchoalveolar lavage fluid, but lower in lung tissues of Slco2a1-/- mice. Transcriptional upregulation of TGF-β1 was associated with enhanced gene transcriptions of downstream targets including plasminogen activator inhitor-1. Furthermore, Western blot analysis demonstrated a significant activation of protein kinase C (PKC) δ along with a modest activation of Smad3 in lung from Slco2a1-/- mice, suggesting a role of PKCδ associated with TGF-β signaling in aggravated fibrosis in BLM-treated Slco2a1-/- mice. In conclusion, pulmonary PGE2 disposition is largely regulated by SLCO2A1, demonstrating that SLCO2A1 plays a critical role in protecting the lung from BLM-induced fibrosis.
Collapse
|
104
|
Yamase Y, Horibe H, Ueyama C, Fujimaki T, Oguri M, Kato K, Arai M, Watanabe S, Yamada Y. Association of TOMM40 and SLC22A4 polymorphisms with ischemic stroke. Biomed Rep 2015; 3:491-498. [PMID: 26171154 DOI: 10.3892/br.2015.457] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 04/03/2015] [Indexed: 01/01/2023] Open
Abstract
Recent genome-wide association studies (GWASs) and their meta-analyses have identified various genes and loci underlying the predisposition to ischemic stroke or coronary artery disease in Caucasian populations. Given that ischemic stroke and coronary artery disease may have a shared genetic architecture, certain polymorphisms may confer genetic susceptibility to these two diseases. The aim of the present study was to examine the possible association of ischemic stroke with 29 single-nucleotide polymorphisms (SNPs) previously identified by the meta-analyses of GWASs as susceptibility loci for coronary artery disease. The study population comprised 3,187 Japanese individuals, including 894 subjects with ischemic stroke and 2,293 controls. The genotypes for the 29 SNPs of the 28 genes were determined by a method that combines the polymerase chain reaction and sequence-specific oligonucleotide probes with suspension array technology. Comparisons of the allele frequencies by the χ2 test between subjects with ischemic stroke and controls revealed that rs9319428 (G→A) of the fms-related tyrosine kinase 1 gene (P=0.0471), rs2075650 (G→A) of the translocase of outer mitochondrial membrane 40 homolog gene (TOMM40, P=0.0102) and rs273909 (T→C) of the solute carrier family 22, member 4 gene (SLC22A4, P=0.0097) were significantly (P<0.05) associated with the prevalence of ischemic stroke. Multivariable logistic regression analysis with adjustment for age, gender, body mass index, smoking status and the prevalence of hypertension, diabetes mellitus and dyslipidemia revealed that rs2075650 of TOMM40 (P=0.0443; recessive model; odds ratio=0.50) and rs273909 of SLC22A4 (P=0.0123; dominant model; odds ratio=0.45) were significantly associated with ischemic stroke with the minor G and C allele, respectively, being protective against this condition. TOMM40 and SLC22A4 may thus be susceptibility loci for ischemic stroke in Japanese individuals.
Collapse
Affiliation(s)
- Yuichiro Yamase
- Department of Cardiovascular Medicine, Gifu Prefectural Tajimi Hospital, Tajimi, Gifu 507-8522, Japan
| | - Hideki Horibe
- Department of Cardiovascular Medicine, Gifu Prefectural Tajimi Hospital, Tajimi, Gifu 507-8522, Japan
| | - Chikara Ueyama
- Department of Cardiovascular Medicine, Gifu Prefectural Tajimi Hospital, Tajimi, Gifu 507-8522, Japan
| | - Tetsuo Fujimaki
- Department of Cardiovascular Medicine, Inabe General Hospital, Inabe, Mie 511-0428, Japan
| | - Mitsutoshi Oguri
- Department of Cardiology, Kasugai Municipal Hospital, Kasugai, Aichi 486-8510, Japan
| | - Kimihiko Kato
- Department of Internal Medicine, Meitoh Hospital, Nagoya, Aichi 465-0025, Japan
| | - Masazumi Arai
- Department of Cardiology, Gifu Prefectural General Medical Center, Gifu 500-8717, Japan
| | - Sachiro Watanabe
- Department of Cardiology, Gifu Prefectural General Medical Center, Gifu 500-8717, Japan
| | - Yoshiji Yamada
- Department of Human Functional Genomics, Life Science Research Center, Mie University, Tsu, Mie 514-8507, Japan
| |
Collapse
|
105
|
Ingoglia F, Visigalli R, Rotoli BM, Barilli A, Riccardi B, Puccini P, Dall'Asta V. Functional characterization of the organic cation transporters (OCTs) in human airway pulmonary epithelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1563-72. [PMID: 25883089 DOI: 10.1016/j.bbamem.2015.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 03/25/2015] [Accepted: 04/02/2015] [Indexed: 12/28/2022]
Abstract
Organic cation transporters (OCT1-3) mediate the transport of organic cations including inhaled drugs across the cell membrane, although their role in lung epithelium hasn't been well understood yet. We address here the expression and functional activity of OCT1-3 in human airway epithelial cells A549, Calu-3 and NCl-H441. Kinetic and inhibition analyses, employing [(3)H]1-methyl-4-phenylpyridinium (MPP+) as substrate, and the compounds quinidine, prostaglandine E2 (PGE2) and corticosterone as preferential inhibitors of OCT1, OCT2, and OCT3, respectively, have been performed. A549 cells present a robust MPP+ uptake mediated by one high-affinity component (Km~50μM) which is identifiable with OCT3. Corticosterone, indeed, completely inhibits MPP+ transport, while quinidine and PGE2 are inactive and SLC22A3/OCT3 silencing with siRNA markedly lowers MPP+ uptake. Conversely, Calu-3 exhibits both a high (Km<20μM) and a low affinity (Km>0.6mM) transport components, referable to OCT3 and OCT1, respectively, as demonstrated by the inhibition analysis performed at proper substrate concentrations and confirmed by the use of specific siRNA. These transporters are active also when cells are grown under air-liquid interface (ALI) conditions. Only a very modest saturable MPP+ uptake is measurable in NCl-H441 cells and the inhibitory effect of quinidine points to OCT1 as the subtype functionally involved in this model. Finally, the characterization of MPP+ transport in human bronchial BEAS-2B cells suggests that OCT1 and OCT3 are operative. These findings could help to identify in vitro models to be employed for studies concerning the specific involvement of each transporter in drug transportation.
Collapse
Affiliation(s)
- Filippo Ingoglia
- Dept. of Biomedical, Biotechnological and Translational Sciences (SBiBiT), University of Parma, Via Volturno 39, 43125 Parma, Italy
| | - Rossana Visigalli
- Dept. of Biomedical, Biotechnological and Translational Sciences (SBiBiT), University of Parma, Via Volturno 39, 43125 Parma, Italy
| | - Bianca Maria Rotoli
- Dept. of Biomedical, Biotechnological and Translational Sciences (SBiBiT), University of Parma, Via Volturno 39, 43125 Parma, Italy
| | - Amelia Barilli
- Dept. of Biomedical, Biotechnological and Translational Sciences (SBiBiT), University of Parma, Via Volturno 39, 43125 Parma, Italy
| | - Benedetta Riccardi
- Preclinical Pharmacokinetics, Biochemistry & Metabolism Dept., Chiesi Farmaceutici, Largo F. Belloli 11/A, 43122 Parma, Italy
| | - Paola Puccini
- Preclinical Pharmacokinetics, Biochemistry & Metabolism Dept., Chiesi Farmaceutici, Largo F. Belloli 11/A, 43122 Parma, Italy
| | - Valeria Dall'Asta
- Dept. of Biomedical, Biotechnological and Translational Sciences (SBiBiT), University of Parma, Via Volturno 39, 43125 Parma, Italy.
| |
Collapse
|
106
|
Moss DM, Liptrott NJ, Siccardi M, Owen A. Interactions of antiretroviral drugs with the SLC22A1 (OCT1) drug transporter. Front Pharmacol 2015; 6:78. [PMID: 25914645 PMCID: PMC4392609 DOI: 10.3389/fphar.2015.00078] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/27/2015] [Indexed: 11/16/2022] Open
Abstract
The SLC22A1 influx transporter is expressed on the basolateral membrane of hepatocytes and is involved in the excretion of numerous cations. Inhibition of SLC22A1 by several antiretrovirals, such as the protease inhibitor darunavir, has not previously been determined. In order to better understand and predict drug-SLC22A1 interactions, a range of antiretrovirals were screened for SLC22A1-associated inhibition and transport. Stable SLC22A1-expressing KCL22 cells were produced previously by nucleofection. Control KCL22 cells were transfected with the empty vector pcDNA3.1. Accumulation of tetraethylammonium (5.5 μM, 30 min) was determined in SLC22A1-expressing and mock-transfected cells with and without 50 μM of SLC22A1 inhibitor prazosin, or 50 μM of each antiretroviral drug. SLC22A1 IC50 values for efavirenz, darunavir, and prazosin were determined. Cellular accumulation of efavirenz and darunavir was also assessed in SLC22A1-expressing KCL22 cells and reversibility of this accumulation was assessed using prazosin. Tetraethylammonium accumulation was higher in SLC22A1-expressing cells compared to mock-transfected cells (10.6 ± 0.8 μM vs. 0.3 ± 0.004 μM, p = 0.009) and was significantly reduced in SLC22A1-expressing cells when co-incubated with all antiretrovirals tested except atazanavir, lamivudine, tenofovir, zidovudine, and raltegravir. Particularly noticeable was the predominance of SLC22A1 inhibitors in the protease inhibitor and non-nucleoside reverse transcriptase inhibitor classes. Absolute SLC22A1 IC50 values for efavirenz, darunavir, and prazosin were 21.8, 46.2, and 2.8 μM, respectively. Efavirenz accumulation was higher in SLC22A1-expressing cells compared to mock-transfected cells (17% higher, p = 0.009) which was reversed using prazosin, whereas no difference was observed for darunavir (p = 0.86). These data inform the mechanistic basis for disposition, drug-drug interactions and pharmacogenetic candidate gene selection for antiretroviral drugs.
Collapse
Affiliation(s)
- Darren M Moss
- Department of Molecular and Clinical Pharmacology, University of Liverpool Liverpool, UK
| | - Neill J Liptrott
- Department of Molecular and Clinical Pharmacology, University of Liverpool Liverpool, UK
| | - Marco Siccardi
- Department of Molecular and Clinical Pharmacology, University of Liverpool Liverpool, UK
| | - Andrew Owen
- Department of Molecular and Clinical Pharmacology, University of Liverpool Liverpool, UK
| |
Collapse
|
107
|
Poulin P, Chen YH, Ding X, Gould SE, Hop CE, Messick K, Oeh J, Liederer BM. Prediction of Drug Distribution in Subcutaneous Xenografts of Human Tumor Cell Lines and Healthy Tissues in Mouse: Application of the Tissue Composition-Based Model to Antineoplastic Drugs. J Pharm Sci 2015; 104:1508-21. [DOI: 10.1002/jps.24336] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 12/05/2014] [Accepted: 12/12/2014] [Indexed: 12/20/2022]
|
108
|
The characterization of the human cell line Calu-3 under different culture conditions and its use as an optimized in vitro model to investigate bronchial epithelial function. Eur J Pharm Sci 2015; 69:1-9. [DOI: 10.1016/j.ejps.2014.12.017] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 12/16/2014] [Accepted: 12/24/2014] [Indexed: 01/04/2023]
|
109
|
Involvement of Organic Cation Transporters in the Clearance and Milk Secretion of Thiamine in Mice. Pharm Res 2015; 32:2192-204. [DOI: 10.1007/s11095-014-1608-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 12/12/2014] [Indexed: 01/19/2023]
|
110
|
|
111
|
Wada E, Koyanagi S, Kusunose N, Akamine T, Masui H, Hashimoto H, Matsunaga N, Ohdo S. Modulation of peroxisome proliferator-activated receptor-α activity by bile acids causes circadian changes in the intestinal expression of Octn1/Slc22a4 in mice. Mol Pharmacol 2015; 87:314-22. [PMID: 25422143 DOI: 10.1124/mol.114.094979] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In addition to their digestive actions, bile acids modulate gene expression by altering the activity of peroxisome proliferator-activated receptor-α (PPARα). The modulatory effects of bile acids have been shown to affect the expression of genes responsible for lipid metabolism as well as membrane transporters. Bile acids are secreted in response to food intake and accumulate in intestinal epithelial cells. In the present study, we identified soluble carrier protein family 22 member 4 (Slc22a4), encoding organic cation transporter novel type-1 (Octn1), as a PPARα-regulated gene and its intestinal expression exhibited circadian oscillations in a bile acid-dependent manner. Nocturnally active mice mainly consumed their food around the early dark phase, during which bile acids accumulated in intestinal epithelial cells. PPARα activated the intestinal expression of Slc22a4 mRNA during the light period, and protein levels of Octn1 peaked before the start of the dark phase. The bile acids that accumulated in intestinal epithelial cells suppressed the PPARα-mediated transactivation of Slc22a4 in the dark phase. The time-dependent suppression of PPARα-mediated transactivation by bile acids regulated oscillations in the intestinal expression of Octn1/Slc22a4 during the daily feeding cycle. The results of a pharmacokinetic analysis also revealed that oscillations in the expression of Octn1 caused dosing time-dependent differences in the intestinal absorption of gabapentin (2-[1-(aminomethyl)cyclohexyl]acetic acid). These results suggest a molecular clock-independent mechanism by which bile acid-regulated PPARα activity governs the circadian expression of intestinal organic cation transporters. This mechanism could also account for interindividual variations in the pharmacokinetics of drugs that are substrates of Octn1.
Collapse
Affiliation(s)
- Erika Wada
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoru Koyanagi
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoki Kusunose
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Takahiro Akamine
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroaki Masui
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Hana Hashimoto
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoya Matsunaga
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Shigehiro Ohdo
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
112
|
Zhou J, Xu J, Huang Z, Wang M. Transporter-mediated tissue targeting of therapeutic molecules in drug discovery. Bioorg Med Chem Lett 2015; 25:993-7. [PMID: 25650254 DOI: 10.1016/j.bmcl.2015.01.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 12/26/2014] [Accepted: 01/07/2015] [Indexed: 12/20/2022]
Abstract
Tissue concentrations of endogenous chemicals and nutrients are in large part regulated by membrane transporters through their substrate specificity and differential tissue distributions. These transporters also play a key role in the disposition of therapeutic agents thus affecting their efficacy and safety profile. A transporter-mediated tissue targeting strategy, where the structural features recognized by the transporters are incorporated into the therapeutic molecule, is emerging as an effective approach in drug discovery. In this digest, we review this phenomenon and highlight recent cases in the design of liver and kidney targeted drug molecules.
Collapse
Affiliation(s)
- Jingye Zhou
- Lilly China Research and Development Center (LCRDC), Eli Lilly and Company, Building 8, 338 Jia Li Lue Road, Shanghai 201203, PR China
| | - Jianfeng Xu
- Lilly China Research and Development Center (LCRDC), Eli Lilly and Company, Building 8, 338 Jia Li Lue Road, Shanghai 201203, PR China
| | - Zheng Huang
- Lilly China Research and Development Center (LCRDC), Eli Lilly and Company, Building 8, 338 Jia Li Lue Road, Shanghai 201203, PR China
| | - Minmin Wang
- Lilly China Research and Development Center (LCRDC), Eli Lilly and Company, Building 8, 338 Jia Li Lue Road, Shanghai 201203, PR China
| |
Collapse
|
113
|
Comparison of minipig, dog, monkey and human drug metabolism and disposition. J Pharmacol Toxicol Methods 2014; 74:80-92. [PMID: 25545337 DOI: 10.1016/j.vascn.2014.12.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/02/2014] [Accepted: 12/16/2014] [Indexed: 02/06/2023]
Abstract
INTRODUCTION This article gives an overview of the drug metabolism and disposition (ADME) characteristics of the most common non-rodent species used in toxicity testing of drugs (minipigs, dogs, and monkeys) and compares these to human characteristics with regard to enzymes mediating the metabolism of drugs and the transport proteins which contribute to the absorption, distribution and excretion of drugs. METHODS Literature on ADME and regulatory guidelines of relevance in drug development of small molecules has been gathered. RESULTS Non-human primates (monkeys) are the species that is closest to humans in terms of genetic homology. Dogs have an advantage due to the ready availability of comprehensive background data for toxicological safety assessment and dogs are easy to handle. Pigs have been used less than dogs and monkeys as a model in safety assessment of drug candidates. However, when a drug candidate is metabolised by aldehyde oxidase (AOX1), N-acetyltransferases (NAT1 and NAT2) or cytochrome (CYP2C9-like) enzymes which are not expressed in dogs, but are present in pigs, this species may be a better choice than dogs, provided that adequate exposure can be obtained in pigs. Conversely, pigs might not be the right choice if sulfation, involving 3-phospho-adenosyl-5-phosphosulphate sulphotransferase (PAPS) is an important pathway in the human metabolism of a drug candidate. DISCUSSION In general, the species selection should be based on comparison between in vitro studies with human cell-based systems and animal-cell-based systems. Results from pharmacokinetic studies are also important for decision-making by establishing the obtainable exposure level in the species. Access to genetically humanized mouse models and highly sensitive analytical methods (accelerator mass spectrometry) makes it possible to improve the chance of finding all metabolites relevant for humans before clinical trials have been initiated and, if necessary, to include another animal species before long term toxicity studies are initiated. In conclusion, safety testing can be optimized by applying knowledge about species ADME differences and utilising advanced analytical techniques.
Collapse
|
114
|
Haghi M, Ong HX, Traini D, Young P. Across the pulmonary epithelial barrier: Integration of physicochemical properties and human cell models to study pulmonary drug formulations. Pharmacol Ther 2014; 144:235-52. [DOI: 10.1016/j.pharmthera.2014.05.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 04/30/2014] [Indexed: 11/16/2022]
|
115
|
Moss DM, Neary M, Owen A. The role of drug transporters in the kidney: lessons from tenofovir. Front Pharmacol 2014; 5:248. [PMID: 25426075 PMCID: PMC4227492 DOI: 10.3389/fphar.2014.00248] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 10/24/2014] [Indexed: 12/15/2022] Open
Abstract
Tenofovir disoproxil fumarate, the prodrug of nucleotide reverse transcriptase inhibitor tenofovir, shows high efficacy and relatively low toxicity in HIV patients. However, long-term kidney toxicity is now acknowledged as a modest but significant risk for tenofovir-containing regimens, and continuous use of tenofovir in HIV therapy is currently under question by practitioners and researchers. Co-morbidities (hepatitis C, diabetes), low body weight, older age, concomitant administration of potentially nephrotoxic drugs, low CD4 count, and duration of therapy are all risk factors associated with tenofovir-associated tubular dysfunction. Tenofovir is predominantly eliminated via the proximal tubules of the kidney, therefore drug transporters expressed in renal proximal tubule cells are believed to influence tenofovir plasma concentration and toxicity in the kidney. We review here the current evidence that the actions, pharmacogenetics, and drug interactions of drug transporters are relevant factors for tenofovir-associated tubular dysfunction. The use of creatinine and novel biomarkers for kidney damage, and the role that drug transporters play in biomarker disposition, are discussed. The lessons learnt from investigating the role of transporters in tenofovir kidney elimination and toxicity can be utilized for future drug development and clinical management programs.
Collapse
Affiliation(s)
- Darren M Moss
- Department of Molecular and Clinical Pharmacology, University of Liverpool Liverpool, UK
| | - Megan Neary
- Department of Molecular and Clinical Pharmacology, University of Liverpool Liverpool, UK
| | - Andrew Owen
- Department of Molecular and Clinical Pharmacology, University of Liverpool Liverpool, UK
| |
Collapse
|
116
|
Flynn TJ, Phipps-Green A, Hollis-Moffatt JE, Merriman ME, Topless R, Montgomery G, Chapman B, Stamp LK, Dalbeth N, Merriman TR. Association analysis of the SLC22A11 (organic anion transporter 4) and SLC22A12 (urate transporter 1) urate transporter locus with gout in New Zealand case-control sample sets reveals multiple ancestral-specific effects. Arthritis Res Ther 2014; 15:R220. [PMID: 24360580 PMCID: PMC3978909 DOI: 10.1186/ar4417] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 12/12/2013] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION There is inconsistent association between urate transporters SLC22A11 (organic anion transporter 4 (OAT4)) and SLC22A12 (urate transporter 1 (URAT1)) and risk of gout. New Zealand (NZ) Māori and Pacific Island people have higher serum urate and more severe gout than European people. The aim of this study was to test genetic variation across the SLC22A11/SLC22A12 locus for association with risk of gout in NZ sample sets. METHODS A total of 12 single nucleotide polymorphism (SNP) variants in four haplotype blocks were genotyped using TaqMan® and Sequenom MassArray in 1003 gout cases and 1156 controls. All cases had gout according to the 1977 American Rheumatism Association criteria. Association analysis of single markers and haplotypes was performed using PLINK and Stata. RESULTS A haplotype block 1 SNP (rs17299124) (upstream of SLC22A11) was associated with gout in less admixed Polynesian sample sets, but not European Caucasian (odds ratio; OR = 3.38, P = 6.1 × 10-4; OR = 0.91, P = 0.40, respectively) sample sets. A protective block 1 haplotype caused the rs17299124 association (OR = 0.28, P = 6.0 × 10-4). Within haplotype block 2 (SLC22A11) we could not replicate previous reports of association of rs2078267 with gout in European Caucasian (OR = 0.98, P = 0.82) sample sets, however this SNP was associated with gout in Polynesian (OR = 1.51, P = 0.022) sample sets. Within haplotype block 3 (including SLC22A12) analysis of haplotypes revealed a haplotype with trans-ancestral protective effects (OR = 0.80, P = 0.004), and a second haplotype conferring protection in less admixed Polynesian sample sets (OR = 0.63, P = 0.028) but risk in European Caucasian samples (OR = 1.33, P = 0.039). CONCLUSIONS Our analysis provides evidence for multiple ancestral-specific effects across the SLC22A11/SLC22A12 locus that presumably influence the activity of OAT4 and URAT1 and risk of gout. Further fine mapping of the association signal is needed using trans-ancestral re-sequence data.
Collapse
|
117
|
Zhou T, Hu M, Pearlman A, Patton D, Rohan L. Expression and localization of p-glycoprotein, multidrug resistance protein 4, and breast cancer resistance protein in the female lower genital tract of human and pigtailed macaque. AIDS Res Hum Retroviruses 2014; 30:1106-16. [PMID: 24803409 PMCID: PMC4212939 DOI: 10.1089/aid.2013.0281] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Antiretroviral drug absorption and disposition in cervicovaginal tissue is important for the effectiveness of vaginally or orally administered drug products in preexposure prophylaxis (PrEP) of HIV-1 sexual transmission to women. Therefore, it is imperative to understand critical determinants of cervicovaginal tissue pharmacokinetics. This study aimed to examine the mRNA expression and protein localization of three efflux transporters, P-glycoprotein (P-gp), multidrug resistance-associated protein 4 (MRP4), and breast cancer resistance protein (BCRP), in the lower genital tract of premenopausal women and pigtailed macaques. Along the human lower genital tract, the three transporters were moderately to highly expressed compared to colorectal tissue and liver, as revealed by real-time reverse transcriptase polymerase chain reaction (RT-PCR). In a given genital tract segment, the transporter with the highest expression level was either BCRP or P-gp, while MRP4 was always expressed at the lowest level among the three transporters tested. The immunohistochemical staining showed that P-gp and MRP4 were localized in multiple cell types including epithelial cells and vascular endothelial cells. BCRP was predominantly localized in the vascular endothelial cells. Differences in transporter mRNA level and localization were observed among endocervix, ectocervix, and vagina. Compared to human tissues, the macaque cervicovaginal tissues displayed comparable expression and localization patterns of the three transporters, although subtle differences were observed between the two species. The role of these cervicovaginal transporters in drug absorption and disposition warrants further studies. The resemblance between human and pigtailed macaque in transporter expression and localization suggests the utility of the macaque model in the studies of human cervicovaginal transporters.
Collapse
Affiliation(s)
- Tian Zhou
- 1 Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh , Pittsburgh, Pennsylvania
| | | | | | | | | |
Collapse
|
118
|
Brenner S, Klameth L, Riha J, Schölm M, Hamilton G, Bajna E, Ausch C, Reiner A, Jäger W, Thalhammer T, Buxhofer-Ausch V. Specific expression of OATPs in primary small cell lung cancer (SCLC) cells as novel biomarkers for diagnosis and therapy. Cancer Lett 2014; 356:517-24. [PMID: 25301452 DOI: 10.1016/j.canlet.2014.09.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/16/2014] [Accepted: 09/25/2014] [Indexed: 12/27/2022]
Abstract
The expression of organic anion transporting polypeptides (OATPs) was elucidated in cell lines from small cell lung cancer (SCLC) and lung carcinoids and in paraffin-embedded samples from primary and metastatic SCLCs. We found a strong relationship between OATP expression and the origin of the cells, as cells from primary or metastatic SCLC and carcinoid tumors differ with respect to OATP levels. OATP4A1 is most prominent in non-malignant lung tissue and in all SCLC and carcinoid cell lines and tissues, OATP5A1 is most prominent in metastatic cells, and OATP6A1 is most prominent in SCLC cell lines and tumors. Treatment with topotecan, etoposide and cisplatin caused significant changes in the expression patterns of OATP4A1, OATP5A1, OATP6A1, chromogranin and synaptophysin. This effect was also evident in GLC-14 cells from an untreated SCLC patient before chemotherapy compared to GLC-16/-19 chemoresistant tumor cells from this patient after therapy. mRNA expression of OATP4A1, 5A1 and 6A1 correlates with protein expression as confirmed by quantitative microscopic image analysis and Western blots. OATPs might be novel biomarkers for tumor progression and the development of metastasis in SCLC patients.
Collapse
Affiliation(s)
- Stefan Brenner
- Department of Clinical Pharmacy and Diagnostics, University of Vienna, Vienna, Austria
| | - Lukas Klameth
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria; Cluster for Translational Oncology, Ludwig Boltzmann Society, Vienna, Austria
| | - Juliane Riha
- Department of Clinical Pharmacy and Diagnostics, University of Vienna, Vienna, Austria
| | - Madeleine Schölm
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Gerhard Hamilton
- Cluster for Translational Oncology, Ludwig Boltzmann Society, Vienna, Austria
| | - Erika Bajna
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Christoph Ausch
- Department of Surgery, Donauspital, Vienna, Austria; Cluster for Translational Oncology, Ludwig Boltzmann Society, Vienna, Austria
| | - Angelika Reiner
- Cluster for Translational Oncology, Ludwig Boltzmann Society, Vienna, Austria; Department of Pathology, Donauspital, Vienna, Austria
| | - Walter Jäger
- Department of Clinical Pharmacy and Diagnostics, University of Vienna, Vienna, Austria
| | - Theresia Thalhammer
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria.
| | - Veronika Buxhofer-Ausch
- Cluster for Translational Oncology, Ludwig Boltzmann Society, Vienna, Austria; Department of Internal Medicine 2, Donauspital, Vienna, Austria
| |
Collapse
|
119
|
Jaiswal S, Sharma A, Shukla M, Vaghasiya K, Rangaraj N, Lal J. Novel pre-clinical methodologies for pharmacokinetic drug-drug interaction studies: spotlight on "humanized" animal models. Drug Metab Rev 2014; 46:475-93. [PMID: 25270219 DOI: 10.3109/03602532.2014.967866] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Poly-therapy is common due to co-occurrence of several ailments in patients, leading to the elevated possibility of drug-drug interactions (DDI). Pharmacokinetic DDI often accounts for severe adverse drug reactions in patients resulting in withdrawal of drug from the market. Hence, the prediction of DDI is necessary at pre-clinical stage of drug development. Several human tissue and cell line-based in vitro systems are routinely used for screening metabolic and transporter pathways of investigational drugs and for predicting their clinical DDI potentials. However, ample constraints are associated with the in vitro systems and sometimes in vitro-in vivo extrapolation (IVIVE) fail to assess the risk of DDI in clinic. In vitro-in vivo correlation model in animals combined with human in vitro studies may be helpful in better prediction of clinical outcome. Native animal models vary remarkably from humans in drug metabolizing enzymes and transporters, hence, the interpretation of results from animal DDI studies is difficult. With the advent of modern molecular biology and engineering tools, novel pre-clinical animal models, namely, knockout rat/mouse, transgenic rat/mouse with humanized drug metabolizing enzymes and/or transporters and chimeric rat/mouse with humanized liver are developed. These models nearly simulate human-like drug metabolism and help to validate the in vivo relevance of the in vitro human DDI data. This review briefly discusses the application of such novel pre-clinical models for screening various type of DDI along with their advantages and limitations.
Collapse
Affiliation(s)
- Swati Jaiswal
- Pharmacokinetics & Metabolism Division, CSIR-Central Drug Research Institute , Lucknow , India
| | | | | | | | | | | |
Collapse
|
120
|
Domanitskaya N, Wangari-Talbot J, Jacobs J, Peiffer E, Mahdaviyeh Y, Paulose C, Malofeeva E, Foster K, Cai KQ, Zhou Y, Egleston B, Hopper-Borge E. Abcc10 status affects mammary tumour growth, metastasis, and docetaxel treatment response. Br J Cancer 2014; 111:696-707. [PMID: 24937672 PMCID: PMC4134493 DOI: 10.1038/bjc.2014.326] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/01/2014] [Accepted: 05/13/2014] [Indexed: 02/07/2023] Open
Abstract
Background: Resistance to chemotherapeutic agents is a major obstacle to cancer treatment. A group of ABC efflux pumps, the Multidrug Resistance Proteins, is a source of resistance. Herein, we investigated the role of ABCC10 in mammary tumours, given the important role we have defined for ABCC10 in transporting taxanes, and the recognition that some ABCC proteins have roles in tumour growth. Methods: ABCC10 expression was correlated to human breast cancer subtype using breast tissue microarrays. Real-time quantitative PCR and western blot analysis were used to examine ABCC10 expression in human breast cancer lines. Abcc10−/− mice were crossed to MMTV-PyVmT mice to produce Abcc10−/−vs Abcc10+/+ mammary tumours and derivative cell lines. We used allograft and cellular assays to perform baseline and drug sensitization analysis of tumours and cell lines. Results: Clinical sample analyses indicated that ABCC10 was more highly expressed in Her2+ and ER+ than in Her2−, ER−, and triple-negative breast cancer. Unexpectedly, PyVmT; Abcc10−/− tumours grew more rapidly than PyVmT; Abcc10+/+ tumours and were associated with significantly reduced apoptosis and metastasis. PyVmT; Abcc10−/− lines were less migratory than PyVmT; Abcc10+/+ lines. Finally, we showed increased survival of docetaxel-treated MMTV-PyVmT; Abcc10−/− mice compared with wild-type mice. Conclusions: These data identify roles for Abcc10 in breast cancer pathogenesis and in vivo docetaxel resistance.
Collapse
Affiliation(s)
- N Domanitskaya
- Program in Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia 19111, PA, USA
| | - J Wangari-Talbot
- Program in Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia 19111, PA, USA
| | - J Jacobs
- Program in Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia 19111, PA, USA
| | - E Peiffer
- Program in Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia 19111, PA, USA
| | - Y Mahdaviyeh
- Program in Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia 19111, PA, USA
| | - C Paulose
- Program in Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia 19111, PA, USA
| | - E Malofeeva
- Program in Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia 19111, PA, USA
| | - K Foster
- Program in Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia 19111, PA, USA
| | - K Q Cai
- Program in Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia 19111, PA, USA
| | - Y Zhou
- Program in Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia 19111, PA, USA
| | - B Egleston
- Program in Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia 19111, PA, USA
| | - E Hopper-Borge
- Program in Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia 19111, PA, USA
| |
Collapse
|
121
|
Berg T, Hegelund Myrbäck T, Olsson M, Seidegård J, Werkström V, Zhou XH, Grunewald J, Gustavsson L, Nord M. Gene expression analysis of membrane transporters and drug-metabolizing enzymes in the lung of healthy and COPD subjects. Pharmacol Res Perspect 2014; 2:e00054. [PMID: 25505599 PMCID: PMC4186441 DOI: 10.1002/prp2.54] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 04/24/2014] [Accepted: 05/02/2014] [Indexed: 01/06/2023] Open
Abstract
This study describes for the first time the expression levels of genes encoding membrane transporters and drug-metabolizing enzymes in the lungs of ex-smoking patients with chronic obstructive pulmonary disease (COPD). Membrane transporters and drug-metabolizing enzymes are key determinants of drug uptake, metabolism, and elimination for systemically administered as well as inhaled drugs, with consequent influence on clinical efficacy and patient safety. In this study, while no difference in gene expression was found between healthy and COPD subjects, we identified a significant regional difference in mRNA expression of both membrane transporters and drug-metabolizing enzymes between central and peripheral tissue in both healthy and COPD subjects. The majority of the differentially expressed genes were higher expressed in the central airways such as the transporters SLC2A1 (GLUT1), SLC28A3 (CNT3), and SLC22A4 (OCTN1) and the drug-metabolizing enzymes GSTZ1, GSTO2, and CYP2F1. Together, this increased knowledge of local pharmacokinetics in diseased and normal lung may improve modeling of clinical outcomes of new chemical entities intended for inhalation therapy delivered to COPD patients. In addition, based on the similarities between COPD and healthy subjects regarding gene expression of membrane transporters and drug-metabolizing enzymes, our results suggest that clinical pharmacological studies in healthy volunteers could be a valid model of COPD patients regarding drug disposition of inhaled drugs in terms of drug metabolism and drug transporters.
Collapse
Affiliation(s)
- Tove Berg
- Respiratory Medicine Unit, Department of Medicine Solna and CMM, Karolinska Institutet and Karolinska University Hospital Solna Stockholm, Sweden
| | | | | | | | | | | | - Johan Grunewald
- Respiratory Medicine Unit, Department of Medicine Solna and CMM, Karolinska Institutet and Karolinska University Hospital Solna Stockholm, Sweden
| | - Lena Gustavsson
- Molecular Medicine, Department of Laboratory Medicine, Lund University Medicon Village, Lund, Sweden
| | | |
Collapse
|
122
|
Li Q, Shu Y. Role of solute carriers in response to anticancer drugs. MOLECULAR AND CELLULAR THERAPIES 2014; 2:15. [PMID: 26056583 PMCID: PMC4452062 DOI: 10.1186/2052-8426-2-15] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/14/2014] [Indexed: 12/20/2022]
Abstract
Membrane transporters play critical roles in moving a variety of anticancer drugs across cancer cell membrane, thereby determining chemotherapy efficacy and/or toxicity. The retention of anticancer drugs in cancer cells is the result of net function of efflux and influx transporters. The ATP-binding cassette (ABC) transporters are mainly the efflux transporters expressing at cancer cells, conferring the chemo-resistance in various malignant tumors, which has been well documented over the past decades. However, the function of influx transporters, in particular the solute carriers (SLC) in cancer cells, has only been recently well recognized to have significant impact on cancer therapy. The SLC transporters not only directly bring anticancer agents into cancer cells but also serve as the uptake mediators of essential nutrients for tumor growth and survival. In this review, we concentrate on the interaction of SLC transporters with anticancer drugs and nutrients, and their impact on chemo-sensitivity or -resistance of cancer cells. The differential expression patterns of SLC transporters between normal and tumor tissues may be well utilized to achieve specific delivery of chemotherapeutic agents.
Collapse
Affiliation(s)
- Qing Li
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Baltimore, Maryland USA ; Institute of Clinical Pharmacology, Central South University, Changsha, Hunan 410078 China
| | - Yan Shu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Baltimore, Maryland USA
| |
Collapse
|
123
|
Döring B, Petzinger E. Phase 0 and phase III transport in various organs: combined concept of phases in xenobiotic transport and metabolism. Drug Metab Rev 2014; 46:261-82. [PMID: 24483608 DOI: 10.3109/03602532.2014.882353] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The historical phasing concept of drug metabolism and elimination was introduced to comprise the two phases of metabolism: phase I metabolism for oxidations, reductions and hydrolyses, and phase II metabolism for synthesis. With this concept, biological membrane barriers obstructing the accessibility of metabolism sites in the cells for drugs were not considered. The concept of two phases was extended to a concept of four phases when drug transporters were detected that guided drugs and drug metabolites in and out of the cells. In particular, water soluble or charged drugs are virtually not able to overcome the phospholipid membrane barrier. Drug transporters belong to two main clusters of transporter families: the solute carrier (SLC) families and the ATP binding cassette (ABC) carriers. The ABC transporters comprise seven families with about 20 carriers involved in drug transport. All of them operate as pumps at the expense of ATP splitting. Embedded in the former phase concept, the term "phase III" was introduced by Ishikawa in 1992 for drug export by ABC efflux pumps. SLC comprise 52 families, from which many carriers are drug uptake transporters. Later on, this uptake process was referred to as the "phase 0 transport" of drugs. Transporters for xenobiotics in man and animal are most expressed in liver, but they are also present in extra-hepatic tissues such as in the kidney, the adrenal gland and lung. This review deals with the function of drug carriers in various organs and their impact on drug metabolism and elimination.
Collapse
Affiliation(s)
- Barbara Döring
- Institute of Pharmacology and Toxicology, Biomedical Research Center Seltersberg, Justus-Liebig-University Giessen , Giessen , Germany
| | | |
Collapse
|
124
|
Fisel P, Renner O, Nies AT, Schwab M, Schaeffeler E. Solute carrier transporter and drug-related nephrotoxicity: the impact of proximal tubule cell models for preclinical research. Expert Opin Drug Metab Toxicol 2014; 10:395-408. [PMID: 24397389 DOI: 10.1517/17425255.2014.876990] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION The final excretion step of several drugs is facilitated by membrane transporters of the Solute carrier (SLC) family expressed in the proximal tubules of the kidney. Membrane transporters contribute substantially to the pharmacokinetic profile of drugs and play important roles in drug-induced nephrotoxicity. Different cell models have been applied as tools for the assessment of nephrotoxic effects caused by drugs. AREAS COVERED This review gives an overview over clinically relevant SLC transporters involved in the renal elimination of drug agents and their specific role in drug-induced nephrotoxicity. Most widely applied cell models are described and their advantages and limitations are outlined. EXPERT OPINION In vitro cell culture models (e.g., continuous and primary renal cell lines, polarized cell monolayers) represent valuable tools for early assessment of the nephrotoxic potential of drugs. Since SLC transporters contribute to drug excretion in a large part, in vitro cell culture models might be very helpful to study transport pathways and/or potential drug-drug interactions at an early stage of the drug development process to predict nephrotoxic effects.
Collapse
Affiliation(s)
- Pascale Fisel
- Margarete Fischer-Bosch-Institute of Clinical Pharmacology , Auerbachstrasse 125, Stuttgart, 70376 , Germany
| | | | | | | | | |
Collapse
|
125
|
Pelis RM, Wright SH. SLC22, SLC44, and SLC47 transporters--organic anion and cation transporters: molecular and cellular properties. CURRENT TOPICS IN MEMBRANES 2014; 73:233-61. [PMID: 24745985 DOI: 10.1016/b978-0-12-800223-0.00006-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Transporters within the SLC22, SLC44, and SLC47 families of solute carriers mediate transport of a structurally diverse array of organic electrolytes, that is, molecules that are generally charged (cationic, anionic, or zwitterionic) at physiological pH. Transporters in the SLC22 family--all of which are members of the major facilitator superfamily (MFS) of transporters--represent a mechanistically diverse set of processes, including the organic anion transporters (OATs and URAT1) that physiologically operate as organic anion (OA) exchangers, the organic cation transporters (OCTs) that operate as electrogenic uniporters of organic cations (OCs), and the so-called "novel" organic cation transporters (OCTNs) that support Na-cotransport of selected zwitterions. Whereas the OCTNs display a high degree of substrate selectivity, the physiological hallmark of the OATs and OCTs is their multiselectivity--consistent with a principal role in renal and hepatic clearance of a wide array of both endogenous and xenobiotic compounds. SLC47 consists of members of the multidrug and toxin extruder (MATE) family, which are carriers that are obligatory exchangers and that physiologically support electroneutral H⁺ exchange. The MATEs also display a characteristic multiselectivity and are frequently paired with OCTs to mediate transepithelial OC secretion, with the OCTs typically supporting basolateral OC entry and the MATEs supporting apical OC efflux. The SLC44 family contains the choline transporter-like (CTL) transporters. Largely restricted to choline and a limited set of structural congeners, the CTLs appear to support the Na-independent, electrogenic uniport of choline, thereby providing choline for membrane biogenesis. The solution of X-ray crystal structures of representative prokaryotic MFS and MATE transporters has led to the development of homology models of mammalian OAT, OCT, and MATE transporters that, in turn, have supplemented studies of the molecular basis of the complex interactions of ligands with these multiselective proteins.
Collapse
Affiliation(s)
- Ryan M Pelis
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Stephen H Wright
- Department of Physiology, University of Arizona, Tucson, Arizona, USA.
| |
Collapse
|
126
|
Abstract
Organic anions and cations (OAs and OCs, respectively) comprise an extraordinarily diverse array of compounds of physiological, pharmacological, and toxicological importance. The kidney, primarily the renal proximal tubule, plays a critical role in regulating the plasma concentrations of these organic electrolytes and in clearing the body of potentially toxic xenobiotics agents, a process that involves active, transepithelial secretion. This transepithelial transport involves separate entry and exit steps at the basolateral and luminal aspects of renal tubular cells. Basolateral and luminal OA and OC transport reflects the concerted activity of a suite of separate proteins arranged in parallel in each pole of proximal tubule cells. The cloning of multiple members of several distinct transport families, the subsequent characterization of their activity, and their subcellular localization within distinct regions of the kidney, now allows the development of models describing the molecular basis of the renal secretion of OAs and OCs. New information on naturally occurring genetic variation of many of these processes provides insight into the basis of observed variability of drug efficacy and unwanted drug-drug interactions in human populations. The present review examines recent work on these issues.
Collapse
Affiliation(s)
- Ryan M Pelis
- Novartis Pharmaceuticals Corp., Translational Sciences, East Hanover, New Jersey, USA
| | | |
Collapse
|
127
|
Zhou T, Hu M, Cost M, Poloyac S, Rohan L. Short communication: expression of transporters and metabolizing enzymes in the female lower genital tract: implications for microbicide research. AIDS Res Hum Retroviruses 2013; 29:1496-503. [PMID: 23607746 DOI: 10.1089/aid.2013.0032] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Topical vaginal microbicides have been considered a promising option for preventing the male-to-female sexual transmission of HIV; however, clinical trials to date have not clearly demonstrated robust and reproducible effectiveness results. While multiple approaches may help enhance product effectiveness observed in clinical trials, increasing the drug exposure in lower genital tract tissues is a compelling option, given the difficulty in achieving sufficient drug exposure and positive correlation between tissue exposure and microbicide efficacy. Since many microbicide drug candidates are substrates of transporters and/or metabolizing enzymes, there is emerging interest in improving microbicide exposure and efficacy through local modulation of transporters and enzymes in the female lower genital tract. However, no systematic information on transporter/enzyme expression is available for ectocervical and vaginal tissues of premenopausal women, the genital sites most relevant to microbicide drug delivery. The current study utilized reverse transcriptase polymerase chain reaction (RT-PCR) to examine the mRNA expression profile of 22 transporters and 19 metabolizing enzymes in premenopausal normal human ectocervix and vagina. Efflux and uptake transporters important for antiretroviral drugs, such as P-gp, BCRP, OCT2, and ENT1, were found to be moderately or highly expressed in the lower genital tract as compared to liver. Among the metabolizing enzymes examined, most CYP isoforms were not detected while a number of UGTs such as UGT1A1 were highly expressed. Moderate to high expression of select transporters and enzymes was also observed in mouse cervix and vagina. The implications of this information on microbicide research is also discussed, including microbicide pharmacokinetics, the utilization of the mouse model in microbicide screening, as well as the in vivo functional studies of cervicovaginal transporters and enzymes.
Collapse
Affiliation(s)
- Tian Zhou
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania
- Magee Womens Research Institute, Pittsburgh, Pennsylvania
| | - Minlu Hu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania
- Magee Womens Research Institute, Pittsburgh, Pennsylvania
| | - Marilyn Cost
- Magee Womens Research Institute, Pittsburgh, Pennsylvania
| | - Samuel Poloyac
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lisa Rohan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania
- Magee Womens Research Institute, Pittsburgh, Pennsylvania
| |
Collapse
|
128
|
Kathawala RJ, Wang YJ, Ashby CR, Chen ZS. Recent advances regarding the role of ABC subfamily C member 10 (ABCC10) in the efflux of antitumor drugs. CHINESE JOURNAL OF CANCER 2013; 33:223-30. [PMID: 24103790 PMCID: PMC4026542 DOI: 10.5732/cjc.013.10122] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
ABCC10, also known as multidrug-resistant protein 7 (MRP7), is the tenth member of the C subfamily of the ATP-binding cassette (ABC) superfamily. ABCC10 mediates multidrug resistance (MDR) in cancer cells by preventing the intracellular accumulation of certain antitumor drugs. The ABCC10 transporter is a 171-kDa protein that is localized on the basolateral cell membrane. ABCC10 is a broad-specificity transporter of xenobiotics, including antitumor drugs, such as taxanes, epothilone B, vinca alkaloids, and cytarabine, as well as modulators of the estrogen pathway, such as tamoxifen. In recent years, ABCC10 inhibitors, including cepharanthine, lapatinib, erlotinib, nilotinib, imatinib, sildenafil, and vardenafil, have been reported to overcome ABCC10-mediated MDR. This review discusses some recent and clinically relevant aspects of the ABCC10 drug efflux transporter from the perspective of current chemotherapy, particularly its inhibition by tyrosine kinase inhibitors and phosphodiesterase type 5 inhibitors.
Collapse
Affiliation(s)
- Rishil J Kathawala
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | | | | | | |
Collapse
|
129
|
Hagenbuch B, Stieger B. The SLCO (former SLC21) superfamily of transporters. Mol Aspects Med 2013; 34:396-412. [PMID: 23506880 DOI: 10.1016/j.mam.2012.10.009] [Citation(s) in RCA: 278] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 09/19/2012] [Indexed: 01/04/2023]
Abstract
The members of the organic anion transporting polypeptide superfamily (OATPs) are classified within the SLCO solute carrier family. All functionally well characterized members are predicted to have 12 transmembrane domains and are sodium-independent transport systems that mediate the transport of a broad range of endo- as well as xenobiotics. Substrates are mainly amphipathic organic anions with a molecular weight of more than 300Da, but some of the known transported substrates are also neutral or even positively charged. Among the well characterized substrates are numerous drugs including statins, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, antibiotics, antihistaminics, antihypertensives and anticancer drugs. Based on their amino acid sequence identities, the different OATPs cluster into families (in general with more than 40% amino acid sequence identity) and subfamilies (more than 60% amino acid identity). With the sequencing of genomes from different species and the computerized prediction of encoded proteins more than 300 OATPs can be found in the databases, however only a fraction of them have been identified in humans, rodents, and some additional species important for pharmaceutical research like the rhesus monkey (Macaca mulatta), the dog (Canis lupus familiaris) and the pig (Sus scrofa). These OATPs form 6 families (OATP1-OATP6) and 13 subfamilies. In this review we try to summarize what is currently known about OATPs with respect to endogenous substrates, tissue distribution, transport mechanisms, regulation of expression, structure-function relationship and mutations and polymorphisms.
Collapse
Affiliation(s)
- Bruno Hagenbuch
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | | |
Collapse
|
130
|
Koepsell H. The SLC22 family with transporters of organic cations, anions and zwitterions. Mol Aspects Med 2013; 34:413-35. [PMID: 23506881 DOI: 10.1016/j.mam.2012.10.010] [Citation(s) in RCA: 275] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 08/18/2012] [Indexed: 12/14/2022]
Abstract
The SLC22 family contains 13 functionally characterized human plasma membrane proteins each with 12 predicted α-helical transmembrane domains. The family comprises organic cation transporters (OCTs), organic zwitterion/cation transporters (OCTNs), and organic anion transporters (OATs). The transporters operate as (1) uniporters which mediate facilitated diffusion (OCTs, OCTNs), (2) anion exchangers (OATs), and (3) Na(+)/zwitterion cotransporters (OCTNs). They participate in small intestinal absorption and hepatic and renal excretion of drugs, xenobiotics and endogenous compounds and perform homeostatic functions in brain and heart. Important endogeneous substrates include monoamine neurotransmitters, l-carnitine, α-ketoglutarate, cAMP, cGMP, prostaglandins, and urate. It has been shown that mutations of the SLC22 genes encoding these transporters cause specific diseases like primary systemic carnitine deficiency and idiopathic renal hypouricemia and are correlated with diseases such as Crohn's disease and gout. Drug-drug interactions at individual transporters may change pharmacokinetics and toxicities of drugs.
Collapse
Affiliation(s)
- Hermann Koepsell
- University of Würzburg, Institute of Anatomy and Cell Biology, Koellikerstr. 6, 97070 Würzburg, Germany.
| |
Collapse
|
131
|
Rilpivirine inhibits drug transporters ABCB1, SLC22A1, and SLC22A2 in vitro. Antimicrob Agents Chemother 2013; 57:5612-8. [PMID: 24002095 DOI: 10.1128/aac.01421-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Rilpivirine is a nonnucleoside reverse transcriptase inhibitor approved for treatment of HIV-1 infection in antiretroviral-naive adult patients. Potential interactions with drug transporters have not been fully investigated. Transport by and inhibition of drug transporters by rilpivirine were analyzed to further understand the mechanisms governing rilpivirine exposure and determine the potential for transporter-mediated drug-drug interactions. The ability of rilpivirine to inhibit or be transported by ABCB1 was determined using ABCB1-overexpressing CEMVBL100 cells and Caco-2 cell monolayers. The Xenopus laevis oocyte heterologous protein expression system was used to clarify if rilpivirine was either transported by or inhibited the function of influx transporters SLCO1A2, SLCO1B1, SLCO1B3, SLC22A2, SLC22A6, and SLC22A8. The ability of rilpivirine to inhibit or be transported by SLC22A1 was determined using SLC22A1-expressing KCL22 cells. Rilpivirine showed higher accumulation in SLC22A1-overexpressing KCL22 cells than control cells (27% increase, P = 0.03) and inhibited the functionality of SLC22A1 and SLC22A2 transport with 50% inhibitory concentrations (IC50s) of 28.5 μM and 5.13 μM, respectively. Inhibition of ABCB1-mediated digoxin transport was determined for rilpivirine, which inhibited digoxin transport in the B-to-A direction with an IC50 of 4.48 μM. The maximum rilpivirine concentration in plasma in patients following a standard 25-mg dosing regimen is around 0.43 μM, lower than that necessary to substantially inhibit ABCB1, SLC22A1, or SLC22A2 in vitro. However, these data indicate that SLC22A1 may contribute to variability in rilpivirine exposure and that interactions of rilpivirine with substrates of SLC22A1, SLC22A2, or ABCB1 may be possible.
Collapse
|
132
|
Sakamoto A, Matsumaru T, Yamamura N, Uchida Y, Tachikawa M, Ohtsuki S, Terasaki T. Quantitative expression of human drug transporter proteins in lung tissues: Analysis of regional, gender, and interindividual differences by liquid chromatography–tandem mass spectrometry. J Pharm Sci 2013; 102:3395-406. [DOI: 10.1002/jps.23606] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 04/22/2013] [Accepted: 04/23/2013] [Indexed: 12/30/2022]
|
133
|
Al-Jayyoussi G, Price DF, Francombe D, Taylor G, Smith MW, Morris C, Edwards CD, Eddershaw P, Gumbleton M. Selectivity in the impact of P-glycoprotein upon pulmonary absorption of airway-dosed substrates: a study in ex vivo lung models using chemical inhibition and genetic knockout. J Pharm Sci 2013; 102:3382-94. [PMID: 23670704 DOI: 10.1002/jps.23587] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 04/16/2013] [Accepted: 04/17/2013] [Indexed: 12/15/2022]
Abstract
P-glycoprotein (P-gp) mediated efflux is recognised to alter the absorption and disposition of a diverse range of substrates. Despite evidence showing the presence of P-gp within the lung, relatively little is known about the transporter's effect upon the absorption and distribution of drugs delivered via the pulmonary route. Here, we present data from an intact isolated rat lung model, alongside two isolated mouse lung models using either chemical or genetic inhibition of P-gp. Data from all three models show inhibition of P-gp increases the extent of absorption of a subset of P-gp substrates (e.g. rhodamine 123 and loperamide) whose physico-chemical properties are distinct from those whose pulmonary absorption remained unaffected (e.g. digoxin and saquinavir). This is the first study showing direct evidence of P-gp mediated efflux within an intact lung, a finding that should warrant consideration as part of respiratory drug discovery and development as well as in the understanding of pulmonary pharmacokinetic (PK)-pharmacodynamic (PD) relationships.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Animals
- Anti-Arrhythmia Agents/pharmacokinetics
- Antidiarrheals/pharmacokinetics
- Biological Transport
- Digoxin/pharmacokinetics
- Dogs
- Gene Knockout Techniques
- HIV Protease Inhibitors/pharmacokinetics
- Humans
- Loperamide/pharmacokinetics
- Lung/metabolism
- Madin Darby Canine Kidney Cells
- Male
- Mice
- Mice, Knockout
- Permeability
- Rats
- Rats, Sprague-Dawley
- Rhodamine 123/pharmacokinetics
- Saquinavir/pharmacokinetics
- ATP-Binding Cassette Sub-Family B Member 4
Collapse
Affiliation(s)
- Ghaith Al-Jayyoussi
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, Wales CF10 3NB, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Hutter V, Chau DYS, Hilgendorf C, Brown A, Cooper A, Zann V, Pritchard DI, Bosquillon C. Digoxin net secretory transport in bronchial epithelial cell layers is not exclusively mediated by P-glycoprotein/MDR1. Eur J Pharm Biopharm 2013; 86:74-82. [PMID: 23816640 DOI: 10.1016/j.ejpb.2013.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 05/24/2013] [Accepted: 06/10/2013] [Indexed: 01/05/2023]
Abstract
The impact of P-glycoprotein (MDR1, ABCB1) on drug disposition in the lungs as well as its presence and activity in in vitro respiratory drug absorption models remain controversial to date. Hence, we characterised MDR1 expression and the bidirectional transport of the common MDR1 probe (3)H-digoxin in air-liquid interfaced (ALI) layers of normal human bronchial epithelial (NHBE) cells and of the Calu-3 bronchial epithelial cell line at different passage numbers. Madin-Darby Canine Kidney (MDCKII) cells transfected with the human MDR1 were used as positive controls. (3)H-digoxin efflux ratio (ER) was low and highly variable in NHBE layers. In contrast, ER=11.4 or 3.0 were measured in Calu-3 layers at a low or high passage number, respectively. These were, however, in contradiction with increased MDR1 protein levels observed upon passaging. Furthermore, ATP depletion and the two MDR1 inhibitory antibodies MRK16 and UIC2 had no or only a marginal impact on (3)H-digoxin net secretory transport in the cell line. Our data do not support an exclusive role of MDR1 in (3)H-digoxin apparent efflux in ALI Calu-3 layers and suggest the participation of an ATP-independent carrier. Identification of this transporter might provide a better understanding of drug distribution in the lungs.
Collapse
Affiliation(s)
- Victoria Hutter
- Division of Drug Delivery and Tissue Engineering, School of Pharmacy, University of Nottingham, UK
| | - David Y S Chau
- Allergy Research Group, School of Molecular Medical Sciences, University of Nottingham, UK
| | | | - Alan Brown
- Immune Modulation Group, Division of Molecular and Cellular Science, School of Pharmacy, University of Nottingham, UK
| | | | | | - David I Pritchard
- Immune Modulation Group, Division of Molecular and Cellular Science, School of Pharmacy, University of Nottingham, UK
| | - Cynthia Bosquillon
- Division of Drug Delivery and Tissue Engineering, School of Pharmacy, University of Nottingham, UK.
| |
Collapse
|
135
|
Organic cation transporters in human nasal primary culture: expression and functional activity. Ther Deliv 2013; 4:439-51. [PMID: 23557285 DOI: 10.4155/tde.13.10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The majority of drugs cross epithelial cells by either passive diffusion or via carrier-mediated drug transporters. The aim of this study was to investigate the transport characteristics, protein expression and localization of organic cation transporters in human nasal epithelium. METHODS & RESULTS The expression, localization and transport characteristics of the transporters were investigated using permeation, PCR and immunohistochemistry. The uptake of 4-(4-(dimethylamino)styryl)-N-methylpyridinium iodide followed Michaelis-Menten kinetics. Its intracellular accumulation of the compound was inhibited by organic cation transporters (OCTs) and carnitine/organic cation transporter (OCTNs) inhibitors. Detected OCT1-3, OCTN1 and OCTN2 gene transcripts correlated with immunohistological staining for OCT1-3, OCTN1 and OCTN2 antibodies. Except for OCTN1, the antibodies were generally localized on the apical side of the epithelial cells. CONCLUSION Based on the immunohistochemical and uptake/transport studies, we conclude that the human nasal epithelium expresses OCT1-3, OCTN1 and OCTN2 transporters mainly on the apical side of the nasal cells.
Collapse
|
136
|
Liptrott NJ, Curley P, Moss D, Back DJ, Khoo SH, Owen A. Interactions between tenofovir and nevirapine in CD4+ T cells and monocyte-derived macrophages restrict their intracellular accumulation. J Antimicrob Chemother 2013; 68:2545-9. [PMID: 23794601 DOI: 10.1093/jac/dkt225] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVES There is no pharmacokinetic interaction between tenofovir and nevirapine, but a higher emergence rate of resistance mutations has been reported when these drugs are coadministered. We sought to examine if there is a potential intracellular interaction that may account for the emergence of resistant virus. METHODS Primary CD4+ and CD14+ cells were isolated from healthy volunteer blood. Monocyte-derived macrophages were differentiated from CD14+ cells. Accumulation of radiolabelled tenofovir and nevirapine was then assessed in these cells. RESULTS We show here that tenofovir and nevirapine immune cell intracellular concentrations are lower when coincubated in CD4+ cells and monocyte-derived macrophages, but not in CD14+ cells. CONCLUSIONS These data indicate a potential intracellular drug-drug interaction between these drugs that warrants further investigation.
Collapse
Affiliation(s)
- N J Liptrott
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | | | | | | | | | | |
Collapse
|
137
|
Mukherjee M, Latif ML, Pritchard DI, Bosquillon C. In-cell Western™ detection of organic cation transporters in bronchial epithelial cell layers cultured at an air-liquid interface on Transwell(®) inserts. J Pharmacol Toxicol Methods 2013; 68:184-189. [PMID: 23764373 DOI: 10.1016/j.vascn.2013.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/29/2013] [Accepted: 05/31/2013] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Organic cation transporters (OCT) have been shown to mediate the transport of inhaled drugs in bronchial epithelial cells and might have important physiological functions in the airway epithelium. However, a quantitative method to evaluate OCT protein expression in physiologically relevant airway epithelial cell culture models is currently lacking. In-cell Western™ (ICW) techniques might fill that gap but to date, have only been performed on cells grown on 96 or 384-well microplates. METHODS An ICW assay was designed for measuring levels of the different OCT subtypes in intact layers of the human bronchial epithelial Calu-3 cell line cultured at an air-liquid interface on Transwell(®) inserts. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as the internal standard for normalisation of cell number between the layers. The protocol was subsequently validated by exposing cell layers to compounds known to cause variations in OCT expression. RESULTS Antibody signals above the background fluorescence were detected for OCT1, OCT3, OCTN1 and OCTN2 but not for OCT2 in 21day old Calu-3 layers, in agreement with previous studies which had reported OCT2 was absent in the Calu-3 cell line. Furthermore, increases in the fluorescence signal associated with OCT1, OCTN1 and OCTN2 were obtained following treatment of the layers with, respectively, the nitric oxide inducer sodium nitroprusside, the peroxisome proliferator activated receptor α (PPARα) agonist fenofibrate or the PPARγ agonist rosiglitazone, confirming the reliability of the ICW method developed. However, a suitable positive control for OCT3 could not be identified. DISCUSSION This novel ICW assay can be exploited to quantify basal OCT protein expression as well as changes in transporter levels following external stimuli in various in vitro models. It can also be easily adapted to probe any protein in epithelial layers maintained on permeable filters.
Collapse
Affiliation(s)
- Manali Mukherjee
- Division of Drug Delivery and Tissue Engineering, School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - M L Latif
- School of Biomedical Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - D I Pritchard
- Immune Modulation Research Group, School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - C Bosquillon
- Division of Drug Delivery and Tissue Engineering, School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom.
| |
Collapse
|
138
|
Boyle MC, Boyle MH. Meeting report: Urinary Pathology; sixth Research Triangle Park Rodent Pathology Course. Vet Pathol 2013; 50:563-8. [PMID: 23645617 DOI: 10.1177/0300985813480217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Urinary system toxicity is a significant concern to pathologists in the hazard identification, drug and chemical safety evaluation, and diagnostic service industries worldwide. There are myriad known human and animal urinary system toxicants, and investigatory renal toxicology and pathology is continually evolving. The system-specific Research Triangle Park (RTP) Rodent Pathology Course biennially serves to update scientists on the latest research, laboratory techniques, and debates. The Sixth RTP Rodent Pathology Course, Urinary Pathology, featured experts from the government, pharmaceutical, academic, and diagnostic arenas sharing the state of the science in urinary pathology. Speakers presented on a wide range of topics including background lesions, treatment-related non-neoplastic and neoplastic lesions, transgenic rodent models of human disease, diagnostic imaging, biomarkers, and molecular analyses. These seminars were accompanied by case presentation sessions focused on usual and unusual lesions, grading schemes, and tumors.
Collapse
Affiliation(s)
- M C Boyle
- Cellular and Molecular Pathology Branch, National Toxicology Program, National Institute of Environmental Health Sciences (NIEHS), 111 T. W. Alexander Dr, Research Triangle Park, NC 27709, USA.
| | | | | |
Collapse
|
139
|
Takeuchi T, Jinno F, Ebihara T, Moriya Y, Kadotani R, Tagawa Y, Kondo T, Itoh T, Asahi S. Species differences of organic anion transporters involved in the renal uptake of 4-amino-3-chlorophenyl hydrogen sulfate, a metabolite of resatorvid, between rats and dogs. Biopharm Drug Dispos 2013; 34:236-46. [PMID: 23529922 DOI: 10.1002/bdd.1841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/01/2013] [Accepted: 03/07/2013] [Indexed: 11/08/2022]
Abstract
Previous studies on the metabolic fate of resatorvid (TAK-242) have shown that species differences in the pharmacokinetics of 4-amino-3-chlorophenyl hydrogen sulfate (M-III), a metabolite of TAK-242, between rats and dogs are mainly attributable to the urinary excretion process. In the present study, the renal uptake mechanism of M-III was investigated using kidney slices and Xenopus laevis oocytes expressing rat organic anion transporter 1 (rOat1; Slc22a6) and rOat3 (Slc22a8). The uptake of p-aminohippuric acid (PAH), a substrate for Oats, by kidney slices from rats and dogs increased at 37 °C and M-III inhibited the uptake. The initial uptake clearance of M-III by rat kidney slices was 0.295 and 0.0114 ml/min/g at 37 °C and 4 °C, respectively. The Eadie-Hofstee plot of M-III uptake at 37 °C revealed two-component transport processes with K(m) values being 6.48 and 724 µmol/l. The uptake was inhibited by probenecid (PBC), PAH and benzylpenicillin (PCG). In contrast, in dog kidney slices, the initial uptake clearance of M-III was 8.70 × 10(-3) and 9.00 × 10(-3) ml/min/g at 37 °C and 4 °C, respectively, and the uptake was not inhibited by PBC. Furthermore, rOat1- and rOat3-expressing oocytes mediated M-III uptake and the uptake was inhibited by PAH and PCG, respectively. These results suggest that rOat1 and rOat3 are responsible for the renal uptake of M-III in rats. Moreover, it is speculated that Oat(s) is unable to transport M-III in dogs and that the difference in the substrate recognition of Oat(s) contributes to the species difference in the pharmacokinetics of M-III between rats and dogs.
Collapse
Affiliation(s)
- Toshiyuki Takeuchi
- Drug Metabolism and Pharmacokinetics Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Co. Ltd, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, Japan. Takeuchi_
| | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Olagunju A, Owen A, Cressey TR. Potential effect of pharmacogenetics on maternal, fetal and infant antiretroviral drug exposure during pregnancy and breastfeeding. Pharmacogenomics 2013; 13:1501-22. [PMID: 23057550 DOI: 10.2217/pgs.12.138] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Mother-to-child-transmission rates of HIV in the absence of any intervention range between 20 and 45%. However, the provision of antiretroviral drugs (ARVs) during pregnancy, delivery and breastfeeding can reduce HIV transmission to less than 2%. Physiological changes during pregnancy can influence ARV disposition. Associations between SNPs in genes coding for metabolizing enzymes, and/or transporters, and ARVs disposition are well described; however, relatively little is known about the influence of these SNPs on ARV pharmacokinetics during pregnancy and lactation as well as their effect on distribution into the fetal compartment and breast milk excretion. Differences in maternal, fetal and infant ARV exposure due to SNPs may affect the efficacy and safety of ARVs used to prevent mother-to-child-transmission. The aim of this review is to provide an update on the effect of pregnancy-induced changes on the pharmacokinetics of ARVs and highlight the potential role of pharmacogenetics.
Collapse
|
141
|
Haglund J, Borg N. ADME characterization in rats revealed immediate secretion of AZD7903 into the stomach after IV dosing. Xenobiotica 2013; 43:823-35. [DOI: 10.3109/00498254.2013.767951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
142
|
Modeling the human skin barrier--towards a better understanding of dermal absorption. Adv Drug Deliv Rev 2013; 65:152-68. [PMID: 22525516 DOI: 10.1016/j.addr.2012.04.003] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 04/03/2012] [Accepted: 04/09/2012] [Indexed: 12/29/2022]
Abstract
Many drugs are presently delivered through the skin from products developed for topical and transdermal applications. Underpinning these technologies are the interactions between the drug, product and skin that define drug penetration, distribution, and elimination in and through the skin. Most work has been focused on modeling transport of drugs through the stratum corneum, the outermost skin layer widely recognized as presenting the rate-determining step for the penetration of most compounds. However, a growing body of literature is dedicated to considering the influence of the rest of the skin on drug penetration and distribution. In this article we review how our understanding of skin physiology and the experimentally observed mechanisms of transdermal drug transport inform the current models of drug penetration and distribution in the skin. Our focus is on models that have been developed to describe particular phenomena observed at particular sites of the skin, reflecting the most recent directions of investigation.
Collapse
|
143
|
Ramboer E, Vanhaecke T, Rogiers V, Vinken M. Primary hepatocyte cultures as prominent in vitro tools to study hepatic drug transporters. Drug Metab Rev 2013; 45:196-217. [PMID: 23368091 DOI: 10.3109/03602532.2012.756010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Before any drug can be placed on the market, drug efficacy and safety must be ensured through rigorous testing. Animal models are used for this purpose, though currently increasing attention goes to the use of alternative in vitro systems. In particular, liver-based testing platforms that allow the prediction of pharmacokinetic (PK) and pharmacotoxicological properties during the early phase of drug development are of interest. They also enable the screening of potential effects on hepatic drug transporters. The latter are known to affect drug metabolism and disposition, thereby possibly underlying drug-drug interactions, which, in turn, may result in liver toxicity. Clearly, stable in vivo-like functional expression of drug transporters in hepatic in vitro settings is a prerequisite to be applicable in routine PK and pharmacotoxicological testing. In the first part of the article, an updated overview of hepatic drug transporters is provided, followed by a state-of-the-art review of drug-transporter production and activity in primary hepatocyte cultures (PHCs), being the gold-standard in vitro system. Specific focus is hereby put on strategies to maintain long-term functional expression, in casu of drug transporters, in these systems. In the second part, the use of PHCs to assess hepatobiliary transport and transporter-mediated interactions is outlined.
Collapse
Affiliation(s)
- Eva Ramboer
- Department of Toxicology, Center for Pharmaceutical Research, Vrije Universiteit Brussel, Brussels, Belgium.
| | | | | | | |
Collapse
|
144
|
Larregieu CA, Benet LZ. Drug discovery and regulatory considerations for improving in silico and in vitro predictions that use Caco-2 as a surrogate for human intestinal permeability measurements. AAPS JOURNAL 2013; 15:483-97. [PMID: 23344793 DOI: 10.1208/s12248-013-9456-8] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 01/10/2013] [Indexed: 11/30/2022]
Abstract
There is a growing need for highly accurate in silico and in vitro predictive models to facilitate drug discovery and development. Results from in vitro permeation studies across the Caco-2 cell monolayer are commonly used for drug permeability screening in industry and are also accepted as a surrogate for human intestinal permeability measurements by the US FDA to support new drug applications. Countless studies carried out in this cell line with published permeability measurements have enabled the development of many in silico prediction models. We identify several common cases that illustrate how using Caco-2 permeability measurements in these in silico and in vitro predictive models will not correlate with human intestinal permeability and will further lead to inaccuracies in these models. We provide guidelines and recommendations for improving these models to more accurately predict clinically relevant information, thereby enhancing the drug discovery, development, and regulatory approval processes.
Collapse
Affiliation(s)
- Caroline A Larregieu
- Department of Bioengineering & Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, 533 Parnassus Avenue, Room U-68, San Francisco, CA 94143-0912, USA
| | | |
Collapse
|
145
|
Liu X, Jin L, Upham JW, Roberts MS. The development of models for the evaluation of pulmonary drug disposition. Expert Opin Drug Metab Toxicol 2013; 9:487-505. [DOI: 10.1517/17425255.2013.754009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
146
|
Abstract
Lung cancer is the most commonly diagnosed cancer in the world. “Driver” and “passenger” mutations identified in lung cancer indicate that genetics play a major role in the development of the disease, progression, metastasis and response to therapy. Survival rates for lung cancer treatment have remained stagnant at ~15% over the past 40 years in patients with disseminated disease despite advances in surgical techniques, radiotherapy and chemotherapy. Resistance to therapy; either intrinsic or acquired has been a major hindrance to treatment leading to great interest in studies seeking to understand and overcome resistance. Genetic information gained from molecular analyses has been critical in identifying druggable targets and tumor profiles that may be predictors of therapeutic response and mediators of resistance. Mutated or overexpressed epidermal growth factor receptor (EGFR) and translocations in the echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) genes (EML4-ALK) are examples of genetic aberrations resulting in targeted therapies for both localized and metastatic disease. Positive clinical responses have been noted in patients harboring these genetic mutations when treated with targeted therapies compared to patients lacking these mutations. Resistance is nonetheless a major factor contributing to the failure of targeted agents and standard cytotoxic agents. In this review, we examine molecular mechanisms that are potential drivers of resistance in non-small cell lung carcinoma, the most frequently diagnosed form of lung cancer. The mechanisms addressed include resistance to molecular targeted therapies as well as conventional chemotherapeutics through the activity of multidrug resistance proteins.
Collapse
Affiliation(s)
- Janet Wangari-Talbot
- Fox Chase Cancer Center, Developmental Therapeutics Program, 333 Cottman Ave, Philadelphia, PA, USA
| | - Elizabeth Hopper-Borge
- Fox Chase Cancer Center, Developmental Therapeutics Program, 333 Cottman Ave, Philadelphia, PA, USA
| |
Collapse
|
147
|
Balogh LM, Lai Y. Applications of Targeted Proteomics in ADME for IVIVE. TRANSPORTERS IN DRUG DEVELOPMENT 2013. [DOI: 10.1007/978-1-4614-8229-1_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
148
|
Chu X, Bleasby K, Evers R. Species differences in drug transporters and implications for translating preclinical findings to humans. Expert Opin Drug Metab Toxicol 2012; 9:237-52. [DOI: 10.1517/17425255.2013.741589] [Citation(s) in RCA: 208] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
149
|
Huang L, Be X, Tchaparian EH, Colletti AE, Roberts J, Langley M, Ling Y, Wong BK, Jin L. Deletion of Abcg2 has differential effects on excretion and pharmacokinetics of probe substrates in rats. J Pharmacol Exp Ther 2012; 343:316-24. [PMID: 22869929 DOI: 10.1124/jpet.112.197046] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
This study was designed to characterize breast cancer resistance protein (Bcrp) knockout Abcg2(-/-) rats and assess the effect of ATP-binding cassette subfamily G member 2 (Abcg2) deletion on the excretion and pharmacokinetic properties of probe substrates. Deletion of the target gene in the Abcg2(-/-) rats was confirmed, whereas gene expression was unaffected for most of the other transporters and metabolizing enzymes. Biliary excretion of nitrofurantoin, sulfasalazine, and compound A [2-(5-methoxy-2-((2-methyl-1,3-benzothiazol-6-yl)amino)-4-pyridinyl)-1,5,6,7-tetrahydro-4H-pyrrolo[3,2-c]pyridin-4-one] accounted for 1.5, 48, and 48% of the dose in the Abcg2(+/+) rats, respectively, whereas it was decreased by 70 to 90% in the Abcg2(-/-) rats. Urinary excretion of nitrofurantoin, a significant elimination pathway, was unaffected in the Abcg2(-/-) rats, whereas renal clearance of sulfasalazine, a minor elimination pathway, was reduced by >90%. Urinary excretion of compound A was minimal. Systemic clearance in the Abcg2(-/-) rats decreased 22, 43 (p<0.05), and 57%, respectively, for nitrofurantoin, sulfasalazine, and compound A administered at 1 mg/kg and 27% for compound A administered at 5 mg/kg. Oral absorption of nitrofurantoin, a compound with high aqueous solubility and good permeability, was not limited by Bcrp. In contrast, the absence of Bcrp led to a 33- and 11-fold increase in oral exposure of sulfasalazine and compound A, respectively. These data show that Bcrp plays a crucial role in biliary excretion of these probe substrates and has differential effects on systemic clearance and oral absorption in rats depending on clearance mechanisms and compound properties. The Abcg2(-/-) rat is a useful model for understanding the role of Bcrp in elimination and oral absorption.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/physiology
- Algorithms
- Animals
- Bile/metabolism
- Bile Ducts/physiology
- Biological Transport, Active/genetics
- Biological Transport, Active/physiology
- Cell Line
- Chromatography, High Pressure Liquid
- Digoxin/pharmacokinetics
- Female
- Gene Deletion
- Gene Expression/drug effects
- Injections, Intravenous
- Male
- Mass Spectrometry
- Nitrofurantoin/pharmacokinetics
- Pharmacokinetics
- Pregnancy
- RNA/biosynthesis
- RNA/genetics
- Rats
- Rats, Sprague-Dawley
- Real-Time Polymerase Chain Reaction
- Sulfasalazine/pharmacokinetics
Collapse
Affiliation(s)
- Liyue Huang
- Pharmacokinetics and Drug Metabolism, Amgen Inc., 360 Binney Street, Cambridge, MA 02142, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Cheval L, Pierrat F, Rajerison R, Piquemal D, Doucet A. Of mice and men: divergence of gene expression patterns in kidney. PLoS One 2012; 7:e46876. [PMID: 23056504 PMCID: PMC3463552 DOI: 10.1371/journal.pone.0046876] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 09/10/2012] [Indexed: 11/28/2022] Open
Abstract
Since the development of methods for homologous gene recombination, mouse models have played a central role in research in renal pathophysiology. However, many published and unpublished results show that mice with genetic changes mimicking human pathogenic mutations do not display the human phenotype. These functional differences may stem from differences in gene expression between mouse and human kidneys. However, large scale comparison of gene expression networks revealed conservation of gene expression among a large panel of human and mouse tissues including kidneys. Because renal functions result from the spatial integration of elementary processes originating in the glomerulus and the successive segments constituting the nephron, we hypothesized that differences in gene expression profiles along the human and mouse nephron might account for different behaviors. Analysis of SAGE libraries generated from the glomerulus and seven anatomically defined nephron segments from human and mouse kidneys allowed us to identify 4644 pairs of gene orthologs expressed in either one or both species. Quantitative analysis shows that many transcripts are present at different levels in the two species. It also shows poor conservation of gene expression profiles, with less than 10% of the 4644 gene orthologs displaying a higher conservation of expression profiles than the neutral expectation (p<0.05). Accordingly, hierarchical clustering reveals a higher degree of conservation of gene expression patterns between functionally unrelated kidney structures within a given species than between cognate structures from the two species. Similar findings were obtained for sub-groups of genes with either kidney-specific or housekeeping functions. Conservation of gene expression at the scale of the whole organ and divergence at the level of its constituting sub-structures likely account for the fact that although kidneys assume the same global function in the two species, many mouse “models” of human pathologies do not display the expected phenotype.
Collapse
Affiliation(s)
- Lydie Cheval
- Unité Mixte de Recherche 872, Université Paris 6 and Institut National de la Santé et de la Recherche Médicale, Paris, France
- Equipe de Recherche 7226, Centre National de la Recherche Scientifique, Paris, France
| | | | - Rabary Rajerison
- Unité Mixte de Recherche 872, Université Paris 6 and Institut National de la Santé et de la Recherche Médicale, Paris, France
- Equipe de Recherche 7226, Centre National de la Recherche Scientifique, Paris, France
| | | | - Alain Doucet
- Unité Mixte de Recherche 872, Université Paris 6 and Institut National de la Santé et de la Recherche Médicale, Paris, France
- Equipe de Recherche 7226, Centre National de la Recherche Scientifique, Paris, France
- * E-mail:
| |
Collapse
|