101
|
Chang GR, Kuo CY, Tsai MY, Lin WL, Lin TC, Liao HJ, Chen CH, Wang YC. Anti-Cancer Effects of Zotarolimus Combined with 5-Fluorouracil Treatment in HCT-116 Colorectal Cancer-Bearing BALB/c Nude Mice. Molecules 2021; 26:molecules26154683. [PMID: 34361836 PMCID: PMC8347948 DOI: 10.3390/molecules26154683] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 01/05/2023] Open
Abstract
Zotarolimus is a semi-synthetic derivative of rapamycin and an inhibitor of mammalian target of rapamycin (mTOR) signaling. Currently, zotarolimus is used to prolong the survival time of organ grafts, but it is also a novel immunosuppressive agent with potent anti-proliferative activity. Here, we examine the anti-tumor effect of zotarolimus, alone and in combination with 5-fluorouracil, on HCT-116 colorectal adenocarcinoma cells implanted in BALB/c nude mice. Compared with the control mice, mice treated with zotarolimus or zotarolimus combined with 5-FU showed retarded tumor growth; increased tumor apoptosis through the enhanced expression of cleaved caspase 3 and extracellular signal-regulated kinase (ERK) phosphorylation; reduced inflammation-related factors such as IL-1β, TNF-α, and cyclooxygenase-2 (COX-2) protein; and inhibited metastasis-related factors such as CD44, epidermal growth factor receptor (EGFR), transforming growth factor β (TGF-β), and vascular endothelial growth factor (VEGF). Notably, mice treated with a combination of zotarolimus and 5-FU showed significantly retarded tumor growth, reduced tumor size, and increased tumor inhibition compared with mice treated with 5-FU or zotarolimus alone, indicating a strong synergistic effect. This in vivo study confirms that zotarolimus or zotarolimus combined with 5-FU can be used to retard colorectal adenocarcinoma growth and inhibit tumorigenesis. Our results suggest that zotarolimus may increase the chemo-sensitization of tumor cells. Therefore, zotarolimus alone and zotarolimus combined with 5-FU may be potential anti-tumor agents in the treatment of human colon adenocarcinoma. Future research on zotarolimus may lead to the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Geng-Ruei Chang
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 600023, Taiwan; (G.-R.C.); (T.-C.L.); (H.-J.L.)
| | - Chan-Yen Kuo
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, 289 Jianguo Road, Xindian District, New Taipei 231405, Taiwan;
- Department of Nursing, Cardinal Tien College of Healthcare and Management, 112 Minzu Road, Sindian District, New Taipei 231038, Taiwan
| | - Ming-Yang Tsai
- Animal Industry Division, Livestock Research Institute, Council of Agriculture, Executive Yuan, 112 Muchang, Xinhua Dist, Tainan 71246, Taiwan;
- Graduate Institute of Bioresources, National Pingtung University of Science and Technology, 1 Shuefu Road, Neipu, Pingtung 91201, Taiwan
| | - Wei-Li Lin
- Bachelor Degree Program in Animal Healthcare, Hungkuang University, 6 Section, 1018 Taiwan Boulevard, Shalu District, Taichung 433304, Taiwan;
- General Education Center, Chaoyang University of Technology, 168 Jifeng Eastern Road, Taichung 413310, Taiwan
| | - Tzu-Chun Lin
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 600023, Taiwan; (G.-R.C.); (T.-C.L.); (H.-J.L.)
| | - Huei-Jyuan Liao
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 600023, Taiwan; (G.-R.C.); (T.-C.L.); (H.-J.L.)
| | - Chung-Hung Chen
- Division of Gastroenterology, Department of Internal Medicine, Chang Bing Show Chwan Memorial Hospital, 6 Lugong Road, Lukang Township, Changhua 505029, Taiwan
- Correspondence: (C.-H.C.); (Y.-C.W.); Tel.: +886-975-617357 (C.-H.C.); +886-2332-3456 (Y.-C.W.)
| | - Yu-Chen Wang
- Division of Cardiology, Asia University Hospital, 222 Fuxin Road, Wufeng District, Taichung 413505, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, 500 Lioufeng Road, Wufeng District, Taichung 413305, Taiwan
- Division of Cardiovascular Medicine, China Medical University Hospital, 2 Yude Road, North District, Taichung 404332, Taiwan
- College of Medicine, China Medical University, 91 Hsueh-Shih Road, North District, Taichung 404333, Taiwan
- Correspondence: (C.-H.C.); (Y.-C.W.); Tel.: +886-975-617357 (C.-H.C.); +886-2332-3456 (Y.-C.W.)
| |
Collapse
|
102
|
Witika BA, Makoni PA, Matafwali SK, Mweetwa LL, Shandele GC, Walker RB. Enhancement of Biological and Pharmacological Properties of an Encapsulated Polyphenol: Curcumin. Molecules 2021; 26:4244. [PMID: 34299519 PMCID: PMC8303961 DOI: 10.3390/molecules26144244] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
There is a dearth of natural remedies available for the treatment of an increasing number of diseases facing mankind. Natural products may provide an opportunity to produce formulations and therapeutic solutions to address this shortage. Curcumin (CUR), diferuloylmethane; I,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione is the major pigment in turmeric powder which has been reported to exhibit a number of health benefits including, antibacterial, antiviral, anti-cancer, anti-inflammatory and anti-oxidant properties. In this review, the authors attempt to highlight the biological and pharmacological properties of CUR in addition to emphasizing aspects relating to the biosynthesis, encapsulation and therapeutic effects of the compound. The information contained in this review was generated by considering published information in which evidence of enhanced biological and pharmacological properties of nano-encapsulated CUR was reported. CUR has contributed to a significant improvement in melanoma, breast, lung, gastro-intestinal, and genito-urinary cancer therapy. We highlight the impact of nano-encapsulated CUR for efficient inhibition of cell proliferation, even at low concentrations compared to the free CUR when considering anti-proliferation. Furthermore nano-encapsulated CUR exhibited bioactive properties, exerted cytotoxic and anti-oxidant effects by acting on endogenous and cholinergic anti-oxidant systems. CUR was reported to block Hepatitis C virus (HCV) entry into hepatic cells, inhibit MRSA proliferation, enhance wound healing and reduce bacterial load. Nano-encapsulated CUR has also shown bioactive properties when acting on antioxidant systems (endogenous and cholinergic). Future research is necessary and must focus on investigation of encapsulated CUR nano-particles in different models of human pathology.
Collapse
Affiliation(s)
- Bwalya Angel Witika
- ApotheCom|A MEDiSTRAVA Company (Medical Division of Huntsworth), London WC2A 1AN, UK;
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa
| | - Pedzisai Anotida Makoni
- Division of Pharmacology, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa;
| | - Scott Kaba Matafwali
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, LSHTM, London WC1E 7HT, UK;
| | - Larry Lawrence Mweetwa
- Department of Chemistry, Marine Biodiscovery Centre, University of Aberdeen, Aberdeen AB24 3FX, UK;
| | - Ginnethon Chaamba Shandele
- Department of Biochemistry, Institute of Basic and Biomedical Sciences, Levy Mwanawasa Medical University, P.O. Box 33991, Lusaka 10101, Zambia;
| | - Roderick Bryan Walker
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa
| |
Collapse
|
103
|
Cuesta SA, Meneses L. The Role of Organic Small Molecules in Pain Management. Molecules 2021; 26:4029. [PMID: 34279369 PMCID: PMC8271912 DOI: 10.3390/molecules26134029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/28/2022] Open
Abstract
In this review, a timeline starting at the willow bark and ending in the latest discoveries of analgesic and anti-inflammatory drugs will be discussed. Furthermore, the chemical features of the different small organic molecules that have been used in pain management will be studied. Then, the mechanism of different types of pain will be assessed, including neuropathic pain, inflammatory pain, and the relationship found between oxidative stress and pain. This will include obtaining insights into the cyclooxygenase action mechanism of nonsteroidal anti-inflammatory drugs (NSAID) such as ibuprofen and etoricoxib and the structural difference between the two cyclooxygenase isoforms leading to a selective inhibition, the action mechanism of pregabalin and its use in chronic neuropathic pain, new theories and studies on the analgesic action mechanism of paracetamol and how changes in its structure can lead to better characteristics of this drug, and cannabinoid action mechanism in managing pain through a cannabinoid receptor mechanism. Finally, an overview of the different approaches science is taking to develop more efficient molecules for pain treatment will be presented.
Collapse
Affiliation(s)
| | - Lorena Meneses
- Laboratorio de Química Computacional, Facultad de Ciencias Exactas y Naturales, Escuela de Ciencias Químicas, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre 1076 Apartado, Quito 17-01-2184, Ecuador;
| |
Collapse
|
104
|
Mu Q, Najafi M. Resveratrol for targeting the tumor microenvironment and its interactions with cancer cells. Int Immunopharmacol 2021; 98:107895. [PMID: 34171623 DOI: 10.1016/j.intimp.2021.107895] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/09/2021] [Accepted: 06/13/2021] [Indexed: 12/17/2022]
Abstract
Tumor resistance to therapy modalities is one of the major challenges to the eradication of cancer cells and complete treatment. Tumor includes a wide range of cancer and non-cancer cells that play key roles in the proliferation of cancer cells and suppression of anti-tumor immunity. For overcoming tumor resistance to therapy, it is important to have in-depth knowledge relating to intercellular communications within the tumor microenvironment (TME). TME includes various types of immune cells such as CD4 + T lymphocytes, cytotoxic T lymphocytes (CTLs), natural killer (NK) cells, macrophages, and T regulatory cells (Tregs). Furthermore, some non-immune cells like cancer stem cells (CSCs), mesenchymal stem cells (MSCs), and cancer-associated fibroblasts (CAFs) are involved in the promotion of tumor growth. The interactions between these cells with cancer cells play a key role in tumor growth or inhibition. Resveratrol as a natural agent has shown the ability to modulate the immune system to potentiate anti-tumor immunity and also help to attenuate cancer cells and CSCs resistance. Thus, this review explains how resveratrol can modulate interactions within TME.
Collapse
Affiliation(s)
- Qi Mu
- College of Nursing, Inner Mongolia University for Nationalities, Tongliao 028000, China.
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
105
|
Bioactive Compounds of Raspberry Oil Emulsions Induced Oxidative Stress via Stimulating the Accumulation of Reactive Oxygen Species and NO in Cancer Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5561672. [PMID: 34211628 PMCID: PMC8205582 DOI: 10.1155/2021/5561672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/08/2021] [Accepted: 05/22/2021] [Indexed: 12/17/2022]
Abstract
There are growing interests in the complex combinations of natural compounds that may advance the therapy of cancer. Such combinations already exist in foods, and a good representative is seed oils. Two raspberry oils: cold pressed (ROCOP) and one extracted by supercritical CO2 (ROSCO2) were evaluated for their chemical characteristics and oil emulsions for cell suppression potential against colon adenocarcinoma (LoVo), doxorubicin-resistant colon adenocarcinoma (LoVo/DX), breast cancer (MCF7), doxorubicin-resistant breast cancer (MCF7/DX), and lung cancer (A549) cell lines. The cytotoxicity was also assessed on normal human dermal fibroblasts (NHDFs). With increasing concentration of raspberry oil emulsions (0.5–10%), increasing inhibition of cancer cell viability and proliferation in all of the lines was observed, with different degrees of potency between cancer types and oil tested. ROSCO2 strongly induced free radical production and DNA strand damage in LoVo and MCF7 cells especially doxorubicin-resistant lines. This suggests that ROSCO2 engages and effectively targets the vulnerabilities of the cancer cell. Generally, both ROSCO2 and ROCOP could be a nontoxic support in therapy of selected human cancers.
Collapse
|
106
|
Cui QK, Li H, Li Z, Li J, Song L. Study on the mechanism of the Modified Ginseng-Schisandra Decoction (MGSD) in the treatment of recurrent respiratory tract infection (RRTI) based on network pharmacology. Transl Pediatr 2021; 10:1701-1711. [PMID: 34295785 PMCID: PMC8261594 DOI: 10.21037/tp-21-240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/17/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The aim of this study was to investigate the mechanism of Modified Ginseng-Schisandra Decoction in the treatment of recurrent respiratory tract infection (RRTI) using network pharmacology. METHODS To screen the active ingredients of A Modified Ginseng-Schisandra Decoction, TCMSP, TCMID, Batman-TCM and PubChem database were applied. To predict the targets of active ingredients on RRTI, TCMSP, Pubmed, OMIM, Drug Bank, GAD and TTD database were used. The compounds-therapeutic target network was constructed with Cytoscape 3.7.2 software. The STRING database was used to construct a protein-protein interaction (PPI) network, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was used to identify potential signal pathways. RESULTS The 3 main active ingredients of Modified Ginseng-Schisandra Decoction obtained by screening were quercetin, kaempferol, and isoflavone; the main therapeutic targets were PTGS2, ESR1, AR, PPARG, NOS2, and others. Based on the PPI network, we found that the targets of Modified Ginseng-Schisandra Decoction were significantly enriched in (FDR <0.01) cancer pathway, tumor necrosis factor (TNF) signaling pathway, hypoxia-inducible factor (HIF-1) signaling pathway, and others. CONCLUSIONS Modified Ginseng-Schisandra Decoction can treat RRTI primarily through acting in the signal transduction of some key nodes of cancer pathway and TNF pathway. It exerts a direct or indirect influence on multiple signaling pathways, and has the characteristics of multicomponent, multitarget, and multichannel action.
Collapse
Affiliation(s)
- Qing-Ke Cui
- Department of Chinese Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hua Li
- Department of Chinese Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhan Li
- Department of Chinese Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Li
- Department of Chinese Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Liqi Song
- Jilin Province Jilin Hospital of Integrated Chinese and Western Medicine, Jilin, China
| |
Collapse
|
107
|
Li J, Lv H, Che Y, Fan J. Inhibition of U87 Glioblastoma in BALB/c Nude Mice by Serenoa Repens Extract. INT J PHARMACOL 2021. [DOI: 10.3923/ijp.2021.271.280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
108
|
Kim CR, Jang EB, Hong SH, Yoon YE, Huh BK, Kim SN, Kim MJ, Moon HS, Choy YB. Indwelling urinary catheter assembled with lidocaine-loaded polymeric strand for local sustained alleviation of bladder discomfort. Bioeng Transl Med 2021; 6:e10218. [PMID: 34027100 PMCID: PMC8126825 DOI: 10.1002/btm2.10218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/10/2021] [Accepted: 03/14/2021] [Indexed: 01/03/2023] Open
Abstract
Indwelling urinary catheters (IUCs) are used in clinical settings to assist detrusor contraction in hospitalized patients. However, an inserted IUC often causes catheter-related bladder discomfort. To resolve this, we propose an IUC coupled with local, sustained release of an anesthetic drug, lidocaine. For this, a thin strand composed of poly (lactic-co-glycolic acid) and lidocaine was separately prepared as a drug delivery carrier, which was then wound around the surface of the IUC to produce the drug-delivery IUC. Our results revealed that the drug-delivery IUC could exert the pain-relief effects for up to 7 days when placed in the bladder of living rats. Cystometrogram tests indicated that the drug-delivery IUC could significantly relieve bladder discomfort compared with the IUC without lidocaine. Furthermore, the expression of pain-related inflammatory markers, such as nerve growth factor, cyclooxygenase-2, and interleukin-6 in the biopsied bladder tissues was significantly lower when the drug-delivery IUC was used. Therefore, we conclude that an IUC simply assembled with a drug-loaded polymer strand can continuously release lidocaine to allow for the relief of bladder discomfort during the period of IUC insertion.
Collapse
Affiliation(s)
- Cho Rim Kim
- Interdisciplinary Program for Bioengineering, College of EngineeringSeoul National UniversitySeoulRepublic of Korea
| | - Eun Bi Jang
- Department of Urology, College of MedicineHanyang UniversitySeoulRepublic of Korea
- Department of Translational Medicine, Graduate School of Biomedical Science & EngineeringHanyang UniversitySeoulRepublic of Korea
| | - Seong Hwi Hong
- Department of Urology, College of MedicineHanyang UniversitySeoulRepublic of Korea
| | - Young Eun Yoon
- Department of Urology, College of MedicineHanyang UniversitySeoulRepublic of Korea
| | - Beom Kang Huh
- Interdisciplinary Program for Bioengineering, College of EngineeringSeoul National UniversitySeoulRepublic of Korea
| | - Se Na Kim
- Institute of Medical & Biological Engineering, Medical Research CenterSeoul National UniversitySeoulRepublic of Korea
| | - Min Ji Kim
- Interdisciplinary Program for Bioengineering, College of EngineeringSeoul National UniversitySeoulRepublic of Korea
| | - Hong Sang Moon
- Department of Urology, College of MedicineHanyang UniversitySeoulRepublic of Korea
| | - Young Bin Choy
- Interdisciplinary Program for Bioengineering, College of EngineeringSeoul National UniversitySeoulRepublic of Korea
- Institute of Medical & Biological Engineering, Medical Research CenterSeoul National UniversitySeoulRepublic of Korea
- Department of Biomedical EngineeringSeoul National University, College of MedicineSeoulRepublic of Korea
| |
Collapse
|
109
|
Wu CF, Wu CY, Chiou RYY, Yang WC, Lin CF, Wang CM, Hou PH, Lin TC, Kuo CY, Chang GR. The Anti-Cancer Effects of a Zotarolimus and 5-Fluorouracil Combination Treatment on A549 Cell-Derived Tumors in BALB/c Nude Mice. Int J Mol Sci 2021; 22:4562. [PMID: 33925400 PMCID: PMC8123799 DOI: 10.3390/ijms22094562] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 12/29/2022] Open
Abstract
Zotarolimus is a semi-synthetic derivative of rapamycin and a novel immunosuppressive agent used to prevent graft rejection. The pharmacological pathway of zotarolimus restricts the kinase activity of the mammalian target of rapamycin (mTOR), which potentially leads to reductions in cell division, cell growth, cell proliferation, and inflammation. These pathways have a critical influence on tumorigenesis. This study aims to examine the anti-tumor effect of zotarolimus or zotarolimus combined with 5-fluorouracil (5-FU) on A549 human lung adenocarcinoma cell line implanted in BALB/c nude mice by estimating tumor growth, apoptosis expression, inflammation, and metastasis. We established A549 xenografts in nude mice, following which we randomly divided the mice into four groups: control, 5-FU (100 mg/kg/week), zotarolimus (2 mg/kg/day), and zotarolimus combined with 5-FU. Compared the results with those for control mice, we found that mice treated with zotarolimus or zotarolimus combined with 5-FU retarded tumor growth; increased tumor apoptosis through the enhanced expression of cleaved caspase 3 and extracellular signal-regulated kinase (ERK) phosphorylation; decreased inflammation cytokines levels (e.g., IL-1β, TNF-α, and IL-6); reduced inflammation-related factors such as cyclooxygenase-2 (COX-2) protein and nuclear factor-κB (NF-κB) mRNA; enhanced anti-inflammation-related factors including IL-10 and inhibitor of NF-κB kinase α (IκBα) mRNA; and inhibited metastasis-related factors such as transforming growth factor β (TGF-β), CD44, epidermal growth factor receptor (EGFR), and vascular endothelial growth factor (VEGF). Notably, mice treated with zotarolimus combined with 5-FU had significantly retarded tumor growth, reduced tumor size, and increased tumor inhibition compared with the groups of mice treated with 5-FU or zotarolimus alone. The in vivo study confirmed that zotarolimus or zotarolimus combined with 5-FU could retard lung adenocarcinoma growth and inhibit tumorigenesis. Zotarolimus and 5-FU were found to have an obvious synergistic tumor-inhibiting effect on lung adenocarcinoma. Therefore, both zotarolimus alone and zotarolimus combined with 5-FU may be potential anti-tumor agents for treatment of human lung adenocarcinoma.
Collapse
Affiliation(s)
- Ching-Feng Wu
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chang Gung University, Linkou, 5 Fuxing Street, Guishan District, Taoyuan 33305, Taiwan; (C.-F.W.); (C.-Y.W.)
| | - Ching-Yang Wu
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chang Gung University, Linkou, 5 Fuxing Street, Guishan District, Taoyuan 33305, Taiwan; (C.-F.W.); (C.-Y.W.)
| | - Robin Y.-Y. Chiou
- Department of Food Science, National Chiayi University, 300 University Road, Chiayi 60004, Taiwan;
| | - Wei-Cheng Yang
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, 4 Section, 1 Roosevelt Road, Taipei 10617, Taiwan;
| | - Chuen-Fu Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, 1 Shuefu Road, Neipu, Pingtung 912301, Taiwan;
| | - Chao-Min Wang
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan; (C.-M.W.); (T.-C.L.)
| | - Po-Hsun Hou
- Department of Psychiatry, Taichung Veterans General Hospital, 4 Section, 1650 Taiwan Boulevard, Taichung 40705, Taiwan;
- Faculty of Medicine, National Yang-Ming University, 2 Section, 155 Linong Street, Beitou District, Taipei 11221, Taiwan
| | - Tzu-Chun Lin
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan; (C.-M.W.); (T.-C.L.)
| | - Chan-Yen Kuo
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, 289 Jianguo Road, Xindian District, New Taipei City 231405, Taiwan
| | - Geng-Ruei Chang
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan; (C.-M.W.); (T.-C.L.)
| |
Collapse
|
110
|
Termer M, Carola C, Salazar A, Keck CM, Hemberger J, von Hagen J. Identification of plant metabolite classes from Waltheria Indica L. extracts regulating inflammatory immune responses via COX-2 inhibition. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113741. [PMID: 33359867 DOI: 10.1016/j.jep.2020.113741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/11/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Waltheria Indica L. is traditionally used in Africa, South America and Hawaii to treat pain, anemia, diarrhea, epilepsy and inflammatory related diseases. AIM OF THE STUDY This study aimed to identify extraction parameters to maximize tiliroside yield and to quantitative secondary metabolite composition of Waltheria Indica under various extraction conditions. The extracts were tested for COX-2 inhibition and their activity correlated with the type and quantity of the secondary metabolites. Insight was gained about how extraction parameters influence the extract composition and thus the COX-2 enzymatic inhibitory activity. MATERIALS AND METHODS Powdered leaves of Waltheria Indica were extracted using water, methanol, ethyl acetate and ethanol at different temperatures. Tiliroside was identified by HPLC-HRMS n and quantified using a tiliroside standard. The compound groups of the secondary metabolites were quantified by spectrometric methods. Inhibitory potential of different Waltheria extracts against the COX-2 enzyme was determined using a fluorometric COX-2 inhibition assay. RESULTS The molecule, tiliroside, exhibited a COX-2 inhibition of 10.4% starting at a concentration of 15 μM and increased in a dose dependent manner up to 51.2% at 150 μM. The ethanolic extract at 30 °C and the ethyl acetate extract at 90 °C inhibited COX-2 with 37.7% and 38.9%, while the methanolic and aqueous extract showed a lower inhibition of 21.9% and 9.2% respectively. The results concerning phenol, alkaloid and tiliroside concentration in the extracts showed no dependence on COX-2 inhibition. The extracts demonstrated a direct correlation of COX-2 inhibitory activity with their triterpenoid-/steroidal-saponin concentration. COX-2 inhibition increased linearly with the concentration of the saponins. CONCLUSION The data suggest that Waltheria Indica extracts inhibit the key inflammatory enzyme, COX-2, as a function of triterpenoid- and steroidal-saponin concentration and support the known efficacy of extracted Waltheria Indica leaves as a traditional treatment against inflammation related diseases.
Collapse
Affiliation(s)
- Michael Termer
- Department of Pharmaceutics and Biopharmaceutics, Philipps-University of Marburg, Marburg, Germany.
| | | | - Andrew Salazar
- Merck KGaA, BU Performance Materials, Darmstadt, Germany
| | - Cornelia M Keck
- Department of Pharmaceutics and Biopharmaceutics, Philipps-University of Marburg, Marburg, Germany
| | - Juergen Hemberger
- Department of Life Science Engineering, Institute for Biochemical Engineering & Analytics, University of Applied Sciences, Giessen, Germany
| | - Joerg von Hagen
- Department of Life Science Engineering, Institute for Biochemical Engineering & Analytics, University of Applied Sciences, Giessen, Germany; Merck KGaA, BU Performance Materials, Darmstadt, Germany
| |
Collapse
|
111
|
Dvorakova M, Langhansova L, Temml V, Pavicic A, Vanek T, Landa P. Synthesis, Inhibitory Activity, and In Silico Modeling of Selective COX-1 Inhibitors with a Quinazoline Core. ACS Med Chem Lett 2021; 12:610-616. [PMID: 33854702 PMCID: PMC8040043 DOI: 10.1021/acsmedchemlett.1c00004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/05/2021] [Indexed: 12/17/2022] Open
Abstract
Selective cyclooxygenase-1 (COX-1) inhibition has got into the spotlight with the discovery of COX-1 upregulation in various cancers and the cardioprotective role of COX-1 in control of thrombocyte aggregation. Yet, COX-1-selective inhibitors are poorly explored. Thus, three series of quinazoline derivatives were prepared and tested for their potential inhibitory activity toward COX-1 and COX-2. Of the prepared compounds, 11 exhibited interesting COX-1 selectivity, with 8 compounds being totally COX-1-selective. The IC50 value of the best quinazoline inhibitor was 64 nM. The structural features ensuring COX-1 selectivity were elucidated using in silico modeling.
Collapse
Affiliation(s)
- Marcela Dvorakova
- Laboratory
of Plant Biotechnologies, Czech Academy
of Sciences, Institute of Experimental Botany, Rozvojova 263, 165 02 Prague 6 - Lysolaje, Czech
Republic
| | - Lenka Langhansova
- Laboratory
of Plant Biotechnologies, Czech Academy
of Sciences, Institute of Experimental Botany, Rozvojova 263, 165 02 Prague 6 - Lysolaje, Czech
Republic
| | - Veronika Temml
- Department
of Pharmaceutical and Medicinal Chemistry, Paracelsus Medical University of Salzburg, Strubergasse 21, 5020 Salzburg, Austria
| | - Antonio Pavicic
- Laboratory
of Plant Biotechnologies, Czech Academy
of Sciences, Institute of Experimental Botany, Rozvojova 263, 165 02 Prague 6 - Lysolaje, Czech
Republic
| | - Tomas Vanek
- Laboratory
of Plant Biotechnologies, Czech Academy
of Sciences, Institute of Experimental Botany, Rozvojova 263, 165 02 Prague 6 - Lysolaje, Czech
Republic
| | - Premysl Landa
- Laboratory
of Plant Biotechnologies, Czech Academy
of Sciences, Institute of Experimental Botany, Rozvojova 263, 165 02 Prague 6 - Lysolaje, Czech
Republic
| |
Collapse
|
112
|
Sharma A, Tewari D, Nabavi SF, Nabavi SM, Habtemariam S. Reactive oxygen species modulators in pulmonary medicine. Curr Opin Pharmacol 2021; 57:157-164. [PMID: 33743400 DOI: 10.1016/j.coph.2021.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 11/23/2020] [Accepted: 02/08/2021] [Indexed: 12/23/2022]
Abstract
Adapted to effectively capture oxygen from inhaled air and deliver it to all other parts of the body, the lungs constitute the organ with the largest surface area. This makes the lungs more susceptible to airborne pathogens and pollutants that mediate pathologies through generation of reactive oxygen species (ROS). One pathological consequence of excessive levels of ROS production is pulmonary diseases that account for a large number of mortality and morbidity in the world. Of the various mechanisms involved in pulmonary disease pathogenesis, mitochondrial dysfunction takes prominent importance. Herein, we briefly describe the significance of oxidative stress caused by ROS in pulmonary diseases and some possible therapeutic strategies.
Collapse
Affiliation(s)
- Ankush Sharma
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, 1435916471, Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, 1435916471, Iran
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories and Herbal Analysis Services, School of Science, University of Greenwich, Central Avenue, Chatham-Maritime, Kent, ME4 4TB, United Kingdom.
| |
Collapse
|
113
|
Zong S, Yang L, Park HJ, Li J. Dietary intake of Lycium ruthenicum Murray ethanol extract inhibits colonic inflammation in dextran sulfate sodium-induced murine experimental colitis. Food Funct 2021; 11:2924-2937. [PMID: 32285052 DOI: 10.1039/d0fo00172d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this study, phytochemical compositions of Lycium ruthenicum Murray ethanol extract (LRE) were analyzed by LC-ESI-MS/MS and the protective effect of LRE on inflammatory bowel disease (IBD) was evaluated in a dextran sulfate sodium (DSS) induced experimental colitis mice model. The results showed that a total of 129 compounds were tentatively identified, including phenols/phenolic acids, flavonoids and others. LRE supplementation significantly reduced DSS-induced body weight loss, disease activity index increase, colon length shortening and colonic pathological damage. LRE inhibited intestinal inflammation by regulating nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways, restored intestinal immune homeostasis by regulating immune cell infiltration and T lymphocyte subsets, and suppressed (NOD)-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activation. Moreover, the LRE profoundly ameliorated aberrant oxidative stress and restored the intestinal barrier integrity of colitis. Together, LRE supplementation might provide a new dietary strategy for preventing and ameliorating IBD as a functional food.
Collapse
Affiliation(s)
- Shuai Zong
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Liu Yang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Hyun Jin Park
- School of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Jinglei Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| |
Collapse
|
114
|
Plant-Derived Anticancer Compounds as New Perspectives in Drug Discovery and Alternative Therapy. Molecules 2021; 26:molecules26041109. [PMID: 33669817 PMCID: PMC7922180 DOI: 10.3390/molecules26041109] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 12/29/2022] Open
Abstract
Despite the recent advances in the field of chemically synthetized pharmaceutical agents, nature remains the main supplier of bioactive molecules. The research of natural products is a valuable approach for the discovery and development of novel biologically active compounds possessing unique structures and mechanisms of action. Although their use belongs to the traditional treatment regimes, plant-derived compounds still cover a large portion of the current-day pharmaceutical agents. Their medical importance is well recognized in the field of oncology, especially as an alternative to the limitations of conventional chemotherapy (severe side effects and inefficacy due to the occurrence of multi-drug resistance). This review offers a comprehensive perspective of the first blockbuster chemotherapeutic agents of natural origin’s (e.g. taxol, vincristine, doxorubicin) mechanism of action using 3D representation. In addition is portrayed the step-by-step evolution from preclinical to clinical evaluation of the most recently studied natural compounds with potent antitumor activity (e.g. resveratrol, curcumin, betulinic acid, etc.) in terms of anticancer mechanisms of action and the possible indications as chemotherapeutic or chemopreventive agents and sensitizers. Finally, this review describes several efficient platforms for the encapsulation and targeted delivery of natural compounds in cancer treatment
Collapse
|
115
|
Li R, Chinnathambi A, Alharbi SA, Shair OHM, Veeraraghavan VP, Surapaneni KM, Rengarajan T. Anti-inflammatory effects of rhaponticin on LPS-induced human endothelial cells through inhibition of MAPK/NF-κβ signaling pathways. J Biochem Mol Toxicol 2021; 35:e22733. [PMID: 33605003 DOI: 10.1002/jbt.22733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/08/2020] [Accepted: 01/19/2021] [Indexed: 01/11/2023]
Abstract
The untreated systemic chronic inflammation leads to autoimmune diseases, hyperglycemia, cardiovascular diseases, type 2 diabetes, hypertension, osteoporosis, and so on. Phytochemicals effectively inhibit the inflammation, and numerous studies have proved that the phytocomponents possess anti-inflammatory property via inhibiting the cyclooxygenase and lipoxygenase signaling pathways. Rhaponticin is one such phytochemical obtained from the perennial plant Rheum rhaponticum L. belonging to Polygonaceae family. We assessed the anti-inflammatory potency of rhaponticin in endothelial cells induced with lipopolysaccharides (LPS). Four different endothelial cells induced with LPS were treated with rhaponticin and assessed for the nitric oxide generation. The cytotoxic potency of rhaponticin was evaluated in endothelial cells using the 3-(4,5-dimethylthizaol-2yl)-2,5-diphenyl tetrazolium bromide assay. The tumor necrosis factor-α (TNF-α) synthesis was quantified using the commercially available assay kit. The inflammatory signaling protein gene expression of TNF-α, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX2), and interleukin-1β (IL-1β) was analyzed with quantitative polymerase chain reaction (PCR) analysis. The gene expression of NADPH oxidase (NOX) cytoplasmic catalytic subunits gp91phox , p47phox , and p22phox was assessed with real-time PCR analysis. Finally, to confirm the anti-inflammatory potency of rhaponticin, the nuclear factor kappa B (NFκB) and mitogen-activated protein kinase (MAPK) signaling protein expression was analyzed with immunoblotting analysis. Rhaponticin treatment significantly decreased the levels of nitric oxide and TNF-α synthesis in LPS-induced endothelial cells. It significantly decreased the gene expression of inflammatory proteins and NOX signaling protein. The protein expression of NFκB and MAPK signaling proteins was drastically decreased in rhaponticin-treated endothelial cells induced with LPS. Overall, our results confirm that rhaponticin effectively inhibited the inflammation triggered by LPS in endothelial cells via downregulating iNOS, COX2, and NFκB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Rougang Li
- Department of General Surgery, The First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Omar H M Shair
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Krishna Mohan Surapaneni
- Departments of Biochemistry, Clinical Skills & Simulation, and Research, Panimalar Medical College Hospital & Research Institute, Chennai, Tamil Nadu, India
| | | |
Collapse
|
116
|
Farrag MA, Ezz MK, Ibrahim NK, Ahmed EK. Chemopreventive Potential of Myrtenal against Nitrosamine-Initiated, Radiation-Promoted Rat Bladder Carcinogenesis. Nutr Cancer 2021; 74:288-298. [PMID: 33511885 DOI: 10.1080/01635581.2021.1879881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The present study was undertaken to evaluate the chemopreventive activity of myrtenal, a natural monoterpene, against bladder carcinoma in rats induced with N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN) and promoted with γ-ionizing radiation (γ-IRR) as well as to assess the involvement of inflammation, apoptosis and oxidative damage in tumor development. Histopathological examination of rat bladder revealed the presence of noninvasive papillary transitional cell carcinoma (Grade 2) in sections from BBN group indicating the credibility of the applied carcinogenesis model. Myrtenal treatment caused improvement in urinary bladder mucosa with cells more likely in Grade 1. Administration of myrtenal to BBN-treated rats exhibited downregulation in the expressions of COX-2, NF-kB and STAT-3 associated with suppression of inflammatory cytokines levels of TNF-α and IL-6 as well as biomarkers of oxidative damage (MDA & NO). In addition, myrtenal treatment caused a significant increase in caspase-3 activity and Bax/Bcl-2 ratio. Data obtained suggested that the anti-inflammatory effect and the induction of apoptosis contributed largely to the beneficial antitumor effects of myrtenal in rats with BBN/γ-IRR-induced bladder carcinoma. Present findings, in addition to benefits described in other pathologies, indicated myrtenal as a potential adjuvant natural compound for the prevention of tumor progression of bladder cancer.
Collapse
Affiliation(s)
- Mostafa A Farrag
- Radiation biology, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Magda K Ezz
- Department of Biochemistry, Faculty of science, Ain Shams University, Cairo, Egypt
| | - Nashwa K Ibrahim
- Radiation biology, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Emad K Ahmed
- Department of Biochemistry, Faculty of science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
117
|
You YX, Shahar S, Rajab NF, Haron H, Yahya HM, Mohamad M, Din NC, Maskat MY. Effects of 12 Weeks Cosmos caudatus Supplement among Older Adults with Mild Cognitive Impairment: A Randomized, Double-Blind and Placebo-Controlled Trial. Nutrients 2021; 13:nu13020434. [PMID: 33572715 PMCID: PMC7912368 DOI: 10.3390/nu13020434] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 01/10/2023] Open
Abstract
Cosmos caudatus (CC) contains high flavonoids and might be beneficial in neuroprotection. It has the potential to prevent neurodegenerative diseases. Therefore, we aimed to investigate the effects of 12 weeks of Cosmos caudatus supplement on cognitive function, mood status, blood biochemical profiles and biomarkers among older adults with mild cognitive impairment (MCI) through a double-blind, placebo-controlled trial. The subjects were randomized into CC supplement (n = 24) and placebo group (n = 24). Each of them consumed one capsule of CC supplement (250 mg of CC/capsule) or placebo (500 mg maltodextrin/capsule) twice daily for 12 weeks. Cognitive function and mood status were assessed at baseline, 6th week, and 12th week using validated neuropsychological tests. Blood biochemical profiles and biomarkers were measured at baseline and 12th week. Two-way mixed analysis of variance (ANOVA) analysis showed significant improvements in mini mental state examination (MMSE) (partial η2 = 0.150, p = 0.049), tension (partial η2 = 0.191, p = 0.018), total mood disturbance (partial η2 = 0.171, p = 0.028) and malondialdehyde (MDA) (partial η2 = 0.097, p = 0.047) following CC supplementation. In conclusion, 12 weeks CC supplementation potentially improved global cognition, tension, total mood disturbance, and oxidative stress among older adults with MCI. Larger sample size and longer period of intervention with incorporation of metabolomic approach should be conducted to further investigate the underlying mechanism of CC supplementation in neuroprotection.
Collapse
Affiliation(s)
- Yee Xing You
- Dietetics Programme and Centre for Healthy Aging and Wellness (H-Care), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Suzana Shahar
- Dietetics Programme and Centre for Healthy Aging and Wellness (H-Care), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
- Correspondence: ; Tel.: +60-3-9289-7651
| | - Nor Fadilah Rajab
- Biomedical Science Programme and Centre for Healthy Aging and Wellness (H-Care), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Hasnah Haron
- Nutritional Sciences Programme and Centre for Healthy Aging and Wellness (H-Care), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (H.H.); (H.M.Y.)
| | - Hanis Mastura Yahya
- Nutritional Sciences Programme and Centre for Healthy Aging and Wellness (H-Care), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (H.H.); (H.M.Y.)
| | - Mazlyfarina Mohamad
- Diagnostic Imaging and Radiotherapy Programme and Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Normah Che Din
- Health Psychology Programme, Centre of Rehabilitation and Special Needs, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Mohamad Yusof Maskat
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Malaysia;
| |
Collapse
|
118
|
Molecular Iodine Has Extrathyroidal Effects as an Antioxidant, Differentiator, and Immunomodulator. Int J Mol Sci 2021; 22:ijms22031228. [PMID: 33513754 PMCID: PMC7865438 DOI: 10.3390/ijms22031228] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 12/15/2022] Open
Abstract
Most investigations of iodine metabolism in humans and animals have focused on its role in thyroid function. However, considerable evidence indicates that iodine could also be implicated in the physiopathology of other organs. We review the literature that shows that molecular iodine (I2) exerts multiple and complex actions on the organs that capture it, not including its effects as part of thyroid hormones. This chemical form of iodine is internalized by a facilitated diffusion system that is evolutionary conserved, and its effects appear to be mediated by a variety of mechanisms and pathways. As an oxidized component, it directly neutralizes free radicals, induces the expression of type II antioxidant enzymes, or inactivates proinflammatory pathways. In neoplastic cells, I2 generates iodolipids with nuclear actions that include the activation of apoptotic pathways and the inhibition of markers related to stem cell maintenance, chemoresistance, and survival. Recently, I2 has been postulated as an immune modulator that depending on the cellular context, can function as an inhibitor or activator of immune responses. We propose that the intake of molecular iodine is increased in adults to at least 1 mg/day in specific pathologies to obtain the potential extrathyroid benefits described in this review.
Collapse
|
119
|
Junren C, Xiaofang X, Mengting L, Qiuyun X, Gangmin L, Huiqiong Z, Guanru C, Xin X, Yanpeng Y, Fu P, Cheng P. Pharmacological activities and mechanisms of action of Pogostemon cablin Benth: a review. Chin Med 2021; 16:5. [PMID: 33413544 PMCID: PMC7791836 DOI: 10.1186/s13020-020-00413-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/18/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023] Open
Abstract
Patchouli ("Guanghuoxiang") or scientifically known as Pogostemon cablin Benth, belonging to the family Lamiaceae, has been used in traditional Chinse medicine (TCM) since the time of the Eastern Han dynasty. In TCM theory, patchouli can treat colds, nausea, fever, headache, and diarrhea. Various bioactive compounds have been identified in patchouli, including terpenoids, phytosterols, flavonoids, organic acids, lignins, glycosides, alcohols, pyrone, and aldehydes. Among the numerous compounds, patchouli alcohol, β-patchoulene, patchoulene epoxide, pogostone, and pachypodol are of great importance. The pharmacological impacts of these compounds include anti-peptic ulcer effect, antimicrobial effect, anti-oxidative effect, anti-inflammatory effect, effect on ischemia/reperfusion injury, analgesic effect, antitumor effect, antidiabetic effect, anti-hypertensive effect, immunoregulatory effect, and others.For this review, we examined publications from the previous five years collected from PubMed, Web of Science, Springer, and the Chinese National Knowledge Infrastructure databases. This review summarizes the recent progress in phytochemistry, pharmacology, and mechanisms of action and provides a reference for future studies focused on clinical applications of this important plant extract.
Collapse
Affiliation(s)
- Chen Junren
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu, 610075, China
| | - Xie Xiaofang
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu, 610075, China
| | - Li Mengting
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu, 610075, China
| | - Xiong Qiuyun
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu, 610075, China
| | - Li Gangmin
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu, 610075, China
| | - Zhang Huiqiong
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu, 610075, China
| | - Chen Guanru
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu, 610075, China
| | - Xu Xin
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu, 610075, China
| | - Yin Yanpeng
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu, 610075, China
| | - Peng Fu
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu, 610075, China.
- West China School of Pharmacy, Sichuan University, 17 South Renmin Rd, 610065, Chengdu, China.
| | - Peng Cheng
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu, 610075, China.
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 37 Shierqiao Road, Jinniu District, Chengdu, 611137, China.
| |
Collapse
|
120
|
Nagasaki M, Nakai K, Tanaka H, Ozaki M, Kato K, Koshi R, Maeno M, Nishikubo S, Kawato T, Tonogi M. Lipopolysaccharide and High Concentrations of Glucose Enhances Zoledronate-induced Increase in RANKL/OPG Ratio by Upregulating PGE 2 Production in Osteoblasts. J HARD TISSUE BIOL 2021. [DOI: 10.2485/jhtb.30.37] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
| | - Kumiko Nakai
- Department of Oral Health Sciences, Nihon University School of Dentistry
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry
| | - Hideki Tanaka
- Department of Oral Health Sciences, Nihon University School of Dentistry
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry
| | - Manami Ozaki
- Department of Oral Health Sciences, Nihon University School of Dentistry
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry
| | - Kengo Kato
- Nihon University Graduate School of Dentistry
| | - Ryosuke Koshi
- Department of Oral Health Sciences, Nihon University School of Dentistry
| | | | - Shuichi Nishikubo
- Department of Oral and Maxillofacial Surgery, Nihon University School of Dentistry
- Division of Oral Structural and Functional Biology, Nihon University School of Dentistry
| | - Takayuki Kawato
- Department of Oral Health Sciences, Nihon University School of Dentistry
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry
| | - Morio Tonogi
- Department of Oral and Maxillofacial Surgery, Nihon University School of Dentistry
- Division of Oral Structural and Functional Biology, Nihon University School of Dentistry
| |
Collapse
|
121
|
Pro-Inflammatory Effect of Gliadins and Glutenins Extracted from Different Wheat Cultivars on an In Vitro 3D Intestinal Epithelium Model. Int J Mol Sci 2020; 22:ijms22010172. [PMID: 33375311 PMCID: PMC7795490 DOI: 10.3390/ijms22010172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 12/18/2022] Open
Abstract
There is a need to assess the relationship between improved rheological properties and the immunogenic potential of wheat proteins. The present study aimed to investigate the in vitro effects of total protein extracts from three modern and two landrace Triticum aestivum commercial flour mixes, with significant differences in gluten strength (GS), on cell lines. Cytotoxicity and innate immune responses induced by wheat proteins were investigated using Caco-2 monocultures, two dimensional (2D) Caco-2/U937 co-cultures, and three dimensional (3D) co-cultures simulating the intestinal mucosa with Caco-2 epithelial cells situated above an extra-cellular matrix containing U937 monocytes and L929 fibroblasts. Modern wheat proteins, with increased GS, significantly reduced Caco-2 cell proliferation and vitality in monoculture and 2D co-cultures than landrace proteins. Modern wheat proteins also augmented Caco-2 monolayer disruption and tight junction protein, occludin, redistribution in 3D co-cultures. Release of interleukin-8 into the cell medium and increased U937 monocyte migration in both 2D and 3D co-cultures were similarly apparent. Immuno-activation of migrating U937 cells was evidenced from cluster of differentiation 14 (CD14) staining and CD11b-related differentiation into macrophages. The modern wheat proteins, with gluten polymorphism relatedness and increased GS, were shown to be more cytotoxic and immunogenic than the landrace wheat proteins.
Collapse
|
122
|
Gudise V, Chowdhury B. Molecular mechanisms and the vital roles of resistin, TLR 4, and NF-κB in treating type 2 diabetic complications. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2020. [DOI: 10.1186/s43088-020-00078-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Abstract
Background
Type 2 diabetes in obese (≥ 25 and ≥ 30 kg/m2) patients is the foremost cause of cardiovascular complications like stroke, osteoarthritis, cancers (endometrial, breast, ovarian, liver, kidney, colon, and prostate), and vascular complications like diabetic neuropathy, diabetic and retinopathy, and diabetic nephropathy. It is recognized as a global burden disorder with high prevalence in middle-income nations which might lead to a double burden on health care professionals. Hence, this review emphasizes on understanding the complexity and vital signaling tracts involved in diabetic complications for effective treatment.
Main body
Type 2 diabetes in overweight patients induces the creation of specific ROS that further leads to changes in cellular proliferation, hypothalamus, and fringe. The resistin, TLR4, and NF-κB signalings are mainly involved in the progression of central and fringe changes such as insulin resistance and inflammation in diabetic patients. The overexpression of these signals might lead to the rapid progression of diabetic vascular complications induced by the release of proinflammatory cytokines, chemokines, interleukins, and cyclooxygenase-mediated chemicals. Until now, there has been no curative treatment for diabetes. Therefore, to effectively treat complications of type 2 diabetes, the researchers need to concentrate on the molecular mechanisms and important signaling tracts involved.
Conclusion
In this review, we suggested the molecular mechanism of STZ-HFD induced type 2 diabetes and the vital roles of resistin, TLR4, and NF-κB signalings in central, fringe changes, and development diabetic complications for its effective treatment.
Graphical abstract
Collapse
|
123
|
Li Y, Li S, Li D. Breviscapine Alleviates Cognitive Impairments Induced by Transient Cerebral Ischemia/Reperfusion through Its Anti-Inflammatory and Anti-Oxidant Properties in a Rat Model. ACS Chem Neurosci 2020; 11:4489-4498. [PMID: 33270442 DOI: 10.1021/acschemneuro.0c00697] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cerebral ischemia/reperfusion (I/R)-induced injury is a common phenomenon of stroke, and the effective treatment for I/R-induced brain tissue damage is limited. Breviscapine has been widely used in China as herbal medicine to treat cardiovascular diseases for hundreds of years and has been demonstrated to possess potent cardiovascular pharmacological effects. This study aims to investigate the neuroprotective effect of breviscapine on cerebral I/R-induced injury. The rat model of middle cerebral artery occlusion (MCAO) was applied in our study. The cerebral I/R rats received multiple injections of breviscapine. All rats were subject to neurological behavior tests by open field test and Morris water maze test. The pro-inflammatory cytokines and oxidative stress marker levels were determined by ELISA and colorimetric analysis, respectively. We demonstrated that administration of breviscapine dose-dependently ameliorated cerebral I/R-induced injury and improved the neurological performance of cerebral I/R rats. Further studies illustrated that breviscapine treatment effectively attenuated inflammatory cytokine expression, reduced oxidative stress, and pro-apoptosis protein expression and inhibited the activation of NF-κB signaling and microglia in the I/R injury tissues. Breviscapine may serve as a single drug or a promising adjuvant that can be used in conjunction with other medicine for the treatment of cerebral I/R-induced injury.
Collapse
Affiliation(s)
- Yinghua Li
- Hangzhou Women’s Hospital, No. 369 Kunpeng Road, Hangzhou 310008, Zhejiang, China
| | - Songyi Li
- Hangzhou Women’s Hospital, No. 369 Kunpeng Road, Hangzhou 310008, Zhejiang, China
| | - Dingheng Li
- Hangzhou Women’s Hospital, No. 369 Kunpeng Road, Hangzhou 310008, Zhejiang, China
| |
Collapse
|
124
|
Protective Effect of Antioxidants in Nitric Oxide/COX-2 Interaction during Inflammatory Pain: The Role of Nitration. Antioxidants (Basel) 2020; 9:antiox9121284. [PMID: 33339104 PMCID: PMC7765556 DOI: 10.3390/antiox9121284] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 02/07/2023] Open
Abstract
In clinical practice, inflammatory pain is an important, unresolved health problem, despite the utilization of non-steroidal anti-inflammatory drugs (NSAIDs). In the last decade, different studies have proven that reactive oxygen species (ROS) and reactive nitrogen species (RNS) are involved in the development and maintenance of inflammatory pain and hyperalgesia via the post-translation modification of key proteins, such as manganese superoxide dismutase (MnSOD). It is well-known that inducible cyclooxygenase 2 (COX-2) plays a crucial role at the beginning of the inflammatory response by converting arachidonic acid into proinflammatory prostaglandin PGE2 and then producing other proinflammatory chemokines and cytokines. Here, we investigated the impact of oxidative stress on COX-2 and prostaglandin (PG) pathways in paw exudates, and we studied how this mechanism can be reversed by using antioxidants during hyperalgesia in a well-characterized model of inflammatory pain in rats. Our results reveal that during the inflammatory state, induced by intraplantar administration of carrageenan, the increase of PGE2 levels released in the paw exudates were associated with COX-2 nitration. Moreover, we showed that the inhibition of ROS with Mn (III) tetrakis (4-benzoic acid) porphyrin(MnTBAP) antioxidant prevented COX-2 nitration, restored the PGE2 levels, and blocked the development of thermal hyperalgesia.
Collapse
|
125
|
Zanin S, Molinari S, Cozza G, Magro M, Fedele G, Vianello F, Venerando A. Intracellular protein kinase CK2 inhibition by ferulic acid-based trimodal nanodevice. Int J Biol Macromol 2020; 165:701-712. [PMID: 33010276 DOI: 10.1016/j.ijbiomac.2020.09.207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/19/2020] [Accepted: 09/23/2020] [Indexed: 12/18/2022]
Abstract
Protein kinase CK2, a pleiotropic and constitutively active kinase, is strictly involved in different diseases, especially in cancer. Many efforts have been carried out to develop specific CK2 inhibitors and recently, it has been evidenced that ferulic acid (FA) represents a promising, albeit cell impermeable, CK2 inhibitor. In the present study, the potential of a nanotechnological approach to cope with intracellular CK2 regulation was explored. Surface-Active Maghemite Nanoparticles (SAMNs), coupling magnetism with photoluminescence, a new feature of SAMNs here described for the first time, were chosen as dual imaging nanocarrier for FA. The self-assembled nanodevice (SAMN@FA) displayed a significant CK2 inhibitory activity in vitro. Moreover, effective cellular internalization of SAMN@FA in cancer cells was proved by direct visualization of the photoluminescent nanocarrier by confocal microscopy and was corroborated by phosphorylation levels of endogenous CK2 targets. The proposed trimodal nanodevice, representing the first example of cellular CK2 nano-inhibition, paves the way for novel active nanocarriers as appealing theranostic tool for future biomedical applications.
Collapse
Affiliation(s)
- Sofia Zanin
- Department of Molecular Medicine, University of Pavia, via Forlanini 6, 27100 Pavia, Italy
| | - Simone Molinari
- Department of Geosciences, University of Padova, via Gradenigo 6, 35131 Padova, Italy
| | - Giorgio Cozza
- Department of Molecular Medicine, University of Padova, via Gabelli 63, 35121 Padova, Italy
| | - Massimiliano Magro
- Department of Comparative Biomedicine and Food Science, Agripolis Campus, University of Padova, viale dell'Università 16, 35020 Legnaro, Italy
| | - Giorgio Fedele
- Department of Comparative Biomedicine and Food Science, Agripolis Campus, University of Padova, viale dell'Università 16, 35020 Legnaro, Italy
| | - Fabio Vianello
- Department of Comparative Biomedicine and Food Science, Agripolis Campus, University of Padova, viale dell'Università 16, 35020 Legnaro, Italy.
| | - Andrea Venerando
- Department of Comparative Biomedicine and Food Science, Agripolis Campus, University of Padova, viale dell'Università 16, 35020 Legnaro, Italy.
| |
Collapse
|
126
|
Jiang S, Chen Z, Lai W, Mai Q, Chen D, Sun S, Zhang Y. Decoction of Heat-Clearing, Detoxifying and Blood Stasis Removing Relieves Acute Soft Tissue Injury via Modulating MiR-26b-5p/COX2 Axis to Inhibit Inflammation. Biosci Rep 2020; 40:BSR20201981. [PMID: 33270831 PMCID: PMC7753743 DOI: 10.1042/bsr20201981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 11/30/2022] Open
Abstract
Traditional Chinese medicine (TCM), such as Huanglian-Jie-Du-Tang, a heat-clearing and detoxifying decoction is beneficial to alleviation of inflammation-related diseases. The objective of this study is to uncover the effect and mechanism of heat-clearing, detoxifying and blood stasis removing decoction (HDBD) on the treatment of acute soft tissue injury (STI) which is characterized with excessive inflammatory cascade at the onset. Male Sprague-Dawley (SD) rats with hammer beating served as the in vivo models of acute STI. Haematoxylin-eosin (HE) staining was used for histopathology assessment. The levels of inflammatory factors, including prostaglandin E2 (PGE2), tumor necrosis factor-αumTNF-α), interleukin (IL)-1t and IL-6 were measured by enzyme linked immunosorbent assay (ELISA). Human dermal microvascular endothelium cell line HMEC-1 and rat vascular endothelium cell line RAOEC were used to explore the mechanism in vitro. Luciferase gene reporter assay was applied to determine the relationship between miR-26b-5p and COX2. The results showed that HDBD intervention significantly reduced the temperature difference between the healthy side and affected side of rats with hammer beating, together with the decreased levels of COX2, PGE2, TNF-α, IL-6 and IL-1β, and the increased level of miR-26b-5p. In mechanism, miR-26b-5p targeted COX2 and decreased its expression, leading to significant decreases in the levels of PGE2, TNF-α and IL-6 in RAOEC and HMEC-1 cells. In addition, miR-26b-5p inhibition impaired the effects of HDBD on the suppression of PGE2, TNF-α, IL-6 and IL-1β in vitro. In conclusion, this study revealed that HDBD relieved acute STI via modulating miR-26b-5p/COX2 axis to inhibit inflammation.
Collapse
Affiliation(s)
- Shunwan Jiang
- Department of Orthopedics, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Zhi Chen
- Department of Orthopedics, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Wenqiang Lai
- Department of Orthopedics, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Qingchun Mai
- Department of Orthopedics, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Dayu Chen
- Department of Orthopedics, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Shufen Sun
- Department of Orthopedics, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Yong Zhang
- Department of Orthopedics, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| |
Collapse
|
127
|
Yuan GH, Zhang Z, Gao XS, Zhu J, Guo WH, Wang L, Ding P, Jiang P, Li L. Gut microbiota-mediated tributyltin-induced metabolic disorder in rats. RSC Adv 2020; 10:43619-43628. [PMID: 35519721 PMCID: PMC9058259 DOI: 10.1039/d0ra07502g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/13/2020] [Indexed: 12/28/2022] Open
Abstract
Tributyltin (TBT), an environmental pollutant widely used in antifouling coatings, can cause multiple-organ toxicity and gut microbiome dysbiosis in organisms, and can even cause changes in the host metabolomic profiles. However, little is known about the underlying effects and links of TBT-induced metabolic changes and gut microbiome dysbiosis. In this study, rats were exposed to TBT at a dose of 100 μg kg-1 body weight (BW) for 38 days, followed by multi-omics analysis, including microbiome, metabolomics, and metallomics. Results showed that TBT exposure reduced rat weight gain and decreased the serum triglyceride (TG) level. Metabolic analysis revealed that TBT fluctuated linoleic acid metabolism and glycerophospholipid metabolism in the liver; the tricarboxylic acid cycle (TCA cycle), nicotinate and nicotinamide metabolism, and arachidonic acid metabolism in serum; glycine, serine, and threonine metabolism, the one carbon pool by folate, nicotinate, and nicotinamide metabolism; and tryptophan metabolism in feces. Furthermore, TBT treatment dictated liver inflammation due to enhancing COX-2 expression by activating protein kinase R-like ER kinase (PERK) and C/EBP homologous protein (CHOP) to induce endoplasmic reticulum (ER) stress instead of stimulating arachidonic acid metabolism. Meanwhile, alteration of the intestinal flora [Acetivibrio]_ethanolgignens_group, Acetatifactor, Eisenbergiella, Lachnospiraceae_UCG-010, Enterococcus, Anaerovorax, and Bilophila under TBT exposure were found to be involved in further mediating liver inflammation, causing lipid metabolism abnormalities, such as TG, linoleic acid, and glycerophospholipids, and interfering with the energy supply process. Among these, [Acetivibrio]_ethanolgignens_group, Enterococcus, and Bilophila could be considered as potential biomarkers for TBT exposure based on receiver operator characteristic (ROC) curve analysis.
Collapse
Affiliation(s)
- Ge-Hui Yuan
- Center for Global Health, School of Public Health, Nanjing Medical University 101 Longmian Avenue Nanjing 211166 China +86-25-8686-8499 +86-25-8686-8402 +86-25-8686-8404 +86-25-8686-8402
| | - Zhan Zhang
- Center for Global Health, School of Public Health, Nanjing Medical University 101 Longmian Avenue Nanjing 211166 China +86-25-8686-8499 +86-25-8686-8402 +86-25-8686-8404 +86-25-8686-8402.,Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University 101 Longmian Avenue Nanjing 211166 P. R. China
| | - Xing-Su Gao
- Center for Global Health, School of Public Health, Nanjing Medical University 101 Longmian Avenue Nanjing 211166 China +86-25-8686-8499 +86-25-8686-8402 +86-25-8686-8404 +86-25-8686-8402
| | - Jun Zhu
- Center for Global Health, School of Public Health, Nanjing Medical University 101 Longmian Avenue Nanjing 211166 China +86-25-8686-8499 +86-25-8686-8402 +86-25-8686-8404 +86-25-8686-8402
| | - Wen-Hui Guo
- Center for Global Health, School of Public Health, Nanjing Medical University 101 Longmian Avenue Nanjing 211166 China +86-25-8686-8499 +86-25-8686-8402 +86-25-8686-8404 +86-25-8686-8402.,Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University 101 Longmian Avenue Nanjing 211166 P. R. China
| | - Li Wang
- Center for Global Health, School of Public Health, Nanjing Medical University 101 Longmian Avenue Nanjing 211166 China +86-25-8686-8499 +86-25-8686-8402 +86-25-8686-8404 +86-25-8686-8402.,Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University 101 Longmian Avenue Nanjing 211166 P. R. China
| | - Ping Ding
- Xiang Ya School of Public Health, Central South University Changsha 410078 P. R. China
| | - Ping Jiang
- Center for Global Health, School of Public Health, Nanjing Medical University 101 Longmian Avenue Nanjing 211166 China +86-25-8686-8499 +86-25-8686-8402 +86-25-8686-8404 +86-25-8686-8402.,Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University 101 Longmian Avenue Nanjing 211166 P. R. China
| | - Lei Li
- Center for Global Health, School of Public Health, Nanjing Medical University 101 Longmian Avenue Nanjing 211166 China +86-25-8686-8499 +86-25-8686-8402 +86-25-8686-8404 +86-25-8686-8402.,Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University 101 Longmian Avenue Nanjing 211166 P. R. China
| |
Collapse
|
128
|
Yi S, Liu YP, Li XY, Yuan XY, Wang Y, Cai Y, Lei YD, Huang L, Zhang ZH. The expression profile and bioinformatics analysis of microRNAs in human bronchial epithelial cells treated by beryllium sulfate. J Appl Toxicol 2020; 41:1275-1285. [PMID: 33197057 DOI: 10.1002/jat.4116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/17/2020] [Accepted: 11/02/2020] [Indexed: 11/08/2022]
Abstract
Beryllium and its compounds are systemic toxicants that mainly accumulate in the lungs. As a regulator of gene expression, microRNAs (miRNAs) were involved in some lung diseases. This study aimed to analyze the levels of some inflammatory cytokine and the differential expressions of miRNAs in human bronchial epithelial cells (16HBE) induced by beryllium sulfate (BeSO4 ) and to further explore the biological functions of differentially expressed miRNAs. The profile of miRNAs in 16HBE cells was detected using the high-throughput sequencing between the control groups (n = 3) and the 150 μmol/L of BeSO4 -treated groups (n = 3). Bioinformatics analysis of differentially expressed miRNAs was performed, including the prediction of target genes, Gene Ontology (GO) analysis, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Quantitative real-time polymerase chain reaction (qRT-PCR) was applied to verify some damage-related miRNAs. We found that BeSO4 can increase the levels of some inflammatory cytokine such as interleukin-10 (IL-10), tumor necrosis factor-alpha (TNF-α), interferon-γ (IFN-γ), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2). And BeSO4 altered miRNAs expression of 16HBE cells and a total of 179 differentially expressed miRNAs were identified, including 88 upregulated miRNAs and 91 downregulated miRNAs. The target genes predicted by 28 dysregulated miRNAs were mainly involved in the transcription regulation, signal transduction, MAPK, and VEGF signaling pathway. The qRT-PCR verification results were consistent with the sequencing results. miRNA expression profiling in 16HBE cells exposed to BeSO4 provides new insights into the toxicity mechanism of beryllium exposure.
Collapse
Affiliation(s)
- Shan Yi
- School of Public Health, University of South China, Hengyang, China
| | - Yan-Ping Liu
- School of Public Health, University of South China, Hengyang, China
| | - Xun-Ya Li
- School of Public Health, University of South China, Hengyang, China
| | - Xiao-Yan Yuan
- School of Public Health, University of South China, Hengyang, China
| | - Ye Wang
- School of Public Health, University of South China, Hengyang, China
| | - Ying Cai
- School of Public Health, University of South China, Hengyang, China
| | - Yuan-di Lei
- School of Public Health, University of South China, Hengyang, China
| | - Lian Huang
- School of Public Health, University of South China, Hengyang, China
| | - Zhao-Hui Zhang
- School of Public Health, University of South China, Hengyang, China
| |
Collapse
|
129
|
Investigating the Multitarget Mechanism of Traditional Chinese Medicine Prescription for Cancer-Related Pain by Using Network Pharmacology and Molecular Docking Approach. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:7617261. [PMID: 33224254 PMCID: PMC7673937 DOI: 10.1155/2020/7617261] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/30/2020] [Accepted: 10/24/2020] [Indexed: 01/04/2023]
Abstract
Gu-tong formula (GTF) has achieved good curative effects in the treatment of cancer-related pain. However, its potential mechanisms have not been explored. We used network pharmacology and molecular docking to investigate the molecular mechanism and the effective compounds of the prescription. Through the analysis and research in this paper, we obtained 74 effective compounds and 125 drug-disease intersection targets to construct a network, indicating that quercetin, kaempferol, and β-sitosterol were possibly the most important compounds in GTF. The key targets of GTF for cancer-related pain were Jun proto-oncogene (JUN), mitogen-activated protein kinase 1 (MAPK1), and RELA proto-oncogene (RELA). 2204 GO entries and 148 pathways were obtained by GO and KEGG enrichment, respectively, which proved that chemokine, MAPK, and transient receptor potential (TRP) channels can be regulated by GTF. The results of molecular docking showed that stigmasterol had strong binding activity with arginine vasopressin receptor 2 (AVPR2) and C-X3-C motif chemokine ligand 1 (CX3CL1) and cholesterol was more stable with p38 MAPK, prostaglandin-endoperoxide synthase 2 (PTGS2), and transient receptor potential vanilloid-1 (TRPV1). In conclusion, the therapeutic effect of GTF on cancer-related pain is based on the comprehensive pharmacological effect of multicomponent, multitarget, and multichannel pathways. This study provides a theoretical basis for further experimental research in the future.
Collapse
|
130
|
Dhanjal DS, Bhardwaj S, Sharma R, Bhardwaj K, Kumar D, Chopra C, Nepovimova E, Singh R, Kuca K. Plant Fortification of the Diet for Anti-Ageing Effects: A Review. Nutrients 2020; 12:E3008. [PMID: 33007945 PMCID: PMC7601865 DOI: 10.3390/nu12103008] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
Ageing is an enigmatic and progressive biological process which undermines the normal functions of living organisms with time. Ageing has been conspicuously linked to dietary habits, whereby dietary restrictions and antioxidants play a substantial role in slowing the ageing process. Oxygen is an essential molecule that sustains human life on earth and is involved in the synthesis of reactive oxygen species (ROS) that pose certain health complications. The ROS are believed to be a significant factor in the progression of ageing. A robust lifestyle and healthy food, containing dietary antioxidants, are essential for improving the overall livelihood and decelerating the ageing process. Dietary antioxidants such as adaptogens, anthocyanins, vitamins A/D/C/E and isoflavones slow the ageing phenomena by reducing ROS production in the cells, thereby improving the life span of living organisms. This review highlights the manifestations of ageing, theories associated with ageing and the importance of diet management in ageing. It also discusses the available functional foods as well as nutraceuticals with anti-ageing potential.
Collapse
Affiliation(s)
- Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India; (D.S.D.); (S.B.); (C.C.)
| | - Sonali Bhardwaj
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India; (D.S.D.); (S.B.); (C.C.)
| | - Ruchi Sharma
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India; (R.S.); (D.K.)
| | - Kanchan Bhardwaj
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India;
| | - Dinesh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India; (R.S.); (D.K.)
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India; (D.S.D.); (S.B.); (C.C.)
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India; (D.S.D.); (S.B.); (C.C.)
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| |
Collapse
|
131
|
Roflumilast prevents lymphotoxin α (TNF-β)-induced inflammation activation and degradation of type 2 collagen in chondrocytes. Inflamm Res 2020; 69:1191-1199. [PMID: 32990777 DOI: 10.1007/s00011-020-01404-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/04/2020] [Accepted: 09/15/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND AND PURPOSE Osteoarthritis (OA) is a chronic disease accompanied by severe inflammation. The inflammation activation in the chondrocytes and the degradation of the extracellular matrix were reported to be involved in the progress of OA. Roflumilast is a selective PDE4 inhibitor used for treating chronic obstructive pulmonary disease (COPD) and exerts significant anti-inflammation effects. The present study aims to investigate the effects of Roflumilast on tumor necrosis factor-β (TNF-β)-induced inflammation activation and degradation of type 2 collagen in chondrocytes. METHODS TNF-β was used to establish the in-vitro inflammation model on ATDC5 chondrocytes. Quantitative real-time polymerase chain reaction (QRT-PCR) and western blot were used to determine the expression level of tumor necrosis factor receptor 2 (TNFR2), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), matrix metalloproteinase 3 (MMP-3), matrix metalloproteinase 13 (MMP-13), type 2 collagen and nuclear factor kappa B (NF-κB) p65. The release of prostaglandin E2 (PGE2), MMP-3, and MMP-13 were evaluated by ELISA. The production of NO was determined by DAF-FM DA staining and the function of the NF-κB promoter was evaluated by Luciferase activity assay. RESULTS TNFR2 and COX-2 were upregulated and the release of PGE2 was promoted by TNF-β stimulation, which were all inhibited by Roflumilast. Roflumilast suppressed the promoted iNOS expression and NO production induced by TNF-β. MMP-3 and MMP-13 were up-regulated, and type 2 collagen was down-regulated by TNF-β stimulation, which were all reversed by Roflumilast. Roflumilast inhibited the promoted releasing of Interleukin-8 (IL-8) and Interleukin-12 (IL-12), expression of up-regulated NF-κB, and activation of NF-κB transcriptional activity induced by TNF-β. CONCLUSION Roflumilast may prevent TNF-β-induced inflammation activation and degradation of type 2 collagen in chondrocytes.
Collapse
|
132
|
Paramanantham A, Kim MJ, Jung EJ, Nagappan A, Yun JW, Kim HJ, Shin SC, Kim GS, Lee WS. Pretreatment of Anthocyanin from the Fruit of Vitis coignetiae Pulliat Acts as a Potent Inhibitor of TNF-α Effect by Inhibiting NF-κB-Regulated Genes in Human Breast Cancer Cells. Molecules 2020; 25:molecules25102396. [PMID: 32455624 PMCID: PMC7287973 DOI: 10.3390/molecules25102396] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 12/24/2022] Open
Abstract
Vitis coignetiaePulliat (Meoru in Korea) has been used in Korean folk medicine for the treatment of inflammatory diseases and cancers. Evidence suggests that NF-κB activation is mainly involved in cancer cell proliferation, invasion, angiogenesis, and metastasis. TNF-α also enhances the inflammatory process in tumor development. Recently, flavonoids from plants have been reported to have inhibitory effects on NF-κB activities. We investigated the effects of anthocyanins extracted from the fruits of Vitis coignetiae Pulliat (AIM, anthocyanins isolated from Meoru (AIM)) on TNF-α-induced NF-κB activities in MCF-7 human breast cancer cells and the molecules involved in AIM-induced anti-cancer effects, especially on cancer metastasis. We performed cell viability assay, gelatin zymography, invasion assay, and western blot analysis to unravel the anti-NF-κB activity of AIMs on MCF-7 cells. AIM suppressed the TNF-α effects on the NF-κB-regulated proteins involved in cancer cell proliferation (COX-2, C-myc), invasion, and angiogenesis (MMP-2, MMP9, ICAM-1, and VEGF). AIM also increased the expression of E-cadherin, which is one of the hallmarks of the epithelial-mesenchymal transition (EMT) process. In conclusion, this study demonstrates that the anthocyanins isolated from the fruits of Vitis coignetiae Pulliat acts as an inhibitor of TNF-α induced NF-κB activation, and subsequent downstream molecules involved in cancer proliferation, invasion, adhesion, angiogenesis, and thus have anti-metastatic activities in MCF-7 breast cancer cells.
Collapse
Affiliation(s)
- Anjugam Paramanantham
- Departments of Internal Medicine, Institute of Health Sciences, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju 660-702, Korea; (A.P.); (M.J.K.); (A.N.); (J.W.Y.)
- Research Institute of Life science and College of Veterinary Medicine, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Korea
| | - Min Jeong Kim
- Departments of Internal Medicine, Institute of Health Sciences, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju 660-702, Korea; (A.P.); (M.J.K.); (A.N.); (J.W.Y.)
| | - Eun Joo Jung
- Departments of Biochemistry, Institute of Health Sciences, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju 660-702, Korea;
| | - Arulkumar Nagappan
- Departments of Internal Medicine, Institute of Health Sciences, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju 660-702, Korea; (A.P.); (M.J.K.); (A.N.); (J.W.Y.)
| | - Jeong Won Yun
- Departments of Internal Medicine, Institute of Health Sciences, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju 660-702, Korea; (A.P.); (M.J.K.); (A.N.); (J.W.Y.)
| | - Hye Jung Kim
- Departments of Pharmacology, Institute of Health Sciences, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju 660-702, Korea;
| | - Sung Chul Shin
- Department of Chemistry, Research Institute of Life Science, Gyeongsang National University, Jinju 660-701, Korea;
| | - Gon Sup Kim
- Research Institute of Life science and College of Veterinary Medicine, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Korea
- Correspondence: (G.S.K.); (W.S.L.); Tel.: +82-55-772-2356 (G.S.K.); +82-55-750-8733 (W.S.L.)
| | - Won Sup Lee
- Departments of Internal Medicine, Institute of Health Sciences, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju 660-702, Korea; (A.P.); (M.J.K.); (A.N.); (J.W.Y.)
- Correspondence: (G.S.K.); (W.S.L.); Tel.: +82-55-772-2356 (G.S.K.); +82-55-750-8733 (W.S.L.)
| |
Collapse
|
133
|
Ju WJ, Zhao ZK, Chen SL, Zhou DD, Yang WN, Wen XP, Du GL. Buzhongyiqi Decoction Protects Against Loperamide-Induced Constipation by Regulating the Arachidonic Acid Pathway in Rats. Front Pharmacol 2020; 11:423. [PMID: 32317976 PMCID: PMC7146620 DOI: 10.3389/fphar.2020.00423] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 03/19/2020] [Indexed: 01/16/2023] Open
Abstract
Constipation is a common gastrointestinal disorder without effective treatment approach. Buzhongyiqi decoction (BZYQD) is a classical formula that has been commonly used for gastrointestinal disorders for nearly 1,000 years. In this study, we aimed to investigate the protective effect of BZYQD against loperamide-induced constipation and its potential mechanism. Rats with loperamide-induced constipation were orally administered BZYQD. BZYQD treatment obviously increased the small intestinal transit rate and alleviated colon tissue pathological damage. Subsequently, serum metabolomics study was performed to identify the metabolites affected by BZYQD. Metabolomics identified that the levels of 17 serum metabolites, including prostaglandin E2 (PGE2), arachidonic acid (AA), and inositol, were significantly changed in BZYQD-treated group compared with those in the loperamide-induced group. Pathway analysis revealed that those metabolites were mainly associated with arachidonic acid metabolism, biosynthesis of unsaturated fatty acids, ascorbate and aldarate metabolism, inositol phosphate metabolism. Additionally, BZYQD treatment down-regulated the cyclooxygenase-2 expression and decrease production of the proinflammatory mediator PGE2. Further study revealed that BZYQD administration decreased serum levels of the inflammatory factors IL-1β and TNF-α, inhibited phosphorylation of the nuclear transcription factor NF-κB, and down-regulated expression of the inflammatory factors IL-1β and IL-6 in the constipated rat colon. Moreover, BZYQD treatment also increased serum levels of inositol, motilin and gastrin, and promoted gastrointestinal motility. In conclusion, the present study suggested that BZYQD exerted a protective effect against loperamide-induced constipation, which may be associated with its role in regulation of multiple metabolic pathways.
Collapse
Affiliation(s)
- Wan-Jun Ju
- Department of Formulaology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Endocrinology, Shanghai Pudong New Area Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Ze-Kuo Zhao
- Department of Formulaology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shao-Li Chen
- Department of Formulaology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dan-Dan Zhou
- R & D Department, GenChim Testing Co., Ltd, Shanghai, China
| | - Wen-Ning Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Ping Wen
- Department of Formulaology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang-Li Du
- Department of Formulaology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
134
|
Extra Virgin Olive Oil Polyphenols: Modulation of Cellular Pathways Related to Oxidant Species and Inflammation in Aging. Cells 2020; 9:cells9020478. [PMID: 32093046 PMCID: PMC7072812 DOI: 10.3390/cells9020478] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 01/18/2023] Open
Abstract
The olive-oil-centered Mediterranean diet has been associated with extended life expectancy and a reduction in the risk of age-related degenerative diseases. Extra virgin olive oil (EVOO) itself has been proposed to promote a "successful aging", being able to virtually modulate all the features of the aging process, because of its great monounsaturated fatty acids content and its minor bioactive compounds, the polyphenols above all. Polyphenols are mostly antioxidant and anti-inflammatory compounds, able to modulate abnormal cellular signaling induced by pro-inflammatory stimuli and oxidative stress, as that related to NF-E2-related factor 2 (Nrf-2) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), which have been identified as important modulators of age-related disorders and aging itself. This review summarizes existing literature about the interaction between EVOO polyphenols and NF-κB and Nrf-2 signaling pathways. Reported studies show the ability of EVOO phenolics, mainly hydroxytyrosol and tyrosol, to activate Nrf-2 signaling, inducing a cellular defense response and to prevent NF-κB activation, thus suppressing the induction of a pro-inflammatory phenotype. Literature data, although not exhaustive, indicate as a whole that EVOO polyphenols may significantly help to modulate the aging process, so tightly connected to oxidative stress and chronic inflammation.
Collapse
|
135
|
Ruan J, Guo J, Huang Y, Mao Y, Yang Z, Zuo Z. Adolescent exposure to environmental level of PCBs (Aroclor 1254) induces non-alcoholic fatty liver disease in male mice. ENVIRONMENTAL RESEARCH 2020; 181:108909. [PMID: 31776016 DOI: 10.1016/j.envres.2019.108909] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants found in various environmental media, and there is growing evidence that PCBs may contribute to the pathogenesis of non-alcoholic fatty liver disease (NAFLD). The purposes of this study were to investigate whether environmental level of Aroclor 1254 (a commercial mixture of PCBs) exposure to adolescent male mice could induce the development of NAFLD and the mechanisms involved. Twenty-one-day-old male C57BL/6 mice were exposed to Aroclor 1254 (0.5-500 μg/kg body weight) by oral gavage once every third day for 60 days. The results showed that exposure to Aroclor 1254 increased body weight and decreased the liver-somatic index in a dose-dependent manner. Aroclor 1254 administration increased lipid accumulation in the liver and induced the mRNA expression of genes associated with lipogenesis, including acetyl-CoA carboxylase 1 (Acc1), acetyl-CoA carboxylase 2 (Acc2) and fatty acid synthase (Fasn). Moreover, Aroclor 1254 decreased peroxisome proliferator-activated receptor alpha (PPARα) signaling and lipid oxidation. In addition, we found that Aroclor 1254 administration induced oxidative stress in mouse liver and elevated the protein level of cyclooxygenase 2 (COX-2), an inflammatory molecule, possibly via the endoplasmic reticulum (ER) stress inositol-requiring enzyme 1α-X-box-binding protein-1 (IRE1α-XBP1) pathway, but not the nuclear factor-κB (NF-κB) pathway. In summary, adolescent exposure to environmental level of PCBs stimulated oxidative stress, ER stress and the inflammatory response and caused NAFLD in male mice. This work provides new insight into the idea that adolescent exposure to environmental level of PCBs might induce the development of NAFLD under the regulation of ER stress in males.
Collapse
Affiliation(s)
- Jinpeng Ruan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jiaojiao Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yameng Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yunzi Mao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Zhenggang Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China.
| |
Collapse
|
136
|
Toda K, Ueyama M, Tanaka S, Tsukayama I, Mega T, Konoike Y, Tamenobu A, Bastian F, Akai I, Ito H, Kawakami Y, Takahashi Y, Suzuki-Yamamoto T. Ellagitannins from Punica granatum leaves suppress microsomal prostaglandin E synthase-1 expression and induce lung cancer cells to undergo apoptosis. Biosci Biotechnol Biochem 2019; 84:757-763. [PMID: 31868102 DOI: 10.1080/09168451.2019.1706442] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Prostaglandin E2 (PGE2), which is a potent pro-inflammatory lipid mediator, is biosynthesized from arachidonic acid by cyclooxygenase-2 (COX-2) and microsomal PGE synthase-1 (mPGES-1). Non-steroidal anti-inflammatory drugs (NSAIDs) are used clinically as COX inhibitors, but they have gastrointestinal and cardiovascular side-effects. Thus, the terminal enzyme mPGES-1 holds promise as the next therapeutic target. In this study, we found that the ellagitannins granatin A and granatin B isolated from pomegranate leaves, and geraniin, which is their structural analog, selectively suppressed mPGES-1 expression without affecting COX-2 in non-small cell lung carcinoma A549 cells. The ellagitannins also down-regulated tumor necrosis factor α, inducible nitric oxide synthase, and anti-apoptotic factor B-cell chronic lymphocytic leukemia/lymphoma 2, and induced A549 cells to undergo apoptosis. These findings indicate that the ellagitannins have anti-inflammatory and anti-carcinogenic effects, due to their specific suppression of mPGES-1.Abbreviations: Bcl-2: B-cell chronic lymphocytic leukemia/lymphoma 2; COX: cyclooxygenase; CRE: cAMP response element; DHHDP: dehydrohexahydroxydiphenoyl; Et2O: diethyl ether; EtOAc: ethyl acetate; GAPDH: glyceraldehyde 3-phosphate dehydrogenase; iNOS: inducible nitric oxide synthase; mPGES-1: microsomal prostaglandin E synthase-1; n-BuOH: water-saturated n-butanol; NSAIDs: non-steroidal anti-inflammatory drugs; NF-κB: nuclear factor-κB; PG: prostaglandin; TNF: tumor necrosis factor; TUNEL: terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling.
Collapse
Affiliation(s)
- Keisuke Toda
- Department of Nutritional Science, Okayama Prefectural University, Okayama, Japan
| | - Mai Ueyama
- Department of Nutritional Science, Okayama Prefectural University, Okayama, Japan
| | - Shomu Tanaka
- Department of Nutritional Science, Okayama Prefectural University, Okayama, Japan
| | - Izumi Tsukayama
- Department of Nutritional Science, Okayama Prefectural University, Okayama, Japan
| | - Takuto Mega
- Department of Nutritional Science, Okayama Prefectural University, Okayama, Japan
| | - Yuka Konoike
- Department of Nutritional Science, Okayama Prefectural University, Okayama, Japan
| | - Asako Tamenobu
- Department of Nutritional Science, Okayama Prefectural University, Okayama, Japan
| | - Februadi Bastian
- Department of Nutritional Science, Okayama Prefectural University, Okayama, Japan
| | - Iria Akai
- Department of Nutritional Science, Okayama Prefectural University, Okayama, Japan
| | - Hideyuki Ito
- Department of Nutritional Science, Okayama Prefectural University, Okayama, Japan
| | - Yuki Kawakami
- Department of Nutritional Science, Okayama Prefectural University, Okayama, Japan
| | - Yoshitaka Takahashi
- Department of Nutritional Science, Okayama Prefectural University, Okayama, Japan
| | | |
Collapse
|
137
|
Lin XM, Li S, Zhou C, Li RZ, Wang H, Luo W, Huang YS, Chen LK, Cai JL, Wang TX, Zhang QH, Cao H, Wu XP. Cisplatin induces chemoresistance through the PTGS2-mediated anti-apoptosis in gastric cancer. Int J Biochem Cell Biol 2019; 116:105610. [DOI: 10.1016/j.biocel.2019.105610] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/17/2019] [Accepted: 09/09/2019] [Indexed: 01/25/2023]
|
138
|
Boo YC. Can Plant Phenolic Compounds Protect the Skin from Airborne Particulate Matter? Antioxidants (Basel) 2019; 8:antiox8090379. [PMID: 31500121 PMCID: PMC6769904 DOI: 10.3390/antiox8090379] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/04/2019] [Accepted: 09/04/2019] [Indexed: 12/16/2022] Open
Abstract
The skin is directly exposed to the polluted atmospheric environment, and skin diseases, such as atopic dermatitis and acne vulgaris, can be induced or exacerbated by airborne particulate matter (PM). PM can also promote premature skin aging with its accompanying functional and morphological changes. PM-induced skin diseases and premature skin aging are largely mediated by reactive oxygen species (ROS), and the harmful effects of PM may be ameliorated by safe and effective natural antioxidants. Experimental studies have shown that the extracts and phenolic compounds derived from many plants, such as cocoa, green tea, grape, pomegranate, and some marine algae, have antioxidant and anti-inflammatory effects on PM-exposed cells. The phenolic compounds can decrease the levels of ROS in cells and/or enhance cellular antioxidant capacity and, thereby, can attenuate PM-induced oxidative damage to nucleic acids, proteins, and lipids. They also lower the levels of cytokines, chemokines, cell adhesion molecules, prostaglandins, and matrix metalloproteinases implicated in cellular inflammatory responses to PM. Although there is still much research to be done, current studies in this field suggest that plant-derived phenolic compounds may have a protective effect on skin exposed to high levels of air pollution.
Collapse
Affiliation(s)
- Yong Chool Boo
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea.
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu 41944, Korea.
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Korea.
| |
Collapse
|
139
|
Reduction of inflammation and colon injury by a Pennyroyal phenolic extract in experimental inflammatory bowel disease in mice. Biomed Pharmacother 2019; 118:109351. [PMID: 31545244 DOI: 10.1016/j.biopha.2019.109351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Little is known about the pharmacological effects of the phenolic compounds of Pennyroyal (Mentha pulegium). This Mediterranean aromatic plant, used as a gastronomic spice and as food preservative by the food industry has been studied mainly due to its essential oil antibacterial properties, composed primarily by monoterpenes. With this work, we aimed to evaluate the effects of a phenolic extract of pennyroyal in the impairment of inflammatory processes in Inflammatory Bowel Diseases (IBD) and in the potential inhibition of progression to colorectal cancer (CRC). METHODS To that purpose, we evaluated the effect of pennyroyal extract administration in a model of TNBS-induced colitis in mice and further determined its effect on human colon carcinoma cell proliferation and invasion. RESULTS The phenolic extract of pennyroyal exhibited antioxidant properties in in vitro assays and administration of the extract in a rat model of carrageenan-induced paw oedema led to significant anti-inflammatory effects. Further results evidenced a beneficial effect of the phenolic extract in the attenuation of experimental colitis and a potential antiproliferative effect on cultured colon cancer cells, effects not previously described, to our knowledge. A reduction in several markers of colon inflammation was observed following administration of the extract to colitis-induced mice, including functional and histological indicators. A successful inhibition of cancer cell invasion and proliferation was also observed in in vitro studies with HT-29 cells. Furthermore, the extract also led to a reduced expression of iNOS/COX-2 in the colon of colitis-induced mice, both being crucial mediators of intestinal inflammation. CONCLUSIONS Taking into consideration the central role of inflammation in the pathophysiology of CRC and the recognised connection between inflammatory events and cancer, these results enlighten the relevance of the phenolic constituents of pennyroyal as important pharmacological sources in the investigation of new treatment options for patients with inflammatory bowel diseases.
Collapse
|
140
|
Burgos-Edwards A, Martín-Pérez L, Jiménez-Aspee F, Theoduloz C, Schmeda-Hirschmann G, Larrosa M. Anti-inflammatory effect of polyphenols from Chilean currants (Ribes magellanicum and R. punctatum) after in vitro gastrointestinal digestion on Caco-2 cells. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
141
|
Qin Z, Xi Y, Zhang S, Tu G, Yan A. Classification of Cyclooxygenase-2 Inhibitors Using Support Vector Machine and Random Forest Methods. J Chem Inf Model 2019; 59:1988-2008. [PMID: 30762371 DOI: 10.1021/acs.jcim.8b00876] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This work reports the classification study conducted on the biggest COX-2 inhibitor data set so far. Using 2925 diverse COX-2 inhibitors collected from 168 pieces of literature, we applied machine learning methods, support vector machine (SVM) and random forest (RF), to develop 12 classification models. The best SVM and RF models resulted in MCC values of 0.73 and 0.72, respectively. The 2925 COX-2 inhibitors were reduced to a data set of 1630 molecules by removing intermediately active inhibitors, and 12 new classification models were constructed, yielding MCC values above 0.72. The best MCC value of the external test set was predicted to be 0.68 by the RF model using ECFP_4 fingerprints. Moreover, the 2925 COX-2 inhibitors were clustered into eight subsets, and the structural features of each subset were investigated. We identified substructures important for activity including halogen, carboxyl, sulfonamide, and methanesulfonyl groups, as well as the aromatic nitrogen atoms. The models developed in this study could serve as useful tools for compound screening prior to lab tests.
Collapse
Affiliation(s)
- Zijian Qin
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering , Beijing University of Chemical Technology , P.O. Box 53, 15 BeiSanHuan East Road , Beijing 100029 , P. R. China
| | - Yao Xi
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering , Beijing University of Chemical Technology , P.O. Box 53, 15 BeiSanHuan East Road , Beijing 100029 , P. R. China
| | - Shengde Zhang
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering , Beijing University of Chemical Technology , P.O. Box 53, 15 BeiSanHuan East Road , Beijing 100029 , P. R. China
| | - Guiping Tu
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering , Beijing University of Chemical Technology , P.O. Box 53, 15 BeiSanHuan East Road , Beijing 100029 , P. R. China
| | - Aixia Yan
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering , Beijing University of Chemical Technology , P.O. Box 53, 15 BeiSanHuan East Road , Beijing 100029 , P. R. China
| |
Collapse
|
142
|
Pobłocka-Olech L, Inkielewicz-Stepniak I, Krauze-Baranowska M. Anti-inflammatory and antioxidative effects of the buds from different species of Populus in human gingival fibroblast cells: Role of bioflavanones. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 56:1-9. [PMID: 30668329 DOI: 10.1016/j.phymed.2018.08.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 06/28/2018] [Accepted: 08/09/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Poplar leaf-buds (Populi gemmae) are used traditionally as anti-inflammatory agents to the treatment of skin injuries or cough. They differ in their diverse chemical composition and different types of activities, whose mechanisms are not fully recognized. PURPOSE Evaluation and comparison of anti-inflammatory activity of leaf-buds extracts from Populus nigra, P. × berolinensis and P. lasiocarpa and flavanones - pinocembrin and pinostrobin towards human gingival fibroblasts (HGF-1) pro-inflammatory stimulated by silver nanoparticles (AgNPs). Determination of antioxidant activity associated with anti-inflammatory properties by means of bioautographic TLC tests. METHODS Phytochemical analysis was performed by TLC and videodensitometry analysis. The extracts were standardized on the pinocembrin and pinostrobin content. Bioautography was performed using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and riboflavin-light blue tetrazolium chloride (riboflavin-light-NBT) radicals to assess the extracts and both flavanones radical scavenging properties as well as potential inhibition of xanthine oxidase (XO) activity. The protective effects of poplar buds extract and flavanones - pinocembrin and pinostrobin on HGF-1 line exposured to AgNPs were investigated by analysis of interleukin 6 (IL-6) and interleukin IL-1β (IL-1β) level measured by ELISA kit. The messenger ribonucleic acid (mRNA) of both cytokines was determined by real-time quantitative PCR. The involvement of cyclooxygenase 2 protein (COX-2) was studied using Western blot analysis. RESULTS The presence of several flavanones and phenolic acids, which have radical scavenging properties, was revealed in all of the bud poplar extracts analyzed. Treatment with particular flavanones or extracts from buds of P. × berolinensis and P. nigra decreased the IL-6 and IL-1β release in HGF-1 cells and down-regulation of mRNA for both cytokines was observed. The COX-2 protein expression was demonstrated for pinocembrin and P. × berolinensis buds. These effects were not observed for buds from P. lasiocarpa not containing of flavonoids. CONCLUSION The potential protective role of pinocembrin and pinostrobin and extracts from buds P. nigra and P. × berolinensis against AgNPs induced inflammation and cytotoxicity in HGF-1 cells is disclosed. In addition, the antioxidant properties of poplar bud extracts have been demonstrated. P. × berolinensis buds showed the highest activity in both the in vitro model and in the bioautographic tests.
Collapse
Affiliation(s)
- Loretta Pobłocka-Olech
- Department of Pharmacognosy with Medicinal Plants Garden, Faculty of Pharmacy with Subfaculty of Laboratory Medicine, Medical University of Gdańsk, Gen. J. Hallera 107, Gdańsk 80-416, Poland
| | - Iwona Inkielewicz-Stepniak
- Department of Medicinal Chemistry, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, Gdańsk 80-211, Poland
| | - Mirosława Krauze-Baranowska
- Department of Pharmacognosy with Medicinal Plants Garden, Faculty of Pharmacy with Subfaculty of Laboratory Medicine, Medical University of Gdańsk, Gen. J. Hallera 107, Gdańsk 80-416, Poland.
| |
Collapse
|
143
|
Poulev A, Heckman JR, Raskin I, Belanger FC. Tricin levels and expression of flavonoid biosynthetic genes in developing grains of purple and brown pericarp rice. PeerJ 2019; 7:e6477. [PMID: 30805251 PMCID: PMC6383554 DOI: 10.7717/peerj.6477] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/18/2019] [Indexed: 11/20/2022] Open
Abstract
The methylated flavone tricin has been associated with numerous health benefits, including reductions in intestinal and colon cancers in animal models. Tricin is found in a wide range of plant species and in many different tissues. However, whole cereal grains, such as rice, barley, oats, and wheat, are the only food sources of tricin, which is located in the bran portion of the grain. Variation in tricin levels was found in bran from rice genotypes with light brown, brown, red, and purple pericarp color, with the purple pericarp genotypes having the highest levels of tricin. Here, we analyzed tricin and tricin derivative levels in developing pericarp and embryo samples of a purple pericarp genotype, IAC600, that had high tricin and tricin derivative levels in the bran, and a light brown pericarp genotype, Cocodrie, that had no detectable tricin or tricin derivatives in the bran. Tricin and tricin derivatives were detected in both the pericarp and embryo of IAC600 but only in the embryo of Cocodrie. The purple pericarp rice had higher total levels of free tricin plus tricin derivatives than the light brown pericarp rice. When expressed on a per grain basis, most of the tricin component of IAC600 was in the pericarp. In contrast, Cocodrie had no detectable tricin in the pericarp samples but did have detectable chrysoeriol, a precursor of tricin, in the pericarp samples. We also used RNA-Seq analysis of developing pericarp and embryo samples of the two cultivars to compare the expression of genes involved in the flavonoid biosynthetic pathway. The results presented here suggest that understanding the basis of tricin accumulation in rice pericarp may lead to an approach to increasing tricin levels in whole grain rice. From analysis of gene expression levels in the pericarp samples it appears that regulation of the flavone specific genes is independent of regulation of the anthocyanin biosynthetic genes. It therefore may be feasible to develop brown pericarp rice cultivars that accumulate tricin in the pericarp.
Collapse
Affiliation(s)
- Alexander Poulev
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Joseph R Heckman
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Ilya Raskin
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Faith C Belanger
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
144
|
Tang X, Liu C, Chen L, Yang Z, Belguise K, Wang X, Lu K, Yan H, Yi B. Cyclooxygenase-2 regulates HPS patient serum induced-directional collective HPMVEC migration via PKC/Rac signaling pathway. Gene 2019; 692:176-184. [PMID: 30660713 DOI: 10.1016/j.gene.2019.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 12/02/2018] [Accepted: 01/11/2019] [Indexed: 12/26/2022]
Abstract
Hepatopulmonary syndrome (HPS) is a serious complication in patients with advanced liver disease. The pathological pulmonary angiogenesis contributes to the progression of HPS. Importantly, directional collective migration of endothelial cells is a critical event for pathological angiogenesis. Previously, we have demonstrated that the over-expression of Cyclooxygenase-2 (COX-2) was an important factor in the experimental HPS. However, the role of COX-2 in the directional collective migration of human pulmonary microvascular endothelial cells (HPMVECs) is unclear. Our study aims to evaluate the potential effect of COX-2 in the directional collective migration of HPMVECs under the stimulation of HPS patient serum. In this study, 9 patients with stable liver cirrhosis were screened for presence of HPS. We confirmed that HPS patient serum dramatically promoted the directional collective migration and angiogenesis of HPMVECs, while the COX-2 selective antagonist parecoxib significantly inhibited the directional collective migration of HPMVEC under the stimulation of HPS patient serum. In addition, HPS patient serum significantly upregulated the phosphorylation of PKC and promoted the activation of Rac via COX-2/PGE2 signaling pathway. Notably, silencing PKC activation attenuated the directional collective migration of HPMVEC induced by HPS patient serum. In conclusion, these results indicate that PKC/Rac signaling induced by COX-2 modulates collective directional migration of HPMVEC during pathological pulmonary angiogenesis in HPS patients.
Collapse
Affiliation(s)
- Xi Tang
- Department of Anaesthesia, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Chang Liu
- Department of Anaesthesia, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China
| | - Lin Chen
- Department of Anaesthesia, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zhiyong Yang
- Department of Anaesthesia, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Karine Belguise
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Xiaobo Wang
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Kaizhi Lu
- Department of Anaesthesia, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Hong Yan
- Department of Anaesthesia, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China.
| | - Bin Yi
- Department of Anaesthesia, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| |
Collapse
|
145
|
Amirova KM, Dimitrova P, Marchev AS, Aneva IY, Georgiev MI. Clinopodium vulgare L. (wild basil) extract and its active constituents modulate cyclooxygenase-2 expression in neutrophils. Food Chem Toxicol 2018; 124:1-9. [PMID: 30481570 DOI: 10.1016/j.fct.2018.11.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/21/2018] [Accepted: 11/24/2018] [Indexed: 12/26/2022]
Abstract
Clinopodium vulgare L. (wild basil) has a wide range of ethnopharmacological applications and accumulates a broad spectrum of phenolic compounds, recognized for their anti-inflammatory and anticancer properties. The triggered cyclooxygenase-2 (COX-2) expression is creating an immunosuppressive microenvironment in the inflamed tissue and considered to be the main cause of failure of even new anticancer-/immune-therapies. Nowadays, selective and novel plant-derived COX-2 inhibitors with safe profile are subject of profound research interest. This study aimed to analyze the metabolic profile of C. vulgare and search for phenolic molecules with potential biological properties. By application of 1H and 2D-NMR (Nuclear Magnetic Resonance) profiling, caffeic, chlorogenic acids and catechin were identified along with a bunch of primary and secondary metabolites. Further, the biological effect of C. vulgare extract (CVE) and its constituents on zymosan-induced COX-2 expression and apoptosis of murine neutrophils have been studied. The CVE, caffeic and chlorogenic acids inhibited zymosan-induced COX-2 expression in bone marrow neutrophils, in vitro and in vivo activated. The obtained data indicate that CVE may have a good potential to manipulate neutrophil functions, however, its action may depend on the cellular state, the inflammatory milieu and the relative content of caffeic and chlorogenic acid in the extract.
Collapse
Affiliation(s)
| | - Petya Dimitrova
- Department of Immunology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Georgi Bonchev Str., 1113, Sofia, Bulgaria
| | - Andrey S Marchev
- Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria; Group of Plant Cell Biotechnology and Metabolomics, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000, Plovdiv, Bulgaria
| | - Ina Y Aneva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria
| | - Milen I Georgiev
- Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria; Group of Plant Cell Biotechnology and Metabolomics, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000, Plovdiv, Bulgaria.
| |
Collapse
|
146
|
Hashemi Goradel N, Najafi M, Salehi E, Farhood B, Mortezaee K. Cyclooxygenase-2 in cancer: A review. J Cell Physiol 2018; 234:5683-5699. [PMID: 30341914 DOI: 10.1002/jcp.27411] [Citation(s) in RCA: 505] [Impact Index Per Article: 72.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 08/22/2018] [Indexed: 12/17/2022]
Abstract
Cyclooxygenase-2 (COX-2) is frequently expressed in many types of cancers exerting a pleiotropic and multifaceted role in genesis or promotion of carcinogenesis and cancer cell resistance to chemo- and radiotherapy. COX-2 is released by cancer-associated fibroblasts (CAFs), macrophage type 2 (M2) cells, and cancer cells to the tumor microenvironment (TME). COX-2 induces cancer stem cell (CSC)-like activity, and promotes apoptotic resistance, proliferation, angiogenesis, inflammation, invasion, and metastasis of cancer cells. COX-2 mediated hypoxia within the TME along with its positive interactions with YAP1 and antiapoptotic mediators are all in favor of cancer cell resistance to chemotherapeutic drugs. COX-2 exerts most of the functions through its metabolite prostaglandin E2. In some and limited situations, COX-2 may act as an antitumor enzyme. Multiple signals are contributed to the functions of COX-2 on cancer cells or its regulation. Members of mitogen-activated protein kinase (MAPK) family, epidermal growth factor receptor (EGFR), and nuclear factor-κβ are main upstream modulators for COX-2 in cancer cells. COX-2 also has interactions with a number of hormones within the body. Inhibition of COX-2 provides a high possibility to exert therapeutic outcomes in cancer. Administration of COX-2 inhibitors in a preoperative setting could reduce the risk of metastasis in cancer patients. COX-2 inhibition also sensitizes cancer cells to treatments like radio- and chemotherapy. Chemotherapeutic agents adversely induce COX-2 activity. Therefore, choosing an appropriate chemotherapy drugs along with adjustment of the type and does for COX-2 inhibitors based on the type of cancer would be an effective adjuvant strategy for targeting cancer.
Collapse
Affiliation(s)
- Nasser Hashemi Goradel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Eniseh Salehi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Farhood
- Departments of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
147
|
Xia W, Chen W, Tu J, Ni C, Meng K. Prognostic Value and Clinicopathologic Features of Platelet Distribution Width in Cancer: A Meta-Analysis. Med Sci Monit 2018; 24:7130-7136. [PMID: 30291788 PMCID: PMC6187965 DOI: 10.12659/msm.913040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The association between platelet distribution width (PDW) and cancer has been evaluated by a few studies, but the influence of PDW on cancer prognosis is unclear. Therefore, we conducted the present meta-analysis. MATERIAL AND METHODS We identified relevant research using identical search strategies. The influence of PDW level on cancer prognosis, as well as clinical characteristics, was analyzed. RESULTS A total of 11 studies comprising 2625 cancer patients were included in our meta-analysis. The results suggested that high PDW level was obviously related to poor OS (HR=1.54, 95%CI 1.18-2.00), especially for breast cancer (HR=1.21, 95%CI 1.07-1.36) and pharyngolaryngeal cancer (HR=3.06, 95%CI 1.68-5.57). Furthermore, high PDW was obviously related to poor OS both in older and younger subgroups, with combined HR estimates of 1.58 (95%CI 1.15-2.16) and 1.64 (95%CI 1.19-2.26), respectively. High PDW level was notably related to poor OS in the cut-off value ³16% subgroup (HR=1.84, 95%CI 1.01-3.40). Moreover, high PDW level was obviously associated with lymph node metastasis (OR=1.43, 95%CI 1.04-1.99). CONCLUSIONS The findings of this study suggest that PDW is an effective and convenient indicator of cancer prognosis. Furthermore, high PDW level is obviously associated with lymph node metastasis.
Collapse
Affiliation(s)
- Wenjie Xia
- Department of Thyroid and Breast Surgery, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Wuzhen Chen
- Department of Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Jiangfeng Tu
- Department of Gastroenterology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Chao Ni
- Department of Thyroid and Breast Surgery, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Kexin Meng
- Department of Thyroid and Breast Surgery, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
148
|
Czerwińska ME, Melzig MF. Cornus mas and Cornus Officinalis-Analogies and Differences of Two Medicinal Plants Traditionally Used. Front Pharmacol 2018; 9:894. [PMID: 30210335 PMCID: PMC6121078 DOI: 10.3389/fphar.2018.00894] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/23/2018] [Indexed: 01/02/2023] Open
Abstract
Among 65 species belonging to the genus Cornus only two, Cornus mas L. and Cornus officinalis Sieb. et Zucc. (Cornaceae), have been traditionally used since ancient times. Cornus mas (cornelian cherry) is native to southern Europe and southwest Asia, whereas C. officinalis (Asiatic dogwood, cornel dogwood) is a deciduous tree distributed in eastern Asia, mainly in China, as well as Korea and Japan. Based on the different geographic distribution of the closely related species but clearly distinct taxa, the ethnopharmacological use of C. mas and C. officinalis seems to be independently originated. Many reports on the quality of C. mas fruits were performed due to their value as edible fruits, and few reports compared their physicochemical properties with other edible fruits. However, the detailed phytochemical profiles of C. mas and C. officinalis, in particular fruits, have never been compared. The aim of this review was highlighting the similarities and differences of phytochemicals found in fruits of C. mas and C. officinalis in relation to their biological effects as well as compare the therapeutic use of fruits from both traditional species. The fruits of C. mas and C. officinalis are characterized by the presence of secondary metabolites, in particular iridoids, anthocyanins, phenolic acids and flavonoids. However, much more not widely known iridoids, such as morroniside, as well as tannins were detected particularly in fruits of C. officinalis. The referred studies of biological activity of both species indicate their antidiabetic and hepatoprotective properties. Based on the available reports antihyperlipidemic and anticoagulant activity seems to be unique for extracts of C. mas fruits, whereas antiosteoporotic and immunomodulatory activities were assigned to preparations of C. officinalis fruits. In conclusion, the comparison of phytochemical composition of fruits from both species revealed a wide range of similarities as well as some constituents unique for cornelian cherry or Asiatic dogwood. Thus, these phytochemicals are considered the important factor determining the biological activity and justifying the use of C. mas and C. officinalis in the traditional European and Asiatic medicine.
Collapse
Affiliation(s)
- Monika E Czerwińska
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland
| | | |
Collapse
|