101
|
Mirzaei A, Maleki M, Masoumi E, Maspi N. A historical review of the role of cytokines involved in leishmaniasis. Cytokine 2020; 145:155297. [PMID: 32972825 DOI: 10.1016/j.cyto.2020.155297] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023]
Abstract
Leishmaniasis is an infectious disease caused by the Leishmania genus, affecting millions of persons in the world. Despite increased studies, no vaccine has been developed against leishmaniasis, and drug resistance is evolving in some Leishmania species (spp). Innate and acquired immune cells and their associated cytokines interplay together to determine the immune responses related outcomes in leishmaniasis. Interferon (IFN)-γ or macrophage activating factor (MAF) is the first effective lymphokine (LK), with a related function to leishmaniasis, discovered in 1979. This review article discussed the history of cytokines involved in Leishmania infection, and it is the first report demonstrating the involvement in the disease by focusing on cutaneous leishmaniasis. Up to now, the role of many cytokines has been determined and the literature review showed that IL-35 is the latest known cytokine involved in leishmaniasis. This review revealed that the cytokines have pleiotropic effects, depending upon the cytokine environment, generated during the infection and the host genetic background or infecting Leishmania spp. Overall, advances in our knowledge of immune cells and their secreted cytokines, contributing to the protection or pathological process of leishmaniasis may help to reach new approaches for immunotherapy.
Collapse
Affiliation(s)
- Asad Mirzaei
- Department of Parasitology, School of Paramedicine, Ilam University of Medical Sciences, Ilam, Iran; Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Maryam Maleki
- Department of Physiology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Elham Masoumi
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran; Research Committee, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran; Department of Medical Immunology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Nahid Maspi
- Department of Parasitology, School of Paramedicine, Ilam University of Medical Sciences, Ilam, Iran; Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran.
| |
Collapse
|
102
|
Chanyalew M, Abebe M, Endale B, Girma S, Tasew G, van Zandbergen G, Ritter U, Gadisa E, Aseffa A, Laskay T. Enhanced production of pro-inflammatory cytokines and chemokines in Ethiopian cutaneous leishmaniasis upon exposure to Leishmania aethiopica. Cytokine 2020; 145:155289. [PMID: 32951968 DOI: 10.1016/j.cyto.2020.155289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/02/2020] [Accepted: 09/06/2020] [Indexed: 11/18/2022]
Abstract
The clinical course and outcome of cutaneous leishmaniasis (CL) vary due to the infecting Leishmania species and host genetic makeup that result in different immune responses against the parasites. The host immune response to Leishmania aethiopica (L.aethiopica), the causative agent of CL in Ethiopia, is poorly understood. To contribute to the understanding of the protective immune response in CL due to L.aethiopica, we characterized the cytokine response to L. aethiopica in patients with the localized form of CL (LCL) and age-and sex-matched apparently healthy controls. By applying a whole blood based in vitro culture we found enhanced release of TNF, IL-6, MCP-1 or CCL2, IP-10 or CXCL10, MIP-1β or CCL4 and IL-8 or CXCL8- but not of IL-10CL patients in response to L. aethiopica compared to the controls. No difference was observed between LCL cases and controls in the secretion of these cytokines and chemokines in whole blood cultures treated with the TLR-ligands LPS, MALP-2 or polyI: C. The observed increased secretion of the pro-inflammatory cytokines/chemokines reflects an enhanced response against the parasites by LCL patients as compared to healthy controls rather than a generally enhanced ability of blood leukocytes from LCL patients to respond to microbial constituents. Our findings suggest that the enhanced production of pro-inflammatory cytokines/chemokines is associated with localized cutaneous leishmaniasis caused by L.aethiopica.
Collapse
Affiliation(s)
- Menberework Chanyalew
- Research and Innovation Division, Armauer Hansen Research Institute, P.O. Box 1005, Addis Ababa, Ethiopia.
| | - Markos Abebe
- Research and Innovation Division, Armauer Hansen Research Institute, P.O. Box 1005, Addis Ababa, Ethiopia
| | - Birtukan Endale
- Research and Innovation Division, Armauer Hansen Research Institute, P.O. Box 1005, Addis Ababa, Ethiopia
| | - Selfu Girma
- Research and Innovation Division, Armauer Hansen Research Institute, P.O. Box 1005, Addis Ababa, Ethiopia
| | - Geremew Tasew
- Research and Innovation Division, Armauer Hansen Research Institute, P.O. Box 1005, Addis Ababa, Ethiopia; Leishmaniasis Research Laboratory, Ethiopia Public Health Institute, P.O. Box 1242, Addis Ababa, Ethiopia
| | - Ger van Zandbergen
- Division of Immunology, Paul-Ehrlich-Institute, Federal Institute for Vaccines and Biomedicines, Langen D-63225, Germany.
| | - Uwe Ritter
- Regensburg Center for Interventional Immunology (RCI), Institute of Immunology, University Medical Center Regensburg, University of Regensburg, D-93053 Regensburg, Germany.
| | - Endalamaw Gadisa
- Research and Innovation Division, Armauer Hansen Research Institute, P.O. Box 1005, Addis Ababa, Ethiopia
| | - Abraham Aseffa
- Research and Innovation Division, Armauer Hansen Research Institute, P.O. Box 1005, Addis Ababa, Ethiopia
| | - Tamás Laskay
- Department of Infectious Diseases and Microbiology, University of Lübeck, D-23560 Lübeck, Germany.
| |
Collapse
|
103
|
Cardoso FDO, Zaverucha-do-Valle T, Almeida-Souza F, Abreu-Silva AL, Calabrese KDS. Modulation of Cytokines and Extracellular Matrix Proteins Expression by Leishmania amazonensis in Susceptible and Resistant Mice. Front Microbiol 2020; 11:1986. [PMID: 32983013 PMCID: PMC7487551 DOI: 10.3389/fmicb.2020.01986] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/27/2020] [Indexed: 12/24/2022] Open
Abstract
Leishmaniases are a complex of diseases with a broad spectrum of clinical forms, which depend on the parasite species, immunological status, and genetic background of the host. In the Leishmania major model, susceptibility is associated with the Th2 pattern of cytokines production, while resistance is associated with Th1 response. However, the same dichotomy does not occur in L. amazonensis-infected mice. Cytokines are key players in these diseases progression, while the extracellular matrix (ECM) components participate in the process of parasite invasion as well as lesion healing. In this article, we analyzed the influence of host genetics on the expression of cytokines, inducible nitric oxide synthase (iNOS), and ECM proteins, as well as the parasite load in mice with different genetic backgrounds infected by L. amazonensis. C57BL/10 and C3H/He mice were subcutaneously infected with 106L. amazonensis promastigotes. Lesion kinetics, parasite load, cytokines, iNOS, and ECM proteins expression were measured by quantitative PCR (qPCR) in the footpad, draining lymph nodes, liver, and spleen at early (24 h and 30 days) and late phase (120 and 180 days) of infection. Analysis of lesion kinetics showed that C57BL/10 mice developed ulcerative lesions at the inoculation site after L. amazonensis infection, while C3H/He showed slight swelling in the footpad 180 days after infection. C57BL/10 showed progressive enhancement of parasite load in all analyzed organs, while C3H/He mice showed extremely low parasite loads. Susceptible C57BL/10 mice showed high levels of TGF-β mRNA in the footpad early in infection and high levels of proinflammatory cytokines mRNA (IL-12, TNF-α, and IFN-γ) and iNOS in the late phase of the infection. There is an association between increased expression of fibronectin, laminin, collagen III and IV, and TGF-β. On the other hand, resistant C3H/He mice presented a lower repertory of cytokines mRNA expression when compared with susceptible C57BL/10 mice, basically producing TNF-α, collagen IV, and laminin early in infection. The findings of our study indicate that L. amazonensis infection induces different cytokine expression in resistant and susceptible mice but not like the L. major model. An organ-compartmentalized cytokine response was observed in our model. Host genetics determine this response, which modulates ECM proteins expression.
Collapse
Affiliation(s)
- Flávia de Oliveira Cardoso
- Laboratório de Imunomodulação e Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Tânia Zaverucha-do-Valle
- Laboratório de Imunomodulação e Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Fernando Almeida-Souza
- Laboratório de Imunomodulação e Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Laboratório de Anatomopatologia, Departamento de Patologia, Universidade Estadual do Maranhão, São Luís, Brazil
| | - Ana Lúcia Abreu-Silva
- Laboratório de Anatomopatologia, Departamento de Patologia, Universidade Estadual do Maranhão, São Luís, Brazil
| | - Kátia da Silva Calabrese
- Laboratório de Imunomodulação e Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
104
|
Pereira IAG, Mendonça DVC, Tavares GSV, Lage DP, Ramos FF, Oliveira-da-Silva JA, Antinarelli LMR, Machado AS, Carvalho LM, Carvalho AMRS, Salustiano IV, Reis TAR, Bandeira RS, Silva AM, Martins VT, Chávez-Fumagalli MA, Humbert MV, Roatt BM, Duarte MC, Menezes-Souza D, Coimbra ES, Leite JPV, Coelho EAF, Gonçalves DU. Parasitological and immunological evaluation of a novel chemotherapeutic agent against visceral leishmaniasis. Parasite Immunol 2020; 42:e12784. [PMID: 32772379 DOI: 10.1111/pim.12784] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/29/2020] [Accepted: 08/03/2020] [Indexed: 12/18/2022]
Abstract
AIMS Treatment for visceral leishmaniasis (VL) is hampered by the toxicity and/or high cost of drugs, as well as by emergence of parasite resistance. Therefore, there is an urgent need for new antileishmanial agents. METHODS AND RESULTS In this study, the antileishmanial activity of a diprenylated flavonoid called 5,7,3,4'-tetrahydroxy-6,8-diprenylisoflavone (CMt) was tested against Leishmania infantum and L amazonensis species. Results showed that CMt presented selectivity index (SI) of 70.0 and 165.0 against L infantum and L amazonensis promastigotes, respectively, and of 181.9 and 397.8 against respective axenic amastigotes. Amphotericin B (AmpB) showed lower SI values of 9.1 and 11.1 against L infantum and L amazonensis promastigotes, respectively, and of 12.5 and 14.3 against amastigotes, respectively. CMt was effective in the treatment of infected macrophages and caused alterations in the parasite mitochondria. L infantum-infected mice treated with miltefosine, CMt alone or incorporated in polymeric micelles (CMt/Mic) presented significant reductions in the parasite load in distinct organs, when compared to the control groups. An antileishmanial Th1-type cellular and humoral immune response were developed one and 15 days after treatment, with CMt/Mic-treated mice presenting a better protective response. CONCLUSION Our data suggest that CMt/Mic could be evaluated as a chemotherapeutic agent against VL.
Collapse
Affiliation(s)
- Isabela A G Pereira
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Débora V C Mendonça
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Grasiele S V Tavares
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniela P Lage
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda F Ramos
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - João A Oliveira-da-Silva
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luciana M R Antinarelli
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Amanda S Machado
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lívia M Carvalho
- Departamento de Ciências Biológicas, Insituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Ana Maria R S Carvalho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Iorrana V Salustiano
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brasil
| | - Thiago A R Reis
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Raquel S Bandeira
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Alessandra M Silva
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vívian T Martins
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Maria V Humbert
- Neisseria Research Group, Molecular Microbiology, School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, England
| | - Bruno M Roatt
- Departamento de Ciências Biológicas, Insituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Mariana C Duarte
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniel Menezes-Souza
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Elaine S Coimbra
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - João Paulo V Leite
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brasil
| | - Eduardo A F Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Denise U Gonçalves
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
105
|
In Vitro Modulator Effect of Total Extract from the Endophytic Paenibacillus polymyxa RNC-D in Leishmania (Leishmania) amazonensis and Macrophages. Int J Microbiol 2020; 2020:8895308. [PMID: 32908533 PMCID: PMC7474380 DOI: 10.1155/2020/8895308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/22/2020] [Accepted: 08/05/2020] [Indexed: 01/07/2023] Open
Abstract
Leishmaniases are diseases with high epidemiological relevance and wide geographical distribution. In Brazil, Leishmania (Leishmania) amazonensis is related to the tegumentary form of leishmaniasis. The treatment for those diseases is problematic as the available drugs promote adverse effects in patients. Therefore, it is important to find new therapeutic targets. In this regard, one alternative is the study of biomolecules produced by endophytic microorganisms. In this study, the total extract produced by the endophytic Paenibacillus polymyxa RNC-D was used to evaluate the leishmanicidal, nitric oxide, and cytokines production using RAW 264.7 macrophages. The results showed that, in the leishmanicidal assay with L. amazonensis, EC50 values at the periods of 24 and 48 hours were 0.624 mg/mL and 0.547 mg/mL, respectively. Furthermore, the cells treated with the extract presented approximately 25% of infected cells with an average of 3 amastigotes/cell in the periods of 24 and 48 hours. Regarding the production of cytokines in RAW 264.7 macrophages infected/treated with the extract, a significant increase in TNF-α was observed at the periods of 24 and 48 hours in the treated cells. The concentrations of IFN-γ and IL-12 showed significant increase in 48 hours. A significant decrease in IL-4 was observed in all cells treated with the extract in 24 hours. It was observed in the treated cells that the NO production by RAW 264.7 macrophages increased between 48 and 72 hours. The endophytic Paenibacillus polymyxa RNC-D extract modulates the mediators of inflammation produced by RAW 264.7 macrophages promoting L. amazonensis death. The immunomodulatory effects might be a promising target to develop new immunotherapeutic and antileishmanial drugs.
Collapse
|
106
|
Zanganeh E, Soudi S, Zavaran Hosseini A. Intralesional Injection of Mouse Mesenchymal Stem Cells Reduces IL-10 Production and Parasite Burden in L. major Infected BALB/c Mice. CELL JOURNAL 2020; 22:11-18. [PMID: 32779429 PMCID: PMC7481897 DOI: 10.22074/cellj.2020.6838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 09/04/2019] [Indexed: 12/25/2022]
Abstract
Objective Leishmaniasis is of public health problems, especially in endemic areas. The activation of macrophages,
as the main host of leishmania and promotion of the TH1 immune responses, are the main goal of im-munotherapy
methods. Recently, the immunomodulatory role of mesenchymal stem cells (MSCs) in infectious disease has been
considered. Different in vitro studies demonstrated the immunostimulatory effect of MSCs on macrophages in response
to L.major. In this study, the effect of MSCs on cutaneous leishmaniasis in BALB/c mice was assessed.
Materials and Methods To do this experimental research, BALB/c mice infected with L. major that was followed by
multiple subcutaneous injections of MSCs at infection site at different intervals. Footpad thickness, spleen parasite
burden, lymph node, and spleen cytokine production were measured to determine the efficacy of cell therapy.
Results Significant (P<0.05) reduction in footpad thickness and delayed wound formation was observed in MSCs
treated group. The spleen of the MSCs-treated group indicated a two-fold reduction in parasite burden compared with
non-treated infected mice. In addition, nitric oxide (NO), interleukin-10 (IL-10), and tumor necrosis factor-alpha (TNF-α)
production of lymph node isolated cells and splenocytes changed to the benefit of macrophage activation in response
to L. major in MSCs treated group. A two-fold increase in interferon-gamma (IFN-γ) production in the lymph node was
determined in the MSCs-treated group.
Conclusion Although MSCs therapy could not clear the parasite, the results confirm the ability of MSCs to enhance
immune responses against leishmania by induction of inflammatory responses and slowing down the spread of
parasites. However, further studies needed to improve the efficacy of this method and provide a therapeutic protocol.
Collapse
Affiliation(s)
- Elham Zanganeh
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran. Electronic Address:
| | - Ahmad Zavaran Hosseini
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
107
|
Jafarzadeh A, Nemati M, Chauhan P, Patidar A, Sarkar A, Sharifi I, Saha B. Interleukin-27 Functional Duality Balances Leishmania Infectivity and Pathogenesis. Front Immunol 2020; 11:1573. [PMID: 32849534 PMCID: PMC7427467 DOI: 10.3389/fimmu.2020.01573] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/15/2020] [Indexed: 01/10/2023] Open
Abstract
IL-27 is a cytokine that exerts diverse effects on the cells of innate and adaptive immune systems. Chiefly expressed in macrophages and dendritic cells during the early phase of Leishmania infection, IL-27 contributes to the protection against L. major infection but suppresses the protective Th1 response against L. donovani, L. infantum, L. amazonensis and L. braziliensis infections, suggesting its functional duality. During the late stage of Leishmania infection, IL-27 limits the immunopathogenic reactions and tissue damages. Herein, we analyze the mechanism of the functional duality of IL-27 in the resistance or susceptibility to Leishmania infection, prompting IL-27 for anti-Leishmanial therapy.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Maryam Nemati
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Haematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | | | - Arup Sarkar
- Trident Academy of Creative Technology, Bhubaneswar, India
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Bhaskar Saha
- National Centre for Cell Science, Pune, India
- Trident Academy of Creative Technology, Bhubaneswar, India
| |
Collapse
|
108
|
Valentim Silva JR, de Barros NB, Aragão Macedo SR, Ferreira ADS, Moreira Dill LS, Zanchi FB, do Nascimento JR, Fernandes do Nascimento FR, Lourenzoni MR, de Azevedo Calderon L, Soares AM, Nicolete R. A natural cell-penetrating nanopeptide combined with pentavalent antimonial as experimental therapy against cutaneous leishmaniasis. Exp Parasitol 2020; 217:107934. [PMID: 32698075 DOI: 10.1016/j.exppara.2020.107934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/22/2020] [Accepted: 06/02/2020] [Indexed: 10/23/2022]
Abstract
The inadequacy of available treatments for leishmaniasis has presented up to 40% therapeutic failure. This fact suggests an urgency in the discovery of new drugs or alternative approaches for treating this disease. The objective of this study was to evaluate the antileishmanial activity of combined therapy between crotamine (CTA) from Crotalus durissus terrificus and the pentavalent antimonial Glucantime® (GLU). The assays were in vitro performed measuring the inhibition of Leishmania amazonensis amastigotes, followed by the evaluation of cellular production of cytokines and nitrites. After that, analytical methods were performed in order to characterize the molecules involved in the study by Mass Spectrometry, molecular affinity through an in silico assay and Surface Plasmon Resonance. In vivo experiments with BALB/c mice were performed by analyzing parasitemia, lesion size and immunological mediators. In the in vitro experiments, the pharmacological association improved the inhibition of the amastigotes, modulated the production of cytokines and nitric oxide. The therapy improved the effectiveness of the GLU, demonstrating a decreased parasitemia in the infected tissues. Altogether, the results suggest that the combined approach with CTA and GLU may be a promising alternative for the treatment of cutaneous leishmaniasis.
Collapse
Affiliation(s)
- João Rafael Valentim Silva
- Laboratório de Biotecnologia Aplicada à Saúde, Fundação Oswaldo Cruz - Rondônia, Porto Velho, RO, Brazil; Physical Education Department of Federal University of Rondônia (UNIR), Porto Velho, RO, Brazil; Physical Education Department of University Center UNINORTE, Rio Branco, AC, Brazil
| | - Neuza Biguinati de Barros
- Laboratório de Biotecnologia Aplicada à Saúde, Fundação Oswaldo Cruz - Rondônia, Porto Velho, RO, Brazil
| | - Sharon Rose Aragão Macedo
- Laboratório de Biotecnologia Aplicada à Saúde, Fundação Oswaldo Cruz - Rondônia, Porto Velho, RO, Brazil; Centro de Estudos de Biomoléculas Aplicadas à Saúde (CEBio), Fundação Oswaldo Cruz, Fiocruz - Rondônia e Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil
| | - Amália Dos Santos Ferreira
- Laboratório de Biotecnologia Aplicada à Saúde, Fundação Oswaldo Cruz - Rondônia, Porto Velho, RO, Brazil
| | - Leandro Soares Moreira Dill
- Centro de Estudos de Biomoléculas Aplicadas à Saúde (CEBio), Fundação Oswaldo Cruz, Fiocruz - Rondônia e Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil
| | - Fernando Berton Zanchi
- Centro de Estudos de Biomoléculas Aplicadas à Saúde (CEBio), Fundação Oswaldo Cruz, Fiocruz - Rondônia e Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil
| | - Johnny Ramos do Nascimento
- Laboratory of Immunophysiology, Department of Pathology, Center for Biological and Health Sciences, Federal University of Maranhão (UFMA), São Luís, MA, Brazil
| | - Flávia Raquel Fernandes do Nascimento
- Laboratory of Immunophysiology, Department of Pathology, Center for Biological and Health Sciences, Federal University of Maranhão (UFMA), São Luís, MA, Brazil
| | | | - Leonardo de Azevedo Calderon
- Centro de Estudos de Biomoléculas Aplicadas à Saúde (CEBio), Fundação Oswaldo Cruz, Fiocruz - Rondônia e Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil
| | - Andreimar Martins Soares
- Centro de Estudos de Biomoléculas Aplicadas à Saúde (CEBio), Fundação Oswaldo Cruz, Fiocruz - Rondônia e Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil; eCentro Universitário São Lucas (UniSL), Porto Velho, RO, Brazil
| | - Roberto Nicolete
- Laboratório de Biotecnologia Aplicada à Saúde, Fundação Oswaldo Cruz - Rondônia, Porto Velho, RO, Brazil; Fundação Oswaldo Cruz (Fiocruz Ceará), Eusébio, CE, Brazil.
| |
Collapse
|
109
|
Araujo Flores GV, Sandoval Pacheco CM, Sosa Ochoa WH, Gomes CMC, Zúniga C, Corbett CP, Laurenti MD. Th17 lymphocytes in atypical cutaneous leishmaniasis caused by Leishmania (L.) infantum chagasi in Central America. Parasite Immunol 2020; 42:e12772. [PMID: 32603482 DOI: 10.1111/pim.12772] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022]
Abstract
Skin lesions in nonulcerated cutaneous leishmaniasis (NUCL) caused by Leishmania (L.) infantum chagasi are characterized by a mononuclear inflammatory infiltrate in the dermis, which is composed mainly of lymphocytes, followed by macrophages, few plasma cells and epithelioid granulomas with mild tissue parasitism. Previous studies have shown that the main population of lymphocytes present in the dermal infiltrate is CD8+ T cells, followed by CD4+ T cells, which are correlated with IFN-γ+ cells. To improve the knowledge of cellular immune responses in NUCL, skin biopsies were submitted to immunohistochemistry using anti-ROR-γt, anti-IL-17, anti-IL-6, anti-TGF-β, and anti-IL-23 antibodies to characterize the involvement of Th17 cells in the skin lesions of patients affected by NUCL. ROR-γt+ , IL-17+ , IL-6+ , TGF-β+ and IL-23+ cells were observed in the dermal inflammatory infiltrate of NUCL skin lesions. A positive correlation between CD4+ T-lymphocytes and ROR-γt+ and IL-17+ cells suggests that some of the CD4+ T-lymphocytes in NUCL could be Th17 lymphocytes. Moreover, a positive correlation between ROR-γt+ cells and TGF-β+ , IL-6+ , IL-17+ and IL-23+ cells could indicate the role of these cytokines in the differentiation and maintenance of Th17 lymphocytes. Our findings improve knowledge of the pathogenesis of this rare and atypical clinical form of leishmaniasis.
Collapse
Affiliation(s)
| | | | - Wilfredo Humberto Sosa Ochoa
- Laboratory of Pathology of Infectious Diseases, Medical School, São Paulo University, São Paulo, Brazil.,Microbiology Research Institute, National Autonomous University of Honduras, Tegucigalpa, Honduras
| | | | - Concepción Zúniga
- Health Surveillance Department, University School Hospital, Tegucigalpa, Honduras
| | - Carlos P Corbett
- Laboratory of Pathology of Infectious Diseases, Medical School, São Paulo University, São Paulo, Brazil
| | - Marcia Dalastra Laurenti
- Laboratory of Pathology of Infectious Diseases, Medical School, São Paulo University, São Paulo, Brazil
| |
Collapse
|
110
|
KarimiPourSaryazdi A, Ghaffarifar F, Dalimi A, Dayer MS. In-vitro and in-vivo comparative effects of the spring and autumn-harvested Artemisia aucheri Bioss extracts on Leishmania major. JOURNAL OF ETHNOPHARMACOLOGY 2020; 257:112910. [PMID: 32344159 DOI: 10.1016/j.jep.2020.112910] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Artemisia aucheri Bioss contains flavonoid, coumarin and santonin with antioxidant, antimicrobial and antileishmanial effects. The current study was aimed to comparatively evaluate the effects of spring and autumn extracts of A. aucheri Bioss on Leishmania major both in-vitro and in-vivo conditions. METHODS HPLC analysis was used to evaluate the percentages of compounds in spring and autumn extracts of A. aucheri. For in-vitro assay, the effect of different concentrations of spring and autumn extracts of A. aucheri was tested on L. major promastigotes and amastigotes. MTT and flow cytometry methods were used to evaluate the cytotoxicity and probable apoptosis of A. aucheri extracts on L. major promastigotes. On the other hand, for in-vivo assay, the extracts were used as ointments to treat lesions developed on BALB/c mice after 28 days post inoculation of L. major. The diameter of lesions and the survival rates of infected BALB/c mice were measured weekly for a period of two months. RESULTS The HPLC analysis showed the substance Quercitrin was present in the spring A. aucheri extract but not in the autumn extract. The mean numbers of amastigotes in each treated macrophage with the spring and autumn A. aucheri extracts were 1.2 and 1.8 respectively, which showed statistically significant differences (P < 0.05). Flow cytometry revealed that the spring and autumn A. aucheri extracts caused about 32% and 3.78% apoptosis respectively. The inhibitory concentration (IC50) of spring and autumn A. aucheri extracts to amastigotes were determined to be 90 μg/mL and 183 μg/mL respectiovely. In-vivo, the diameter of lesions treated with the spring A. aucheri extract was significantly less (P < 0.05) compared to those treated with the autumn extract (2.6 and 7.8 mm respectively). Also, mice treated with spring A. aucheri extract had higher survival rates compared to control group. CONCLUSION Given the above results, it can be concluded that spring A. aucheri extract has a greater fatality effect on L. major promastigotes in-vitro compared to the autum extract. In addition, the spring extract has stronger therapeutic effect on lesions caused by L. major in BALB/c mice than the autum extract.
Collapse
Affiliation(s)
- Amir KarimiPourSaryazdi
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Fatemeh Ghaffarifar
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Abdolhossein Dalimi
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mohammad Saaid Dayer
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
111
|
Kirik FE, Ülger M, Tezcan Ülger S, Aslan G. Association of cytokine gene polymorphisms with susceptibility to cutaneous leishmaniasis in a Turkish population. Parasite Immunol 2020; 42:e12775. [PMID: 32656817 DOI: 10.1111/pim.12775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/08/2020] [Indexed: 01/29/2023]
Abstract
AIMS The objective of this study was to determine the association of TNF-α -308 G/A, IFN-γ +874 T/A, IL-12B + 1188 A/C, IL-10 -1082 G/A and IL-4 -590 C/T polymorphisms with susceptibility to CL. METHODS AND RESULTS A total of 55 CL patients and 110 controls from Sanlıurfa province of Turkey were included to this study. Polymorphisms were genotyped by 'polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP)' and 'amplification refractory mutation system-PCR (ARMS-PCR)' methods. A statistically significant difference was noted in the allele (P < .001, P = .002) and genotype (P < .001, P = .001,) frequencies of TNF-α -308 G/A and IL-4 -590 C/T, respectively. TNF-α 308 GG versus GA genotype (OR = 19.556 [95% CI 8.310-46.019] P < .001), GG versus GA + AA genotype (OR = 20.444 [95% CI 8.707-48.004] P < .001) and G versus A allele (OR = 6.968 [95% CI 3.903-12.440] P < .001) revealed significant association with CL. IL-4 -590 CC versus TT + CT genotype (OR = 2.049 [95% CI 1.025-4.096], P = .041) and C versus T allele (OR = 2.441 [95% CI 1.355-4.396], P = .002) revealed significant association with CL. CONCLUSION Our study indicates that TNF-α 308 G/A and IL-4-590 C/T polymorphisms are significantly associated with susceptibility to CL. Individuals carrying A allele at TNF-α promoter -308 position and T allele at IL-4 promoter -590 position are at a higher risk for CL.
Collapse
Affiliation(s)
- Fatma Esin Kirik
- Department of Medical Microbiology, Faculty of Medicine, Nigde Ömer Halisdemir University, Niğde, Turkey
| | - Mahmut Ülger
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Seda Tezcan Ülger
- Department of Medical Microbiology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Gönül Aslan
- Department of Medical Microbiology, Faculty of Medicine, Mersin University, Mersin, Turkey
| |
Collapse
|
112
|
Zhang WW, Karmakar S, Gannavaram S, Dey R, Lypaczewski P, Ismail N, Siddiqui A, Simonyan V, Oliveira F, Coutinho-Abreu IV, DeSouza-Vieira T, Meneses C, Oristian J, Serafim TD, Musa A, Nakamura R, Saljoughian N, Volpedo G, Satoskar M, Satoskar S, Dagur PK, McCoy JP, Kamhawi S, Valenzuela JG, Hamano S, Satoskar AR, Matlashewski G, Nakhasi HL. A second generation leishmanization vaccine with a markerless attenuated Leishmania major strain using CRISPR gene editing. Nat Commun 2020; 11:3461. [PMID: 32651371 PMCID: PMC7351751 DOI: 10.1038/s41467-020-17154-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 06/13/2020] [Indexed: 01/16/2023] Open
Abstract
Leishmaniasis is a neglected tropical disease caused by Leishmania protozoa transmitted by infected sand flies. Vaccination through leishmanization with live Leishmania major has been used successfully but is no longer practiced because it resulted in occasional skin lesions. A second generation leishmanization is described here using a CRISPR genome edited L. major strain (LmCen-/-). Notably, LmCen-/- is a genetically engineered centrin gene knock-out mutant strain that is antibiotic resistant marker free and does not have detectable off-target mutations. Mice immunized with LmCen-/- have no visible lesions following challenge with L. major-infected sand flies, while non-immunized animals develop large and progressive lesions with a 2-log fold higher parasite burden. LmCen-/- immunization results in protection and an immune response comparable to leishmanization. LmCen-/- is safe since it is unable to cause disease in immunocompromised mice, induces robust host protection against vector sand fly challenge and because it is marker free, can be advanced to human vaccine trials.
Collapse
Affiliation(s)
- Wen-Wei Zhang
- Department of Microbiology and Immunology, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Subir Karmakar
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD, 20993, USA
| | - Sreenivas Gannavaram
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD, 20993, USA
| | - Ranadhir Dey
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD, 20993, USA
| | - Patrick Lypaczewski
- Department of Microbiology and Immunology, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Nevien Ismail
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD, 20993, USA
| | - Abid Siddiqui
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD, 20993, USA
| | - Vahan Simonyan
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD, 20993, USA
| | - Fabiano Oliveira
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Iliano V Coutinho-Abreu
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Thiago DeSouza-Vieira
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Claudio Meneses
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - James Oristian
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Tiago D Serafim
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Abu Musa
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), The Joint Usage/Research Center on Tropical Disease, Nagasaki University, Nagasaki, Japan and Nagasaki University Graduate School of Biomedical Sciences Doctoral Leadership Program, Nagasaki, Japan
| | - Risa Nakamura
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), The Joint Usage/Research Center on Tropical Disease, Nagasaki University, Nagasaki, Japan and Nagasaki University Graduate School of Biomedical Sciences Doctoral Leadership Program, Nagasaki, Japan
| | - Noushin Saljoughian
- Department of Pathology and Microbiology, Ohio State University, Columbus, OH, 43210, USA
| | - Greta Volpedo
- Department of Pathology and Microbiology, Ohio State University, Columbus, OH, 43210, USA
| | - Monika Satoskar
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD, 20993, USA
- Northeast Ohio Medical University, Rootstown, Ohio, 44272, USA
| | - Sanika Satoskar
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD, 20993, USA
- Northeast Ohio Medical University, Rootstown, Ohio, 44272, USA
| | - Pradeep K Dagur
- National Institute of Heart, Lung and Blood Institute, NIH, Bethesda, MD, 20852, USA
| | - J Philip McCoy
- National Institute of Heart, Lung and Blood Institute, NIH, Bethesda, MD, 20852, USA
| | - Shaden Kamhawi
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Jesus G Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Shinjiro Hamano
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), The Joint Usage/Research Center on Tropical Disease, Nagasaki University, Nagasaki, Japan and Nagasaki University Graduate School of Biomedical Sciences Doctoral Leadership Program, Nagasaki, Japan
| | - Abhay R Satoskar
- Department of Pathology and Microbiology, Ohio State University, Columbus, OH, 43210, USA.
| | - Greg Matlashewski
- Department of Microbiology and Immunology, McGill University, Montreal, QC, H3A 2B4, Canada.
| | - Hira L Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD, 20993, USA.
| |
Collapse
|
113
|
Carfagna IE, Penas FN, Bott E, Lammel EM, Goren NB, Belaunzarán ML, Gimenez G. Involvement of lipids from Leishmania braziliensis promastigotes and amastigotes in macrophage activation. Mol Immunol 2020; 125:104-114. [PMID: 32659595 DOI: 10.1016/j.molimm.2020.06.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 06/17/2020] [Accepted: 06/21/2020] [Indexed: 02/06/2023]
Abstract
Leishmania are obligate protozoan parasites responsible for substantial public health problems in tropical and subtropical regions around the world, with L. braziliensis being one of the causative agents of American Tegumentary Leishmaniasis. Macrophages, fundamental cells in the innate inflammatory response against Leishmania, constitute a heterogeneous group with multiple activation phenotypes and functions. The outcome of this infection depends largely on the activation status of macrophages, the first line of mammalian defense and the major target cells for parasite replication. The importance of lipids, the major components of cell membranes, goes beyond their basic structural functions. Lipid bioactive molecules have been described in Leishmania spp., and in the recent years the knowledge about the biological relevance of lipids in particular and their relationship with the immune response is expanding. The present work analyzes the biological effects of L. braziliensis lipids from lysed promastigotes (PRO) to mimic rapid modulatory processes that could occur in the initial steps of infection or the effects of lipids from lysed and incubated promastigotes (PROinc), simulating the parasite lipid degradation processes triggered after parasite lysis that might occur in the mammalian host. To perform these studies, lipid profiles of PRO and PROinc were compared with lipids from amastigotes under similar conditions (AMA and AMAinc), and the effect of these lipid extracts were analyzed on the induction of an inflammatory response in murine peritoneal macrophages: LB induction, COX-2, iNOS and Arginase expression, TNF-α, IL-10 and NO production, Arginase activity and M1/M2 markers mRNA induction.
Collapse
Affiliation(s)
- Ivanna Emilce Carfagna
- Facultad de Medicina, Universidad de Buenos Aires. Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Buenos Aires, Argentina
| | - Federico Nicolás Penas
- Facultad de Medicina, Universidad de Buenos Aires. Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Emanuel Bott
- Facultad de Medicina, Universidad de Buenos Aires. Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Buenos Aires, Argentina
| | - Estela María Lammel
- Facultad de Medicina, Universidad de Buenos Aires. Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Buenos Aires, Argentina
| | - Nora Beatriz Goren
- Facultad de Medicina, Universidad de Buenos Aires. Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - María Laura Belaunzarán
- Facultad de Medicina, Universidad de Buenos Aires. Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Buenos Aires, Argentina
| | - Guadalupe Gimenez
- Facultad de Medicina, Universidad de Buenos Aires. Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Buenos Aires, Argentina.
| |
Collapse
|
114
|
Antileishmanial Effects of Synthetic EhPIb Analogs Derived from the Entamoeba histolytica Lipopeptidephosphoglycan. Antimicrob Agents Chemother 2020; 64:AAC.00161-20. [PMID: 32393489 PMCID: PMC7318009 DOI: 10.1128/aac.00161-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/27/2020] [Indexed: 12/29/2022] Open
Abstract
With an estimated number of new cases annually of approximately 1.4 million, leishmaniasis belongs to the most important parasitic diseases in the world. Nevertheless, existing drugs against leishmaniasis in general have several drawbacks that urgently necessitate new drug development. A glycolipid molecule of the intestinal protozoan parasite Entamoeba histolytica and its synthetic analogs previously showed considerable immunotherapeutic effects against Leishmania major infection. With an estimated number of new cases annually of approximately 1.4 million, leishmaniasis belongs to the most important parasitic diseases in the world. Nevertheless, existing drugs against leishmaniasis in general have several drawbacks that urgently necessitate new drug development. A glycolipid molecule of the intestinal protozoan parasite Entamoeba histolytica and its synthetic analogs previously showed considerable immunotherapeutic effects against Leishmania major infection. Here, we designed and synthesized a series of new immunostimulatory compounds derived from the phosphatidylinositol b anchor of Entamoeba histolytica (EhPIb) subunit of the native compound and investigated their antileishmanial activity in vitro and in vivo in a murine model of cutaneous leishmaniasis. The new synthetic EhPIb analogs showed almost no toxicity in vitro. Treatment with the analogs significantly decreased the parasite load in murine and human macrophages in vitro. In addition, topical application of the EhPIb analog Eh-1 significantly reduced cutaneous lesions in the murine model, correlating with an increase in the production of selected Th1 cytokines. In addition, we could show in in vitro experiments that treatment with Eh-1 led to a decrease in mRNA expression of arginase-1 (Arg1) and interleukin 4 (IL-4), which are required by the parasites to circumvent their elimination by the immune response. The use of the host-targeting synthetic EhPIb compounds, either alone or in combination therapy with antiparasitic drugs, shows promise for treating cutaneous leishmaniasis and therefore might improve the current unsatisfactory status of chemotherapy against this infectious disease.
Collapse
|
115
|
Differential Regulation of l-Arginine Metabolism through Arginase 1 during Infection with Leishmania mexicana Isolates Obtained from Patients with Localized and Diffuse Cutaneous Leishmaniasis. Infect Immun 2020; 88:IAI.00963-19. [PMID: 32312763 DOI: 10.1128/iai.00963-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 03/31/2020] [Indexed: 01/08/2023] Open
Abstract
l-Arginine metabolism through arginase 1 (Arg-1) and inducible nitric oxide synthase (NOS2) constitutes a fundamental axis for the resolution or progression of leishmaniasis. Infection with Leishmania mexicana can cause two distinct clinical manifestations: localized cutaneous leishmaniasis (LCL) and diffuse cutaneous leishmaniasis (DCL). In this work, we analyzed in an in vivo model the capacity of two L. mexicana isolates, one obtained from a patient with LCL and the other from a patient with DCL, to regulate the metabolism of l-arginine through Arg-1 and NOS2. Susceptible BALB/c mice were infected with L. mexicana isolates from both clinical manifestations, and the evolution of the infection as well as protein presence and activity of Arg-1 and NOS2 were evaluated. The lesions of mice infected with the DCL isolate were bigger, had higher parasite loads, and showed greater protein presence and enzymatic activity of Arg-1 than the lesions of mice infected with the LCL isolate. In contrast, NOS2 protein synthesis was poorly or not induced in the lesions of mice infected with the LCL or DCL isolate. The immunochemistry analysis of the lesions allowed the identification of highly parasitized macrophages positive for Arg-1, while no staining for NOS2 was found. In addition, we observed in lesions of patients with DCL macrophages with higher parasite loads and stronger Arg-1 staining than those in lesions of patients with LCL. Our results suggest that L. mexicana isolates obtained from patients with LCL or DCL exhibit different virulence or pathogenicity degrees and differentially regulate l-arginine metabolism through Arg-1.
Collapse
|
116
|
Review on the Role of Host Immune Response in Protection and Immunopathogenesis during Cutaneous Leishmaniasis Infection. J Immunol Res 2020; 2020:2496713. [PMID: 32656269 PMCID: PMC7320295 DOI: 10.1155/2020/2496713] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 05/02/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022] Open
Abstract
Cutaneous leishmaniasis (CL) is a major public health problem worldwide and spreads to human via the bite of sand flies during blood meal. Following its inoculation, the promastigotes are immediately taken up by phagocytic cells and these leishmania-infected host cells produce proinflammatory cytokines that activate other immune cells and these infected host cells produce more cytokines and reactive nitrogen and oxygen species for efficient control of leishmania infection. Many experimental studies showed that resistance to infection with leishmania paraites is associated with the production of proinflammatory cytokines and activation of CD4+ Th1 response. On the other hand, vulnerability to this parasitic infection is correlated to production of T helper 2 cytokines that facilitate persistence of parasites and disease progression. In addition, some studies have also indicated that CD8+ T cells play a vital role in immune defense through cytokine production and their cytotoxic activity and excessive production of proinflammatory mediators promote amplified recruitment of cells. This could be correlated with excessive inflammatory reaction and ultimately resulted in tissue destruction and development of immunopathogenesis. Thus, there are contradictions regarding the role of immune responses in protection and immunopathogenesis of CL disease. Therefore, the aim of this paper was to review the role of host immune response in protection and its contribution to disease severity for CL infection. In order to obtain more meaningful data regarding the nature of immune response to leishmania, further in-depth studies focused on immune modulation should be conducted to develop better therapeutic strategies.
Collapse
|
117
|
Amorim EADS, de França ÁA, Pereira VRA, Brelaz-de-Castro MCA. IL-1 family and Cutaneous Leishmaniasis: A poorly understood relationship. Cytokine Growth Factor Rev 2020; 57:85-92. [PMID: 32540132 DOI: 10.1016/j.cytogfr.2020.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/04/2020] [Indexed: 01/02/2023]
Abstract
The cytokines of the interleukin (IL) -1 family act in the initiation of an effective immune response in Leishmania infection, represented mainly by the T helper 1 (Th1) profile, in addition to being associated with disease exacerbation and controversial contributions in the Th2 responses. The family also includes members who self-regulate inflammation, such as antagonists and anti-inflammatory cytokines, most of which have not yet been studied in Cutaneous Leishmaniasis (CL) in humans. Here we summarize findings about what is known so far about the role of these cytokines in mice, the main study model, and in humans. We reinforce the importance of studies of these cytokines as new targets in the context of CL.
Collapse
Affiliation(s)
- Ester Alves da Silva Amorim
- Federal University of Pernambuco (UFPE), Academic Center of Vitória (CAV), Rua do Alto do Reservatório s/n, Bela Vista, Vitória de Santo Antão, Pernambuco, PE, 55608-680, Brazil; Oswaldo Cruz Pernambuco Foundation (Fiocruz/PE), Department of Immunology, Av. Moraes Rego, s/n - Cidade Universitária, 50670-420, Recife, Pernambuco, Brazil.
| | - Áquila Alcântara de França
- Federal University of Pernambuco (UFPE), Academic Center of Vitória (CAV), Rua do Alto do Reservatório s/n, Bela Vista, Vitória de Santo Antão, Pernambuco, PE, 55608-680, Brazil; Oswaldo Cruz Pernambuco Foundation (Fiocruz/PE), Department of Immunology, Av. Moraes Rego, s/n - Cidade Universitária, 50670-420, Recife, Pernambuco, Brazil.
| | - Valéria Rêgo Alves Pereira
- Oswaldo Cruz Pernambuco Foundation (Fiocruz/PE), Department of Immunology, Av. Moraes Rego, s/n - Cidade Universitária, 50670-420, Recife, Pernambuco, Brazil.
| | - Maria Carolina Accioly Brelaz-de-Castro
- Federal University of Pernambuco (UFPE), Academic Center of Vitória (CAV), Rua do Alto do Reservatório s/n, Bela Vista, Vitória de Santo Antão, Pernambuco, PE, 55608-680, Brazil; Oswaldo Cruz Pernambuco Foundation (Fiocruz/PE), Department of Immunology, Av. Moraes Rego, s/n - Cidade Universitária, 50670-420, Recife, Pernambuco, Brazil.
| |
Collapse
|
118
|
Lecoeur H, Rosazza T, Kokou K, Varet H, Coppée JY, Lari A, Commère PH, Weil R, Meng G, Milon G, Späth GF, Prina E. Leishmania amazonensis Subverts the Transcription Factor Landscape in Dendritic Cells to Avoid Inflammasome Activation and Stall Maturation. Front Immunol 2020; 11:1098. [PMID: 32582184 PMCID: PMC7295916 DOI: 10.3389/fimmu.2020.01098] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/06/2020] [Indexed: 12/18/2022] Open
Abstract
Leishmania parasites are the causative agents of human leishmaniases. They infect professional phagocytes of their mammalian hosts, including dendritic cells (DCs) that are essential for the initiation of adaptive immune responses. These immune functions strictly depend on the DC's capacity to differentiate from immature, antigen-capturing cells to mature, antigen-presenting cells—a process accompanied by profound changes in cellular phenotype and expression profile. Only little is known on how intracellular Leishmania affects this important process and DC transcriptional regulation. Here, we investigate these important open questions analyzing phenotypic, cytokine profile and transcriptomic changes in murine, immature bone marrow-derived DCs (iBMDCs) infected with antibody-opsonized and non-opsonized Leishmania amazonensis (L.am) amastigotes. DCs infected by non-opsonized amastigotes remained phenotypically immature whereas those infected by opsonized parasites displayed a semi-mature phenotype. The low frequency of infected DCs in culture led us to use DsRed2-transgenic parasites allowing for the enrichment of infected BMDCs by FACS. Sorted infected DCs were then subjected to transcriptomic analyses using Affymetrix GeneChip technology. Independent of parasite opsonization, Leishmania infection induced expression of genes related to key DC processes involved in MHC Class I-restricted antigen presentation and alternative NF-κB activation. DCs infected by non-opsonized parasites maintained an immature phenotype and showed a small but significant down-regulation of gene expression related to pro-inflammatory TLR signaling, the canonical NF-kB pathway and the NLRP3 inflammasome. This transcriptomic profile was further enhanced in DCs infected with opsonized parasites that displayed a semi-mature phenotype despite absence of inflammasome activation. This paradoxical DC phenotype represents a Leishmania-specific signature, which to our knowledge has not been observed with other opsonized infectious agents. In conclusion, systems-analyses of our transcriptomics data uncovered important and previously unappreciated changes in the DC transcription factor landscape, thus revealing a novel Leishmania immune subversion strategy directly acting on transcriptional control of gene expression. Our data raise important questions on the dynamic and reciprocal interplay between trans-acting and epigenetic regulators in establishing permissive conditions for intracellular Leishmania infection and polarization of the immune response.
Collapse
Affiliation(s)
- Hervé Lecoeur
- Institut Pasteur, INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Département des Parasites et Insectes Vecteurs, Paris, France.,Pasteur Institute of Shanghai, Innate Immunity Unit, Key Laboratory of Molecular Virology and Immunology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Pasteur International Unit "Inflammation and Leishmania Infection", Paris, France
| | - Thibault Rosazza
- Institut Pasteur, INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Département des Parasites et Insectes Vecteurs, Paris, France.,Pasteur International Unit "Inflammation and Leishmania Infection", Paris, France
| | - Kossiwa Kokou
- Institut Pasteur, INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Département des Parasites et Insectes Vecteurs, Paris, France.,Pasteur Institute of Shanghai, Innate Immunity Unit, Key Laboratory of Molecular Virology and Immunology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Pasteur International Unit "Inflammation and Leishmania Infection", Paris, France
| | - Hugo Varet
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, Paris, France
| | - Jean-Yves Coppée
- Institut Pasteur - Transcriptome and Epigenome Platform - Biomics Pole - C2RT, Paris, France
| | - Arezou Lari
- Systems Biomedicine Unit, Institut Pasteur of Iran, Teheran, Iran
| | | | - Robert Weil
- Sorbonne Universités, Institut National de la Santé et de la Recherche Médicale (Inserm, UMR1135), Centre National de la Recherche Scientifique (CNRS, ERL8255), Centre d'Immunologie et des Maladies Infectieuses CIMI, Paris, France
| | - Guangxun Meng
- Pasteur Institute of Shanghai, Innate Immunity Unit, Key Laboratory of Molecular Virology and Immunology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Pasteur International Unit "Inflammation and Leishmania Infection", Paris, France
| | - Genevieve Milon
- Institut Pasteur, Laboratoire Immunophysiologie et Parasitisme, Département des Parasites et Insectes Vecteurs, Paris, France
| | - Gerald F Späth
- Institut Pasteur, INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Département des Parasites et Insectes Vecteurs, Paris, France.,Pasteur International Unit "Inflammation and Leishmania Infection", Paris, France
| | - Eric Prina
- Institut Pasteur, INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Département des Parasites et Insectes Vecteurs, Paris, France.,Pasteur International Unit "Inflammation and Leishmania Infection", Paris, France
| |
Collapse
|
119
|
Valentim-Silva JR, Macedo SRA, de Barros NB, Dos Santos Ferreira A, da Silva JHM, de Figueiredo Nicolete LD, Nicolete R. Antileishmanial drugs activate inflammatory signaling pathways via toll-like receptors (docking approach) from Leishmania amazonensis-infected macrophages. Int Immunopharmacol 2020; 85:106640. [PMID: 32470884 DOI: 10.1016/j.intimp.2020.106640] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 12/19/2022]
Abstract
The activation of proinflammatory cellular processes and signals such as those linked to NF-kB in macrophages are involved in the control of infection by Leishmania ssp. However, little is known about the influence of the drugs used in the treatment on the host cellular inflammatory signaling pathways. This study aimed to evaluate the effects of different drugs used in the treatment of leishmaniasis on inflammatory profile related to Toll-like receptors (TLRs) from L. amazonensis-infected macrophages. J774 macrophage-like cells were infected with the promastigote forms (5:1) and 24 hs incubated with Amphotericin B (AmB), Glucantime® (GLU) or Pentamidine (Pent). The following inflammatory pathways were evaluated: NF-κB p65, NF-κB p65 phosphorylated (Ser536), stress-activated protein kinase/c-Jun NH(2)-terminal kinase (SAPK/JNK) phosphorylated (Thr183/Tyr185), p38 mitogen activated protein kinase (MAPK p38) phosphorylated (Thr180/Tyr182), signal transducer and activator of transcription-3 (Stat3) phosphorylated (Tyr705) and inhibitor kappa B-α (IκB-α) phosphorylated (Ser32). In silico tests were performed to evaluate the molecular affinity between TLRs and antileishmanial drugs. Molecular docking showed that affinities varied significantly among the binders evaluated. The lowest affinity (-8.6 Kcal/Mol) was calculated for AmB in complex with TLR4. Pent showed higher values for TLR1, TLR2 and TLR3, while for TLR4 the affinity value was lower (5.5 Kcal/Mol). The values obtained for GLU were the highest for the set of binders tested. From the infected macrophages, treatments inhibited NF-kB p65 for GLU (65.44%), for Pent (46.43%) and for AmB (54.07%) compared to untreated infected macrophages. The activation of the signaling pathway of NF-kB, SAPK/JNK and IκB-α caused by AmB and Pent may potentiate the microbicidal mechanisms of the infected macrophages.
Collapse
Affiliation(s)
- João Rafael Valentim-Silva
- Laboratório de Biotecnologia Aplicada à Saúde, Fundação Oswaldo Cruz (FIOCRUZ Rondônia), Porto Velho, RO, Brazil; Physical Education Department of Federal University of Rondônia (UNIR), Porto Velho, RO, Brazil; Physical Education Department of University Center UNINORTE, Rio Branco, AC, Brazil
| | - Sharon Rose Aragão Macedo
- Laboratório de Biotecnologia Aplicada à Saúde, Fundação Oswaldo Cruz (FIOCRUZ Rondônia), Porto Velho, RO, Brazil; União das Escolas Superiores de Rondônia (UNIRON), Porto Velho, RO, Brazil
| | - Neuza Biguinati de Barros
- Laboratório de Biotecnologia Aplicada à Saúde, Fundação Oswaldo Cruz (FIOCRUZ Rondônia), Porto Velho, RO, Brazil; Faculdades Integradas Aparício Carvalho (FIMCA), Porto Velho, RO, Brazil
| | - Amália Dos Santos Ferreira
- Laboratório de Biotecnologia Aplicada à Saúde, Fundação Oswaldo Cruz (FIOCRUZ Rondônia), Porto Velho, RO, Brazil
| | | | - Larissa Deadame de Figueiredo Nicolete
- Fundação Oswaldo Cruz (FIOCRUZ Ceará), Eusébio, CE, Brazil; Instituto de Ciências da Saúde da Universidade Internacional da Integração Luso Afro Brasileira (UNILAB), Redenção, CE, Brazil
| | - Roberto Nicolete
- Laboratório de Biotecnologia Aplicada à Saúde, Fundação Oswaldo Cruz (FIOCRUZ Rondônia), Porto Velho, RO, Brazil; Fundação Oswaldo Cruz (FIOCRUZ Ceará), Eusébio, CE, Brazil.
| |
Collapse
|
120
|
Kariyawasam R, Lau R, Valencia BM, Llanos-Cuentas A, Boggild AK. Leishmania RNA Virus 1 (LRV-1) in Leishmania ( Viannia) braziliensis Isolates from Peru: A Description of Demographic and Clinical Correlates. Am J Trop Med Hyg 2020; 102:280-285. [PMID: 31837129 DOI: 10.4269/ajtmh.19-0147] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
RNA virus 1-1 (LRV-1-1) is a dsRNA virus identified in isolates of Leishmania (Viannia) braziliensis and thought to advance localized cutaneous leishmaniasis (LCL) to mucocutaneous or mucosal leishmaniasis (MCL/ML). We examined the prevalence of LRV-1 and its correlation to phenotypes of American tegumentary leishmaniasis caused by L. (V.) braziliensis from Peru to better understand its epidemiology. Clinical isolates of L. (V.) braziliensis were screened for LRV-1 by real-time polymerase chain reaction (PCR) and stratified according to the phenotype: LCL (< 4 ulcers in number) MCL/ML; inflammatory ulcers (erythematous, purulent, painful ulcers with or without lymphatic involvement) or multifocal ulcers (≥ 4 in ≥ 2 anatomic sites). Proportionate LRV-1 positivity was compared across phenotypes. Of 78 L. (V.) braziliensis isolates, 26 (54.2%) had an inflammatory phenotype, 22 (28%) had the MCL/ML phenotype, whereas 30 (38.5%) had LCL. Mucocutaneous or mucosal leishmaniasis was found exclusively in adult male enrollees. Leishmania RNA virus 1 positivity by phenotype was as follows: 9/22 (41%) with MCL/ML; 5/26 (19%) with an inflammatory/multifocal cutaneous leishmaniasis phenotype; and 7/30 (23%) with LCL (P = 0.19). Leishmania RNA virus 1 positivity was not associated with age (P = 0.55) or gender (P = 0.49). Relative LRV-1 copy number was greater in those with MCL/ML than those with inflammatory/multifocal CL (P = 0.02). A direct association between LRV-1 status and clinical phenotype was not demonstrated; however, relative LRV-1 copy number was highest in those with MCL/ML. Future analyses to understand the relationship between viral burden and pathogenesis are required to determine if LRV-1 is truly a contributor to the MCL/ML phenotype.
Collapse
Affiliation(s)
| | - Rachel Lau
- Public Health Ontario Laboratory, Toronto, Canada
| | - Braulio M Valencia
- Viral Immunology Systems Program, Kirby Institute, University of New South Wales, Australia
| | | | - Andrea K Boggild
- Public Health Ontario Laboratory, Toronto, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Canada.,Department of Medicine, University of Toronto, Toronto, Canada.,Tropical Disease Unit, Toronto General Hospital, Toronto, Canada
| |
Collapse
|
121
|
Ahmed AA, Rasheed Z, Salem T, Al-Dhubaibi MS, Al Robaee AA, Alzolibani AA. TNF-α - 308 G/A and IFN-γ + 874 A/T gene polymorphisms in Saudi patients with cutaneous leishmaniasis. BMC MEDICAL GENETICS 2020; 21:104. [PMID: 32404058 PMCID: PMC7218653 DOI: 10.1186/s12881-020-01043-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 05/05/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Cutaneous leishmaniasis (CL) is well linked with immunogenetic factors. This study was undertaken to test the association of TNF-α - 308 and IFN-γ + 874 gene polymorphisms with the susceptibility of Leishmania (L) species among CL patients in central region of Saudi Arabia. METHODS This is a case-control study involved 169 Saudi subjects with different L. species and 199 healthy controls from central region of Saudi Arabia. All subjects were characterized by TNF-α - 308 G/A and IFN-γ + 874 A/T gene polymorphisms using PCR. RESULTS Evaluation of genotyping and allelic frequency of TNF-α - 308 G/A in different L. species showed no significant association compared to controls (p > 0.05). Except, in cases of L. tropica that showed significantly higher TNF-α - 308 A versus G allele frequency (p = 0.0004). Evaluation of genotyping of IFN-γ + 874 (TT versus AA+AT recessive) and allelic frequency of IFN-γ + 874 (T versus A) showed significant higher in L. major and also in total CL cases as compared to healthy controls (p < 0.05). Furthermore, a strong association was observed between the susceptibility of L. major, L. tropica or total CL cases with synergistically combined high TNF-α 308/INF-γ 874 alleles. CONCLUSIONS This is the first report that shows the gene polymorphisms of TNF-α - 308 G/A and IFN-γ + 874 A/T in Saudi patients with different L. species infections. Data showed that the TNF-α-308 G/A gene polymorphism is not associated with the susceptibility of CL in Saudi subjects. The only correlation was found in between A versus G allelic frequency in L. tropica. Importantly, IFN-γ + 874 A/T polymorphism was found to be associated with the susceptibility of L. major and also with total CL subjects. Moreover, data from synergistically combined high TNF-α 308/INF-γ 874 alleles strongly suggest their potential role in the susceptibility of leishmania infection.
Collapse
Affiliation(s)
- Ahmed A Ahmed
- Research Center, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Zafar Rasheed
- Department of Medical Biochemistry, College of Medicine, Qassim University, P.O. Box 6655, Buraidah, KSA, 51452, Saudi Arabia.
| | - Tarek Salem
- Department of Medical Biochemistry, College of Medicine, Qassim University, P.O. Box 6655, Buraidah, KSA, 51452, Saudi Arabia
| | - Mohammed S Al-Dhubaibi
- Department of Dermatology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Ahmad A Al Robaee
- Department of Dermatology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | | |
Collapse
|
122
|
Tavares GSV, Mendonça DVC, Pereira IAG, Oliveira-da-Silva JA, Ramos FF, Lage DP, Machado AS, Carvalho LM, Reis TAR, Perin L, Carvalho AMRS, Ottoni FM, Ludolf F, Freitas CS, Bandeira RS, Silva AM, Chávez-Fumagalli MA, Duarte MC, Menezes-Souza D, Alves RJ, Roatt BM, Coelho EAF. A clioquinol-containing Pluronic ® F127 polymeric micelle system is effective in the treatment of visceral leishmaniasis in a murine model. ACTA ACUST UNITED AC 2020; 27:29. [PMID: 32351209 PMCID: PMC7191975 DOI: 10.1051/parasite/2020027] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/14/2020] [Indexed: 12/21/2022]
Abstract
A clioquinol (ICHQ)-containing Pluronic® F127 polymeric micelle system (ICHQ/Mic) was recently shown to be effective against Leishmania amazonensis infection in a murine model. In the present study, ICHQ/Mic was tested against L. infantum infection. BALB/c mice (n = 12 per group) were infected with L. infantum stationary promastigotes through subcutaneous injection and, 45 days after challenge, received saline or were treated via the subcutaneous route with empty micelles, ICHQ or ICHQ/Mic. In addition, animals were treated with miltefosine by the oral route, as a drug control. Half of the animals were euthanized 1 and 15 days after treatment, aiming to evaluate two endpoints after therapy, when parasitological and immunological parameters were investigated. Results showed that the treatment using miltefosine, ICHQ or ICHQ/Mic induced significantly higher anti-parasite IFN-γ, IL-12, GM-CSF, nitrite and IgG2a isotype antibody levels, which were associated with low IL-4 and IL-10 production. In addition, a higher frequency of IFN-γ and TNF-α-producing CD4+ and CD8+ T-cells was found in these animals. The parasite load was evaluated in distinct organs, and results showed that the treatment using miltefosine, ICHQ or ICHQ/Mic induced significant reductions in organic parasitism in the treated and infected mice. A comparison between the treatments suggested that ICHQ/Mic was the most effective in inducing a highly polarized Th1-type response, as well as reducing the parasite load in significant levels in the treated and infected animals. Data obtained 15 days after treatment suggested maintenance of the immunological and parasitological responses. In conclusion, ICHQ/Mic could be considered in future studies for the treatment of visceral leishmaniasis.
Collapse
Affiliation(s)
- Grasiele S V Tavares
- Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Débora V C Mendonça
- Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Isabela A G Pereira
- Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Fernanda F Ramos
- Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniela P Lage
- Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Amanda S Machado
- Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lívia M Carvalho
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Thiago A R Reis
- Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luísa Perin
- Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Flaviano M Ottoni
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Departamento de Ciências Biológicas, Insituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Fernanda Ludolf
- Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Camila S Freitas
- Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Raquel S Bandeira
- Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Alessandra M Silva
- Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Mariana C Duarte
- Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil - Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniel Menezes-Souza
- Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil - Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo J Alves
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Departamento de Ciências Biológicas, Insituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Bruno M Roatt
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Eduardo A F Coelho
- Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil - Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
123
|
Toledo MDS, Cronemberger-Andrade A, Barbosa FMC, Reis NFDC, Dupin TV, Soares RP, Torrecilhas AC, Xander P. Effects of extracellular vesicles released by peritoneal B-1 cells on experimental Leishmania (Leishmania) amazonensis infection. J Leukoc Biol 2020; 108:1803-1814. [PMID: 32356366 DOI: 10.1002/jlb.3ma0220-464rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/25/2020] [Accepted: 03/26/2020] [Indexed: 02/06/2023] Open
Abstract
B-1 cells are a B-lymphocyte subtype whose roles in immunity are not completely defined. These cells can produce cytokines (mainly IL-10) and natural and specific antibodies. Currently, extracellular vesicles (EVs) released by immune cells have emerged as new important entities in cell-cell communication. Immune cells release EVs that can activate and/or modulate other immune cells. Here, we characterized the EVs released by peritoneal B-1 cells infected or not with Leishmania (Leishmania) amazonensis. This Leishmania species causes cutaneous leishmaniasis and can infect macrophages and B-1 cells. Our results showed that peritoneal B-1 cells spontaneously release EVs, but the parasite stimulated an increase in EVs production by peritoneal B-1 cells. The treatment of BALB/c and C57BL/6 bone marrow-derived macrophages (BMDM) with EVs from infected peritoneal B-1 cells led to differential expression of iNOS, IL-6, IL-10, and TNF-α. Additionally, BALB/c mice previous treated with EVs released by peritoneal B-1 cells showed a significant lower lesion size and parasite burden. Thus, this study demonstrated that peritoneal B-1 cells could release EVs that can alter the functions of macrophages in vitro and in vivo these EVs altered the course of L. amazonensis infection. These findings represent the first evidence that EVs from peritoneal B-1 cells can act as a new mechanism of cellular communication between macrophages and B-1 cells, contributing to immunity against experimental leishmaniasis.
Collapse
Affiliation(s)
- Maytê Dos Santos Toledo
- Department of Pharmaceutical Sciences, Federal University of São Paulo campus Diadema, Diadema, São Paulo, Brazil
| | | | | | | | - Talita Vieira Dupin
- Department of Pharmaceutical Sciences, Federal University of São Paulo campus Diadema, Diadema, São Paulo, Brazil
| | - Rodrigo Pedro Soares
- Laboratory of Cellular and Molecular Parasitology, René Rachou Institute, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Claudia Torrecilhas
- Department of Pharmaceutical Sciences, Federal University of São Paulo campus Diadema, Diadema, São Paulo, Brazil.,Department of Medicine/Infectious Diseases, Federal University of São Paulo, São Paulo, Brazil
| | - Patricia Xander
- Department of Pharmaceutical Sciences, Federal University of São Paulo campus Diadema, Diadema, São Paulo, Brazil
| |
Collapse
|
124
|
Heinemann M, Omansen TF, Hennigs A, Völker K, Menz A, Addo MM, Schmiedel S. Relapsing cutaneous leishmaniasis in a patient requiring TNF-α-inhibitor Infliximab for Takayasu-arteritis: Case report and review of the literature. Travel Med Infect Dis 2020; 37:101700. [PMID: 32339673 DOI: 10.1016/j.tmaid.2020.101700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 04/23/2020] [Indexed: 12/14/2022]
Abstract
Leishmaniasis is a protozoan parasitic infection that can manifest as visceral or cutaneous disease. Immunosuppression, mainly through TNF-α) inhibition, is a risk factor for complicated leishmaniasis that is becoming increasingly known. Here, we present a case of cutaneous leishmaniasis (CL) in a patient who suffers from advanced Takayasu-Arteritis, requiring TNF-α inhibition with infliximab. The primary CL lesions in this 47-year-old, female patient were caused by Leishmaniapanamensis and occurred after a touristic trip to Panama on her right foot. The lesions first resolved under treatment with liposomal amphotericin B. However, ten months later, the patient returned with relapsing lesions requiring further treatment. We discuss the challenges and risks of leishmaniasis in patients with TNF-α inhibition and the rare phenomenon of relapsing CL and the management hereof. We review published cases of CL associated with TNF-α inhibition. A growing body of evidence now suggests that especially CL (and visceral leishmaniasis (VL)) can be associated with TNF-α inhibition. The host response to leishmaniasis is of the Th1-type and TNF-α and interferon-gamma expression are crucial for disease control. Inversely, TNF-α inhibition can lead to complicated and relapsing progression of leishmanial infection. Therefore, we propose that CL and VL should be considered in at-risk patients receiving immunosuppressants.
Collapse
Affiliation(s)
- Melina Heinemann
- I. Department of Medicine, Division of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till F Omansen
- Bernhard Nocht Institute for Tropical Medicine & I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Annette Hennigs
- I. Department of Medicine, Division of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katrin Völker
- Department of Tropical Medicine at the Bernhard Nocht Institute, German Armed Forces Hospital of Hamburg, Hamburg, Germany
| | - Anne Menz
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marylyn M Addo
- I. Department of Medicine, Division of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Schmiedel
- I. Department of Medicine, Division of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
125
|
Kalavi K, Jorjani O, Faghihi MA, Mowla SJ. Cytokine Gene Expression Alterations in Human Macrophages Infected by Leishmania major. CELL JOURNAL 2020; 22:476-481. [PMID: 32347041 PMCID: PMC7211285 DOI: 10.22074/cellj.2021.6524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 06/10/2019] [Indexed: 12/18/2022]
Abstract
Objective Leishmaniasis is caused by members of the Leishmania species and constitute a group of infective diseases that range from cutaneous lesions to lethal visceral forms. In infected persons, macrophages recognize and eliminate the parasites via phagocytosis. In order to change a hostile environment into an environment adequate for survival and reproduction, the engulfed Leishmania species needs to modulate the function of its host macrophage. The expression patterns of cytokine genes such as interleukin-12 (IL-12), tumour necrosis factor-alpha (TNF-α), IL-1, and interferon-gamma (IFNγ) represent the immune response. In this study, we employed an RNA-seq approach for human monocyte-derived macrophages infected with Leishmania major (L. major) to decipher cytokine gene expression alterations in host macrophages. Materials and Methods In this descriptive study, human monocytes were isolated by magnetic activated cell sorting (MACS) and cultured in the presence of monocyte colony stimulating factor (M-CSF) to obtain the macrophages. Monocyte-derived macrophages were then co-cultured with metacyclic promastigotes of L. major for 4 hours. RNA isolation was performed using TRIzol reagent. RNA sequencing was performed using the Illumina sequencing platforms. Gene expression analysis was performed using a Bioconductor DESeq2 package. Results Our data revealed significant changes in immune response gene expressions in macrophages infected with L. major, with an up-regulation of cytokines and mostly down-regulation of their receptors. Conclusion The obtained data could shed more light on the biology of L. major and how the host cell responds to leishmaniasis.
Collapse
Affiliation(s)
- Khodaberdi Kalavi
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.,Department of Laboratory Sciences, School of Allied Medical Sciences, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ogholniaz Jorjani
- Department of Laboratory Sciences, School of Allied Medical Sciences, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohammad Ali Faghihi
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Psychiatry and Behavioral Sciences, School of Medicine, University of Miami, FL, USA
| | - Seyed Javad Mowla
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran. Electronic Address:
| |
Collapse
|
126
|
Taslimi Y, Agbajogu C, Brynjolfsson SF, Masoudzadeh N, Mashayekhi V, Gharibzadeh S, Östensson M, Nakka SS, Mizbani A, Rafati S, Harandi AM. Profiling inflammatory response in lesions of cutaneous leishmaniasis patients using a non-invasive sampling method combined with a high-throughput protein detection assay. Cytokine 2020; 130:155056. [PMID: 32199248 DOI: 10.1016/j.cyto.2020.155056] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/23/2020] [Accepted: 02/27/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Cutaneous leishmaniasis (CL) is an infection caused by Leishmania (L.) protozoa transmitted through the bite of infected sand fly. Previously, invasive sampling of blood and skin along with low throughput methods were used for determination of inflammatory response in CL patients. AIMS/METHODOLOGY We established a novel approach based on a non-invasive adhesive tape-disc sampling combined with a powerful multiplexing technique called proximity extension assay for profiling 92 inflammatory cytokines, chemokines and surface molecules in the lesions of CL patients infected with L. tropica. Sample collection was done non-invasively by using adhesive tape-discs from lesion and normal skin of 33 L. tropica positive patients. RESULTS Out of 92 inflammatory proteins, the level of 34 proteins was significantly increased in the lesions of CL patients compared to their normal skin. This includes the chemokines CCL2, CCL3, CCL4, CXCL1, CXCL5, CXCL9, CXCL10 and CXCL11, together with the interleukins IL-6, IL-8, IL-18, LIF and OSM. The remaining significantly changed inflammatory proteins include 7 surface molecules and receptors: CD5, CD40, CDCP1, 4E-BP1, TNFRSF9, IL-18R1 and OPG as well as 16 other cytokines and proteins: MMP-1, CSF-1, VEGFA, uPA, EN-RAGE, LAP TGF-β1, HGF, MMP-10, CASP-8, TNFSF14, STAMPB, ADA, TRAIL and ST1A1. Further, 13 proteins showed an increasing trend, albeit not statistically significant, in the CL lesions, including TGF-α, CCL23, MCP-2, IL-12B, CXCL6, IL-24, FGF-19, TNFβ, CD6, TRANCE, IL10, SIR2 and CCL20. CONCLUSION We herein report a novel approach based on a non-invasive sampling method combined with the high-throughput protein assay for profiling inflammatory proteins in CL lesions. Using this approach, we could profile inflammatory proteins in the lesions from CL patients. This new non-invasive approach may have implications for studying skin inflammatory mediators in CL and other skin disorders.
Collapse
Affiliation(s)
- Yasaman Taslimi
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Christopher Agbajogu
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | | | - Nasrin Masoudzadeh
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Vahid Mashayekhi
- Cutaneous Leishmaniasis Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Safoora Gharibzadeh
- Department of Epidemiology and Biostatistics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Malin Östensson
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Sravya Sowdamini Nakka
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | | | - Sima Rafati
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran.
| | - Ali M Harandi
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden; Vaccine Evaluation Center, BC Children's Hospital Research Institute, The University of British Columbia, Canada.
| |
Collapse
|
127
|
Kumar V, Das S, Kumar A, Tiwari N, Kumar A, Abhishek K, Mandal A, Kumar M, Shafi T, Bamra T, Singh RK, Vijayakumar S, Sen A, Das P. Leishmania donovani infection induce differential miRNA expression in CD4+ T cells. Sci Rep 2020; 10:3523. [PMID: 32103111 PMCID: PMC7044172 DOI: 10.1038/s41598-020-60435-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 01/20/2020] [Indexed: 12/12/2022] Open
Abstract
Visceral leishmaniasis is characterized by mixed production of Th1/2 cytokines and the disease is established by an enhanced level of Th2 cytokine. CD4+ T cells are main cell type which produces Th1/2 cytokine in the host upon Leishmania infection. However, the regulatory mechanism for Th1/2 production is not well understood. In this study, we co-cultured mice CD4+ T cells with Leishmania donovani infected and uninfected macrophage for the identification of dysregulated miRNAs in CD4+ T cells by next-generation sequencing. Here, we identified 604 and 613 known miRNAs in CD4+ T cells in control and infected samples respectively and a total of only 503 miRNAs were common in both groups. The expression analysis revealed that 112 miRNAs were up and 96 were down-regulated in infected groups, compared to uninfected control. Nineteen up-regulated and 17 down-regulated miRNAs were statistically significant (p < 0.05), which were validated by qPCR. Further, using insilco approach, we identified the gene targets of significant miRNAs on the basis of CD4+ T cell biology. Eleven up-regulated miRNAs and 9 down-regulated miRNAs were associated with the cellular immune responses and Th1/2 dichotomy upon Leishmania donovani infection. The up-regulated miRNAs targeted transcription factors that promote differentiation of CD4+ T cells towards Th1 phenotype. While down-regulated miRNAs targeted the transcription factors that facilitate differentiation of CD4+ T cells towards Th2 populations. The GO and pathway enrichment analysis also showed that the identified miRNAs target the pathway and genes related to CD4+ T cell biology which plays important role in Leishmania donovani infection.
Collapse
Affiliation(s)
- Vinod Kumar
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, India
| | - Sushmita Das
- Department of Microbiology, All India Institute of Medical Sciences, Phulwarisharif, Patna, Bihar, India
| | - Ajay Kumar
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, India
| | - Neeraj Tiwari
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ashish Kumar
- Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, India
| | - Kumar Abhishek
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, India
| | - Abhishek Mandal
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, India
| | - Manjay Kumar
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, India
| | - Taj Shafi
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, India
| | - Tanvir Bamra
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, India
| | - Rakesh Kumar Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Saravanan Vijayakumar
- Department of Bioinformatics, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, India
| | - Abhik Sen
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, India
| | - Pradeep Das
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, India.
| |
Collapse
|
128
|
Eraslan E, Tanyeli A, Güler MC, Kurt N, Yetim Z. Agomelatine prevents indomethacin-induced gastric ulcer in rats. Pharmacol Rep 2020; 72:984-991. [PMID: 32048252 DOI: 10.1007/s43440-019-00049-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/26/2019] [Accepted: 12/11/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Gastric ulcer is a very common gastrointestinal disease that may be dangerous and even may lead to death. The current study was conducted to detect the prophylactic effects of agomelatine on indomethacin-induced gastric ulcer. METHODS In this study, a total of 5 groups were created as the sham, ulcer, omeprazole, agomelatine 1 mg/kg and agomelatine 5 mg/kg groups. The effects of agomelatine on indomethacin-induced gastric injury were investigated. Total antioxidant and oxidant levels; the oxidant parameters like oxidative stress index and the inflammation markers such as tumor necrosis factor-α, interleukin-1β, interleukin-6 and interleukin-10 levels in stomach tissue were determined by ELISA. In addition, the gastric mucosal injury occurred in stomach wall was examined with histopathological methods. RESULTS While the levels of the inflammatory markers, total oxidant status and oxidative stress index increased at an obvious level especially in the indomethacin group, the total antioxidant status levels decreased. It was observed that these parameters were improved at a significant level in agomelatine 1 mg/kg and agomelatine 5 mg/kg groups when compared to ulcer group; and the results were similar to omeprazole group. It was also observed that our histopathological findings were consistent with all our other results. CONCLUSIONS The results of this study showed that agomelatine usage in indomethacin-induced gastric ulcer model provides beneficial results.
Collapse
Affiliation(s)
- Ersen Eraslan
- Department of Physiology, Faculty of Medicine, Yozgat Bozok University, Yozgat, 66200, Turkey.
| | - Ayhan Tanyeli
- Department of Physiology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Mustafa Can Güler
- Department of Physiology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Nezahat Kurt
- Department of Biochemistry, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Zeliha Yetim
- Department of Histology and Embryology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|
129
|
Crepaldi F, de Toledo JS, do Carmo AO, Ferreira Marques Machado L, de Brito DDV, Serufo AV, Almeida APM, de Oliveira LG, Ricotta TQN, Moreira DDS, Murta SMF, Diniz AB, Menezes GB, López-Gonzálvez Á, Barbas C, Fernandes AP. Mapping Alterations Induced by Long-Term Axenic Cultivation of Leishmania amazonensis Promastigotes With a Multiplatform Metabolomic Fingerprint Approach. Front Cell Infect Microbiol 2019; 9:403. [PMID: 31867285 PMCID: PMC6904349 DOI: 10.3389/fcimb.2019.00403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 11/11/2019] [Indexed: 11/16/2022] Open
Abstract
Leishmaniases are widespread neglected diseases with an incidence of 1.6 million new cases and 40 thousand deaths per year. Leishmania parasites may show distinct, species-specific patterns of virulence that lead to different clinical manifestations. It is well known that successive in vitro passages (SIVP) lead to the attenuation of virulence, but neither the metabolism nor the pathways involved in these processes are well understood. Herein, promastigotes of a virulent L. amazonensis strain recently isolated from mice was compared to SIVP derived and attenuated promastigotes, submitted to 10, 40, and 60 axenic passages and named R10, R40, and R60, respectively. In vitro assays and in vivo tests were performed to characterize and confirmed the attenuation profiles. A metabolomic fingerprint comparison of R0, R10, and R60 was performed by means of capillary electrophoresis, liquid and gas chromatography coupled to mass spectrometry. To validate the metabolomic data, qPCR for selected loci, flow cytometry to measure aPS exposure, sensitivity to antimony tartrate and ROS production assays were conducted. The 65 identified metabolites were clustered in biochemical categories and mapped in eight metabolic pathways: ABC transporters; fatty acid biosynthesis; glycine, serine and threonine metabolism; β-alanine metabolism; glutathione metabolism; oxidative phosphorylation; glycerophospholipid metabolism and lysine degradation. The obtained metabolomic data correlated with previous proteomic findings of the SVIP parasites and the gene expression of 13 selected targets. Late SIVP cultures were more sensitive to SbIII produced more ROS and exposed less phosphatidylserine in their surface. The correspondent pathways were connected to build a biochemical map of the most significant alterations involved with the process of attenuation of L. amazonensis. Overall, the reported data pointed out to a very dynamic and continuous metabolic reprogramming process, accompanied by changes in energetic, lipid and redox metabolisms, membrane remodeling and reshaping of parasite-host cells interactions, causing impacts in chemotaxis, host inflammatory responses and infectivity at the early stages of infection.
Collapse
Affiliation(s)
- Frederico Crepaldi
- Clinical and Toxicological Analysis Department, School of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Centro de Metabolómica y Bioanálisis, Unidad Metabolómica, Interacciones y Bioanálisis (UMIB), Universidad CEU San Pablo, Boadilla del Monte, Spain
| | - Juliano Simões de Toledo
- Clinical and Toxicological Analysis Department, School of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Centro de Metabolómica y Bioanálisis, Unidad Metabolómica, Interacciones y Bioanálisis (UMIB), Universidad CEU San Pablo, Boadilla del Monte, Spain
| | - Anderson Oliveira do Carmo
- Laboratory of Biotechnology and Molecular Markers, General Biology Department, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Daniela Diniz Viana de Brito
- Clinical and Toxicological Analysis Department, School of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Angela Vieira Serufo
- Clinical and Toxicological Analysis Department, School of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ana Paula Martins Almeida
- Clinical and Toxicological Analysis Department, School of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Leandro Gonzaga de Oliveira
- Clinical and Toxicological Analysis Department, School of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Tiago Queiroga Nery Ricotta
- Clinical and Toxicological Analysis Department, School of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Ariane Barros Diniz
- Morphology Department, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Gustavo Batista Menezes
- Morphology Department, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ángeles López-Gonzálvez
- Centro de Metabolómica y Bioanálisis, Unidad Metabolómica, Interacciones y Bioanálisis (UMIB), Universidad CEU San Pablo, Boadilla del Monte, Spain
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis, Unidad Metabolómica, Interacciones y Bioanálisis (UMIB), Universidad CEU San Pablo, Boadilla del Monte, Spain
| | - Ana Paula Fernandes
- Clinical and Toxicological Analysis Department, School of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
130
|
dos Santos Meira C, Gedamu L. Protective or Detrimental? Understanding the Role of Host Immunity in Leishmaniasis. Microorganisms 2019; 7:microorganisms7120695. [PMID: 31847221 PMCID: PMC6956275 DOI: 10.3390/microorganisms7120695] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/04/2019] [Accepted: 12/10/2019] [Indexed: 02/06/2023] Open
Abstract
The intracellular protozoan parasites of the genus Leishmania are the causative agents of leishmaniasis, a vector-borne disease of major public health concern, estimated to affect 12 million people worldwide. The clinical manifestations of leishmaniasis are highly variable and can range from self-healing localized cutaneous lesions to life-threatening disseminated visceral disease. Once introduced into the skin by infected sandflies, Leishmania parasites interact with a variety of immune cells, such as neutrophils, monocytes, dendritic cells (DCs), and macrophages. The resolution of infection requires a finely tuned interplay between innate and adaptive immune cells, culminating with the activation of microbicidal functions and parasite clearance within host cells. However, several factors derived from the host, insect vector, and Leishmania spp., including the presence of a double-stranded RNA virus (LRV), can modulate the host immunity and influence the disease outcome. In this review, we discuss the immune mechanisms underlying the main forms of leishmaniasis, some of the factors involved with the establishment of infection and disease severity, and potential approaches for vaccine and drug development focused on host immunity.
Collapse
|
131
|
Quaresma JAS. Organization of the Skin Immune System and Compartmentalized Immune Responses in Infectious Diseases. Clin Microbiol Rev 2019; 32:e00034-18. [PMID: 31366611 PMCID: PMC6750136 DOI: 10.1128/cmr.00034-18] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The skin is an organ harboring several types of immune cells that participate in innate and adaptive immune responses. The immune system of the skin comprises both skin cells and professional immune cells that together constitute what is designated skin-associated lymphoid tissue (SALT). In this review, I extensively discuss the organization of SALT and the mechanisms involved in its responses to infectious diseases of the skin and mucosa. The nature of these SALT responses, and the cellular mediators involved, often determines the clinical course of such infections. I list and describe the components of innate immunity, such as the roles of the keratinocyte barrier and of inflammatory and natural killer cells. I also examine the mechanisms involved in adaptive immune responses, with emphasis on new cytokine profiles, and the role of cell death phenomena in host-pathogen interactions and control of the immune responses to infectious agents. Finally, I highlight the importance of studying SALT in order to better understand host-pathogen relationships involving the skin and detail future directions in the immunological investigation of this organ, especially in light of recent findings regarding the skin immune system.
Collapse
Affiliation(s)
- Juarez Antonio Simões Quaresma
- Center of Biological and Health Sciences, State University of Pará, Belém, PA, Brazil
- Evandro Chagas Institute, Ministry of Health, Ananindeua, PA, Brazil
- Tropical Medicine Center, Federal University of Pará, Belém, PA, Brazil
- School of Medicine, São Paulo University, São Paulo, SP, Brazil
| |
Collapse
|
132
|
Bosch-Nicolau P, Ubals M, Salvador F, Sánchez-Montalvá A, Aparicio G, Erra A, Martinez de Salazar P, Sulleiro E, Molina I. Leishmaniasis and tumor necrosis factor alpha antagonists in the Mediterranean basin. A switch in clinical expression. PLoS Negl Trop Dis 2019; 13:e0007708. [PMID: 31469834 PMCID: PMC6742442 DOI: 10.1371/journal.pntd.0007708] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/12/2019] [Accepted: 08/15/2019] [Indexed: 02/02/2023] Open
Abstract
Background Tumor necrosis factor alpha (TNF-α) blockers are recognized as a risk factor for reactivation of granulomatous infections. Leishmaniasis has been associated with the use of these drugs, although few cases have been reported. Methodology We performed a retrospective observational study including patients with confirmed leishmaniasis acquired in the Mediterranean basin that were under TNF-α blockers therapy at the moment of the diagnosis. Patients diagnosed in our hospital from 2008 to 2018 were included. Moreover, a systematic review of the literature was performed and cases fulfilling the inclusion criteria were also included. Principal findings Forty-nine patients were analyzed including nine cases from our series. Twenty-seven (55.1%) cases were male and median age was 55 years. Twenty-five (51%) patients were under infliximab treatment, 20 (40.8%) were receiving adalimumab, 2 (4.1%) etanercept, one (2%) golimumab and one (2%) a non-specified TNF-α blocker. Regarding clinical presentation, 28 (57.1%) presented as cutaneous leishmaniasis (CL), 16 (32.6%) as visceral leishmaniasis (VL) and 5 (10.2%) as mucocutaneous leishmaniasis (MCL). All VL and MCL patients were treated with systemic therapies. Among CL patients, 13 (46.4%) were treated with a systemic drug (11 received L-AmB, one intramuscular antimonials and one miltefosine) while 14 (50%) patients were given local treatment (13 received intralesional pentavalent antimonials, and one excisional surgery). TNF-α blockers were interrupted in 32 patients (65.3%). After treatment 5 patients (10.2%) relapsed. Four patients with a CL (3 initially treated with local therapy maintaining TNF-α blockers and one treated with miltefosine) and one patient with VL treated with L-AmB maintaining TNF-α blockers. Conclusions This data supports the assumption that the blockage of TNF-α modifies clinical expression of leishmaniasis in endemic population modulating the expression of the disease leading to atypical presentations. According to the cases reported, the best treatment strategy would be a systemic drug and the discontinuation of the TNF-α blockers therapy until clinical resolution. Tumor necrosis factor alpha (TNF-α) blockers are widely used in numerous inflammatory diseases such rheumatoid arthritis, psoriasis or inflammatory bowel diseases. They have been recognized as a risk factor for reactivation of granulomatous infections. Although few cases have been reported, Leishmaniasis has been associated with the use of these drugs. Leishmania infantum is the main causative agent of leishmaniasis in Southern Europe and is prone to produce the visceral form. However, TNF-α has been implicated in the initial events of the infection mediating the disease expression. In our series, we have observed a surprisingly high proportion of cutaneous form (32.6%) and muco-cutaneous form (10.2%). Clinical outcome observed in this series is also unusual. Four cases (14.3%) with cutaneous leishmaniasis who received local therapy relapsed. Among patients with visceral leishmaniasis, one patient who maintained TNF-α blockers therapy relapsed despite etiological treatment. This data supports the assumption that the blockage of TNF-α modifies clinical expression of leishmaniasis leading to atypical presentations. According to the cases reported we proposed as best treatment strategy a systemic drug and the discontinuation of the TNF-α blockers therapy until clinical resolution.
Collapse
Affiliation(s)
- Pau Bosch-Nicolau
- Department of Infectious Diseases, Hospital Universitari Vall d’Hebron, PROSICS Barcelona, Universitat Autònoma de Barcelona, Spain
| | - Maria Ubals
- Department of Dermatology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Spain
| | - Fernando Salvador
- Department of Infectious Diseases, Hospital Universitari Vall d’Hebron, PROSICS Barcelona, Universitat Autònoma de Barcelona, Spain
| | - Adrián Sánchez-Montalvá
- Department of Infectious Diseases, Hospital Universitari Vall d’Hebron, PROSICS Barcelona, Universitat Autònoma de Barcelona, Spain
| | - Gloria Aparicio
- Department of Dermatology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Spain
| | - Alba Erra
- Department of Rheumatology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Spain
| | - Pablo Martinez de Salazar
- Department of Clinical Microbiology, Hospital Universitari Vall d’Hebron, PROSICS Barcelona, Universitat Autònoma de Barcelona, Spain
| | - Elena Sulleiro
- Department of Clinical Microbiology, Hospital Universitari Vall d’Hebron, PROSICS Barcelona, Universitat Autònoma de Barcelona, Spain
| | - Israel Molina
- Department of Infectious Diseases, Hospital Universitari Vall d’Hebron, PROSICS Barcelona, Universitat Autònoma de Barcelona, Spain
- * E-mail:
| |
Collapse
|
133
|
Goyal M, Baranwal M, Pandey SK, Reddy MS. Hetero-Polysaccharides Secreted from Dunaliella salina Exhibit Immunomodulatory Activity Against Peripheral Blood Mononuclear Cells and RAW 264.7 Macrophages. Indian J Microbiol 2019; 59:428-435. [PMID: 31762505 DOI: 10.1007/s12088-019-00818-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 08/17/2019] [Indexed: 01/05/2023] Open
Abstract
Several species of microalgae have been known to produce exopolysaccharides (EPS) with potential immune activity. In the present investigation, ethyl acetate fraction of crude EPS secreted by Dunaliella salina was explored for immunomodulatory activity against peripheral blood mononuclear cells (PBMC) and RAW 264.7 macrophages. Effect of EPS on cell growth and cytokines production were measured using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and ELISA respectively. Griess reagent was used for measuring the nitric oxide production in RAW 264.7 macrophages. FTIR analysis and mass spectroscopy were carried out for the characterization. Ethyl acetate fraction exhibited dose dependent increase in proliferative index and cytokines production (IFN-γ, TNF-α, TGF-β). At low concentration (250 and 500 µg/mL), it showed growth inhibition and at higher concentration (1000 and 1500 µg/mL), it enhanced the cell growth. Interestingly, the pronounced increased TNF-α production was observed in ethyl acetate fraction treated PBMC cells at higher concentration (750 and 1000 µg/mL) indicating the immunostimulatory effect. In RAW cells, concentration dependent diminished cell growth (IC50 = 691 µg/mL) and nitric oxide production (IC50 = 630 µg/mL) was observed. FTIR analysis showed the presence of polysaccharides due to the detection of hydroxyl (-OH), Carbonyl (C-O) and alkyl (C-H) groups. Mass spectroscopy results revealed ethyl acetate fraction as penta-saccharide (m/z = 887.56 and 886.54) which are confirmed to be hetero-polysaccharides consisting of hexoses and pentoses along with association of ions. These results suggest that penta-saccharide (ethyl acetate fraction) isolated from D. salina may have the potential to be used for therapeutic purpose as immunomodulatory agent.
Collapse
Affiliation(s)
- Mehendi Goyal
- 1Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004 India
| | - Manoj Baranwal
- 1Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004 India
| | - Satyendra Kumar Pandey
- 2Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh India
| | - Mondem Sudhakara Reddy
- 1Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004 India
| |
Collapse
|
134
|
Abstract
Parasitic infections are responsible for significant morbidity and mortality throughout the world. Management strategies rely primarily on antiparasitic drugs that have side effects and risk of drug resistance. Therefore, novel strategies are needed for treatment of parasitic infections. Host-directed therapy (HDT) is a viable alternative, which targets host pathways responsible for parasite invasion/survival/pathogenicity. Recent innovative combinations of genomics, proteomics and computational biology approaches have led to discovery of several host pathways that could be promising targets for HDT for treating parasitic infections. Herein, we review major advances in HDT for parasitic disease with regard to core regulatory pathways and their interactions.
Collapse
|
135
|
A biomarker for tegumentary and visceral leishmaniasis based on a recombinant Leishmania hypothetical protein. Immunobiology 2019; 224:477-484. [DOI: 10.1016/j.imbio.2019.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/08/2019] [Accepted: 05/28/2019] [Indexed: 12/11/2022]
|
136
|
Rivera-Fernández I, Argueta-Donohué J, Wilkins-Rodríguez AA, Gutiérrez-Kobeh L. Effect of Two Different Isolates of Leishmania mexicana in the Production of Cytokines and Phagocytosis by Murine Dendritic Cells. J Parasitol 2019. [DOI: 10.1645/17-158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Ilse Rivera-Fernández
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México. Juan Badiano no. 1. Col. Belisario Domínguez, sección XVI, cp 14080, Ciudad de México, México
| | - Jesús Argueta-Donohué
- Instituto Nacional de Psiquiatría, Calzada México-Xochimilco 101, Huipulco, cp 14370 Ciudad de México, México
| | - Arturo A. Wilkins-Rodríguez
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México. Juan Badiano no. 1. Col. Belisario Domínguez, sección XVI, cp 14080, Ciudad de México, México
| | - Laila Gutiérrez-Kobeh
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México. Juan Badiano no. 1. Col. Belisario Domínguez, sección XVI, cp 14080, Ciudad de México, México
| |
Collapse
|
137
|
Castelli G, Bruno F, Saieva L, Alessandro R, Galluzzi L, Diotallevi A, Vitale F. Exosome secretion by Leishmania infantum modulate the chemotactic behavior and cytokinic expression creating an environment permissive for early infection. Exp Parasitol 2019; 198:39-45. [DOI: 10.1016/j.exppara.2019.01.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 01/21/2019] [Accepted: 01/30/2019] [Indexed: 12/31/2022]
|
138
|
Kalani M, Choopanizadeh M, Rasouli M. Influence of genetic variants of gamma interferon, interleukins 10 and 12 on Visceral Leishmaniasis in an endemic area, Iran. Pathog Glob Health 2019; 113:14-19. [PMID: 30644801 DOI: 10.1080/20477724.2019.1568034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Visceral leishmaniasis (VL) is a life threatening disease in which a variety of cytokines regulating the immune responses can determine its outcome. As based on their region in the gene, some single nucleotide polymorphisms (SNP) can influence the expression of their corresponding proteins, this study aimed to investigate the association between SNP in the IL-10, IL-12, IFN-γ genes and susceptibility to VL. The study was carried out on 120 patients with VL, 67 patients' families (family group), and 102 healthy individuals with positive leishmanin skin test as positive control group. SNPs in IL-10 (-592, -819, -1082), IL-12 (+1188) were analyzed using PCR-RFLP and allele specific polymerase chain reaction (ASPCR) was used to analyze SNPs in IFN-γ (+874 A/T). The results showed that at position +874 of IFN-γ, AT genotype was significantly more frequent in patients than that in families and controls, but TT genotype was significantly more frequent in families than in patients. Distributions of IFN-γ alleles were not significantly different between the study groups. As for IL-12 and IL-10 genotypes and alleles, no significant difference was observed between the groups. Although a strong linkage disequilibrium was observed between alleles -592, -819 and -1082 of IL-10, distributions of the most common haplotypes and haplogenotypes reconstructed from IL-10 alleles were not significantly different between the study groups. It could be suggested that heritage of AT genotype at position +874 of IFN-γ may predispose and TT genotype can resist individual to VL in an endemic area in the southwest of Iran.
Collapse
Affiliation(s)
- Mehdi Kalani
- a Department of immunology , Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences , Shiraz , Iran
| | - Maral Choopanizadeh
- a Department of immunology , Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences , Shiraz , Iran
| | - Manoochehr Rasouli
- a Department of immunology , Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences , Shiraz , Iran
| |
Collapse
|
139
|
Mendonça DV, Tavares GS, Lage DP, Soyer TG, Carvalho LM, Dias DS, Ribeiro PA, Ottoni FM, Antinarelli LM, Vale DL, Ludolf F, Duarte MC, Coimbra ES, Chávez-Fumagalli MA, Roatt BM, Menezes-Souza D, Barichello JM, Alves RJ, Coelho EA. In vivo antileishmanial efficacy of a naphthoquinone derivate incorporated into a Pluronic® F127-based polymeric micelle system against Leishmania amazonensis infection. Biomed Pharmacother 2019; 109:779-787. [DOI: 10.1016/j.biopha.2018.10.143] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 10/16/2018] [Accepted: 10/24/2018] [Indexed: 11/29/2022] Open
|
140
|
Adjunct Therapy of rIFN-g and rIL-17A along with Sub-optimal Dose of Amphotericin-B effectively Control the Leishmania donovani Parasitic Growth in Infected Mice. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.4.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
141
|
Terron-Monich MDS, Demarchi IG, da Silva PRF, Ramos-Milaré ÁCFH, Gazim ZC, Silveira TGV, Lonardoni MVC. 6,7-Dehydroroyleanone diterpene derived from Tetradenia riparia essential oil modulates IL-4/IL-12 release by macrophages that are infected with Leishmania amazonensis. Parasitol Res 2018; 118:369-376. [DOI: 10.1007/s00436-018-6166-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 11/23/2018] [Indexed: 12/11/2022]
|
142
|
Pro-inflammatory cytokine Interleukin-1β (IL-1β) controls Leishmania infection. Cytokine 2018; 112:27-31. [DOI: 10.1016/j.cyto.2018.06.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/22/2018] [Accepted: 06/30/2018] [Indexed: 12/24/2022]
|
143
|
El Hajj R, Bou Youness H, Lachaud L, Bastien P, Masquefa C, Bonnet PA, El Hajj H, Khalifeh I. EAPB0503: An Imiquimod analog with potent in vitro activity against cutaneous leishmaniasis caused by Leishmania major and Leishmania tropica. PLoS Negl Trop Dis 2018; 12:e0006854. [PMID: 30462645 PMCID: PMC6248897 DOI: 10.1371/journal.pntd.0006854] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/18/2018] [Indexed: 12/16/2022] Open
Abstract
Cutaneous Leishmaniasis (CL) is a parasitic infection classified by the WHO as one of the most uncontrolled spreading neglected diseases. Syria is endemic for Leishmania tropica and Leishmania major, causing CL in the Eastern Mediterranean. The large-scale displacement of Syrian refugees exacerbated the spread of CL into neighboring countries. Therapeutic interventions against CL include local, systemic and physical treatments. The high risk for drug-resistance to current treatments stresses the need for new therapies. Imiquimod is an immunomodulatory drug with a tested efficacy against L. major species. Yet, Imiquimod efficacy against L. tropica and the molecular mechanisms dictating its potency are still underexplored. In this study, we characterized the effect of Imiquimod against L. tropica and L. major, and characterized the molecular mechanisms dictating its anti-leishmanial efficacy against both strains. We also investigated the potency and molecular mechanisms of an Imiquimod analog, EAPB0503, against these two strains. We have tested the effect of Imiquimod and EAPB0503 on macrophages infected with either L. major, L. tropica strains, or patient-derived freshly isolated L. tropica parasites. The anti-amastigote activity of either drugs was assessed by quantitative real time PCR (RT-PCR) using kinetoplast specific primers, confocal microscopy using the Glycoprotein 63 (Gp63) Leishmania amastigote antibody or by histology staining. The mechanism of action of either drugs on the canonical nuclear factor kappa- B (NF-κB) pathway was determined by western blot, and confocal microscopy. The immune production of cytokines upon treatment of infected macrophages with either drugs was assessed by ELISA. Both drugs reduced amastigote replication. EAPB0503 proved more potent, particularly on the wild type L. tropica amastigotes. Toll-Like Receptor-7 was upregulated, mainly by Imiquimod, and to a lesser extent by EAPB0503. Both drugs activated the NF-κB canonical pathway triggering an immune response and i-NOS upregulation in infected macrophages. Our findings establish Imiquimod as a strong candidate for treating L. tropica and show the higher potency of its analog EAPB0503 against CL. Cutaneous Leishmaniasis (CL) is a parasitic infection caused by Leishmania (L.) parasites. In the Old World and the Near East, CL is mainly caused by L. major and L. tropica. The ongoing Syrian war and the resulting massive population displacement led to an alarming increase in the incidence of CL, in Syria and its surrounding countries. Current therapies against CL lead to partial or complete cure in L. major infections but are less effective against L. tropica. These therapies associate with several limitations, including patients’age, immune system, repetitive painful injections, high cost, poor availability, and mainly systemic toxicity. Therefore, it is of high interest to seek for novel drugs against CL. We assessed the activity of an immunomodulatory drug and its analog against L. major and L. tropica parasites and showed their potency. Importantly, the analog proved more efficient against the wild type L. tropica strain. These results highlight the promising efficacy of immuno-modulatory drugs against CL.
Collapse
Affiliation(s)
- Rana El Hajj
- Department of Pathology and Laboratory Medicine, American University of Beirut, Beirut, Lebanon
| | - Hanady Bou Youness
- Department of Pathology and Laboratory Medicine, American University of Beirut, Beirut, Lebanon
| | - Laurence Lachaud
- Centre Hospitalo-Universitaire, Université de Montpellier, Montpellier, France
| | - Patrick Bastien
- Centre Hospitalo-Universitaire, Université de Montpellier, Montpellier, France
| | - Carine Masquefa
- Faculté de Pharmacie, Université de Montpellier, Montpellier, France
| | | | - Hiba El Hajj
- Department of Pathology and Laboratory Medicine, American University of Beirut, Beirut, Lebanon
- * E-mail: (HEH); (IK)
| | - Ibrahim Khalifeh
- Department of Pathology and Laboratory Medicine, American University of Beirut, Beirut, Lebanon
- * E-mail: (HEH); (IK)
| |
Collapse
|
144
|
Van den Kerkhof M, Van Bockstal L, Gielis JF, Delputte P, Cos P, Maes L, Caljon G, Hendrickx S. Impact of primary mouse macrophage cell types on Leishmania infection and in vitro drug susceptibility. Parasitol Res 2018; 117:3601-3612. [PMID: 30141075 DOI: 10.1007/s00436-018-6059-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/15/2018] [Indexed: 01/16/2023]
Abstract
Primary mouse macrophages are frequently used to provide an in vitro intracellular model to evaluate antileishmanial drug efficacy. The present study compared the phenotypic characteristics of Swiss, BALB/c, and C57BL/6 mouse bone marrow-derived macrophages and peritoneal exudate cells using different stimulation and adherence protocols upon infection with a Leishmania infantum laboratory strain and two clinical isolates. Evaluation parameters were susceptibility to infection, permissiveness to amastigote multiplication, and impact on drug efficacy. Observed variations in infection of peritoneal exudate cells can mostly be linked to changes in the inflammatory cytokine profiles (IL-6, TNF-α, KC/GRO) rather than to differences in initial production of nitric oxide and reactive oxygen species. Optimization of the cell stimulation and adherence conditions resulted in comparable infection indices among peritoneal exudate cells and the various types of bone marrow-derived macrophages. BALB/c-derived bone marrow-derived macrophages were slightly more permissive to intracellular amastigote replication. Evaluation of antileishmanial drug potency in the various cell systems revealed minimal variation for antimonials and paromomycin, and no differences for miltefosine and amphotericin B. The study results allow to conclude that drug evaluation can be performed in all tested primary macrophages as only marginal differences are observed in terms of susceptibility to infection and impact of drug exposure. Combined with some practical considerations, the use of 24-h starch-stimulated, 48-h adhered, Swiss-derived peritoneal exudate cells can be advocated as an efficient, reliable, relatively quick, and cost-effective tool for routine drug susceptibility testing in vitro whenever the use of primary cells is feasible.
Collapse
Affiliation(s)
- M Van den Kerkhof
- Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Wilrijk, Belgium
| | - L Van Bockstal
- Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Wilrijk, Belgium
| | - J F Gielis
- Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Wilrijk, Belgium
- Antwerp Surgical Training, Anatomy & Research Center, Department of Medicine, University of Antwerp, Wilrijk, Belgium
| | - P Delputte
- Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Wilrijk, Belgium
| | - P Cos
- Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Wilrijk, Belgium
| | - L Maes
- Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Wilrijk, Belgium
| | - Guy Caljon
- Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Wilrijk, Belgium.
| | - Sarah Hendrickx
- Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Wilrijk, Belgium.
| |
Collapse
|
145
|
López-Muñoz RA, Molina-Berríos A, Campos-Estrada C, Abarca-Sanhueza P, Urrutia-Llancaqueo L, Peña-Espinoza M, Maya JD. Inflammatory and Pro-resolving Lipids in Trypanosomatid Infections: A Key to Understanding Parasite Control. Front Microbiol 2018; 9:1961. [PMID: 30186271 PMCID: PMC6113562 DOI: 10.3389/fmicb.2018.01961] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/02/2018] [Indexed: 12/30/2022] Open
Abstract
Pathogenic trypanosomatids (Trypanosoma cruzi, Trypanosoma brucei, and Leishmania spp.) are protozoan parasites that cause neglected diseases affecting millions of people in Africa, Asia, and the Americas. In the process of infection, trypanosomatids evade and survive the immune system attack, which can lead to a chronic inflammatory state that induces cumulative damage, often killing the host in the long term. The immune mediators involved in this process are not entirely understood. Most of the research on the immunologic control of protozoan infections has been focused on acute inflammation. Nevertheless, when this process is not terminated adequately, permanent damage to the inflamed tissue may ensue. Recently, a second process, called resolution of inflammation, has been proposed to be a pivotal process in the control of parasite burden and establishment of chronic infection. Resolution of inflammation is an active process that promotes the normal function of injured or infected tissues. Several mediators are involved in this process, including eicosanoid-derived lipids, cytokines such as transforming growth factor (TGF)-β and interleukin (IL)-10, and other proteins such as Annexin-V. For example, during T. cruzi infection, pro-resolving lipids such as 15-epi-lipoxin-A4 and Resolvin D1 have been associated with a decrease in the inflammatory changes observed in experimental chronic heart disease, reducing inflammation and fibrosis, and increasing host survival. Furthermore, Resolvin D1 modulates the immune response in cells of patients with Chagas disease. In Leishmania spp. infections, pro-resolving mediators such as Annexin-V, lipoxins, and Resolvin D1 are related to the modulation of cutaneous manifestation of the disease. However, these mediators seem to have different roles in visceral or cutaneous leishmaniasis. Finally, although T. brucei infections are less well studied in terms of their relationship with inflammation, it has been found that arachidonic acid-derived lipids act as key regulators of the host immune response and parasite burden. Also, cytokines such as IL-10 and TGF-β may be related to increased infection. Knowledge about the inflammation resolution process is necessary to understand the host–parasite interplay, but it also offers an interesting opportunity to improve the current therapies, aiming to reduce the detrimental state induced by chronic protozoan infections.
Collapse
Affiliation(s)
- Rodrigo A López-Muñoz
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Alfredo Molina-Berríos
- Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Carolina Campos-Estrada
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso, Chile.,Centro de Investigación Farmacopea Chilena, Universidad de Valparaíso, Valparaíso, Chile
| | - Patricio Abarca-Sanhueza
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Luis Urrutia-Llancaqueo
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Miguel Peña-Espinoza
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Juan D Maya
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
146
|
Schwartz J, Moreno E, Calvo A, Blanco L, Fernández-Rubio C, Sanmartín C, Nguewa P, Irache JM, Larrea E, Espuelas S. Combination of paromomycin plus human anti-TNF-α antibodies to control the local inflammatory response in BALB/ mice with cutaneous leishmaniasis lesions. J Dermatol Sci 2018; 92:78-88. [PMID: 30037731 DOI: 10.1016/j.jdermsci.2018.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 07/05/2018] [Accepted: 07/12/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Cutaneous leishmaniasis (CL) skin lesions are the result of a deregulated immune response, which is unable to eliminate Leishmania parasites. The control of both, parasites and host immune response, is critical to prevent tissue destruction. The skin ulceration has been correlated with high TNF-α level. OBJECTIVE Because human anti-TNF-α antibodies (Ab) have been successfully assayed in several mice inflammatory diseases, we hypothesized that their anti-inflammatory effect could optimize the healing of CL lesions achieved after topical application of paromomycin (PM), the current chemotherapy against CL. METHODS AND RESULTS We first compared the in vitro efficacy of PM and Ab alone and the drug given in combination with Ab to assess if the Ab could interfere with PM leishmanicidal activity in L. major-infected bone marrow-derived macrophages. The combination therapy had similar antileishmanial activity to the drug alone and showed no influence on NO production, which allows macrophage-mediated parasite killing. Next, we demonstrated in an in vivo model of Imiquimod®-induced inflammation that topical Ab and PM inhibit the infiltration of inflammatory cells in the skin. In the efficacy studies in L. major-infected BALB/c mice, PM combined with Ab led to a sharp infection reduction and showed a stronger anti-inflammatory activity than PM alone. This was confirmed by the down-regulation of TNF-α, IL-1β, iNOS, IL-17, and CCL3 as well as by a decrease of the neutrophilic infiltrate during infection upon treatment with the Ab. CONCLUSIONS In terms of parasite elimination and inflammation reduction, topical application of Ab in combination with PM was more effective than the drug alone.
Collapse
Affiliation(s)
- Juana Schwartz
- Tropical Health Institute, University of Navarra, Irunlarrea 1, E-31008, Pamplona, Spain; Pharmacy and Pharmaceutical Technology Department, University of Navarra, Irunlarrea 1, E-31008, Pamplona, Spain; Navarra Institute for Health Research, IdisNA, Spain
| | - Esther Moreno
- Tropical Health Institute, University of Navarra, Irunlarrea 1, E-31008, Pamplona, Spain; Pharmacy and Pharmaceutical Technology Department, University of Navarra, Irunlarrea 1, E-31008, Pamplona, Spain; Navarra Institute for Health Research, IdisNA, Spain; Organic and Pharmaceutical Chemistry Department, University of Navarra, Irunlarrea 1, E-31008, Pamplona, Spain
| | - Alba Calvo
- Tropical Health Institute, University of Navarra, Irunlarrea 1, E-31008, Pamplona, Spain; Pharmacy and Pharmaceutical Technology Department, University of Navarra, Irunlarrea 1, E-31008, Pamplona, Spain; Navarra Institute for Health Research, IdisNA, Spain
| | - Laura Blanco
- Tropical Health Institute, University of Navarra, Irunlarrea 1, E-31008, Pamplona, Spain; Pharmacy and Pharmaceutical Technology Department, University of Navarra, Irunlarrea 1, E-31008, Pamplona, Spain; Navarra Institute for Health Research, IdisNA, Spain
| | - Celia Fernández-Rubio
- Tropical Health Institute, University of Navarra, Irunlarrea 1, E-31008, Pamplona, Spain; Navarra Institute for Health Research, IdisNA, Spain; Microbiology and Parasitology Department, University of Navarra, Irunlarrea 1, E-31008, Pamplona, Spain
| | - Carmen Sanmartín
- Tropical Health Institute, University of Navarra, Irunlarrea 1, E-31008, Pamplona, Spain; Navarra Institute for Health Research, IdisNA, Spain; Organic and Pharmaceutical Chemistry Department, University of Navarra, Irunlarrea 1, E-31008, Pamplona, Spain
| | - Paul Nguewa
- Tropical Health Institute, University of Navarra, Irunlarrea 1, E-31008, Pamplona, Spain; Navarra Institute for Health Research, IdisNA, Spain; Microbiology and Parasitology Department, University of Navarra, Irunlarrea 1, E-31008, Pamplona, Spain
| | - Juan M Irache
- Pharmacy and Pharmaceutical Technology Department, University of Navarra, Irunlarrea 1, E-31008, Pamplona, Spain; Navarra Institute for Health Research, IdisNA, Spain
| | - Esther Larrea
- Tropical Health Institute, University of Navarra, Irunlarrea 1, E-31008, Pamplona, Spain; Navarra Institute for Health Research, IdisNA, Spain
| | - Socorro Espuelas
- Tropical Health Institute, University of Navarra, Irunlarrea 1, E-31008, Pamplona, Spain; Pharmacy and Pharmaceutical Technology Department, University of Navarra, Irunlarrea 1, E-31008, Pamplona, Spain; Navarra Institute for Health Research, IdisNA, Spain.
| |
Collapse
|
147
|
Gois BM, Peixoto RF, Maciel BLL, Gomes JAS, de Azevedo FLAA, Veras RC, de Medeiros IA, de Lima Grisi TCS, de Araújo DAM, do Amaral IPG, Keesen TSL. Dual immune effect of iNKT cells considering human cutaneous and visceral leishmaniasis: An example of cell plasticity according to different disease scenarios. Scand J Immunol 2018; 87:e12668. [PMID: 29701883 DOI: 10.1111/sji.12668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/19/2018] [Indexed: 01/08/2023]
Abstract
Although the semi-invariant natural killer T cells (iNKT) are a small subpopulation of cells in the peripheral blood, they are presumed to play a role in early stages of infection against various pathogens, including protozoa. This work investigates the activation status and cytokine profile of iNKT cells during human Leishmania infantum and Leishmania braziliensis infection. We studied iNKT cells in patients with symptomatic active visceral leishmaniasis (AVL) (n = 8), patients with symptomatic active cutaneous leishmaniasis (ACL) (n = 13), negative endemic controls (NEC) (n = 6) and non-endemic controls (NonEC) (n = 6), with and without total Leishmania antigen stimulus (TLA). The number of iNKT cells in the peripheral blood of patients with ACL and AVL unaltered in relation to control groups. Moreover, the iNKT cells from ACL showed a hyperactivation profile compared to patients with AVL. Additionally, TLA induced IFN-gamma production in iNKT cells from patients with ACL, while in iNKT of patients with AVL, TLA induced a decrease in this cytokine. Higher IL-17 and IL-10 production by iNKT cells from patients with ACL were also observed compared to all other groups. There were no changes in iNKT IL-10-producing cells in AVL after TLA stimulation. However, TLA induced increase in IL-10 in iNKT cells in patients with ACL. These findings suggest that, although iNKT cells showed distinct profiles in patients with ACL and AVL, they play a dual role in immune modulation in both Leishmania infections.
Collapse
Affiliation(s)
- B M Gois
- Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - R F Peixoto
- Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - B L L Maciel
- Department of Nutrition, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - J A S Gomes
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - F L A A de Azevedo
- Research Institute for Drugs and Medicines, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - R C Veras
- Research Institute for Drugs and Medicines, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - I A de Medeiros
- Research Institute for Drugs and Medicines, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - T C S de Lima Grisi
- Department of Biotechnology, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - D A M de Araújo
- Department of Biotechnology, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - I P G do Amaral
- Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - T S L Keesen
- Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| |
Collapse
|
148
|
Bahrami F, Harandi AM, Rafati S. Biomarkers of Cutaneous Leishmaniasis. Front Cell Infect Microbiol 2018; 8:222. [PMID: 29998089 PMCID: PMC6029629 DOI: 10.3389/fcimb.2018.00222] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/11/2018] [Indexed: 12/12/2022] Open
Abstract
Cutaneous leishmaniasis (CL) is an immune-mediated skin pathology caused mainly by Leishmania (L.) major, Leishmania tropica, Leishmania braziliensis, L. mexicana, and L. amazonensis. The burden of CL in terms of morbidity and social stigmas are concentrated on certain developing countries in Asia, Africa, and South America. People with asymptomatic CL represent a large proportion of the infected individuals in the endemic areas who exhibit no lesion and can control the infection by as yet not fully understood mechanisms. Currently, there is no approved prophylactic control measure for CL. Discovery of biomarkers of CL infection and immunity can inform the development of more precise diagnostics tools as well as curative or preventive strategies to control CL. Herein, we provide a brief overview of the state-of-the-art for the biomarkers of CL with a special emphasis on the asymptomatic CL biomarkers. Among the identified CL biomarkers so far, direct biomarkers which indicate the actual presence of the infection as well as indirect biomarkers which reflect the host's reaction to the infection, such as alterations in delayed type hypersensitivity, T-cell subpopulations and cytokines, adenosine deaminase, and antibodies against the sand fly saliva proteins are discussed in detail. The future avenues such as the use of systems analysis to identify and characterize novel CL biomarkers are also discussed.
Collapse
Affiliation(s)
- Fariborz Bahrami
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Ali M Harandi
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sima Rafati
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
149
|
Conceição-Silva F, Leite-Silva J, Morgado FN. The Binomial Parasite-Host Immunity in the Healing Process and in Reactivation of Human Tegumentary Leishmaniasis. Front Microbiol 2018; 9:1308. [PMID: 29971054 PMCID: PMC6018218 DOI: 10.3389/fmicb.2018.01308] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/29/2018] [Indexed: 01/09/2023] Open
Abstract
Leishmaniasis is a vector-borne infectious disease caused by different species of protozoa from the Leishmania genus. Classically, the disease can be classified into two main clinical forms: Visceral (VL) and Tegumentary (TL) leishmaniasis. TL is a skin/mucosal granulomatous disease that manifests mainly as cutaneous localized or disseminated ulcers, papules diffusely distributed, mucosal lesions or atypical lesions. Once the etiology of the infection is confirmed, treatment can take place, and different drugs can be administered. It has already been shown that, even when the scar is clinically evident, inflammation is still present in the native tissue, and the decrease of the inflammatory process occurs slowly during the 1st years after clinical healing. The maintenance of residual parasites in the scar tissue is also well documented. Therefore, it is no longer a surprise that, under some circumstances, therapeutic failure and/or lesion reactivation occurs. All over the years, an impressive amount of data on relapses, treatment resistance and lesion reactivation after healing has been collected, and several factors have been pointed out as having a role in the process. Different factors such as Leishmania species, parasite variability, Leishmania RNA virus 1, parasite load, parasite persistence, age, nutritional status, gender, co-morbidities, co-infection, pregnancy, immunosuppression, lesion duration, number and localization of lesions, drug metabolism, irregular treatment and individual host cellular immune response were described and discussed in the present review. Unfortunately, despite this amount of information, a conclusive understanding remains under construction. In addition, multifactorial influence cannot be discarded. In this context, knowing why leishmaniasis has been difficult to treat and control can help the development of new approaches, such as drugs and immunotherapy in order to improve healing maintenance. In this sense, we would like to highlight some of the findings that may influence the course of Leishmania infection and the therapeutic response, with an emphasis on TL.
Collapse
Affiliation(s)
- Fatima Conceição-Silva
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute (Fiocruz), Rio de Janeiro, Brazil
| | - Jessica Leite-Silva
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute (Fiocruz), Rio de Janeiro, Brazil
| | - Fernanda N. Morgado
- Laboratory of Leishmaniasis Research, Oswaldo Cruz Institute (Fiocruz), Rio de Janeiro, Brazil
| |
Collapse
|
150
|
Role of Human Macrophage Polarization in Inflammation during Infectious Diseases. Int J Mol Sci 2018; 19:ijms19061801. [PMID: 29921749 PMCID: PMC6032107 DOI: 10.3390/ijms19061801] [Citation(s) in RCA: 893] [Impact Index Per Article: 127.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/04/2018] [Accepted: 05/06/2018] [Indexed: 12/11/2022] Open
Abstract
Experimental models have often been at the origin of immunological paradigms such as the M1/M2 dichotomy following macrophage polarization. However, this clear dichotomy in animal models is not as obvious in humans, and the separating line between M1-like and M2-like macrophages is rather represented by a continuum, where boundaries are still unclear. Indeed, human infectious diseases, are characterized by either a back and forth or often a mixed profile between the pro-inflammatory microenvironment (dominated by interleukin (IL)-1β, IL-6, IL-12, IL-23 and Tumor Necrosis Factor (TNF)-α cytokines) and tissue injury driven by classically activated macrophages (M1-like) and wound healing driven by alternatively activated macrophages (M2-like) in an anti-inflammatory environment (dominated by IL-10, Transforming growth factor (TGF)-β, chemokine ligand (CCL)1, CCL2, CCL17, CCL18, and CCL22). This review brews the complexity of the situation during infectious diseases by stressing on this continuum between M1-like and M2-like extremes. We first discuss the basic biology of macrophage polarization, function, and role in the inflammatory process and its resolution. Secondly, we discuss the relevance of the macrophage polarization continuum during infectious and neglected diseases, and the possibility to interfere with such activation states as a promising therapeutic strategy in the treatment of such diseases.
Collapse
|