101
|
Liu H, Wei X, Ye X, Zhang H, Yang K, Shi W, Zhang J, Jashenko R, Ji R, Hu H. The immune response of Locusta migratoria manilensis at different times of infection with Paranosema locustae. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 114:e22055. [PMID: 37786392 DOI: 10.1002/arch.22055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 10/04/2023]
Abstract
Paranosema locustae is an entomopathogenic microsporidia with promising potential for controlling agricultural pests, including Locusta migratoria manilensis. However, it has the disadvantage of having a slow insecticidal rate, and how P. locustae infection impacts the host immune response is currently unknown. The present study investigated the effect of P. locustae on the natural immune response of L. migratoria and the activities of enzymes that protect against oxidative stress. Infection with P. locustae increased the hemocytes and nodulation number of L. migratoria at the initial stage of infection. The hemocyte-mediated modulation of immune response was also affected by a decrease in the number of hemocytes 12 days postinfection. Superoxide dismutase activity in locusts increased in the early stages of infection but decreased in the later stages, whereas the activities of peroxidase (POD) and catalase (CAT) showed opposite trends may be due to their different mechanisms of action. Furthermore, the transcription levels of mRNA of antimicrobial peptide-related genes and phenoloxidase activity in hemolymph in L. migratoria were suppressed within 15 days of P. locustae infection. Overall, our data suggest that P. locustae create a conducive environment for its own proliferation in the host by disrupting the immune defense against it. These findings provide useful information for the potential application of P. locustae as a biocontrol agent.
Collapse
Affiliation(s)
- Hui Liu
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, International Research Center of Cross-Border Pest Management in Central Asia, College of Life Sciences, Xinjiang Normal University, Urumqi, Xinjiang, People's Republic of China
- Tacheng, Research Field (Migratory Biology), Observation and Research Station of Xinjiang, Xinjiang, People's Republic of China
| | - Xiaojia Wei
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, International Research Center of Cross-Border Pest Management in Central Asia, College of Life Sciences, Xinjiang Normal University, Urumqi, Xinjiang, People's Republic of China
- Tacheng, Research Field (Migratory Biology), Observation and Research Station of Xinjiang, Xinjiang, People's Republic of China
| | - Xiaofang Ye
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, International Research Center of Cross-Border Pest Management in Central Asia, College of Life Sciences, Xinjiang Normal University, Urumqi, Xinjiang, People's Republic of China
- Tacheng, Research Field (Migratory Biology), Observation and Research Station of Xinjiang, Xinjiang, People's Republic of China
| | - Huihui Zhang
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, International Research Center of Cross-Border Pest Management in Central Asia, College of Life Sciences, Xinjiang Normal University, Urumqi, Xinjiang, People's Republic of China
- Tacheng, Research Field (Migratory Biology), Observation and Research Station of Xinjiang, Xinjiang, People's Republic of China
| | - Kun Yang
- Central for Prevention and Control of Prediction & Forecast Prevention of Locust and Rodent in Xinjiang Uygur Autonomous Region, Xinjiang, People's Republic of China
| | - Wangpen Shi
- College of Plant Protection, China Agricultural University, Beijing, People's Republic of China
| | - Jinrui Zhang
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, International Research Center of Cross-Border Pest Management in Central Asia, College of Life Sciences, Xinjiang Normal University, Urumqi, Xinjiang, People's Republic of China
- Tacheng, Research Field (Migratory Biology), Observation and Research Station of Xinjiang, Xinjiang, People's Republic of China
| | - Roman Jashenko
- Institute of Zoology RK93, Al-Farabi Ave., Almaty, Republic of Kazakhstan
| | - Rong Ji
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, International Research Center of Cross-Border Pest Management in Central Asia, College of Life Sciences, Xinjiang Normal University, Urumqi, Xinjiang, People's Republic of China
- Tacheng, Research Field (Migratory Biology), Observation and Research Station of Xinjiang, Xinjiang, People's Republic of China
| | - Hongxia Hu
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, International Research Center of Cross-Border Pest Management in Central Asia, College of Life Sciences, Xinjiang Normal University, Urumqi, Xinjiang, People's Republic of China
- Tacheng, Research Field (Migratory Biology), Observation and Research Station of Xinjiang, Xinjiang, People's Republic of China
| |
Collapse
|
102
|
Alnezary FS, Almutairi MS, Alhifany AA, Almangour TA. Assessing Galleria mellonella as a preliminary model for systemic Staphylococcus aureus infection: Evaluating the efficacy and impact of vancomycin and Nigella sativa oil on gut microbiota. Saudi Pharm J 2023; 31:101824. [PMID: 37965487 PMCID: PMC10641552 DOI: 10.1016/j.jsps.2023.101824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/10/2023] [Indexed: 11/16/2023] Open
Abstract
Background Staphylococcus aureus is a Gram-positive bacterium that can cause various infections. The Galleria mellonella has been used as a preliminary test for infection model. The study aimed to evaluate the effectiveness of G. mellonella as a microbiome model and compare the efficacy of vancomycin and antimicrobial activity of Nigella sativa (NS) on the gut flora. Methods G. mellonella larvae were subjected to metagenomic analysis. The larvae's guts were collected, homogenized in phosphate-buffered saline (PBS), and the gut contents isolated for bacterial DNA extraction. Larvae were assigned into the following groups: negative control (PBS only); positive control (MRSA only); vancomycin treated group; NS oil treated group and combination (vancomycin and NS oil) treated group. Larvae were cultured, inoculated with S. aureus, and treated with vancomycin and NS oil. Larval activity, cocoon formation, growth, melanization, and survival were monitored. The toxicity of vancomycin and NS oil was tested, and S. aureus burden and natural microbiota were determined. Hemocyte density was measured. Statistical analysis was conducted using R. Results Enterococcus related species dominated approximately 90 % of the gastrointestinal tract of the larvae. The survival rate following treatment was 85 % with vancomycin, 64 % with NS oil, and 73 % with a combination of both. The count of Enterococcus Colony Forming Units (CFUs) was significantly lower in the vancomycin treatment group (8.14E+04) compared to those treated with NS oil (1.97E+06) and the combination treatment (8.95E+05). Furthermore, the S. aureus burden was found to be lower in the NS oil (1.04E+06) and combination treatment groups (9.02E+05) compared to the vancomycin treatment group (3.38E+06). Hemocyte densities were significantly higher in the NS oil (8.29E+06) and combination treatment groups (8.18E+06) compared to the vancomycin treatment group (4.89E+06). Conclusions The study supported the use of G. mellonella model as a preliminary test to assess the effect of different antimicrobials against S. aureus and gut microbiota. NS oil showed more selectivity against S. aureus and protectiveness for the natural Enterococcus gut flora.
Collapse
Affiliation(s)
- Faris S. Alnezary
- Department of Pharmacy Practice, College of Pharmacy, Taibah University, Madinah 41477, Saudi Arabia
| | - Masaad Saeed Almutairi
- Department of Pharmacy Practice, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
| | - Abdullah A. Alhifany
- Department of Clinical Pharmacy, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Thamer A. Almangour
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
103
|
Leseigneur C, Buchrieser C. Modelling Legionnaires' disease: Lessons learned from invertebrate and vertebrate animal models. Eur J Cell Biol 2023; 102:151369. [PMID: 37926040 DOI: 10.1016/j.ejcb.2023.151369] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/13/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023] Open
Abstract
The study of virulence of Legionella pneumophila and its interactions with its hosts has been predominantly conducted in cellulo in the past decades. Although easy to implement and allowing the dissection of molecular pathways underlying host-pathogen interactions, these cellular models fail to provide conditions of the complex environments encountered by the bacteria during the infection of multicellular organisms. To improve our understanding of human infection, several animal models have been developed. This review provides an overview of the invertebrate and vertebrate models that have been established to study L. pneumophila infection and that are alternatives to the classical mouse model, which does not recall human infection with L. pneumophila well. Finally we provide insight in the main contributions made by these models along with their pros and cons.
Collapse
Affiliation(s)
- Clarisse Leseigneur
- Institut Pasteur, Université de Paris, Biologie des Bactéries Intracellulaires, 75724 Paris, France
| | - Carmen Buchrieser
- Institut Pasteur, Université de Paris, Biologie des Bactéries Intracellulaires, 75724 Paris, France.
| |
Collapse
|
104
|
Kaul L, Abdo AI, Coenye T, Swift S, Zannettino A, Süss R, Richter K. In vitro and in vivo evaluation of diethyldithiocarbamate with copper ions and its liposomal formulation for the treatment of Staphylococcus aureus and Staphylococcus epidermidis biofilms. Biofilm 2023; 5:100130. [PMID: 37274173 PMCID: PMC10238467 DOI: 10.1016/j.bioflm.2023.100130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/27/2023] [Accepted: 05/16/2023] [Indexed: 06/06/2023] Open
Abstract
Surgical site infections (SSIs) are mainly caused by Staphylococcus aureus (S. aureus) and Staphylococcus epidermidis (S. epidermidis) biofilms. Biofilms are aggregates of bacteria embedded in a self-produced matrix that offers protection against antibiotics and promotes the spread of antibiotic-resistance in bacteria. Consequently, antibiotic treatment frequently fails, resulting in the need for alternative therapies. The present study describes the in vitro efficacy of the Cu(DDC)2 complex (2:1 M ratio of diethyldithiocarbamate (DDC-) and Cu2+) with additional Cu2+ against S. aureus and S. epidermidis biofilms in models mimicking SSIs and in vitro antibacterial activity of a liposomal Cu(DDC)2 + Cu2+ formulation. The in vitro activity on S. aureus and S. epidermidis biofilms grown on two hernia mesh materials and in a wound model was determined by colony forming unit (CFU) counting. Cu2+-liposomes and Cu(DDC)2-liposomes were prepared, and their antibacterial activity was assessed in vitro using the alamarBlue assay and CFU counting and in vivo using a Galleria mellonella infection model. The combination of 35 μM DDC- and 128 μM Cu2+ inhibited S. aureus and S. epidermidis biofilms on meshes and in a wound infection model. Cu(DDC)2-liposomes + free Cu2+ displayed similar antibiofilm activity to free Cu(DDC)2 + Cu2+, and significantly increased the survival of S. epidermidis-infected larvae. Whilst Cu(DDC)2 + Cu2+ showed substantial antibiofilm activity in vitro against clinically relevant biofilms, its application in mammalian in vivo models is limited by solubility. The liposomal Cu(DDC)2 + Cu2+ formulation showed antibiofilm activity in vitro and antibacterial activity and low toxicity in G. mellonella, making it a suitable water-soluble formulation for future application on infected wounds in animal trials.
Collapse
Affiliation(s)
- Laurine Kaul
- Richter Lab, Department of Surgery, Basil Hetzel Institute for Translational Health Research, University of Adelaide, 37 Woodville Road, Adelaide, SA, 5011, Australia
- Institute of Pharmaceutical Sciences, Department of Pharmaceutics, University of Freiburg, Sonnenstr. 5, 79104, Freiburg, Germany
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, 4 North Terrace, Adelaide, SA, 5000, Australia
| | - Adrian I. Abdo
- Richter Lab, Department of Surgery, Basil Hetzel Institute for Translational Health Research, University of Adelaide, 37 Woodville Road, Adelaide, SA, 5011, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, 4 North Terrace, Adelaide, SA, 5000, Australia
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Simon Swift
- Department of Molecular Medicine and Pathology, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand
| | - Andrew Zannettino
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, 4 North Terrace, Adelaide, SA, 5000, Australia
- Precision Cancer Medicine Theme, South Australian Health & Medical Research Institute, North Terrace, Adelaide, SA, Australia
- Central Adelaide Local Health Network, Adelaide, Australia
| | - Regine Süss
- Institute of Pharmaceutical Sciences, Department of Pharmaceutics, University of Freiburg, Sonnenstr. 5, 79104, Freiburg, Germany
| | - Katharina Richter
- Richter Lab, Department of Surgery, Basil Hetzel Institute for Translational Health Research, University of Adelaide, 37 Woodville Road, Adelaide, SA, 5011, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, 4 North Terrace, Adelaide, SA, 5000, Australia
- Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, Australia
| |
Collapse
|
105
|
Mai D, Wu A, Li R, Cai D, Tong H, Wang N, Tan J. Identification of hypervirulent Klebsiella pneumoniae based on biomarkers and Galleria mellonella infection model. BMC Microbiol 2023; 23:369. [PMID: 38030994 PMCID: PMC10685466 DOI: 10.1186/s12866-023-03124-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Currently, clinical laboratories lack an effective method to differentiate between classical Klebsiella pneumoniae (cKP) and hypervirulent Klebsiella pneumoniae (hvKP) strains, leading to delays in diagnosing and treating hvKP infections. Previous studies have identified peg-344, iroB, iucA, prmpA, prmpA2, and siderophores (SP) yields greater than 30 μg/ml as reliable markers for distinguishing hvKP from cKp strains. However, these diagnostic tests were conducted on a relatively small study population and lacked sufficient clinical data support. In this study, hvKP strains were identified by biomarker analysis and the Galleria mellonella model. Combined with in vitro and in vivo experiments, the reliability of clinical identification method of hvKP was verified, which provided an experimental basis for timely diagnosis of hvKP infection. RESULTS According to the clinical data, a total of 108 strains of hvKP were preliminary screened. Among them, 94 strains were further identified using PCR analysis of biomarkers and quantitative determination of SP. The high virulence of hvKP was subsequently confirmed through infection experiments on Galleria mellonella. Additionally, susceptibility testing revealed the identification of 58 carbapenem-resistant hvKP (CR-hvKP) strains and 36 carbapenem-sensitive hvKP (CS-hvKP) strains. By comparing molecular diagnostic indexes, molecular characteristics such as high SP production of CR-hvKP were found. CONCLUSION The combination of clinical data and molecular diagnostic index analysis effectively enables the identification of hvKP, particularly CR-hvKP. This study provides a scientific basis for accurate clinical identification and timely treatment of hvKP.
Collapse
Affiliation(s)
- Dongmei Mai
- Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Anqi Wu
- Guangzhou Nanfang College, Guangzhou, China
| | - Ran Li
- Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Donghao Cai
- Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Huichun Tong
- Guangdong Key Laboratory of Non-Human Primate Research, Guangdong-Hongkong-Macau Institute of CNS RegenerationJinan University, Guangzhou, China
| | - Nan Wang
- Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Junqing Tan
- Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangzhou, China.
| |
Collapse
|
106
|
Bi W, Xu L, Zong L, Zhu Z, Xia X. Antifungal Susceptibility and Biological Characteristics of Fonsecaea monophora Causing Cerebral Phaeohyphomycosis in Jinhua, China. Infect Drug Resist 2023; 16:7187-7195. [PMID: 37965207 PMCID: PMC10642484 DOI: 10.2147/idr.s425961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/04/2023] [Indexed: 11/16/2023] Open
Abstract
Background The management of cerebral abscesses caused by dark-pigmented Fonsecaea monophora in healthy individuals continues to be challenging due to no consensus on the therapeutic regimen. Due to the absence of an accurate identification method, Fonsecaea species are often misidentified due to indistinct morphology features. Materials and Methods An F. monophora strain from an immunocompetent host with cerebral abscess was collected and identified by ITS rDNA molecular sequencing. The ITS sequences of the isolate were compared with that of the other ten Chinese F. monophora isolates obtained from GenBank for difference comparison and phylogenetic analysis. Fluorescence, Gram stains, and medan lactate were used to observe the colonial morphology. Antifungal susceptibility testing was implemented to demonstrate the antibiotic susceptibility profile. Galleria mellonella larvae were used as a model to study virulence of F. monophora. Medical records and clinical data of the patient were collected and analyzed. Results Antifungal susceptibility testing indicated that triazole antifungal drugs possess remarkable antifungal effect against F. monophora, and satisfactory antifungal effect of itraconazole was corresponding to the drug susceptibility results. Compared with the GM test, the serum G test was found to be more sensitive. The virulence and melanization in G. mellonella models for F. monophora were observed, and the death rates of infected larvae were positively related to injected concentrations of fungus. The phylogenetic tree was constructed from the ITS sequences of the clinical isolate along with ten Chinese F. monophora isolates, revealing that there is high relatedness in F. monophora strains collected from China. Conclusion F. monophora is an important neurotropic dematiaceous fungus and increasingly causing disease in immunocompetent individuals by means of noninvasive ways. Fungal culture, stainings, and molecular methods could be utilized to identify the etiologic agent. Triazole antifungal drugs can be applied as empiric therapeutic agents for phaeohyphomycosis.
Collapse
Affiliation(s)
- Wenzi Bi
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, People’s Republic of China
| | - Licheng Xu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, People’s Republic of China
| | - Laibin Zong
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, People’s Republic of China
| | - Zhiqiang Zhu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, People’s Republic of China
| | - Xiaoping Xia
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, People’s Republic of China
| |
Collapse
|
107
|
Liu H, Huang Z, Chen H, Zhang Y, Yu P, Hu P, Zhang X, Cao J, Zhou T. A potential strategy against clinical carbapenem-resistant Enterobacteriaceae: antimicrobial activity study of sweetener-decorated gold nanoparticles in vitro and in vivo. J Nanobiotechnology 2023; 21:409. [PMID: 37932843 PMCID: PMC10626710 DOI: 10.1186/s12951-023-02149-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/09/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Carbapenem-resistant Enterobacteriaceae (CRE) present substantial challenges to clinical intervention, necessitating the formulation of novel antimicrobial strategies to counteract them. Nanomaterials offer a distinctive avenue for eradicating bacteria by employing mechanisms divergent from traditional antibiotic resistance pathways and exhibiting reduced susceptibility to drug resistance development. Non-caloric artificial sweeteners, commonly utilized in the food sector, such as saccharin, sucralose, acesulfame, and aspartame, possess structures amenable to nanomaterial formation. In this investigation, we synthesized gold nanoparticles decorated with non-caloric artificial sweeteners and evaluated their antimicrobial efficacy against clinical CRE strains. RESULTS Among these, gold nanoparticles decorated with aspartame (ASP_Au NPs) exhibited the most potent antimicrobial effect, displaying minimum inhibitory concentrations ranging from 4 to 16 µg/mL. As a result, ASP_Au NPs were chosen for further experimentation. Elucidation of the antimicrobial mechanism unveiled that ASP_Au NPs substantially elevated bacterial reactive oxygen species (ROS) levels, which dissipated upon ROS scavenger treatment, indicating ROS accumulation within bacteria as the fundamental antimicrobial modality. Furthermore, findings from membrane permeability assessments suggested that ASP_Au NPs may represent a secondary antimicrobial modality via enhancing inner membrane permeability. In addition, experiments involving crystal violet and confocal live/dead staining demonstrated effective suppression of bacterial biofilm formation by ASP_Au NPs. Moreover, ASP_Au NPs demonstrated notable efficacy in the treatment of Galleria mellonella bacterial infection and acute abdominal infection in mice, concurrently mitigating the organism's inflammatory response. Crucially, evaluation of in vivo safety and biocompatibility established that ASP_Au NPs exhibited negligible toxicity at bactericidal concentrations. CONCLUSIONS Our results demonstrated that ASP_Au NPs exhibit promise as innovative antimicrobial agents against clinical CRE.
Collapse
Affiliation(s)
- Haifeng Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Zeyu Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Huanchang Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Ying Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Pingting Yu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Panjie Hu
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaotuan Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Jianming Cao
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China.
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China.
| |
Collapse
|
108
|
Lan X, Zhong J, Huang R, Liu Y, Ma X, Li X, Zhao D, Qing G, Zhang Y, Liu L, Wang J, Ma X, Luo T, Guo W, Wang Y, Li LL, Su YX, Liang XJ. Conformation Dependent Architectures of Assembled Antimicrobial Peptides with Enhanced Antimicrobial Ability. Adv Healthc Mater 2023; 12:e2301688. [PMID: 37540835 DOI: 10.1002/adhm.202301688] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/19/2023] [Indexed: 08/06/2023]
Abstract
Antimicrobial peptides (AMPs) are a developing class of natural and synthetic oligopeptides with host defense mechanisms against a broad spectrum of microorganisms. With in-depth research on the structural conformations of AMPs, synthesis or modification of peptides has shown great potential in effectively obtaining new therapeutic agents with improved physicochemical and biological properties. Notably, AMPs with self-assembled properties have gradually become a hot research topic for various biomedical applications. Compared to monomeric peptides, these peptides can exist in diverse forms (e.g., nanoparticles, nanorods, and nanofibers) and possess several advantages, such as high stability, good biocompatibility, and potent biological functions, after forming aggregates under specific conditions. In particular, the stability and antibacterial property of these AMPs can be modulated by rationally regulating the peptide sequences to promote self-assembly, leading to the reconstruction of molecular structure and spatial orientation while introducing some peptide fragments into the scaffolds. In this work, four self-assembled AMPs are developed, and the relationship between their chemical structures and antibacterial activity is explored extensively through different experiments. Importantly, the evaluation of antibacterial performance in both in vitro and in vivo studies has provided a general guide for using self-assembled AMPs in subsequent treatments for combating bacterial infections.
Collapse
Affiliation(s)
- Xinmiao Lan
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, School of Pharmaceutical Science, Capital Medical University, Beijing, 100069, China
- Discipline of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Jie Zhong
- Discipline of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, 999077, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Regina Huang
- Discipline of Periodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Yuhan Liu
- Department of Stomatology, Aviation General Hospital of China Medical University and Beijing Institute of Translational Medicine, Chinese Academy of Science, Beijing, 100012, China
| | - Xiaowei Ma
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xuan Li
- Discipline of Periodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Dan Zhao
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100069, China
| | - Guangchao Qing
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Yuxuan Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lu Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinjin Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xu Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting Luo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Weisheng Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Yuji Wang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, School of Pharmaceutical Science, Capital Medical University, Beijing, 100069, China
| | - Li-Li Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu-Xiong Su
- Discipline of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
109
|
Zhuo W, Zhao Y, Zhao X, Yao Z, Qiu X, Huang Y, Li H, Shen J, Zhu Z, Li T, Li S, Huang Q, Zhou R. Enteropathogenic Escherichia coli is a predominant pathotype in healthy pigs in Hubei Province of China. J Appl Microbiol 2023; 134:lxad260. [PMID: 37962953 DOI: 10.1093/jambio/lxad260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/29/2023] [Accepted: 11/13/2023] [Indexed: 11/16/2023]
Abstract
AIM This study aims to investigate the prevalence of intestinal pathogenic Escherichia coli (InPEC) in healthy pig-related samples and evaluate the potential virulence of the InPEC strains. METHODS AND RESULTS A multiplex PCR method was established to identify different pathotypes of InPEC. A total of 800 rectal swab samples and 296 pork samples were collected from pig farms and slaughterhouses in Hubei province, China. From these samples, a total of 21 InPEC strains were isolated, including 19 enteropathogenic E. coli (EPEC) and 2 shiga toxin-producing E. coli (STEC) strains. By whole-genome sequencing and in silico typing, it was shown that the sequence types and serotypes were diverse among the strains. Antimicrobial susceptibility assays showed that 90.48% of the strains were multi-drug resistant. The virulence of the strains was first evaluated using the Galleria mellonella larvae model, which showed that most of the strains possessed medium to high pathogenicity. A moderately virulent EPEC isolate was further selected to characterize its pathogenicity using a mouse model, which suggested that it could cause significant diarrhea. Bioluminescence imaging (BLI) was then used to investigate the colonization dynamics of this EPEC isolate, which showed that the EPEC strain could colonize the mouse cecum for up to 5 days.
Collapse
Affiliation(s)
- Wenxiao Zhuo
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Zhao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xianglin Zhao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhiming Yao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuxiu Qiu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yaxue Huang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Huaixia Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Shen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhihao Zhu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingting Li
- Hubei Animal Disease Prevention and Control Center, Wuhan 430070, China
| | - Shaowen Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Qi Huang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Cooperative Innovation Center of Sustainable Pig Production, College of Veterinary Medicine, Wuhan 430070, China
- International Research Center for Animal Disease (Ministry of Science & Technology of China), College of Veterinary Medicine, Wuhan 430070, China
| | - Rui Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Cooperative Innovation Center of Sustainable Pig Production, College of Veterinary Medicine, Wuhan 430070, China
- International Research Center for Animal Disease (Ministry of Science & Technology of China), College of Veterinary Medicine, Wuhan 430070, China
- The HZAU-HVSEN Research Institute, Wuhan 430042, China
| |
Collapse
|
110
|
Mannala GK, Rupp M, Walter N, Scholz KJ, Simon M, Riool M, Alt V. Galleria mellonella as an alternative in vivo model to study implant-associated fungal infections. J Orthop Res 2023; 41:2547-2559. [PMID: 37080929 DOI: 10.1002/jor.25572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/22/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023]
Abstract
Fungal implant-associated bone infections are rare but difficult to treat and often associated with a poor outcome for patients. Candida species account for approximately 90% of all fungal infections. In vivo biofilm models play a major role to study biofilm development and potential new treatment options; however, there are only a very few in vivo models to study fungi-associated biofilms. Furthermore, mammalian infection models are replaced more and more due to ethical restrictions with other alternative models in basic research. Recently, we developed an insect infection model with Galleria mellonella larvae to study biofilm-associated infections with bacteria. Here, we further expanded the G. mellonella model to study in vivo fungal infections using Candida albicans and Candida krusei. We established a planktonic and biofilm-implant model to test different antifungal medication with amphotericin B, fluconazole, and voriconazole against the two species and assessed the fungal biofilm-load on the implant surface. Planktonic infection with C. albicans and C. krusei showed the killing of the G. mellonella larvae at 5 × 105 colony forming units (CFU). Treatment of larvae with antifungal compounds with amphotericin B and fluconazole showed significant survival improvement against planktonic C. albicans infection, but voriconazole had no effect. Titanium and stainless steel K-wires were preincubated with C. albicans and implanted inside the larvae to induce biofilm infection on the implant surface. The survival analysis revealed significantly reduced survival of the larvae with Candida spp. infection compared to noninfected implants. The treatment with antifungal amphotericin B and fluconazole resulted in a slight and nonsignificant improvement survival of the larvae. The treatment with the antifungal compounds in the biofilm-infection model was not as effective as in the planktonic infection model, which highlights the resistance of fungal biofilms to antifungal compounds like in bacterial biofilms. Scanning electron microscopy (SEM) analysis revealed the formation of a fungal biofilm with hyphae and spores associated with larvae tissue on the implant surface. Thus, our study highlights the use of G. mellonella larvae as alternative in vivo model to study biofilm-associated implant fungal infections and that fungal biofilms exhibit high resistance profiles comparable to bacterial biofilms. The model can be used in the future to test antifungal treatment options for fungal biofilm infections.
Collapse
Affiliation(s)
- Gopala K Mannala
- Department of Trauma Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Markus Rupp
- Department of Trauma Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Nike Walter
- Department of Trauma Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Konstantin J Scholz
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Michaela Simon
- Institute of Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Martijn Riool
- Department of Trauma Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Volker Alt
- Department of Trauma Surgery, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
111
|
Concilio M, Garcia Maset R, Lemonche LP, Kontrimas V, Song J, Rajendrakumar SK, Harrison F, Becer CR, Perrier S. Mechanism of Action of Oxazoline-Based Antimicrobial Polymers Against Staphylococcus aureus: In Vivo Antimicrobial Activity Evaluation. Adv Healthc Mater 2023; 12:e2301961. [PMID: 37522292 PMCID: PMC11468764 DOI: 10.1002/adhm.202301961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Indexed: 08/01/2023]
Abstract
Antimicrobial-resistant pathogens have reached alarming levels, becoming one of the most pressing global health issues. Hence, new treatments are necessary for the fight against antimicrobial resistance. Synthetic nanoengineered antimicrobial polymers (SNAPs) have emerged as a promising alternative to antimicrobial peptides, overcoming some of their limitations while keeping their key features. Herein, a library of amphiphilic oxazoline-based SNAPs using cationic ring-opening polymerization (CROP) is designed. Amphipathic compounds with 70% cationic content exhibit the highest activity against clinically relevant Staphylococcus aureus isolates, maintaining good biocompatibility in vitro and in vivo. The mechanism of action of the lead compounds against S. aureus is assessed using various microscopy techniques, indicating cell membrane disruption, while the cell wall remains unaffected. Furthermore, a potential interaction of the compounds with bacterial DNA is shown, with possible implications on bacterial division. Finally, one of the compounds exhibits high efficacy in vivo in an insect infection model.
Collapse
Affiliation(s)
| | - Ramón Garcia Maset
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
- Warwick Medical SchoolUniversity of WarwickCoventryCV4 7ALUK
| | | | - Vito Kontrimas
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
- Warwick Medical SchoolUniversity of WarwickCoventryCV4 7ALUK
| | - Ji‐Inn Song
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | | | - Freya Harrison
- School of Life SciencesUniversity of WarwickCoventryCV4 7ALUK
| | - C. Remzi Becer
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Sébastien Perrier
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
- Warwick Medical SchoolUniversity of WarwickCoventryCV4 7ALUK
- Faculty of Pharmacy and Pharmaceutical SciencesMonash UniversityParkvilleVictoria3052Australia
| |
Collapse
|
112
|
van Niekerk A, Joseph MC, Kavanagh A, Dinh H, Swarts AJ, Mapolie SF, Zuegg J, Cain AK, Elliott AG, Blaskovich MAT, Frei A. The Antimicrobial Properties of Pd II - and Ru II -pyta Complexes. Chembiochem 2023; 24:e202300247. [PMID: 37593808 PMCID: PMC10947176 DOI: 10.1002/cbic.202300247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 08/19/2023]
Abstract
Infections associated with antimicrobial resistance (AMR) are poised to become the leading cause of death in the next few decades, a scenario that can be ascribed to two phenomena: antibiotic over-prescription and a lack of antibiotic drug development. The crowd-sourced initiative Community for Open Antimicrobial Drug Discovery (CO-ADD) has been testing research compounds contributed by researchers around the world to find new antimicrobials to combat AMR, and during this campaign has found that metallodrugs might be a promising, yet untapped source. To this end, we submitted 18 PdII - and RuII -pyridyl-1,2,3-triazolyl complexes that were developed as catalysts to assess their antimicrobial properties. It was found that the Pd complexes, especially Pd1, possessed potent antifungal activity with MICs between 0.06 and 0.125 μg mL-1 against Candida glabrata. The in-vitro studies were extended to in-vivo studies in Galleria mellonella larvae, where it was established that the compounds were nontoxic. Here, we effectively demonstrate the potential of PdII -pyta complexes as antifungal agents.
Collapse
Affiliation(s)
- Annick van Niekerk
- Department of Chemistry and Polymer ScienceUniversity of StellenboschStellenbosch, Private bag X1, Matieland7602South Africa
| | - M. Cassiem Joseph
- Molecular Science Institute, School of ChemistryUniversity of the WitwatersrandJohannesburg, PO Wits2050South Africa
| | - Angela Kavanagh
- Centre for Superbug Solutions Institute for Molecular BioscienceThe University of QueenslandSt. LuciaQueensland4072Australia
| | - Hue Dinh
- School of Natural Sciences ARC Centre of Excellence in Synthetic BiologyMacquarie UniversitySydneyNSW2109Australia
| | - Andrew J. Swarts
- Molecular Science Institute, School of ChemistryUniversity of the WitwatersrandJohannesburg, PO Wits2050South Africa
| | - Selwyn F. Mapolie
- Department of Chemistry and Polymer ScienceUniversity of StellenboschStellenbosch, Private bag X1, Matieland7602South Africa
| | - Johannes Zuegg
- Centre for Superbug Solutions Institute for Molecular BioscienceThe University of QueenslandSt. LuciaQueensland4072Australia
| | - Amy K. Cain
- School of Natural Sciences ARC Centre of Excellence in Synthetic BiologyMacquarie UniversitySydneyNSW2109Australia
| | - Alysha G. Elliott
- Centre for Superbug Solutions Institute for Molecular BioscienceThe University of QueenslandSt. LuciaQueensland4072Australia
| | - Mark A. T. Blaskovich
- Centre for Superbug Solutions Institute for Molecular BioscienceThe University of QueenslandSt. LuciaQueensland4072Australia
| | - Angelo Frei
- Dept. of Chemistry, Biochemistry & Pharmaceutical SciencesUniversity of BernFreiestrasse 33012BernSwitzerland
| |
Collapse
|
113
|
Jo J, Lee JY, Cho H, Ko KS. Treatment of Colistin Dependence-Developing Acinetobacter baumannii with Antibiotic Combinations at Subinhibitory Concentrations. Microb Drug Resist 2023; 29:448-455. [PMID: 37379479 DOI: 10.1089/mdr.2022.0205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023] Open
Abstract
Recent studies have revealed that colistin dependence frequently develops in colistin-susceptible Acinetobacter baumannii isolates. Despite resistance in parental strains, colistin-dependent mutants showed increased susceptibility to several antibiotics, which suggests the possibility of developing strategies to eliminate multidrug-resistant (MDR) A. baumannii. We investigated in vitro and in vivo efficacy of combinations of colistin and other antibiotics using MDR A. baumannii strains H08-391, H06-855, and H09-94, which are colistin-susceptible but develops colistin dependence upon exposure to colistin. An in vitro time-killing assay, a checkerboard assay, and an antibiotic treatment assay using Galleria mellonella larvae were performed. Although a single treatment of colistin at a high concentration did not prevent colistin dependence, combinations of colistin with other antibiotics at subinhibitory concentrations, especially amikacin, eradicated the strains by inhibiting the development of colistin dependence, in the in vitro time-killing assay. Only 40% of G. mellonella larvae infected by A. baumannii survived with colistin treatment alone; however, all or most of them survived following treatment with the combination of colistin and other antibiotics (amikacin, ceftriaxone, and tetracycline). Our results suggest the possibility of the combination of colistin and amikacin or other antibiotics as one of therapeutic options against A. baumannii infections by eliminating colistin-dependent mutants.
Collapse
Affiliation(s)
- Jeongwoo Jo
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Ji Young Lee
- Research Institute for Future Medical Science, Chungnam National University Sejong Hospital, Sejong, Republic of Korea
| | - Hongbaek Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Kwan Soo Ko
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
114
|
Grandy S, Scur M, Dolan K, Nickerson R, Cheng Z. Using model systems to unravel host-Pseudomonas aeruginosa interactions. Environ Microbiol 2023; 25:1765-1784. [PMID: 37290773 DOI: 10.1111/1462-2920.16440] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/29/2023] [Indexed: 06/10/2023]
Abstract
Using model systems in infection biology has led to the discoveries of many pathogen-encoded virulence factors and critical host immune factors to fight pathogenic infections. Studies of the remarkable Pseudomonas aeruginosa bacterium that infects and causes disease in hosts as divergent as humans and plants afford unique opportunities to shed new light on virulence strategies and host defence mechanisms. One of the rationales for using model systems as a discovery tool to characterise bacterial factors driving human infection outcomes is that many P. aeruginosa virulence factors are required for pathogenesis in diverse different hosts. On the other side, many host signalling components, such as the evolutionarily conserved mitogen-activated protein kinases, are involved in immune signalling in a diverse range of hosts. Some model organisms that have less complex immune systems also allow dissection of the direct impacts of innate immunity on host defence without the interference of adaptive immunity. In this review, we start with discussing the occurrence of P. aeruginosa in the environment and the ability of this bacterium to cause disease in various hosts as a natural opportunistic pathogen. We then summarise the use of some model systems to study host defence and P. aeruginosa virulence.
Collapse
Affiliation(s)
- Shannen Grandy
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Michal Scur
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kathleen Dolan
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Rhea Nickerson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Zhenyu Cheng
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
115
|
Hu C, Yang W. Alternatives to animal models to study bacterial infections. Folia Microbiol (Praha) 2023; 68:703-739. [PMID: 37632640 DOI: 10.1007/s12223-023-01084-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/02/2023] [Indexed: 08/28/2023]
Abstract
Animal testing has made a significant and unequalled contribution to important discoveries and advancements in the fields of research, medicine, vaccine development, and drug discovery. Each year, millions of animals are sacrificed for various experiments, and this is an ongoing process. However, the debate on the ethical and sensible usage of animals in in vivo experimentation is equally important. The need to explore and adopt newer alternatives to animals so as to comply with the goal of reduce, refine, and replace needs attention. Besides the ever-increasing debate on ethical issues, animal research has additional drawbacks (need of trained labour, requirement of breeding area, lengthy protocols, high expenses, transport barriers, difficulty to extrapolate data from animals to humans, etc.). With this scenario, the present review has been framed to give a comprehensive insight into the possible alternative options worth exploring in this direction especially targeting replacements for animal models of bacterial infections. There have been some excellent reviews discussing on the alternate methods for replacing and reducing animals in drug research. However, reviews that discuss the replacements in the field of medical bacteriology with emphasis on animal bacterial infection models are purely limited. The present review discusses on the use of (a) non-mammalian models and (b) alternative systems such as microfluidic chip-based models and microdosing aiming to give a detailed insight into the prospects of these alternative platforms to reduce the number of animals being used in infection studies. This would enlighten the scientific community working in this direction to be well acquainted with the available new approaches and alternatives so that the 3R strategy can be successfully implemented in the field of antibacterial drug research and testing.
Collapse
Affiliation(s)
- Chengming Hu
- Queen Mary College, Nanchang University, Nanchang, China
| | - Wenlong Yang
- Department of Infectious Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
116
|
Zhu L, Li P, Zhang G, He Z, Tao X, Ji Y, Yang W, Zhu X, Luo W, Liao W, Chen C, Liu Y, Zhang W. Role of the ISKpn element in mediating mgrB gene mutations in ST11 hypervirulent colistin-resistant Klebsiella pneumoniae. Front Microbiol 2023; 14:1277320. [PMID: 37840706 PMCID: PMC10569121 DOI: 10.3389/fmicb.2023.1277320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
Background Colistin has emerged as a last-resort therapeutic against antibiotic-resistant bacterial infections, particularly those attributed to carbapenem-resistant Enterobacteriaceae (CRE) like CRKP. Yet, alarmingly, approximately 45% of multidrug-resistant Klebsiella pneumoniae strains now manifest resistance to colistin. Through our study, we discerned that the synergy between carbapenemase and IS elements amplifies resistance in Klebsiella pneumoniae, thereby narrowing the existing therapeutic avenues. This underscores the instrumental role of IS elements in enhancing colistin resistance through mgrB disruption. Methods From 2021 to 2023, 127 colistin-resistant Klebsiella pneumoniae isolates underwent meticulous examination. We embarked on an exhaustive genetic probe, targeting genes associated with both plasmid-mediated mobile resistance-encompassing blaKPC, blaNDM, blaIMP, blaVIM, blaOXA-48-like, and mcr-1 to mcr-8-and chromosome-mediated resistance systems, including PhoP/Q, PmrA/B, and mgrB. PCR amplification revealed the presence of virulence-associated genes from the pLVPK plasmid, such as rmpA, rmpA2, iucA, iroB, and peg344. mgrB sequencing was delegated to Sangon Biotech, Shanghai, and the sequences procured were validated using BLAST. Our search for IS elements was navigated through the IS finder portal. Phenotypically, we harnessed broth microdilution (BMD) to ascertain the MICs of colistin. To sketch the clonal lineage of mgrB-mutated CoR-Kp isolates, sophisticated methodologies like MLST and PFGE were deployed. S1-PFGE unraveled the intrinsic plasmids in these isolates. Our battery of virulence assessment techniques ranged from the string test and capsular serotyping to the serum killing assay and the Galleria mellonella larval infection model. Results Among the 127 analyzed isolates, 20 showed an enlarged mgrB PCR amplicon compared to wild-type strains. These emerged over a three-year period: three in 2021, thirteen in 2022, and four in 2023. Antimicrobial susceptibility tests revealed that these isolates consistently resisted several drugs, notably TCC, TZP, CAZ, and COL. Additionally, 85% resisted both DOX and TOB. The MICs for colistin across these strains ranged between 16 to 64 mg/L, with a median of 40 mg/L. From a genetic perspective, MLST unanimously categorized these mgrB-mutated CoR-hvKp isolates as ST11. PFGE further delineated them into six distinct clusters, with clusters A and D being predominant. This distribution suggests potential horizontal and clonal genetic transmission. Intriguingly, every mgrB-mutated CoR-hvKP isolate possessed at least two virulence genes akin to the pLVPK-like virulence plasmid, with iroB and rmpA2 standing out. Their virulence was empirically validated both in vitro and in vivo. A pivotal discovery was the identification of three distinct insertion sequence (IS) elements within or near the mgrB gene. These were:ISKpn26 in eleven isolates, mainly in cluster A, with various insertion sites including +74, +125, and an upstream -35.ISKpn14 in four isolates with insertions at +93, -35, and two upstream at -60.IS903B present in five isolates, marking positions like +74, +125, +116, and -35 in the promoter region. These diverse insertions, spanning six unique locations in or near the mgrB gene, underscore its remarkable adaptability. Conclusion Our exploration spotlights the ISKpn element's paramount role in fostering mgrB gene mutations in ST11 hypervirulent colistin-resistant Klebsiella pneumoniae. Employing MLST and PFGE, we unearthed two primary genetic conduits: clonal and horizontal. A striking observation was the ubiquitous presence of the KPC carbapenemase gene in all the evaluated ST11 hypervirulent colistin-resistant Klebsiella pneumoniae strains, with a majority also harboring the NDM gene. The myriad mgrB gene insertion locales accentuate its flexibility and the overarching influence of IS elements, notably the pervasive IS5-like variants ISKpn26 and IS903B. Our revelations illuminate the escalating role of IS elements in antibiotic resistance within ST11 hypervirulent colistin-resistant Klebsiella pneumoniae, advocating for innovative interventions to counteract these burgeoning resistance paradigms given their profound ramifications for prevailing treatment modalities.
Collapse
Affiliation(s)
- Lanlan Zhu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Ping Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Yichun People’s Hospital, Yichun, China
| | - Guangyi Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Zhiyong He
- First Clinical Medical College of Nanchang University, Nanchang University, Nanchang, China
| | - Xingyu Tao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yicheng Ji
- Department of Hospital Infection Control, First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Wenjing Yang
- Department of Hospital Infection Control, First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Xiaofang Zhu
- Department of Hospital Infection Control, First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Wanying Luo
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wenjian Liao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Chuanhui Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Yang Liu
- National Regional Center for Respiratory Medicine, Jiang Xi Hospital of China-Japan Friendship Hospital, Nanchang, China
- Department of Clinical Microbiology, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Wei Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
117
|
Peng Q, Tang X, Dong W, Zhi Z, Zhong T, Lin S, Ye J, Qian X, Chen F, Yuan W. Carvacrol inhibits bacterial polysaccharide intracellular adhesin synthesis and biofilm formation of mucoid Staphylococcus aureus: an in vitro and in vivo study. RSC Adv 2023; 13:28743-28752. [PMID: 37807974 PMCID: PMC10552078 DOI: 10.1039/d3ra02711b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/25/2023] [Indexed: 10/10/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is one of the important human pathogens and causes both superficial and systemic infections. More importantly, the formation of S. aureus biofilms, a main cause of its pathogenicity and drug resistance, has been a critical challenge in clinical treatment. Carvacrol, a plant-based natural product, has gained great interest for therapeutic purposes due to its effective biological activity with low cytotoxicity. The present study aimed to investigate the effect of carvacrol on anti-biofilm activity. Growth curve analysis showed that applying a sub-inhibitory concentration of carvacrol (4 μg mL-1) was not lethal to S. aureus SYN; however, the inhibition rate of biofilm formation was as high as 63.6%, and the clearance rate of mature biofilms was as high as 30.7%. In addition, carvacrol effectively reduced the production of biofilm-associated extracellular polysaccharides and showed no effect on eDNA release. Furthermore, qPCR analysis revealed that carvacrol significantly down-regulated the expression of icaA, icaB, icaC, agrA, and sarA (P < 0.05). The in vivo efficacy of carvacrol against biofilm infection was further verified with a biological model of G. mellonella larvae. The results showed that carvacrol was non-toxic to the larvae and can effectively increase the survival rate of the larvae infected with S. aureus strain SYN.
Collapse
Affiliation(s)
- Qi Peng
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, King Med School of Laboratory Medicine, Guangzhou Medical University Guangzhou 510180 PR China
| | - Xiaohua Tang
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, King Med School of Laboratory Medicine, Guangzhou Medical University Guangzhou 510180 PR China
- Department of Clinical Laboratory, Third Affiliated Hospital of Guangzhou Medical University Guangzhou 510150 PR China
| | - Wanyang Dong
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, King Med School of Laboratory Medicine, Guangzhou Medical University Guangzhou 510180 PR China
| | - Ziling Zhi
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, King Med School of Laboratory Medicine, Guangzhou Medical University Guangzhou 510180 PR China
| | - Tian Zhong
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, King Med School of Laboratory Medicine, Guangzhou Medical University Guangzhou 510180 PR China
| | - Shunan Lin
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, King Med School of Laboratory Medicine, Guangzhou Medical University Guangzhou 510180 PR China
| | - Jingyi Ye
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, King Med School of Laboratory Medicine, Guangzhou Medical University Guangzhou 510180 PR China
| | - Xiping Qian
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, King Med School of Laboratory Medicine, Guangzhou Medical University Guangzhou 510180 PR China
| | - Fu Chen
- Panyu District Health Management Center Guangzhou 511450 PR China
| | - Wenchang Yuan
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, King Med School of Laboratory Medicine, Guangzhou Medical University Guangzhou 510180 PR China
| |
Collapse
|
118
|
Kaya S. Immunosuppressive effect of Plantago major on the innate immunity of Galleria mellonella. PeerJ 2023; 11:e15982. [PMID: 37753175 PMCID: PMC10519203 DOI: 10.7717/peerj.15982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/08/2023] [Indexed: 09/28/2023] Open
Abstract
Greater plantain (Plantago major), a medicinal plant species, is used in folk medicine for the treatment of various diseases in many countries of the world. Different studies have shown that the bioactive components contained in the plant have a dual effect. It was also reported that in vivo and in vitro studies showed different results. The aim of the study was to determine the effects of P. major extract on the hemocyte-mediated and humoral immune responses of the invertebrate model organism Galleria mellonella, which is widely used in immune studies. In the evaluation of these effects, total hemocyte count, encapsulation, melanization, phenoloxidase, superoxide dismutase, catalase, malondialdehyde and total protein parameters were evaluated. The results of the study showed that the total hemocyte count did not change, that the encapsulation responses decreased, that the melanization responses and phenoloxidase activity increased and that the superoxide dismutase activity decreased. As a result, it was determined that high doses of P. major had negative effects on cell-mediated immunity and antioxidant defence and positive effects on melanization. High doses and continuous use of P. major may have negative effects on living things.
Collapse
Affiliation(s)
- Serhat Kaya
- Department of Biology/Faculty of Science, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
119
|
Zhang QB, Zhu P, Zhang S, Rong YJ, Huang ZA, Sun LW, Cai T. Hypervirulent Klebsiella pneumoniae detection methods: a minireview. Arch Microbiol 2023; 205:326. [PMID: 37672079 DOI: 10.1007/s00203-023-03665-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 09/07/2023]
Abstract
Hypervirulent Klebsiella pneumoniae (hvKp), characterized by high virulence and epidemic potential, has become a global public health challenge. Therefore, improving the identification of hvKp and enabling earlier and faster detection in the community to support subsequent effective treatment and prevention of hvKp are an urgent issue. To address these issues, a number of assays have emerged, such as String test, Galleria mellonella infection test, PCR, isothermal exponential amplification, and so on. In this paper, we have collected articles on the detection methods of hvKp and conducted a retrospective review based on two aspects: traditional detection technology and biomarker-based detection technology. We summarize the advantages and limitations of these detection methods and discuss the challenges as well as future directions, hoping to provide new insights and references for the rapid detection of hvKp in the future. The aim of this study is to focus on the research papers related to Hypervirulent Klebsiella pneumoniae involving the period from 2012 to 2022. We conducted searches using the keywords "Hypervirulent Klebsiella pneumoniae, biomarkers, detection techniques" on ScienceDirect and Google Scholar. Additionally, we also searched on PubMed, using MeSH terms associated with the keywords (such as Klebsiella pneumoniae, Klebsiella Infections, Virulence, Biomarkers, diagnosis, etc.).
Collapse
Affiliation(s)
- Qi-Bin Zhang
- The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Peng Zhu
- Ningbo No. 2 Hospital, Ningbo, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, China
| | - Shun Zhang
- Ningbo No. 2 Hospital, Ningbo, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, China
| | - Yan-Jing Rong
- Ningbo No. 2 Hospital, Ningbo, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, China
| | - Zuo-An Huang
- Ningbo No. 2 Hospital, Ningbo, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, China
| | | | - Ting Cai
- Ningbo No. 2 Hospital, Ningbo, China.
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China.
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, China.
| |
Collapse
|
120
|
Admella J, Torrents E. Investigating bacterial infections in Galleria mellonella larvae: Insights into pathogen dissemination and behavior. J Invertebr Pathol 2023; 200:107975. [PMID: 37541571 DOI: 10.1016/j.jip.2023.107975] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/04/2023] [Accepted: 07/30/2023] [Indexed: 08/06/2023]
Abstract
The insect Galleria mellonella is an alternative animal model widely used for studying bacterial infections. It presents a wide range of advantages, including its low cost, easy maintenance and lack of ethical constraints. Among other features, their innate immune system is very similar to that of mammals. In this study, we dissected several larvae infected with important human pathogens: Mycobacterium abscessus, Staphylococcus aureus and Pseudomonas aeruginosa. By observing the fat body, gut, trachea, and hemolymph under the microscope, we were able to describe where bacteria tend to disseminate. We also quantified the number of bacteria in the hemolymph throughout the infection course and found significant differences between the different pathogens. With this work, we aimed to better understand the behavior and dissemination of bacteria in the infected larvae.
Collapse
Affiliation(s)
- Joana Admella
- Bacterial Infections and Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 15-21, 08028 Barcelona, Spain; Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 643 Diagonal Ave., 08028 Barcelona, Spain
| | - Eduard Torrents
- Bacterial Infections and Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 15-21, 08028 Barcelona, Spain; Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 643 Diagonal Ave., 08028 Barcelona, Spain.
| |
Collapse
|
121
|
Han Y, Zhang Y, Zeng W, Huang Z, Cheng H, Kong J, Xu C, Xu M, Zhou T, Cao J. Synergy with farnesol rejuvenates colistin activity against Colistin-resistant Gram-negative bacteria in vitro and in vivo. Int J Antimicrob Agents 2023; 62:106899. [PMID: 37354920 DOI: 10.1016/j.ijantimicag.2023.106899] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/02/2023] [Accepted: 06/20/2023] [Indexed: 06/26/2023]
Abstract
Colistin (COL) is considered the last line of treatment against infections due to multidrug-resistant (MDR) Gram-negative bacteria (GNB). However, the increasing number of colistin-resistant (COL-R) bacteria is a great threat to public health. In this study, a strategy of combining farnesol (FAR), which has anti-inflammatory and antitumor properties, with COL to restart COL activity was proposed. The synergistic effect of FAR combined with COL against COL-R GNB in vivo and in vitro were investigated. The excellent synergistic antibacterial activity of the COL-FAR combination was confirmed by performing the checkerboard assay, time-killing assay, and LIVE/DEAD bacterial cell viability assay. Crystal violet staining and scanning electron microscopy results showed that COL-FAR prevented biofilm formation and eradicated pre-existing mature biofilm. Cytotoxicity assay showed that FAR at 64 µg/mL was not cytotoxic to RAW264.7 cells. In vivo infection experiments showed that COL-FAR increased the survival rate of infected Galleria mellonella and decreased the bacterial load in a mouse thigh infection model. These results indicate that COL-FAR is a potentially effective therapeutic option for combating COL-R GNB infections.
Collapse
Affiliation(s)
- Yijia Han
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China; Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province
| | - Yi Zhang
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Weiliang Zeng
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province
| | - Zeyu Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province
| | - Haojun Cheng
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Jingchun Kong
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Chunquan Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province
| | - Mengxin Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province.
| | - Jianming Cao
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
122
|
Martins C, Piontkivska D, Mil-Homens D, Guedes P, Jorge JMP, Brinco J, Bárria C, Santos ACF, Barras R, Arraiano C, Fialho A, Goldman GH, Silva Pereira C. Increased Production of Pathogenic, Airborne Fungal Spores upon Exposure of a Soil Mycobiota to Chlorinated Aromatic Hydrocarbon Pollutants. Microbiol Spectr 2023; 11:e0066723. [PMID: 37284774 PMCID: PMC10434042 DOI: 10.1128/spectrum.00667-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/22/2023] [Indexed: 06/08/2023] Open
Abstract
Organic pollutants are omnipresent and can penetrate all environmental niches. We evaluated the hypothesis that short-term (acute) exposure to aromatic hydrocarbon pollutants could increase the potential for fungal virulence. Specifically, we analyzed whether pentachlorophenol and triclosan pollution results in the production of airborne fungal spores with greater virulence than those derived from an unpolluted (Control) condition. Each pollutant altered the composition of the community of airborne spores compared to the control, favoring an increase in strains with in vivo infection capacity (the wax moth Galleria mellonella was used as an infection model). Fungi subsisting inside larvae at 72 h postinjection with airborne spore inocula collected in polluted and unpolluted conditions exhibited comparable diversity (mainly within Aspergillus fumigatus). Several virulent Aspergillus strains were isolated from larvae infected with the airborne spores produced in a polluted environment. Meanwhile, strains isolated from larvae injected with spores from the control, including one A. fumigatus strain, showed no virulence. Potential pathogenicity increased when two Aspergillus virulent strains were assembled, suggesting the existence of synergisms that impact pathogenicity. None of the observed taxonomic or functional traits could separate the virulent from the avirulent strains. Our study emphasizes pollution stress as a possible driver of phenotypic adaptations that increase Aspergillus pathogenicity, as well as the need to better understand the interplay between pollution and fungal virulence. IMPORTANCE Fungi colonizing soil and organic pollutants often meet. The consequences of this encounter constitute an outstanding question. We scrutinized the potential for virulence of airborne fungal spores produced under unpolluted and polluted scenarios. The airborne spores showed increased diversity of strains with higher infection capacity in Galleria mellonella whenever pollution is present. Inside the larvae injected with either airborne spore community, the surviving fungi demonstrated a similar diversity, mainly within Aspergillus fumigatus. However, the isolated Aspergillus strains greatly differ since virulence was only observed for those associated with a polluted environment. The interplay between pollution and fungal virulence still hides many unresolved questions, but the encounter is costly: pollution stress promotes phenotypic adaptations that may increase Aspergillus pathogenicity.
Collapse
Affiliation(s)
- Celso Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Daryna Piontkivska
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Dalila Mil-Homens
- Institute for Bioengineering and Biosciences and Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Paula Guedes
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- CENSE (Center for Environmental and Sustainability Research)/CHANGE (Global Change and Sustainability Institute), NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - João M. P. Jorge
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - João Brinco
- CENSE (Center for Environmental and Sustainability Research)/CHANGE (Global Change and Sustainability Institute), NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Cátia Bárria
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ariana C. F. Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ricardo Barras
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cecília Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Arsénio Fialho
- Institute for Bioengineering and Biosciences and Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Gustavo H. Goldman
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Cristina Silva Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
123
|
Räz AK, Andreoni F, Boumasmoud M, Bergada-Pijuan J, Schweizer TA, Mairpady Shambat S, Hasse B, Zinkernagel AS, Brugger SD. Limited Adaptation of Staphylococcus aureus during Transition from Colonization to Invasive Infection. Microbiol Spectr 2023; 11:e0259021. [PMID: 37341598 PMCID: PMC10433843 DOI: 10.1128/spectrum.02590-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 05/24/2023] [Indexed: 06/22/2023] Open
Abstract
Staphylococcus aureus carriage is a risk factor for invasive infections. Unique genetic elements favoring the transition from colonizing to invasive phenotype have not yet been identified, and phenotypic adaptation traits are understudied. We therefore assessed phenotypic and genotypic profiles of 11 S. aureus isolate pairs sampled from colonized patients simultaneously suffering from invasive S. aureus infections. Ten out of 11 isolate pairs displayed the same spa and multilocus sequence type, suggesting colonization as an origin for the invasive infection. Systematic analysis of colonizing and invasive isolate pairs showed similar adherence, hemolysis, reproductive fitness properties, antibiotic tolerance, and virulence in a Galleria mellonella infection model, as well as minimal genetic differences. Our results provide insights into the similar phenotypes associated with limited adaptation between colonizing and invasive isolates. Disruption of the physical barriers of mucosa or skin was identified in the majority of patients, further emphasizing colonization as a major risk factor for invasive disease. IMPORTANCE S. aureus is a major pathogen of humans, causing a wide range of diseases. The difficulty to develop a vaccine and antibiotic treatment failure warrant the exploration of novel treatment strategies. Asymptomatic colonization of the human nasal passages is a major risk factor for invasive disease, and decolonization procedures have been effective in preventing invasive infections. However, the transition of S. aureus from a benign colonizer of the nasal passages to a major pathogen is not well understood, and both host and bacterial properties have been discussed as being relevant for this behavioral change. We conducted a thorough investigation of patient-derived strain pairs reflecting colonizing and invasive isolates in a given patient. Although we identified limited genetic adaptation in certain strains, as well as slight differences in adherence capacity among colonizing and invasive isolates, our work suggests that barrier breaches are a key event in the disease continuum of S. aureus.
Collapse
Affiliation(s)
- Anna K. Räz
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Federica Andreoni
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Mathilde Boumasmoud
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Judith Bergada-Pijuan
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Tiziano A. Schweizer
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Srikanth Mairpady Shambat
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Barbara Hasse
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Annelies S. Zinkernagel
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Silvio D. Brugger
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
124
|
Kong HG, Son JS, Chung JH, Lee S, Kim JS, Ryu CM. Population Dynamics of Intestinal Enterococcus Modulate Galleria mellonella Metamorphosis. Microbiol Spectr 2023; 11:e0278022. [PMID: 37358445 PMCID: PMC10434003 DOI: 10.1128/spectrum.02780-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 05/24/2023] [Indexed: 06/27/2023] Open
Abstract
Microbes found in the digestive tracts of insects are known to play an important role in their host's behavior. Although Lepidoptera is one of the most varied insect orders, the link between microbial symbiosis and host development is still poorly understood. In particular, little is known about the role of gut bacteria in metamorphosis. Here, we explored gut microbial biodiversity throughout the life cycle of Galleria mellonella, using amplicon pyrosequencing with the V1 to V3 regions, and found that Enterococcus spp. were abundant in larvae, while Enterobacter spp. were predominant in pupae. Interestingly, eradication of Enterococcus spp. from the digestive system accelerated the larval-to-pupal transition. Furthermore, host transcriptome analysis demonstrated that immune response genes were upregulated in pupae, whereas hormone genes were upregulated in larvae. In particular, regulation of antimicrobial peptide production in the host gut correlated with developmental stage. Certain antimicrobial peptides inhibited the growth of Enterococcus innesii, a dominant bacterial species in the gut of G. mellonella larvae. Our study highlights the importance of gut microbiota dynamics on metamorphosis as a consequence of the active secretion of antimicrobial peptides in the G. mellonella gut. IMPORTANCE First, we demonstrated that the presence of Enterococcus spp. is a driving force for insect metamorphosis. RNA sequencing and peptide production subsequently revealed that antimicrobial peptides targeted against microorganisms in the gut of Galleria mellonella (wax moth) did not kill Enterobacteria species, but did kill Enterococcus species, when the moth was at a certain stage of growth, and this promoted moth pupation.
Collapse
Affiliation(s)
- Hyun Gi Kong
- Infection Disease Research Center, KRIBB, Daejeon, South Korea
- Department of Plant Medicine, Chungbuk National University, Cheongju, South Korea
| | - Jin-Soo Son
- Infection Disease Research Center, KRIBB, Daejeon, South Korea
| | - Joon-Hui Chung
- Infection Disease Research Center, KRIBB, Daejeon, South Korea
| | - Soohyun Lee
- Infection Disease Research Center, KRIBB, Daejeon, South Korea
| | - Jun-Seob Kim
- Department of Nano-Bioengineering, Incheon National University, Incheon, South Korea
| | - Choong-Min Ryu
- Infection Disease Research Center, KRIBB, Daejeon, South Korea
| |
Collapse
|
125
|
Vanhoffelen E, Michiels L, Brock M, Lagrou K, Reséndiz-Sharpe A, Vande Velde G. Powerful and Real-Time Quantification of Antifungal Efficacy against Triazole-Resistant and -Susceptible Aspergillus fumigatus Infections in Galleria mellonella by Longitudinal Bioluminescence Imaging. Microbiol Spectr 2023; 11:e0082523. [PMID: 37466453 PMCID: PMC10433797 DOI: 10.1128/spectrum.00825-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/27/2023] [Indexed: 07/20/2023] Open
Abstract
Aspergillus fumigatus is an environmental mold that causes life-threatening respiratory infections in immunocompromised patients. The plateaued effectiveness of antifungal therapy and the increasing prevalence of triazole-resistant isolates have led to an urgent need to optimize and expand the current treatment options. For the transition of in vitro research to in vivo models in the time- and resource-consuming preclinical drug development pipeline, Galleria mellonella larvae have been introduced as a valuable in vivo screening intermediate. Despite the high potential of this model, the current readouts of fungal infections in G. mellonella are insensitive, irreproducible, or invasive. To optimize this model, we aimed for the longitudinal quantification of the A. fumigatus burden in G. mellonella using noninvasive bioluminescence imaging (BLI). Larvae were infected with A. fumigatus strains expressing a red-shifted firefly luciferase, and the substrate dosage was optimized for the longitudinal visualization of the fungal burden without affecting larval health. The resulting photon flux was successfully validated for fungal quantification against colony forming units (CFU) analyses, which revealed an increased dynamic range from BLI detection. Comparison of BLI to survival rates and health index scores additionally revealed improved sensitivity for the early discrimination of differences in fungal burdens as early as 1 day after infection. This was confirmed by the improved detection of treatment efficacy against triazole-susceptible and -resistant strains. In conclusion, we established a refined G. mellonella aspergillosis model that enables the noninvasive real-time quantification of A. fumigatus by BLI. This model provides a quick and reproducible in vivo system for the evaluation of treatment options and is in line with 3Rs recommendations. IMPORTANCE Triazole-resistant Aspergillus fumigatus strains are rapidly emerging, and resistant infections are difficult to treat, causing mortality rates of up to 88%. The recent WHO priority list underscores A. fumigatus as one of the most critical fungal pathogens for which innovative antifungal treatment should be (urgently) prioritized. Here, we deliver a Galleria mellonella model for triazole-susceptible and -resistant A. fumigatus infections combined with a statistically powerful quantitative, longitudinal readout of the A. fumigatus burden for optimized preclinical antifungal screening. G. mellonella larvae are a convenient invertebrate model for in vivo antifungal screenings, but so far, the model has been limited by variable and insensitive observational readouts. We show that bioluminescence imaging-based fungal burden quantification outperforms these readouts in reliability, sensitivity, and time to the detection of treatment effects in both triazole-susceptible and -resistant infections and can thus lead to better translatability from in vitro antifungal screening results to in vivo confirmation in mouse and human studies.
Collapse
Affiliation(s)
- Eliane Vanhoffelen
- Department of Imaging and Pathology, Biomedical MRI Unit/MoSAIC, KU Leuven, Leuven, Belgium
| | - Lauren Michiels
- Department of Imaging and Pathology, Biomedical MRI Unit/MoSAIC, KU Leuven, Leuven, Belgium
| | - Matthias Brock
- School of Life Sciences, Fungal Biology Group, University of Nottingham, Nottingham, United Kingdom
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Bacteriology and Mycology, KU Leuven, Leuven, Belgium
- Department of Laboratory Medicine, National Reference Center for Mycosis, University Hospitals Leuven, Leuven, Belgium
| | | | - Greetje Vande Velde
- Department of Imaging and Pathology, Biomedical MRI Unit/MoSAIC, KU Leuven, Leuven, Belgium
| |
Collapse
|
126
|
Schmitz DA, Allen RC, Kümmerli R. Negative interactions and virulence differences drive the dynamics in multispecies bacterial infections. Proc Biol Sci 2023; 290:20231119. [PMID: 37491967 PMCID: PMC10369020 DOI: 10.1098/rspb.2023.1119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/27/2023] [Indexed: 07/27/2023] Open
Abstract
Bacterial infections are often polymicrobial, leading to intricate pathogen-pathogen and pathogen-host interactions. There is increasing interest in studying the molecular basis of pathogen interactions and how such mechanisms impact host morbidity. However, much less is known about the ecological dynamics between pathogens and how they affect virulence and host survival. Here we address these open issues by co-infecting larvae of the insect model host Galleria mellonella with one, two, three or four bacterial species, all of which are opportunistic human pathogens. We found that host mortality was always determined by the most virulent species regardless of the number of species and pathogen combinations injected. In certain combinations, the more virulent pathogen simply outgrew the less virulent pathogen. In other combinations, we found evidence for negative interactions between pathogens inside the host, whereby the more virulent pathogen typically won a competition. Taken together, our findings reveal positive associations between a pathogen's growth inside the host, its competitiveness towards other pathogens and its virulence. Beyond being generalizable across species combinations, our findings predict that treatments against polymicrobial infections should first target the most virulent species to reduce host morbidity, a prediction we validated experimentally.
Collapse
Affiliation(s)
- Désirée A. Schmitz
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Richard C. Allen
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Rolf Kümmerli
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
127
|
Schindler Y, Rahav G, Nissan I, Valenci G, Ravins M, Hanski E, Ment D, Tekes-Manova D, Maor Y. Type VII secretion system and its effect on group B Streptococcus virulence in isolates obtained from newborns with early onset disease and colonized pregnant women. Front Cell Infect Microbiol 2023; 13:1168530. [PMID: 37545859 PMCID: PMC10400891 DOI: 10.3389/fcimb.2023.1168530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction GBS may cause a devastating disease in newborns. In early onset disease of the newborn the bacteria are acquired from the colonized mother during delivery. We characterized type VII secretion system (T7SS), exporting small proteins of the WXG100 superfamily, in group B Streptococci (GBS) isolates from pregnant colonized women and newborns with early onset disease (EOD) to better understand T7SS contribution to virulence in these different clinical scenarios. Methods GBS genomes [N=33, 17 EOD isolates (serotype III/ST17) and 16 colonizing isolates (12 serotype VI/ST1, one serotype VI/ST19, one serotype VI/ST6, and two serotype 3/ST19)] were analyzed for presence of T7SS genes and genes encoding WXG100 proteins. We also perform bioinformatic analysis. Galleria mellonella larvae were used to compare virulence between colonizing, EOD, and mutant EOD isolates. The EOD isolate number 118659 (III/ST17) was used for knocking out the essC gene encoding a membrane-bound ATPase, considered the driver of T7SS. Results Most GBS T7SS loci encoded core component genes: essC, membrane-embedded proteins (essA; essB), modulators of T7SS activity (esaA; esaB; esaC) and effectors: [esxA (SAG1039); esxB (SAG1030)].Bioinformatic analysis indicated that based on sequence type (ST) the clinicalGBS isolates encode at least three distinct subtypes of T7SS machinery. In all ST1isolates we identified two copies of esxA gene (encoding putative WXG100proteins), when only 23.5% of the ST17 isolates harbored the esxA gene. Five ST17isolates encoded two copies of the essC gene. Orphaned WXG100 molecule(SAG0230), distinct from T7SS locus, were found in all tested strains, except inST17 strains where the locus was found in only 23.5% of the isolates. In ST6 andST19 isolates most of the structure T7SS genes were missing. EOD isolates demonstrated enhanced virulence in G. mellonella modelcompared to colonizing isolates. The 118659DessC strain was attenuated in itskilling ability, and the larvae were more effective in eradicating 118659DessC. Conclusions We demonstrated that T7SS plays a role during infection. Knocking out the essC gene, considered the driver of T7SS, decreased the virulence of ST17 responsible for EOD, causing them to be less virulent comparable to the virulence observed in colonizing isolates.
Collapse
Affiliation(s)
- Yulia Schindler
- Microbiology Laboratory, Mayanei Hayeshua Medical Center, Bney Brak, Israel
- The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Galia Rahav
- The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Infectious Disease Unit, Sheba Medical Center, Ramat-Gan, Israel
| | - Israel Nissan
- Infectious Disease Unit, Sheba Medical Center, Ramat-Gan, Israel
- National Public Health Laboratory, Ministry of Health (Israel), Tel-Aviv, Israel
| | - Gal Valenci
- National Public Health Laboratory, Ministry of Health (Israel), Tel-Aviv, Israel
| | - Miriam Ravins
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), Faculty of Medicine, Jerusalem, Israel
| | - Emanuel Hanski
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), Faculty of Medicine, Jerusalem, Israel
| | - Dana Ment
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Dorit Tekes-Manova
- Microbiology Laboratory, Mayanei Hayeshua Medical Center, Bney Brak, Israel
| | - Yasmin Maor
- The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Infectious Disease Unit, Wolfson Medical Center, Holon, Israel
| |
Collapse
|
128
|
Wang J, Huang Y, Guan C, Li J, Yang H, Zhao G, Liu C, Ma J, Tang B. Characterization of an Escherichia coli Isolate Coharboring the Virulence Gene astA and Tigecycline Resistance Gene tet(X4) from a Dead Piglet. Pathogens 2023; 12:903. [PMID: 37513750 PMCID: PMC10385434 DOI: 10.3390/pathogens12070903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
tet(X4) is the critical resistance gene for tigecycline degradation that has been continually reported in recent years. In particular, pathogenic bacteria carrying tet(X4) are a severe threat to human health. However, information describing Escherichia coli coharboring tet(X4) with virulence genes is limited. Here, we isolated an E. coli strain coharboring tet(X4) and the heat-stable toxin gene astA from a dead piglet. The strain named 812A1-131 belongs to ST10. The genome was sequenced using the Nanopore and Illumina platforms. The virulence genes astA and tet(X4) are located on the chromosome and in the IncHI1-type plasmid p812A1-tetX4-193K, respectively. The plasmid could be conjugatively transferred to recipient E. coli J53 with high frequency. In vivo experiments showed that strain 812A1-131 is pathogenic to Galleria mellonella and could colonize the intestines of mice. In summary, pathogenic E. coli could receive a plasmid harboring the tet(X4) gene, which can increase the difficulty of treatment. The prevalence and transmission mechanisms of pathogenic bacteria coharboring the tet(X4) gene need more attention.
Collapse
Affiliation(s)
- Jianmei Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yuting Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Chunjiu Guan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Jie Li
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Guoping Zhao
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Canying Liu
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Jiangang Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Biao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
129
|
Köhler T, Luscher A, Falconnet L, Resch G, McBride R, Mai QA, Simonin JL, Chanson M, Maco B, Galiotto R, Riat A, McCallin S, Chan B, van Delden C. Personalized aerosolised bacteriophage treatment of a chronic lung infection due to multidrug-resistant Pseudomonas aeruginosa. Nat Commun 2023; 14:3629. [PMID: 37369702 PMCID: PMC10300124 DOI: 10.1038/s41467-023-39370-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Bacteriophage therapy has been suggested as an alternative or complementary strategy for the treatment of multidrug resistant (MDR) bacterial infections. Here, we report the favourable clinical evolution of a 41-year-old male patient with a Kartagener syndrome complicated by a life-threatening chronic MDR Pseudomonas aeruginosa infection, who is treated successfully with iterative aerosolized phage treatments specifically directed against the patient's isolate. We follow the longitudinal evolution of both phage and bacterial loads during and after phage administration in respiratory samples. Phage titres in consecutive sputum samples indicate in patient phage replication. Phenotypic analysis and whole genome sequencing of sequential bacterial isolates reveals a clonal, but phenotypically diverse population of hypermutator strains. The MDR phenotype in the collected isolates is multifactorial and mainly due to spontaneous chromosomal mutations. All isolates recovered after phage treatment remain phage susceptible. These results demonstrate that clinically significant improvement is achievable by personalised phage therapy even in the absence of complete eradication of P. aeruginosa lung colonization.
Collapse
Affiliation(s)
- Thilo Köhler
- Service of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland.
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland.
| | - Alexandre Luscher
- Service of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Léna Falconnet
- Service of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Grégory Resch
- Center for Research and Innovation in Clinical Pharmaceutical Sciences (CRISP), Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | | | | | - Juliette L Simonin
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Marc Chanson
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Bohumil Maco
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Raphaël Galiotto
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Arnaud Riat
- Diagnostic Bacteriology Laboratory, Geneva University Hospitals, Geneva, Switzerland
| | - Shawna McCallin
- Department of Neuro-Urology Balgrist Hospital, Zurich, Switzerland
| | | | - Christian van Delden
- Service of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
130
|
Marena GD, Ruiz-Gaitán A, Garcia-Bustos V, Tormo-Mas MÁ, Pérez-Royo JM, López A, Bernarbe P, Pérez Ruiz MD, Zaragoza Macian L, Vicente Saez C, Avalos Mansilla A, Gómez EV, Carvalho GC, Bauab TM, Chorilli M, Pemán J. Nanoemulsion Increases the Antifungal Activity of Amphotericin B against Four Candida auris Clades: In Vitro and In Vivo Assays. Microorganisms 2023; 11:1626. [PMID: 37512799 PMCID: PMC10386465 DOI: 10.3390/microorganisms11071626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/05/2023] [Accepted: 06/17/2023] [Indexed: 07/30/2023] Open
Abstract
Candida auris is an emerging yeast of worldwide interest due to its antifungal resistance and mortality rates. The aim of this study was to analyse the in vitro and in vivo antifungal activity of a nanoemulsion loaded with amphotericin B (NEA) against planktonic cells and biofilm of C. auris clinical isolates belonging to four different clades. In vivo assays were performed using the Galleria mellonella model to analyse antifungal activity and histopathological changes. The in vitro results showed that NEA exhibited better antifungal activity than free amphotericin B (AmB) in both planktonic and sessile cells, with >31% inhibition of mature biofilm. In the in vivo assays, NEA demonstrated superior antifungal activity in both haemolymph and tissue. NEA reduced the fungal load in the haemolymph more rapidly and with more activity in the first 24 h after infection. The histological analysis of infected larvae revealed clusters of yeast, immune cells, melanisation, and granulomas. In conclusion, NEA significantly improved the in vitro and in vivo antifungal activity of AmB and could be considered a promising therapy for C. auris infections.
Collapse
Affiliation(s)
- Gabriel Davi Marena
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil
| | - Alba Ruiz-Gaitán
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
- Department of Medical Microbiology, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
| | - Victor Garcia-Bustos
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
- Department of Pathology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| | | | | | - Alejandro López
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Patricia Bernarbe
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
| | | | | | | | | | - Eulogio Valentín Gómez
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
- Department of Microbiology and Ecology, University of Valencia, 46010 Valencia, Spain
| | - Gabriela Corrêa Carvalho
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil
| | - Tais Maria Bauab
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil
| | - Javier Pemán
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
- Department of Medical Microbiology, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
| |
Collapse
|
131
|
Lauman P, Dennis JJ. Synergistic Interactions among Burkholderia cepacia Complex-Targeting Phages Reveal a Novel Therapeutic Role for Lysogenization-Capable Phages. Microbiol Spectr 2023; 11:e0443022. [PMID: 37195168 PMCID: PMC10269493 DOI: 10.1128/spectrum.04430-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 04/17/2023] [Indexed: 05/18/2023] Open
Abstract
Antimicrobial resistance is a danger to global public health and threatens many aspects of modern medicine. Bacterial species such as those of the Burkholderia cepacia complex (Bcc) cause life-threatening respiratory infections and are highly resistant to antibiotics. One promising alternative being explored to combat Bcc infections is phage therapy (PT): the use of phages to treat bacterial infections. Unfortunately, the utility of PT against many pathogenic species is limited by its prevailing paradigm: that only obligately lytic phages should be used therapeutically. It is thought that 'lysogenic' phages do not lyse all bacteria and can transfer antimicrobial resistance or virulence factors to their hosts. We argue that the tendency of a lysogenization-capable (LC) phage to form stable lysogens is not predicated exclusively on its ability to do so, and that the therapeutic suitability of a phage must be evaluated on a case-by-case basis. Concordantly, we developed several novel metrics-Efficiency of Phage Activity, Growth Reduction Coefficient, and Stable Lysogenization Frequency-and used them to evaluate eight Bcc-specific phages. Although these parameters vary considerably among Bcc phages, a strong inverse correlation (R2 = 0.67; P < 0.0001) exists between lysogen formation and antibacterial activity, indicating that certain LC phages with low frequency of stable lysogenization may be therapeutically efficacious. Moreover, we show that many LC Bcc phages interact synergistically with other phages in the first reported instance of mathematically defined polyphage synergy, and that these interactions result in the eradication of in vitro bacterial growth. Together, these findings reveal a novel therapeutic role for LC phages and challenge the current paradigm of PT. IMPORTANCE The spread of antimicrobial resistance is an imminent threat to public health around the world. Particularly concerning are species of the Burkholderia cepacia complex (Bcc), which cause life-threatening respiratory infections and are notoriously resistant to antibiotics. Phage therapy is a promising alternative being explored to combat Bcc infections and antimicrobial resistance in general, but its utility against many pathogenic species, including the Bcc, is restricted by the currently prevailing paradigm of exclusively using rare obligately lytic phages due to the perception that 'lysogenic' phages are therapeutically unsuitable. Our findings show that many lysogenization-capable phages exhibit powerful in vitro antibacterial activity both alone and through mathematically defined synergistic interactions with other phages, demonstrating a novel therapeutic role for LC phages and therefore challenging the currently prevailing paradigm of PT.
Collapse
Affiliation(s)
- Philip Lauman
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Jonathan J. Dennis
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
132
|
Copplestone D, Coates CJ, Lim J. Low dose γ-radiation induced effects on wax moth (Galleria mellonella) larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162742. [PMID: 36906041 DOI: 10.1016/j.scitotenv.2023.162742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/10/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
Larvae of the greater wax moth Galleria mellonella are common pests of beehives and commercial apiaries, and in more applied settings, these insects act as alternative in vivo bioassays to rodents for studying microbial virulence, antibiotic development, and toxicology. In the current study, our aim was to assess the putative adverse effects of background gamma radiation levels on G. mellonella. To achieve this, we exposed larvae to low (0.014 mGy/h), medium (0.056 mGy/h), and high (1.33 mGy/h) doses of caesium-137 and measured larval pupation events, weight, faecal discharge, susceptibility to bacterial and fungal challenges, immune cell counts, activity, and viability (i.e., haemocyte encapsulation) and melanisation levels. The effects of low and medium levels of radiation were distinguishable from the highest dose rates used - the latter insects weighed the least and pupated earlier. In general, radiation exposure modulated cellular and humoral immunity over time, with larvae showing heightened encapsulation/melanisation levels at the higher dose rates but were more susceptible to bacterial (Photorhabdus luminescens) infection. There were few signs of radiation impacts after 7 days exposure, whereas marked changes were recorded between 14 and 28 days. Our data suggest that G. mellonella demonstrates plasticity at the whole organism and cellular levels when irradiated and offers insight into how such animals may cope in radiologically contaminated environments (e.g. Chornobyl Exclusion Zone).
Collapse
Affiliation(s)
- David Copplestone
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | - Christopher J Coates
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, Wales, UK; Zoology, Ryan Institute, School of Natural Sciences, University of Galway, Galway H91 TK33, Ireland
| | - Jenson Lim
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK.
| |
Collapse
|
133
|
Zaongo SD, Zhang F, Chen Y. An Overview of Diagnostic and Management Strategies for Talaromycosis, an Underrated Disease. J Fungi (Basel) 2023; 9:647. [PMID: 37367583 DOI: 10.3390/jof9060647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Abstract
Underrated and neglected, talaromycosis is a life-threatening fungal disease endemic to the tropical and subtropical regions of Asia. In China, it has been reported that talaromycosis mortality doubles from 24 to 50% when the diagnosis is delayed, and reaches 100% when the diagnosis is missed. Thus, the accurate diagnosis of talaromycosis is of utmost importance. Herein, in the first part of this article, we provide an extensive review of the diagnostic tools used thus far by physicians in the management of cases of talaromycosis. The challenges encountered and the perspectives which may aid in the discovery of more accurate and reliable diagnostic approaches are also discussed. In the second part of this review, we discuss the drugs used to prevent and treat T. marneffei infection. Alternative therapeutic options and potential drug resistance reported in the contemporary literature are also discussed. We aim to guide researchers towards the discovery of novel approaches to prevent, diagnose, and treat talaromycosis, and therefore improve the prognosis for those afflicted by this important disease.
Collapse
Affiliation(s)
- Silvere D Zaongo
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing 400036, China
| | - Fazhen Zhang
- Fifth Unit for Tuberculosis, Chongqing Public Health Medical Center, Chongqing 400036, China
| | - Yaokai Chen
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing 400036, China
| |
Collapse
|
134
|
Maslova E, Osman S, McCarthy RR. Using the Galleria mellonella burn wound and infection model to identify and characterize potential wound probiotics. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001350. [PMID: 37350463 PMCID: PMC10333784 DOI: 10.1099/mic.0.001350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/07/2023] [Indexed: 06/24/2023]
Abstract
Burn wound infection is the leading cause of mortality among burn wound patients. One of the most commonly isolated bacterial burn wound pathogens is Pseudomonas aeruginosa, a notorious nosocomial multidrug-resistant pathogen. As a consequence of its recalcitrance to frontline antibiotic therapy, there is an urgent need to develop alternative treatment avenues to tackle this pathogen. One potential alternative infection prevention measure is to seed the wound bed with probiotic bacteria. Several species of Lactobacillus, a common commensal bacterium, have been previously reported to display growth inhibition activity against wound pathogens. Various species of this genus have also been shown to augment the wound healing process, which makes it a promising potential therapeutic agent. Due to the complexity of the burn wound trauma and burn wound infection, an in vivo model is required for the development of novel therapeutics. There are multiple in vivo models that are currently available, the most common among them being the murine model. However, mammalian burn wound infection models are logistically challenging, do not lend themselves to screening approaches and come with significant concerns around ethics and animal welfare. Recently, an invertebrate burn wound and infection model using G. mellonella has been established. This model addresses several of the challenges of more advanced animal models, such as affordability, maintenance and reduced ethical concerns. This study validates the capacity of this model to screen for potential wound probiotics by demonstrating that a variety of Lactobacillus spp. can limit P. aeruginosa burn wound infection and improve survival.
Collapse
Affiliation(s)
- Evgenia Maslova
- Division of Biosciences, Department of Life Sciences, Centre of Inflammation Research and Translational Medicine, College of Health, Medicine and Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| | - Shanga Osman
- Division of Biosciences, Department of Life Sciences, Centre of Inflammation Research and Translational Medicine, College of Health, Medicine and Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| | - Ronan R. McCarthy
- Division of Biosciences, Department of Life Sciences, Centre of Inflammation Research and Translational Medicine, College of Health, Medicine and Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| |
Collapse
|
135
|
Irudal S, Scoffone VC, Trespidi G, Barbieri G, D'Amato M, Viglio S, Pizza M, Scarselli M, Riccardi G, Buroni S. Identification by Reverse Vaccinology of Three Virulence Factors in Burkholderia cenocepacia That May Represent Ideal Vaccine Antigens. Vaccines (Basel) 2023; 11:1039. [PMID: 37376428 DOI: 10.3390/vaccines11061039] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
The Burkholderia cepacia complex comprises environmental and clinical Gram-negative bacteria that infect particularly debilitated people, such as those with cystic fibrosis. Their high level of antibiotic resistance makes empirical treatments often ineffective, increasing the risk of worst outcomes and the diffusion of multi-drug resistance. However, the discovery of new antibiotics is not trivial, so an alternative can be the use of vaccination. Here, the reverse vaccinology approach has been used to identify antigen candidates, obtaining a short-list of 24 proteins. The localization and different aspects of virulence were investigated for three of them-BCAL1524, BCAM0949, and BCAS0335. The three antigens were localized in the outer membrane vesicles confirming that they are surface exposed. We showed that BCAL1524, a collagen-like protein, promotes bacteria auto-aggregation and plays an important role in virulence, in the Galleria mellonella model. BCAM0949, an extracellular lipase, mediates piperacillin resistance, biofilm formation in Luria Bertani and artificial sputum medium, rhamnolipid production, and swimming motility; its predicted lipolytic activity was also experimentally confirmed. BCAS0335, a trimeric adhesin, promotes minocycline resistance, biofilm organization in LB, and virulence in G. mellonella. Their important role in virulence necessitates further investigations to shed light on the usefulness of these proteins as antigen candidates.
Collapse
Affiliation(s)
- Samuele Irudal
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Viola Camilla Scoffone
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Gabriele Trespidi
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Giulia Barbieri
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Maura D'Amato
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Simona Viglio
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | | | | | - Giovanna Riccardi
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Silvia Buroni
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
136
|
Toukabri H, Lereclus D, Slamti L. A Sporulation-Independent Way of Life for Bacillus thuringiensis in the Late Stages of an Infection. mBio 2023:e0037123. [PMID: 37129506 DOI: 10.1128/mbio.00371-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Abstract
The formation of endospores has been considered the unique survival and transmission mode of sporulating Firmicutes due to the exceptional resistance and persistence of this bacterial form. However, nonsporulated bacteria (Spo-) were reported at the early stages following the death of a host infected with Bacillus thuringiensis, an entomopathogenic sporulating bacterium. Here, we investigated the characteristics of the bacterial population in the late stages of an infection in the B. thuringiensis/Galleria mellonella infection model. Using fluorescent reporters and molecular markers coupled to flow cytometry, we demonstrated that the Spo- cells persist and constitute about half of the population 2 weeks post-infection (p.i.). Protein synthesis and growth recovery assays indicated that they are in a metabolically slowed-down state. These bacteria were extremely resistant to the insect cadaver environment, which did not support growth of in vitro-grown vegetative cells and spores. A transcriptomic analysis of this subpopulation at 7 days p.i. revealed a signature profile of this state, and the expression analysis of individual genes at the cell level showed that more bacteria mount an oxidative stress response as their survival time increases, in agreement with the increase of the free radical level in the host cadaver and in the number of reactive oxygen species (ROS)-producing bacteria. Altogether, these data show for the first time that nonsporulated bacteria are able to survive for a prolonged period of time in the context of an infection and indicate that they engage in a profound adaptation process that leads to their persistence in the host cadaver. IMPORTANCE Bacillus thuringiensis is an entomopathogenic bacterium widely used as a biopesticide. It belongs to the Bacillus cereus group, comprising the foodborne pathogen B. cereus sensu stricto and the anthrax agent Bacillus anthracis. Like other Firmicutes when they encounter harsh conditions, these Gram-positive bacteria can form dormant cells called spores. Due to its highly resistant nature, the spore was considered the unique mode of long-term survival, eclipsing any other form of persistence. Breaking this paradigm, we observed that B. thuringiensis was able to persist in its host cadaver in a nonsporulated form for at least 14 days. Our results show that these bacteria survived in the cadaver environment, which proved hostile for actively growing bacteria by engaging in a profound adaptation process. Studying this facet of the life cycle of a sporulating bacterium provides new fundamental knowledge and might lead to the development of strategies to combat sporulating pathogenic species.
Collapse
Affiliation(s)
- Hasna Toukabri
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Didier Lereclus
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Leyla Slamti
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
137
|
Budziaszek J, Pilarczyk-Zurek M, Dobosz E, Kozinska A, Nowicki D, Obszanska K, Szalewska-Pałasz A, Kern-Zdanowicz I, Sitkiewicz I, Koziel J. Studies of Streptococcus anginosus Virulence in Dictyostelium discoideum and Galleria mellonella Models. Infect Immun 2023; 91:e0001623. [PMID: 37097148 DOI: 10.1128/iai.00016-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
For many years, Streptococcus anginosus has been considered a commensal colonizing the oral cavity, as well as the gastrointestinal and genitourinary tracts. However, recent epidemiological and clinical data designate this bacterium as an emerging opportunistic pathogen. Despite the reported pathogenicity of S. anginosus, the molecular mechanism underpinning its virulence is poorly described. Therefore, our goal was to develop and optimize efficient and simple infection models that can be applied to examine the virulence of S. anginosus and to study host-pathogen interactions. Using 23 S. anginosus isolates collected from different infections, including severe and superficial infections, as well as an attenuated strain devoid of CppA, we demonstrate for the first time that Dictyostelium discoideum is a suitable model for initial, fast, and large-scale screening of virulence. Furthermore, we found that another nonvertebrate animal model, Galleria mellonella, can be used to study the pathogenesis of S. anginosus infection, with an emphasis on the interactions between the pathogen and host innate immunity. Examining the profile of immune defense genes, including antimicrobial peptides, opsonins, regulators of nodulation, and inhibitors of proteases, by quantitative PCR (qPCR) we identified different immune response profiles depending on the S. anginosus strain. Using these models, we show that S. anginosus is resistant to the bactericidal activity of phagocytes, a phenomenon confirmed using human neutrophils. Notably, since we found that the data from these models corresponded to the clinical severity of infection, we propose their further application to studies of the virulence of S. anginosus.
Collapse
Affiliation(s)
- Joanna Budziaszek
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Magdalena Pilarczyk-Zurek
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ewelina Dobosz
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Aleksandra Kozinska
- Department of Drug Biotechnology and Bioinformatics, National Medicines Institute, Warsaw, Poland
| | - Dariusz Nowicki
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Department of Molecular Biology, University of Gdańsk, Gdańsk, Poland
| | - Katarzyna Obszanska
- Department of Drug Biotechnology and Bioinformatics, National Medicines Institute, Warsaw, Poland
| | | | | | - Izabela Sitkiewicz
- Institute of Biology, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
138
|
Urbaniak MM, Gazińska M, Rudnicka K, Płociński P, Nowak M, Chmiela M. In Vitro and In Vivo Biocompatibility of Natural and Synthetic Pseudomonas aeruginosa Pyomelanin for Potential Biomedical Applications. Int J Mol Sci 2023; 24:ijms24097846. [PMID: 37175552 PMCID: PMC10178424 DOI: 10.3390/ijms24097846] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Bacteria are the source of many bioactive compounds, including polymers with various physiological functions and the potential for medical applications. Pyomelanin from Pseudomonas aeruginosa, a nonfermenting Gram-negative bacterium, is a black-brown negatively charged extracellular polymer of homogentisic acid produced during L-tyrosine catabolism. Due to its chemical properties and the presence of active functional groups, pyomelanin is a candidate for the development of new antioxidant, antimicrobial and immunomodulatory formulations. This work aimed to obtain bacterial water-soluble (Pyosol), water-insoluble (Pyoinsol) and synthetic (sPyo) pyomelanin variants and characterize their chemical structure, thermosensitivity and biosafety in vitro and in vivo (Galleria mallonella). FTIR analysis showed that aromatic ring connections in the polymer chains were dominant in Pyosol and sPyo, whereas Pyoinsol had fewer Car-Car links between rings. The differences in chemical structure influence the solubility of various forms of pyomelanins, their thermal stability and biological activity. Pyosol and Pyoinsol showed higher biological safety than sPyo. The obtained results qualify Pyosol and Pyoinsol for evaluation of their antimicrobial, immunomodulatory and proregenerative activities.
Collapse
Affiliation(s)
- Mateusz M Urbaniak
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, 90-237 Łódź, Poland
- The Bio-Med-Chem Doctoral School, University of Lodz and Lodz Institutes of the Polish Academy of Sciences, 90-237 Łódź, Poland
| | - Małgorzata Gazińska
- Department of Engineering and Technology of Polymers, Faculty of Chemistry, Wrocław University of Science and Technology (WUST), 50-370 Wrocław, Poland
| | - Karolina Rudnicka
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, 90-237 Łódź, Poland
| | - Przemysław Płociński
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, 90-237 Łódź, Poland
| | - Monika Nowak
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, 90-237 Łódź, Poland
| | - Magdalena Chmiela
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, 90-237 Łódź, Poland
| |
Collapse
|
139
|
Ottonello A, Wyllie JA, Yahiaoui O, Sun S, Koelln RA, Homer JA, Johnson RM, Murray E, Williams P, Bolla JR, Robinson CV, Fallon T, Soares da Costa TP, Moses JE. Shapeshifting bullvalene-linked vancomycin dimers as effective antibiotics against multidrug-resistant gram-positive bacteria. Proc Natl Acad Sci U S A 2023; 120:e2208737120. [PMID: 37011186 PMCID: PMC10104512 DOI: 10.1073/pnas.2208737120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 02/24/2023] [Indexed: 04/05/2023] Open
Abstract
The alarming rise in superbugs that are resistant to drugs of last resort, including vancomycin-resistant enterococci and staphylococci, has become a significant global health hazard. Here, we report the click chemistry synthesis of an unprecedented class of shapeshifting vancomycin dimers (SVDs) that display potent activity against bacteria that are resistant to the parent drug, including the ESKAPE pathogens, vancomycin-resistant Enterococcus (VRE), methicillin-resistant Staphylococcus aureus (MRSA), as well as vancomycin-resistant S. aureus (VRSA). The shapeshifting modality of the dimers is powered by a triazole-linked bullvalene core, exploiting the dynamic covalent rearrangements of the fluxional carbon cage and creating ligands with the capacity to inhibit bacterial cell wall biosynthesis. The new shapeshifting antibiotics are not disadvantaged by the common mechanism of vancomycin resistance resulting from the alteration of the C-terminal dipeptide with the corresponding d-Ala-d-Lac depsipeptide. Further, evidence suggests that the shapeshifting ligands destabilize the complex formed between the flippase MurJ and lipid II, implying the potential for a new mode of action for polyvalent glycopeptides. The SVDs show little propensity for acquired resistance by enterococci, suggesting that this new class of shapeshifting antibiotic will display durable antimicrobial activity not prone to rapidly acquired clinical resistance.
Collapse
Affiliation(s)
- Alessandra Ottonello
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC3086, Australia
| | - Jessica A. Wyllie
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC3086, Australia
| | - Oussama Yahiaoui
- Department of Chemistry, School of Physical Sciences, The University of Adelaide, Adelaide, SA5005, Australia
| | - Shoujun Sun
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
| | - Rebecca A. Koelln
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
| | - Joshua A. Homer
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
| | - Robert M. Johnson
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
| | - Ewan Murray
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, University Park, NottinghamNG7 2RD, U.K.
| | - Paul Williams
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, University Park, NottinghamNG7 2RD, U.K.
| | - Jani R. Bolla
- Department of Biology, University of Oxford, OxfordOX1 3RB, U.K.
- The Kavli Institute for Nanoscience Discovery, University of Oxford, OxfordOX1 3QU, U.K.
| | - Carol V. Robinson
- The Kavli Institute for Nanoscience Discovery, University of Oxford, OxfordOX1 3QU, U.K.
- Physical and Theoretical Chemistry Laboratory, University of Oxford, OxfordOX1 3QZ, U.K.
| | - Thomas Fallon
- Department of Chemistry, School of Physical Sciences, The University of Adelaide, Adelaide, SA5005, Australia
| | | | - John E. Moses
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
| |
Collapse
|
140
|
Leal JT, Primon-Barros M, de Carvalho Robaina A, Pizzutti K, Mott MP, Trentin DS, Dias CAG. Streptococcus pneumoniae serotype 19A from carriers and invasive disease: virulence gene profile and pathogenicity in a Galleria mellonella model. Eur J Clin Microbiol Infect Dis 2023; 42:399-411. [PMID: 36790530 DOI: 10.1007/s10096-023-04560-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/27/2023] [Indexed: 02/16/2023]
Abstract
PURPOSE This study aimed to evaluate and compare the presence of genes related to surface proteins between isolates of Streptococcus pneumoniae from healthy carriers (HC) and invasive pneumococcal disease (IPD) with a particular focus on serotype 19A. METHODS The presence of these genes was identified by real-time PCR. Subsequently, we employed the Galleria mellonella larval infection model to study their effect on pathogenicity in vivo. RESULTS The percentage of selected virulence genes was similar between the HC and IPD groups (p > 0.05), and the genes lytA, nanB, pavA, pcpA, phtA, phtB, phtE, rrgA, and sipA were all present in both groups. However, the virulence profile of the isolates differed individually between HC and IPD groups. The highest lethality in G. mellonella was for IPD isolates (p < 0.01), even when the virulence profile was the same as compared to the HC isolates or when the nanA, pspA, pspA-fam1, and pspC genes were not present. CONCLUSIONS The occurrence of the investigated virulence genes was similar between HC and IPD S. pneumoniae serotype 19A groups. However, the IPD isolates showed a higher lethality in the alternative G. mellonella model than the HC isolates, regardless of the virulence gene composition, indicating that other virulence factors may play a decisive role in virulence. Currently, this is the first report using the in vivo G. mellonella model to study the virulence of clinical isolates of S. pneumoniae.
Collapse
Affiliation(s)
- Josiane Trevisol Leal
- Laboratório de Microbiologia Molecular, Departamento de Ciências Básicas da Saúde, Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande Do Sul, Brasil
- Laboratório de Bacteriologia & Modelos Experimentais Alternativos, Departamento de Ciências Básicas da Saúde, Programa de Pós-Graduação em Biociências (PPGBIO), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brasil
| | - Muriel Primon-Barros
- Laboratório de Microbiologia Molecular, Departamento de Ciências Básicas da Saúde, Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande Do Sul, Brasil
| | - Amanda de Carvalho Robaina
- Laboratório de Microbiologia Molecular, Departamento de Ciências Básicas da Saúde, Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande Do Sul, Brasil
| | - Kauana Pizzutti
- Laboratório de Microbiologia Molecular, Departamento de Ciências Básicas da Saúde, Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande Do Sul, Brasil
| | - Mariana Preussler Mott
- Laboratório de Microbiologia Molecular, Departamento de Ciências Básicas da Saúde, Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande Do Sul, Brasil
| | - Danielle Silva Trentin
- Laboratório de Bacteriologia & Modelos Experimentais Alternativos, Departamento de Ciências Básicas da Saúde, Programa de Pós-Graduação em Biociências (PPGBIO), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brasil.
| | - Cícero Armídio Gomes Dias
- Laboratório de Microbiologia Molecular, Departamento de Ciências Básicas da Saúde, Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande Do Sul, Brasil
| |
Collapse
|
141
|
Al Ayed K, Zamarbide Losada D, Machushynets NV, Terlouw B, Elsayed SS, Schill J, Trebosc V, Pieren M, Medema MH, van Wezel GP, Martin NI. Total Synthesis and Structure Assignment of the Relacidine Lipopeptide Antibiotics and Preparation of Analogues with Enhanced Stability. ACS Infect Dis 2023; 9:739-748. [PMID: 37000899 PMCID: PMC10111413 DOI: 10.1021/acsinfecdis.3c00043] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
The unabated rise of antibiotic resistance has raised the specter of a post-antibiotic era and underscored the importance of developing new classes of antibiotics. The relacidines are a recently discovered group of nonribosomal lipopeptide antibiotics that show promising activity against Gram-negative pathogens and share structural similarities with brevicidine and laterocidine. While the first reports of the relacidines indicated that they possess a C-terminal five-amino acid macrolactone, an N-terminal lipid tail, and an overall positive charge, no stereochemical configuration was assigned, thereby precluding a full structure determination. To address this issue, we here report a bioinformatics guided total synthesis of relacidine A and B and show that the authentic natural products match our predicted and synthesized structures. Following on this, we also synthesized an analogue of relacidine A wherein the ester linkage of the macrolactone was replaced by the corresponding amide. This analogue was found to possess enhanced hydrolytic stability while maintaining the antibacterial activity of the natural product in both in vitro and in vivo efficacy studies.
Collapse
Affiliation(s)
- Karol Al Ayed
- Biological Chemistry Group, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, Netherlands
| | - Denise Zamarbide Losada
- Biological Chemistry Group, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, Netherlands
| | - Nataliia V. Machushynets
- Molecular Biotechnology Group, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, Netherlands
| | - Barbara Terlouw
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, Netherlands
| | - Somayah S. Elsayed
- Molecular Biotechnology Group, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, Netherlands
| | - Julian Schill
- BioVersys AG, c/o Technologiepark, Hochbergerstrasse 60c, CH-4057 Basel, Switzerland
| | - Vincent Trebosc
- BioVersys AG, c/o Technologiepark, Hochbergerstrasse 60c, CH-4057 Basel, Switzerland
| | - Michel Pieren
- BioVersys AG, c/o Technologiepark, Hochbergerstrasse 60c, CH-4057 Basel, Switzerland
| | - Marnix H. Medema
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, Netherlands
| | - Gilles P. van Wezel
- Molecular Biotechnology Group, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, Netherlands
| | - Nathaniel I. Martin
- Biological Chemistry Group, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, Netherlands
| |
Collapse
|
142
|
Chen B, Qian G, Yang Z, Zhang N, Jiang Y, Li D, Li R, Shi D. Virulence capacity of different Aspergillus species from invasive pulmonary aspergillosis. Front Immunol 2023; 14:1155184. [PMID: 37063826 PMCID: PMC10090689 DOI: 10.3389/fimmu.2023.1155184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
IntroductionThe opportunistic filamentous fungus Aspergillus causes invasive pulmonary aspergillosis (IPA) that often turns into a fatal infection in immunocompromised hosts. However, the virulence capacity of different Aspergillus species and host inflammation induced by different species in IPA are not well understood.MethodsIn the present study, host inflammation, antimicrobial susceptibilities and virulence were compared among clinical Aspergillus strains isolated from IPA patients.ResultsA total of 46 strains were isolated from 45 patients with the invasive infection, of which 35 patients were diagnosed as IPA. Aspergillus flavus was the dominant etiological agent appearing in 25 cases (54.3%). We found that the CRP level and leukocyte counts (elevated neutrophilic granulocytes and monocytes, and reduced lymphocytes) were significantly different in IPA patients when compared with healthy individuals (P < 0.05). Antifungal susceptibilities of these Aspergillus isolates from IPA showed that 91%, 31%, 14%, and 14% were resistant to Fluconazole, Micafungin, Amphotericin B and Terbinafine, respectively. The survival rate of larvae infected by A. flavus was lower than larvae infected by A. niger or A. fumigatus (P < 0.05).DiscussionAspergillus flavus was the dominant clinical etiological agent. Given the prevalence of A. flavus in our local clinical settings, we may face greater challenges when treating IPA patients.
Collapse
Affiliation(s)
- Biao Chen
- Laboratory of Medical Mycology, Jining No. 1 People’s Hospital, Jining, Shandong, China
- Central Laboratory, Jining No.1 People’s Hospital, Jining, Shandong, China
| | - Guocheng Qian
- Laboratory of Medical Mycology, Jining No. 1 People’s Hospital, Jining, Shandong, China
| | - Zhiya Yang
- Laboratory of Medical Mycology, Jining No. 1 People’s Hospital, Jining, Shandong, China
| | - Ning Zhang
- Laboratory of Medical Mycology, Jining No. 1 People’s Hospital, Jining, Shandong, China
| | - Yufeng Jiang
- Laboratory of Medical Mycology, Jining No. 1 People’s Hospital, Jining, Shandong, China
| | - Dongmei Li
- Georgetown University Medical Center, Department of Microbiology & Immunology, Washington, DC, United States
| | - Renzhe Li
- Laboratory of Medical Mycology, Jining No. 1 People’s Hospital, Jining, Shandong, China
| | - Dongmei Shi
- Laboratory of Medical Mycology, Jining No. 1 People’s Hospital, Jining, Shandong, China
- *Correspondence: Dongmei Shi,
| |
Collapse
|
143
|
Wang F, Han R, Chen S. An Overlooked and Underrated Endemic Mycosis-Talaromycosis and the Pathogenic Fungus Talaromyces marneffei. Clin Microbiol Rev 2023; 36:e0005122. [PMID: 36648228 PMCID: PMC10035316 DOI: 10.1128/cmr.00051-22] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Talaromycosis is an invasive mycosis endemic in tropical and subtropical Asia and is caused by the pathogenic fungus Talaromyces marneffei. Approximately 17,300 cases of T. marneffei infection are diagnosed annually, and the reported mortality rate is extremely high (~1/3). Despite the devastating impact of talaromycosis on immunocompromised individuals, particularly HIV-positive persons, and the increase in reported occurrences in HIV-uninfected persons, diagnostic and therapeutic approaches for talaromycosis have received far too little attention worldwide. In 2021, scientists living in countries where talaromycosis is endemic raised a global demand for it to be recognized as a neglected tropical disease. Therefore, T. marneffei and the infectious disease induced by this fungus must be treated with concern. T. marneffei is a thermally dimorphic saprophytic fungus with a complicated mycological growth process that may produce various cell types in its life cycle, including conidia, hyphae, and yeast, all of which are associated with its pathogenicity. However, understanding of the pathogenic mechanism of T. marneffei has been limited until recently. To achieve a holistic view of T. marneffei and talaromycosis, the current knowledge about talaromycosis and research breakthroughs regarding T. marneffei growth biology are discussed in this review, along with the interaction of the fungus with environmental stimuli and the host immune response to fungal infection. Importantly, the future research directions required for understanding this serious infection and its causative pathogenic fungus are also emphasized to identify solutions that will alleviate the suffering of susceptible individuals worldwide.
Collapse
Affiliation(s)
- Fang Wang
- Intensive Care Unit, Biomedical Research Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - RunHua Han
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Shi Chen
- Intensive Care Unit, Biomedical Research Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- Department of Burn and Plastic Surgery, Biomedical Research Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| |
Collapse
|
144
|
Asai M, Li Y, Newton SM, Robertson BD, Langford PR. Galleria mellonella-intracellular bacteria pathogen infection models: the ins and outs. FEMS Microbiol Rev 2023; 47:fuad011. [PMID: 36906279 PMCID: PMC10045907 DOI: 10.1093/femsre/fuad011] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/13/2023] Open
Abstract
Galleria mellonella (greater wax moth) larvae are used widely as surrogate infectious disease models, due to ease of use and the presence of an innate immune system functionally similar to that of vertebrates. Here, we review G. mellonella-human intracellular bacteria pathogen infection models from the genera Burkholderia, Coxiella, Francisella, Listeria, and Mycobacterium. For all genera, G. mellonella use has increased understanding of host-bacterial interactive biology, particularly through studies comparing the virulence of closely related species and/or wild-type versus mutant pairs. In many cases, virulence in G. mellonella mirrors that found in mammalian infection models, although it is unclear whether the pathogenic mechanisms are the same. The use of G. mellonella larvae has speeded up in vivo efficacy and toxicity testing of novel antimicrobials to treat infections caused by intracellular bacteria: an area that will expand since the FDA no longer requires animal testing for licensure. Further use of G. mellonella-intracellular bacteria infection models will be driven by advances in G. mellonella genetics, imaging, metabolomics, proteomics, and transcriptomic methodologies, alongside the development and accessibility of reagents to quantify immune markers, all of which will be underpinned by a fully annotated genome.
Collapse
Affiliation(s)
- Masanori Asai
- Section of Paediatric Infectious Disease, Department of Infectious Disease, St Mary’s campus, Imperial College London, London W2 1PG, United Kingdom
| | - Yanwen Li
- Section of Paediatric Infectious Disease, Department of Infectious Disease, St Mary’s campus, Imperial College London, London W2 1PG, United Kingdom
| | - Sandra M Newton
- Section of Paediatric Infectious Disease, Department of Infectious Disease, St Mary’s campus, Imperial College London, London W2 1PG, United Kingdom
| | - Brian D Robertson
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, South Kensington campus, Imperial College London, London SW7 2AZ, United Kingdom
| | - Paul R Langford
- Section of Paediatric Infectious Disease, Department of Infectious Disease, St Mary’s campus, Imperial College London, London W2 1PG, United Kingdom
| |
Collapse
|
145
|
Serrano I, Verdial C, Tavares L, Oliveira M. The Virtuous Galleria mellonella Model for Scientific Experimentation. Antibiotics (Basel) 2023; 12:505. [PMID: 36978373 PMCID: PMC10044286 DOI: 10.3390/antibiotics12030505] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
The first research on the insect Galleria mellonella was published 85 years ago, and the larva is now widely used as a model to study infections caused by bacterial and fungal pathogens, for screening new antimicrobials, to study the adjacent immune response in co-infections or in host-pathogen interaction, as well as in a toxicity model. The immune system of the G. mellonella model shows remarkable similarities with mammals. Furthermore, results from G. mellonella correlate positively with mammalian models and with other invertebrate models. Unlike other invertebrate models, G. mellonella can withstand temperatures of 37 °C, and its handling and experimental procedures are simpler. Despite having some disadvantages, G. mellonella is a virtuous in vivo model to be used in preclinical studies, as an intermediate model between in vitro and mammalian in vivo studies, and is a great example on how to apply the bioethics principle of the 3Rs (Replacement, Reduction, and Refinement) in animal experimentation. This review aims to discuss the progress of the G. mellonella model, highlighting the key aspects of its use, including experimental design considerations and the necessity to standardize them. A different score in the "cocoon" category included in the G. mellonella Health Index Scoring System is also proposed.
Collapse
Affiliation(s)
- Isa Serrano
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Cláudia Verdial
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Luís Tavares
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Manuela Oliveira
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| |
Collapse
|
146
|
Pseudomonas aeruginosa exotoxin A induces apoptosis in Galleria mellonella hemocytes. J Invertebr Pathol 2023; 197:107884. [PMID: 36642365 DOI: 10.1016/j.jip.2023.107884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/05/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023]
Abstract
The cellular immune response of the greater wax moth Galleria mellonella to Pseudomonas aeruginosa exotoxin A was investigated for the first time. The insects were challenged with a sublethal dose of exoA, and then hemocyte parameters were assessed. The analysis showed a statistically significant decrease in the total hemocyte count (THC), which was associated with significant decreases in the number of granulocytes and plasmatocytes. In turn, no statistically significant changes were observed in the number of spherulocytes and oenocytoides. Fluorescent staining indicated that cells collected from the exoA-challenged larvae exhibited features characteristic for apoptotic and autophagic cell death, e.g. cytoplasm vacuolization and chromatin condensation. The flow cytometry analysis revealed a significant increase in the number of phosphatidylserine- and active caspase 3-positive hemocytes challenged with exoA, which proved apoptosis induction. Our results will help in understanding the role of exotoxin A during P. aeruginosa infections not only in insects but also in mammals, including humans.
Collapse
|
147
|
Sabockytė A, McAllister S, Coates CJ, Lim J. Effect of acute ultraviolet radiation on Galleria mellonella health and immunity. J Invertebr Pathol 2023; 198:107899. [PMID: 36806465 DOI: 10.1016/j.jip.2023.107899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/27/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
For humans, acute and chronic overexposure to ultraviolet (UV) radiation can cause tissue damage in the form of sunburn and promote cancer(s). The immune-modulating properties of UV radiation and health-related consequences are not well known. Herein, we used the larvae of the wax moth Galleria mellonella, to determine UV-driven changes in cellular components of innate immunity. From immune cell (haemocyte) reactivity and the production of antimicrobial factors, these insects share many functional similarities with mammalian cellular innate immunity. After exposing insects to UVA or UVB for up to two hours, we monitored larval viability, susceptibility to infection, haemolymph (blood) physiology and faecal discharge. Prolonged exposure of larvae to UVB coincided with decreased survival, enhanced susceptibility to bacterial challenge, melanin synthesis in the haemolymph, compromised haemocyte functionality and changes in faecal (bacterial) content. We contend G. mellonella is a reliable in vivo model for assessing the impact of UV exposure at the whole organism and cellular levels.
Collapse
Affiliation(s)
- Aušrinė Sabockytė
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, FK9 4LA, UK
| | - Samuel McAllister
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, FK9 4LA, UK
| | - Christopher J Coates
- Zoology, Ryan Institute, School of Natural Sciences, University of Galway, Galway H91 TK33, Ireland
| | - Jenson Lim
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, FK9 4LA, UK.
| |
Collapse
|
148
|
Ahmed KK, Wongrakpanich A. Particles-based medicated wound dressings: a comprehensive review. Ther Deliv 2023; 13:489-505. [PMID: 36779372 DOI: 10.4155/tde-2022-0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
Wound healing is a dynamic process that is controlled by many factors. The interest in developing wound dressings capable of providing the required environment for the proper wound healing process is ever expanding, and particles occupy a sizable share of the research area. This comprehensive review reports 10 years of research in terms of current advances, delivery system evaluation, outcomes and future directions. The review follows a clearly defined method of article search and screening. Retrieved papers are reviewed regarding the materials, formulation development, and in vitro/in vivo testing of particles-based wound dressings. The review summarized the current status of medicated wound dressing research, identifies gaps to be addressed, and represents a reference for researchers working on wound dressings.
Collapse
Affiliation(s)
- Kawther Khalid Ahmed
- University of Baghdad, College of Pharmacy, Department of Pharmaceutics, Bab-almoadham, P.O.Box 14026, Baghdad, Iraq
- University of Iowa College of Pharmacy, IA, USA
| | - Amaraporn Wongrakpanich
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayuthaya Road, Rajathevi, Bangkok, 10400, Thailand
| |
Collapse
|
149
|
Malacarne MC, Mastore M, Gariboldi MB, Brivio MF, Caruso E. Preliminary Toxicity Evaluation of a Porphyrin Photosensitizer in an Alternative Preclinical Model. Int J Mol Sci 2023; 24:ijms24043131. [PMID: 36834543 PMCID: PMC9966276 DOI: 10.3390/ijms24043131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
In photodynamic therapy (PDT), a photosensitizer (PS) excited with a specific wavelength, and in the presence of oxygen, gives rise to photochemical reactions that lead to cell damage. Over the past few years, larval stages of the G. mellonella moth have proven to be an excellent alternative animal model for in vivo toxicity testing of novel compounds and virulence testing. In this article, we report a series of preliminary studies on G. mellonella larvae to evaluate the photoinduced stress response by a porphyrin (PS) (TPPOH). The tests performed evaluated PS toxicity on larvae and cytotoxicity on hemocytes, both in dark conditions and following PDT. Cellular uptake was also evaluated by fluorescence and flow cytometry. The results obtained demonstrate how the administration of PS and subsequent irradiation of larvae affects not only larvae survival rate, but also immune system cells. It was also possible to verify PS's uptake and uptake kinetics in hemocytes, observing a maximum peak at 8 h. Given the results obtained in these preliminary tests, G. mellonella appears to be a promising model for preclinical PS tests.
Collapse
Affiliation(s)
- Miryam Chiara Malacarne
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy
| | - Maristella Mastore
- Department of Theoretical and Applied Sciences (DiSTA), University of Insubria, 21100 Varese, Italy
| | - Marzia Bruna Gariboldi
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy
| | | | - Enrico Caruso
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy
- Correspondence: ; Tel.: +39-0332421541
| |
Collapse
|
150
|
Feng J, Li F, Sun L, Dong L, Gao L, Wang H, Yan L, Wu C. Characterization and genome analysis of phage vB_KpnS_SXFY507 against Klebsiella pneumoniae and efficacy assessment in Galleria mellonella larvae. Front Microbiol 2023; 14:1081715. [PMID: 36793879 PMCID: PMC9922705 DOI: 10.3389/fmicb.2023.1081715] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae is one of the primary bacterial pathogens that pose a significant threat to global public health because of the lack of available therapeutic options. Phage therapy shows promise as a potential alternative to current antimicrobial chemotherapies. In this study, we isolated a new Siphoviridae phage vB_KpnS_SXFY507 against KPC-producing K. pneumoniae from hospital sewage. It had a short latent period of 20 min and a large burst size of 246 phages/cell. The host range of phage vB_KpnS_SXFY507 was relatively broad. It has a wide range of pH tolerance and high thermal stability. The genome of phage vB_KpnS_SXFY507 was 53,122 bp in length with a G + C content of 49.1%. A total of 81 open-reading frames (ORFs) and no virulence or antibiotic resistance related genes were involved in the phage vB_KpnS_SXFY507 genome. Phage vB_KpnS_SXFY507 showed significant antibacterial activity in vitro. The survival rate of Galleria mellonella larvae inoculated with K. pneumoniae SXFY507 was 20%. The survival rate of K. pneumonia-infected G. mellonella larvae was increased from 20 to 60% within 72 h upon treatment with phage vB_KpnS_SXFY507. In conclusion, these findings indicate that phage vB_KpnS_SXFY507 has the potential to be used as an antimicrobial agent for the control of K. pneumoniae.
Collapse
Affiliation(s)
- Jiao Feng
- Institute of Biomedical Sciences, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education of China, The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Shanxi University, Taiyuan, China,*Correspondence: Jiao Feng, ✉
| | - Fei Li
- Center for Clinical Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China,College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Li Sun
- Institute of Biomedical Sciences, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education of China, The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Shanxi University, Taiyuan, China
| | - Lina Dong
- Core Laboratory, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
| | - Liting Gao
- Institute of Biomedical Sciences, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education of China, The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Shanxi University, Taiyuan, China
| | - Han Wang
- Medical Imaging Center, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Liyong Yan
- Hospital Office, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China,Liyong Yan, ✉
| | - Changxin Wu
- Institute of Biomedical Sciences, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education of China, The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Shanxi University, Taiyuan, China,Changxin Wu, ✉
| |
Collapse
|